WorldWideScience

Sample records for octupole deformation properties

  1. Collective properties of octupole-deformed atomic nuclei

    Collective properties of even-even nuclei in the radium region are studied theoretically. Energy of the lowest collective states and reduced probabilities B(E2) and B(E3) of electromagnetic transitions between these states are mainly analysed. The excited states are treated as large-amplitude quadrupole and octupole vibrations coupled with each other. A large anharmonicity of the spectrum and a large value B(E3) of the transition from the first octupole excited state to the ground state are obtained, for octupole-deformed nuclei. A strong dependence of the results on the shape of the potential energy of a nucleus, treated as a function of its deformation, is stressed. (author)

  2. Octupole Deformed Nuclei in the Actinide Region

    Thorsteinsen, T; Rubio barroso, B; Simpson, J; Gulda, K; Sanchez-vega, M; Cocks, J; Nybo, K; Garcia borge, M; Aas, A; Fogelberg, B; Honsi, J; Smith, G; Naumann, R; Grant, I

    2002-01-01

    The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. \\\\ \\\\In order to establish the upper border line the $\\beta$ -decay chains of $^{227}$Rn $\\rightarrow ^{227}$Fr $\\rightarrow ^{227}$Ra and $^{231}$Fr $\\rightarrow ^{231}$Ra $\\rightarrow ^{231}$Ac were studied at PSB-ISOLDE using advanced fast timing and $\\gamma$-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed $\\beta\\gamma\\gamma$(t) method.

  3. Studies of Stable Octupole Deformations in the Radium Region

    2002-01-01

    The purpose of the present project is to locate and identify states in the atomic nuclei possessing stable pearshaped octupole deformation. Such states, formally related to the structures known in molecular physics, manifest themselves as families of parity doublets in odd nuclei.\\\\ \\\\ The best possibilities for observing stable octupole deformations are offered in the Ra-region. Both theoretical calculations and experimental indications support such expectations. Such indications are the non-observation of two-phonon octupole vibrational states in the ISOLDE studies of the even-even radium nuclei, and the reversed sign of the decoupling factor of the ground state band in |2|2|5Ra observed in the single-neutron transfer reactions. In order to establish the predicted strong E1 and E3-transitions between the parity doublets in odd nuclei with stable octupole deformations it is proposed to study conversion electrons in odd-mass francium radium and radon isotopes following the @b-decay of francium and astatine. \\...

  4. Influence of the octupole mode on nuclear high-K isomeric properties

    Minkov, Nikolay; Walker, Phil

    2014-05-01

    The influence of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even actinide (U, Pu, Cm, Fm, No), rare-earth (Nd, Sm and Gd), and superheavy (^{270}\\text{Ds}) nuclei is examined within a deformed shell model with pairing interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated over a wide range in the plane of quadrupole and octupole deformations. In most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation. At the same time, the calculations outline three different groups of nuclei: with pronounced, shallow, and missing minima in the 2qp energy surfaces with respect to the octupole deformation. The result indicates regions of nuclei with octupole softness as well as with possible octupole deformation in the high-K isomeric states. These findings show the need for further theoretical analysis as well as of detailed experimental measurements of magnetic moments in heavy deformed nuclei.

  5. Influence of the octupole mode on nuclear high-K isomeric properties

    The influence of quadrupole–octupole deformations on the energy and magnetic properties of high-K isomeric states in even–even actinide (U, Pu, Cm, Fm, No), rare-earth (Nd, Sm and Gd), and superheavy (270Ds) nuclei is examined within a deformed shell model with pairing interaction. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated over a wide range in the plane of quadrupole and octupole deformations. In most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation. At the same time, the calculations outline three different groups of nuclei: with pronounced, shallow, and missing minima in the 2qp energy surfaces with respect to the octupole deformation. The result indicates regions of nuclei with octupole softness as well as with possible octupole deformation in the high-K isomeric states. These findings show the need for further theoretical analysis as well as of detailed experimental measurements of magnetic moments in heavy deformed nuclei

  6. Effect of the coriolis and centrifugal forces for nuclei with a stable octupole deformation

    Effects of the Coriolis and centrifugal forces for nuclei with a stable octupole deformation are examined in the frame of a schematic collective model. It is found that these effects are by no means attenuated with a rise of the octupole deformation. Taking them into account seems to allow for a consistent description of a strong anharmonization and differences in the moments of inertia of the positive- and negative-parity bands. (orig.)

  7. Collective models for quadrupole and octupole degrees of freedom and complex nuclear deformations

    We review current advances in the theoretical study of nuclear quadrupole and octupole collectivity and complex shape deformations. We present a collective model formalism which consistently describes the strong parity shift effect observed in low-lying spectra of nuclei with octupole deformations together with the fine rotational band structure developed at higher angular momenta. The parity effect is obtained by the Schroedinger equation for oscillations of the reflection asymmetric (octupole) shape between two opposite orientations in an angular momentum dependent double-well potential. The rotational structure is obtained by the collective quadrupole-octupole rotation Hamiltonian (QORM). The unified model scheme reproduces the complicated beat staggering patterns observed in the octupole bands of light actinide nuclei. It explains the angular momentum evolution of octupole spectra as the interplay between the octupole shape oscillation (parity shift) mode and the stable quadrupole-octupole rotation mode. We also discuss an analytic collective model in which the relative presence of the quadrupole and octupole deformations is determined by a parameter (ψ0), while axial symmetry is obeyed. The model, called the Analytic Quadrupole Octupole Axially Symmetric model (AQOA), involves an infinite well potential, provides predictions for energy and B(EL) ratios which depend only on (ψ0), draws the border between the regions of octupole deformation and octupole vibrations in an essentially parameter-independent way, and describes well 226Th and 226Ra, for which experimental energy data are shown to suggest that they lie close to this border. The similarity of the AQOA results with ψ0=450 for ground state band spectra and B(E2) transition rates to the predictions of the X(5) model is pointed out. Analytic solutions are also obtained for Davidson potentials of the form β2+β4/β2, leading to the AQOA spectrum through a variational procedure. Also, we present results

  8. Reflection Asymmetric Relativistic Mean Field Approach and Its Application to the Octupole Deformed Nucleus 226Ra

    GENG Li-Sheng; MENG Jie; Toki Hiroshi

    2007-01-01

    A reflection asymmetric relativistic mean field (RAS-RMF) approach is developed by expanding the equations of motion for both the nucleons and the mesons on the eigenfunctions of the two-centre harmonic-oscillator potential.The efficiency and reliability of the RAS-RMF approach are demonstrated in its application to the well-known octupole deformed nucleus 226Ra and the available data, including the binding energy and the deformation parameters, are well reproduced.

  9. Direct Evidence of Octupole Deformation in Neutron-Rich $^{144}$Ba

    Bucher, B; Wu, C Y; Janssens, R V F; Cline, D; Hayes, A B; Albers, M; Ayangeakaa, A D; Butler, P A; Campbell, C M; Carpenter, M P; Chiara, C J; Clark, J A; Crawford, H L; Cromaz, M; David, H M; Dickerson, C; Gregor, E T; Harker, J; Hoffman, C R; Kay, B P; Kondev, F G; Korichi, A; Lauritsen, T; Macchiavelli, A O; Pardo, R C; Richard, A; Riley, M A; Savard, G; Scheck, M; Seweryniak, D; Smith, M K; Vondrasek, R; Wiens, A

    2016-01-01

    The neutron-rich nucleus $^{144}$Ba ($t_{1/2}$=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers $A$ less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced $E1$ transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multi-step Coulomb excitation of a post-accelerated 650-MeV $^{144}$Ba beam on a 1.0-mg/cm$^2$ $^{208}$Pb target. The measured value of the matrix element, $\\langle 3_1^- \\| \\mathcal{M}(E3) \\| 0_1^+ \\rangle=0.65(^{+17}_{-23})$ $e$b$^{3/2}$, corresponds to a reduced $B(E3)$ transition probability of 48($^{+25}_{-34}$) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

  10. Exotic octupole deformation in proton-rich Z=N nuclei

    Takami, Satoshi; Yabana, K. [Niigata Univ. (Japan); Matsuo, M.

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  11. Nonaxial octupole deformations in light N = Z nuclei at high spins

    Tanaka, T; Iwasawa, K; Tanaka, Takeshi; Nazmitdinov, Rashid G.; Iwasawa, Kazuo

    2001-01-01

    High spin states of ^{32}S$ and ^{56}Ni are investigated by means of the cranking Hartree-Fock method with the Gogny interaction without imposing a restriction on the axial reflection symmetry. It was found that a non-axial octupole deformation of the Y_{31} type becomes important in the yrast states of ^{32}S. A similar effect is predicted for the nucleus ^{56}Ni.

  12. Collective excited states in even–even nuclei with quadrupole and octupole deformations

    Deformed even–even nuclei with quadrupole and octupole deformations are investigated on the basis of a nonadiabatical collective model. It is shown that the model satisfactorily describes energy levels of the yrast and first nonyrast bands with alternating parity in the rare-earth nuclei 150Nd, 152,154Sm, 154Gd, 156Dy, 162,164Er and the actinides 232,234,236,238U. In the nuclei 156,158Gd, 224Ra, 228Th and 240Pu the energy levels of second nonyrast bands are also described. The structure of the considered alternating-parity bands is examined in terms of odd–even staggering diagrams. (author)

  13. Possible Octupole Correlation in 90Mo

    LIGuang-sheng; WUXiao-guang; PENGZhao-hua; WENShu-xian; HANGuang-bing; LICheng-bo; LUShao-jun; WUShao-yong; YUANGuang-jun; YANGChun-xiang; ZHULi-hua

    2003-01-01

    The nuclei with octupole deformation have a feature of reflection asymmetry and so there exists a wealth of information about nuclear property. Therefore, study on behavior of high spin states for these nuclei is helpful to know nuclear structure further. Theories predict that octupole deformation with β3≠0 will occurs when the proton number Z and neutron number N are 56, 88, and 132.

  14. Octupole deformation in the ground states of even-even nuclei: a global analysis within the covariant density functional theory

    Agbemava, S E; Ring, P

    2016-01-01

    A systematic investigation of octupole deformed nuclei is presented for even-even systems with $Z\\leq 106$ located between the two-proton and two-neutron drip lines. For this study we use five most up-to-date covariant energy density functionals of different types, with a non-linear meson coupling, with density dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov (RHB) theory based on an effective separable particle-particle interaction of finite range. This allows us to assess theoretical uncertainties within the present covariant models for the prediction of physical observables relevant for octupole deformed nuclei. In addition, a detailed comparison with the predictions of non-relativistic models is performed. A new region of octupole deformation, centered around $Z\\sim 98, N\\sim 196$ is predicted for the first time. In terms of its size in the $(Z,N)$ plane and the impact of octupole deformation on binding e...

  15. First Atomic Electric Dipole Moment Limit Derived from an Octupole-Deformed Nucleus

    Parker, Richard; Bishof, Michael; Kalita, Mukut; Lemke, Nathan; Dietrich, Matt; Bailey, Kevin; Greene, John; Holt, Roy; Korsch, Wolfgang; Lu, Zheng-Tian; Mueller, Peter; O'Connor, T. P.; Singh, Jaideep

    2015-05-01

    Ra-225 (half-life = 15 d, nuclear spin = 1/2) is a promising isotope for a measurement of the EDM of a diamagnetic atom. Due to its large nuclear octupole deformation and high atomic mass, the EDM sensitivity of Ra-225 is expected to be 2-3 orders of magnitude larger than that of Hg-199. We demonstrate an efficient multiple-stage apparatus in which radium atoms are first loaded into a MOT, then transferred into a movable optical-dipole trap (ODT) that carries the atoms over 1 m to a magnetically-shielded science chamber, loaded into a standing-wave ODT, polarized, and then allowed to precess in magnetic and electric fields. We will discuss our first measurement of the EDM of Ra-225, as well as plans for future improvements. This work is supported by DOE, Office of Nuclear Physics (DE-AC02-06CH11357).

  16. Octupole correlations in U and Pu nuclei

    We study the even-even U and Pu nuclei in the framework of the spdf interacting boson model. Analysis of the systematics of positive and negative parity bands, together with the E1, E2, and E3 transitions, suggests that the properties of low-lying states can be understood without the introduction of stable octupole deformation. Double octupole phonon characteristics are also identified in certain low-lying 0+ excited states in U and Pu

  17. Anomalous E1 conversion in octupole-deformed nuclei and muon shake-off in prompt fission

    It has been shown that the coexistence of octupole and quadrupole deformation in nuclei gives rise to strong penetration effects in internal conversion for the E1 transitions. This idea has been applied for evaluating the muon shake-off probability Wsh. The value obtained, Wsh≅0.5% per prompt fission, is in good agreement with the experimental result. Possibilities for further experimental studies of this effect are discussed. (orig.)

  18. Study of octupole deformation in n-rich Ba isotopes populated via $\\beta$-decay

    We propose to exploit the unique capability of the ISOLDE facility to produce $^{150−151−152}$Cs beams to investigate their radioactive $\\beta$-decay to $^{150−151−152}$Ba. The interest to study this mass region is twofold: from one side these nuclei are expected to show octupole deformations already in their low-lying state, and, on the other hand, gross information on the $\\beta$-decay is highly demanded for nuclear astrophysical model, given the fact that the r-process path lies in the proximity of 1 accessible nuclei. The experiment will be performed with the ISOLDE Decay Station (IDS) setup using the fast tape station of K.U.-Leuven, equipped with 4 Clover Germanium detectors, 4 LaBr$_{3}$(Ce) detectors and 1 LEP HPGe detector. Information on the $\\beta$-decay, such as lifetimes and delayed neutron-emission probabilities, will be extracted, together with the detailed spectroscopy of the daughter nuclei, via $\\gamma-\\gamma$-coincidences and lifetimes measurement of specific states.

  19. Octupole shapes in heavy nuclei

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  20. Octupole deformation in 144,146Ba measured by Coulomb excitation of radioactive beams

    Bucher, Brian; Zhu, Shaofei; ANL, LBNL, LLNL, Rochester, Florida State, Liverpool, Maryland, Notre Dame, Ohio, W. Scotland Collaboration

    2015-10-01

    The exotic, neutron-rich 144Ba (t1 / 2 = 11.5 s) and 146Ba (t1 / 2 = 2.2 s) nuclei are expected to exhibit some of the strongest octupole correlations in A 0) = 48(-34+ 25) W.u., a value considerably larger than theoretical predictions, while preliminary results for 146Ba are also indicative of strong octupole collectivity. The experimental conditions, the analysis, and the results from these challenging new measurements will be presented. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), and NSF.

  1. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Octupole vibrations in the X(5) nuclei 150Nd and 152Sm

    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry is used to describe the negative-parity band based on the first octupole vibrational state in nuclei close to the critical point of the U(5)-to-SU(3) phase transition. The situation of 150Nd and 152Sm is discussed in detail. The positive-parity levels of these nuclei, and also the in-band E2 transitions, are reasonably accounted for by the X(5) model. With simple assumptions on the nature of the octupole vibrations, it is also possible to describe the negative-parity sector with comparable accuracy without changing the description of the positive-parity part.

  2. Octupole effects in the lanthanides

    Arrays of Anti-Compton Spectrometer enabled systematic investigations of octupole correlations in the neutron-rich lanthanides. The studies mostly confirm the theoretical expectations of moderate octupole deformation at medium spins in nuclei from this region but in some cases predictions deviate from the experiment. In cesium isotopes strong octupole effects are predicted but not observed and new measurements for 139Xe suggest octupole effects stronger than expected. Systematics of excitation energy of the 31 states excitations, updated in the present work for Xe isotopes, indicates the N=85 and Z=54 lines as borders for strong octupole correlations. Systematic of electric dipole moment, upgraded in the present work for Ca and Ce isotopes confirms the Z=54 limit and adds new information about local canceling of electric dipole moment at the N=90 neutron number

  3. Test of the transport properties of a helical electrostatic quadrupole and quasi-octupole

    A third-generation continuous helical electrostatic quadrupole (HESQ) lens has been built and tested. The new HESQ is 21.5 cm long and has a 3.6 cm diameter aperture. The HESQ has been tested under two separate conditions: with a pulsed 25 keV, 0.5 mA proton beam; and a 25 keV, 10 mA proton beam. The input emittance was fixed using a multi-aperture collimator. A comparison is made between experiment and numerical simulations for a wide variety of operating conditions. A second possible operating mode is the quasi-octupole mode, which offers significantly reduced aberration when compared to the quadrupole mode. The results of preliminary tests in this operating mode will be presented

  4. Octupole collectivity in the Sm isotopes

    Microscopic models suggest the occurrence of strong octupole correlations in nuclei with N≅88. To examine the signatures of octupole correlations in this region, the spdf interacting boson approximation model is applied to Sm isotopes with N=86-92. The effects of including multiple negative-parity bosons in this basis are compared with more standard one negative-parity boson calculations and are analyzed in terms of signatures for strong octupole correlations. It is found that multiple negative-parity bosons are needed to describe properties at medium spin. Bands with strong octupole correlations (multiple negative-parity bosons) become yrast at medium spin in 148,150Sm. This region shares some similarities with the light actinides, where strong octupole correlations were also found at medium spin

  5. Octupole collectivity in nuclei

    Butler, P. A.

    2016-07-01

    The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.

  6. Microscopic analysis of quadrupole-octupole shape evolution

    Nomura Kosuke

    2015-01-01

    Full Text Available We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM, that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 – β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  7. Reflection Asymmetric Shell Model for the Description of Octupole Rotational Bands

    GAO Zao-Chun; CHEN Yong-Shou

    2001-01-01

    The reflection asymmetric shell model has been formulated to describe the high spin states of octupole-deformed nuclei. The long-range separable forces of quadrupole, octupole and hexadecapole, as well as monopole and quadrupole pairing, are included in the Hamiltonian. The bases, on which the Hamiltonian is diagonalized, are the eigenstates of angular momentum and parity obtained by projecting the octupole-deformed multi-quasiparticle states onto good angular momentum and good parity. The general features of rotational octupole bands in eveneven nuclei can be reproduced by the model and the calculated result is in good agreement with experiment.

  8. Search for octupole correlations in $^{147}$Nd

    Ruchowska, E; Kowal, M; Skalski, J; Plociennik, W A; Fogelberg, B

    2015-01-01

    Properties of excited states in $^{147}$Nd have been studied with multispectra and $\\gamma \\gamma$ coincidence measurements. Twenty-four new $\\gamma$-lines and three new levels have been introduced into the level scheme of $^{147}$Nd. Lifetimes of eight excited levels in $^{147}$Nd, populated in the $\\beta$ decay of $^{147}$Pr, have been measured using the advanced time-delayed $\\beta\\gamma\\gamma$(t) method. Reduced transition probabilities have been determined for 30 $\\gamma$-transitions in $^{147}$Nd. Potential energy surfaces on the ($\\beta_{2}$,$\\beta_{3}$) plane calculated for $^{147}$Nd using the Strutinsky method predict two single quasiparticle configurations with nonzero octupole deformation, with K=1/2 and K=5/2. We do not observe parity doublet bands with K=5/2. For pair of opposite parity bands that could form the K=1/2 parity doublet we were able only to determine lower limit of the dipole moment, $|D_0|\\geq$0.02 e$\\cdot fm$.

  9. Energy levels and reduced probabilities of electric dipole, quadrupole and octupole transitions of 226Ra

    The energy levels and reduced probabilities of electric dipole, quadrupole and octupole transitions measured in the Coulomb excitation of 226Ra are analyzed in the framework of the soft axial-symmetric rotator model with quadrupole and octupole deformations. The calculated values are in good agreement with experimental data. (author). 11 refs., 2 figs

  10. Octupole response and stability of spherical shape in heavy nuclei

    Abrosimov, V.I.; Davidovskaya, O.I.; Dellafiore, A. E-mail: della@fi.infn.it; Matera, F

    2003-11-17

    The isoscalar octupole response of a heavy spherical nucleus is analyzed in a semiclassical model based on the linearized Vlasov equation. The octupole strength function is evaluated with different degrees of approximation. The zero-order fixed-surface response displays a remarkable concentration of strength in the 1{Dirac_h}{omega} and 3{Dirac_h}{omega} regions, in excellent agreement with the quantum single-particle response. The collective fixed-surface response reproduces both the high- and low-energy octupole resonances, but not the low-lying 3{sup -} collective states, while the moving-surface response function gives a good qualitative description of all the main features of the octupole response in heavy nuclei. The role of triangular nucleon orbits, that have been related to a possible instability of the spherical shape with respect to octupole-type deformations, is discussed within this model. It is found that, rather than creating instability, the triangular trajectories are the only classical orbits contributing to the damping of low-energy octupole excitations.

  11. Octupole correlation effects in nuclei

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  12. Improvements on the present theoretical understanding of octupole correlations

    Robledo L.M.

    2014-03-01

    Full Text Available Some intriguing results, obtained in a recent survey of octupole properties for all even-even nuclei, are reanalyzed in order to understand the origin of the strong disagreement with experimental data and/or the strange behaviours observed. The limitations of the rotational formula to describe E1 and E3 transition strengths are discussed as well as the role played by octupole-quadrupole coupling in some specific nuclei.

  13. Uniform beam distributions using octupoles

    The Gaussian beam profile of the BNL 200 MeV H- Linac beam at the Radiation Effects Facility target location was transformed into a rectangular profile with almost uniform distribution by placing two octupole magnetic elements at particular locations along the beam line. Experimental results of the beam profile projection in the horizontal and vertical planes, with and without octupoles, are presented and compared with third order calculations. 7 refs., 3 figs

  14. Non-yrast quadrupole-octupole spectra

    Lenske H.

    2012-12-01

    Full Text Available A model of strongly coupled quadrupole and octupole vibrations and rotations is applied to describe non-yrast alternating-parity sequences in even-even nuclei and split parity-doublet spectra in odd-mass nuclei. In even-even nuclei the yrast alternating-parity sequence includes the ground-state band and the lowest negative-parity levels with odd angular momenta, while the non-yrast sequences include excited β-bands and higher negative-parity levels. In odd-mass nuclei the yrast levels are described as low-energy rotation-vibration modes coupled to the ground single-particle (s.p. state, while the non-yrast parity-doublets are obtained as higher-energy rotation-vibration modes coupled to excited s.p. configurations. We show that the extended model scheme describes the yrast and non-yrast quadrupole-octupole spectra in both even-even and odd-A nuclei. The involvement of the reflection-asymmetric deformed shell model to explain the single-particle motion and the Coriolis interaction in odd nuclei is discussed.

  15. Improvements on the present theoretical understanding of octupole correlations

    Some intriguing results, obtained in a recent survey of octupole properties for all even-even nuclei, are reanalyzed in order to understand the origin of the strong disagreement with experimental data and/or the strange behaviours observed. The limitations of the rotational formula to describe E1 and E3 transition strengths are discussed as well as the role played by octupole-quadrupole coupling in some specific nuclei such as 20Ne, 64Zn, 158Gd, 208Pb and 224Ra

  16. The octupoles take pole position

    2002-01-01

    The first preseries octupole magnet was delivered to CERN in December 2001. Hooked up to a main quadrupole magnet, its function will be to correct imperfections in the beams. The LHC will be fitted with about 5000 corrector magnets, whose task it will be to provide maximum precision in beam collisions.

  17. Deformation Properties and Fatigue of Bituminous Mixtures

    Frantisek Schlosser

    2013-01-01

    Full Text Available Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall characteristics of the mixture. Deformation properties are used as inputs for empirical mixture design, and fatigue performance of asphalt mixtures reflects the parameters of functional tests. Master curves convey properties of asphalt mixtures for various conditions and allow us to evaluate them without the need of time expensive testing.

  18. Stable and Vibrational Octupole Modes in Mo, Xe, Ba, La, Ce and Nd

    Evidence is presented for stable octupole deformation in neutron-rich nuclei, bounded by Z = 54-58 and N = 85-92. To either side of this region negative parity bands built on more vibrational type octupole modes are observed in 140Ba and 152,154Nd. The largest stable octupole deformation (βs ∼ 0.1) is found in 144Baas. The theoretically predicted quenching (βs ∼ 0) of stable octupole deformation at higher spins is found in 140Ba. There is good agreement between theory and experiment for the strongly varying electric dipole moments as a function of mass for 142-141Ba. In odd-A 142Ba and odd-Z 140La, we observe parity doublets, two pairs of positive and negative parity bands with opposite spins. In 145La a strong coupled ground band with symmetric shape coexists with the asymmetric octupole shape which stabilizes above about spin 19/2. In 145,147La a strong reduction in E2 strength around 25/2 from band crossing is observed. The isotope 109Mo was identified and a new region of stable uctpole deformation is identified in 107,108Mo centered around N = 64-66 as earlier predicted. This is the first case of stable uctpole deformation involving only one pair of orbitals

  19. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-beta decay

    Yao, J M

    2016-01-01

    We present a generator-coordinate calculation, based on a relativistic energy-density functional, of the low-lying spectra in the isotopes $^{150}$Nd and $^{150}$Sm and of the nuclear matrix element that governs the neutrinoless double-beta decay of the first isotope to the second. We carefully examine the impact of octupole correlations on both nuclear structure and the double-beta decay matrix element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape fluctuations, however, dilute the effects of octupole deformation on the double-beta decay matrix element, so that the overall octupole-induced quenching is only about 7\\%.

  20. Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums

    Hoff, P; Kaczarowski, R

    2002-01-01

    %IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...

  1. Nuclear octupole correlations and the enhancement of atomic time-reversal violation

    We examine the time-reversal-violating nuclear ''Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment. (c) 2000 The American Physical Society

  2. Deformation Properties and Fatigue of Bituminous Mixtures

    Frantisek Schlosser; Jan Mikolaj; Viera Zatkalikova; Juraj Sramek; Dominika Durekova; Lubos Remek

    2013-01-01

    Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall charact...

  3. Some properties of deformed Sine Gordon models

    Alibek, Akmaral; Myrzakulov, Ratbay; Zakrzewski, W. J.

    2008-01-01

    We study some properties of the deformed Sine Gordon models. These models, presented by Bazeia et al, are natural generalisations of the Sine Gordon models in (1+1) dimensions. There are two classes of them, each dependent on a parameter n. For special values of this parameter the models reduce to the Sine Gordon one; for other values of n they can be considered as generalisations of this model. The models are topological and possess one kink solutions. Here we investigate the existence of ot...

  4. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials

  5. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    Deta, U. A.; Suparmi

    2015-09-01

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  6. Octupole degree of freedom for nuclei near 152Sm in a reflection-asymmetric relativistic mean-field approach

    The potential energy surfaces of even-even isotopes near 152Sm are investigated within the constrained reflection-asymmetric relativistic mean-field approach using parameter sets PK1 and NL3. It is shown that the critical-point candidate nucleus 152Sm marks the shape/phase transition not only from U(5) to SU(3) symmetry, but also from the octupole deformed ground state in 150Sm to the quadrupole deformed ground state in 154Sm. The important role of the octupole deformation driving pair (ν2f7/2, ν1i13/2) is demonstrated based on the components of the single-particle levels near the Fermi surface. In addition, the patterns of both the proton and the neutron octupole deformation driving pairs (ν2f7/2, ν1i13/2) and (π2d5/2, π1h11/2) are investigated.

  7. Structure and properties of copper deformed by severe plastic deformation methods

    M. Richert

    2011-01-01

    Full Text Available Purpose: The main object of this study is to establish the influence of severe plastic deformation on the microstructure evolution and properties of polycrystalline copper Cu99.99.Design/methodology/approach: Polycrystalline copper Cu99.99 was deformed by cyclic extrusion compression (CEC, equal channel angular pressing (ECAP and hydrostatic extrusion (HE. Additionally the combination of these methods were applying to the sample deformations. The microstructure and properties of samples after different kinds of severe mode of deformations (SPD were examined and compared as well as their properties. The microstructure was investigated by optical (MO and transmission electron microscopy (TEM. The microhardness was measured by PMT3 microhardness tester.Findings: It was found that increase of deformation diminishing the microstructure and leads to the increase of microhardness of samples.Practical implications: The results may be utilized for determination of a relation between microstructure and properties of the copper deformed in the severe plastic deformation process.Originality/value: The results contribute to evaluation properties of the polycrystalline copper deformed to very large strains exerting the typical range of deformations.

  8. Quadrupole-octupole coupled states in 112Cd

    The properties of negative-parity states in the 2.5 MeV region in 112Cd have been investigated with the (n,n'γ) reaction. For many of these levels, lifetimes have been measured, and B(E1) and B(E2) values for their decays have been determined. Several transitions exhibit enhanced B(E2) values for decay to the 31- octupole state, indicative of quadrupole-octupole coupled (2+circle-times 3-) states. The B(E1) values observed are typically in the range of 1 - 5x10-4 Weisskopf units (W.u.), irrespective of the final state. copyright 1999 The American Physical Society

  9. Time-dependent Hartree-Fock Study of Octupole Vibrations in doubly magic nuclei

    Simenel, C; Vo-Phuoc, K

    2016-01-01

    Octupole vibrations are studied in some doubly magic nuclei using the time-dependent Hartree-Fock (TDHF) theory with a Skyrme energy density functional. Through the use of the linear response theory, the energies and transition amplitudes of the low-lying vibrational modes for each of the nuclei were determined. Energies were found to be close to experimental results. However, transition amplitudes, quantified by the deformation parameter $\\beta_3$, are underestimated by TDHF. A comparison with single-particle excitations on the Hartree-Fock ground-state shows that the collective octupole vibrations have their energy lowered due to attractive RPA residual interaction.

  10. Octupole transitions in the 208Pb region

    The 208Pb region is characterised by the existence of collective octupole states. Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular distribution measurements were used to infer the octupole character of several E3 transitions. The octupole character of the 2318 keV 17− → 14+ in 208Pb, 2485 keV 19/2− → 13/2+ in 207Pb, 2419 keV 15/2− → 9/2+ in 209Pb and 2465 keV 17/2+ → 11/2− in 207Tl transitions was demonstrated for the first time. In addition, shell model calculations were performed using two different sets of two-body matrix elements. Their predictions were compared with emphasis on collective octupole states

  11. Soft octupole vibrations with K=0 and K≠ built on superdeformed rotational bands and static pairing correlations

    Properties of low-lying octupole vibrations (with K=0, 1, 2 and 3) built on superdeformed rotational bands are investigated by means of the RPA in a uniformly rotating frame. Large configuration space composed of 9 major shells is used. Numerical examples are presented for the superdeformed band in 192Hg as a typical case where appreciable amount of static pairing correlations remains at finite values of the rotational frequency. We obtain strongly collective low-frequency octupole vibrations with K=0, 1 and 2. It is shown that the properties of the K=1 octupole vibrations are especially sensitive to the static pairing correlations. The Coriolis-mixings among these soft octupole vibrations are shown to become important when the rotational frequency ωrot > or approx. 0.2 MeV/ℎ. (author)

  12. Soft Octupole Vibrations with K = 0 and K !=q 0 Built on Superdeformed Rotational Bands and Static Pairing Correlations

    Mizutori, S.; Shimizu, Y. R.; Matsuyanagi, K.

    1991-07-01

    Properties of low-lying octupole vibrations (with K = 0, 1, 2 and 3) built on superdeformed rotational bands are investigated by means of the RPA in a uniformly rotating frame. Large configuration space composed of 9 major shells is used. Numerical examples are presented for the superdeformed band in (192) Hg as a typical case where appreciable amount of static pairing correlations remains at finite values of the rotational frequency. We obtain strongly collective low-frequency octupole vibrations with K = 0, 1 and 2. It is shown that the properties of the K = 1 octupole vibrations are especially sensitive to the static pairing correlations. The Coriolis-mixings among these soft octupole vibrations are shown to become important when the rotational frequency omega_{mathrm{rot}} gtrsim 0.2 MeV/hbar.

  13. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    Nadirbekov, M. S.; Minkov, N.; Strecker, M.; Scheid, W.

    2016-03-01

    In this work, we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom, we suppose that the structure of the positive- and negative-parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity, we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  14. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    Nadirbekov, M S; Strecker, M; Scheid, W

    2016-01-01

    In this work we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom we suppose that the structure of the positive- and negative- parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  15. Octupole correlations in 143 Ba and 147 Pr

    High spin states in neutron-rich odd-Z 143,145 Ba nuclei have been investigated from the study of prompt γ-rays in the spontaneous fission of 252 Cf. Alternating parity bands are identified for the first time in 145 Ba and extended in 143 Ba. A new side band with equal, constant dynamic and kinematic moments of inertia equal to the rigid body value, as found in superdeformed bands, is discovered in 145 Ba. Enhanced E1 transitions between the negative- and positive-parity bands in these nuclei give evidence for strong octupole deformation in 143 Ba and in 145 Ba. These collective bands show competition and co-existence between symmetric and asymmetric shapes in 145 Ba. The first evidence is found for crossing M1 and E1 transitions between the s = +i and s = -i doublets in 143 Ba. Neutron-rich 147 Pr also was studied in the spontaneous fission of 252 Cf. Possible parity doublets observed in 147 Pr with N = 88 indicate that neutron-rich 59147 Pr88 nucleus exhibits strong octupole correlations like those observed in the 58146 Ce88 core. (authors)

  16. Mean field study of the quadrupole-octupole degree of freedom in the spdf boson model

    We present a mean field study of the quadrupole-octupole degree of freedom in collective nuclei within the framework of the spdf-boson model. For realistic choices of the Hamiltonian parameters, the ground state of the system is shown to remain axially symmetric, which considerably simplifies the mean field treatment. The critical point for the onset of octupole deformation in quadrupole deformed systems is identified in the parameter space and importance of the parity projection in this process is emphasized. A systematic survey of excitation energies and electric transitions for one-phonon states is given, which will provide useful guidance for detailed studies of negative parity states within the spdf-boson model

  17. Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    Nomura, K; Niksic, T; Lu, Bing-Nan

    2014-01-01

    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $\\beta_{2}$-$\\beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition be...

  18. Octupole degrees of freedom in nuclei

    Description of octupole degrees of freedom in terms of interacting bosons is presented. U(16) group and its subgroups are interpreted as possible dynamical symmetries of a system of s (L=0+), d (L=2+), f (L=3-) and p (L=1-) bosons. 20 refs., 3 figs. (author)

  19. Parametrization of the octupole degrees of freedom

    Wexler, C.; Dussel, G. G.

    1999-01-01

    A simple parametrization for the octupole collective variables is proposed and the symmetries of the wave functions are discussed in terms of the solutions corresponding to the vibrational limit. [PACS: 21.60Ev, 21.60.Fw, 21.10.Re

  20. Influence of deformation technology on fatigue properties of titanium

    Ján Micheľ; Marián Buršák; Petra Lacková

    2014-01-01

    The influence of commercially pure Titanium microstructure on fatigue properties and their improvement or deterioration is analyzed in the presented contribution. One tested material was after cold drawing the other after severe plastic deformation by Equal Channel Angular Pressing (ECAP). Intense plastic deformation (ECAP) resulted in yield point 100 % higher and UTS 97% higher than obtained by traditional cold drawing. The ductility was 57% lower than for cold drawing. However, the fatigue ...

  1. Deformation Properties of TiNi Shape Memory Alloy

    Tobushi, H.; Lin, P.; K.Tanaka; Lexcellent, C.; Ikai, A

    1995-01-01

    In order to describe the deformation properties due to the martensitic transformation and the R-phase transformation of TiNi shape memory alloy, a thermomechanical constitutive equation considering the volume fractions of induced phases associated with both transformations is developed. The proposed constitutive equation expresses well the properties of the shape memory effect, pseudoelasticity and recovery stress.

  2. Time-dependent Hartree-Fock Study of Octupole Vibrations in doubly magic nuclei

    Simenel, C; Buete, J.; Vo-Phuoc, K.

    2016-01-01

    Octupole vibrations are studied in some doubly magic nuclei using the time-dependent Hartree-Fock (TDHF) theory with a Skyrme energy density functional. Through the use of the linear response theory, the energies and transition amplitudes of the low-lying vibrational modes for each of the nuclei were determined. Energies were found to be close to experimental results. However, transition amplitudes, quantified by the deformation parameter $\\beta_3$, are underestimated by TDHF. A comparison wi...

  3. Neoclassical currents in the Wisconsin Levitated Octupole

    Neoclassical transport theory predicts the existence of bootstrap current in collisionless plasmas with a significant population of trapped particles. This unidirectional current flows along field lines, and is generated by the balancing of ion-electron friction forces with the viscous forces between trapped and untrapped like particles. The current is driven by gradients in the plasma pressure and temperature. Previous work has identified the existence of bootstrap current in the Wisconsin Levitated Octupole, and this discovery of bootstrap current in the octupole naturally leads to the question of why previous experiments were unsuccessful in their endeavors to identify this current. The original motivation for this thesis was to address that question, by investigating the effects on bootstrap current caused by ohmic currents, plasma fluctuations, and rf fields. Ohmic currents, while naturally present in tokamaks, can be introduced in the octupole, independent of the usual operating procedure, and can be adjusted to be of the same order of magnitude as the expected diamagnetic and parallel currents. The interaction, if any, of bootstrap current and ohmic current can thus be determined without the problem of a large ohmic current masking the neoclassical current. Rf fields can be driven in the octupole plasma with little or no plasma heating. Any anomalous effects on the parallel currents, due to the existence of the rf fields, can then be determined. This thesis consists of four parts: the experimental apparatus and the plasma diagnostics used in these studies; the general theory of neoclassical currents (excluding field errors) and how it is applied to the octupole; the experimental results of this investigation; and a brief discussion of the conclusions that can be inferred from the data

  4. Octupole coupling and proton-neutron interactions in 214Fr

    Excited states in the odd-odd nucleus 214Fr have been studied using γ-ray and electron spectroscopy following 208Pb(11B,5n) and 205Tl(13C,4n) reactions. Levels were identified to spins of around 36 h and excitation energies of ∼ 8.6 MeV. A number of isomeric states have been measured and g-factors obtained using the TDPAD method. At low spin, semi-empirical shell-model calculations appear to provide a good description of the states observed. An understanding of the structure of higher spin states in terms of the probable yrast configurations requires the addition of two units of spin at an energy of around 2 MeV. States with spins around 30 h are formed by core-excited configurations, with double core-excitation suggested for the highest states observed. The properties of many of the isomeric states can be understood in terms of multiparticle octupole coupling, with the properties of these states well reproduced by multiparticle octupole-coupled shell-model calculations. (orig.)

  5. q-deformed noncommutative cat states and their nonclassical properties

    Dey, Sanjib

    2015-01-01

    We study several classical like properties of q-deformed nonlinear coherent states as well as nonclassical behaviours of q-deformed version of the Schrodinger cat states in noncommutative space. Coherent states in q-deformed space are found to be minimum uncertainty states together with the squeezed photon distributions unlike the ordinary systems, where the photon distributions are always Poissonian. Several advantages of utilising cat states in noncommutative space over the standard quantum mechanical spaces have been reported here. For instance, the q-deformed parameter has been utilised to improve the squeezing of the quadrature beyond the ordinary case. Most importantly, the parameter provides an extra degree of freedom by which we achieve both quadrature squeezed and number squeezed cat states at the same time in a single system, which is impossible to achieve from ordinary cat states.

  6. Scaling properties of sea ice deformation during winter and summer

    Hutchings, J. K.; Heil, P.; Roberts, A.

    2009-12-01

    We investigate sea ice deformation observed with ice drifting buoy arrays during two field campaigns. Ice Station POLarstern [ISPOL], deployed in the western Weddell Sea during November 2004 to January 2005, included a study of small-scale (sub-synoptic) variability in sea ice velocity and deformation using an array of 24 buoys. Upon deployment the ISPOL buoy array measured 70 km in both zonal and meridional extent, and consisted of sub-arrays that resolved sea ice deformation on scales from 10 to 70 km. The Sea Ice Experiment: Dynamic Nature of the Arctic (SEDNA) used two nested arrays of six buoys each as a backbone for the experiment, that were deployed in late March 2007. The two arrays were circular with diameter 140 km and 20 km. ISPOL and SEDNA provide insight into the scaling properties of sea ice deformation over scales of 10 to 200 km during early Astral summer and late Boreal winter. The ISPOL and SEDNA arrays were split into sets of sub-arrays with varying length scales. We find that variance of divergence decreases as the length scale increases. The mean divergence for each length scale set follows a log-linear scaling relationship with length scale. This is an independent verification of a previous result of Marsden, Stern, Lindsay and Weiss (2004). This scaling is indicative of a fractal process. Deformation occurs at linear features (cracks, leads and ridges) in the ice pack, that are distributed with scales that range from meter to hundreds of kilometers in length. The magnitude of deformation at these linear features varies by two orders of magnitude across scales. We demonstrate that the deformation at all these scales is important in the mass balance of sea ice. Which has important implications for the design of sea ice deformation monitoring systems.

  7. Study of the octupole modes in the atomic nucleus of 156Gd: experimental search of the tetrahedral symmetry

    Geometrical symmetries play an important role in the understanding of all physical systems. In nuclear structure they are linked to the shape of the mean-field used to describe the atomic nuclei properties. In the framework of this thesis, we have used the predictions obtained with the help of the nuclear mean-field Hamiltonian with the Universal Woods-Saxon potential to study the effects of the so-called 'High-Rank' symmetries. These point-group symmetries lead to a nuclear state degeneracy of the order of 4. It is predicted that the tetrahedral symmetry affects the stability of nuclei close to the tetrahedral magic numbers [Z,N]=[32,40,56,64,70,90-94,136]. We have selected the Rare-Earth region close to the tetrahedral doubly magic nucleus 154Gd for our study. In this region, there exists negative parity structures poorly understood. Yet the tetrahedral symmetry, as related to a non-axial octupole deformation, breaks the reflection symmetry and leads to the negative parity states. Following a systematics of experimental properties of the nuclei in this region, we have selected 156Gd as the object of our study for the octupole excitation modes. We have used the reduced transitions probabilities to discriminate between these modes. To achieve this goal, we have performed three gamma spectroscopy experiments at the ILL in Grenoble with the EXILL and GAMS detectors to measure the lifetimes and the gamma transition intensities from the candidate states. The analysis of our results shows that including the tetrahedral shape helps to understand the dipole transition probabilities. This result will open new experimental and theoretical perspectives. (author)

  8. Octupole degree of freedom for the critical-point candidate nucleus 152Sm in a reflection-asymmetric relativistic mean-field approach

    The potential energy surfaces of even-even 146-156Sm are investigated in the constrained reflection-asymmetric relativistic mean-field approach with parameter set PK1. It is shown that the critical-point candidate nucleus 152Sm marks the shape/phase transition not only from U(5) to SU(3) symmetry, but also from the octupole-deformed ground state in 150Sm to the quadrupole-deformed ground state in 154Sm. By including the octupole degree of freedom, an energy gap near the Fermi surface for single-particle levels in 152Sm with β2=0.14∼0.26 is found and the important role of the octupole deformation driving pair ν2f7/2 and ν1i13/2 is demonstrated.

  9. Measuring the full transverse beam matrix using a single octupole

    Ögren, Jim; Ruber, Roger; Ziemann, Volker; Farabolini, W.

    2015-01-01

    We propose a method to fully determine the transverse beam matrix using a simple setup consisting of two steering magnets, an octupole field and a screen. This works in principle for any multipole field, i.e., sextupole, octupole magnet or a radio frequency structure with a multipole field. We have experimentally verified the method at the Compact Linear Collider Test Facility 3 at CERN using a Compact Linear Collider accelerating structure, which has an octupole component of the radio freque...

  10. Evidence for octupole vibration in the superdeformed well of {sup 190}Hg from eurogam

    Crowell, B.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    Gammasphere experiments in 1993-94 brought to light the existence of an excited superdeformed (SD) band in {sup 190}Hg with the unusual property of decaying entirely to the lowest (yrast) SD band over 3-4 transitions, rather than to the normally deformed states as is usually the case in the A {approximately} 150 and A {approximately} 190 regions of superdeformation. Although M1 transitions between signature-partner SD bands were previously observed in {sup 193}Hg, no such mechanism was available to explain the situation in the even-even nucleus {sup 190}Hg, whose yrast SD band has no signature partner. The best explanation appears to lie in long-standing theoretical predictions that the SD minimum in the potential energy surface would be quite soft with respect to octupole vibrations. This would lead to enhanced E1 transitions connecting the one-phonon and zero-phonon states. The data and this interpretation were published. A shortcoming of the Gammasphere experiments was that they did not allow the definitive measurement of the energies of the gamma-ray transitions connecting the two bands, due to the very weak population of the excited band ({approximately}0.05% of the {sup 190}Hg channel) and also partly, we believed, to the angular distributions of the transitions, which were peaked near 90 degrees, where Gammasphere had few detectors.

  11. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  12. Strength and Deformation Properties of Tertiary Clay at Moesgaard Museum

    Kaufmann, Kristine Lee; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    The tertiary clay at Moesgaard Museum near Aarhus in the eastern part of Jutland in Denmark is a highly plastic, glacially disturbed nappe of Viborg Clay. The clay is characterised as a swelling soil, which could lead to damaging of the building due to additional heave of the soil. To take...... this characteristic, as well as the strength and deformation properties, into account during the design phase, two consolidation tests and one triaxial test have been conducted. This paper evaluates the results of the laboratory tests leading to the preconsolidation stress, the deformation parameters consisting...

  13. The electrochemical properties of the cyclic deformed passive metals

    It has been investigated the influence of chloride environment on corrosion fatigue fracture of different classes stainless steels. The change of electrochemical properties of deformed corrosion resistance steels and alloys during the initial stage of corrosion fatigue fracture has been studied. It has been determined the influence of micro-deformation processes of surface at different tensions on the electrochemical activating of stainless steels. The critical values of electrochemical parameters of the deformed metal has been established, at which probability of corrosion fatigue fracture grows sharply. The features of character change polarization current of stainless steels at loadings even to corrosion fatigue limit has been shown. It served by basis for development of method speed-up determination of corrosion fatigue limit without destruction of specimens. It has been established possibility of decline corrosion currents of stainless steels as a result of deformation at tensions which do not cause destruction. It was revealed the reason of this effect: different acceleration by mechanical tensions of dissolution of alloys separate components, that results in enrichment of surface by a chrome and nickel. It is instrumental in the improvement of protective properties of passive tapes. The analysis of results of the conducted researches allowed to set that corrosion endurance of stainless steels is determined by intensity of their electrochemical activating at tensions of even to corrosive fatigue limit. (authors)

  14. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Torabi, Anita

    2007-12-15

    Deformation bands are commonly thin tabular zones of crushed or reorganized grains that form in highly porous rocks and sediments. Unlike a fault, typically the slip is negligible in deformation bands. In this dissertation the microstructure and petrophysical properties of deformation bands have been investigated through microscopy and numerical analysis of experimental and natural examples. The experimental work consists of a series of ring-shear experiments performed on porous sand at 5 and 20 MPa normal stresses and followed by microscopic examination of thin sections from the sheared samples. The results of the ring-shear experiments and comparison of them to natural deformation bands reveals that burial depth (level of normal stress in the experiments) and the amount of shear displacement during deformation are the two significant factors influencing the mode in which grains break and the type of shear zone that forms. Two end-member types of experimental shear zones were identified: (a) Shear zones with diffuse boundaries, which formed at low levels of normal stress and/or shear displacement; and (b) Shear zones with sharp boundaries, which formed at higher levels of normal stress and/or shear displacement. Our interpretation is that with increasing burial depth (approximately more than one kilometer, simulated in the experiments by higher levels of normal stress), the predominant mode of grain fracturing changes from flaking to splitting; which facilitates the formation of sharp-boundary shear zones. This change to grain splitting increases the power law dimension of the grain size distribution (D is about 1.5 in sharp boundary shear zones). Based on our observations, initial grain size has no influence in the deformation behavior of the sand at 5 MPa normal stresses. A new type of cataclastic deformation band is described through outcrop and microscopic studies; here termed a 'slipped deformation band'. Whereas previously reported cataclastic

  15. Octupole vibrations and ground state correlations

    The relationship between ground-state correlations and collectiveness is investigated for the case of low-lying nonrotational states in the rare earth nuclei. Both octupole and quadrupole modes of excitation are studied and the quasiparticle virtual populations associated with each of them are discussed. The relative importance of particle-particle and particle-hole interaction matrix elements is also analyzed in connection with the shape of the correlation patterns. The fundamental role of the Nilsson + BCS scheme is emphasized and the consistency of the quasiparticle random-phase approximation is established. (orig.)

  16. Microstructure, properties and hot deformability of the new maraging steels

    S.J. Pawlak

    2008-07-01

    Full Text Available Purpose: The effects of relevant metallurgical factors on the structure, fracture mode and properties of the high cobalt and cobalt free maraging steel has been studied. The aim was to better understand structure-property relations and enhance mechanical properties of the steels. To provide data needed for production and manufacturing technology, the high temperature deformability using physical simulation method was used.Design/methodology/approach: To study structure-property relation, broad range of the experimental techniques was used: quantitative metallography, X-ray diffraction phase analysis, transmission electron microscopy and SEM fractography. The flow properties in the range of hot working processes were determined by physical simulation approach, using Gleeble 3800 system.Findings: The cobalt-free maraging steel proved to be a valuable structural steel. At much higher fracture toughness it had only about 100 MPa lower yield stress, compared to that of high cobalt steel. Fracture surface morphologies were highly dependent on the steel grade and type of the mechanical test. The hot stress-strain characteristics were established for cobalt free maraging steel and compared to that of a stainless steel.Research limitations/implications: To fully evaluate potential field of applications, deeper comparative studies of the high cobalt and cobalt-free maraging steels are needed, particularly fracture modes and service properties of some parts.Practical implications: Very high mechanical properties and fracture toughness values obtained for the steels studied, make them suitable for advanced structural applications. The studies on the hot deformation behaviour of the steels are of practical value for the hot working process development.Originality/value: Detailed evaluation of the metallurgical purity, microstructure and fracture modes, allowed for better understanding of the microstructure-property relationships in selected high strength

  17. Evidence for octupole softness of the superdeformed shape from band interactions in 193,4Hg

    Three superdeformed (SD) bands have been observed in 194Hg and four (or five?) SD bands in 193Hg using the 150Nd+48Ca reaction. All bands except for two in 193Hg show a steady increase in dynamical moment of inertia J(2) with rotational frequency. The two exceptional bands form a classical pair of strongly interacting bands. It is suggested that the strong interaction between the bands is caused by a softness to octupole deformation. Evidence is found for the existence of dipole transitions connecting bands of opposite signature in 193Hg. The strengths of these transitions suggest that they are probably E1 supporting the importance of the role of octupole vibrations. These data suggest the wider importance of octupole softness in enhancing E1 transitions in the SD feeding and decay mechanisms. The spectroscopy of the observed SD bands in 193,4Hg are discussed in detail and attention is drawn to the 'identical' energies of γ-rays in these isotopes with those in lighter isotopes. The similarities in bands relate to the neutron sub-shell closure for SD nuclei at N=112. (orig.)

  18. Deformation properties with a finite-range simple effective interaction

    Behera, B.; Viñas, X.; Routray, T. R.; Robledo, L. M.; Centelles, M.; Pattnaik, S. P.

    2016-08-01

    Deformed and spherical even-even nuclei are studied using a finite-range simple effective interaction within the Hartree-Fock-Bogoliubov mean-field approach. Different parameter sets of the interaction, corresponding to different incompressibility, are constructed by varying the exponent γ of the density in the traditional density-dependent term. Ten of the 12 parameters of these interactions are determined from properties of asymmetric nuclear matter and spin-polarized pure neutron matter. The two remaining parameters are fitted to reproduce the experimental binding energies known in 620 even-even nuclei using several variants of the rotational energy correction. The rms deviations for the binding energy depend on the value of γ and the way the rotational energy correction is treated but they can be as low as 1.56 MeV, a value competitive with other renowned effective interactions of Skyrme and Gogny type. Charge radii are compared to the experimental values of 313 even-even nuclei and the rms deviation is again comparable and even superior to the one of popular Skyrme and Gogny forces. Emphasis is given to the deformation properties predicted with these interactions by analyzing the potential energy surfaces for several well deformed nuclei and the fission barriers of some nuclei. Comparison of the results with the experimental information, where available, as well as with the results of the Gogny D1S force, shows satisfactory agreement.

  19. Production, structure, texture, and mechanical properties of severely deformed magnesium

    Volkov, A. Yu.; Antonova, O. V.; Kamenetskii, B. I.; Klyukin, I. V.; Komkova, D. A.; Antonov, B. D.

    2016-05-01

    Methods of the severe plastic deformation (SPD) of pure magnesium at room temperature, namely, transverse extrusion and hydroextrusion in a self-destroyed shell, have been developed. The maximum true strain of the samples after the hydroextrusion was e ~ 3.2; in the course of transverse extrusion and subsequent cold rolling, a true strain of e ~ 6.0 was achieved. The structure and mechanical properties of the magnesium samples have been studied in different structural states. It has been shown that the SPD led to a decrease in the grain size d to ~2 μm; the relative elongation at fracture δ increased to ~20%. No active twinning has been revealed. The reasons for the high plasticity of magnesium after SPD according to the deformation modes suggested are discussed from the viewpoint of the hierarchy of the observed structural states.

  20. Effect of deformation diagram on molybdenum structure and properties

    Effect of deformation diagram on a tendency to lamination and mechanical properties of disks made of molybdenum alloy is studied. Investigated samples were subjected to hot rolling or forging. X-ray structural analysis of texture is carried out along with estimation of the level of mechanical properties across item cross section. Sample mechanical bending tests were conducted. Sample microstructure is also studied. It is shown that rolled molybdenum has a tendency to lamination, but forged molybdenum is free of such a tendency. Forged sample ductility is practically equal in all directionse but rolled sample ductility in a surface layer is high and decreases with depth. A conclusion is drawn that forged sample grains in a setting surface are equiaxial, but distinct deformation texture is observed for rolled samples and their grains are elongated in the direction of rolling. A conclusion is made that a flow diagram of the process of disk fabrication by forging or stamping ppovides a necessary complex of physicomechanical properties of metal as compared to polling, and metal discharge coefficient decreases sharply in this case

  1. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Yavshits S.

    2010-01-01

    The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interac...

  2. Measuring the full transverse beam matrix using a single octupole

    Ögren, J.; Ruber, R.; Ziemann, V.; Farabolini, W.

    2015-07-01

    We propose a method to fully determine the transverse beam matrix using a simple setup consisting of two steering magnets, an octupole field and a screen. This works in principle for any multipole field, i.e., sextupole, octupole magnet or a radio frequency structure with a multipole field. We have experimentally verified the method at the Compact Linear Collider Test Facility 3 at CERN using a Compact Linear Collider accelerating structure, which has an octupole component of the radio frequency fields. By observing the position shifts of the beam centroid together with changes in transverse beam size on a screen, we determined the full transverse beam matrix, with all correlations.

  3. Photoelectron angular distribution parameters in the octupole approximation

    The expression is presented for the X-ray electron spectra (XES) intensity excited by unpolarized radiation with due account of octupole transitions. The nondipole parameters including octupole transition parameters are calculated in relativistic approximation both for polarized and unpolarized radiation for atoms from Li to Ne. The calculations are performed for 1s-shell and for 2s- and 2p-shells for different photoelectron energies. The substantial contributions (up to 10%) for the XES-intensity are found for 1s-shell when kinetic energy is 5000 eV and 10000 eV. In other cases the octupole contributions are less than 1%

  4. Octupole vibrations in rare-earth nuclei

    Buessing, Marc Andre; Elvers, Michael; Endres, Janis; Hasper, Jens; Zilges, Andreas [Institut fuer Kernphysik, Universitaet Koeln, D-50823 Koeln (Germany)

    2009-07-01

    The systematics of octupole vibrations in the region of rare-earth nuclei are still not well understood. First test measurements have been carried out at the FN Tandem accelerator of the University of Cologne. The gamma-ray spectroscopy was performed at the highly-efficient HORUS spectrometer which consists of 16 High-Purity Germanium detectors. The nucleus {sup 158}Dy has been investigated via the reactions {sup 156}Gd({alpha},2n) and {sup 149}Sm({sup 12}C,3n), furthermore the nucleus {sup 154}Dy was studied via the reaction {sup 144}Nd({sup 14}N,4n). In addition measurements with the (p,p{sup '}) reaction were carried out on the nuclei {sup 142}Nd and {sup 172}Yb. First results of these measurements are shown in the context of existing data for this mass region.

  5. Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force

    Nomura, K; Robledo, L M

    2015-01-01

    Collective quadrupole and octupole states are described in a series of Sm and Gd isotopes within the framework of the interacting boson model (IBM), whose Hamiltonian parameters are deduced from mean field calculations with the Gogny energy density functional. The link between both frameworks is the ($\\beta_2\\beta_3$) potential energy surface computed within the Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The diagonalization of the IBM Hamiltonian provides excitation energies and transition strengths of an assorted set of states including both positive and negative parity states. The resultant spectroscopic properties are compared with the available experimental data and also with the results of the configuration mixing calculations with the Gogny force within the generator coordinate method (GCM). The structure of excited $0^{+}$ states and its connection with double octupole phonons is also addressed. The model is shown to describe the empirical trend of the low-energy quadrupole and o...

  6. Quantum fluctuations and stability of tetrahedral deformations in atomic nuclei

    Zberecki, K; Magierski, P; Schunck, N

    2006-01-01

    The possible existence of stable axial octupole and tetrahedral deformations is investigated in $^{80}$Zr and $^{98}$Zr. HFBCS calculations with parity projection have been performed for various parametrizations of the Skyrme energy functional. The correlation and excitation energies of negative parity states associated with shape fluctuations have been obtained using the generator coordinate method (GCM). The results indicate that in these nuclei both the axial octupole and tetrahedral deformations are of dynamic character and possess similar characteristics. Various Skyrme forces give consistent results as a function of these two octupole degrees of freedom both at the mean-field level as well as for configuration mixing calculations.

  7. Quantum fluctuations and stability of tetrahedral deformations in atomic nuclei

    The possible existence of stable axial octupole and tetrahedral deformations is investigated in 80Zr and 98Zr. HFBCS calculations with parity projection have been performed for various parametrizations of the Skyrme energy functional. The correlation and excitation energies of negative parity states associated with shape fluctuations have been obtained using the generator coordinate method (GCM). The results indicate that in these nuclei both the axial octupole and tetrahedral deformations are of dynamic character and possess similar characteristics. Various Skyrme forces give consistent results as a function of these two octupole degrees of freedom both at the mean-field level as well as for configuration mixing calculations. (author)

  8. Fluid and ionic transport properties of deformed salt rock

    This is a final report on work done on the transport properties of salt during the period 1 January 1984 to 30 June 1985. This work was directed largely at the measurement of creep-induced permeability in salt rock, at determining the permeability persistence/decay characteristics of creep-dilated salt rock under hydrostatic conditions, and at ion migration/retention experiments on both deformed and undeformed material. The permeability work was carried out using both gas (argon) and brine, and involved the design and construction of corresponding permeametry systems for use in conjunction with dilatometric triaxial testing apparatus. Ion migration/retention studies involved the use of contaminant species such as Sr2+, Cs+, Fe3+ and TcO4

  9. Deformation-induced microstructures: analysis and relation to properties

    The formation of microstructures is a unifying theme in the wide spectrum of materials behaviour associated with plastic deformation. Thus microstructures are generated during monotonic and cyclic deformation at low and high temperatures as well as during creep. Microstructures forming locally at crack fronts play critical roles in fatigue and fracture. It is becoming increasingly clear that deformation-induced microstructures are far more diversified than previously assumed. These deformation-induced microstructures define the theme of the present symposium. (LN)

  10. Effects of cold pre-deformation on aging behavior and mechanical properties of Ti-1300 alloy

    Highlights: • Cold pre-deformation influences aging behavior and mechanical properties. • The slip and twinning are the leading deformation mechanism in the Ti-1300 alloy. • Fine/uniform α precipitates are formed in the slightly deformed zones. • Coarse/needle-like α precipitates are formed in the heavily deformed zones. - Abstract: The effects of cold pre-deformation on aging behavior and mechanical properties in Ti-1300 alloy are examined using optical microscopy, scanning electron microscopy, and transmission electron microscopy analyses. Results show that cold pre-deformation markedly influences the aging behavior and mechanical properties of Ti-1300 alloys. The cold deformation mechanism of Ti-1300 alloys is found to involve the dislocation slip and twinning. The microstructures of the pre-deformation specimens, which were aged at 550 °C, comprise α phases in β matrices regardless of cold deformation reduction. Fine/uniform and coarse/needle-like α precipitates are formed in the slightly and heavily deformed zones, respectively. The Vickers hardness of Ti-1300 alloys aged after cold pre-deformation respectively decreases and increases with increased aging temperature and cold pre-deformation reduction

  11. Investigation of corrosion resistance property of cold deformed (bended) duplex and super duplex stainless steel tubes

    Dotel, Utsav Raj

    2014-01-01

    Cold deformation (bending) of stainless steel tubes is one of the efficient and cost effective methods to gain the required shapes of the tube that can be useful for different practical applications. Different mechanical properties can change after the plastic deformation of the material. The purpose of this study is to investigate the corrosion (basically pitting) resistant property of cold deformed Duplex and Super Duplex materials namely UNS S32205 and UNS S32750 respectively. The bended t...

  12. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  13. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (<5%). Copper is taken as a model system for cell forming pure fcc metals. Anovel synchrotron......-radiation based technique High Angular Resolution 3DXRD has been developed at the 1-ID beam-line at the Advanced Photon Source. The technique extents the 3DXRD approach, to 3D reciprocal space mapping with a resolution of ≈ 1 · 10−3Å−1 and allows for in-situmapping of reflections from deeply-embedded individual...... width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  14. A Summary on Landau Octupoles for the LHC

    Koutchouk, Jean-Pierre

    1998-01-01

    The justification and calculation of a Landau octupole scheme for LHC version 5 may be found in ref. [1]. This approach takes advantage of the analysis of 2D Landau damping documented in ref. [2], which shows that the stability is improved as compared to the usual 1D approach. The stability of single and multi-bunch modes for reduced beam intensity in several realistic operational LHC configurations is estimated and reported in ref. [3]. We summarise briefly in this note the above-mentioned studies and provide some missing information, such as the instability growth rates of multi-bunch modes vs chromaticity, to clarify the requirements. After discussing the stability of single bunch head-tail modes, comparing their real coherent tune shifts with tune spreads of different origin, we present stability diagrams of multi-bunch modes having complex coherent tune shifts and discuss Landau octupole schemes making use of arc octupoles or b4 spool-pieces.

  15. Convergence properties of the q-deformed binomial distribution

    Martin Zeiner

    2010-03-01

    Full Text Available We consider the $q$-deformed binomial distribution introduced by{sc S. C. Jing:} {it The {$q$}-deformed binomial distribution and its asymptotic behaviour,}J. Phys. A {f 27} (2 (1994, 493--499and{sc W. S. Chung} et al: {it {$q$}-deformed probability and binomial distribution,} Internat. J. Theoret. Phys.{f 34} (11 (1995, 2165--2170and establish several convergence results involvingthe Euler and the exponential distribution; some of them are $q$-analogues of classical results.

  16. Spectroscopy and octupole coupling of high-spin states in 213Rn

    Excited states of 213Rn, up to spins of ∼ 55/2 ℎ and an excitation energy of ∼ 6 MeV, have been studied using γ-ray and electron spectroscopy following the reactions 208Pb(9Be,4n) and 204Hg(13C,4n). Eight isomeric states were identified and g-factors for five of these measured by the TDPAD technique. Several of the isomeric states decay by enhanced E3 transitions. The level scheme and electromagnetic properties of the isomers are compared with the results of semi-empirical shell-model calculations including calculations which explicitly account for the particle-octupole vibration coupling

  17. Fifth-order aberrations in magnetic quadrupole-octupole systems

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  18. String field theory. Algebraic structure, deformation properties and superstrings

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  19. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Yavshits S.

    2010-03-01

    Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.

  20. Rheological Properties of Fractal Deformation in Multilayer Folds

    HOU Guiting

    2009-01-01

    The fractal dimensions of foIds are related to layer thickness and viscosity of the multilayer.This paper discusses how the thickness,viscosity,and anisotropic degree affect the rheological deformation of fractal folds in mulfilayers.The number of layers,their thicknesses,viscosities,and anisotropic degree of multilayers cooperate to affect the rheological deformation of folds,which is not controlled by a single rheological factor.A greater anisotropic degree of multilayers is favorable to develop the more complex and disharmonious fractal folds.

  1. Changes in microstructure and physical properties of skutterudites after severe plastic deformation

    Rogl, G.; Grytsiv, A.; Buršík, Jiří; Horky, J.; Anbalagan, R.; Bauer, E.; Mallik, R.Ch.; Rogl, P.; Zehetbauer, M.

    2015-01-01

    Roč. 17, č. 5 (2015), s. 3715-3722. ISSN 1463-9076 Institutional support: RVO:68081723 Keywords : physical properties * plastic deformation * TEM, SEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.493, year: 2014

  2. Large deformation properties of short doughs: Effect of sucrose in relation to mixing time

    Baltsavias, A.; Jurgens, A.; Vliet, T. van

    1999-01-01

    Large deformation rheological properties of short doughs of various composition prepared under various mixing times were determined in uniaxial compression. Sucrose-syrup doughs exhibited prominent yielding and flow behaviour. Their apparent biaxial extensional viscosity decreased with increasing su

  3. Mechanical properties of hot deformed Inconel 718 and X750

    A. Nowotnik

    2012-02-01

    Full Text Available Purpose: Variations of a flow stress vs. true strain illustrate behavior of material during plastic deformation. Stress-strain relationship is generally evaluated by a torsion, compression and tensile tests.Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloys of Inconel 718 and X750 at constant true strain rates of 10-4, 4x10-4s-1 within temperature through which precipitation hardening phases process occurred (720-1150°C using thermomechanical simulator Gleeble and dilatometer Baehr 850D/L equipped with compression unit. True stress-true strain curves analysis of hot deformed alloys were described.Findings: On the basis of received flow stress values activation energy of a high-temperature deformation process was estimated. Mathematical dependences (σpl -T i σpl - ε and compression data were used to determine material’s constants. These constants allow to derive a formula that describes the relationship between strain rate (ε, deformation temperature (T and flow stress σpl.Research limitations/implications: Study the flow stress will be continued on the samples after the aging process.Practical implications: The results of high-temperature deformation of the examined Inconel alloys may possibly find some practical use in the workshop practice to predict a flow stress values, but only within particular temperature and strain rate ranges. The results of the study can be used in the aerospace industry to produce blades for jet engines.Originality/value: The results of the study can be used in the aerospace industry to produce blades for jet engines.

  4. Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications

    Zhong, Zhihong; Gu, Yuefeng; Yuan, Yong; Shi, Zhan

    2014-01-01

    Ni-Fe-base superalloys due to their good manufacturability and low cost are the proper candidates for boiler materials in advanced power plants. The major concerns with Ni-Fe-base superalloys are the insufficient mechanical properties at elevated temperatures. In this paper, tensile properties, deformation, and fracture characteristics of a Ni-Fe-base superalloy primarily strengthened by γ' precipitates have been investigated from room temperature to 1073 K (800 °C). The results showed a gradual decrease in the strength up to about 973 K (700 °C) followed by a rapid drop above this temperature and a ductility minimum at around 973 K (700 °C). The fracture surfaces were studied using scanning electron microscopy and the deformation mechanisms were determined by the observation of deformed microstructures using transmission electron microscopy. An attempt has been made to correlate the tensile properties and fracture characteristics at different temperatures with the observed deformation mechanisms.

  5. The influence of large deformations on mechanical properties of sinusoidal ligament structures

    Strek, Tomasz; Jopek, Hubert; Wojciechowski, Krzysztof W.

    2016-05-01

    Studies of mechanical properties of materials, both theoretical and experimental, usually deal with linear characteristics assuming a small range of deformations. In particular, not much research has been published devoted to large deformations of auxetic structures – i.e. structures exhibiting negative Poisson’s ratio. This paper is focused on mechanical properties of selected structures that are subject to large deformations. Four examples of structure built of sinusoidal ligaments are studied and for each geometry the impact of deformation size and geometrical parameters on the effective mechanical properties of these structures are investigated. It is shown that some of them are auxetic when compressed and non-auxetic when stretched. Geometrical parameters describing sinusoidal shape of ligaments strongly affect effective mechanical properties of the structure. In some cases of deformation, the increase of the value of amplitude of the sinusoidal shape decreases the effective Poisson’s ratio by 0.7. Therefore the influence of geometry, as well as the arrangement of ligaments allows for smart control of mechanical properties of the sinusoidal ligament structure being considered. Given the large deformation of the structure, both a linear elastic material model, and a hyperelastic Neo-Hookean material model are used.

  6. Transient deformation properties of Zircaloy for LOCA simulation. Final report

    Hann, C. R.; Mohr, C. L.; Busness, K. M.; Olson, N. J.; Reich, F. R.; Stewart, K. B.

    1980-05-01

    This experimental data report is Volume 4 of a series of 5 volumes describing the oxidation and deformation rate behavior of Zircaloy cladding under simulated LOCA conditions. It contains listings of strain versus stress, time, and temperature evaluated from the numerical constitutive relationships and the original data used to develop them. This volume also contains listings of the ramp load, pressure, and temperature test data from both current and previous phases of the series, as well as material describing applications of the data.

  7. Transient deformation properties of Zircaloy for LOCA simulation. Final report

    This experimental data report is Volume 4 of a series of 5 volumes describing the oxidation and deformation rate behavior of Zircaloy cladding under simulated LOCA conditions. It contains listings of strain versus stress, time, and temperature evaluated from the numerical constitutive relationships and the original data used to develop them. This volume also contains listings of the ramp load, pressure, and temperature test data from both current and previous phases of the series, as well as material describing applications of the data

  8. Tidal deformations of a spinning compact object

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  9. Effect of Plastic Deformation on Magnetic Properties of Fe-40%Ni-2%Mn Austenitic Alloy

    Selva Büyükakkas; H Aktas; S Akturk

    2007-01-01

    The effects of plastic deformation on the magnetic properties of austenite structure in an Fe-40%Ni-2%Mn alloy is investigated by using Mssbauer spectroscopy and Differential Scanning Calorimetry (DSC) techniques The morphology of the alloy has been obtained by using Scanning Electron Microscopy (SEM). The magnetic behaviour of austenite state is ferromagnetic. After plastic deformation, a mixed magnetic structure including both paramagnetic and ferromagnetic states has been obtained at the room temperature. The volume fraction changes, the effective hyperfine fields of the ferromagnetic austenite phase and isomery shift values have also been determined by Mssbauer spectroscopy. The Curie point (TC) and the Neel temperature (TN) have been investigated by means of DSC system for non-deformed and deformed Fe-Ni-Mn alloy. The plastic deformation of the alloy reduces the TN and enhances the paramagnetic character of austenitic Fe-Ni-Mn alloy.

  10. The formation and deformation of protein structures with viscoelastic properties

    Riemsdijk, van, W.H.

    2011-01-01

    This study describes the formation of a gluten substitute.   Chapter 1 describes the properties that are necessary to obtain a gluten substitute.   Chapter 2 describes the formation and properties of protein particle suspensions. Two proteins with different intrinsic properties, gelatin and whey protein, were selected as model materials.   Chapter 3 describes the effects of simple shear flow on the formation and properties of gelatin particle suspensions. The application of wel...

  11. Evolution of deformation texture and magnetic properties in a nanocrystalline nickel–20 wt% cobalt alloy

    The evolution of crystallographic texture in a nanocrystalline nickel–20 wt% cobalt alloy has been investigated for deformation up to large strains. The effect of texture on magnetic properties has been evaluated. The material shows characteristic copper-type texture at large strain levels. Microstructural examinations indicate that the evolution of texture is assisted by deformation-induced grain growth. The values of saturation magnetization and coercivity have been correlated with the crystallographic texture and grain size. - Highlights: • The deformation of a nanocrystalline nickel-20 wt% cobalt alloy, to large strains, leads to a characteristic copper-type rolling texture. • Dislocation based slip process is evident from the deformed microstructures at the later stages of deformation, while grain boundary assisted mechanisms are active during the initial stages. • The activity of dislocation at higher strain levels is facilitated by deformation-induced grain growth. • The evolution of magnetic properties is dependent on the deformation texture, while the effect of grain size is insignificant

  12. Coriolis mixing of the octupole vibrational bands in 156Gd

    Coriolis mixing of negative parity states in 156Gd nucleus is considered within the framework of a phenomenological model. Energy spectrum and ratios of effective probabilities of E1-transitions from the levels of octupole bands are described. Possibilities of E1-transitions from Kπ=2--band states are discussed; intraband E2-transitions in Kπ=0--, 1-- and 2--bands are calculated. 16 refs., 2 figs., 4 tabs

  13. Octupole strength in the neutron-rich calcium isotopes

    Riley, L A; Agiorgousis, M L; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Gregory, S D; Haldeman, E B; Kemper, K W; Lunderberg, E; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T

    2016-01-01

    Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $\\gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $\\gamma$-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.

  14. Effect of High-Temperature Severe Plastic Deformation on Microstructure and Mechanical Properties of IF Steel

    Jindal, Vikas; Rupa, P. K. P.; Mandal, G. K.; Srivastava, V. C.

    2014-06-01

    Extensive research work has been carried out on interstitial-free steel to understand its response to deformation; particularly, the behavior during severe plastic deformation (SPD). However, most of these studies were mainly undertaken in the ferritic regime. The present investigation reports the initial results of our attempt to employ accumulative roll bonding (ARB), one of the variants of SPD, at a high temperature (950 °C). A considerable grain refinement has been observed, which may be attributed to the severity of deformation and recrystallisation at high temperatures. Nanoindentation tests have been performed at various stages of ARB process to understand the evolution of mechanical properties.

  15. Determination of the deformation properties of Søvind Marl

    Grønbech, Gitte; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    A serie of tests were made to determine the preconsolidation stresses, σ′pc, and the consolidation modulus, K, of Søvind Marl, a fissured plastic tertiary clay. The fissures causes a decrease in the stiffness of the Søvind Marl, which can be mistaken for the decrease that happens when the effective...... stresses in the soil, σ′, passes σ′pc. The effects of the fissures are assessed, and an estimate of the stress level at which they will compress are made. During the consolidation tests, the effective stress level is raised to more then 24,000 kPa to get a comprehensive description of the preconsolidation...... of the soil. It is important to know how a strongly preconsolidated soil will deform when reloaded. The deformation parameters of the strongly preconlidated Søvind Marl is determined by unloading/reloading testing. It is found that the stiffness of the Søvind Marl depends of the plasticity index, and...

  16. The impact of cold deformation, annealing temperatures and chemical assays on the mechanical properties of platinum

    Trumić B.; Stanković D.; Ivanović A.

    2010-01-01

    In order to form the necessary data base on platinum and platinum metals, certain tests were carried out on platinum samples of different purity of 99.5%, 99.9% and 99.99%. The degree of cold deformation, annealing temperature and chemical assays were tested as well as their impact on the mechanical properties of platinum. The Vickers hardness (HV) values were determined with different deformation degree, starting from annealing temperatures for platinum of different purity and tensile streng...

  17. Mathematical description of properties of a weakly deformed Gauss peak. 1

    The properties of the weakly deformed Gaussian peak are described by given formulas. The moment generating function and all the higher moments of this weakly deformed Gaussian peak density function are calculated by closed integrations. The density function is useful for the design of Maximum-Likelihood peak shape parameter estimators and the application of spectral techniques with multi-channel spectra. Numerical calculations use the well known Gaussian error integral and can be done by programmable microcomputers or programmable pocket calculators. (author)

  18. Effect of viscosity of petroleum products on deformation properties of concrete

    A.P. Svintsov; Yu.V. Nikolenko; M.I. Kharun; Kazakov, A. S.

    2014-01-01

    This paper presents the results of studies of the effect of petroleum products, impregnating in concrete, on its deformation properties. Petroleum products, impregnating in concrete and reinforced concrete structures, have a negative impact on their strength and deformation characteristics. The negative impact of petroleum products on concrete and reinforced concrete is associated with changes in the hydration process of cement, as well as changes in the structure of the concrete. Strength an...

  19. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility of the nan...... nanostructured metals. The dislocation structure can be modified by post-process annealing and deformation which points to new ways of optimizing the mechanical properties. Such ways are demonstrated and discussed...

  20. Mechanical property of superplastic-deformed ceramics by micro-indentation method

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). We investigated mechanical properties, such as the hardness and Young's modulus, of ceramic specimens after superplastic deformation. The tested material was 3Y-TZP (3mol% Yttria stabilized Tetragonal Zirconia Polycrystal) which is one of the representative superplastic ceramics. The properties were measured by a microindentation method. We also studied the relationship between crystal microstructures and the mechanical properties of deformed 3Y-TZP by scanning electron microscope (SEM). The indentation test showed that the mechanical properties of the specimens were reduced to about 1/2 by 30% deformation and to about 1/4 by 150% deformation. The SEM images showed that average grain size and deviation of grain size of each specimen increased with increasing deformation. From both the results, it was analytically shown that the increasing of the grain size was thought to be one of the causes of the reduction of the mechanical properties. (author)

  1. Mechanical property of superplastic-deformed ceramics by micro-indentation method

    Shibata, Taiju; Ishihara, Masahiro; Takahashi, Tsuneo; Hayashi, Kimio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Motohashi, Yoshinobu [Ibaraki Univ., Mito, Ibaraki (Japan)

    2001-03-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). We investigated mechanical properties, such as the hardness and Young's modulus, of ceramic specimens after superplastic deformation. The tested material was 3Y-TZP (3mol% Yttria stabilized Tetragonal Zirconia Polycrystal) which is one of the representative superplastic ceramics. The properties were measured by a microindentation method. We also studied the relationship between crystal microstructures and the mechanical properties of deformed 3Y-TZP by scanning electron microscope (SEM). The indentation test showed that the mechanical properties of the specimens were reduced to about 1/2 by 30% deformation and to about 1/4 by 150% deformation. The SEM images showed that average grain size and deviation of grain size of each specimen increased with increasing deformation. From both the results, it was analytically shown that the increasing of the grain size was thought to be one of the causes of the reduction of the mechanical properties. (author)

  2. Estimating the mechanical properties of the brittle deformation zones at Olkiluoto

    In rock mechanics modelling to support repository design and safety assessment for the Olkiluoto site, it is necessary to obtain the relevant rock mechanics parameters, these being an essential pre-requisite for the modelling. The parameters include the rock stress state, the properties of the intact rock and the rock mass, and the properties of the brittle deformation zones which represent major discontinuities in the rock mass continuum. However, because of the size and irregularity of the brittle deformation zones, it is not easy to estimate their mechanical properties, i.e. their deformation and strength properties. Following Section 1 explaining the motivation for the work and the objective of the Report, in Sections 2 and 3, the types of fractures and brittle deformation zones that can be encountered are described with an indication of the mechanisms that lead to complex structures. The geology at Olkiluoto is then summarized in Section 4 within the context of this Report. The practical aspects of encountering the brittle deformation zones in outcrops, drillholes and excavations are described in Sections 5 and 6 with illustrative examples of drillhole core intersections in Section 7. The various theoretical, numerical and practical methods for estimating the mechanical properties of the brittle deformation zones are described in Section 8, together with a Table summarizing each method's advantages, disadvantages and utility in estimating the mechanical properties of the zones. We emphasise that the optimal approach to estimating the mechanical properties of the brittle deformation zones cannot be determined without a good knowledge, not only of each estimation method's capabilities and idiosyncrasies, but also of the structural geology background and the specific nature of the brittle deformation zones being characterized. Finally, in Section 9, a Table is presented outlining each method's applicability to the Olkiluoto site. A flowchart is included to

  3. Microstructure, texture and mechanical properties of cyclic expansion–extrusion deformed pure copper

    A recently developed severe plastic deformation technique, cyclic expansion–extrusion (CEE), was applied on a commercial pure copper to investigate the relationship between microstructure, texture and mechanical properties over a wide range of strains. Microstructure and crystallographic texture investigations were performed by optical microscopy, electron back scattering and X-ray diffraction. Significant evolution in grain refinement was achieved down to sub-micron grain size. A considerable texture evolution was also observed within the deformation zone with the extrusion as the decisive step for the final texture. Fiber deformation textures were observed; the 〈111〉 component was found to be the main texture component while the 〈100〉 component became significant only at very large strains. The evolution in hardness and tensile properties was studied and a clear relationship between texture evolution, microstructural parameters and mechanical properties was found and discussed

  4. Tuning of a deformable image registration procedure for skin component mechanical properties assessment.

    Montin, E; Cutri, E; Spadola, G; Testori, A; Pennati, G; Mainardi, L

    2015-08-01

    Several studies report the mechanical properties of skin tissues but their values largely depend on the measurement method. Therefore, we investigated the feasibility of recognizing the cellular constituents mechanical properties of pigmented skin by Confocal Laser Scanner Microscopy (CLSM). With this purpose, an healthy volunteer was examined in three areas nearby a pigmented skin lesion in two configurations: deforming and non deforming the nevus. The tissue displacement of the nevus was then assessed by means of deformable registration of the images in these two configurations. There are several registration strategy able to overcome this task, among them, we proposed two methods with different deformation models: a Free Form Deformation (FFD) model based on b-spline and a second one based on Demons Registration Algorithm (DRA). These two strategies need the definition of several parameters in order to obtain optimal registration performances. Thus, we tuned these parameters by means of simulated data and evaluated their registration abilities on the real in vivo CLSM acquisitions in the two configurations. The results showed that the registration using DRA had a better performance in comparison to the FFD one, in particular in two out of the three areas the DRA performance was significantly better than the FFD one. The registration procedure highlighted deformation differences among the chosen areas. PMID:26737734

  5. Mechanical Properties of Welded Deformed Reinforcing Steel Bars

    Ghafur H. Ahmed

    2015-05-01

    Full Text Available Reinforcement strength, ductility and bendability properties are important components in design of reinforced concrete members, as the strength of any member comes mainly from reinforcement. Strain compatibility and plastic behaviors are mainly depending on reinforcement ductility. In construction practice, often welding of the bars is required. Welding of reinforcement is an instant solution in many cases, whereas welding is not a routine connection process. Welding will cause deficiencies in reinforcement bars, metallurgical changes and re-crystallization of microstructure of particles. Weld metal toughness is extremely sensitive to the welding heat input that decreases both of its strength and ductility. For determining the effects of welding in reinforcement properties, 48 specimens were tested with 5 different bar diameters, divided into six groups. Investigated parameters were: properties of un-welded bars; strength, ductility and density of weld metal; strength and ductility reduction due to heat input for bundled bars and transverse bars; welding effect on bars’ bending properties; behavior of different joint types; properties of three weld groove shapes also the locations and types of failures sections. Results show that, strength and elongation of the welded bars decreased by (10-40% and (30-60% respectively. Cold bending of welded bars and groove welds shall be prevented.

  6. gamma-ray spectroscopic study of calcium-48,49 and scandium-50 focusing on low lying octupole vibration excitations

    McPherson, David M.

    An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.

  7. Homogenized Elastic Properties of Graphene for Small Deformations

    Jurica Sorić

    2013-09-01

    Full Text Available In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices.

  8. Using Octupoles for Background Control in Linear Colliders an Exploratory Conceptual Study

    Pitthan, R

    1999-01-01

    If one adds a suited Octupole (or an even higher multipole) lattice to linear collider Quadrupole FODO lattices, the amplifying properties of the combined lattice drive particles in the tails, but not those in the core, into resonant losses. This approach is quite different in concept and beam dynamics impact from past proposed use of non-linear elements for collimation. This non-traditional scheme for background control has the added advantage that most, or maybe all, of the Halo collimation can be done using the lever arm of the real estate of the main accelerators, thus reducing the costly length of a separate dedicated collimation section and also unifying machine protection and background control. Simulations of particle distributions are presented. This approach requires co operation by the designers of the accelerators, the beam delivery system, and the Detector, because a careful balance between sometimes conflicting requirements has to be found. As a second component of this approach the use of Octup...

  9. Influence of Plastic Deformation Process on the Structure and Properties of Alloy WE43

    Bednarczyk I.

    2016-03-01

    Full Text Available The paper describes the results of structure and properties tests of flat bars made of alloy WE43 obtained in the process of extrusion with the use of KOBO method. An analysis of structure changes was conducted both in initial state and after plastic deformation.

  10. Simultaneous Estimation of Material Properties and Pose for Deformable Objects from Depth and Color Images

    Fugl, Andreas Rune; Jordt, Andreas; Petersen, Henrik Gordon;

    2012-01-01

    In this paper we consider the problem of estimating 6D pose and material properties of a deformable object grasped by a robot grip- per. To estimate the parameters we minimize an error function incorpo- rating visual and physical correctness. Through simulated and real-world experiments we demons...

  11. Self-similarity properties of nafionized and filtered water and deformed coherent states

    Capolupo, A; Elia, V; Germano, R; Napoli, E; Niccoli, M; Tedeschi, A; Vitiello, G

    2013-01-01

    By resorting to measurements of physically characterizing observables of water samples perturbed by the presence of Nafion and by iterative filtration processes, we discuss their scale free, self-similar fractal properties. By use of algebraic methods the isomorphism is proved between such self-similarity features and the deformed coherent state formalism.

  12. Effect of deformed microstructure on mechanical properties of Ti-22Al-25Nb alloy

    CHENG Yun-jun; LI Shi-qiong; LIANG Xiao-bo; ZHANG Jian-wei

    2006-01-01

    Effect of the deformed microstructure on mechanical properties of an orthorhombic (Ti2AlNb) based alloy of Ti-22Al-25Nb (mole fraction, %) has been investigated. It was found that the deformed microstructures in different portions of a free forged rod with diameter of 30 mm were quite different and thus resulted in the different mechanical properties after the same subsequent heat-treatment. One deformed microstructure with less primary α2/O particles and a larger and equiaxed B2 grains resulted in poor RT ductility, but the other one with a relatively larger amount of the primary α2/O particles and non-equiaxed B2 grains had good combination of the tensile strength and ductility both at RT and 650 ℃. It was also found that two different deformed microstructures were obtained for the hot rolling plates with thickness of 3 mm even processed under an identical nominal rolling and the same post-deforming heat treatment conditions. One only has 3.5% of RT tensile elongation and the other up to 8%.

  13. Analysis of plastic properties of titanium alloys under severe deformation conditions in machining

    Alexander I. Khaimovich; Andrey V. Balaykin

    2014-01-01

    The present paper presents a method of analysis of titanium alloys plastic properties under severe deformation conditions during milling with registration of the cutting force components Fx, Fy, Fz in real time using a special stand. The obtained constitutive relations in the form the Johnson-Cook law for stresses and dependence for a friction coefficient describing the titanium alloy VT9 plastic properties under simulate operating conditions.

  14. Analysis of plastic properties of titanium alloys under severe deformation conditions in machining

    Alexander I. Khaimovich

    2014-10-01

    Full Text Available The present paper presents a method of analysis of titanium alloys plastic properties under severe deformation conditions during milling with registration of the cutting force components Fx, Fy, Fz in real time using a special stand. The obtained constitutive relations in the form the Johnson-Cook law for stresses and dependence for a friction coefficient describing the titanium alloy VT9 plastic properties under simulate operating conditions.

  15. Symmetries and deformations in the spherical shell model

    Van Isacker, Piet

    2016-01-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott's model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott's SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells (large N) the algebraic octupole interaction tends to that of the geometric collective model.

  16. Property optimization of nanostructured ARB-processed Al by post-process deformation

    Huang, Xiaoxu; Kamikawa, Naoya; Hansen, Niels

    The effect of post-process deformation on the mechanical properties of nanostructured aluminum (99.2% purity) has been investigated by cold rolling of samples which have been processed by accumulative roll bonding (ARB) to a strain of epsilon(vM) = 4.8. Samples have been cold rolled to 10, 15, and...... material. In contrary, cold rolling to large strain (50%) results in significant strengthening. This leads to the suggestion of a transition strain within the range of 25-35% reduction by rolling. The microstructural evolution during post-process deformation has been followed by transmission electron...

  17. Deformation properties of highly plastic fissured Palaeogene clay - Lack of stress memory?

    Krogsbøll, Anette; Hededal, Ole; Foged, Niels Nielsen

    fissuring or debonding. Based on a large amount of high quality tests on Palaeogene clay partly encountered at Fehmarn Belt the typical deformational behaviour during unloading and swelling is discussed and evaluated with focus on stress states. K0-OCR relations are established and the relations are...... deformation properties, and to help explain the large primary and secondary swelling indices measured in Palaeogene clays and how they are related to preconsolidation stress. It is proven that the Palaeogene clay tends to “forget” the preconsolidation stress and the consequence is that OCR is not always a...

  18. Mechanical properties and microstructure of resistance spot welded severely deformed low carbon steel

    Highlights: → Resistance spot welding is successfully used for severely deformed steel sheet. → Microstructures of FZ and HAZ are refined to lower sizes at higher pass number. → Mechanical properties in FZ and HAZ are increased with increasing the pass number. → Electrode dip and nugget diameter are increased with increasing the pass number. - Abstract: The welding of nanostructured low carbon steel sheets produced by severe plastic deformation (SPD) has been considered in the present paper. Constrained groove pressing (CGP) method is used for imposing the severe plastic deformation to the steel sheets as a large pre-strain. The SPDed sheets are joined using resistance spot welding (RSW) process. The results show that severe plastic deformation can effectively increase the electrical resistivity of steel sheets; therefore it can affect the microstructure and mechanical properties of spot welds. Microstructure and mechanical properties of fusion zone, heat affected zone (HAZ), recrystallized zone and base metal of SPDed sheets are investigated and the results are compared with those of as-received specimens. The results show that with increasing the large pre-strain in sheets, at constant welding parameters (welding current and time), the fusion zone size, electrode indentation and nugget diameter are increased. Thus, peak load and hardness in fusion zone and HAZ are increased with increasing the CGP pass number. Also, the microstructures of fusion zone and HAZ are refined to lower sizes for larger pre-strained specimens.

  19. Microstructure, Properties and Atomic Level Strain in Severely Deformed Rare Metal Niobium

    Lembit KOMMEL

    2012-12-01

    Full Text Available The mechanical and physical properties relationship from atomic level strain/stress causes dislocation density and electrical conductivity relationship, as well as crystallites deformation and hkl-parameter change in the severely deformed pure refractory rare metal Nb at ambient temperature and during short processing times. The above mentioned issues are discussed in this study. For ultrafine-grained and nanocrystalline microstructure forming in metal the equal-channel angular pressing and hard cyclic viscoplastic deformation were used. The flat deformation and heat treatment at different parameters were conducted as follows. The focused ion beam method was used for micrometric measures samples manufacturied under nanocrystalline microstructure study by transmission electron microscope. The microstructure features of metal were studied under different orientations by X-ray diffraction scattering method, and according to the atomic level strains, dislocation density, hkl-parameters and crystallite sizes were calculated by different computation methods. According to results the evolutions of atomic level strains/stresses, induced by processing features have great influence on the microstructure and advanced properties forming in pure Nb. Due to cumulative strain increase the tensile stress and hardness were increased significantly. In this case the dislocation density of Nb varies from 5.0E+10 cm–2 to 2.0E+11 cm–2. The samples from Nb at maximal atomic level strain in the (110 and (211 directions have the maximal values of hkl-parameters, highest tensile strength and hardness but minimal electrical conductivity. The crystallite size was minimal and relative atomic level strain maximal in (211 orientation of crystal. Next, flat deformation and heat treatment increase the atomic level parameters of severely deformed metal.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3091

  20. Effects of recrystallization on texture, microstructure and mechanical properties in HPT-deformed pure Mg

    Bonarski, Bartlomiej J; Schafler, Erhard; Zehetbauer, Michael J [Research Group Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien (Austria); Mikulowski, Borys, E-mail: bartlomiej.bonarski@univie.ac.a [Department of Metallic Materials and Nanotechnology, Faculty of Non-Ferrous Metals, AGH - University of Science and Technology, Al. Mickiewicza 30/A-2, PL-30059 Krakow (Poland)

    2010-07-01

    Mg of purity 99.8 wt% was deformed by High Pressure-Torsion at hydrostatic pressures 1 to 4 GPa and RT, up to plastic shear strains of 120. X-ray texture analysis showed up deviations from expected shear texture, which increased with increasing shear strain and hydrostatic pressure. According to TEM and SEM investigations these deviations can be understood in terms of recrystallization. The current paper aimed at the differences of the recrystallization processes which occur during HPT deformation and unloading (dynamic recrystallization, DRX), and those after deformation (static recrystallization, SRX). For this purpose, two sorts of samples were investigated: (i) such being stored at RT immediately after HPT deformation, and (ii) such being stored at 77 K immediately after HPT deformation, and stored at RT for a minimum and constant time needed for preparation. The results show that SRX brings the texture closer to the ideal shear texture and to higher strength values, but to smaller ductilities than DRX does. The mechanical properties can be attributed to changes of texture rather than to those of grain size.

  1. Effects of recrystallization on texture, microstructure and mechanical properties in HPT-deformed pure Mg

    Mg of purity 99.8 wt% was deformed by High Pressure-Torsion at hydrostatic pressures 1 to 4 GPa and RT, up to plastic shear strains of 120. X-ray texture analysis showed up deviations from expected shear texture, which increased with increasing shear strain and hydrostatic pressure. According to TEM and SEM investigations these deviations can be understood in terms of recrystallization. The current paper aimed at the differences of the recrystallization processes which occur during HPT deformation and unloading (dynamic recrystallization, DRX), and those after deformation (static recrystallization, SRX). For this purpose, two sorts of samples were investigated: (i) such being stored at RT immediately after HPT deformation, and (ii) such being stored at 77 K immediately after HPT deformation, and stored at RT for a minimum and constant time needed for preparation. The results show that SRX brings the texture closer to the ideal shear texture and to higher strength values, but to smaller ductilities than DRX does. The mechanical properties can be attributed to changes of texture rather than to those of grain size.

  2. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel

    Highlights: ► We fabricated a 310 type ODS austenitic steel by the process of MA and HIP. ► Plastic deformations, including forging and hot rolling, were applied to samples. ► Fine Y-Ti-O particles dispersed in a relatively uniform way after forging. ► Ductility increased greatly after deformations, while strength decreased slightly. - Abstract: ODS-310 austenitic steel (Fe–25Cr–20Ni–0.35Y2O3–0.5Ti) was fabricated by the process of mechanical alloying and hot isostatic pressing. Plastic deformations, including forging and hot rolling, were applied to the as-hipped samples to improve the ductility. Microstructural evolutions in samples under different fabrication conditions were characterized by TEM. Tensile properties were tested at 23 °C and 700 °C. Dispersed oxide particles with sizes between 10 nm and 50 nm were characterized to be rich in Y–Ti–O. UTS and elongation of the as-hipped sample were 904 MPa and 11% respectively at 23 °C. Elongation increased two times after plastic deformations while there was only slight decrease in strength properties.

  3. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

    Dave Maharaj; Bharat Bhushan

    2014-01-01

    Nanoscale research of bulk solid surfaces, thin films and micro- and nano-objects has shown that mechanical properties are enhanced at smaller scales. Experimental studies that directly compare local with global deformation are lacking. In this research, spherical Au nanoparticles, 500 nm in diameter and 100 nm thick Au films were selected. Nanoindentation (local deformation) and compression tests (global deformation) were performed with a nanoindenter using a sharp Berkovich tip and a flat p...

  4. Perturbation analysis of the octupole-induced resonances in a storage ring

    Yoon, M.

    1988-10-01

    This note is a continuation from LS-126, in which the authors derived a formula for the lowest-order amplitude-dependent tune shift for octupole-induced resonances. Here, the authors apply the canonical perturbation theory to the octupolar Hamiltonian and attempt to extend the analysis further in order to obtain much clearer insight on the octupole-induced resonances. The authors derive the distortion functions, which measure the distortions of the particle oscillation phase and amplitude in phase space. Based upon these distortion functions, they derive the higher-order amplitude-dependent tune shifts for octupoles.

  5. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  6. Microstructure and Local Mechanical Properties of Cu-Co Alloys after Severe Plastic Deformation

    Buršík, Jiří; Buršíková, V.; Svoboda, Milan; Král, Petr; Dvořák, Jiří; Sklenička, Václav

    Zurich: Trans Tech Publications, 2014 - (Pešek, L.; Zubko, P.), s. 100-103. (Key Engineering Materials. 586). ISBN 978-3-03785-876-9. ISSN 1013-9826. [LMP 2012 International Conference on Local Mechanical Properties /9./. Levoča (SK), 07.11.2012-09.11.2012] R&D Projects: GA ČR(CZ) GAP108/11/2260 Institutional support: RVO:68081723 Keywords : severe plastic deformation * electron microscopy * EBSD Subject RIV: JG - Metallurgy

  7. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.

    Fintová, Stanislava; Kunz, Ludvík

    2015-02-01

    Fatigue properties of cast AZ91 magnesium alloy processed by severe plastic deformation were investigated and compared with the properties of the initial cast state. The severe plastic deformation was carried out by equal channel angular pressing (ECAP). The ECAP treatment resulted in a bimodal structure. The bimodality consists in a coexistence of fine grained areas with higher content of Mg17Al12 particles and areas exhibiting larger grains and lower density of Mg17Al12 particles. Improvement of the basic mechanical properties of AZ91 (yield stress, tensile strength and ductility) by ECAP was significant. Also the improvement of the fatigue life in the low-cycle fatigue region was substantial. However the improvement of the fatigue strength in the high-cycle fatigue region was found to be negligible. The endurance limit based on 10(7) cycles for the cast alloy was 80 MPa and for the alloy processed by ECAP 85 MPa. The cyclic plastic response in both states was qualitatively similar; initial softening was followed by a long cyclic hardening. Fatigue cracks in cast alloy initiate in cyclic slip bands which were formed in areas of solid solution. In the case of severe plastic deformed material with bimodal structure two substantially different mechanisms of crack initiation were observed. Crack initiation in slip bands was a preferred process in the areas with large grains whereas the grain boundaries cracking was a characteristic mechanism in the fine grained regions. PMID:25498295

  8. Plasma resistivity measurements in the Wisconsin levitated octupole

    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 109cm-3 to 101parallelcm-3 in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 109cm-3 plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = √T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 1012cm-3 plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/

  9. Plasma resistivity measurements in the Wisconsin levitated octupole

    Brouchous, D. A.

    1980-11-01

    Resistivity measurements parallel to the magnetic field were made on gun injected plasmas ranging in density from 10/sup 9/cm/sup -3/ to 10/sup 1/parallelcm/sup -3/ in the Wisconsin levitated octupole with toroidal and poloidal magnetic fields. The 10/sup 9/cm/sup -3/ plasma was collisionless with lambda/sub mfp/ > 100 mirror lengths, had T/sub e/ = 10 eV, T/sub i/ = 30 eV and was found to have anomalous resistivity scaling like eta = ..sqrt..T/sub e//n/sub e/ when E/sub parallel/ > E/su c/ is the Dreicer critical field. The 10/sup 12/cm/sup -3/ plasma was collisional with lambda/sub mfp/ < mirror length, had T/sub e/ = T/sub i/ approx. = .2 eV and was found to have Spitzer resistivity when E/sub parallel/ < E/sub c/.

  10. Search for two-phonon octupole excitations in 146Gd

    Orce, J. N.; Kumar Raju, M.; Khumalo, N. A.; Dinoko, T. S.; Jones, P.; Bark, R. A.; Lawrie, E. A.; Majola, S. N. T.; Robledo, L. M.; Rubio, B.; Wiedeking, M.; Easton, J.; Khaleel, E. A.; Kheswa, B. V.; Kheswa, N.; Herbert, M. S.; Lawrie, J. J.; Masiteng, P. L.; Nchodu, M. R.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Papka, P.; Roux, D. G.; Shirinda, O.; Sithole, P. S.; Yates, S. W.

    2016-06-01

    The low-spin structure of the nearly spherical nucleus 146Gd was studied using the 144Sm(4He, 2n) fusion-evaporation reaction. High-statistics γ - γ coincidence measurements were performed at iThemba LABS with 7× 109 γ- γ coincidence events recorded. Gated γ-ray energy spectra show evidence for the 6+2 → 3-1 → 0+1 cascade of E3 transitions in agreement with recent findings by Caballero and co-workers, but with a smaller branching ratio of I_{γ} = 4.7(10) for the 6+2 → 3-1 1905.1 keV γ ray. Although these findings may support octupole vibrations in spherical nuclei, sophisticated beyond mean-field calculations including angular-momentum projection are required to interpret in an appropriate way the available data due to the failure of the rotational model assumptions in this nucleus.

  11. Electric octupole contribution to the angular distribution of the krypton 4p photoelectrons

    The angular distribution of Kr 4p photoelectrons was measured with linearly polarized synchrotron radiation in the function of the photon energy. The shape of the measured angular distributions indicates the presence of octupol interaction.

  12. Effects of Warm Deformation on Mechanical Properties of TRIP Aided Fe-C-Mn-Si Multiphase Steel

    TIAN Yong; LI Zhuan~

    2012-01-01

    Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investiga- ted by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure contai- ning polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical prop- erties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the speci- men was deformed at 250 ~C, and the total elongation and strength-ductility reached maximum (38% and 28 614 MPa ~ ~, respectively) at deforming temperature of 100 ~C. Martensite could nucleate when austenite was deformed above M~, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ~C. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the ap- plications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing.

  13. Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

    Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties

  14. Octupole correlations in the nucleus $^{144}$Ba described with symmetry conserving configuration mixing calculations

    Bernard, Rémi N; Rodríguez, Tomás R

    2016-01-01

    We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope $^{144}$Ba. A symmetry conserving configuration mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.

  15. Octupole correlations in the 144Ba nucleus described with symmetry-conserving configuration-mixing calculations

    Bernard, Rémi N.; Robledo, Luis M.; Rodríguez, Tomás R.

    2016-06-01

    We study the interplay of quadrupole and octupole degrees of freedom in the structure of the isotope 144Ba. A symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF) has been used. The method includes particle number, parity, and angular momentum restoration as well as axial quadrupole and octupole shape mixing within the generator coordinate method. Predictions both for excitation energies and electromagnetic transition probabilities are in good agreement with the most recent experimental data.

  16. Structure and properties of Fe-36% Ni alloy after heavy shear deformation

    A study was made into the influence of large shear strain by pressing on structure, mechanical and thermal properties of the Fe-36% Ni invar. The first pressing pass (70% reduction) is shown to result in formation of strip structure. An increase of the number of passes with changing shear deformation direction for reverse one at every even pressing p[ass promotes strip structure transformation into fragmented one. Yield strength of the alloy increases from 300 to 650 N/mm2 after the first pass. After 12 passes at attains the value of 800 N/mm2 due to strain hardening. A linear thermal expansion coefficient varies nonmonotonously with deformation, and after 12 passes preserves a permissible value. 17 refs., 10 figs

  17. Self-consistent description of static properties of nuclear deformation from nucleon-nucleon effective interactions

    A self-consistent description of deformed nuclei is presented in the Hartree-Fock approximation after correcting in an approximate but variational way for pairing correlations. Density dependent phenomenological effective interactions have been used, mainly according to the Skyrme's parametrization. Methods in use and various related approximations are reviewed in an extensive way. Calculated nuclei belong to the s-d shell, to the rare earth region, to the two transitional regions before and after the latter region, and to the actinide region. For all these nuclei, calculated deformation properties agree remarkably well with experimental data. Such results are extensively compared with those obtained in the more phenomenological approach due to Strutinsky. Finally the hypotheses formulated by Strutinsky are checked numerically in a systematic way, thus leading to the conclusion of the validity of the Strutinsky method

  18. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube

    Sudhanshu Choudhary; S Qureshi

    2012-10-01

    We investigate electron transport properties in a deformed (8, 0) silicon carbide nanotube by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two-probe molecular junction constructed from deformed nanotube. The results suggest significant reduction in threshold voltage in the case of both radially compressed and axially elongated (8, 0) SiCNTs, a large difference in current–voltage characteristics was observed. Analysis of frontier molecular orbitals (FMO) and transmission spectrum show bandgap reduction in deformed nanotubes. Deformation introduces electronic states near the Fermi level, enhancing the conduction properties of (8, 0) SiCNT. The FMOs and the orbitals corresponding to peaks in () around Fermi level obviously has some major contributions from the deformed site. However, localization of the electronic state near the Fermi level is weak in (8, 0) SiCNT, possibly because of its large bandgap.

  19. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation.

    Sabine Kling

    Full Text Available Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery.

  20. First hyperpolarizabilities of 1,3,5-tricyanobenzene derivatives: origin of larger beta values for the octupoles than for the dipoles.

    Lee, Sang Hae; Park, Jo Ryoung; Jeong, Mi-Yun; Kim, Hwan Myung; Li, Shaojun; Song, Jongwon; Ham, Sihyun; Jeon, Seung-Joon; Cho, Bong Rae

    2006-01-16

    A series of donor-acceptor substituted stilbene and diphenylacetylene derivatives and their octupolar analogues have been synthesized and the linear and nonlinear optical properties (beta) studied by both experiments and theoretical calculation. The lambda(max) of the dipoles increases with the conjugation length and is always larger when the C=C bond is used, instead of the C[triple bond]C bond, as the conjugation bridge. Although the lambda(max) values of the octupoles show no clear trend, they are much larger than those of the dipoles. The beta(0) values of the dipoles increase with conjugation length and as the conjugation bridge is changed from the C[triple bond]C to C=C bond. This increase is accompanied by an increase in either lambda(max) or the oscillator strength. Similarly, the beta(0) values of the octupoles increase with the conjugation length and with a change in the donor in the order: NEt2 zzz) ratios are in the range of 1.6-3.9 and decrease with the conjugation length. Beta values calculated by the finite-field and sum-over-states methods are in good agreement with the experimental data. Also, there is a parallel relationship between the calculated beta values and bond length alternation (BLA). From these results, the origin of the larger beta values for octupoles than for dipoles is assessed. PMID:16323225

  1. Application of Severe Plastic Deformation Techniques to Magnesium for Enhanced Hydrogen Sorption Properties

    Daniel Fruchart

    2012-08-01

    Full Text Available In this paper we review the latest developments in the use of severe plastic deformation (SPD techniques for enhancement of hydrogen sorption properties of magnesium and magnesium alloys. Main focus will be on two techniques: Equal Channel Angular Pressing (ECAP and Cold Rolling (CR. After a brief description of these two techniques we will discuss their effects on the texture and hydrogen sorption properties of magnesium alloys. In particular, the effect of the processing temperature in ECAP on texture will be demonstrated. We also show that ECAP and CR have produced different textures. Despite the scarcity of experimental results, the investigations up to now indicate that SPD techniques produce metal hydrides with enhanced hydrogen storage properties.

  2. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  3. Effects of deformation on the electronic properties of B-C-N nanotubes

    Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58059-900 Joao Pessoa-PB (Brazil); Rosas, A. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58059-900 Joao Pessoa-PB (Brazil); Machado, M. [Departamento de Fisica, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900 Pelotas-RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Av. Amazonas 3150, 45030-220 Vitoria da Conquista-BA (Brazil); Chacham, H. [Departamento de Fisica, ICEX, Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970 Belo Horizonte-MG (Brazil)

    2013-01-15

    We apply first-principles methods, using density functional theory, to investigate the effects of flattening deformation on the electronic properties of BC{sub 2}N and C-doped BNNTs. Four different types of BC{sub 2}N structures are considered. Two of them are semiconductors, and the radial compression produces a significant reduction of the energy band gap. The other two types of structures are metallic, and the effect of radial compression is quite distinct. For one of them it is found the opening of a small band gap, and for the other one no changes are observed. For C-doped tubes, it is also found that the electronic properties undergo significant modifications when subjected to radial compression. - Graphical Abstract: We apply first-principles methods, using density functional theory, to investigate the effects of flattening deformation on the electronic properties of BC{sub 2}N and C-doped BNNTs. Four different types of BC{sub 2}N structures are considered. Two of them are semiconductors, and the radial compression produces a significant reduction of the energy band gap. The other two types of structures are metallic, and the effect of radial compression is quite distinct. For one of them it is found the opening of a small band gap, and for the other one no changes are observed. For C-doped tubes, it is also found that the electronic properties undergo significant modifications when subjected to radial compression. Highlights: Black-Right-Pointing-Pointer We investigated electronic properties of flattened BC{sub 2}N nanotubes. Black-Right-Pointing-Pointer The electronic states depend strongly on compression. Black-Right-Pointing-Pointer It is studied flattened BN nanotubes doped with a carbon atom. Black-Right-Pointing-Pointer The flattened C-doped structures, presents a significant reduction of the gap.

  4. Octupole Focusing Relativistic Self-Magnetometer Electric Storage Ring "Bottle"

    Talman, Richard

    2015-01-01

    A method proposed for measuring the electric dipole moment (EDM) of a charged fundamental particle such as the proton, is to measure the spin precession caused by a radial electric bend field $E_r$, acting on the EDMs of frozen spin polarized protons circulating in an all-electric storage ring. The dominant systematic error limiting such a measurement comes from spurious spin precession caused by unintentional and unknown average radial magnetic field $B_r$ acting on the (vastly larger) magnetic dipole moments (MDM) of the protons. Along with taking extreme magnetic shielding measures, the best protection against this systematic error is to use the storage ring itself, as a "self-magnetometer"; the exact magnetic field average $\\langle B_r\\rangle$ that produces systematic EDM error, is nulled to exquisite precision by orbit position control. By using octupole rather than quadrupole focusing the restoring force can be vanishingly small for small amplitude vertical betatron-like motion yet strong enough at larg...

  5. Effect of deformation and annealing on the microstructure and magnetic properties of grain-oriented electrical steels

    The effect of plastic deformation and subsequent annealing on the magnetic properties and microstructure of a grain-oriented (GO) electrical steel has been studied. True strain (ε) from 0.002 to 0.23 was applied by rolling in two directions, rolling (RD) and transverse (TD). The deterioration of power losses varies according to the direction of deformation. Annealing the strained material-at 800 deg. C/2 h-leads to a recrystallization and restored magnetic properties. The main components of annealed-textures are around 15-35o from those of deformed-textures for both RD and TD. Rolling along {1 1 0} direction leads to the development of deformation twins

  6. Electric multipole plasmons in deformed sodium clusters

    Kleinig, W; Reinhard, P G

    2001-01-01

    The random-phase-approximation (RPA) method with separable residual forces (SRPA) is proposed for the description of multipole electric oscillations of valence electrons in deformed alkali metal clusters. Both the deformed mean field and residual interaction are derived self-consistently from the Kohn-Sham functional. SRPA drastically simplifies the computational effort which is urgent if not decisive for deformed systems. The method is applied to the description of dipole, quadrupole and octupole plasmons in deformed sodium clusters of a moderate size. We demonstrate that, in clusters with the size N>50, Landau damping successfully competes with deformation splitting and even becomes decisive in forming the width and gross structure of the dipole plasmon. Besides, the plasmon is generated by excitations from both ground state and shape isomers. In such clusters familiar experimental estimates for deformation splitting of dipole plasmon are useless.

  7. Bending Deformation and Fatigue Properties of Precision-Casted TiNi Shape-Memory Alloy Brain Spatula

    Tobushi, Hisaaki; KITAMURA, KAZUHIRO; Yoshimi, Yukiharu; Date, Kousuke

    2010-01-01

    In order to develop the SMA-brain spatula, the mechanical characteristics of the TiNi castand rolled-SMAs and the copper used for the brain spatula were compared based on the tensile deformation properties, and the characteristics of the SMA-brain spatula were discussed. The fatigue properties of these materials were also investigated by the pulsating-

  8. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices

    Guili, Liu; Yan, Jiang; Yuanyuan, Song; Shuang, Zhou; Tianshuang, Wang

    2016-06-01

    As the era of nanoelectronics is dawning, CNT (carbon nanotube), a one-dimensional nano material with outstanding properties and performances, has aroused wide attention. In order to study its optical and electrical properties, this paper has researched the influence of tension-twisting deformation, defects, and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method. Our findings show that if tension-twisting deformation is conducted, then the geometric structure, bond length, binding energy, band gap and optical properties of B, N doped carbon nanotube superlattices with defects and mixed type will be influenced. As the degree of exerted tension-twisting deformation increases, B, N doped carbon nanotube superlattices become less stable, and B, N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations. Proper tension-twisting deformation can adjust the energy gap of the system; defects can only reduce the energy gap, enhancing the system metallicity; while the mixed type of 5% tension, twisting angle of 15° and atomic defects will significantly increase the energy gap of the system. From the perspective of optical properties, doped carbon nanotubes may transform the system from metallicity into semi-conductivity. Project supported by the National Natural Science Foundation of China (No. 51371049) and the Natural Science Foundation of Liaoning Province (No. 20102173).

  9. The influence of strain rate, deformation temperature and stacking fault energy on the mechanical properties of Cu alloys

    Gong, Y.L. [Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan (China); Wen, C.E. [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122 (Australia); Wu, X.X.; Ren, S.Y.; Cheng, L.P. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan (China); Zhu, X.K., E-mail: xk_zhu@hotmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan (China)

    2013-10-20

    Cu–Ge alloys with different stacking fault energies (SFEs) were prepared by induction melting and processed by severe plastic deformation (SPD) using three different deformation techniques, including rolling at room temperature (RTR), rolling at the liquid nitrogen temperature (LNR), and Split Hopkinson Pressure Bar (SHPB) impact followed by room temperature rolling (HK+RTR). The effects of SFE, strain rate and deformation temperature on the microstructures and mechanical properties were systematically investigated by X-ray diffraction analyses and tensile tests. It was found that the dislocation density and twin density of all the Cu alloys after the SPD processing increased with decreasing SFE, increasing strain rate or reducing deformation temperature, which led to simultaneously enhanced strength and improved ductility due to effective grain refinement. The mechanical properties of the Cu alloys can be optimized to a combination of high strength and excellent ductility by lowering the SFE, the intrinsic property of metals, or manipulating the extrinsic deformation conditions, that is, increasing strain rate, and/or decreasing deformation temperature.

  10. Octupole correlations in positive-parity states of rare-earth and actinide nuclei

    Spieker M.

    2015-01-01

    Full Text Available In this contribution, further evidence of the importance of multiphonon-octupole excitations to describe experimental data in the rare earths and actinides will be presented. First, new results of a (p, t experiment at the Q3D magnetic spectrograph in Munich will be discussed, which was performed to selectively excite Jπ = 0+ states in 240Pu. spdf interacting boson model (IBM calculations suggest that the previously proposed double-octupole phonon nature of the Jπ = 0+2 state is not in conflict with its strong (p, t population. Second, the framework of the IBM has been adopted for the description of experimental observables related to octupole excitations in the rare earths. Here, the IBM is able to describe the signature splitting for positiveand negative-parity states when multi-dipole and multi-octupole bosons are included. The present study might support the idea of octupole-phonon condensation at intermediate spin (Jπ = 10+ leading to the change in yrast structure observed in 146Nd.

  11. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations.

    Miri, Amir K; Barthelat, François; Mongeau, Luc

    2012-11-01

    Dehydration may alter vocal fold viscoelastic properties, thereby hampering phonation. The effects of water loss induced by an osmotic pressure potential on vocal fold tissue viscoelastic properties were investigated. Porcine vocal folds were dehydrated by immersion in a hypertonic solution, and quasi-static and low-frequency dynamic traction tests were performed for elongations of up to 50%. Digital image correlation was used to determine local strains from surface deformations. The elastic modulus and the loss factor were then determined for normal and dehydrated tissues. An eight-chain hyperelastic model was used to describe the observed nonlinear stress-stretch behavior. Contrary to the expectations, the mass history indicated that the tissue absorbed water during cyclic extension when submerged in a hypertonic solution. During loading history, the elastic modulus was increased for dehydrated tissues as a function of strain. The response of dehydrated tissues was much less affected when the load was released. This observation suggests that hydration should be considered in micromechanical models of the vocal folds. The internal hysteresis, which is often linked to phonation effort, increased significantly with water loss. The effects of dehydration on the viscoelastic properties of vocal fold tissue were quantified in a systematic way. A better understanding of the role of hydration on the mechanical properties of vocal fold tissue may help to establish objective dehydration and phonotrauma criteria. PMID:22483778

  12. Insensitivity on tensile properties of forged Mg-13Li-X alloy to hot-rolling deformation

    LI Li; LI Huan-xi; ZHOU Tie-tao; CHEN Chang-qi; WU Qiu-lin; ZHANG Qing-quan; FU Zu-ming

    2006-01-01

    In order to examine the dependences of tensile properties of a forged Mg-13Li-X alloy on hot-rolling deformation and the underlying mechanisms tensile tests, residual stress measurements and texture analyses were conducted in the present study. It is found that after a hot-rolling deformation of 50% at 200 ℃, no much changes in tensile properties, nature and magnitude of residual stresses, and texture type and intensity can be identified for the alloy investigated. The insensitivity of tensile properties of the Mg-Li-X alloy to hot-rolling deformation is attributed at least partially to the insensitivity of residual stress and texture to hot-rolling.

  13. Accretion onto Stars with Octupole Magnetic Fields: Matter Flow, Hot Spots and Phase Shifts

    Long, Min; Lamb, Frederick K

    2009-01-01

    Recent measurements of the surface magnetic fields of classical T Tauri stars (CTTSs) and magnetic cataclysmic variables show that their magnetic fields have a complex structure. The magnetic field associated with the octupole moment may dominate the magnetic field associated with other moments in some stars, such as the CTTS V2129 Oph. Previously, we studied disc accretion onto stars with magnetic fields described by a superposition of aligned or misaligned dipole and quadrupole moments. In this paper, we present results of the first simulations of disc accretion onto stars with an \\textit {octupole} field. As examples, we consider stars with a superposition of octupole and dipole fields of different strengths and investigate matter flow around them, the shapes of hot spots on their surfaces, and the light curves produced by their rotation. We investigate two possible mechanisms for producing phase shifts in the light curves of stars with complex fields: (1) change of the star's intrinsic magnetic field and ...

  14. The effect of plastic deformation and heat treatment on mechanical properties of tungsten heavy alloys

    Tungsten heavy alloys (WHA) are particularly interesting family of two-phase, brittle-ductile metal composites. The W/Ni/Fe type of WHA usually contains between 90-97% of tungsten. As engineering material they exhibit attractive combination of high density, high strength and relatively high ductility. The mechanical properties of WHA can be Improved by plastic deformation and subsequent heat treatment. This paper presents results of room temperature tensile tests performed on the series of tungsten heavy alloy specimens representative of 'as sintered state' after cold working (10-40%) and additional annealing (500-750 oC). The results of microstructural microhardness and hardness measurements and fractography analysis are also given. (author)

  15. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    A surface severe plastic deformation (S2PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S2PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening

  16. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean field theory

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-Sh. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N-82, the RMF theory predicts the well-known onset of prolate deformation at about N-88, which saturates at about N-102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  17. Postseismic Deformations of the Aceh, Nias and Benkulu Earthquakes and the Viscoelastic Properties of the Mantle

    Fleitout, L.; Garaud, J.; Cailletaud, G.; Vigny, C.; Simons, W. J.; Ambrosius, B. A.; Trisirisatayawong, I.; Satirapod, C.; Geotecdi Song

    2011-12-01

    The giant seism of Aceh (december 2004),followed by the Nias and Bengkulu earthquakes, broke a large portion of the boundary between the Indian ocean and the Sunda block. For the first time in history, the deformations associated with a very large earthquake can be followed by GPS, in particular by the SEAMERGE (far-field) and SUGAR (near-field) GPS networks. A 3D finite element code (Zebulon-Zset) is used to model both the cosismic and the postseismic deformations. The modeled zone is a large portion of spherical shell around Sumatra extanding over more than 60 degrees in latitude and longitude and from the Earth's surface to the core-mantle boundary. The mesh is refined close to the subduction zone. First, the inverted cosismic displacements on the subduction plane are inverted for and provide a very good fit to the GPS data for the three seisms. The observed postseismic displacements, non-dimensionalized by the cosismic displacements, present three very different patterns as function of time: For GPS stations in the far-field, the total horizontal post-seismic displacement after 4 years is as large as the cosismic displacement. The velocities vary slowly over 4 years. A large subsidence affects Thailand and Malaysia. In the near-field, the postseismic displacement reaches only some 15% of the cosismic displacement and it levels off after 2 years. In the middle-field (south-west coast of Sumatra), the postseismic displacement also levels-off with time but more slowly and it reaches more than 30% of the cosismic displacement after four years. In order to fit these three distinct displacement patterns, we need to invoke both viscoelastic deformation in the asthenosphere and a low-viscosity wedge: Neither the vertical subsidence nor the amplitude of the far-field horizontal velocities could be explained by postseismic sliding on the subduction interface. The low viscosity wedge permits to explain the large middle-field velocities. The viscoelastic properties of the

  18. Effect of Cold Deformation on Phase Evolution and Mechanical Properties in an Austenitic Stainless Steel for Structural and Safety Applications

    S K Ghosh; P Mallick; P P Chattopadhyay

    2012-01-01

    The effects of cold deformation on the formation of strain induced α’ martensite and mechanical properties of an austenitic stainless steel have been examined.X-ray diffraction analysis has revealed that 30% and 40% cold rolling have resulted in the formation of 24% and 31.5% martensite respectively.Microstructural investigation has demonstrated that the formation of martensite is enhanced with increase in the percent deformation at 0 ℃.Investigation of mechanical properties reveals that hardness,yield strength and tensile strength values increase where as percent elongation drops with increasing deformation.The fractographic observation corroborates the tensile results.Examination of sub-surface at the fractured end of the tensile sample manifests that void/microcrack nucleation occurs in the interfacial regions of the martensite phase as well as at the austenite-martensite interface

  19. Effects of Slight Plastic Deformation on Magnetic Properties and Giant Magnetoimpedance of FeCoCrSiB Amorphous Ribbons

    S.O.Volchkov; M.A.Cerdeira; V.V.Gubernatorov; E.I.Duhan; A.P.Potapov; V.A.Lukshina

    2007-01-01

    Slight plastic deformation of 0 to 1% by cold rolling is proposed as a treatment which may modify the responses of magnetoimpedance (MI) sensor with an amorphous ribbon used as a sensitive element. The dependence of the magnetic properties of melt spun Fe3Co67Cr3Si15B12 amorphous ribbons and their MI responses in the initial state and after slight plastic deformation on the value of the deformation were comparatively analysed. The shape of the hysteresis loops shows a clear correlation with the value of the deformation. The variations of the total impedance, the real and the imaginary components, are measured for the current intensity of 1.5mA for the frequency of 10 MHz. Slight plastic deformation affects both real and imaginary components and allows a control of the shape of the MI curves in a small Geld in a range usually used in biomedical applications. The proposed deformation treatments can be useful for the construction of the MI sensitive elements with a new type of the responses.

  20. Phase stability, deformation mechanisms, and mechanical properties of Nb-Al-Ti alloys

    The phase stability, deformation mechanisms and mechanical properties of two alloys based on Nb3Al containing additions of Ti have been studied. These two alloys, with nominal compositions (in at.%) of Nb-15Al-10Ti (alloy 1) and Nb-15Al-40Ti (alloy 2), have the B2 crystal structure in as cast form. The ALCHEMI technique has been employed to assess qualitatively the distribution of atom types over the two sublattices of the B2 compounds. It is found that Ti and Al occupy different sublattices in alloy 2. Heat-treatment of alloy 1 at 1,100 C results in the precipitation of an A15 phase in the B2 matrix. Annealing at 900 C for short time introduces an w-phase. Prolonged annealing of alloy 1 at 700 C reveals the presence of an orthorhombic phase. The same orthorhombic phase is also found to exist between 800 and 1,000 C in alloy 2. Specific orientation relationships exist between the matrix phase and precipitates. The yield strength in compression of Alloy 1 and 2 were determined at various temperatures. Alloy 1 is strong compared to superalloy IN 718 over a range of temperatures up to 950 C. Both alloys with the B2 crystal structure are deformed by one or more of the following slip systems, namely (110), (112) and (123). Dislocations with Burgers vector, b, given by b= are present in the form of dissociated superpartial pairs, each with b=1/2. The inherent ductility of both alloys is indicated by the active slip systems and illustrated by 20% elongation to failure obtained in alloy 2 under room temperature tensile test. A trend of increasing tensile yield stress with increasing antiphase domain size was found. No evidence of interaction between dislocations and antiphase boundaries has been found to account for this increase of strength

  1. Mechanical properties and constitutive relations for tantalum and tantalum alloys under high-rate deformation

    Chen, S.R.; Gray, G.T. III; Bingert, S.R. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1996-05-01

    Tantalum and its alloys have received increased interest as a model bcc metal and for defense-related applications. The stress-strain behavior of several tantalums, possessing varied compositions and manufacturing histories, and tantalum alloyed with tungsten, was investigated as a function of temperature from {minus}196 C to 1,000 C, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress for all the Ta-materials was found to be sensitive to the test temperature, the impurity and solute contents; however, the strain hardening remained very similar for various ``pure`` tantalums but increased with alloying. Powder-metallurgy (P/M) tantalum with various levels of oxygen content produced via different processing paths was also investigated. Similar mechanical properties compared to conventionally processed tantalums were achieved in the P/M Ta. This data suggests that the frequently observed inhomogeneities in the mechanical behavior of tantalum inherited from conventional processes can be overcome. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong, and the Mechanical Threshold Stress models were evaluated for all the Ta-based materials. Parameters were also fit for these models to a tantalum-bar material. Flow stresses of a Ta bar stock subjected to a large-strain deformation of {var_epsilon} = 1.85 via multiple upset forging were obtained. The capabilities and limitations of each model for large-strain applications are examined. The deformation mechanisms controlling high-rate plasticity in tantalum are revisited.

  2. Influence of sensitizing additives on deformation-strength properties of radiation vulcanized rubber

    Full text: Expanding the practical use of products of radiation-vulcanized elastopolymers (RVEP) makes it necessary to increase their operational properties. Applied to the exploitation of polymers in the field of the ionizing radiation does not always meet shown requirements to them. In the present report the influence of sensitizer of disulpho chloride aromatic compounds on deformation-strength and their ageing under the influence of radiation exposure is being examined. The serial produced aromatic compounds of disulpho chloride bezene (DSCB) were used as sensitizers. It is established that, during the sensitization of radiation chemical vulcanization the mixture of butadiene-nitrile rubber with PVC with other ingredients affect the density of the spatial grid which determines the mechanical properties of vulcanized rubber. Two processes simultaneously run in the presence of sensitizing additives: inhibition of radiation oxidation which causes cross-linking and formation of the spatial grid in BNC. The role of sensitizer in the process of radiation vulcanization is defined first of all by reducing the doze of irradiation in the vulcanization process; simultaneously accelerate the cross-linking of the polymer chains. On the base of physical mechanical and structure of DSCB, can be judged that the influence of ionizing radiation leads the polar groups to ionization besides, their excited potential during ionization is very high which provides material with radiation resistance. Considering the resistance of DSCB to radiation, its practical value is high and can conduct vulcanization at low doses (150-300 kGy). (authors)

  3. Degradation and recovery of adhesion properties of deformed metal-polymer interfaces studied by laser induced delamination

    Fedorov, A. V.; van Tijum, R.; Vellinga, W. -P.; De Hosson, J. Th. M.

    2007-01-01

    Adhesion properties of polymer coatings on metals are of great interest in various industrial applications, including packaging of food and drinks. Particular interest is focused on polymer-metal interfaces that are subjected to significant deformations during manufacturing process. In this work ste

  4. Microstructures, deformation mechanisms and seismic properties of a Palaeoproterozoic shear zone: The Mertz shear zone, East-Antarctica

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Riel, Nicolas; Ménot, René-Pierre

    2016-06-01

    The Mertz shear zone (MSZ) is a lithospheric scale structure that recorded mid-crustal deformation during the 1.7 Ga orogeny. We performed a microstructural and crystallographic preferred orientation (CPO) study of samples from both mylonites and tectonic boudins that constitute relics of the Terre Adélie Craton (TAC). The deformation is highly accommodated in the MSZ by anastomosed shear bands, which become more scattered elsewhere in the TAC. Most of the MSZ amphibolite-facies mylonites display similar CPO, thermal conditions, intensity of deformation and dominant shear strain. Preserved granulite-facies boudins show both coaxial and non-coaxial strains related to the previous 2.45 Ga event. This former deformation is more penetrative and less localized and shows a deformation gradient, later affected by a major phase of recrystallization during retrogression at 2.42 Ga. Both MSZ samples and granulite-facies tectonic boudins present microstructures that reflect a variety of deformation mechanisms associated with the rock creep that induce contrasted CPO of minerals (quartz, feldspar, biotite, amphibole and orthopyroxene). In particular, we highlight the development of an "uncommon" CPO in orthopyroxene from weakly deformed samples characterized by (010)-planes oriented parallel to the foliation plane, [001]-axes parallel to the stretching lineation and clustering of [100]-axes near the Y structural direction. Lastly, we computed the seismic properties of the amphibolite and granulite facies rocks in the MSZ area in order to evaluate the contribution of the deformed intermediate and lower continental crust to the seismic anisotropy recorded above the MSZ. Our results reveal that (i) the low content of amphibole and biotite in the rock formations of the TAC, and (ii) the interactions between the CPO of the different mineralogical phases, generate a seismically isotropic crust. Thus, the seismic anisotropy recorded by the seismic stations of the TAC, including the

  5. The study of magnetic properties, coercivity mechanism and bending strength of hot-deformed RE-Fe-B magnets

    The effect on mechanical properties and magnetic properties of hot-deformed magnets with different rare earth (RE) content has been investigated. The results show that the optimal comprehensive magnetic properties are obtained at 13.09 at% RE. The bending strength parallel to c-axis orientation increases with the increasing of RE content, while that perpendicular to c-axis orientation exhibits decrease. Moreover, the micro magnetic structure was observed and the coercivity mechanism of the hot-deformed magnet sample was discussed. - Highlights: • The optimal comprehensive magnetic properties are obtained at 13.09 at% RE. • The bending strength with different rare earth content is determined. • Domain wall moved irreversibly when the external field gets close to the coercivity. • Inhomogeneous domain wall pinning should be the dominant coercivity mechanism

  6. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  7. Microstructure and properties of 700 MPa grade HSLA steel during high temperature deformation

    Chen, Xizhang, E-mail: chenxizhang@wzu.edu.cn [School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 (China); School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Huang, Yuming, E-mail: Hero320@163.com [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Lei, Yucheng, E-mail: Yclei@ujs.edu.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-05-15

    Highlights: • Hot deformation behavior of 700 MPa HSLA steel above 1200 °C in was detailed studied. • Uniform and granular bainite is formed when the deformation amount is 40%. • Deformation resistance value under steady-equilibrium state is about 56 MPa. - Abstract: A high temperature deformation experiment was conducted on a high strength low alloy (HSLA) steel Q690 using Thermecmastor-Z thermal/physical simulator. During the experiment, the specimens were heated from room temperature to 1200 °C with the heating rate of 10 °C/s and 50 °C/s, respectively. The deformation temperature was 1200 °C and the deformation amounts were 0%, 10% and 40%, respectively. The microstructures, stress–strain diagram and hardness were obtained. The results revealed that the microstructure transformation of deformed austenite was quite different from that of the normal situation. With the increasing of deformation amount, more lath-shaped microstructure and less granulous microstructure were observed. The compressive deformation effectively prevented the precipitation of carbides. Larger deformation amount or lower heating rate was conducive to the atomic diffusion, which led to the microstructure uniformity and hardness decreasing. The maximum stress was 68.4 MPa and the steady stress was about 56 MPa.

  8. Single-beam measurements of LHC instability threshold in terms of octupole current

    Mounet, N; Buffat, X; Burov, A; Hemelsoet, G; Metral, E; Papotti, G; Pieloni, T; Pojer, M; Salvant, B; Trad, G

    2012-01-01

    This note summarizes two machine development (MD) studies aimed at determining the octupole current needed in the LHC in order to stabilize all headtail instabilities at 4TeV/c, before and after the squeeze, with tight collimator settings, and when a single beam (beam 2) at maximum intensity (1380 bunches, 2.1 1014 protons) is present in the machine. The MDs followed the normal physics operation procedure, at the notable exception that a single beam was used, the other beam containing only one non-colliding nominal bunch. Octupole current (with negative polarity in the focusing octupoles and the opposite in the defocusing ones) was decreased by small steps until the instability threshold was reached. This was performed in two distinct MDs, one before the squeeze and the other after it, testing also several chromaticity values and the effect of the transverse damper in the latter case. Octupole thresholds are shown in each case studied, as well as the rise times of the instabilities observed.

  9. Examination of different strengths of octupole correlations in neutron-rich Pr and Pm isotopes

    Thiamova, G.; Alexa, P.; Hons, Zdeněk; Simpson, G.S.

    2012-01-01

    Roč. 86, č. 4 (2012), 044334/1-044334/5. ISSN 0556-2813 R&D Projects: GA ČR GAP203/10/0310 Institutional support: RVO:61389005 Keywords : neutron rich nuclei * octupole correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.715, year: 2012

  10. Convective cells and their relationship to vortex diffusion in the Wisconsin Levitated Octupole

    The purpose of this thesis is two-fold: first, to present floating potential structure for different plasmas and operating parameters in the Wisconsin Levitated Octupole. Second, to show how the observed potential structure can be used, within the framework of vortex diffusion, to account for enhanced diffusion in the appropriate parameter regimes

  11. Deformed configurations, band structures and spectroscopic properties of = 50 Ge and Se nuclei

    S K Ghorui; C R Praharaj

    2014-04-01

    The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost’ spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed well-mixed = 1/2+ neutron orbit comes down in energy (from the shell above = 50) to break the = 50 spherical shell closure. A = 7− isomer is predicted in 84Se at fairly low excitation energy. At higher excitation energies (8 MeV), a deformed band with = 7/2+–1/2− (based on $h_{11/2}$) neutron 1p–1h excitation, for 82Ge and 84Se, is shown in our calculation. Our study gives insight into possible deformed structures at spherical shell closure.

  12. Effect of cold deformation on structure and properties of aluminium alloy 1441 sheets

    The influence of tensile deformation on the 1441 alloy (Al-Cu-Mg-Li-Zr) in four states: quenched; quenched, straightened and naturally aged; annealed; quenched, straightened and artificially aged one, has been studied. It has been ascertained that deformation after quenching results in a considerable growth of yield strength. Artificial aging makes an insignificant contribution to stregthening of deformed sheet. 2 refs.; 4 figs

  13. Effect of Cooling Start Temperature on Microstructure and Mechanical Properties of X80 High Deformability Pipeline Steel

    ZHENG Xiao-fei; KANG Yong-lin; MENG De-liang; AN Shou-yong; XIA Dian-xiu

    2011-01-01

    The effect of cooling (laminar cooling) start temperature on the phase constitution was analyzed by quanti- tative metallography. The martensite/austenite (M/A) island distribution was fixed by colour metallography. The strength and uniform elongation of the steels were tested with quasi-static tensile testing machine. The in-coordinate deformation of the soft and hard phases was analyzed using FEM. The results indicate that when the cooling start temperature is 690 ℃, the mechanical properties are the best, meeting the requirements of X80 high deformability pipeline steel.

  14. Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree

    Lv, Yuting; Wang, Liqiang, E-mail: wang_liqiang@sjtu.edu.cn; Han, Yuanfei; Xu, Xiaoyan; Lu, Weijie, E-mail: luweijie@sjtu.edu.cn

    2015-09-03

    In this study, the forged NiAl bronze (NAB) were hot rolled with the deformation degree of 40%, 60%, 80%, 90% and 95% at 850 °C, respectively. Effects of rolling deformation degree on the microstructure and mechanical properties of the NAB alloy were investigated. Scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) methods were used to characterize the microstructure. The results show that α grains are refined by the dynamic recovery and recrystallization, penetration of β phase into α phase and particle-stimulated nucleation (PSN) of recrystallization during rolling. The refined grains make a main contribution to the increase of mechanical properties of rolled NAB. When the deformation degree is increased to 80%, the optimum tensile properties with ultimate strength of 861.3±8.5 MPa, yield strength of 634.5±7 MPa and elongation of 19.3±0.05% is obtained. With further increasing the deformation degree, the strength of rolled NAB alloy increase and the elongation decrease due to the increase of work hardening effect and the formation of martensitic nano-twins.

  15. Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree

    In this study, the forged NiAl bronze (NAB) were hot rolled with the deformation degree of 40%, 60%, 80%, 90% and 95% at 850 °C, respectively. Effects of rolling deformation degree on the microstructure and mechanical properties of the NAB alloy were investigated. Scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) methods were used to characterize the microstructure. The results show that α grains are refined by the dynamic recovery and recrystallization, penetration of β phase into α phase and particle-stimulated nucleation (PSN) of recrystallization during rolling. The refined grains make a main contribution to the increase of mechanical properties of rolled NAB. When the deformation degree is increased to 80%, the optimum tensile properties with ultimate strength of 861.3±8.5 MPa, yield strength of 634.5±7 MPa and elongation of 19.3±0.05% is obtained. With further increasing the deformation degree, the strength of rolled NAB alloy increase and the elongation decrease due to the increase of work hardening effect and the formation of martensitic nano-twins

  16. Anharmonicity of the excited octupole band in actinides using supersymmetric quantum mechanics

    Jolos, R. V.; von Brentano, P.; Casten, R. F.

    2013-09-01

    Background: Low-lying octupole collective excitations play an important role in the description of the structure of nuclei in the actinide region. Ground state alternating parity rotational bands combining both positive and negative parity states are known in several nuclei. However, only recently it has been discovered in 240Pu an excited positive parity rotational band having an octupole nature and demonstrating strong anharmonicity of the octupole motion in the band head energies.Purpose: To suggest a model describing both ground state and excited alternating parity bands, which includes a description of the anharmonic effects in the bandhead excitation energies and can be used to predict the energies of the excited rotational bands of octupole nature and the E1 transition probabilities.Methods: The mathematical technique of the supersymmetric quantum mechanics with a collective Hamiltonian depending only on the octupole collective variable which keeps axial symmetry is used to describe the ground state and excited alternating parity rotational bands.Results: The excitation energies of the states belonging to the lowest negative parity and the excited positive parity bands are calculated for 232Th, 238U, and 240Pu. The E1 transition matrix elements are also calculated for 240Pu.Conclusions: It is shown that the suggested model describes the excitation energies of the states of the lowest negative parity band with the accuracy around 10 keV. The anharmonicity in the bandhead energy of the excited positive parity band is described also. The bandhead energy of the excited positive parity band is described with the accuracy around 100 keV.

  17. Effect of severe plastic deformation on the specific heat and magnetic properties of cold rolled Gd sheets

    Taskaev, S.; Skokov, K.; Khovaylo, V.; Buchelnikov, V.; Pellenen, A.; Karpenkov, D.; Ulyanov, M.; Bataev, D.; Usenko, A.; Lyange, M.; Gutfleisch, O.

    2015-03-01

    We report on specific heat and magnetic properties of thin Gd sheets obtained by means of a cold rolling technique. At temperatures well below Curie temperature TC, the cold rolling has a minor impact on the specific heat Cp. However, a well defined λ-type anomaly of Cp seen in the vicinity of TC in a polycrystalline Gd sample is markedly suppressed in the severely deformed samples. Depression of the λ peak is due to a large decrease of magnetization that presumably originates in a local magnetic anisotropy induced by the severe plastic deformation. Results of calculation of magnetocaloric effect from the Cp and magnetization data indicate that the magnetocaloric effect gradually decreases as the degree of plastic deformation increases. This trend is further confirmed by the direct measurements of the adiabatic temperature change ΔTad.

  18. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

    A, Karimi; M, K. Tavassoly

    2016-04-01

    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes–Cummings model.

  19. Microstructure and mechanical properties of fine grain seamless Nb tube by a novel shear deformation process

    Balachandran, S.; Seymour, N.; Mezyenski, R.; Barber, R.; Hartwig, K. T.

    2014-01-01

    The objective of this work is to demonstrate a seamless tube fabrication method for obtaining uniform fine grained microstructures by a novel shear deformation process for tubular metal products. The manufacture of fine grained RRR Nb superconducting radio frequency (SRF) cavities, and other tubular Nb products requires strict microstructure control with respect to grain size and texture for good formability. The major challenges in SRF cavity fabrication and performance stems from: a) the high cost of pure Nb, b) a poor and inconsistent microstructure in the starting material, and c) seam welding to manufacture multi-cell cavities. The approach presented by the authors indicates a possible strategy to obtain fine grain Nb tube by an innovative shear process. Grain size less than 30μm and tensile ductility greater than 40 percent in the orthogonal direction are achieved. The tensile properties correlate with the strongest texture component in the processed tube. Based on preliminary results, the proposed methodology maybe a viable and cost effective approach to fabricating a seamless Nb tube with good hydroformability.

  20. The effects of severe plastic deformation on some properties relevant to Ti implants

    Anibal Andrade Mendes Filho

    2012-02-01

    Full Text Available In some types of surgical implants, such as bone screws and plates, Grade 2 Ti is seriously considered as a replacement for the Ti-6Al-4V alloy. Advantages are lower cost and the absence of Al and V, which have been identified as potentially harmful to human health. The present paper shows that the lower strength of the commercially pure metal can be enhanced by Severe Plastic Deformation followed by conventional cold rolling, so as to reach a strength level higher than the technical requirements applicable to the alloy. This was ascertained by tensile and Vickers hardness tests from which it was concluded that the best combination of properties are obtained by submitting the metal to Equal Channel Angular Pressing (four passes at 300 °C followed by a 70% thickness reduction by cold rolling. Although the present results are valid for the material only, and not for the product considered, that is, bone screws, it appears that this solution is a step towards the replacement of the Ti6-4 alloy by Grade 2 Ti, at least for some types of metallic medical implants.

  1. Processing of ultrafine-grained materials using severe plastic deformation: potential for achieving exceptional properties

    Langdon, T. G.

    2008-12-01

    Full Text Available The processing of polycrystalline metals through the application of severe plastic deformation is attracting much attention because of the potential for achieving significant grain refinement to the submicrometer or nanometer level. This paper reviews the principles of this type of processing with emphasis on two different techniques: Equal- Channel Angular Pressing and High-Pressure Torsion. Exceptional properties may be achieved from these processes including high strength at ambient temperatures and a rapid superplastic forming capability at elevated temperatures. Some examples are presented demonstrating the potential use of this type of processing.

    El procesado de metales policristalinos a través de deformación plástica severa está atrayendo mucha atención, debido al potencial para alcanzar un importante afino de grano a niveles submicrométricos o nanométricos. Esta publicación revisa los principios de este tipo de procesado haciendo hincapié en dos técnicas diferentes: prensado en canal angular y torsión bajo alta presión. Mediante estos procesos, se pueden alcanzar propiedades excepcionales incluyendo alta resistencia a temperatura ambiente y una capacidad de conformación superplástica rápida a elevadas temperaturas. Se presentan algunos ejemplos demostrando el uso potencial de este tipo de procesado.

  2. Evaluation of the Mechanical Properties of AA 6063 Processed by Severe Plastic Deformation

    Jafarlou, Davoud Mashhadi; Zalnezhad, Erfan; Hamouda, Abdelmagid Salem; Faraji, Ghader; Mardi, Noor Azizi Bin; Hassan Mohamed, Mohsen Abdelnaeim

    2015-05-01

    In this study, the mechanical properties, including surface hardness, tensile strength, fatigue, and fretting fatigue behavior of AA 6063 processed by equal channel angular pressing as the most efficient severe shear plastic deformation (SPD) technique, were investigated. Following the SPD process, samples were subjected to heat treatment (HT), hard anodizing (HA), and a combination of HT and HA. Rotating-bending fretting fatigue tests were performed to explore the samples' response to the fretting condition. From the experimental fatigue and fretting fatigue tests, it was apparent that the SPD treatment had a positive effect on enhancing the fatigue and fretting fatigue lives of the samples at low and high-cyclic loads compared with the HT technique by 78 and 67 pct, and 131 and 154 pct respectively. The results also indicate that the SPD + HT technique significantly increased the fatigue and fretting fatigue lives of the samples at high and low cycles by 15.56 and 8.33 pct, and 14.4 and 5.1 pct respectively, compared with the SPD method. HA of AA6063 increased the fatigue and fretting fatigue lives of SPD + HT-processed samples at low cycle by 15.5 and 18.4 pct respectively; however, at high cycle, HA had reverse effects, whereby the fatigue and fretting fatigue lives of SPD + HT-processed samples decreased by 16.7 and 30 pct, respectively.

  3. Comparison of mechanical and microstructural properties of conventional and severe plastic deformation processes

    Szombathelyi, V.; Krallics, Gy

    2014-08-01

    The effect of the deformation processes on yield stress, Vickers microhardness and dislocation density were investigated using commercial purity (A1050) and alloyed aluminum (Al 6082). For the evolution of the dislocation density X-ray line profile analysis was used. In the large plastic strain range the variation of mechanical and microstructure evolution of A1050 and of Al 6082 processed by equal channel angular pressing are investigated using route BC and route C. In the plastic strain range up to 3 plane strain compression test was used to evaluate mechanical properties. The hardness and the yield stress showed a sharp increase after the first pass. In the case of A1050 it was found that the two examined routes has not resulted difference in the flow stress. In the case of Al 6082 the effect of the routes on the yield stress is significant. The present results showed that in the comparable plastic strain range higher yield stress values can be achieved by plane strain compression test than by ECAP.

  4. The influence of flection deformation on micro-mechanical properties of multilayer titanium-steel composite

    A systematic analysis of microhardness variation is performed to study structural-mechanical heterogeneity in 14-layer titanium-steel (titanium VT1-0 + steel 08kp) composite specimens, produced by explosion welding with subsequent rolling at 700 deg C. The specimens studied are subjected to bending under a symmetrical three-point loading. Substantial changes in microhardness are revealed depending on the value and the sign of deformation. Tensile deformation of 15-17 % gives rise to partial softening of both titanium and steel layers. In a range of 1-2 % of compressive load deformation the steel layers are softened. At deformation above 4 % the steel is prone to hardening. In the titanium layers the microhardness monotonically increases with deformation

  5. Deformation and Texture Development in CaIrO3: Implications for the Seismic Properties of the D" Layer

    Walte, N. P.; Miyajima, N.; Heidelbach, F.; Frost, D. J.

    2006-12-01

    Experimental and numerical studies have linked the D" layer at the core-mantle boundary to a phase transition from the MgSiO3 perovskite (Pv) structure to a layered post-perovskite structure (pPv) at approximately 135 GPa. As a result it becomes plausible to explain seismic velocity heterogeneity and shear wave splitting that have been observed in the D" layer by lattice preferred orientation (LPO) of the pPv phase as a result of deformation. However, the dominant shear plane and Burgers vector of the pPv phase are still controversial, partly because of the extremely high pressures that make experimental studies difficult. Thus, controlled strain rate experiments up to a high finite strain are necessary to clarify the development of LPO and thus to interpret seismic data. CaIrO3 is a well-suited analogue for MgSiO3 Pv and pPv phase, since at room P CaIrO3 is isostructural with the pPv phase but undergoes a phase transition to the Pv structure at high T conditions >1450°C. We have performed deformation experiments at P = 1-3 GPa and T = 1000-1450°C with the deformation-DIA multi anvil apparatus using both in the Pv and the pPv stability field to investigate the development of LPO in CaIrO3. While the Pv modification showed only weak or no LPO in pure shear deformation, the pPv modification developed a strong LPO consistent with deformation by intracrystalline slip on the (010)[100] slip system. In TEM analysis of the deformed pPv samples, abundant [100] dislocations were identified. Some of the [100] dislocations having an edge character were also activated on the (010) plane during the deformation experiments. The dislocation microstructures suggest that the (010) plane is a potential slip plane, consistent with the LPO in the deformed samples. The lack of LPO of the Pv modification (analogue for the lower mantle) and the strong LPO of the deformed pPv modification (analogue for D") agree well with the known seismic properties of the lower mantle and the D" layer.

  6. Molecular dynamics simulation on mechanical property of carbon nanotube torsional deformation

    Chen Ming-Jun; Liang Ying-Chun; Li Hong-Zhu; Li Dan

    2006-01-01

    In this paper torsional deformation of the carbon nanotubes is simulated by molecular dynamics method. The Brenner potential is used to set up the simulation system. Simulation results show that the carbon nanotubes can bear larger torsional deformation, for the armchair type (10,10) single wall carbon nanotubes, with a yielding phenomenon taking place when the torsional angle is up to 63°(1.1rad). The influence of carbon nanotube helicity in torsional deformation is very small. The shear modulus of single wall carbon nanotubes should be several hundred GPa, not 1 GPa as others reports.

  7. Quantitative genetic properties of four measures of deformity in yellowtail kingfish Seriola lalandi Valenciennes, 1833.

    Nguyen, N H; Whatmore, P; Miller, A; Knibb, W

    2016-02-01

    The main aim of this study was to estimate the heritability for four measures of deformity and their genetic associations with growth (body weight and length), carcass (fillet weight and yield) and flesh-quality (fillet fat content) traits in yellowtail kingfish Seriola lalandi. The observed major deformities included lower jaw, nasal erosion, deformed operculum and skinny fish on 480 individuals from 22 families at Clean Seas Tuna Ltd. They were typically recorded as binary traits (presence or absence) and were analysed separately by both threshold generalized models and standard animal mixed models. Consistency of the models was evaluated by calculating simple Pearson correlation of breeding values of full-sib families for jaw deformity. Genetic and phenotypic correlations among traits were estimated using a multitrait linear mixed model in ASReml. Both threshold and linear mixed model analysis showed that there is additive genetic variation in the four measures of deformity, with the estimates of heritability obtained from the former (threshold) models on liability scale ranging from 0.14 to 0.66 (SE 0.32-0.56) and from the latter (linear animal and sire) models on original (observed) scale, 0.01-0.23 (SE 0.03-0.16). When the estimates on the underlying liability were transformed to the observed scale (0, 1), they were generally consistent between threshold and linear mixed models. Phenotypic correlations among deformity traits were weak (close to zero). The genetic correlations among deformity traits were not significantly different from zero. Body weight and fillet carcass showed significant positive genetic correlations with jaw deformity (0.75 and 0.95, respectively). Genetic correlation between body weight and operculum was negative (-0.51, P < 0.05). The genetic correlations' estimates of body and carcass traits with other deformity were not significant due to their relatively high standard errors. Our results showed that there are prospects for genetic

  8. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    Ring, P; Lalazissis, G A

    1997-01-01

    A Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the relativistic framework is presented. In this relativistic mean field (RMF) approach a set of coupled differential equations namely the Dirac equation with potential terms for the nucleons and the Glein-Gordon type equations with sources for the meson and the electromagnetic fields are to be solved self-consistently. The well tested basis expansion method is used for this purpose. Accordingly a set of harmonic oscillator basis generated by an axially deformed potential are used in the expansion. The solution gives the nucleon spinors, the fields and level occupancies, which are used in the calculation of the ground state properties.

  9. Microstructure, mechanical properties, deformation, and fracture of V-4Ti-4Cr alloys

    Full text of publication follows: The effect of the mode of thermomechanical treatment (TMT) on the microstructure, mechanical properties, mechanisms of plastic deformation, and fracture of V-4Ti-4Cr alloys has been studied. For these alloys, the TMT modes that provide a volumetrically uniform distribution of superfine particles of oxy-carbonitride phases, a substantial growth of their density, and an increase in recrystallization temperature have been substantiated. Interrelations have been found between the microstructure of the alloys and the features of their mechanical behavior, such as the level of strength and plasticity, discontinuous yielding, and an abnormal temperature dependence of strength. It has been shown that these phenomena are underlined by the high thermodynamic instability of the V-4Ti-4Cr alloys after TMT which is due to the presence of supersaturated solid solutions of titanium with interstitial elements, local inhomogeneities in composition, and superfine particles of oxy-carbonitride phases. The great variety of thermally activated obstacles that appear during TMT and mechanical tests at elevated temperatures are responsible for the significantly extended range of the anomalous temperature dependence of yield strength and the conservation of high values of strength up to T ≅850 deg. C. The phenomenon of strain localization has been revealed whose temperature range coincides with the range of discontinuous yielding. The conclusion has been made that this phenomenon can be a direct reason for the discontinuous yielding that testifies to local mechanical instabilities in strain localization bands. Analysis of possible mechanisms and important features of the structural and stream instabilities of plastic flow in these bands has been performed. The TMT modes have been substantiated that provide high thermal stability of the microstructure and a significant increase in short-time strength of the V-4Ti-4Cr alloys over a wide temperature range

  10. Cyclis deformation properties of 15Kh2MFA material for reactor pressure vessels

    The limit service life curves were determined for steel 15Kh2MFA undergoing low-cycle and high-cycle fatigue, respectively. Low-cycle stress results in reducing the steel strength. Good agreement was found of the limit curve obtained for stress with constant Δepsilon with a limit curve as specified by ASME. The cyclic deformation curve was determined using two different techniques. In stress with constant force, plastic deformation increases in form of cyclic creep, this also in steels. The independence of service life of the mean deformation at stress with constant Δepsilon was also tested. At normal temperatures, a reduced loading rate from 0.2 Hz to 0.0009 Hz and a delay in the maximum deformation in a cycle reduces the average service life of steel 15Kh2MFA by about 30%. One alternating cycle with a constant of Δepsilon=8x10-3 reduces the average high-cycle fatigue 2.4 times, a hundred previous cycles of alternating deformation Δepsilon=8x10-3 more than 5 times. Elevated temperature to up to 350 degC does not significantly affect the service life of alloyed steel in low-cycle fatigue. The elevated temperature affects more significantly the cyclic deformation curve. Neutron flux irradiation of alloyed steel did not significantly affect the service life after low-cycle fatigue. (B.S.)

  11. Manifestation of cluster effects in collective octupole and superdeformed states of heavy nuclei.

    Shneidman, T. M.; Adamian, G. G.; Antonenko, N. V.; Jolos, R. V.

    2016-06-01

    The effects of reflection-asymmetric deformation on the properties of the low-lying negative-parity collective states and superdeformed states of heavy nuclei are analyzed basing on dinuclear model. The results of consideration of the alternating parity bands in actinides and the superdeformed bands in 60Zn, Pb and Hg isotopes are discussed.

  12. Investigation of octupole vibrational states in 150Nd via inelastic proton scattering (p,p'γ)

    Octupole vibrational states were studied in the nucleus 150Nd via inelastic proton scattering with 10.9-MeV protons, which are an excellent probe to excite natural parity states. For the first time in 150Nd, both the scattered protons and the γ rays were detected in coincidence, giving the possibility to measure branching ratios in detail. Using the coincidence technique, the B(E1) ratios of the decaying transitions for 10 octupole vibrational states and other negative-parity states to the yrast band were determined and compared to the Alaga rule. The positive and negative-parity states revealed by this experiment are compared with interacting boson approximation calculations performed in the spdf boson space. The calculations are found to be in good agreement with the experimental data, for both positive and negative-parity states.

  13. Octupole excitations in vibrational nuclei and the sdf interacting boson model

    Proton and deuteron inelastic scattering experiments, performed with an energy resolution of 12-15 keV, have been used to study negative-parity states of vibrational and transitional nuclei with mass between 98 and 150. The analysis has been focussed on the isovector components, on the quadrupole-octupole two-phonon states and on the fragmentation of the octupole strength. This latter displays a regular dependence on the product of proton and neutron valence particle numbers and is satisfactorily reproduced by IBM-1+f-boson calculations. Other features of the experimental spectra, as the relative positions of the 3- states, exhibit a dependence on the ratio of valence particle numbers and indicate that a IBM-2 approach might be more appropriate. (orig.)

  14. Octupole Strength of β-Stable and Drip-Line Nuclei

    ZHOU Xian-Rong; WANG Nan; DONG Bao-Guo; ZHANG Xi-Zhen; ZHAO En-Guang

    2003-01-01

    The octupole excitations of β-stable nucleus 20882 Pb126, a neutron skin nucleus 6200Ca40 and a drip-line nucleus 288O20 are studied by using the self-consistent Hartree-Fock calculation plus the random phase approximation (RPA) with Skyrme interaction. The lowest isoscalar (IS) excitation below threshold for nuclei 20882 Pb126 and 6020Ca40, and the IS and isovector (Ⅳ) giant resonances of nuclei 20882 Pb126, 6020Ca40 and 288 O20 can be well described by collective model. For skin nucleus 2600Ca40 and drip-line nucleus 288 O20, the low-lying unperturbed neutron octupole strength (△N = 1) of transitions to non-resonant states are nearly unaffected and the transitions to bound states are absorbed into collective states by taking into account the RPA correlation.

  15. Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation

    We propose to exploit the unique capability of HIE-ISOLDE to provide post-accelerated $^{221,222}$Rn and $^{222,226,228}$Ra ion beams for the study of octupole collectivity in these nuclei. We will measure E3 transition moments in $^{222}$Rn and $^{222,226,228}$Ra in order to fully map out the variation in E3 strenght in the octupole mass region with Z$\\thicksim$88 and N$\\thicksim$134. This will validate model calculations that predict different behaviour as a function of N. We will also locate the position of the parity doublet partner of the ground state in $^{221}$Rn, in order to test the suitability of odd-A radon isotopes for EDM searches.

  16. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    Dzuba, V A

    2016-01-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g. transitions between $s$ and $f$ electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing and search for dark matter. They are very sensitive to new physics beyond the Standard Model, such as temporal variation of the fine structure constant, the Lorentz invariance and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates. Due to the hyperfine quenching the electric octupole clock transition in $^{173}$Yb$^+$ is two orders of magnitude stronger than that in currently used $^{171}$Yb$^+$. Some enhancement is found in $^{143}$Nd$^{13+}$, $^{149}$Pm$^{14+}$, $^{147}$Sm$^{14+}$, and $^{147}$Sm$^{15+}$ ions.

  17. Design, fabrication and cold tests of a super ferric octupole corrector for the LHC

    In the corrections scheme of the LHC it is planed to install octupole corrector magnets in the short straight section of the lattice. Initially these correctors were distributed windings on the cold bore tube nested in the tuning quadrupoles. The latter being suppressed a new compact super ferric design was chosen for the octupole prototype, suitable for a two-in-one configuration. This prototype was designed by CERN and CEDEX/Spain, built at INDAR/Spain and tested at CEDEX. The paper reports on the design of the prototype, describes the fabrication and assembly and presents the measurement results. Special interest has been taken to design a simple and compact magnet, easy to fabricate and training free below nominal field. First results show the feasibility of the solution wich will be finally confirmed by magnetic measurement. (Author) 4 refs

  18. Mixed-symmetry octupole and hexadecapole excitations in the N=52 isotones

    Hennig, A; Werner, V; Ahn, T; Anagnostatou, V; Cooper, N; Derya, V; Elvers, M; Endres, J; Goddard, P; Heinz, A; Huges, R O; Ilie, G; Mineva, M N; Petkov, P; Pickstone, S G; Pietralla, N; Radeck, D; Ross, T J; Savran, D; Zilges, A

    2015-01-01

    Background: Excitations with mixed proton-neutron symmetry have been previously observed in the $N=52$ isotones. Besides the well established quadrupole mixed-symmetry states (MSS), octupole and hexadecapole MSS have been recently proposed for the nuclei $^{92}$Zr and $^{94}$Mo. Purpose: The heaviest stable $N=52$ isotone $^{96}$Ru was investigated to study the evolution of octupole and hexadecapole MSS with increasing proton number. Methods: Two inelastic proton-scattering experiments on $^{96}$Ru were performed to extract branching ratios, multipole mixing ratios, and level lifetimes. From the combined data, absolute transition strengths were calculated. Results: Strong $M1$ transitions between the lowest-lying $3^-$ and $4^+$ states were observed, providing evidence for a one-phonon mixed-symmetry character of the $3^{(-)}_2$ and $4^+_2$ states. Conclusions: $sdg$-IBM-2 calculations were performed for $^{96}$Ru. The results are in excellent agreement with the experimental data, pointing out a one-phonon he...

  19. Lower hybrid heating associated with mode conversion on the Wisconsin octupole

    Owens, T.L.

    1979-08-01

    This thesis addresses the following key issues in the lower hybrid frequency range: 1. What are the importent physics aspects of wave propagation and heating in an experimental situation. 2. How effective is plasma heating in the complex magnetic field configuration of the octupole. Experimental work is accomplished by launching 1-10ms pulses of up to 40kW of radio frequency power at 140MHz corresponding to the hot plasma lower hybrid resonance in the octupole. A diploe antenna which is moveable radially and is also rotatable couples wave power to the plasma. Coupling efficiencies greater than 95% are achieved by proper antenna placement near the edge of the plasma radial density profile.

  20. Lower hybrid heating associated with mode conversion on the Wisconsin octupole

    This thesis addresses the following key issues in the lower hybrid frequency range: 1. What are the importent physics aspects of wave propagation and heating in an experimental situation. 2. How effective is plasma heating in the complex magnetic field configuration of the octupole. Experimental work is accomplished by launching 1-10ms pulses of up to 40kW of radio frequency power at 140MHz corresponding to the hot plasma lower hybrid resonance in the octupole. A diploe antenna which is moveable radially and is also rotatable couples wave power to the plasma. Coupling efficiencies greater than 95% are achieved by proper antenna placement near the edge of the plasma radial density profile

  1. The influence of plastic deformation and heat treatment on microstructure and mechanical properties of W-Ni-Fe alloy

    The paper presents the results of microstructural observations, fractography and tensile tests investigations performed at room temperature on series of 90% W - 7% Ni - 3% Fe alloy specimens representative of 'as sintered state', cold worked (10-40%) and subjected to additional annealing (500-750 oC). Changes in the microstructure have been described quantitatively using a computer sided image analysis and qualitatively by scanning electron microscopy (fractography). Chemical composition changes in micro-areas were investigated by electron probe X-ray microanalysis. The results were correlated with mechanical properties of the alloy. After cold rolling the tungsten particles change their shape from nearly spherical into discs. On the fracture surface of 'as sintered' alloy after tensile test, fracture paths prevail along tungsten interfaces and tungsten-matrix separation. The fracture paths through the matrix have a ductile character. With the increasing plastic deformation, fraction of fracture paths across tungsten particles increases. For the samples subjected to 40% deformation tungsten cleavage is predominant. Simultaneously, ductility of the matrix markedly decreases. The deformation of tungsten particles as well as strain hardening of matrix increases the strength and hardness of WHA. The UTS of the alloy subjected to 40% deformation increases by approximately 42%. The annealing of alloy after cold working at the temperature range of 500-620 oC increases the UTS to 1565 MPa without changing its elongation to fracture, which remains lower than that in 'as sintered state'. (author)

  2. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. Technologically, cold-drawing is the only way

  3. Deformation and energy absorption properties of powder-metallurgy produced Al foams

    Highlights: → Porous Al fabricated via a dissolution and sintering method using raw cane sugar. → Different deformation mode depending on the relative density of the foams. → Enhanced energy absorption by reducing pore size and relative density of the foam. → Pore size uniformity and sintering temperature affect energy absorption. - Abstract: Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.

  4. Tidal deformations of a spinning compact object

    Pani, Paolo; Maselli, Andrea; Ferrari, Valeria

    2015-01-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole mom...

  5. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  6. Steel Processing Properties and Their Effect on Impact Deformation of Lightweight Structures

    Simunovic, S

    2003-09-23

    The objective of the research was to perform a comprehensive computational analysis of the effects of material and process modeling approaches on performance of UltraLight Steel Auto Body (ULSAB) vehicle models. The research addressed numerous material related effects, impact conditions as well as analyzed the performance of the ULSAB vehicles in crashes against designs representing the current US vehicle fleet. This report is organized into three main sections. The first section describes the results of the computational analysis of ULSAB crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel (HSS) intensive vehicle were analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics. The objective of the research presented in Section 2 was to assess the influence of stamping process on crash response of ULSAB vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of

  7. Formation of ultrafine-grained (UFG structure and mechanical properties by severe plastic deformation (SPD

    M. Besterci

    2008-10-01

    Full Text Available Commercial pure cooper (99,9% Cu was deformed by equal channel angular pressing (ECAP using up to 10 passes, route C. The evolution of microstructure and fracture character were observed by OM, SEM and TEM. The mean grain size decreased with increasing deformation, after 10 passes to 100 – 300 nm. TEM analysis suggested the possible nanostructure formation mechanism by the formation of cellular structure in grains, forming of subgrains and then forming of high angle nanograins with random orientation. Fractures of ECAP Cu material after 10 passes had transcrystalline ductile character with dimple morphology.

  8. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.

    Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei

    2016-01-01

    In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining. PMID:26478398

  9. The formation, structure, and properties of the Au-Co alloys produced by severe plastic deformation under pressure

    Tolmachev, T. P.; Pilyugin, V. P.; Ancharov, A. I.; Chernyshov, E. G.; Patselov, A. M.

    2016-02-01

    The mechanical alloying of Au-Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

  10. Peculiarities of strength and deformability properties of clay soils in districts of Western Siberia

    Efimenko, Sergey; Efimenko, Vladimir; Sukhorukov, Alexey

    2016-01-01

    The article demonstrates the methodology of the substantiation of the calculated values of moisture, strength, and deformability characteristics of clay subgrade soils for the design of pavements by strength conditions in II, III, and IV road-climatic zones in West Siberia. The main purpose of the work is to ensure the quality of the design of roads in newly developed regions of Russia. To achieve this goal the following problems have been solved: the dislocation of boundary lines of road-climatic zones has been specified, zoning of the investigated territory for the design of roads has been detailed; regularities of changes in strength and deformability characteristics of clay subgrade soils of their moisture have been established; the territorial normalization of the calculated values of moisture, strength, and deformability of clay subgrade soils in relation to the allocated road districts has been carried out. Specification of boundary lines of road-climatic zones has been implemented on the basis of the taxonomic system "zone-subzone-road district". The calculated values of moisture, strength, and deformability characteristics of clay soils, established and differentiated according to road-climatic zones, will ensure the required level of the reliability of transport infrastructure facilities during the life cycle of roads.

  11. Mechanical and electrical properties of blood and evaluation of RBC aggregation and deformability

    Antonova, N.; Říha, Pavel; Ivanov, I.; Gluhcheva, Y.

    Warsaw: International Centre of Biocybernetics (ICB), 2012 - (Bedzinski, R.; Petrtyl, M.), s. 28-32 [Current trends in development of implantable tissue structures. Warsaw (PL), 18.04.2012-20.04.2012] Institutional support: RVO:67985874 Keywords : apparent viscosity * conductivity * dextrans * glutaraldehyde * RBC aggregation * RBC deformability Subject RIV: JB - Sensors, Measurment, Regulation

  12. E4 properties in deformed nuclei and the sdg interacting boson model

    Wu, H.C.; Dieperink, A. E. L.; Scholten, O.; Harakeh, M. N.; de Leo, R.; Pignanelli, M.; Morrison, I.

    1988-01-01

    The hexadecapole transition strength distribution is measured for the deformed nucleus 150Nd using the (p,p') reaction at Ep=30 MeV. The experimental information on B(E4) values in this nucleus and in 156Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main

  13. Tests for development of estimation technology of reactor core deformation. Report No.1: fundamental mechanical properties of wrapper tube (test report)

    Nishiura, Takeo; Shimazaki, Yuji; Horikiri, Morito [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-10-01

    Mechanical properties such as local contact compression stiffness, bending stiffness, deformation properties, material properties, and friction properties of a wrapper tube structure were clarified experimentally, which can be used as the basic data for development of estimation technology of reactor core deformation. Contents of the Tests data as follows: (1) Effects of load supporting boundary conditions, whether or not a contact-proof pad is attached, and length of duct, on cross section deformation of wrapper tube were made clear as the local contact compression stiffness characteristics. (2) Bending stiffness does not depend on the difference of load supporting boundary conditions. The property of cross section deformation under bending load was obtained. (3) The deformation modes and the strain distributions were obtained by the deformation tests of wrapper tube. (4) The stress-strain diagrams including plastic range under various strain variation rates were obtained by the material tests at room temperature. (5) The static and the dynamic friction coefficients by various contact angles and the contact loads between contact-proof pads of two wrapper tubes were obtained by friction property tests. (author)

  14. Effect of rolling deformation and solution treatment on microstructure and mechanical properties of a cast duplex stainless steel

    S K Ghosh; D Mahata; R Roychaudhuri; R Mondal

    2012-10-01

    The present study deals with the effect of rolling deformation and solution treatment on the microstructure and mechanical properties of a cast duplex stainless steel. Cast steel reveals acicular/Widmanstätten morphology as well as island of austenite within the -ferrite matrix. Hot rolled samples exhibit the presence of lower volume percent of elongated band of -ferrite (∼40%) and austenite phase which convert into finer and fragmented microstructural constituents after 30% cold deformation. By the solution treatment, the elongated and broken crystalline grains recrystallize which leads to the formation of finer grains (<10 m) of austenite. X-ray diffraction analysis has corroborated well with the above-mentioned microstructural investigation. Enhancement in hardness, yield strength and tensile strength values as well as drop in percent elongation with cold deformation increases its suitability for use in thinner sections. 30% cold rolled and solution treated sample reveals attractive combination of strength and ductility (25.22 GPa%). The examination of fracture surface also substantiates the tensile results. The sub-surface micrographs provide the potential sites for initiation of microvoids.

  15. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation.

    Maharaj, Dave; Bhushan, Bharat

    2014-01-01

    Nanoscale research of bulk solid surfaces, thin films and micro- and nano-objects has shown that mechanical properties are enhanced at smaller scales. Experimental studies that directly compare local with global deformation are lacking. In this research, spherical Au nanoparticles, 500 nm in diameter and 100 nm thick Au films were selected. Nanoindentation (local deformation) and compression tests (global deformation) were performed with a nanoindenter using a sharp Berkovich tip and a flat punch, respectively. Data from nanoindentation studies were compared with bulk to study scale effects. Nanoscale hardness of the film was found to be higher than the nanoparticles with both being higher than bulk. Both nanoparticles and film showed increasing hardness for decreasing penetration depth. For the film, creep and strain rate effects were observed. In comparison of nanoindentation and compression tests, more pop-ins during loading were observed during the nanoindentation of nanoparticles. Repeated compression tests of nanoparticles were performed that showed a strain hardening effect and increased pop-ins during subsequent loads. PMID:24991519

  16. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

    Dave Maharaj

    2014-06-01

    Full Text Available Nanoscale research of bulk solid surfaces, thin films and micro- and nano-objects has shown that mechanical properties are enhanced at smaller scales. Experimental studies that directly compare local with global deformation are lacking. In this research, spherical Au nanoparticles, 500 nm in diameter and 100 nm thick Au films were selected. Nanoindentation (local deformation and compression tests (global deformation were performed with a nanoindenter using a sharp Berkovich tip and a flat punch, respectively. Data from nanoindentation studies were compared with bulk to study scale effects. Nanoscale hardness of the film was found to be higher than the nanoparticles with both being higher than bulk. Both nanoparticles and film showed increasing hardness for decreasing penetration depth. For the film, creep and strain rate effects were observed. In comparison of nanoindentation and compression tests, more pop-ins during loading were observed during the nanoindentation of nanoparticles. Repeated compression tests of nanoparticles were performed that showed a strain hardening effect and increased pop-ins during subsequent loads.

  17. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  18. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  19. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy

    Research highlights: → Fine α hindered dislocation slip and crack nucleation and decreased crack propagation velocity. → α lamellae decided the type and amount of slip system and the crack propagation. → Fine α lamellae promoted the deformation coordination and the start of new slip systems. → The fracture model of the samples with bimodal microstructure was not sensitive to α lamellae. → Fracture model with the bimodal microstructures was a mixture fracture at room temperature. - Abstract: The tensile properties at room temperature and 600 deg. C of TG6 titanium alloy with different microstructures {bi-modal microstructures with thick α lamella (BTL) and fine α lamella (BFL), and a mixed microstructure with different morphologies of α phase} were obtained. It was found that the BFL microstructure possessed the highest tensile strength, and the elongations of the BTL and BFL microstructures were almost the same of about 13% at room temperature and 17% at 600 deg. C, respectively. In addition, the mixed microstructure had the lowest plasticity. The tensile deformation mechanisms of α lamella (αL), primary α phase (αp), equiaxed α phase (αe) and α colonies were researched by the analysis of respective dislocation morphologies. Notably, the accommodative deformations through grain/phase boundaries sliding determined the deformation models of αL, αp, and αe. Compared to the thick αL and α colony, the fine αL and α colony activated more slip systems due to their excellent accommodative deformation capability. Furthermore the deformation mechanisms at room temperature and 600 deg. C were different from each other. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS) and transmission electron microscopy (TEM) were used to research the crack propagation paths and fracture models. Crack propagation path crossing α colonies and αp were discussed, respectively. The colonies boundaries, αp/colonies boundaries,

  20. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    De Deene, Yves; Skyt, Peter Sandegaard; Hill, Robin;

    2015-01-01

    registration software.A new three dimensional anthropomorphically shaped flexible dosimeter, further called 'FlexyDos3D', has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed...... during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision.The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and......Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image...

  1. Effect of large deformation pre-loads on the wave properties of hexagonal lattices

    Pal, Raj Kumar; Rimoli, Julian; Ruzzene, Massimo

    2016-05-01

    We study linear wave propagation in nonlinear hexagonal lattices capable of undergoing large deformations, under different levels of pre-load. The lattices are composed of a set of masses connected by linear axial and angular springs, with the nonlinearity arising solely from geometric effects. By applying different levels of pre-load, the small amplitude linear wave propagation response can be varied from isotropic to highly directional. Analytical expressions for the stiffness of a unit cell in the deformed configuration are derived and they are used to analyze the dispersion surfaces and group velocity variation with pre-load. Numerical simulations on finite lattices demonstrate the validity of our unit cell predictions and illustrate the wave steering potential of our lattice.

  2. Deformation induced changes in surface properties of polymers investigated by scanning force microscopy

    Hild, Sabine; Rosa, Armin; Marti, Othmar

    2013-01-01

    In this study the possibility of combining commercial Scanning Force Microscopes (SFM) with stretching devices for the investigation of microscopic surface changes during stepwise elongation is investigated. Different types of stretching devices have been developed either for Scanning Platform-SFM or for Stand Alone-SFM. Their suitability for the investigation of deformation induced surface changes is demonstrated. A uniaxially oriented polypropylene film is stretched vertically to its extrus...

  3. Effect of vacuum-treatment on deformation properties of PMMA bone cement.

    Zivic, Fatima; Babic, Miroslav; Grujovic, Nenad; Mitrovic, Slobodan; Favaro, Gregory; Caunii, Mihaela

    2012-01-01

    Deformation behavior of polymethyl methacrylate (PMMA) bone cement is explored using microindentation. Two types of PMMA bone cement were prepared. Vacuum treated samples were subjected to the degassing of the material under vacuum of 270 mbar for 35 s, followed by the second degassing under vacuum of 255 mbar for 35 s. Air-cured samples were left in ambient air to cool down and harden. All samples were left to age for 6 months before the test. The samples were then subjected to the indentation fatigue test mode, using sharp Vickers indenter. First, loading segment rise time was varied in order to establish time-dependent behavior of the samples. Experimental data showed that viscous part of the deformation can be neglected under the observed test conditions. The second series of microindentation tests were realized with variation of number of cycles and indentation hardness and modulus were obtained. Approximate hardness was also calculated using analysis of residual impression area. Porosity characteristics were analyzed using CellC software. Scanning electron microscopy (SEM) analysis showed that air-cured bone cement exhibited significant number of large voids made of aggregated PMMA beads accompanied by particles of the radiopaque agent, while vacuum treated samples had homogeneous structure. Air-cured samples exhibited variable hardness and elasticity modulus throughout the material. They also had lower hardness values (approximately 65-100 MPa) than the vacuum treated cement (approximately 170 MPa). Porosity of 5.1% was obtained for vacuum treated cement and 16.8% for air-cured cement. Extensive plastic deformation, microcracks and craze whitening were produced during indentation of air-cured bone cement, whereas vacuum treated cement exhibited no cracks and no plastic deformation. PMID:22100087

  4. Reduced electric-octupole transition probabilities, B(E3;O1+ → 31-), for even-even nuclides throughout the periodic table

    Adopted values for the excitation energy, Ex(31-), of the first 3- state of the even-even nuclei are tabulated. Values of the reduced electric-octupole transition probability, B(E3;O1+ → 31-), from the ground state to this state, as determined from Coulomb excitation, lifetime measurements, inelastic electron scattering, deformation parameters β3 obtained from angular distributions of inelastically scattered nucleons and light ions, and other miscellaneous procedures are listed in separate Tables. Adopted values for B(E3; O1+ → 31-) are presented in Table VII, together with the E3 transition strengths, in Weisskopf units, and the product Ex(31-) x B(E3; O1+ → 31--) expressed as a percentage of the energy-weighted E3 sum-rule strength. An evaluation is made of the reliability of B(E3; O1+ → 31-) values deduced from deformation parameters β3. The literature has been covered to March 1988

  5. EBIC and LBIC studies of the properties of extended defects in plastically deformed silicon

    The results of comparative experimental studies of one- and two-dimensional defects in plastically deformed silicon by the electron-beam-induced current (EBIC) and light-beam-induced current (LBIC) techniques are reported. It is shown that the contrast of two-dimensional defects (dislocation trails) in the LBIC method can by much more pronounced than that in the EBIC technique, which is in good agreement with the results of calculations. The higher sensitivity of the LBIC technique is mainly due to deeper penetration of the optical beam into the material in comparison to the penetration of the electron beam of a scanning electron microscope

  6. Conformal properties of primary fields in a q-deformed theory

    Oh, C H

    1994-01-01

    In recent years, there has been growing interest in the study of quantized universal enveloping algebras. Loosely called quantum groups, they first appeared in the study of the Quantum Yang-Baxter Equations related to the inverse scattering problem [1]. Subsequently, it was shown that they can be obtained from representations of mathematical structures called quasi-triangular Hopf algebras [2]. These structures which often depend on a parameter q can be regarded as q-deformations of Lie algebras in the sense that as q\\to 1 the algebra reduces to the usual Lie algebra.

  7. Theory and measurement of properties of two-phase materials in the plastic-viscous deformation range

    An extensive literature survey shows, that theoretical equations available are inadequate to predict the viscosity of suspensions without limitation of the concentration of the dispersed phase, the shape and orientation of the suspended particles. Based on physically derived and experimentally verified equations for the theoretical prediction of transport and/or field properties of solid two-phase materials with penetration structure, an attempt has been made to predict the viscosity of suspensions and the high temperature creep of two-phase solid materials with the aid of so-called structure parameters. The justification for the treatment of the problem in such a way is given by the consideration of the viscocity as a transport property and by the existing analogies between viscous and viscoplastic deformation. (orig./RW)

  8. Non-yrast nuclear spectra in a model of coherent quadrupole-octupole motion

    Minkov, N.; Drenska, S.; Strecker, M.; Scheid, W.; H. Lenske

    2012-01-01

    A model assuming coherent quadrupole-octupole vibrations and rotations is applied to describe non-yrast energy sequences with alternating parity in several even-even nuclei from different regions, namely $^{152,154}$Sm, $^{154,156,158}$Gd, $^{236}$U and $^{100}$Mo. Within the model scheme the yrast alternating-parity band is composed by the members of the ground-state band and the lowest negative-parity levels with odd angular momenta. The non-yrast alternating-parity sequences unite levels o...

  9. Landau-Zener crossing in superdeformed 193Hg: Evidence for octupole correlations in superdeformed nuclei

    Four, possibly five, superdeformed bands have been observed in 193Hg. Two of these bands have strikingly different dynamical moments of inertia from all previously observed superdeformed bands in this region. This behavior can be understood in terms of a level or band crossing. Evidence for transitions between two superdeformed bands is observed for the first time. This, together with the reduced alignments observed and the strong interaction between the crossing bands, is the first experimental evidence supporting the prediction for strong octupole correlations in superdeformed nuclei

  10. Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    An experiment using the Eurogam phase II γ-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3--4 transitions. The energies of the transitions linking the two SD bands have been firmly established, and their angular distributions are consistent with a dipole character. Comparisons with calculations using random-phase approximation indicate that the excited SD band can be interpreted as an octupole-vibrational structure

  11. Rotational spectra and parity splitting in nuclei with strong octupole correlations

    A formula is suggested to describe the energies of positive- and negative-parity states belonging to the ground-state alternating-parity rotational bands in nuclei with significant octupole correlations. The agreement with experimental data is quite good for actinide nuclei. This formula corresponds to the parity splitting from a one-dimensional potential well. It leads to a common moment of inertia for both parities at least for low angular momenta. At high angular momenta a slight difference in the moments of inertia is found, which is presumably due to backbending. ((orig.))

  12. High-power ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole

    Ion cyclotron resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two component ion energy distribution is produced (300 eV and 50 eV) with the application of 500 kW of rf power into a 5 x 1012 cm-3 density plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun injected plasmas

  13. Influence of temperature of intensive plastic deformation (at 300 and at 77 K) on return of physical-mechanical properties of zirkonium

    Influence of intensive plastic (IP) deformation of rolling on 90% at 300 and 77 K, and the subsequent isochronous annealings in an interval 373...773 K on structure and physical-mechanical properties of iodide zirconium is investigated. It is shown, that as a result of IP deformation of rolling at 300 and 77 K the density of dislocations increases from 108 cm-2 up to 1011 cm-2, nanostructure (with the size of subgrains ∼ 100 nm) is formed, microhardness on 80 and 125%, and resistivity on 13,5 and 25% increase according to temperatures of deformation, and dislocation peak of internal friction appears at 150 K. The stages of return are determined, and it is shown that the decreasing temperature of deformation from 300 up to 77 K reduces heat resistance of a substructure and physical-mechanical properties of zirconium.

  14. The increasement of the properties of structural low–carbon steel 10G2FB after deformation in the intercritical temperature interval and the accelerated cooling

    Tkach, T

    2015-01-01

    Problem definition. With an increase of construction rate the necessity of mechanical properties of structural steel improvement has arised. The development of new modes of rolling can solve the problem of increasement the properties of structural low–carbon steels.Purpose: to increase the properties of sheet metal by determining the effect of deformation in the intercritical interval (ICI) temperatures and subsequent cooling on the structure and properties of structural low–carbon low alloy ...

  15. Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q and P) steel

    This paper presents a detailed characterization of the microstructural evolution of quenching and partitioning (Q and P) steel by dilatometer, X-ray diffraction and scanning electron microscopy. Influence of partitioning time on mechanical properties was investigated and the relationship between microstructures and mechanical properties was established. The results indicate that bainite transformation occurs at the preliminary stage of partitioning and the amount is proportional to quenching temperature. Martensite softening, bainite transformation kinetics, amount and stability of retained austenite collaboratively have effects on mechanical properties. The purpose of the EBSD investigation is to study the changes in the microstructure of the Q and P steel during deformation and obtain a better understanding of collaborative deformation-transformation behavior. During deformation, plastic deformation preferentially occurred in the vicinity of ferrite–martensite interfaces and spread to the interior of ferrite grain with strain increasing. Plastic deformation started to occur in martensite after large strain. Furthermore, grain rotation occurred in some austenite grains or divided into subgrains during deformation

  16. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 2400 - 4390 m tunnel chainage

    Moenkkoenen, H.; Rantanen, T.; Kuula, H. [WSP Finland Oy, Helsinki (Finland)

    2012-05-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO area at the Olkiluoto site, western Finland. This report is an extension of the previously published report: Geometrical and Mechanical properties if the fractures and brittle deformation zones based on ONKALO tunnel mapping, 0-2400 m tunnel chainage (Kuula 2010). In this updated report, mapping data are from 2400-4390 m tunnel chainage. Defined rock mechanics parameters of the fractures are associated with the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. There are no new data from laboratory joint shear and normal tests. The fracture wall compressive strength (JCS) data are available from the chainage range 1280-2400 m. Estimation of the mechanics properties of the 24 brittle deformation zones (BDZ) is based on the mapped Q' value, which is transformed to the GSI value in order to estimate strength and deformability properties. A component of the mapped Q' values is from the ONKALO and another component is from the drill cores. In this study, 24 BDZs have been parameterized. The location and size of the brittle deformation are based on the latest interpretation. New data for intact rock strength of the brittle deformation zones are not available. (orig.)

  17. Role of deformation on giant resonances within the QRPA approach and the Gogny force

    Peru, S

    2008-01-01

    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed $^{26-28}$Si and $^{22-24}$Mg nuclei as well as in the spherical $^{30}$Si and $^{28}$Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.

  18. Investigation of mechanical properties and operative deformation mechanism in nano-crystalline Ni-Co/SiC electrodeposits

    Lari Baghal, S.M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Amadeh, A., E-mail: amadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Heydarzadeh Sohi, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The tensile properties of Ni-Co and Ni-Co/SiC deposits were investigated. Black-Right-Pointing-Pointer The SiC particles enhanced tensile strength and ductility of nano-structured composites. Black-Right-Pointing-Pointer The deformation mechanism at low and high strain rates were studied. - Abstract: Ni-Co/SiC nano-composites were prepared via electrodeposition from a modified Watts bath containing SiC particles with average particle size of 50 nm, SDS as surfactant and saccharin as grain refiner in appropriate amounts. The effect of nano-particle incorporation on microstructure, mechanical properties and deformation mechanism of electrodeposits were investigated. The mechanical properties of electrodeposits were investigated by Vickers microhardness and tensile tests. The results indicated that incorporation of SiC particles into a 15 nm Ni-Co matrix had no considerable effect on its microhardness and yield strength, that is, dispersion hardening did not operate in this range of grain size. However it was observed that co-deposition of uniform distributed SiC particles can significantly improve the ultimate tensile strength and elongation to failure of the deposits. Calculation of apparent activation volume from tensile test results at different strain rates proved that incorporation of SiC nano-particles are responsible for stress-assisted activation of GB atoms mechanism that can significantly increase the plasticity. Nano-crystalline Ni-Co matrix showed a mixed mod behavior of ductile and brittle fracture whereas incorporation of SiC particles and increasing the strain rate promoted ductile fracture mode.

  19. Effect of the elastic deformation of silicon single crystals on their electrical properties

    Samples cut from single-crystal silicon were deformed by a three-point bending as a result of bombardment by high-energy (8 MeV) electrons. The irradiated samples were cut into two parts - they were first subjected to tensile stress and then a compressive stress.The temperature dependences of the concentration and Hall mobility of the charge carriers were investigated in each sample. The low-temperature electron mobility in the sample that was stretched during bombardment was lower than in the compressed sample. It is concluded on the basis of the results that neutral centers which are capable of scattering charge carriers but do not produce local energy levels in the band gap are formed in the part of the sample subjected to tensile stress as a result of electron bombardment

  20. Construction and Operational Experience with a Superconducting Octupole Used to Trap Antihydrogen

    Wanderer P.; Escallier, J.; Marone, A.; Parker, B.

    2011-09-06

    A superconducting octupole magnet has seen extensive service as part of the ALPHA experiment at CERN. ALPHA has trapped antihydrogen, a crucial step towards performing precision measurements of anti-atoms. The octupole was made at the Direct Wind facility by the Superconducting Magnet Division at Brookhaven National Laboratory. The magnet was wound with a six-around-one NbTi cable about 1 mm in diameter. It is about 300 mm long, with a radius of 25 mm and a peak field at the conductor of 4.04 T. Specific features of the magnet, including a minimal amount of material in the coil and coil ends with low multipole content, were advantageous to its use in ALPHA. The magnet was operated for six months a year for five years. During this time it underwent about 900 thermal cycles (between 4K and 100K). A novel operational feature is that during the course of data-taking the magnet was repeatedly shut off from its 950 A operating current. The magnet quenches during the shutoff, with a decay constant of 9 ms. Over the course of the five years, the magnet was deliberately quenched many thousands of times. It still performs well.

  1. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    Dzuba, V. A.; Flambaum, V. V.

    2016-05-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g., transitions between s and f electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing, and the search for dark matter. They are very sensitive to new physics beyond the standard model, such as temporal variation of the fine-structure constant, the Lorentz invariance, and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates and perform calculations of the hyperfine structure and E3, M2 and the hyperfine-induced E1 transition rates for a large number of atoms and ions of experimental interest. Due to the hyperfine quenching the electric octupole clock transition in +173Yb is 2 orders of magnitude stronger than that in currently used +171Yb. Some enhancement is found in 13+143Nd, 14+149Pm, 14+147Sm, and 15+147Sm ions.

  2. The effect of post-deformation aging on superelastic properties of Ni50.9Ti thin wires attaining micro and nano-substructure

    Highlights: ► Precipitation of Ni4Ti3 during aging at 450 °C is hindered after severe cold work. ► Nanostructure formation improves the superelastic behavior of Ni-rich NiTi. ► Deformations less than 0.4 result in work hardening and reduce plateau strain. ► Deformations more than 0.4 yield in high stress and strain values of upper plateau. -- Abstract: Superelastic properties of Ni50.9Ti shape memory wires were studied after cold drawing and post-deformation annealing at 450 °C. Characteristic transformation temperatures were determined using differential scanning calorimetry. Microstructural investigations were performed using optical and transmission electron microscopy. Results indicate that deformations more than 0.4 of true strain yield in high stress and high strain values of upper plateau. On the other hand, deformations less than 0.4 result in work hardening and reduce plateau strain. Post-deformation heat treatment at 450 °C leads to precipitation of Ni4Ti3 particles and development of recovered microstructure in slightly cold drawn wires. Post-deformation annealing of wires with cold work value of 0.6 in true strain develop nanocrystalline microstructure and hindered the formation of Ni4Ti3 precipitates. Precipitation of Ni4Ti3 particles improves the superelastic properties of not cold drawn wires. However, in comparison with annealed and aged wires, severely deformed wires attain better superelastic properties after annealing at 450 °C without any Ni4Ti3 precipitates

  3. Elastic Deformation Properties of Implanted Endobronchial Wire Stents in Benign and Malignant Bronchial Disease: A Radiographic In Vivo Evaluation

    Purpose: To evaluate the long-term mechanical behavior in vivo of expandable endobronchial wire stents, we imaged three different prostheses in the treatment of tracheobronchial disease. Methods: Six patients with bronchial stenoses (three benign, three malignant) underwent insertion of metallic stents. Two self-expandable Wallstents, two balloon-expandable tantalum Strecker stents and two self-expandable nitinol Accuflex stents were used. Measurements of deformation properties were performed during voluntary cough by means of fluoroscopy, at 1 month and 7-10 months after implantation. The procedures were videotaped, their images digitized and the narrowing of stent diameters calculated at intervals of 20 msec. Results: After stent implantation all patients improved with respect to ventilatory function. Radial stent narrowing during cough reached 53% (Wallstent), 59% (tantalum Strecker stent), and 52% (nitinol Accuflex stent) of the relaxed post-implantation diameter. Stent compression was more marked in benign compared with malignant stenoses. In the long term permanent deformation occurred with the tantalum Strecker stents; the other stents were unchanged. Conclusion: Endobronchial wire stents can be helpful in the treatment of major airway collapse and obstructing bronchial lesions. However, evidence of material fatigue as a possible effect of exposure to recurrent mechanical stress on the flexible mesh tube may limit their long-term use. This seems to be predominantly important in benign bronchial collapse

  4. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process.

    González-Rodríguez, M L; Arroyo, C M; Cózar-Bernal, M J; González-R, P L; León, J M; Calle, M; Canca, D; Rabasco, A M

    2016-10-01

    The purpose of this work was to analyze the deformability properties of different timolol maleate (TM)-loaded transfersomes by extrusion. This was performed because elastic liposomes may contribute to the elevation of amount and rate of drug permeation through the corneal membrane. This paper describes the optimization of a transfersome formulation by use of Taguchi orthogonal experimental design and two different statistical analysis approaches were utilized. The amount of cholesterol (F1), the amount of edge-activator (F2), the distribution of the drug into the vesicle (F3), the addition of stearylamine (F4) and the type of edge-activator (F5) were selected as causal factors. The deformability index, the phosphorous recovery, the vesicle size, the polydispersity index, the zeta potential and percentage of drug entrapped were fixed as the dependent variables and these responses were evaluated for each formulation. Two different statistical analysis approaches were applied. The better statistical approach was determined by comparing their prediction errors, where regression analysis provided better optimized responses than marginal means. From the study, an optimized formulation of TM-loaded transfersomes was prepared and obtained for the proposed ophthalmic delivery for the treatment of open angle glaucoma. It was found that the lipid to surfactant ratio and type of surfactant are the main key factors for determining the flexibility of the bilayer of transfersomes. From in vitro permeation studies, we can conclude that TM-loaded transfersomes may enhance the corneal transmittance and improve the bioavailability of conventional TM delivery. PMID:26981839

  5. Electrical and magnetic properties of hot-deformed Nd-Fe-B magnets with different DyF3 additions

    Sawatzki, Simon; Dirba, Imants; Schultz, Ludwig; Gutfleisch, Oliver

    2013-10-01

    The effect of deformation and DyF3 additions on the electrical resistivity and the magnetic performance has been studied in hot-deformed Nd-Fe-B melt-spun ribbons and correlated with respective microstructures. Despite the nanocrystallinity of hot-compacted magnets, the specific electrical resistivity measured by four-point-method was shown to be comparable with that of sintered magnets. Die-upsetting reduces electrical resistivity within the magnetically hard plane because of an enhanced shape anisotropy of the grains. The addition of DyF3 overcompensates this reduction due to the presence of electrically insulating Dy-F rich inclusions and thus reduces eddy current losses within the magnet. Magnetic measurements reveal an increase in coercivity without a change in remanence for die-upset magnets with a total height reduction of 63% and 1.2 wt. % Dy (1.6 wt. %DyF3). Both properties, remanence and coercivity, demonstrate an effective reduction in heavy rare earth Dy for Nd-Fe-B magnets.

  6. Effect of heat treatment and deformation on the microstructure and mechanical properties of SP-700 titanium alloy

    This study investigates the effects of cold working prior to aging on the microstructure and mechanical properties of SP-700 titanium alloy. The results indicate that the microstructure of the quenched alloy comprises blocky primary α, retained β, and acicular α'' martensite distributed in the β matrix. The retained β is transformed to denser and finer brittle acicular martensite α'' by stress-induced martensitic transformation and the quantity of retained β decreases with higher degrees of cold working. The quenched alloy exhibits not only low yield strength, but the stress-induced martensite leads to a distinct increase in strength with good ductility. Plastic deformation prior to the aging treatment produces a great increase in the yield strength due to refinement of the precipitate microstructure, leading to the ratio of strength increment and ductility being very low.

  7. Effect of heat treatment and deformation on the microstructure and mechanical properties of SP-700 titanium alloy

    Nieh, Jo-Kuang; Pan, Kuen-Sung [National Central University, Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; Lee, Sheng-Long [National Central University, Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; National Central University, Taoyuan, Taiwan (China). Inst. of Materials Science and Engineering

    2015-12-15

    This study investigates the effects of cold working prior to aging on the microstructure and mechanical properties of SP-700 titanium alloy. The results indicate that the microstructure of the quenched alloy comprises blocky primary α, retained β, and acicular α'' martensite distributed in the β matrix. The retained β is transformed to denser and finer brittle acicular martensite α'' by stress-induced martensitic transformation and the quantity of retained β decreases with higher degrees of cold working. The quenched alloy exhibits not only low yield strength, but the stress-induced martensite leads to a distinct increase in strength with good ductility. Plastic deformation prior to the aging treatment produces a great increase in the yield strength due to refinement of the precipitate microstructure, leading to the ratio of strength increment and ductility being very low.

  8. Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processed by rolling

    Highlights: ► Mechanical properties and microstructural evolution of cryorolled + warm rolled (WR) Al 5083 alloy were investigated. ► WR samples showed a significant improvement in tensile strength and ductility (6.8%) than CR samples. ► WR sample is thermally stable up to 250 °C. ► YS and UTS of WR sample annealed at 250 °C are 270 MPa and 330 MPa, respectively, and elongation to failure is 13%. - Abstract: Aluminum–Magnesium (Al 5083) alloy was subjected to cryorolling (CR) and cryorolling followed by warm rolling (WR) in order to investigate the changes in mechanical behavior and microstructure evolution in the present work. Al alloy specimens were first cryorolled up to 50% thickness reduction followed with warm rolling at 100 °C, 145 °C, 175 °C and 200 °C till to achieve total 90% thickness reduction. The final microstructure of all conditions were analyzed and compared through transmission electron microscopy (TEM), Electron back scattered diffraction (EBSD), and X-ray diffraction (XRD) techniques to investigate the effect of WR deformation temperatures on mechanical properties. The mechanical behavior of the processed samples were evaluated through hardness and tensile tests performed at room temperature. An increase in yield strength (522 MPa), ultimate tensile strength (539 MPa) and ductility (6.8%) was observed in WR specimens at 175 °C, hardness also increases to (146 HV) as compared to CR samples. These samples were annealed in temperature range from 150 °C to 300 °C to investigate their thermal stability. The CR samples exhibited severely deformed structure with high dislocation density network while cryorolled followed by warm rolled (WR) samples has shown formation of ultrafine grains associated with dynamic recovery. At elevated temperature of 200 °C, WR samples showed decrease in strength accompanied with increase in elongation due to dominant dynamic recovery effect led to reduction in dislocation density

  9. Effects of Density and Moisture Variation on Dynamic Deformation Properties of Compacted Lateritic Soil

    Weizheng Liu

    2016-01-01

    Full Text Available A series of repeated load triaxial tests were conducted in this study to investigate the influences of compaction density and postcompaction moisture variation on the dynamic elastic modulus (Ed and plastic permanent strain (PPS of compacted lateritic soil. Specimens were compacted at optimum moisture content (OMC and three degrees of compaction (90%, 93%, and 96%. Then the specimens were dried or wetted to different moisture contents (OMC, OMC±3%, OMC±6%, and OMC+9% prior to testing for Ed and PPS. Results show that moisture content has greater influence on the Ed and PSS than compaction degree, and the increase in moisture content leads to a decrease of Ed and an increase of PPS. Furthermore, an empirical relationship between Ed and applied cyclic stress (σd is developed that incorporates density and moisture variations. Three different evolution types of PPS with number of load cycles, plastic stable, plastic creep, and incremental collapse, are identified as the increase of moisture content. In addition, the critical dynamic stress (σdc separating stable and unstable deformation is determined based on the shakedown concept. The envelope curves of σdc-moisture of lateritic soil with different degrees of compaction are also determined to provide reference for the pavement design.

  10. The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel

    Magnetic properties of the grain oriented (GO) electrical steels are strongly affected by the stresses, both external and internal. The change is important even for the deformation resulting in stress level much lower than their yield limits. In this paper we present the results of investigation of the influence of compression and tension on the magnetoacoustic emission (MAE) signal properties. The experiment was performed with the help of bending machine in which the samples (0.3 mm thick, M140-30 S GO electrical steel) glued to the non-magnetic (austenitic steel) 8 mm thick bars were bent. The samples cut out in two directions (parallel and perpendicular to the rolling direction) were investigated. The elongation was measured directly with the help of tensometric bridge. Various parameters of the MAE signal, such as e.g. signal intensity and MAE peaks separation, have been examined. - Highlights: ► Magnetic properties of the GO electrical steels are strongly affected by stress. ► The non-destructive method of investigation of the ready-made components is needed. ► Magnetoacoustic emission is sensitive to stress-induced domain structure changes. ► Advanced signal analysis allows to determine the stress level in an unambiguous way.

  11. On the relationship between large-deformation properties of wheat flour dough and baking quality

    Sliwinski, E.L.; Kolster, P.; Vliet, van T.

    2004-01-01

    Baking performance for bread and puff pastry was tested for Six European and two Canadian wheat cultivars and related to the rheological and fracture properties in uniaxial extension of optimally mixed flour-water doughs and doughs to which a mix of bakery additives was added. Extensive baking tests

  12. Large-deformation properties of wheat dough in uni- and biaxial extension. Part I. Flour dough

    Sliwinski, E.L.; Kolster, P.; Vliet, van T.

    2004-01-01

    Rheological and fracture properties of optimally mixed flour doughs from three wheat cultivars which perform differently in cereal products were studied in uniaxial and biaxial extension. Doughs were also tested in small angle sinusoidal oscillation. In accordance with previously published results t

  13. Control of electric and dielectric properties of conductive polymer composites by compression deformation

    Pelíšková, M.; Vilčáková, J.; Moučka, R.; Sáha, P.; Quadrat, Otakar; Stejskal, Jaroslav; Omastová, M.

    Budapest : Budapest University of Technology and Economics, 2007. s. 89-89. [Functional Fillers for Advanced Applications EUROFILLERS. 26.08.2007-30.08.2007, Zalakaros] Institutional research plan: CEZ:AV0Z40500505 Keywords : conductive polymers * electric and dielectric properties Subject RIV: CD - Macromolecular Chemistry

  14. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys

    In this study, the mechanical properties of as-cast Ti-Sn alloys with Sn content ranging from 1 to 30 wt.% prepared using a dental cast machine were investigated and compared with commercially pure titanium (c.p. Ti), which was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Sn alloys matched those for α Ti, and no β phase peaks or any intermediate phases were found. All the Ti-Sn alloys had higher bending strengths, bending moduli and elastic recovery angles than those of c.p. Ti. For example, the bending strength of the Ti-1Sn alloy was higher than that of c.p. Ti by 68%, its bending modulus was higher than that of c.p. Ti by 43% and its elastically recoverable angle was higher than that of c.p. Ti by as much as 240%. Additionally, the Ti-1Sn, Ti-5Sn and Ti-10Sn alloys exhibited ductile properties. When the Sn content was 20 wt.% or greater, the alloys showed brittle properties. Our research suggested that Ti-1Sn alloy had the most favorable mechanical properties of all the metals in this study, making it the best candidate for prosthetic dental applications.

  15. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites

    Research highlights: → New renewable and biodegradable Agave americana fibre. → Environmentally free materials. → Good mechanical properties of Agave fibre reinforced epoxy composite materials. → Surface modification of the fibre (Alkali treatment) imported good mechanical properties. → Future scope in light weight materials manufacture. -- Abstract: The mechanical properties such as tensile, compressive, flexural, impact strength and water absorption of the alkali treated continuous Agave fibre reinforced epoxy composite (TCEC) and untreated continuous Agave fibre reinforced epoxy composite (UTCEC) were analysed. A comparison of the surfaces of TCEC and UTCEC composites was carried out by dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermomechanical properties of the composite reinforced with sodium hydroxide (NaOH) treated Agave fibres were considerably good as the shrinkage of the fibre during alkali treatment had facilitated more points of fibre resin interface. The SEM micrograph and FTIR spectra of the impact fracture surfaces of TCEC clearly demonstrate the better interfacial adhesion between fibre and the matrix. In both analyses the TCEC gave good performance than UTCEC and, thus, there is a scope for its application in light weight manufacture in future.

  16. Influence of substructure on mechanical properties of austenitic alloys deformed by warm rolling

    Izotov, V.I.; Virakhovskij, Yu.G.; Marusenko, S.Ya. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR). Inst. Metallovedeniya i Fiziki Metallov)

    1983-08-01

    A connection between a substructure and mechanical properties of some iron base austenitic alloys, differing in carbon, and carbide-forming element contents and in stacking fault energies after warm rolling, is studied. It is shown that the maximum value of yield strength after cold hardening is achieved in the alloy with low stacking fault energy due to the formation of high density of thin twins.

  17. Influence of substructure on mechanical properties of austenitic alloys deformed by warm rolling

    A connection between a substructure and mechanical properties of some iron base austenitic alloys, differing in carbon, and carbide-forming element contents and in stacking fault energies after warm rolling, is studied. It is shown that the maximum value of yield strength after cold hardening is achieved in the alloy with low stacking fault energy due to the formation of high density of thin twins

  18. Annealing behaviour and mechanical properties of severely deformed interstitial free steel

    Highlights: ► Microstructure and micro-texture evolution indicates continuous recrystallisation. ► HAGBs decrease from ∼80 to ∼40% due to texture clustering and orientation pinning. ► Characterisation of correlation between tensile and shear punch tests. ► Tensile behaviour evolves from stress drop to continuous yielding a work hardening. - Abstract: The evolution of microstructure, micro-texture and mechanical properties during isothermal annealing of an ultrafine grained interstitial free (IF) steel processed by Equal Channel Angular Pressing (ECAP) followed by 95% cold rolling (CR) was studied. Microstructure and micro-texture changes were characterised by Electron Back-Scattering Diffraction while mechanical properties were assessed by shear punch and uniaxial tensile testing. During annealing, homogeneous coarsening via continuous recrystallisation is accompanied by the retention of a sharp α-fibre rolling texture and a decrease in area fraction of high angle grain boundaries from ∼80% to ∼40% due to texture clustering and orientation pinning. Failure during uniaxial tension occurred without post-necking elongation after CR. Upon annealing, an evolution from stress-drop soon after yielding to a return to continuous yielding and increased work hardening was observed. Good agreement is found between experimental and estimated strengths and total elongations derived from SPT and tensile data. Tensile characteristics and mechanical properties depend on both, grain size and area fraction of HAGBs.

  19. Carbon deposition during brittle rock deformation: Changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes

    Mathez, E A; Roberts, J J; Duba, A G; Kronenberg, A K; Karner, S L

    2008-05-16

    To investigate potential mechanisms for geoelectric phenomena accompanying earthquakes, we have deformed hollow cylinders of Sioux quartzite to failure in the presence of carbonaceous pore fluids and investigated the resulting changes in electrical conductivity and carbon distribution. Samples were loaded at room temperature or 400 C by a hydrostatic pressure at their outer diameter, increasing pressure at a constant rate to {approx}290 MPa. Pore fluids consisted of pure CO, CO{sub 2}, CH{sub 4} and a 1:1 mixture of CO{sub 2} and CH{sub 4}, each with pore pressures of 2.0 to 4.1 MPa. Failure occurred by the formation of mode II shear fractures transecting the hollow cylinder walls. Radial resistivities of the cylinders fell to 2.9 to 3.1 M{Omega}-m for CO tests and 15.2 to 16.5 M{Omega}-m for CO{sub 2}:CH{sub 4} tests, compared with >23 M{Omega}-m for dry, undeformed cylinders. Carbonaceous fluids had no discernable influence on rock strength. Based on mapping using electron microprobe techniques, carbon occurs preferentially as quasi-continuous films on newly-formed fracture surfaces, but these films are absent from pre-existing surfaces in those same experiments. The observations support the hypothesis that electrical conductivity of rocks is enhanced by the deposition of carbon on fracture surfaces and imply that electrical properties may change in direct response to brittle deformation. They also suggest that the carbon films formed nearly instantaneously as the cracks formed. Carbon film deposition may accompany the development of microfracture arrays prior to and during fault rupture and thus may be capable of explaining precursory and coseismic geoelectric phenomena.

  20. Influence of Microstructure, Produced by Heat Treatment and Sever Plastic Deformation, on Tribological Properties of Low-carbon Steel

    V. I. Semenov

    2011-06-01

    Full Text Available This paper presents the results of tribological investigations conducted on steel 20 with the carbon content of up to 0.2%. The steel was studied in the three conditions: initial (hot-rolled, after heat-treatment (quenching+tempering and after heat treatment with subsequent severe plastic deformation (SPD performed by equal channel angular pressing technique (ECAP. It was stated that after various treatments the material acquires various structural conditions and possesses various strength properties and has a considerable difference in oxygen content in the surface layer. This influences the tribological properties during the contact with tool steel. The lowest values of adhesive bond shear strength, friction coefficient and wear rate are demonstrated in the material after martempering with subsequent SPD by ECAP technique. The surface of the investigated material after SPD treatment by the ECAP technique possesses a highest bearing capacity and requires more time for wearing-in in friction assemblies. Oxygen content increase in the form of metal oxides on the surface of low-carbon steels is accompanied by a decrease of the adhesive component of friction coefficien.

  1. Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing

    Farshidi, M.H., E-mail: farshidi@um.ac.ir [Department of Materials Science and Metallurgical Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Kazeminezhad, M. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Miyamoto, H. [Department of Mechanical Engineering, Doshisha University, Kyotanabe City, Kyoto (Japan)

    2015-07-29

    This study is aimed to realize evolution of microstructure and mechanical properties of aluminum 6061 alloy tube subjected to Severe Plastic Deformation (SPD) and subsequent annealing. For this purpose, the tube is initially processed by different passes of an SPD process called Tube Channel Pressing (TCP) and then subjected to a subsequent annealing at 473 °K for 2 h. Afterwards, tension test is used for the evaluation of mechanical properties while Electron Back-Scattered Diffraction (EBSD) equipped Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) are utilized for the microstructural characterizations. Results show that the Continuous Static Recrystallization (CSRX) is the main restoration phenomenon during annealing of aluminum 6061 alloy, even after imposing a moderate plastic strain. For instance, CSRX has been observed during annealing treatment after imposing an equivalent plastic strain as low as 1. However, the used annealing treatment causes different microstructural variations in specimens depending on the pass number of TCP. As an illustration, while the average grain size impressively decreases due to annealing of 1 pass TCPed specimen, it moderately increases after annealing of 5 passes TCPed specimen. This is due to development of a bimodal microstructure after 5 pass of TCP which leads to a different evolution of microstructure during successive annealing. It is also notable that TCPed and annealed specimens show higher strength and ductility compared with as TCPed specimens which is attributed to the occurrence of precipitation hardening besides restoration phenomenon during the annealing treatment.

  2. Microstructure and mechanical properties of an Al–Mg–Si tube processed by severe plastic deformation and subsequent annealing

    This study is aimed to realize evolution of microstructure and mechanical properties of aluminum 6061 alloy tube subjected to Severe Plastic Deformation (SPD) and subsequent annealing. For this purpose, the tube is initially processed by different passes of an SPD process called Tube Channel Pressing (TCP) and then subjected to a subsequent annealing at 473 °K for 2 h. Afterwards, tension test is used for the evaluation of mechanical properties while Electron Back-Scattered Diffraction (EBSD) equipped Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) are utilized for the microstructural characterizations. Results show that the Continuous Static Recrystallization (CSRX) is the main restoration phenomenon during annealing of aluminum 6061 alloy, even after imposing a moderate plastic strain. For instance, CSRX has been observed during annealing treatment after imposing an equivalent plastic strain as low as 1. However, the used annealing treatment causes different microstructural variations in specimens depending on the pass number of TCP. As an illustration, while the average grain size impressively decreases due to annealing of 1 pass TCPed specimen, it moderately increases after annealing of 5 passes TCPed specimen. This is due to development of a bimodal microstructure after 5 pass of TCP which leads to a different evolution of microstructure during successive annealing. It is also notable that TCPed and annealed specimens show higher strength and ductility compared with as TCPed specimens which is attributed to the occurrence of precipitation hardening besides restoration phenomenon during the annealing treatment

  3. Contribution to the study of mechanical properties of nuclear fuel: atomistic modelling of the deformation of uranium dioxide

    Mechanical properties of nuclear fuel are a complex problem, involving many coupled mechanisms occurring at different length scales. We used Molecular Dynamics models to bring some light on some of these mechanisms at the atomic scale. We devised a procedure to calculate transition pathways between some UO2 polymorphs, and then carried out dynamics simulations of these transitions. We confirmed the stability of the cotunnite structure at high pressure using various empirical potentials, the fluorite structure being the most stable at room pressure. Moreover, we showed a reconstructive phase transition between the fluorite and cotunnite structures. We also showed the importance of the major deformation axis on the kind of transition that occur under tensile conditions. Depending on the loading direction, a scrutinyite or rutile phase can appear. We then calculated the elastic behaviour of UO2 using different potentials. The relative agreement between them was used to produce a set of parameters to be used as input in mesoscale models. We also simulated crack propagation in UO2 single crystals. These simulations showed secondary phases nucleation at crack tips, and hinted at the importance thereof on crack propagation at higher length-scales. We then described some properties of edge dislocations in UO2. The core structures were compared for various glide planes. The critical resolved shear stress was calculated for temperatures up to 2000 K. These calculations showed a link between lattice disorder at the dislocations core and the dislocations mobility. (author)

  4. Mechanical Properties and Microstructure Evolution of Cold-deformed High-nitrogen Nickel-free Austenitic Stainless Steel during Annealing

    XU Mingzhou; WANG Jianjun; LIU Chunming

    2012-01-01

    The mechanical properties and microstructure evolution of cold-deformed CrMnN austenitic stainless steel annealed in a temperature ranging from 50 ℃ to 650 ℃ for 90 min and at 550 ℃ for different time were investigated by tensile test,micro hardness test,and Transmission Electron Microscope (TEM).The steel was strengthened when it got annealed at temperatures ranging from 100 ℃ to 550 ℃,while it was softened when it got annealed at temperatures ranging from 550 ℃ to 650 ℃.Annealing temperature had stronger effect on mechanical properties than annealing time.TEM observations showed that nano-sized precipitates formed when the steel was annealed at 150 ℃ for 90 min,but the size and density of precipitates had no noticeable change with annealing temperature and time.Recrystallization occurred when the steel was annealed at temperatures above 550 ℃ for 90 min,and its scale increased with annealing temperature.Nanosized annealing twins were observed.The mechanisms that controlled the mechanical behaviors of the steel were discussed.

  5. Global and local deformation behavior and mechanical properties of individual phases in a quenched and partitioned steel

    Third generation advanced high strength steels produced via quenching and partitioning (Q&P) treatment are receiving increased attention. A 0.25C–3Mn–1.5Si–0.023 Al steel was subjected to Q&P processing (with varying partitioning temperature and time) resulting in the formation of complex multi-phase microstructures. The effect of Q&P parameters on the microstructure and morphology of microconstituents was analyzed. Mechanical properties of the material and of its individual microconstituents were studied via tensile testing and nanoindentation on individual microconstituents, which were identified a priori by electron back-scattered diffraction analysis. Special attention is paid to the effect of the morphology of retained austenite on its transformation stability. In situ tensile tests and digital image correlation analysis were performed to study deformation behavior of the Q&P processed steel at the micro-scale with respect to the local microstructure. The effect of local microstructure and properties of individual phases on the degree of strain partitioning is discussed

  6. Global and local deformation behavior and mechanical properties of individual phases in a quenched and partitioned steel

    Diego-Calderón, I. de, E-mail: irenedediego.calderon@imdea.org [IMDEA Materials Institute, Calle Eric Kandel 2, Getafe 28906, Madrid (Spain); De Knijf, D. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Zwijnaarde (Ghent) (Belgium); Monclús, M.A.; Molina-Aldareguia, J.M.; Sabirov, I. [IMDEA Materials Institute, Calle Eric Kandel 2, Getafe 28906, Madrid (Spain); Föjer, C. [ArcelorMittal Global R& D Gent, Pres. J. F. Kennedylaan 3, B-9060 Zelzate (Belgium); Petrov, R.H. [Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Zwijnaarde (Ghent) (Belgium); Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft (Netherlands)

    2015-04-10

    Third generation advanced high strength steels produced via quenching and partitioning (Q&P) treatment are receiving increased attention. A 0.25C–3Mn–1.5Si–0.023 Al steel was subjected to Q&P processing (with varying partitioning temperature and time) resulting in the formation of complex multi-phase microstructures. The effect of Q&P parameters on the microstructure and morphology of microconstituents was analyzed. Mechanical properties of the material and of its individual microconstituents were studied via tensile testing and nanoindentation on individual microconstituents, which were identified a priori by electron back-scattered diffraction analysis. Special attention is paid to the effect of the morphology of retained austenite on its transformation stability. In situ tensile tests and digital image correlation analysis were performed to study deformation behavior of the Q&P processed steel at the micro-scale with respect to the local microstructure. The effect of local microstructure and properties of individual phases on the degree of strain partitioning is discussed.

  7. Effect of hot plastic deformation on microstructure and mechanical property of Mg-Mn-Ce magnesium alloy

    2007-01-01

    Hot plastic deformation was conducted using a new solid die on a Mg-Mn-Ce magnesium alloy. The results of microstructural examination through OM and TEM show that the grain size is greatly refined from 45 μm to 1.1 μm with uniform distribution due to the occurrence of dynamic recrystallization. The grain refinement and high angle grain boundary formation improve the mechanical properties through tensile testing with the strain rate of 1.0× 10-4 s-1 at room temperature and Vickers microhardness testing. The maximum values of tensile strength, elongation and Vickers microhardness are increased to 256.37 MPa,17.69% and HV57.60, which are 21.36%, 133.80% and 20.50% more than those of the as-received Mg-Mn-Ce magnesium alloy,respectively. The SEM morphologies of tensile fractured surface indicate that the density and size of ductile dimples rise with accumulative strain increasing. The mechanism of microstructural evolution and the relationship between microstructure and mechanical property of Mg-Mn-Ce magnesium alloy processed by this solid die were also analyzed.

  8. Appraising nuclear octupole moment contributions to the hyperfine structures in $^{211}$Fr

    Sahoo, B K

    2015-01-01

    Hyperfine structures of $^{211}$Fr due to the interactions of magnetic dipole ($\\mu$), electric quadrupole ($Q$) and magnetic octupole ($\\Omega$) moments with the electrons are investigated using the relativistic coupled-cluster (RCC) theory with an approximation of singles, doubles and important valence triples excitations in the perturbative approach. Validity of our calculations are substantiated by comparing the results with their available experimental values. Its $Q$ value has also been elevated by combining the measured hyperfine structure constant of the $7p \\ ^2P_{3/2}$ state with our improved calculation. Considering the preliminary value of $\\Omega$ from the nuclear shell-model, its contributions to the hyperfine structures up to the $7d \\ ^2D_{5/2}$ low-lying states in $^{211}$Fr are estimated. Energy splittings of the hyperfine transitions in many states have been assessed to find out suitability to carry out their precise measurements so that $\\Omega$ of $^{211}$Fr can be inferred from them unam...

  9. Experiment and theory of a drift wave in the levitated octupole

    A very coherent 30 kHz drift wave is observed in the Levitated Toroidal Octupole at the University of Wisconsin - Madison. The density and floating potential fluctuations have a well-defined spatial structure in the poloidal magnetic field. Radially the wave has a standing wave structure with amplitude peaked in regions of locally bad magnetic curvature. Poloidally the wave has a standing wave structure with odd symmetry; nodes are located in the regions of locally good magnetic curvature. The wave propagates toroidally in the electron diamagnetic drift direction with a wavelength of 20 centimeters. No changes occur in the wave structure as the plasma is varied over three orders of magnitude in density and beta

  10. Deformation and recrystallization textures and anisotropic plastic properties of Zircaloy sheet

    Crystallographic textures and anisotropic mechanical properties of cold-rolled and recrystallized Zircaloy-4 sheets have been characterized. The mechanical anisotropy parameters of the sheets were determined using grid analysis tests while the textures were characterized using x-ray pole figures and crystallite orientation distribution functions (CODF's). These CODF's, in conjunction with appropriate plasticity models, were employed to predict the anisotropy parameters (R and P) assuming the dominance of various individual slip systems. The experimental results were correlated with the model predictions. (author)

  11. Effects of pressure and temperature at deformation in conditions of uniform compression on physical-mechanical properties of titanium in the range of 77...800 K

    Influence of deformation at 25% under uniform compression at pressure of 22 and 16.5 kbar at 77 K and 12 and 8 kbar at 300 K by using quasi hydroextrusion with counter pressure (QHEC) and without counter pressure (QHE) on physical-mechanical properties of titanium VT1-0 in the range of 77...800 K was investigated. It was shown, that two-stage character of dependence mechanical properties versus temperature in initial state (temperature-dependent in the range of 77...600 K and athermal in the range of 600...800 K) after deformation QHE and QHEP changed to one-stage and temperature-dependent character in the entire temperature range. It was shown that deformation under uniform pressure result in increase of strength in the range of 77...800 K and decrease the stacking fault energy of titanium. That is an addition factor of hardening besides increasing the density of deformation defects. It was found that uniform compression realized under higher pressures leads to less hardening and less accumulation of deformation defects. This associated with activation of recovery processes

  12. Deformable Nanolaminate Optics

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  13. Inferring strength and deformation properties of hot mix asphalt layers from the GPR signal: recent advances

    Tosti, Fabio; Benedetto, Andrea; Bianchini Ciampoli, Luca; Adabi, Saba; Pajewski, Lara

    2015-04-01

    , of both the different strength provision of each layer composing the hot mix asphalt pavement structure, and of the attenuation occurring to electromagnetic waves during their in-depth propagation. Promising results are achieved by matching modelled and measured elastic modulus data. This continuous statistically-based model enables to consider the whole set of information related to each single depth, in order to provide a more comprehensive prediction of the strength and deformation behavior of such a complex multi-layered medium. Amongst some further developments to be tackled in the near future, a model improvement could be reached through laboratory activities under controlled conditions and by adopting several frequency bandwidths suited for purposes. In addition, the perspective to compare electromagnetic data with mechanical measurements retrieved continuously, i.e., by means of specifically equipped lorries, could pave the way to considerable enhancements in this field of research. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  14. Mechanical and service properties of low carbon steels processed by severe plastic deformation

    J. Zrnik

    2009-07-01

    Full Text Available The structure and properties of the 0,09% C-Mn-Si-Nb-V-Ti, 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb low-carbon steels were studied after cold equal-channel angular pressing (ECAP. ECAP leads to the formation of partially submicrocrystalline structure with a grain size of 150 – 300 nm. The submicrocrystalline 0,09% C-Mn-Si-Nb-V-Ti steel compared with the normalized steel is characterized by Re higher more than by a factor of 2 and by the impact toughness higher by a factor of 3,5 at a test temperature of -40°C. The plasticity in this case is somewhat lower. The high-strength state of the submicrocrystalline 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb steels after ECAP is retained up to a test temperature of 500°C. The strength properties at 600°C (i.e. the fire resistance of these steels are higher by 20-25% as compared to those of the undeformed steels. The strength of the 0,09% C-Mo-V-Nb steel at 600°C is substantially higher than that of the 0,1% C-Mn-V-Ti steel.

  15. Mechanical properties and microstructure evolution of 1050 aluminum severely deformed by ECAP to 16 passes

    Variation of mechanical properties and microstructure evolution in 1050 aluminum processed by equal channel angle pressing are investigated using Route BC and up to 16 passes. Micro hardness and compression testing were used to evaluate mechanical properties, whereas electron back scattered diffraction (EBSD) was used to document the variation of cell size and misorientation angle with number of passes. The hardness and yield strength exhibited an instant increase by a factor of about 2.75 and 2.96, respectively, compared to the annealed state, after only the first pass. It was found that the cell size gradually decreased with number of passes and attained an average value of about 0.6 μm in the face plane (normal to the extrusion direction), and 0.85 μm in the flow plane (parallel to the extrusion direction) after the sixteenth pass. The average misorientation angle evolved in both the face and flow planes ended up to about 27 deg. and 26 deg., respectively

  16. Ab initio calculations of the magnetic properties of perovskites under deformation

    Maznichenko, Igor [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Saale) (Germany); Etz, Corina; Ernst, Arthur [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Saale) (Germany); Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter [Daresbury Laboratory, Daresbury, Warrington, Cheshire (United Kingdom); Mertig, Ingrid [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Saale) (Germany); Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Saale) (Germany)

    2010-07-01

    Materials with perovskite and perovskite-like structures demonstrate a broad spectrum of physical properties. Colossal magnetoresistance, ferroelectricity, multiferroicity, superconductivity, charge ordering, metal-insulator transition, Jahn-Teller and other effects are observed in perovskites. These properties of the mentioned materials with the common formula ABO{sub 3} are very sensitive to the type of the cations A and B. La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (LSMO) is a strongly correlated 3d transition metal oxide with a Curie temperature (T{sub C}) above RT (370 K). For other La/Sr ratios different types of antiferromagnetism are observed. Other perovskite, ruthenate SrRuO{sub 3} (SRO) is a 4d ferromagnet with T{sub C} = 160 K. Here we perform ab initio calculations for LSMO and SRO in ideal cubic, tetragonally distorted, and different orthorhombic structures. We focus on magnetic order and Curie temperature of the above mentioned structures in the different structural phases.

  17. Effect of spinning deformation on microstructure evolution and mechanical property of TA 15 titanium alloy

    2007-01-01

    Hot spinning of tubular workpiece of TA15 alloy was conducted on a CNC spinning machine, and the microstructure evolution during hot spinning and annealing was observed and mechanical properties of spun tubes were tested. The results show that with the increase of spinning pass, the fiber microstructure comes into being gradually in axial direction and the circumferential microstructure also stretches obviously along circumferential direction. At the same time, the tensile strength increases and elongation decreases not only in axial direction but also in circumferential direction. When the reduction ratio of wall thickness rises close to or over 40%, tensile strength increases and elongation decreases more rapidly, which means that tubular workpiece of titanium alloy can be strengthened bi-directionally by power spinning. The ductility of spun workpiece of TAI5 alloy could be improved by annealing at the temperature no higher than recrystallization temperature with slight decrease of tensile strength.

  18. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  19. Anharmonicity of multi-octupole-phonon excitations in $^{208}$Pb: analysis with multi-reference covariant density functional theory and subbarrier fusion of $^{16}$O+$^{208}$Pb

    Yao, J M

    2016-01-01

    We discuss anharmonicity of the multi-octupole-phonon states in $^{208}$Pb based on a covariant density functional theory, by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom. Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly enhances the fragmentation of the two-octupole-phonon states in $^{208}$Pb. Using those transition strengths as inputs to coupled channels calculations, we then discuss the fusion reaction of $^{16}$O+$^{208}$Pb at energies around the Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves previous coupled-channels calculations in the harmonic oscillator limit, significantly reducing the height of the main peak in the fusion barrier distribution.

  20. Tetrahedral and Triangular Deformations of $Z=N$ Nuclei in Mass Region $A \\sim 60-80$

    Takami, S; Matsuo, M

    1998-01-01

    We study static non-axial octupole deformations in proton-rich $Z=N$ nuclei, $^{64}$Ge, $^{68}$Se, $^{72}$Kr, $^{76}$Sr, $^{80}$Zr and $^{84}$Mo, by using the Skyrme Hartree-Fock plus BCS calculation with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in $^{68}$Se is extremely soft for the $Y_{33}$ triangular deformation, and that in $^{80}$Zr the low-lying local minimum state coexisting with the prolate ground state has the $Y_{32}$ tetrahedral deformation.

  1. Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

    Wang, Haopeng

    With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free

  2. Mechanical properties and constitutive relations for molybdenum under high-rate deformation

    Chen, S.R.; Maudlin, P.J.; Gray, G.T. III

    1998-01-01

    Molybdenum and its alloys have received increased interest in recent years for ballistic applications. The stress-strain behavior of several molybdenums possessing various compositions, manufacturing sources, and the degree of pre-straining, were investigated as a function of temperature from 77 to 1,273 K, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress was found to be sensitive to the test temperature and strain rate, however, the strain hardening remained rate-insensitive. The constitutive response of a powder-metallurgy molybdenum was also investigated; similar mechanical properties compared to conventionally wrought processed molybdenums were achieved. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong and the Mechanical Threshold Stress (MTS) models were evaluated and fit for the various Mo-based materials. The capabilities and limitations of each model for large-strain applications were examined. The differences between the three models are demonstrated using model comparisons to Taylor cylinder validation experiments.

  3. Geometrical and mechanical properties of the fractures and brittle deformation zones based on the ONKALO tunnel mapping, 4390-4990 m tunnel chainage and the technical rooms

    Simelius, C. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    In this report, the rock mechanics parameters of fractures and brittle deformation zones have been estimated in the vicinity of the ONKALO underground research facility at the Olkiluoto site, western Finland. This report is an extension of two previously published reports describing the geometrical and mechanical properties of the fractures and brittle deformation zones based on ONKALO tunnel mapping from tunnel chainages 0-2400 m (Kuula 2010) and 2400-4390 m (Moenkkoenen et al. 2012). This updated report makes use of mapping data from tunnel chainage 4390-4990 m, including the technical rooms located at the -420 m below the sea level. Analysis of the technical rooms is carried out by dividing the premises according to depth into three sections: the demonstration tunnel level, the technical rooms level and the -457 level. The division is executed in order to define the fracture properties in separate areas and to compare the properties with other technical rooms levels. Drillhole data from holes OL-KR1...OL-KR57 is also examined. This report ends the series of three parameterization reports. The defined rock mechanics parameters of the fractures are based on the rock engineering classification quality index, Q', which incorporates the RQD, Jn, Jr and Ja values. The friction angle of the fracture surfaces is estimated from the Jr and Ja numbers. No new data from laboratory joint shear and normal tests was available at the time of the report. The fracture wall compressive strength (JCS) data is available from the chainage range 1280-2400 m. New data for fracture wall compressive strength is not available although new Schmidt hammer measurements were performed in order to obtain the ratio of the intact rock mass vs. an intact brittle deformation zone. Estimation of the mechanical properties of the 23 brittle deformation zones (BDZ) is based on the mapped Q' value, which is converted into the GSI value in order to estimate the strength and deformability

  4. Gender features of rheological properties of blood (plasma viscosity, aggregation and deformation of erythrocytes in patients with chronic generalized periodontitis

    Kazantsev A.V.

    2014-03-01

    Full Text Available The goal is to study gender features of rheological properties of blood in patients with chronic generalized periodontitis (CGP from mild to moderate severity. Material and Methods. 80 patients (43.8% male with CGP aged 42±5 years have been studied. 41 patients (43.9% male experienced mild severity of CGP, and 39 patients (43.6% male experienced moderate severity. 40 healthy adults (50% male, aged 31±7 years, have been included into the study. Plasma viscosity on shear rate values 300 sec1 to 5 sec1, and rheological features of erythrocytes (aggregation and deformation have been evaluated. Results. In healthy women and women with mild severity of CGP, plasma viscosity was lower than in the similar group of men. The rheological features of erythrocytes have not gender differences among healthy adults and patients with mild CGP. Increased severity of CGP has been associated with increased plasma viscosity and rheological features of erythrocytes, particularly in men. Conclusion. Plasma viscosity differs in men and women (childbearing age (healthy subjects and patients with CGP. In women, severity of pathological changes of plasma viscosity and rheological features of erythrocytes have been determined to be lower than in men.

  5. Microscopic structure of deformed and superdeformed collective bands in rotating nuclei

    We investigate in self-consistent cranked Nilsson plus quasiparticle random-phase approximation the structure of 190,192,194Hg in their evolution from normal to superdeformation and from low to high rotational frequencies. The analysis of the energy levels suggests a splitting of few normally deformed bands into two or more branches. The investigation of the dynamical moments of inertia supports the octupole character of the low-lying negative parity superdeformed bands, in agreement with previous theoretical predictions and experimental findings. As a more direct confirm of their octupole nature, we obtain strong E1 transitions linking those bands to the yrast superdeformed band, in agreement with experiments. A similar result is shown to hold also for 152Dy. Like in 152Dy, the collectivity of the low-lying scissors mode gets enhanced with the onset of superdeformation

  6. Confinement properties of high energy density plasmas in the Wisconsin levitated octupole

    The confinement of particles and energy is critically dependent on the plasma-wall interaction. Results of a study detailing this interaction are presented. High power ICRF heated and gun afterglow plasmas were studied to detail the mechanisms determining particle and energy confinement. An extensive zero-D simulation code is used to assist in interpreting the experimental data. Physically reasonable models for plasma surface interactions, time dependent coronal treatment of impurities and multiple region treatment of neutrals are used in modeling the plasma. Extensive diagnostic data are used to verify the model. Non-heated plasmas decay from 28 to 3 eV allowing clear identification of wall impact energy thresholds for desorption and particle reflection. The charge state distribution of impurities verifies the reflux to plasma diffusion rate ratio. Close agreement between the simulation and experimental data is found

  7. Mechanical properties and microstructure of 6061 aluminum alloy severely deformed by ARB process and subsequently aged at low temperatures

    Terada, Daisuke; Kaneda, Yoma; Horita, Zenji; Matsuda, Kenji; Hirosawa, Shoichi; Tsuji, Nobuhiro

    2014-08-01

    In order to clarify the aging behavior in ultrafine grained (UFG) Al alloys, a commercial Al-Mg-Si alloy was severely deformed by accumulative roll-bonding (ARB) process and subsequently aged at 100°C or 170°C. The age-hardening behavior and microstructure change during aging were investigated. At 170 °C, age-hardening was observed in solution treated (ST) specimens, but solution-treated and ARB-processed specimens were not hardened by aging. On the other hand, the hardness of the both ST specimen and ARB-processed specimen increased by aging at 100°C. From TEM observation, it was found that the ARB- processed specimen had an ultrafine lamellar boundary structure and the structure was kept during aging at 170°C and 100°C. In the ST specimen aged at 170°C, fine precipitates were observed within coarse grains. In the specimen ARB-processed and subsequently aged at 170°C, coarser precipitates were observed within ultrafine grains and on grain boundaries. It was considered that the reason why the hardness of the specimens ARB-processed and subsequently aged did not increase was coarsening of precipitates. In the specimens aged at 100°C, obvious precipitates were not observed, but clusters Mg and Si seemed to form during the aging, leading to the increase in the hardness of the specimen. From the results, it was suggested that aging at low temperatures could improve mechanical properties of Al alloys through combining grain refinement and precipitation hardening.

  8. Composite microstructural anisotropies in reservoir rocks: consequences on elastic properties and relation with deformation; Anisotropies microstructurales composites dans les roches reservoir: consequences sur les proprietes elastiques et relation a la deformation

    Louis, L.

    2003-10-15

    From diagenesis to tectonic stress induced deformation, rock microstructures always present some anisotropy associated with a preferential orientation, shape or spatial arrangement of its constituents. Considering the consequences anisotropy has on directional transport properties and compliance, as the geological history it carries, this approach has received a particular attention in numerous works. In this work, the microstructural features of various sedimentary rocks were investigated through direct observations and laboratory measurements in naturally deformed and undeformed blocks, samples being considered as effective media. All investigated samples were found to be anisotropic with respect to the physical properties we measured (i.e. ultrasonic P-wave velocity, magnetic susceptibility, electrical conductivity). Considering that P-wave velocities can be described by a second order tensor, we applied to the velocity data the same inversion procedure as the one routinely used in magnetic studies, which provided an efficient tool to estimate and compare these 3D anisotropies with respect to the original sample geographical position. In each case, we tried to identify as thoroughly as possible the microstructural source of the observed anisotropies, first by the mean of existing models, then through direct observations (optic and electronic microscopy). Depending on the rock investigated, anisotropy was found to be controlled by pore shape, intergranular contact distribution, preferentially oriented microcracks interacting with compaction pattern or pressure solution cleavages interacting with each other. The net result of this work is that P-wave velocity anisotropy can express the interaction between different microstructural features as well as their evolution during deformation. (author)

  9. Effect of deformation-induced martensite on the microstructure, mechanical properties and corrosion resistance of X5CrNi18-8 stainless steel

    W. Ozgowicz

    2010-05-01

    Full Text Available Purpose: The aim of the paper was to determine the effect of deformation-induced martensite on the microstructure, mechanical properties and corrosion resistance of X5CrNi18-8 austenitic steel.Design/methodology/approach: The investigations included observations of the microstructure on a light microscope, researches of mechanical properties in a static tensile test, microhardness measurements made by Vickers’s method and corrosion resistance test examined using weight method. The analysis of the phase composition was carried out on the basis of X-ray researches. The amount of martensite α’ in the obtained microstructures was investigated with ferritescope magnetic tester. The observations of the surface morphology after corrosive tests were carried out using Scanning Electron Microscope. The scope of this study was to achieve the correlations between the mechanical, corrosion and structural properties of cold rolled stainless steel.Findings: Plastic deformation in a cold working of austenitic stainless steel induced in its structure martensitic transformation γ → α’. The occurrence of martensite α’ in the investigated steel structure has an essential meaning in manufacturing process of forming sheet-metals from austenitic steel.Research limitations/implications: The X-ray phase analysis in particular permitted to disclose and identify the main phases on the structure of the investigated steel after its deformation within the range 10 - 70%. The results of the ferritescope measurements allowed determining the proportional part of α` phases in the structure of investigated steel in the examined range of cold plastic deformation. The microscope observations of the surface samples subjected to corrosion resistance test in 30 wt% H2SO4 solutions permitted to evaluate kinds and the rate of corrosion damages.Originality/value: A wide range of practical applications of 18/8 steel sheets is warranted by both their high corrosion

  10. Influence of Heat Treatment Conditions on Microstructure and Mechanical Properties of Austempered Ductile Iron After Dynamic Deformation Test

    Myszka D.

    2014-10-01

    Full Text Available In this article, an attempt was made to determine the effect of dynamic load on the austempered ductile iron resistance obtained under different conditions of heat treatment. Tests were carried out on six types of cylindrical ductile iron samples austempered at 320, 370 and 400oC for 30 and 180 minutes. For each type of material, two samples were collected. As a next step in the investigations, the samples were subjected to a Taylor impact test. The samples after striking a non-deformable, rigid target were deformed on their front face. After Taylor test, a series of material tests was performed on these samples, noting a significant increase of hardness in the deformed part. This was particularly well visible in the ductile iron isothermally quenched at higher temperatures of 370 and 400oC. Inthezone of sample deformation, an increase in the content of ferromagnetic phase was also reported, thus indicating the occurrence of martensitic transformation in the microstructure containing mechanically unstable austenite. A significant amount of deformed graphite was also observed, which was a symptom of the deformation process taking place in samples. The ductile iron was characterized by high toughness and high resistance to the effect of dynamic loads, especially as regards the grade treated at a temperature of 370oC.

  11. Suppression of quadrupole and octupole modes in red giants observed by Kepler

    Stello, D; Fuller, J; Garcia, R A; Huber, D

    2016-01-01

    The asteroseismology of red giant stars has continued to yield surprises since the onset of high-precision photometry from space-based observations. An exciting new theoretical result shows that the previously observed suppression of dipole oscillation modes in red giants can be used to detect strong magnetic fields in the stellar cores. A fundamental facet of the theory is that nearly all the mode energy leaking into the core is trapped by the magnetic greenhouse effect. This results in clear predictions for how the mode visibility changes as a star evolves up the red giant branch, and how that depends on stellar mass, spherical degree, and mode lifetime. Here, we investigate the validity of these predictions with a focus on the visibility of different spherical degrees. We find that mode suppression weakens for higher degree modes with an average reduction in the quadrupole mode visibility of up to 49% for the least evolved stars in our sample, and no detectable suppression of octupole modes, in agreement w...

  12. Non-yrast nuclear spectra in a model of coherent quadrupole-octupole motion

    Minkov, N; Strecker, M; Scheid, W; Lenske, H; 10.1103/PhysRevC.85.034306

    2012-01-01

    A model assuming coherent quadrupole-octupole vibrations and rotations is applied to describe non-yrast energy sequences with alternating parity in several even-even nuclei from different regions, namely $^{152,154}$Sm, $^{154,156,158}$Gd, $^{236}$U and $^{100}$Mo. Within the model scheme the yrast alternating-parity band is composed by the members of the ground-state band and the lowest negative-parity levels with odd angular momenta. The non-yrast alternating-parity sequences unite levels of $\\beta$-bands with higher negative-parity levels. The model description reproduces the structure of the considered alternating-parity spectra together with the observed B(E1), B(E2) and B(E3) transition probabilities within and between the different level-sequences. B(E1) and B(E3) reduced probabilities for transitions connecting states with opposite parity in the non-yrast alternating-parity bands are predicted. The implemented study outlines the limits of the considered band-coupling scheme and provides estimations ab...

  13. Low frequency turbulence, particle and heat transport in the Wisconsin levitated octupole

    Low frequency turbulence in the drift frequency range and its relation to the observed particle transport in the Wisconsin Levitated Octupole has been studied with a microwave scattering apparatus. The experimental parameters were T/sub e/ approx. T/sub i/ 13 cm-3, 200 G < B/sub p-average/ < 1.25 kG. The effect of shear on the transport was studied by the addition of a small toroidal field. By matching experimentally measured density profiles to those given by numerical solutions of the transport equations, diffusion coefficients were obtained. Time dependent density fluctuation spectra were measured with an 8 mm microwave scattering diagnostic to correlate the drift wave portion of the spectrum with the observed diffusion. The density fluctuation spectrum of low frequency (1 kHz < ω < 6 MHz) turbulence was measured for several values of perpendicular wavenumber, k/sub perpendicular to/. Electron heat transport was studied by fitting experimentally measured electron temperature profiles to those predicted by numerical solutions of electron energy transport equation

  14. Search for the two-phonon octupole vibrational state in {sup 208}Pb

    Blumenthal, D.J.; Henning, W.; Janssens, R.V.F. [and others

    1995-08-01

    We performed an experiment to search for the two-phonon octupole vibrational state in {sup 208}Pb. Thick targets of {sup 208}Pb, {sup 209}Bi, {sup 58,64}Ni, and {sup 160}Gd were bombarded with 1305 MeV beams of were bombard {sup 208}Pb supplied by ATLAS. Gamma rays were detected using the Argonne-Notre Dame BGO gamma-ray facility, consisting of 12 Compton-suppressed germanium detectors surrounding an array of 50 BGO scintillators. We identified some 30 known gamma rays from {sup 208}Pb in the spectra gated by the 5{sup -} {yields} 3{sup -} and 3{sup -} {yields} 0{sup +} transitions in {sup 208}Pb. In addition, after unfolding these spectra for Compton response, we observed broad coincident structures in the energy region expected for the 2-phonon states. Furthermore, we confirmed the placement of a 2485 keV line observed previously in {sup 207}Pb and find no evidence consistent with the placement of this line in {sup 208}Pb. We are currently in the process of investigating the origin of the broadened lines observed in the spectra, extracting the excitation probability of states in {sup 208}Pb, and determining the relative probability of mutual excitation and neutron transfer in this reaction. An additional experiment is also being performed to collect much higher statistics germanium-germanium coincidence data for the thick {sup 208}Pb target.

  15. The decay of quadrupole-octupole $1^-$ states in $^{40}$Ca and $^{140}$Ce

    Derya, V; Aumann, T; Bhike, M; Endres, J; Gooden, M; Hennig, A; Isaak, J; Lenske, H; Löher, B; Pietralla, N; Savran, D; Tornow, W; Werner, V; Zilges, A

    2016-01-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying $E1$ excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the $\\gamma$-decay behavior of candidates for the $(2_1^+\\otimes 3_1^-)_{1^-}$ state in the doubly-magic nucleus $^{40}$Ca and in the heavier and semi-magic nucleus $^{140}$Ce is investigated. Methods: $(\\vec{\\gamma},\\gamma')$ experiments have been carried out at the High Intensity $\\gamma$-ray Source (HI${\\gamma}$S) facility in combination with the high-efficiency $\\gamma$-ray spectroscopy setup $\\gamma^3$ consisting of HPGe and LaBr$_3$ detectors. The setup enables the acquisition of $\\gamma$-$\\gamma$ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for $^{40}$Ca the decay into the $3^-_1$ state was observed, while for $^{140}$Ce the direct decays into the $2...

  16. Core breaking and octupole low-spin states in $^{207}$ Tl

    We propose to study the low-spin level structure of the $^{207}$Tl nucleus populated by the $\\beta$- decay of $^{207}$Hg. While $^{207}$Tl is a single-proton hole nucleus, the majority of the observed states will have threeparticle structure thus requiring the breaking of the neutron or proton core, or a collective octupole phonon coupled to the single proton hole. Thus information will be obtained on the single particle orbitals in the vicinity of the N=126 and Z=82 magic numbers, and on the size of the shell gap. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei.The experiment will use the ISOLDE Decay station, and will take advantage of the $^{207}$Hg beam from the molten lead target. A test on the feasibility to produce $^{208}$Hg beam from the same target, with the aim to study the $\\beta$-decay into $^{208}$Tl, could be performed at the same time.

  17. Effects of extrusion deformation on mechanical properties of sub-micron Si_3N_(4p)/2024 composite

    XIU Zi-yang; CHEN Guo-qin; LIU Yan-mei; YANG Wen-shu; WU Gao-hui

    2009-01-01

    Si_3N_(4p)/2024Al composite was fabricated by squeeze casting method and treated by extrusion deformation. Microstructure analyses indicate that Si_3N_4 particles in the composite are in cylindrical polyhedron shape. Extrusion deformation is beneficial to uniform distribution of Si_3N_4 particles and improves the relative density of Si_3N_(4p)/2024Al composite. Tensile strength of Si_3N_(4p)/2024Al composite increases by 76.6% after T6 treatment, and after extrusion and T6 treatment it is by 57.6% more than T6 treatment only. Elastic modulus of Si_3N_(4p)/2024Al composite increases a little after T6 treatment but increases by 33.5% after extrusion deformation.

  18. Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior

    Boron nitride nanotubes (BNNT) reinforced aluminum based composites are synthesized by spark plasma sintering (SPS). The concentration of BNNT is varied as 0, 2 and 5 vol% in the aluminum matrix. Micro-pillar compression testing revealed that Al–5 vol% BNNT has yield strength and compressive strength as 88 MPa and 216 MPa respectively, which is more than 50% improvement over unreinforced Al. BNNT play an active role in strengthening Al matrix through effective load bearing and transfer by crack bridging and sword in sheath mechanisms. Cold rolling of Al–5 vol% BNNT with 75% thickness reduction in a single pass exhibited high deformability without cracking or disintegration. The deformation is dominated by slip signifying ductile behavior in sintered Al with and without BNNT. BNNT survives the extreme temperature and pressure conditions during SPS processing and heavy deformation during cold rolling

  19. Effect of Radial and Axial Deformation on Electron Transport Properties in a Semiconducting Si-C Nanotube

    S. Choudhary

    2011-01-01

    Full Text Available We study the bias voltage dependent current characteristic in a deformed (8, 0 silicon carbide nanotube by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two probe molecular junction constructed from deformed nanotube. The transmission spectra and electron density of states at zero bias shows a significant reduction in threshold in the case of both radially compressed and axially elongated nanotube. However, semiconductor to metal transition was not observed, though the results show large differences in current characteristic compared to a perfect nanotube.

  20. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  1. Deformation potentials in AlGaN and InGaN alloys and their impact on optical polarization properties of nitride quantum wells

    Łepkowski, S. P.; Gorczyca, I.; Stefańska-Skrobas, K.; Christensen, Niels Egede; Svane, Axel

    2013-01-01

    The deformation potentials acz−D1, act−D2, D3, D4, and D5 are determined for random AlGaN and InGaN alloys using electronic band structure calculations based on the density functional theory. A sublinear composition dependence is obtained for acz−D1 and D3 in AlGaN, and D3 in InGaN, whereas...... superlinear behavior on composition is found foract−D2, D4, and D5 in AlGaN, and act−D2and D5 in InGaN. The optical polarization properties of nitride quantum wells are very well described by the k·p method when the obtained deformation potentials are included. In m-plane AlGaN/AlN and InGaN/GaN quantum wells...

  2. Tetrahedral and Triangular Deformations of $Z=N$ Nuclei in Mass Region $A \\sim 60-80$

    Takami, S.; Yabana, K.; Matsuo, M

    1997-01-01

    We study static non-axial octupole deformations in proton-rich $Z=N$ nuclei, $^{64}$Ge, $^{68}$Se, $^{72}$Kr, $^{76}$Sr, $^{80}$Zr and $^{84}$Mo, by using the Skyrme Hartree-Fock plus BCS calculation with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in $^{68}$Se is extremely soft for the $Y_{33}$ triangular deformation, and that in $^{80}$Zr the low-lying local minimum state coexisting with the prolate ground state has the $Y_{32}$ tetrahedral de...

  3. Decay of quadrupole-octupole 1- states in 40Ca and 140Ce

    Derya, V.; Tsoneva, N.; Aumann, T.; Bhike, M.; Endres, J.; Gooden, M.; Hennig, A.; Isaak, J.; Lenske, H.; Löher, B.; Pietralla, N.; Savran, D.; Tornow, W.; Werner, V.; Zilges, A.

    2016-03-01

    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E 1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ -decay behavior of candidates for the (21+⊗31-)1- state in the doubly magic nucleus 40Ca and in the heavier and semimagic nucleus 140Ce is investigated. Methods: (γ ⃗,γ') experiments have been carried out at the High Intensity γ -ray Source (HI γ S ) facility in combination with the high-efficiency γ -ray spectroscopy setup γ3 consisting of HPGe and LaBr3 detectors. The setup enables the acquisition of γ -γ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40Ca the decay into the 31- state was observed, while for 140Ce the direct decays into the 21+ and the 02+ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N =82 isotones. In addition, negative parities for two J =1 states in 44Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 11- excitation in the light-to-medium-mass nucleus 40Ca as well as in the stable even-even N =82 nuclei.

  4. Measurements of octupole collectivity in $^{220,222}$Rn and $^{222,224}$Ra using Coulomb excitation

    Kruecken, R; Larsen, A; Hurst, A M; Voulot, D; Grahn, T; Clement, E; Wadsworth, R; Gernhaeuser, R A; Siem, S; Huyse, M L; Iwanicki, J S

    2008-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{220,222}$Rn and $^{222,224}$Ra ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ states in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^{-}$ state using the MINIBALL array we can obtain the transition matrix elements. This will give quantitative information about octupole correlations in these nuclei. We require 22 shifts to fulfil the aims of the experiment.

  5. Di-neutron correlation in soft octupole excitations of neutron-rich Ni isotopes beyond N=50

    Serizawa, Yasuyoshi; Matsuo, Masayuki

    2008-01-01

    We investigate low-lying octupole response of neutron-rich Ni isotopes beyond the N=50 shell closure using the Skyrme-Hartree-Fock-Bogoliubov mean-fields and the continuum quasi-particle random phase approximation. Performing detailed numerical analyses employing the Skyrme parameter set SLy4 and a density-dependent delta interaction of the mixed type, we show that a neutron mode emerges above the neutron separation energy as a consequence of the weak binding of neutrons and it exhibits stron...

  6. A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    Leung, K; Martin, F; Rosenau, F; Simson, M; Zimmer, O

    2015-01-01

    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements.

  7. Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles.

    Butet, J; Bachelier, G; Russier-Antoine, I; Jonin, C; Benichou, E; Brevet, P-F

    2010-08-13

    Optical second-harmonic generation from gold nanoparticles is investigated both experimentally and theoretically. The contribution of octupoles is reported for the first time in the second-harmonic emission pattern, by using an harmonic polarization in the scattering plane. The experimental results presented here for particle sizes up to 100 nm are in excellent agreement with finite element method simulations involving the normal surface term only in the nonlinear polarization source. In addition, analytical calculations based on nonlinear Mie scattering theory clearly evidence the constructive and destructive interferences occurring between the dipolar and octupolar responses selected with this polarization configuration. PMID:20868074

  8. Deformed Dynamics of Q-Deformed Systems

    Quantum algebras have been the subject of an intensively research in the last years. Particularly, after the works of Macfarlane and Biedenharn on the q-deformed oscillators, a great effort has been devoted to the application and generalization of q-deformed systems in chemistry and physics. In quantum optics, q-bosons have been used to generalized fundamental models such as, the Jaynes-Cummings and Dicke models. Besides, using generalized deformed oscillators several versions of the Jaynes-Cummings Hamiltonian have found a unified description. In the present work, we study the dynamical properties of q-deformed oscillators and their relationship to the anharmonic oscillators by means of a Lie-algebraic approach. In doing so, we find that an infinite dimensional set of 'q-deformed relevant operators' close a 'partial q-deformed Lie algebra' under commutation with the Arik-Coon Hamiltonian. We show that the dynamics of the s?stem can be described in terms of the multi commutator of the type [H,... , [H, 0] . . .]. Eve also obtain, that the multi commutator can be expressed for q > 1 as an operator average with respect to the ('Binomial distribution' which depends on[g on the deformation parameter q, and for the general case (i.e. q - R) as a 'power law'. As a consequence of the power law dependence, we find that the dynamics of the infinite-dimensional q-deformed Lie-algebra scale, i.e. the temporal evolution for the whole set of relevant operators collapse on a single curve. We calculate and analyze, the temporal evolution of the set of relevant operators for the q-deformed and the anharmonic oscillator when the initial conditions are a q-coherent and coherent states respectively. We obtain that the dynamics of both models is governed by a weighted average with respect to the 'q-deformed Poisson' and the 'standard Poisson' distributions respectively. Finally, we find the conditions under which the dynamics of the relevant operators of both oscillators are

  9. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was ε ∼7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  10. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Ghasemi-Nanesa, H; Shirazi, H [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of); Nili-Ahmadabadi, M, E-mail: sut.caster.81710018@gmail.co, E-mail: nili@ut.ac.i [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of) and Center of Excellence for High Performance Materials, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of)

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was {epsilon} {approx}7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  11. Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic Properties: Predictions from a Multiscale Computational Approach

    Kumar, Hemant; Er, Dequan; Dong, Liang; Li, Junwen; Shenoy, Vivek B.

    2015-06-01

    Recent technological advances in the isolation and transfer of different 2-dimensional (2D) materials have led to renewed interest in stacked Van der Waals (vdW) heterostructures. Interlayer interactions and lattice mismatch between two different monolayers cause elastic strains, which significantly affects their electronic properties. Using a multiscale computational method, we demonstrate that significant in-plane strains and the out-of-plane displacements are introduced in three different bilayer structures, namely graphene-hBN, MoS2-WS2 and MoSe2-WSe2, due to interlayer interactions which can cause bandgap change of up to ~300 meV. Furthermore, the magnitude of the elastic deformations can be controlled by changing the relative rotation angle between two layers. Magnitude of the out-of-plane displacements in graphene agrees well with those observed in experiments and can explain the experimentally observed bandgap opening in graphene. Upon increasing the relative rotation angle between the two lattices from 0° to 10°, the magnitude of the out-of-plane displacements decrease while in-plane strains peaks when the angle is ~6°. For large misorientation angles (>10°), the out-of-plane displacements become negligible. We further predict the deformation fields for MoS2-WS2 and MoSe2-WSe2 heterostructures that have been recently synthesized experimentally and estimate the effect of these deformation fields on near-gap states.

  12. a Short Review of Elementary Properties and Possible Applications of Deformed q-ALGEBRA Derived from Non-Extensive Tsallis Entropy

    Strzałka, Dominik; Grabowski, Franciszek

    Tsallis entropy introduced in 1988 is considered to have obtained new possibilities to construct generalized thermodynamical basement for statistical physics expanding classical Boltzmann-Gibbs-Shannon thermodynamics for non-equilibrium states. During the last two decades this q-generalized theory has been successfully applied to a considerable amount of physically interesting complex phenomena. The authors would like to present a short rewiev, the applications and the elementary properties of some operators in deformed q-algebra derived from Tsallis definition of non-extensive entropy based on the definitions of the q-logarithm and the q-exponential. The new definition of the q-root is also introduced.

  13. Investigation of Mechanical Properties and Plastic Deformation Behavior of (Ti45Cu40Zr10Ni5100−xAlx Metallic Glasses by Nanoindentation

    Lanping Huang

    2014-01-01

    Full Text Available The effect of Al addition on mechanical properties and plastic deformation behavior of (Ti45Cu40Zr10Ni5100−xAlx (x = 0, 2, 4, 6 and 8 amorphous alloy ribbons have been investigated by nanoindentation. The hardness and elastic modulus do not simply increase with the increase of Al content. The alloy with 8 at.% Al exhibits the highest hardness and elastic modulus. The serrations or pop-in events are strongly dependent on the loading rate and alloy composition.

  14. Optical and wetting properties of nanostructured fluorinated ethylene propylene changed by mechanical deformation and its application in triboelectric nanogenerators

    Guo, Xiaodong; Helseth, Lars Egil

    2015-01-01

    We demonstrate that nanostructured fluorinated ethylene propylene (FEP) polymer films undergo a non-reversible structural transition when exposed to an applied force. While reactive ion etching (RIE) treatment creates FEP films with well-defined nanostructures, applied stress causes a permanent deformation which alters the optical reflectance spectrum. The structural changes of the FEP films also altered the contact angles of water droplets. It was found that the contact angles changed from 109° before to 139° after RIE treatment, and plastic deformation reduced the contact angles to 111°. Scanning electron microscopy images revealed freshly formed homogeneous surfaces, with nanostructures hidden below, which correlated with the macroscopic changes in optical reflectance. Interestingly, the contact electrification between FEP and aluminum did not change when the nanostructures were deformed, and we propose that the nanostructured FEP surface can be used to both optically monitor the state of the nanostructure as well as functioning as a part of an energy harvesting system. At an average power of about 22 μW with an area of 4 cm2, the energy harvester is able to light up a large number of light emitting diodes.

  15. q-Deformed Dynamics and Virial Theorem

    Zhang, Jian-Zu

    2002-01-01

    In the framework of the q-deformed Heisenberg algebra the investigation of $q$-deformation of Virial theorem explores that q-deformed quantum mechanics possesses better dynamical property. It is clarified that in the case of the zero potential the theoretical framework for the q-deformed Virial theorem is self-consistent. In the selfadjoint states the q-deformed uncertainty relation essentially deviates from the Heisenberg one.

  16. Evolution of quadrupole and octupole collectivity north-east of $^{132}$ Sn: the even Te and Xe isotopes

    We propose to study excited states in isotopes north-east of the doubly-magic $^{132}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to the determine B(E2) and B(E3) values to follow the evolution of quadrupole and octupole collectivity when going away from the shell closures at Z = 50 and N = 82. The B(E2; 0$^+_{gs}$ $\\rightarrow$ 2$^+_{1}$) values in the even isotopes $^{138-144}$Xe have been measured at REX-ISOLDE and the systematic trend towards neutron-rich nuclei is well described even by an empirical Grodzins-type formula. An increasing dipole moment observed for $^{140,142}$Xe is interpreted as indirect signature of increasing octupole correlations peaking at N = 88. So far, no B(E3) values are known. In contrast to the Xe isotopes, the Te ones, in particular $^{136}$Te, are known for their notoriously irregular behaviour. In order to understand the nuclear structure also on a microscopic basis, the isotope $^{136}$Te with just one pair of protons and neutrons...

  17. Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges.

    Yujun Qi

    Full Text Available Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%. The results that are obtained herein can provide a foundation for the structural design of this type of panel.

  18. Experimental Study of the Bending Properties and Deformation Analysis of Web-Reinforced Composite Sandwich Floor Slabs with Four Simply Supported Edges.

    Qi, Yujun; Fang, Hai; Liu, Weiqing

    2016-01-01

    Web-reinforced composite sandwich panels exhibit good mechanical properties in one-way bending, but few studies have investigated their flexural behavior and deformation calculation methods under conditions of four simply supported edges. This paper studies the bending performance of and deformation calculation methods for two-way web-reinforced composite sandwich panels with different web spacing and heights. Polyurethane foam, two-way orthogonal glass-fiber woven cloth and unsaturated resin were used as raw materials in this study. Vacuum infusion molding was used to prepare an ordinary composite sandwich panel and 5 web-reinforced composite sandwich panels with different spacing and web heights. The panels were subjected to two-way panel bending tests with simple support for all four edges. The mechanical properties of these sandwich panels during the elastic stage were determined by applying uniformly distributed loads. The non-linear mechanical characteristics and failure modes were obtained under centrally concentrated loading. Finally, simulations of the sandwich panels, which used the mechanical model established herein, were used to deduce the formulae for the deflection deformation for this type of sandwich panel. The experimental results show that webs can significantly improve the limit bearing capacity and flexural rigidity of sandwich panels, with smaller web spacing producing a stronger effect. When the web spacing is 75 mm, the limit bearing capacity is 4.63 times that of an ordinary sandwich panel. The deduced deflection calculation formulae provide values that agree well with the measurements (maximum error <15%). The results that are obtained herein can provide a foundation for the structural design of this type of panel. PMID:26871435

  19. Deformation microstructures

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...

  20. Deformed shell model studies of spectroscopic properties of 64Zn and 64Ni and the positron double beta decay of 64Zn

    R Sahu; V K B Kota

    2014-04-01

    The spectroscopic properties of 64Zn and 64Ni are calculated within the framework of the deformed shell model (DSM) based on Hartree–Fock states. GXPF1A interaction in 1 $f_{7/2}$, 2$p_{3/2}$, 1$f_{5/2}$ and 2$p_{1/2}$ space with 40Ca as the core is employed. After ensuring that DSM gives good description of the spectroscopic properties of low-lying levels in these two nuclei considered, nuclear transition matrix elements (NTME) for the neutrinoless positron double beta decay (0 + and 0 +EC) of 64Zn are calculated. The two-neutrino positron double beta decay halflife is also calculated for this nucleus.

  1. Isoscalar octupole transition rates in 50Ti, 52Cr and 208Pb from model-independent analyses of 104 MeV α-particle scattering

    Applying a recently proposed method for model-independent analyses experimental differential cross sections for 104 MeV α-particle scattering have been analyzed. Reliable values of isoscalar (0+-3-1) octupole transition rates in 50Ti, 52Cr and 208 Pb are presented and compared with electromagnetic rates. (orig.)

  2. Alternating parity bands in doubly odd 218Ac129 and octupole instability in the light actinide region

    High-spin states of doubly odd 218Ac129 have been investigated using in-beam α, γ and conversion electron spectroscopy techniques through the 209Bi(12(13)C,3(4)n) fusion-evaporation reactions. The level scheme of 218Ac shows three interconnected, alternating parity structures, each one linked by strong E1 transitions. Two of these bands are strikingly similar to the known scheme of the isotone 217Ra and this analogy is shown to persist for the pair 220Ac, 219Ra. The relation between the structure of 218Ac and its neighbors is thoroughly discussed showing that the first signals of octupole collectivity appear for N = 129. (orig.)

  3. Deformation mechanisms in experimentally deformed Boom Clay

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  4. Vaporization of Deforming Droplets

    Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor

    2012-11-01

    Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.

  5. Structural defects in Fe–Pd-based ferromagnetic shape memory alloys: tuning transformation properties by ion irradiation and severe plastic deformation

    Fe–Pd-based ferromagnetic shape memory alloys constitute an exciting class of magnetically switchable smart materials that reveal excellent mechanical properties and biocompatibility. However, their application is severely hampered by a lack of understanding of the physics at the atomic scale. A many-body potential is presented that matched ab inito calculations and can account for the energetics of martensite ↔ austenite transition along the Bain path and relative phase stabilities in the ordered and disordered phases of Fe–Pd. Employed in massively parallel classical molecular dynamics simulations, the impact of order/disorder, point defects and severe plastic deformation in the presence of single- and polycrystalline microstructures are explored as a function of temperature. The model predictions are in agreement with experiments on phase changes induced by ion irradiation, cold rolling and hammering, which are also presented. (paper)

  6. Ti-O/TiN films synthesized by plasma immersion ion implantation and deposition on 316L: Study of deformation behavior and mechanical properties

    Ti-O/TiN gradient films have been synthesized on 316L stainless steel using plasma immersion ion implantation and deposition (PIII and D). The coated samples were subjected to tensile testing and observed in situ by scanning electron microscopy. No delamination, peeling or cracking was found on the film after plastic deformation of 0.16 mm residual displacement. Nanoindentation and nanoscratch tests revealed that the prepared films possess high nanohardness and good adhesion strength to the metal substrate. The mechanical properties of the synthesized Ti-O/TiN films are thought to be attributed to the good nanostructure, high density, smooth surface, slow transition from Ti-O to TiN and broad film/matrix interface achieved by the PIII-D process

  7. Ti-O/TiN films synthesized by plasma immersion ion implantation and deposition on 316L: Study of deformation behavior and mechanical properties

    Wan, G.J. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)]. E-mail: biomat@biomatchina.com; Huang, N. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, P. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Leng, Y.X. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Sun, H. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Chen, J.Y. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Wang, J. [Key Lab. of Biomaterials Surface Modification of Sichuan, Key Lab. of Advanced Materials Processing of Chinese Education Ministry, College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China)

    2005-07-22

    Ti-O/TiN gradient films have been synthesized on 316L stainless steel using plasma immersion ion implantation and deposition (PIII and D). The coated samples were subjected to tensile testing and observed in situ by scanning electron microscopy. No delamination, peeling or cracking was found on the film after plastic deformation of 0.16 mm residual displacement. Nanoindentation and nanoscratch tests revealed that the prepared films possess high nanohardness and good adhesion strength to the metal substrate. The mechanical properties of the synthesized Ti-O/TiN films are thought to be attributed to the good nanostructure, high density, smooth surface, slow transition from Ti-O to TiN and broad film/matrix interface achieved by the PIII-D process.

  8. The effect of cold deformation and aging on the structure and properties of the corrosion-resistant Ni-Cr-Mo alloy

    The influence of cold deformation degree (up to 92%) and subsequent ageing at 550 deg C (duration up to 100 h) on structure, mechanical properties and corrosion resistance of alloy KhN65MV is studied with the aim of determining cold working and heat treatment conditions providing the production of a cold worked strip with the hardness ≥50 HRC and the ultimate strength σu≥1500 MPa at satisfactory corrosion resistance. A comparison of estimation results for hardness and corrosion resistance of alloy KhN65MV after cold working and thermomechanical treatment permits the conclusion that the conditions ensuring a hardness level ≥50 HRC increase the corrosion rate not more than by a factor of 1.5 compared to a hardened state of the alloy

  9. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: → A transverse-isotropic elastic model of SWCNTs is presented. → A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. → Behavior of these nanocomposites under shear deformation is studied. → A symmetric shear stress distribution occurs only in SWCNTs with 45o orientation. → The total shear load sustained is greatest in the case of 45o orientation.

  10. Effect of grain size distribution on mechanical properties of ultrafine grained Al severely deformed by ARB process and subsequently annealed

    A commercial purity aluminum was highly deformed by the accumulative roll-bonding (ARB) process and subsequently annealed. The specimens having various grain size distributions were obtained. In case of the specimen ARB-processed with lubrication, the specimens with mean grain size larger than 3μm showed continuous yielding. On the other hand, in case of the specimen ARB-processed without lubrication, the specimens with mean grain size larger than 3μm showed discontinuous yielding. It suggests that appearance of the yield-drop phenomena can not be decided by the mean grain size. In order to consider effect of grain size distribution, the volume fraction of grains was summed from coarser grains, and the grain size when the summed volume fraction reached 70%, d70% was estimated from the grain size distribution. it was found that d70% of specimens which showed continuous yielding were larger than 8 μm while the specimens which showed discontinuous yielding were smaller than 6 μm, regardless of the lubrication condition in the ARB process. The result suggests that the appearance of the yield-drop phenomena depend on d70%.

  11. Correlation of substructure with mechanical properties of plastically deformed reactor structural materials. Progress report, January 1, 1976--June 30, 1977

    Moteff, J.

    1977-07-08

    Transmission electron microscopy used to evaluate the deformation (creep, fatigue and tensile) induced microstructure of 304 SS, Incoloy 800, 330 SS and three of the experimental alloys (E19, E23 and E36) obtained from the National Alloy Program clearly shows that the relationship between the subgrain size (lambda) and the applied stress (sigma) obeys the equation lambda = Ab (sigma/E)/sup -1/ where A is a constant of the order of 4, b the Burgers rector and E is Young's modulus. Hot-hardness studies on 304 SS, 316 SS, Incoloy 800, 2 /sup 1///sub 4/ Cr-1 Mo steels, 330 SS, Inconel 718, PE-16, Inconel 706, M-813 and the above three experimental alloys suggests that reasonable effective activation energies for creep may be obtained through the use of the hardness test as a strength microprobe tool. The ordering of the strength levels obtained through hot-hardness follows quite closely that obtained in tensile tests when those data are available.

  12. Correlation of substructure with mechanical properties of plastically deformed reactor structural materials. Progress report, January 1, 1976--June 30, 1977

    Transmission electron microscopy used to evaluate the deformation (creep, fatigue and tensile) induced microstructure of 304 SS, Incoloy 800, 330 SS and three of the experimental alloys (E19, E23 and E36) obtained from the National Alloy Program clearly shows that the relationship between the subgrain size (lambda) and the applied stress (sigma) obeys the equation lambda = Ab (sigma/E)-1 where A is a constant of the order of 4, b the Burgers rector and E is Young's modulus. Hot-hardness studies on 304 SS, 316 SS, Incoloy 800, 2 1/4 Cr-1 Mo steels, 330 SS, Inconel 718, PE-16, Inconel 706, M-813 and the above three experimental alloys suggests that reasonable effective activation energies for creep may be obtained through the use of the hardness test as a strength microprobe tool. The ordering of the strength levels obtained through hot-hardness follows quite closely that obtained in tensile tests when those data are available

  13. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    Liu, Keming [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Jiang, Zhengyi; Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zou, Jin; Chen, Zhibao [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Lu, Deping, E-mail: llludp@163.com [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2014-11-05

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s{sup −1}, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s{sup −1} and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS.

  14. Mineral preferred orientation and magnetic properties as indicators of varying strain conditions in naturally deformed iron ore

    Günther, A.; Brokmeier, H. G.; Petrovský, Eduard; Siemes, H.; Helming, K.; Quade, H.

    A74, Suppl. (2002), s. S1080-S1082. ISSN 0947-8396 Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetic properties * iron ore * Brazil * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.231, year: 2002

  15. 温度对GH4586A合金拉伸性能及变形行为的影响%Effects of temperature on tensile properties and deformation behavior of GH4586A superalloy

    刘杨; 王磊; 王帅; 崔彤

    2006-01-01

    Effects of temperature on tensile properties and deformation behavior of the nickel-based superalloy GH4586A have been investigated. The results showed that deforming temperature has no effect on the microstructure of the alloy, while tensile properties are thermo-sensitive. With the increasing testing temperature the strength of the alloy decreased, and the ductility increased. While, the ductility of the alloy decreased weakly at the temperature range of 823 K to 923 K. And the main reason can be considered as the easily-broken of the MC type block carbides due to the stress concentration at the interface between the matrix and carbides to form the micro - cracks during the deforming process.

  16. Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation

    Nurislamova, Gulnaz; Sauvage, Xavier; Murashkin, Maxim; Islamgaliev, Rinat; Valiev, Ruslan

    2008-01-01

    Microstructural features and mechanical properties of an Al-Mg-Si alloy processed by high-pressure torsion have been investigated using transmission electron microscopy, X-ray diffraction, three-dimensional atom probe, tensile tests and microhardness measurements. It is shown that HPT processing of the Al-Mg-Si alloy leads to a much stronger grain size refinement than of pure aluminium (down to 100 nm). Moreover, massive segregation of alloying elements along grain boundaries is observed. Thi...

  17. Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation

    Adachi, Nozomu; Todaka, Yoshikazu, E-mail: todaka@me.tut.ac.jp; Umemoto, Minoru [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Yokoyama, Yoshihiko [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-09-29

    The mechanism of plastic deformation in bulk metallic glasses (BMGs) is widely believed to be based on a shear transformation zone (STZ). This model assumes that a shear-induced atomic rearrangement occurs at local clusters that are a few to hundreds of atoms in size. It was recently postulated that the potential energy barrier for STZ activation, W{sub STZ}, calculated using the cooperative shear model, is equivalent to the activation energy for β-relaxation, E{sub β}. This result suggested that the fundamental process for STZ activation is the mechanically activated β-relaxation. Since the E{sub β} value and the glass transition temperature T{sub g} of BMGs have a linear relation, that is, because E{sub β} ≈ 26RT{sub g}, the composition of the BMG determines the ease with which the STZ can be activated. Enthalpy relaxation experiments revealed that the BMG Zr{sub 50}Cu{sub 40}Al{sub 10} when deformed by high-pressure torsion (HPT) has a lower E{sub β} of 101 kJ/mol. The HPT-processed samples accordingly exhibited tensile plastic elongation (0.34%) and marked decreases in their yield strength (330 MPa). These results suggest that mechanically induced structural defects (i.e., the free volume and the anti-free volume) effectively act to reduce W{sub STZ} and increase the number of STZs activated during tensile testing to accommodate the plastic strain without requiring a change in the composition of the BMG. Thus, this study shows quantitatively that mechanically induced structural defects can overcome the compositional limitations of E{sub β} (or W{sub STZ}) and result in improvements in the mechanical properties of the BMG.

  18. Strong M1 components in 3i-→31- transitions in nearly spherical nuclei: Evidence for isovector-octupole excitations

    An evaluation of data obtained in (n,n'γ) experiments reveals strong M1 3i-→31- transitions in nuclei near the N=50 (92Zr, 94Mo, and 96Mo), Z=50 (112Cd and 114Cd), and N=82 (144Nd) shell closures. The observed 1-||M1||3i-> matrix elements scale with the 1+||M1||2ms+> matrix elements connecting the mixed-symmetric and symmetric quadrupole excitations. In accordance with a picture of a mixed two-component quantum system, the energy difference between the initial 3i- state and the 31- octupole phonon is proportional to the |1-||E3||0gs+>| matrix element. The possibility of assigning the 3- states of interest as octupole isovector states is discussed.

  19. Small-scale mechanical property characterization of ferrite formed during deformation of super-cooled austenite by nanoindentation

    The mechanical properties of dynamically and statically transformed ferrites were analyzed using a nanoindentater-EBSD (Electron BackScattered Diffraction) correlation technique, which can distinguish indenting positions according to the grains in the specimen. The dilatometry and the band slope and contrast maps by EBSD were used to evaluate the volume fractions of two kinds of ferrite and pearlite. Fine ferrites induced by a dynamic transformation had higher nano-hardness than the statically transformed coarse ferrites. Transmission electron microscopy (TEM) showed the dynamic ferrites to have a higher dislocation density than the statically transformed ferrites.

  20. An Investigation of Physico-Mechanical Properties of Ultrafine-Grained Magnesium Alloys Subjected to Severe Plastic Deformation

    Kozulyn, A. A.; Skripnyak, V. A.; Krasnoveikin, V. A.; Skripnyak, V. V.; Karavatskii, A. K.

    2015-01-01

    The results of investigations of physico-mechanical properties of specimens made from the structural Mg-based alloy (Russian grade Ma2-1) in its coarse-grained and ultrafine-grained states after SPD processing are presented. To form the ultrafine-grained structure, use was made of the method of orthogonal equal-channel angular pressing. After four passes through the die, a simultaneous increase was achieved in microhardness, yield strength, ultimate tensile strength and elongation to failure under conditions of uniaxial tensile loading.

  1. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP.

    Naizabekov, A B; Andreyachshenko, V A; Kocich, Radim

    2013-01-01

    The presented article deals with the effects of equal channel angular pressing (ECAP) with a newly adjusted die geometry on the microstructure and mechanical properties of the Al-Si-Mn-Fe alloy. This alloy was subjected to two modes of heat treatment followed by the ECAP process, which led to partial back pressure (ECAP-PBP). Ultra-fine grained (UFG) structure formed through ECAP-PBP process has been studied by methods of optical as well as electron microscopy. The obtained results indicate that quenched alloys, in comparison to slowly cooled alloys, do not contain large brittle particles which subsequently initiate a premature creation of cracks. It was shown that the mechanical properties of these alloys after such processing depend first and foremost on the selected type of heat treatment and on the number of performed passes. The maximum of ultimate tensile strength (417 MPa) was obtained for quenched alloy after 3 passes. On the other hand, maximum ductility was found in slowly cooled alloy after second pass. Further passes reduced strength due to the brittle behavior of excluded particles. One of the partial findings is that there is only a small dependency of the resulting size of grains on previously applied thermal processing. The minimum grain sizes were obtained after 3 passages, where their size ranged between 0.4 and 0.8 μm. The application of quick cooling after heat processing due to the occurrence of finer precipitates in the matrix seems to produce better results. PMID:22796374

  2. Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress

    Wang, Kehao; Venetsanos, Demetrios; Wang, Jian; Pierscionek, Barbara K.

    2016-01-01

    The human lens provides one-third of the ocular focussing power and is responsible for altering focus over a range of distances. This ability, termed accommodation, defines the process by which the lens alters shape to increase or decrease ocular refractive power; this is mediated by the ciliary muscle through the zonule. This ability decreases with age such that around the sixth decade of life it is lost rendering the eye unable to focus on near objects. There are two opponent theories that provide an explanation for the mechanism of accommodation; definitive support for either of these requires investigation. This work aims to elucidate how material properties can affect accommodation using Finite Element models based on interferometric measurements of refractive index. Gradients of moduli are created in three models from representative lenses, aged 16, 35 and 48 years. Different forms of zonular attachments are studied to determine which may most closely mimic the physiological form by comparing stress and displacement fields with simulated shape changes to accommodation in living lenses. The results indicate that for models to mimic accommodation in living eyes, the anterior and posterior parts of the zonule need independent force directions. Choice of material properties affects which theory of accommodation is supported. PMID:27507665

  3. Determination of the B(E3,0$^{+}$ $\\rightarrow$ 3$^{-}$) strength in the octupole correlated nuclei $^{142,144}$Ba using Coulomb excitation

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.

  4. Enhancement of mechanical properties of the AA5754 aluminum alloy with a severe plastic deformation: Izboljšanje mehanskih lastnosti aluminijeve zlitine AA5754 z veliko plastično deformacijo:

    Ajredini, Fadil; Izairi, Neset; Ristova, Mimoza; Vevecka-Priftaj, Aferdita

    2014-01-01

    Mechanical properties of materials with ultrafine grain (UFG) size have attracted considerable scientific attention and technological interest during the last few years. It was well established that the grain size of metallic alloys may be substantially refined with a severe plastic deformation (SPD). The present work focuses on equal-channel angular pressing (ECAP) as the most used method of SPD for grain refinement inducing a significant enhancement to the mechanical and functional properti...

  5. Size effects on the magnetic properties of Cu-Nb nanofilamentary wires processed by severe plastic deformation

    We report on the influence of the microstructure on the AC and DC magnetic properties of Cu-3.5% Nb nanofilamentary wires. Samples obtained from a single Cu-3.5% Nb wire were subsequently submitted to different plastic strain levels via drawing so that their microstructure was altered. Noticeable differences are observed in their isothermal DC magnetization curves that present a double-peak structure. The first peak, which occurs at low magnetic fields, is attributed to superconductivity induced in the Cu matrix due to the proximity effect. It is argued that the second peak is related exclusively to niobium. The dependence of these two distinct peaks on the characteristic nanometre length scales of the samples, i.e. dimension of the Nb filaments and interfilamentary spacing, are discussed

  6. Effect of warm deformation on microstructure and mechanical properties of a layered and nanostructured 304 stainless steel

    A layered and nanostructured (LN) stainless steel was fabricated by surface mechanical attrition treatment (SMAT) combined with warm co-rolling (WCR) in order to improve the low ductility of nanostructured metallic materials. The influences of rolling temperature and strain on the microstructure are investigated. The microstructure of LN steel is characterized by methods of transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results reveal that the microstructure of LN steels presents a periodic distribution of nanocrystalline layer, ultra-fine grained layer and coarse grained layer with graded transition of grain size. The integrated effects of SMAT and WCR on the refinement of grain size, involving in dislocation subdivision, twinning and dynamic recrystallization, are discussed. The tensile properties of LN steels exhibit both high strength and good ductility resulting from good work hardening behavior. The strengthening mechanisms by grain size refinement, α′-martensite transformation and twinning are explored

  7. Comparison between the sandy and the shaly facies of the Opalinus Clay (Mont Terri, Switzerland): mechanical properties obtained from triaxial deformation, mineralogical composition and micro fabric

    Document available in extended abstract form only. In Switzerland, the international research project Mont Terri investigates the Opalinus Clay (Jurassic formation) in the underground rock laboratory (URL) Mont Terri. The Opalinus Clay is subdivided into different facies (sandy, shaly, and carbonate rich facies). In the Mont Terri URL the sandy facies is less abundant and only a relatively thin layer of the carbonate rich facies is present. The currently favored HLRW repository site in Switzerland, however, is supposed to be in the sandy facies of the Opalinus Clay. Yet, most of the investigations focused on the shaly facies. Generally the understanding of the relation of properties and performances of clays and clay-stones is poor which is relevant for mineralogical micro fabric but also mechanical processes. For the safety assessment of the repository models describing both chemical and mechanical processes are required. Such models have to be based on a solid understanding of the mechanisms behind the processes considered. With respect to the understanding of the deformation behavior of different Opalinus Clay samples, Klinkenberg et al. (2009) found the carbonates to play a major role. For different samples of the shaly facies they found carbonate to represent a kind of predetermined breaking planes. Therefore, carbonate rich materials showed lower mechanical strengths. Interestingly, they also observed the opposite when considering samples of the Callovo-Oxfordian clay, which is investigated in France. Considering the micro fabric of all samples suggests that the carbonate - mechanical strength relation depends on the type and amount of carbonates. Therefore, Kaufhold et al. investigated the micro fabric - mechanical strength relation of the sandy facies. They concluded that the sandy facies is comparable with the investigated samples of the Callovo-Oxfordian clay. The mechanical behavior of the shaly facies was already investigated. A detailed comparison of

  8. Deformed Mittag-Leffler Polynomials

    Miomir S. Stankovic; Marinkovic, Sladjana D.; Rajkovic, Predrag M.

    2010-01-01

    The starting point of this paper are the Mittag-Leffler polynomials introduced by H. Bateman [1]. Based on generalized integer powers of real numbers and deformed exponential function, we introduce deformed Mittag-Leffler polynomials defined by appropriate generating function. We investigate their recurrence relations, differential properties and orthogonality. Since they have all zeros on imaginary axes, we also consider real polynomials with real zeros associated to them.

  9. Microstructure and mechanical properties of nanocrystalline titanium and Ti-Ta-Nb alloy manufactured using various deformation methods

    Mechanical properties and TEM microstructure studies have been carried out of nanocrystalline titanium, Ti10Nb10Ta and Ti10Nb obtained by various technological routes, including: powder metallurgy (ball milling and hot pressing), Equal Channel Angular Pressing (ECAP), hydroextrusion (HE) and high pressure torsion (HPT). The HE processed material in the form of 20 mm rods was extruded at a strain rate of 2.5 x 102 s-1 to a diameter of 3 mm, which corresponds to the true strain of 3.8. Resulting Yield Strength (YS) at the crystal size below 80 nm exceeded 1000 MPa, i.e. attained a value of 3 times more than the initial material. Equal-Channel Angular Pressing (ECAP) at 723 K was applied to produce nanostructured titanium. Grain refinement was observed already after one pass (considerable number of grains with d 20=1000. The additions of Nb and Ta resulted in a similar grain refinement but lower hardness. Uniaxial hot pressing at 650 C, followed by vacuum annealing resulted in similar microhardness as for powders. TEM studies performed using quantitative metallography allowed to estimate mean grain size at 150 nm. HPT technique at the pressure of 5 GPa resulted in finest grain size as compared to other preparation techniques leading to nanoscale grain refinement in Ti samples. The mean crystal size was estimated at about 30 nm. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Cyclic Plastic Deformation and Welding Simulation

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose anal

  11. The Effect Of Strain Rate On The Mechanical Properties And Microstructure Of The High-Mn Steel After Dynamic Deformation Tests

    Jabłońska M.B.

    2015-06-01

    Full Text Available The paper presents results of dynamic tensile investigations of high-manganese Fe – 20 wt.% Mn – 3 wt.% Al – 3 wt.% Si – 0.2 wt.% steel. The research was carried out on a flywheel machine, which enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. It was found that the studied steel was characterized by very good mechanical properties. Strength of the tested materials was determined in the static tensile test and dynamic deformation test, while its hardness was measured with the Vickers hardness test method. The surface of fractures that were created in the areas where the sample was torn were analyzed. These fractures indicate the presence of transcrystalline ductile fractures. Fractographic tests were performed with the use of a scanning electron microscope. The structure was analyzed by light optical microscopy. Substructure studies revealed occurrence of mechanical twinning induced by high strain rates. A detailed analysis of the structure was performed with the use of a transmission scanning electron microscope STEM.

  12. Developing a Methodology for Observing Fault-Zone Frictional Properties from Repeating Earthquakes at Depth: Application to Postseismic Deformation Following the 2004 Parkfield Earthquake

    Statz-Boyer, P.; Taira, T.; Nadeau, R. M.; Dreger, D. S.

    2009-12-01

    Observing fault-zone frictional and rheological properties at seismogenic depth is a key to understand postseismic deformation. We propose a methodology for estimating subsurface rheological/frictional properties, using cumulative seismic slips derived from repeating earthquake sequences. An ideal test for measuring frictional and rheological properties has been provided by the 2004 M 6 Parkfield earthquake, California, because the Parkfield region has many repeating earthquake sequences. We use a set of 12 repeating earthquake sequences extending over a depth range of 5 km, at the Parkfield segment of the San Andreas fault. These sequences are chosen because 5-10 repeating earthquakes in individual sequences typically occurred during the first month of the postseismic period, which allows us to address time evolutions of cumulative seismic slips. Their locations are close to the rupture area of the 2004 Parkfield earthquake. Following Montési [2004], we first test three rheology models to characterize cumulative seismic slips inferred from repeating earthquake sequences: 1) velocity-strengthening friction, 2) viscous flow, and 3) ductile creep, where velocity-strengthening friction and viscous flow are end-members of the power law case. Observed cumulative seismic slips are characterized by a stress exponent n. For velocity-strengthening friction, 1/n = 0 and, for viscous flow, 1/n = 1. Assuming loading rate to be zero, we first invert cumulative seismic slip data over a time period of 3 years following the 2004 Parkfield earthquake to determine 1/n, characteristic time τ, and initial slip rate V0 (e.g., immediately after the main shock). We employ a least-square method, estimating 95% confidence intervals using a bootstrap approach. Our result suggests that 9 of 12 sequences yield 1/n ranging from -0.5 to 0.01, which suggest a velocity-strengthening friction model with the presence of reloading on the fault. The remaining 3 sequences show a relatively large

  13. Neutron lifetime measurements and effective spectral cleaning with an ultracold neutron trap using a vertical Halbach octupole permanent magnet array

    Leung, K K H; Ivanov, S; Rosenau, F; Zimmer, O

    2016-01-01

    Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at the bottom of the trap was used for filling and emptying. This valve was covered with Fomblin grease to induce non-specular reflections and was used in combination with a movable polyethylene UCN remover inserted from the top for cleaning of above-threshold UCNs. Loss due to UCN depolarization was suppressed with a minimum 2 mT bias field. Without using the UCN remover, a total storage time constant of $(712 \\pm 19)$ s was observed; with the remover inserted for 80 s and used at either 80 cm or 65 cm from the bottom of the trap, time constants of $(824 \\pm 32)$ s and $(835 \\pm 36)$ s were observed. Combining the latter two values, a neutron lifetime of $\\tau_{\\rm n} = (887 \\pm 39)$ s is extracted after primarily correcting for losses at the UCN valve. The time co...

  14. Properties of seven-filament in situ MgB{sub 2}/Fe composite deformed by hydrostatic extrusion, drawing and rolling

    Kovac, P [Institute of Electrical Engineering, Centre of Excellence CENG, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Husek, I [Institute of Electrical Engineering, Centre of Excellence CENG, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Pachla, W [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Kulczyk, M [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland)

    2007-07-15

    Seven-filament MgB{sub 2}/Fe wires and tapes were made by in situ processing using hydrostatic extrusion, rolling and drawing. Microhardness measurements have shown that the density of as-deformed cores reflects the applied deformation and follows the iron sheath hardness. The filament size was reduced from 245 {mu}m down to 19 {mu}m by rolling and the critical current densities of samples with different core sizes and deformation routes were compared. The highest current density was measured for the tape deformed by two-axial rolling and a filament size of 60 {mu}m. Thinner filaments show lower J{sub c} values due to hard inclusions present in low-purity boron powder (boron oxide), which reduce the transport current substantially. The obtained results show that a proper combination of extrusion and rolling deformations leads to high filament density in wires and tapes, which results in high transport current density.

  15. Carrier Deformability in Drug Delivery.

    Morilla, Maria Jose; Romero, Eder Lilia

    2016-01-01

    Deformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications. PMID:26675226

  16. Oxide dispersion strengthened ferritic alloys. 14/20% chromium: effects of processing on deformation texture, recrystallization and tensile properties; Alliages ferritiques 14/20% de chrome renforces par dispersion d`oxydes. Effets des procedes de mise en forme sur les textures de deformation, la recristallisation et les proprietes de traction

    Regle, H.

    1994-12-31

    The ferritic oxide dispersion strengthened alloys are promising candidates for high temperature application materials, in particular for long life core components of advanced nuclear reactors. The aim of this work is to control the microstructure, in order to optimise the mechanical properties. The two ferritic alloys examined here, MA956 and MA957, are obtained by Mechanical Alloying techniques. They are characterised by quite anisotropic microstructure and mechanical properties. We have investigated the influence of hot and cold working processes (hot extrusion, swaging and cold-drawing) and recrystallization heat treatments on deformation textures, microstructures and tensile properties. The aim was to control the size of the grains and their anisotropic shape, using recrystallization heat treatments. After consolidation and hot extrusion, as-received materials present a extremely fine microstructure with elongated grains and a very strong (110) deformation texture with single-crystal character. At that stage of processing, recrystallization temperature are very high (1450 degrees C for MA957 alloy and 1350 degrees C for MA956 alloy) and materials develop millimetric recrystallized grains. Additional hot extrusion induce a fibre texture. Cold-drawing maintains a fibre texture, but the intensity decreases with increasing cold-work level. For both materials, the decrease of texture intensities correspond to a decrease of the recrystallization temperatures (from 1350 degrees C for a low cold-work level to 750 degrees C for 60 % cold-deformation, case of MA956 alloy) and a refinement of the grain size (from a millimetric size to less than an hundred of micrometer). Swaging develop a cyclic component where the intensity increases with increasing deformation in this case, the recrystallization temperature remains always very high and the millimetric grain size is slightly modified, even though cold-work level increases. (Abstract Truncated)

  17. Distributed actuator deformable mirror

    Bonora, Stefano

    2010-01-01

    In this paper we present a Deformable Mirror (DM) based on the continuous voltage distribution over a resistive layer. This DM can correct the low order aberrations (defocus, astigmatism, coma and spherical aberration) using three electrodes with nine contacts leading to an ideal device for sensorless applications. We present a mathematical description of the mirror, a comparison between the simulations and the experimental results. In order to demonstrate the effectiveness of the device we compared its performance with the one of a multiactuator DM of similar properties in the correction of an aberration statistics. At the end of the paper an example of sensorless correction is shown.

  18. Seismic properties of the Earth's upper mantle in various geodynamic settings derived from experiments on olivine-orthopyroxene aggregates deformed up to 8 GPa and 1500 °C

    Soustelle, V.; Manthilake, G.

    2015-12-01

    We present here HP and HT deformation experiments on olivine-orthopyroxene aggregates and discuss the effect of pressure, temperature and composition on the development of olivine CPO and the resulting seismic properties. The experiments were prepared, synthesized, deformed and analysed at the Bayerisches Geoinstitut (University of Bayreuth,Germany). The sample consisted of hot-pressed powders composed of an olivine-orthopyroxene mix (87.5-12.5, 75-25 and 50-50 %) that were then placed in a simple-shear geometry assembly and deformed in a multi-anvil press employing 6 independently acting hydraulic rams at a constant strain-rate of 10-4 s-1 and 3 GPa-1300°C, 5 GPa-1400°C and 8 GPa-1500°C. The achieved shear strain ranged between 1 and 2. The sample were then analysed under SEM-EBSD. At 3 GPa, the observed CPO are similar to those predicted in previous studies, while the one developed at 5 and 8 GPa varies according to the orthopyroxene content: 1) Experiments with 12.5% orthopyroxene display annealing textures and random CPO; 2) the ones with 25% orthopyroxene display B-type olivine CPO consistent with high pressure dislocation creep deformation experiments; and 3) the experiments with 50% orthopyroxenes display A-type olivine CPO consistent with olivine-pyroxene aggregates deformed at high temperature in diffusion creep regime. The resulting seismic properties could therefore explain the seismic anisotropy observations in the mid and lower part of the Earth's upper mantle in different geodynamic contexts. For example, the mantle wedge above subduction which has pyroxene content corresponding to our 25% orthopyroxene experiments and often display the olivine fast-axis normal to the expected mantle flow. On the other hand, a more pristine intraplate mantle most often predict olivine fast-axis parallel to the mantle flow and would have an olivine-pyroxene ratio close to our experiment with 50% orthopyroxene.

  19. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy

    A metastable β-Ti alloy, Ti–10V–3Fe–3Al (wt.%), was subjected to thermomechanical processing (TMP), where the temperature of isothermal holding in the α + β phase field was varied in order to change the volume fraction of the α phase and, correspondingly, the β phase stability. Following TMP, compression tests were performed at room temperature to evaluate the deformation mode. Microstructural features induced by compression were identified using transmission electron microscopy. It was found that {3 3 2}〈1 1 3〉β deformation twinning along with stress-induced products (α″ martensite and ω lamellae) and slip were operational in the least stable β. The co-existence of {3 3 2}〈1 1 3〉β and {1 1 2}〈1 1 1〉β twinning was found at intermediate β stability along with other deformation products. With further increasing of β phase stability, no {3 3 2}〈1 1 3〉β twinning was detected whereas other deformation modes remained unchanged. In stable β phase, dislocation glide was the only deformation mode to be found. It was revealed that triggering stress required inducing the deformation products increases with the β phase stability. Based on the findings, a modification of the lower portion of the Bo‾–Md‾ phase stability diagram is proposed

  20. Properties of the distorted Kerr black hole

    Abdolrahimi, Shohreh; Nedkova, Petya; Tzounis, Christos

    2015-01-01

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular...

  1. Determination of the B(E3;0$^+\\!\\rightarrow$ 3$^{-}$) strength in the octupole correlated nucleus $^{144}$Ba using Coulomb excitation

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{144}$Ba ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ state in this nucleus. By measuring the $\\gamma$-ray yields of the E1 decay connecting the 3$^{-}$ and 2$^{+}$ states using the MINIBALL array, we can obtain the interesting transition matrix element. The result will give quantitative information about octupole correlations in this nucleus. We require 27 shifts to fulfill the aims of the experiment.

  2. Superdeformed bands in sub 64 sup 147 Gd sub 83 , a possible test of the existence of octupole correlations in superdeformed bands

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires)

    1990-12-24

    Two discrete superdeformed bands (SD) have been identified in the nucleus {sup 147}Gd. The transitions energies of the SD yrast band lie halfway between the {gamma}-ray energies of the yrast SD band in {sup 146}Gd while the transition energies of the excited band lie half way between the transition energies of the yrast SD band in {sup 148}Gd. These two bands are shown to exhibit the presence of the pseudo SU(3) symmetry and also indicate the possible existence of octupole correlations at large elongations and high spins. (orig.).

  3. Plastic deformation of indium nanostructures

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  4. Developing a Virtual Rock Deformation Laboratory

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  5. Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultra-fine-grained nickel severely deformed by equal-channel angular pressing

    Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed

  6. The effects of post annealing on the mechanical properties, microstructure and texture evolutions of pure copper deformed by twist extrusion process

    Research highlights: → Post annealing solve the softening problem occurred in repeated passes of TE. → Post annealing decreased the coherent domain size of twist extruded sample. → Post annealing increased the microstrain of twist extruded sample. → Simple shear mode is the mechanism of deformation across the TE sample. → The simple shear mechanism is disrupted by post annealing treatments. - Abstract: X-ray diffraction peak broadening analysis showed that performing a proper heat treatment between the twist extrusion passes of commercially pure copper decreased the coherent domain size and increased the microstrain. Moreover, SEM micrographs illustrated that annealed material contained new formed grains that could not grow due to lack of sufficient time. Under such circumstances, the ultimate strength was elevated about 45 MPa. The deformed material showed texture of simple shear deformation, changing by applying the post annealing.

  7. A study on nonlinear finite element analysis of laminated rubber bearings. Pt.1. Development of evaluation method for mechanical properties of laminated rubber bearings for horizontal base isolation system considering volumetric deformation of rubber material

    The purpose of this research is to develop the evaluation method for mechanical properties of laminated rubber bearings by nonlinear finite element method (FEM) considering the volumetric deformation of natural rubber material. Relationship between pressure and volumetric strain of the natural rubber is obtained from the volumetric tests and is introduced into user-subroutine of the FEM code (ABAQUS). Finite element analyses of natural rubber bearings (NRB) and the natural rubber bearing with lead plug (LRB) are carried out. The results may be summarized as follows; 1) Horizontal, vertical stiffness and effect of shear deformation on vertical stiffness of natural rubber bearings that have various shape are simulated with enough accuracy. 2) Horizontal and vertical stiffness of LRB are also simulated well. (author)

  8. Effect of nuclear deformation parameters in heavy-ion fusion reactions involving spherical-spherical systems

    It is well known that heavy-ion collisions at energies near the Coulomb barrier are strongly affected by the internal structure of the colliding nuclei. The coupling between the relative motion and the internal degrees of freedom such as static deformation, vibration of nuclear surface, zero point motion, rotations of nuclei during collision, etc. results in the splitting of the uncoupled Coulomb barrier into distribution of barriers of varying heights. The role of complex quadrupole and octupole surface vibrations is of particular interest and the calculations within the coupled channels model may become challenging in most nuclei. In order to study the role of important degrees of freedom of spherical nuclei in the fusion mechanism, fusion cross section and barrier distribution (BD) have been calculated for 16O + 120Sn and 16O + 208Pb systems using the code CCFULL

  9. The Effect of Silver Nanofibers on the Deformation Properties of Blood Vessels: Towards the Development of New Nanotechnologies to Prevent Rupture of Aneurysms

    Miguel Gonzalez

    2014-01-01

    Full Text Available An aneurysm is the result of a widening or ballooning of a portion of a blood vessel. The rupture of an aneurysm occurs when the mechanical stress acting on the inner wall exceeds the failure strength of the blood vessel. We propose an innovative approach to prevent the rupture of an aneurysm based on the use of nanotechnology to improve the strength of the blood vessel. We present results on the effect of silver nanofibers on the resistance toward deformation of blood vessels. The silver nanofibers are grown on the surface of the blood vessels. The nanofibers are 120±30 nm in diameter and 2.7±0.8 μm in length. The deformation per applied force of blood vessels was found to decrease from 0.15 m/N in control blood vessels to 0.003 m/N in blood vessels treated with the nanofibers. This represents an increase in the resistance towards deformation of a factor of 50. The increase in the resistance towards deformation is clinically significant since blood pressure increases by factors slightly larger than one in the human body. Treatment of blood vessels with silver nanofibers is a potential translational clinical tool for preventing rupture of aneurysms in a clinical setting.

  10. Effect of deformation schedules and initial states on structure and properties of Cu–0.18% Zr alloy after high-pressure torsion and heating

    Structure, microhardness and electrical resistivity of the Cu–0.18% Zr alloy after high pressure torsion (HPT) were investigated for different initial states (hot-pressed, annealed, quenched) and deformation schedules. It is shown that HPT leads to formation of submicrocrystalline structure with the grain size of 200–250 nm. Studying of electrical resistivity of the Cu–0.18% Zr alloy showed that during HPT it increases with increasing the strain in comparison with initial not deformed state. It can be connected with changes of grain and subgrain structure, and also with processes of dissolution of particles of the second phase Cu5Zr during deformation. Decreasing of electrical resistivity values of Cu–0.18% Zr alloy after HPT during heating in the temperatures range of 250–400 °C and preservation or increase of microhardness values in this temperature interval reveal aging processes with allocation of Cu5Zr particles and confirm the fact of partial supersaturation of solid solution of copper with zirconium during deformation. Application of quenching, HPT and subsequent aging allows to achieve the maximum strengthening of the alloy

  11. Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

    Xue, W. X.; Yao, J. M.; Hagino, K.; Li, Z. P.; Mei, H.; Tanimura, Y.

    2015-02-01

    Background: The impurity effect of hyperons on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E 2 transition strength in low-lying states of the hypernucleus Λ7Li . Many more data on low-lying states of Λ hypernuclei will be measured soon for s d -shell nuclei, providing good opportunities to study the Λ impurity effect on nuclear low-energy excitations. Purpose: We carry out a quantitative analysis of the Λ hyperon impurity effect on the low-lying states of s d -shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ hyperon is injected into the lowest positive-parity (Λs) and negative-parity (Λp) states. Method: We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ binding energies of hypernuclei as well as the potential-energy surfaces (PESs) in the (β ,γ ) deformation plane. We also calculate the PESs for the Λ hypernuclei with good quantum numbers by using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking 25,27Mg Λ and Si31Λ as examples, we analyze the impurity effects of Λs and Λp on the low-lying states of the core nuclei. Results: We show that Λs increases the excitation energy of the 21+ state and decreases the E 2 transition strength from this state to the ground state by 12 %to17 % . On the other hand, Λp tends to develop pronounced energy minima with larger deformation, although it modifies the collective parameters in such a way that the collectivity of the core nucleus can be either increased or decreased. Conclusions: The quadrupole deformation significantly affects the

  12. Nuclear fuel deformation phenomena

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  13. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low shear stress: implications for rheology and transport properties

    Desbois, G.; Urai, J. L.; De Bresser, J. H. P.

    2012-04-01

    We used a combination of broad ion beam (BIB) cross-sectioning and high resolution (cryogenic) SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary (GB) microstructures and fluid distribution in naturally deformed halite from a salt glacier (Kum Quh, central Iran). At the scale of observations, four types of fluid or gas filled grain boundaries can be distinguished: (1) straight boundaries with thick (up to 10 µm) GB tubes (2) straight boundaries with narrow (about 50 nm) GB tubes (3) wavy (tens of µm wavelength) GB with isolated inclusions of a few µm, and (4) wavy (µm wavelength) GB with small (µm) isolated inclusions. Grain boundary fluid inclusions can have three types of morphologies: the inclusion of Type 1 is intruded completely in one grain, inclusion of Type 2 has its major part included in one grain with a minor part in the second grain and the inclusion of Type 3 is located in both grains. Solid second phases in GB are mainly euhedral anhydrite crystals. The mobility of the brine is shown after cutting the inclusions by BIB in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, in-situ brine is seen as continuous film in GB of type (1) and (2), and in isolated inclusions in GB of type (3) and (4). The structure of halite-halite contact between isolated fluid inclusions in GB of type (3) and (4) is below the resolution of SEM. GB of type (3) and (4) are interpreted to have formed by healing of mobile fluid films. First results of deformation experiments on the same samples under shear stress corresponding to conditions of natural salt glacier, show very low strain rates (7.43x10-10 s-1 and 1x10-9 s-1), up to one order of magnitude below of expected strain rates by solution precipitation creep. Both microstructures and deformation experiments suggest interfacial energy-driven GB healing, in agreement with the

  14. A comparative study of superdeformation in sup 146,147,148 Gd. Possible manifestations of the pseudo-SU sub 3 symmetry, octupole shape susceptibility and superdeformed deep-hole excitations

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; France, G. de; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T.R. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires)

    1991-01-24

    Two discrete superdeformed (SD) bands have been identified in the nucleus {sup 147}Gd and the twin-band mechanism studied by comparison with SD results for {sup 146,148}Gd. Theoretical interprettion in terms of nucleonic orbitals with the Woods-Saxon potential is consistent with the pseudo-spin symmetry picture and the octupole susceptibility mechanism predicted by theory. (orig.).

  15. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions

    Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2015-02-01

    The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.

  16. Deformation scheme effect on the properties of heat pipes of 12KH1MF steel, hardened by mechanical and heat treatments

    In the development, by the method of mechanical and heat treatment, of strenghening conditions for tubes from steel 12Kh1MF cold drawing and cold reducing are used at a uniform deformation factor of 11% but with materially different schemes of stress-strain state (different distributions and signs of strains and stresses). The greatest strenthening effect as regards to the ultimate stress and yield stress at a uniform deformation is obtained in the drawing. The poligonizing annealing makes for the levelling out of the drawn and reduced metal, the strength characteristics deteriorate to a greater degree for the drawn metal. The heat resisting characteristics of metal of drawn and reduced tubes at a test temperature of 540degC and high stresses (20-24kgs/mm2) are similar, the plasticity, however, being higher with then drawn tubes. At stresses close to the working ones, metal of the reduced tubes features longer time periods before failure. (author)

  17. Tectonic property and deformation history of Sangzhi-Shimen synclinorium corridor profile in western margin region of Hunan-hubei Province

    郭建华; 王明艳; 朱美衡; 刘学锋; 张或丹; 刘辰生

    2004-01-01

    The Sangzhi-Shimen synclinorium, which is in the western margin region of the Hunan-Hubei Province and as the southeast part of the middle Yangtze platform, is a second-level tectonics unit in the south of this region.Along the profile, it can be divided into 5 third-level structure belts. By the comprehensive interpretation of seismic data and magnetotelluric (MT) sounding data, it is found that the surface structure is not in accordance with that of the underground, and this un-coordination can be conducted by many decollement surfaces between the layers.There are three periods of deformation in its geo-history in this region: before the early Yanshan stage, during the early Yanshan stage and after the early Yanshan stage, while the main deformation period is during the early Yanshan stage. And the mechanism of deformation is the thrust faults in basement, which are controlled by many decollements, in addition to the decollement of the cap-rock.

  18. Macro deformation twins in single-crystal aluminum

    Zhao, F.; Wang, L.; Fan, D.; B. X. Bie; Zhou, X. M.; Suo, T.; Y. L. Li; Chen, M. W.; Liu, C; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2015-01-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum, at scales beyond nanotwins. Here, we present the first experimental demonstration of macro deformation twins in single-crystal aluminum formed under ultrahigh strain-rate ($\\sim$10$^6$ s$^{-1}$), large shear strain (200$\\%$) via dynamic equal channel angular pressing. Deformation t...

  19. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  20. Electrical conductivity and mechanical properties of Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys processed by severe plastic deformation

    Kommel, L.; Pokatilov, A.

    2014-08-01

    As-cast Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys were subjected to equal-channel angular pressing (ECAP), hard cyclic viscoplastic (HCV) deformation and post deformation heat treatment for receiving an ultrafine grained material with a combination of high strength, good wear resistance and high electric conductivity. Samples from Cu-0.7wt% Cr alloy were processed up to six passes and Cu-1wt% Cr alloy samples were processed up to four passes of ECAP via Bc route. HCV deformation of samples was conducted by frequency of 0.5 Hz for 20 cycles at tension-compression strain amplitudes of +/-0.05%, +/-0.1%, +/-0.5%, +/-1% and +/-1.5%, respectively. During HCV deformation, as-cast Cu-0./wt% Cr alloy show fully viscoelastic behavior at strain/stress amplitude of +/-0.05% while ECAP processed material show the same behavior at strain amplitude of +/-0.1%. The Young modulus was increased from ~120 GPa up to ~150 GPa. The results illustrated that specific volume wear decrease with increasing of hardness but the measured coefficient of friction (COF ~ 0.6) was approximately the same for all samples at the end of wear testing. The hardness after ECAP for 6 passes by Bc route was 192HV0.1 and electric conduction 74.16% IACS, respectively. By this the as-cast Cu-0./wt% Cr alloy (heat treated at 1000 °C for 2h) has microhardness ~70HV0.1 and electrical conductivity of ~40% IACS. During aging at the temperatures in the interval of 250-550 °C for 1h the hardness and electrical conductivity were stabilized to mean values of 120+/-5HV0.1 and to 93.4+/-0.3% IACS, respectively. The hardness and electric conductivity took decrease by temperature increase over ~550 °C, respectively. The results of present experimental investigation show that UFG Cu- 0.7wt% Cr alloy with compare to Cu-1.0% Cr alloy is a highly electrical conductive and high temperature wear resistant material for using in electrical industry.

  1. Modeling of severe deformation and mechanical properties in Mg-3A1-1Zn alloy through asymmetric hot-extrusion

    2008-01-01

    One-pass asymmetric hot extrusion performed at 673 K was applied to fabricate an AZ31 magnesium alloy sheet.Finite element method(FEM)was used to model the process of asymmetric hot-extrusion.Simulation results indicate that strain rate gradient througa the thickness introduced a grain size gradient along the thickness direction and shear deformation during the asymmetric hot-extrusion results in weakened and tilted(0002)basal texture.The asymmetric hot extrusion effectively weakens the basal texture and improves the ductility,at room temperature.

  2. Free-Form Deformation with Rational DMS-Spline Volumes

    Gang Xu; Guo-Zhao Wang; Xiao-Diao Chen

    2008-01-01

    In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD),based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation,control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deforma-tion. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splies.How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling.

  3. Strengthening of HSLA steels by cool deformation

    a Fatehi; Calvo Muñoz, Jessica; Elwazri, A. M.; Yue, S

    2010-01-01

    In microalloyed steels, the refinement of ferrite grains together with a controlled amount of precipitation has key roles in the mechanical properties improvement. Applying small amounts of deformation, at very low hot working temperatures (i.e. coiling temperature), in the ferrite region (i.e. cool deformation) has an appreciable strengthening effect via controlling the final microstructure of the steel. One of the microstructural effects is thought to be the much finer and more uniformly...

  4. Elasticity, viscosity, and deformation of orbital fat

    Schoemaker, Ivo; Hoefnagel, Pepijn; Mastenbroek, Tom; Kolff, Cornelis; Schutte, Sander; van der Helm, Frans; Picken, Stephen; Gerritsen, Anton; Wielopolski, Piotr; Spekreijse, Henk; Simonsz, Huib

    2006-01-01

    textabstractPURPOSE. For development of a finite element analysis model of orbital mechanics, it was necessary to determine the material properties of orbital fat and its degree of deformation in eye rotation. METHODS. Elasticity and viscosity of orbital fat of eight orbits of four calves and two orbits of one rhesus monkey were measured with a parallel-plate rheometer. The degree of deformation of orbital fat was studied in two human subjects by magnetic resonance imaging (MRI) through the o...

  5. Layered Structures in Deformed Metals and Alloys

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Layered structures characterize metals and alloys deformed to high strain. The morphology is typical lamellar or fibrous and the interlamellar spacing can span several length scales down to the nanometer dimension. The layered structures can be observed in bulk or in surface regions, which is shown......-structure relationships. Finally, the results will be discussed based on universal principles for the evolution of microstructure and properties during plastic deformation of metals and alloys from low to high strain....

  6. Deformation Behavior of Human Dentin under Uniaxial Compression

    Dmitry Zaytsev; Sergey Grigoriev; Peter Panfilov

    2012-01-01

    Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  7. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants

    Long-term creep rupture strengths and the microstructural stability of ASME P92 and P122 pipes have been studied using creep testing at the temperatures from 550 to 700 deg. C and detailed scanning transmission electron microscopy. Creep rupture strength of P92 is found to be more stable than that of P122 at temperatures over 600 deg. C, which is mainly due to the difference in their Cr content. P122 type model steel with reduced Cr content, 9%Cr, has been prepared to explore the effect of Cr on the stability of MX and formation of Z-phase during creep deformation. MX in 9%Cr steel is found to be stable even after prolonged exposure at 650 deg. C, while Cr and Fe concentration to MX without marked coarsening has been observed in 10.5%Cr steel after aging for 10,000 h at 650 deg. C. This seems to lead to the transition of MX carbonitride into the Z-phase after aging for 23,000 h, which requires ordering in a M2N lattice to achieve a tetragonal Z-phase to be stable. Creep deformation behavior in the transient creep region of the steels is almost same up to about 7000 h, while in the acceleration creep region the creep rate of 10.5%Cr steel becomes much faster than that of 9%Cr steel, resulting in shorter rupture life. It is obvious that the creep rupture strength degradation starts prior to the formation of Z-phase in 10.5%Cr steel. It is thus concluded that Z-phase is not a necessary factor for degradation of creep rupture strength but the instability of the fine precipitates such as Cr2(C, N) caused by the compositions change like Cr supply to MX carbonitride is more essential.

  8. Deformations and Nonlinear Systems

    Man'ko, V. I.; Marmo, G.; F. Zaccaria

    1997-01-01

    The q-deformation of harmonic oscillators is shown to lead to q-nonlinear vibrations. The examples of q-nonlinearized wave equation and Schr\\"odinger equation are considered. The procedure is generalized to broader class of nonlinearities related to other types of deformations. The nonlinear noncanonical transforms used in the deformation procedure are shown to preserve in some cases the linear dynamical equations, for instance, for the harmonic oscillators. The nonlinear coherent states and ...

  9. -Deformed nonlinear maps

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  10. Fluctuations as stochastic deformation

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  11. Deformed discrete symmetries

    Arzano, Michele

    2016-01-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of kappa-deformations of the Poincare algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter kappa to be derived via precision measurements of discrete symmetries and CPT.

  12. Deformable Simplicial Complexes

    Misztal, Marek Krzysztof

    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the...... triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We...

  13. Deformed discrete symmetries

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  14. Game model of safety monitoring for arch dam deformation

    2008-01-01

    Arch dam deformation is comprehensively affected by water pressure,temperature,dam’s structural behavior and material properties as well as other factors.Among them the water pressure and temperature are external factors(source factors) that cause dam deformation,and dam’s structural behavior and material properties are the internal factors of deformation(resistance factors).The dam deformation is the result of the mutual game playing between source factors and resistance factors.Therefore,resistance factors of structure and materials that reflect resistance character of arch dam structure are introduced into the traditional model,where structure factor is embodied by the flexibility coefficient of dam body and the maximum dam height,and material property is embodied by the elastic modulus of dam.On the basis of analyzing the correlation between dam deformation and resistance factors,the game model of safety monitoring for arch dam deformation is put forward.

  15. Relativistic description of deformed nuclei

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  16. Performance through Deformation and Instability

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  17. Greenland Analogue Project - Hydraulic properties of deformation zones and fracture domains at Forsmark, Laxemar and Olkiluoto for usage together with Geomodel version 1

    Follin, Sven (SF GeoLogic AB (Sweden)); Stigsson, Martin (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Rhen, Ingvar (Sweco Environment AB (Sweden)); Engstroem, Jon (Geologian tutkimuskeskus (Finland)); Klint, Knut Erik (De Nationale Geologiske Undersoegelser for Danmark og Groenland (Denmark))

    2011-05-15

    The database of the GAP site is under development. In order to meet the data needs of the different modelling teams working with groundwater flow modelling it has been decided to compile trial data sets comprising structural-hydraulic properties suitable for flow modelling on different scales. The properties provided in this report are based on data and groundwater flow modelling studies conducted for three sites located in the Fennoscandian Shield, two of which are studied by SKB, Forsmark and Laxemar, and one by Posiva, Olkiluoto. The provided hydraulic properties provided here are simplified to facilitate a readily usage together with the GAP Geomodel version 1.

  18. Dynamics of structural phase transition and changes in properties under the influence of elastically anisotropic deforming stresses, regularities of critical lines and points in magnetic semiconductors and magnetic dielectrics

    Polyakov, P. I.; Kucherenko, S. S.

    2004-07-01

    The paper deals with a generalizing analysis of elastically deforming regularities by examining the experimental results for magnetic semiconductors and dielectrics. The role of anisotropically deforming elastic (EAD) stresses, determined from the influence of temperature ( T), magnetic field ( H) and hydrostatic pressure ( P), in the formation and changes of the structural phase transitions (PTs) and properties has been estimated. From the analysis of investigations of the resistive and magnetostrictive properties and of PTs in La 0.7Ca 0.3MnO 3, LaMnO 3 the role of EAD in baro-, magneto-, and baromagnetoresistive effects has been determined and it has been deduced that their maximum temperature TPP is equal to the temperature of metal-semiconductor PT Tms. It is noted that the action of EAD stresses in the "cooling", "heating" effects of Tms( H), Tms( P) and Hg( T) change, and in T- H- P (5.1 K-2.42 kOe-1 kbar) influence on the resistive properties, and T- H (5.2 K-2.5 kOe) influence on the magnetostrictive properties is regular. Changes in properties, PT, and T- H- P-induced effects were found to be of the alternating-sign character. From the results of studies of the resonance properties and PTs in CuCl 2·2H 2O the role of EAD stresses has been determined and a correspondence in the T- H- P (1 K-4 kOe-3 kbar) effect on PT change has been revealed. Thermomagnetic and thermobaromagnetic effects have been revealed with the peaks corresponding to TPP=0 K, the temperature which coincides with that of the structural PT TST. The regularities in "cooling" and "heating" effects of H and P influence have been grounded, as well as those in TP( H), TP( H, P) change going on with sign alternation. The location of point P( HP, TP), where elastic and magnetoelastic anisotropies become conformable to each other at TP=9.2 K, has been found. It considerably differs from the known TN=4.3 K. The results of magnetization and of the field-temperature and field

  19. q-Deformed Schroedinger equation

    In a q-deformed quantum mechanics the commutation relations between the generators of the SUq(2) algebra, L-vector and the position vector, r, are well defined and it is natural to take this vectors as the basic quantities from which all the others must be built. To build a q-deformed Schroedinger Hamiltonian a realization of p-vector entering the kinetic energy term was necessary to find. p-Vector can be written as a sum of two terms which are parallel and perpendicular to r-vector, respectively. We first obtained the general commutation relations involving the q-angular momentum and some quantities having definite transformation properties with respect to SUq(2) algebra. We then give a realization of the position vector and of the q-angular momentum, L, in terms of polar coordinates. Then, we obtained the realization of the linear momentum p made of a part perpendicular to r-vector, satisfying similar commutation relations to those corresponding to r-vector, and of a part parallel to r-vector supposed to have the simplest form, i.e., that coming from the ordinary partial derivative with respect to r-vector. We calculated the Eigenfunctions of the q-angular momentum, written like a series expansion in terms of cosθ. The result is a generalization of two hypergeometric functions which can be related to the q-deformed spherical functions Ylm. Some properties and relations satisfied by the Eigenfunctions are also listed. In the last section the q-deformed Schroedinger equation with scalar potential is given. Its solutions for Coulomb and three dimensional oscillator potential are briefly discussed

  20. Deformations of algebroid stacks

    Bressler, Paul; Gorokhovsky, Alexander; Nest, Ryszard; Tsygan, Boris

    2011-01-01

    In this paper we consider deformations of an algebroid stack on an étale groupoid. We construct a differential graded Lie algebra (DGLA) which controls this deformation theory. In the case when the algebroid is a twisted form of functions we show that this DGLA is quasiisomorphic to the twist of ...

  1. Structure and properties of an Mg-0.3% ca magnesium alloy after multiaxial deformation and equal-channel angular pressing

    Dobatkin, S. V.; Rokhlin, L. L.; Salishchev, G. A.; Kopylov, V. I.; Serebryany, V. N.; Stepanov, N. D.; Tarytina, I. E.; Kuroshev, I. S.; Martynenko, N. S.

    2014-11-01

    Multiaxial deformation (MAD) of an Mg-0.3% Ca alloy is performed when temperature decreases within the ranges 425-375 and 400-325°C. A decrease in the temperature at the end of MAD causes a decrease in the grain size from 7-8 to 0.5-2 μm and the spread of a sharp prismatic texture, which determine a high strength (σu = 194 MPa) and plasticity (δ = 39%). After MAD in the range 425-375°C, the Mg-0.3% Ca alloy is subjected to equal-channel angular pressing (ECAP) at temperatures of 275 and 325°C. ECAP causes a decrease in the grain size from 7-8 μm to 2 and 5 μm, respectively. The texture also changes from prismatic to tilted basal texture. This results in an increase in the strength to 170-160 MPa at plasticity δ = 25-30%. It is shown that MAD can be used as both final and preliminary processing before ECAP to form an ultrafine-grained structure in the Mg-0.3% Ca alloy.

  2. Triaxially deformed relativistic point-coupling model for $\\Lambda$ hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties

    Xue, W X; Hagino, K; Li, Z P; Mei, H; Tanimura, Y

    2014-01-01

    The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of $E2$ transition strength in low-lying states of hypernucleus $^{7}_\\Lambda$Li. Many more data on low-lying states of $\\Lambda$ hypernuclei will be measured soon for $sd$-shell nuclei, providing good opportunities to study the $\\Lambda$ impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of $\\Lambda$ hyperon impurity effect on the low-lying states of $sd$-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the $\\Lambda$ hyperon is injected into the lowest positive-parity ($\\Lambda_s$) and negative-parity ($\\Lambda_p$) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the $\\Lambda$ binding energies of hypernuclei as well as the potential energy surfaces (PESs) in $(\\beta, \\g...

  3. Effects of rolling deformation processes on the properties of Ag-sheathed Sr1-xKxFe2As2 superconducting tapes

    Huang, He; Zhang, Xianping; Yao, Chao; Dong, Chiheng; Zhang, Qianjun; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-06-01

    The powder-in-tube method is widely used in fabricating iron-based superconducting wires and tapes. To make tapes, a multi-pass rolling process is usually adopted. However, the multi-pass rolling process limits the efficiency of tapes. In this work, rolling deformation technique was studied systematically by fabricating Sr1-xKxFe2As2 superconducting tapes. The total rolling reduction ratio is about 80% and the difference of superconducting performance of tapes rolled by 2, 3, 5 and 7 passes has been investigated. The critical current density Jc, Vickers micro-hardness and microstructure of the superconducting core indicate that tapes after 2, 3, 5 and 7 rolling passes exhibit a similar trend. The width of the tapes and the area of superconducting cores increase with decreasing the number of rolling passes, but the transport Jc of tapes after different rolling passes seems to be the same, except for the tape rolled by 2 passes, whose transport Jc is lower than the other tapes. Concerning the geometry uniformity for the superconducting cores, the sausaging phenomenon was not observed from the photograph of longitudinal cross-section of all the samples. "Lobes" phenomenon on transverse cross-section can be suppressed through decreasing the rolling passes. Therefore, we can obtain uniform and high-performance Ag-sheathed iron-based superconducting tapes by cutting the number of rolling passes down to 3, which is more advantageous to the large-scale producing in the future.

  4. Towards a shell-model description of the low-energy structure of deformed nuclei II. Electromagnetic properties of collective M1 bands

    A shell-model theory, called the pseudo SU(3) model, which was proposed previously for giving the structure of low-lying states in heavy deformed nuclei is used to predict the number of 1+ states with strong M1 transitions to ground states for the nuclei /sup 154/Sm, /sup 156//sup --//sup 160/Gd, /sup 164/Dy, /sup 168/Er, /sup 174/Yb of the rare earth region and the actinide species /sup 232/Th, /sup 234//sup --//sup 240/U, /sup 242/Pu. Results are also given for E2 and M3 transition strengths in these nuclei. The measures provide a rigorous test of the theory, which in reality is a many-particle Nilsson scheme, because the real M1, E2, and M3 operators are used in the calculations. It is found that the results for E2 strengths using the real quadrupole operator Q-script differ by less than 5 from those of calculations that use the operator Q which is a generator of the pseudo SU(3) symmetry. This is so even for weak interband transitions. To further test the theory additional experimental information on the 2+/sub γ/ states is necessary. In particular, the 1+ → 2+/sub γ/ decay strengths are needed to differentiate between theories for the structure of the giant M1 states. copyright 1987 Academic Press, Inc

  5. nuclei

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  6. Modeling tire deformation for power loss calculations

    Whicker, D.; Rohde, S.M.

    1981-01-01

    A combined thermo-mechanical model for calculating tire power loss has been developed at GMR. This paper presents the techniques for developing the realistic finite element models needed in both the thermal and deformation portions of the combined model. It also describes the techniques used in calculating deformed tire shapes. First, procedures are outlined for automatically generating a finite element discretization of a tire. Then, this discretization, together with information about the properties of tire materials, is used to develop a finite element model of the tire. This model is used in MSC NASTRAN to calculate compliances, i.e., the response of the tire to inflation and to unit loads applied at points on the tire surface. These compliances are then used in an algorithm which calculates the deformed shape of a tire loaded against the pavement surface. Sample results are presented to show the agreement between calculated and measured tire deformation.

  7. Deformations of Quantum Field Theories on Curved Spacetimes

    Morales, Eric Morfa

    2012-01-01

    The construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of globally hyperbolic spacetimes. First, we show that any four-dimensional spacetime which admits two commuting and spacelike Killing vector fields carries a family of wedge regions with causal properties analogous to the Minkowski space wedges. Deformations of quantum field theories on these spacetimes are carried out within the operator-algebraic framework - the emerging models share many structural properties with deformations of field theories on flat spacetime. In particular, deformed quantum fields are localized in the wedges of the considered spacetime. As a concrete example, the deformation of the free Dirac field is studied. Second, quantum field theories on de Sitter spacetime with global U(1) gauge symmetry are deformed using the joint action of the internal symmetry group and a one-parameter group of boosts. The resulting theories turn out to be wedge-local and non-isomorphic to t...

  8. Strengthening of HSLA steels by cool deformation

    In microalloyed steels, the refinement of ferrite grains together with a controlled amount of precipitation has key roles in the mechanical properties improvement. Applying small amounts of deformation, at very low hot working temperatures (i.e. coiling temperature), in the ferrite region (i.e. cool deformation) has an appreciable strengthening effect via controlling the final microstructure of the steel. One of the microstructural effects is thought to be the much finer and more uniformly dispersed precipitates in the steel matrix. In the present study, the effects of Nb and Cu on mechanical properties and corresponding microstructures in steels with different levels of cool deformation are investigated. The mechanical properties of the samples were determined using the shear punch test and the microstructure was examined by scanning and transmission electron microscopy. Thermodynamic simulations with FactSage were done to further analyze the precipitation possibility of different elements. It has been found that these alloying elements respond very well to cool deformation, with the strength being highest in steels containing both Nb and Cu. However, a cool deformation effect in the non-Nb and Cu bearing steel is also observed. In all cases, it was confirmed that precipitation plays a key role in the effect of cool deformation, with much of the precipitation taking place dynamically. Nevertheless, static processes also seem to have a measurable effect on room temperature properties. Even low amounts of copper (e.g. ∼0.4 wt%) can contribute to strengthening of the steel. The Cu addition is found to affect the mechanical properties by affecting the precipitation and growth of Nb compounds.

  9. Strengthening of HSLA steels by cool deformation

    Fatehi, A., E-mail: arya.fatehi@gmail.com [Department of Mining, Metals and Materials Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 2B2 (Canada); Calvo, J.; Elwazri, A.M.; Yue, S. [Department of Mining, Metals and Materials Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 2B2 (Canada)

    2010-06-25

    In microalloyed steels, the refinement of ferrite grains together with a controlled amount of precipitation has key roles in the mechanical properties improvement. Applying small amounts of deformation, at very low hot working temperatures (i.e. coiling temperature), in the ferrite region (i.e. cool deformation) has an appreciable strengthening effect via controlling the final microstructure of the steel. One of the microstructural effects is thought to be the much finer and more uniformly dispersed precipitates in the steel matrix. In the present study, the effects of Nb and Cu on mechanical properties and corresponding microstructures in steels with different levels of cool deformation are investigated. The mechanical properties of the samples were determined using the shear punch test and the microstructure was examined by scanning and transmission electron microscopy. Thermodynamic simulations with FactSage were done to further analyze the precipitation possibility of different elements. It has been found that these alloying elements respond very well to cool deformation, with the strength being highest in steels containing both Nb and Cu. However, a cool deformation effect in the non-Nb and Cu bearing steel is also observed. In all cases, it was confirmed that precipitation plays a key role in the effect of cool deformation, with much of the precipitation taking place dynamically. Nevertheless, static processes also seem to have a measurable effect on room temperature properties. Even low amounts of copper (e.g. {approx}0.4 wt%) can contribute to strengthening of the steel. The Cu addition is found to affect the mechanical properties by affecting the precipitation and growth of Nb compounds.

  10. Dislocation Dynamics During Plastic Deformation

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  11. Morita Theory in Deformation Quantization

    Waldmann, Stefan

    2010-01-01

    Various aspects of Morita theory of deformed algebras and in particular of star product algebras on general Poisson manifolds are discussed. We relate the three flavours ring-theoretic Morita equivalence, $^*$-Morita equivalence, and strong Morita equivalence and exemplify their properties for star product algebras. The complete classification of Morita equivalent star products on general Poisson manifolds is discussed as well as the complete classification of covariantly Morita equivalent star products on a symplectic manifold with respect to some Lie algebra action preserving a connection.

  12. Deforming regular black holes

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  13. Deformation of giant lipid bilayer vesicles in shear flow

    Haas,; Blom, C.; Ende, van den, D.; Duits, M. H. G.; Mellema, J.

    1997-01-01

    We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the mechanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surrounding Newtonian liquid. We show that the relevant mechanical parameter is the bending rigidity. A simple model has been developed that describes the deformation of a vesicle. This model takes therma...

  14. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    Vasco, D.W.

    2011-10-01

    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  15. Deformation behaviour of soft particles: a review

    Liu, K.-K. [Institute of Science and Technology in Medicine, School of Medicine (Hartshill Campus), Keele University, Stoke-on-Trent, ST4 7QB (United Kingdom)

    2006-06-07

    The study of soft particle deformation is of paramount importance for the advancement of fundamental colloidal science as well as its biomedical applications, particularly in drug delivery and cell mechanics/adhesion. Recent developments of both theoretical modelling and experimental techniques have made it possible to measure the deformation behaviour of a single micro-/nano-particle under both adhesive and non-adhesive deformation and, therefore, to facilitate the determination of its mechanical and interfacial properties. This review aims to introduce several modern experimental techniques, such as atomic force microscopy, the micro-compression method and reflectance interference contrast microscopy, and a number of theoretical models, which have been applied to characterize the mechanical and interfacial properties of the soft particles in a quantitative manner. More specifically, their recent applications to biomimetic/biological particles or vesicles, which normally inherit non-linear elasticity and inhomogeneous structure, will also be reviewed. (topical review)

  16. Impact between deformable bodies

    The bodies are represented by constant strain finite elements so that the element internal forces can most easily be calculated, especially after yielding has taken place when the stress and strain increments are related in accordance with the Prandtl-Reuss theory. In the case of axisymmetrical problems triangular axisymmetrical elements are used whose properties are approximately calculated by sampling at the centroid of the cross-section. The external applied forces arise from the impact and contact forces at the interfaces, and the inertia forces are obtained from lumped mass matrices. The equation of motion is solved by a central difference explicit scheme in small incremental time steps. This enables the stress propagation as well as the history of plastic deformation in the bodies to be traced throughout the duration of impact. The material law is idealised to be piecewise linear, with an initial elastic portion followed by one linear hardening segment. Perfect plasticity (zero hardening) can also be allowed. A simple procedure deals with the case of loading from an elastic initial state to a final plastic state in one time step. The program has been applied to the investigation of a number of axisymmetrical problems. The three dimensional version of the program is now being coded. Examples: impact of a falling fuel stringer in a storage tube; impact of a cylinder on a rigid boundary; supported circular plate loaded by uniformly distributed impulses; impact of a non-return valve in a pipe rupture; impact of a cylindrical fuel-waste flask; impact of a conical missile on a rigid surface. (orig./HP)

  17. Extremely deformable structures

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  18. The sprengel deformity

    Mohd E. Rasul

    2015-12-01

    Full Text Available Sprengel shoulder is a rare congenital deformity of one or both scapulae that is usually detected at birth. It occurs due to failure of the scapula to descend during intrauterine development. Although the deformity appears randomly most of the time, familial cases have been reported. Sprengel shoulder is often associated with Klippel-Feil syndrome and other congenital skeletal deformities. Anteroposterior X-ray imaging can accurately diagnose Sprengel deformity. However, computed tomography and magnetic resonance scans with three-dimensional reconstruction are nowadays used in everyday practice in order to diagnose concomitant abnormalities, study in detail the anatomy of the affected shoulder(s, and plan appropriate management. We present here our imaging experience from one pediatric case with Sprengel shoulder and take the opportunity to discuss this rare entity, which is, nevertheless, the commonest congenital defect of the scapula. [Int J Res Med Sci 2015; 3(12.000: 3869-3871

  19. Canonical Infinitesimal Deformations

    Ran, Ziv

    1998-01-01

    This paper gives a canonical construction, in terms of additive cohomological functors, of the universal formal deformation of a compact complex manifold without vector fields (more generally of a faithful $g$-module, where $g$ is a sheaf of Lie algebras without sections). The construction is based on a certain (multivariate) Jacobi complex $J(g)$ associatd to $g$: indeed ${\\mathbb C}\\oplus {\\mathbb H}^0(J(g))^*$ is precisely the base ring of the universal deformation.

  20. The Effect Of Strain Rate On The Mechanical Properties And Microstructure Of The High-Mn Steel After Dynamic Deformation Tests

    Jabłońska M.B.; Śmiglewicz A.; Niewielski G.

    2015-01-01

    The paper presents results of dynamic tensile investigations of high-manganese Fe – 20 wt.% Mn – 3 wt.% Al – 3 wt.% Si – 0.2 wt.% steel. The research was carried out on a flywheel machine, which enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. It was found that the studied steel was characterized by very good mechanical properties. Strength of the tested materials was determined in the static tensile test and...

  1. Does deformation saturate seismic anisotropy?

    Tatham, D. J.; Lloyd, G. E.; Butler, R. W.; Casey, M.

    2006-12-01

    The progressive simple shear deformation that characterizes ductile fault zones in the crust involves both rotation and intensification of the strain ellipsoid. These mathematic predictions have been confirmed repeatedly by finite strain determinations in outcrop studies of natural shear zones and used to test geodynamic models of mountain belts. Seismic anisotropy (SA) methods offer the opportunity to pursue these approaches in situ. First however, we must calibrate the magnitude and orientation of the SA ellipsoid against naturally deformed tectonites of known strain state and microstructure. Here we present data from a field analogue of mafic ductile crust in an amphibolite-facies shear zone developed in a deformed mafic dyke embedded within the Lewisian Gneiss (Badcall, NW Scotland). Deflection of pre-existing linear and planar elements and attenuation of the dyke into the shear zone are used to determine the strain gradient. Specimens collected along this gradient were used to establish the geometric fabric intensity defined by different minerals (hornblende grain alignment and ellipticity of plagioclase clots). Finally, petrophysical properties were calculated for the specimens using the SEM-EBSD measured populations of lattice preferred orientations (LPO) for all mineral phases. It is the hornblende-plagioclase LPO, combined in their modal proportions and modulated by the individual mineral single crystal elastic properties, which define the SA profile across the shear zone. Hornblende develops a strong preferred dimensional orientation and hence LPO at shear strains of about 2, whereas the plagioclase LPO remains close to random regardless of bulk strain. The modelled SA of the samples is dominated therefore by the amphibole LPO. Although the values of bulk shear strain vary across the shear zone (0 at the margins to greater than 12 in the centre), the calculated intensity of SA saturates at a shear strain of about 2. These results, if typical of large

  2. Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb3Sn strands

    Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N.; Shikov, A. K.; Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N.

    2014-01-01

    From 2009 the mass production of the Nb3Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb3Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 °C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb3Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb3Sn strands has been investigated.

  3. Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb3Sn strands

    From 2009 the mass production of the Nb3Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb3Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 °C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb3Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb3Sn strands has been investigated

  4. Influence of biocorrosion on microstructure and mechanical properties of deformed Mg-Y-Er-Zn biomaterial containing 18R-LPSO phase.

    Leng, Zhe; Zhang, Jinghuai; Yin, Tingting; Zhang, Li; Guo, Xuying; Peng, Qiuming; Zhang, Milin; Wu, Ruizhi

    2013-12-01

    The microstructure and mechanical properties of as-extruded Mg-8Y-1Er-2Zn (wt%) alloy containing long period stacking ordered (LPSO) phase are comparatively investigated before and after corrosion in a simulated body fluid (SBF) at 37°C. The as-extruded alloy consists of a long strip-like 18R-LPSO phase and some fine lamellae grains formed by primary recrystallization during the extrusion process. The hydrogen evolution volume per day fluctuates between 0.21 and 0.32ml/cm(2) in the immersion test for 240h, and the corresponding corrosion rate is calculated as 0.568mm/y. The corrosion product is determined as Mg(OH)2, whilst a Ca(H2PO4)2 compound is also observed on the surface of the samples. The corrosion site preferentially occurs at the interface between LPSO phase and Mg matrix. Before immersing, the tensile yield strength (TYS), ultimate tensile strength (UTS) and elongation of the alloy are 275MPa, 359MPa, and 19%, respectively. More attractively, these mechanical properties can be maintained even after immersing in SBF for 240h (TYS, UTS and elongation are 216MPa, 286MPa and 6.8%, respectively) because of the existence of high anti-corrosion LPSO phase. PMID:24036280

  5. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  6. Experimental deformation of polyphase rock analogues

    Bons, P.D.

    1993-01-01

    This thesis presents an investigation into the mechanical properties of ductile polyphase materials, which were studied by a number of different techniques. The first approach was to do creep tests and transparent deformation cell experiments with two-phase composites of organic crystalline rock-ana

  7. Deformation of giant lipid bilayer vesicles in shear flow

    Haas, de K.H.; Blom, C.; Ende, van den D.; Duits, M.H.G.; Mellema, J.

    1997-01-01

    We describe experimental studies of the deformation of giant lipid bilayer vesicles in shear flow. The experiments are carried out with a counterrotating Couette apparatus. The deformation depends on the mechanical properties of the lipid bilayer, the vesicle radius, and the viscosity of the surroun

  8. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    Shirdel, M., E-mail: mshirdel1989@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  9. Advances of Research on Mechanical Property, Deformation and Durability of Recycled Aggregate Concrete%再生骨料混凝土力学、变形和耐久性能的研究

    吴仕成; 严捍东

    2012-01-01

    该文结合《混凝土和砂浆用再生细骨料》(GB/T25176)、《混凝土用再生粗骨料》(GB/T25177)和《再生骨料应用技术规程》(JGJ/T240)最新相关规范,对比分析了国内外有关再生混凝土的研究成果。研究表明,再生骨料的取代率、砂浆微粉含量、压碎指标及吸水率是影响再生混凝土性能的关键因素;再生混凝土的力学、变形以及耐久性能均较天然骨料混凝土差,但经合理技术配制的再生骨料混凝土性能均能满足工程应用的要求。%This article systematically compares and analyzes the research results concerning recycled concrete at home and abroad according to relevant latest standards including the Recycled Fine Aggregate for Concrete and Mortar (GB/T25176), the Recycled Coarse Aggregate for Concrete and Mortar (GB/T25177) and the Technical Specifica- tions for Application of Recycled Aggregate (JGJ/T240). The results show that the substitution rate, fine powder content, crushing index and water absorption of recycled aggregate are key factors affecting the properties of recy- cled aggregate concrete; the mechanical property, deformation and durability of recycled aggregate concrete are poo- rel than natural aggregate concrete, but with proper technical preparation, the properties of recycled concrete can meet the requirements of civil engineering.

  10. Nonstandard deformed oscillators from $q$- and $(p,q)$-deformations of Heisenberg algebra

    Gavrilik, A M

    2016-01-01

    For the two-parameter $p,q$-deformed Heisenberg algebra (DHA) introduced recently and in which, instead of usual commutator of $X$ and $P$ in the l.h.s. of basic relation $[X,P]={\\rm i}\\hbar$, one uses the $p,q$-commutator, we established interesting properties. Most important is the realizability of the $p,q$-DHA by means of the appropriate deformed oscillator algebra (DOA). Another uncovered property is special extension of the usual mutual Hermitian conjugation of the creation and annihilation operators, namely the so-called $\\eta(N)$-pseudo-Hermitian conjugation rule, along with the related $\\eta(N)$-pseudo-Hermiticity property of the position or momentum operators. In this work, we present some new solutions of the realization problem yielding new (nonstandard) deformed oscillators, and show their inequivalence to the earlier known solution and respective DOA, in particular what concerns ground state energy.

  11. Geometric Total Variation for Texture Deformation

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    In this work we propose a novel variational method that we intend to use for estimating non-rigid texture deformation. The method is able to capture variation in grayscale images with respect to the geometry of its features. Our experimental evaluations demonstrate that accounting for geometry of...... features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  12. The Lagrangian Deformation Structure of Three-Dimensional Steady Flow

    Lester, Daniel R; Borgne, Tanguy Le; de Barros, Felipe P J

    2016-01-01

    Fluid deformation and strain history are central to wide range of fluid mechanical phenomena ranging from fluid mixing and particle transport to stress development in complex fluids and the formation of Lagrangian coherent structures (LCSs). To understand and model these processes it is necessary to quantify Lagrangian deformation in terms of Eulerian flow properties, currently an open problem. To elucidate this link we develop a Protean (streamline) coordinate transform for steady three-dimensional (3D) flows which renders both the velocity gradient and deformation gradient upper triangular. This frame not only simplifies computation of fluid deformation metrics such as fi?nite-time Lyapunov exponents (FTLEs) and elucidates the deformation structure of the flow, but moreover explicitly recovers kinematic and topological constraints upon deformation such as those related to helicity density and the Poincar\\'{e}-Bendixson theorem. We apply this transform to several classes of steady 3D flow, including helical ...

  13. Autogenous Deformation of Concrete

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions at the...... American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  14. Crustal deformation and earthquakes

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  15. The eigenstates of q-deformed creation operator a+

    In this paper, we construct the eigenstate of q-deformed creation operator a+ by using the contour integral representation of δ function. Some of its properties and applications are presented. (author). 6 refs

  16. Lobster claw deformity.

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  17. Lobster claw deformity

    Ashish Agrawal

    2014-01-01

    Full Text Available Endogenous erythroid colony (EEC syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form. In this article, describes a rare case report of lobster claw deformity patient.

  18. Joining by plastic deformation

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan;

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  19. Nail Deformities and Injuries.

    Tucker, James Rory J

    2015-12-01

    A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. PMID:26612379

  20. Deformation in nanocrystalline metals

    Helena Van Swygenhoven

    2006-05-01

    Full Text Available It is now possible to synthesize polycrystalline metals made up of grains that average less than 100 nm in size. Such nanocrystalline metals contain a significant volume fraction of interfacial regions separated by nearly perfect crystals. The small sizes involved limit the conventional operation of dislocation sources and thus a fundamental question arises: how do these materials deform plastically? We review the current views on deformation mechanisms in nanocrystalline, face-centered cubic metals based on insights gained by atomistic computer simulations. These insights are discussed with reference to recent striking experimental observations that can be compared with predictions made by the simulations.

  1. Deforming Geometric Transitions

    Rossi, Michele

    2013-01-01

    After a quick review of the wild structure of the complex moduli space of Calabi-Yau threefolds and the role of geometric transitions in this context (the Calabi-Yau web) the concept of "deformation equivalence" for geometric transitions is introduced to understand the arrows of the Gross-Reid Calabi-Yau web as deformation-equivalence classes of geometric transitions. Then the focus will be on some results and suitable examples to understand under which conditions it is possible to get "simpl...

  2. Deformation Behavior of Nanoporous Metals

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  3. The influence of the temperature of plastic deformation on the structure and mechanical properties of copper alloys CuCo2Be and CuCo1Ni1Be

    W. Ozgowicz

    2009-09-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of temperature of plastic deformation on the structure and mechanical properties of copper alloy of the CuCo2Be and CuCo1Ni1Be during a tensile test applied on electrodes to welders.Design/methodology/approach: The tensile test of the investigated copper alloys was realized in the temperature range of 20-800°C with a strain rate of 1.2•10-3s–1 on the universal testing machine. Metallographic observations of the structure were carried out on a light microscope and the fractographic investigation of fracture on an electron scanning microscope.Findings: The mechanical properties of alloys as well as the range of occurrence of the Portevin - Le Chatelier (PLC phenomenon was determined on the basis of F-ΔL curves formed by tensile tests; however the character of fracture during the break of the samples was defined on the basis of fractographic investigations.Research limitations/implications:Practical implications: In result of tensile tests of copper alloys it has been found that the PLC effect occurs in both alloys in the temperature range of 150-350°C. However, the ductility minimum temperature of the alloys equals about 500°C. At the temperature of stretching of about 450°C the investigated copper alloys show maximum strength values.Originality/value: The type of ”teething” on the load - displacement curves was defined, according to the classification received in literature. The dependence εkr = f(t was marked too.

  4. Parity effects in nuclear collective and single particle motion

    Effects of the parity-mixed single-particle (s.p.) state on the collective properties of odd nuclei with reflection-asymmetric degrees of freedom are studied. The Coriolis strength and the average s.p. parity in the nuclei 219Ra, 225Ra, 225Th and 241Cm are examined in dependence on axial quadrupole and octupole deformation parameters β2 and β3 within a reflection-asymmetric deformed shell model. The obtained behaviour of the Coriolis decoupling factor in the (β2, β3)-plane is compared with values fitted in a collective quadrupole-octupole model, which allows one to determine physically reasonable deformation regions for the considered nuclei. The study provides a relation between deformation parameters, Coriolis interaction strength and the structure of collective spectra in odd-mass nuclei with quadrupole-octupole deformations. (author)

  5. Deduced soft-rotator model Hamiltonian parameters and collective properties of medium-to-heavy even-even nuclei

    The soft-rotator model Hamiltonian parameters were deduced for 63 even-even medium and heavy nuclei in a mass range 56 ≤ A ≤ 238. We obtained those values by the combination of the low-lying level structure and the coupled-channels proton scattering analyses. It was found that the values of the effective quadrupole and octupole deformations obtained were consistent with those derived from experimental data. Besides, the equilibrium ground-state quadrupole deformation parameters were also in reasonable accord with the theoretical mass-models results for deformed heavy nuclei. In this report, we present a complete set of the Hamiltonian parameters for each nucleus. The obtained values of the parameters often varied with the constituent neutron and/or proton numbers anomalously. On the other hand, some clear systematic trends were seen among the major Hamiltonian parameters. (author)

  6. Universal deformation formulas

    Remm, E.; Markl, Martin

    2015-01-01

    Roč. 43, č. 11 (2015), s. 4711-4734. ISSN 0092-7872 Institutional support: RVO:67985840 Keywords : algebra * deformation * twisting Subject RIV: BA - General Mathematics Impact factor: 0.388, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/00927872.2014.949729

  7. Marginally Deformed Starobinsky Gravity

    Codello, A.; Joergensen, J.; Sannino, Francesco;

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  8. Diffeomorphic Statistical Deformation Models

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    manifold and that the distance between two deformations are given by the metric introduced by the L2-norm in the parameter space. The chosen L2-norm is shown to have a clear and intuitive interpretation on the usual nonlinear manifold. Our model is validated on a set of MR images of corpus callosum with...

  9. Cutting in deformable objects

    Nienhuys, Han-Wen

    2003-01-01

    Virtual reality simulations of surgical procedures allow such procedures to be practiced on computers instead of patients and test-animals. The core of such a system is a soft tissue simulation, that has to react very quickly but be realistic at the same time. This thesis discusses how deformable

  10. PT-symmetrically deformed shock waves

    Cavaglia, Andrea

    2012-01-01

    We investigate for a large class of nonlinear wave equations, which allow for shock wave formations, how these solutions behave when they are PT-symmetrically deformed. For real solutions we find that they are transformed into peaked solutions with a discontinuity in the first derivative instead. The systems we investigate include the PT-symmetrically deformed inviscid Burgers equation recently studied by Bender and Feinberg, for which we show that it does not develop any shocks, but peaks instead. In this case we exploit the rare fact that the PT-deformation can be provided by an explicit map found by Curtright and Fairlie together with the property that the undeformed equation can be solved by the method of characteristics. We generalise the map and observe this type of behaviour for all integer values of the deformation parameter epsilon. The peaks are formed as a result of mapping the multi-valued self-avoiding shock profile to a multi-valued self-crossing function by means of the PT-deformation. For some...

  11. Survey of Reflection-Asymmetric Nuclear Deformations

    Olsen, Erik; Birge, Noah; Erler, Jochen; Nazarewicz, Witek; Perhac, Alex; Schunck, Nicolas; Stoitsov, Mario; Nuclei Collaboration

    2015-10-01

    Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. Overall, 140 even-even nuclei (near and among the lantanides and actinides and in the superheavy region near N = 184) were predicted by all 6 EDFs to have a pear-like deformation. The case of 112Xe also proved curious as it was predicted by 5 EDFs to have a pear-like deformation despite its proximity to the two-proton drip line. Deceased.

  12. Formation and subdivision of deformation structures during plastic deformation

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting...

  13. Deformation of Linked Polymer Coils

    董朝霞; 李明远; 吴肇亮; 林梅钦

    2003-01-01

    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  14. On the rotational deformity of the shoulder following an obstetric brachial plexus palsy

    Hultgren, Tomas

    2013-01-01

    An internal rotation deformity of the shoulder occurs very frequently in brachial plexus birth palsy. Even though surprisingly accurate descriptions of the deformity were already published at the beginning of the 1900s, the nature of the deformity is not well understood and there is no consensus regarding surgical treatment. This thesis was aimed at improving the scientific basis for surgical treatment of the deformity. In study I the passive mechanical properties of ...

  15. Polyurethane Geocomposites - mechanical properties and deformation

    Šňupárek, Richard; Souček, Kamil

    Petrosani : Universitas, 2000, s. 300-309. ISBN 973-8035-66-X. [Underground Constructions in the Third Millennium/3./. Petrosani (RO), 26.10.2000-29.10.2000] R&D Projects: GA ČR GA105/97/0967; GA AV ČR IAB3086907 Subject RIV: JI - Composite Materials

  16. Deformation quantization of bosonic strings

    Deformation quantization of bosonic strings is considered. We show that the light-cone gauge is the most convenient classical description to perform the quantization of bosonic strings in the deformation quantization formalism. Similar to the field theory case, the oscillator variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra are finally described within this deformation quantization scheme. (author)

  17. Rotational Deformation of Neutron Stars

    WEN De-Hua; CHEN Wei; LIU Liang-Gang

    2005-01-01

    @@ The rotational deformations of two kinds of neutron stars are calculated by using Hartle's slow-rotation formulism.The results show that only the faster rotating neutron star gives an obvious deformation. For the slow rotating neutron star with a period larger than hundreds of millisecond, the rotating deformation is very weak.

  18. Cosmetic and Functional Nasal Deformities

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  19. [Babies with cranial deformity].

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  20. Probing deformed quantum commutators

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  1. Deformed supersymmetric mechanics

    Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry

  2. Properties of the distorted Kerr black hole

    Abdolrahimi, Shohreh; Kunz, Jutta; Nedkova, Petya; Tzounis, Christos

    2015-12-01

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J2/M4 > 1 and yet avoid a naked singularity.

  3. Lobster claw deformity

    Ashish Agrawal; Rahul Agrawal; Rajat Singh; Romi Agrawal; Seema Agrawal

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-...

  4. Deformations of fractured rock

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m2) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  5. Lp shape deformation

    GAO Lin; ZHANG GuoXin; LAI YuKun

    2012-01-01

    Shape deformation is a fundamental tool in geometric modeling.Existing methods consider preserving local details by minimizing some energy functional measuring local distortions in the L2 norm.This strategy distributes distortions quite uniformly to all the vertices and penalizes outliers.However,there is no unique answer for a natural deformation as it depends on the nature of the objects.Inspired by recent sparse signal reconstruction work with non L2 norm,we introduce general Lp norms to shape deformation; the positive parameter p provides the user with a flexible control over the distribution of unavoidable distortions.Compared with the traditional L2 norm,using smaller p,distortions tend to be distributed to a sparse set of vertices,typically in feature regions,thus making most areas less distorted and structures better preserved. On the other hand,using larger p tends to distribute distortions more evenly across the whole model.This flexibility is often desirable as it mimics objects made up with different materials.By specifying varying p over the shape,more flexible control can be achieved.We demonstrate the effectiveness of the proposed algorithm with various examples.

  6. Supertransvectants, cohomology, and deformations

    Ben Fraj, Nizar; Laraiedh, Ismail; Omri, Salem

    2013-02-01

    Over the (1, N)-dimensional real superspace, N = 2, 3, we classify {osp}(N|2)-invariant binary differential operators acting on the superspaces of weighted densities, where {osp}(N|2) is the orthosymplectic Lie superalgebra. This result allows us to compute the first differential {osp}(N|2)-relative cohomology of the Lie superalgebra K(N) of contact vector fields with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We classify generic formal {osp}(3|2)-trivial deformations of the K(3)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal {osp}(3|2)-trivial deformation of this K(3)-module is equivalent to its infinitesimal part. This work is the simplest generalization of a result by the first author et al. [Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., and Kammoun, K., "Cohomology of the Lie superalgebra of contact vector fields on {K}^{1|1} and deformations of the superspace of symbols," J. Nonlinear Math. Phys. 16, 373 (2009), 10.1142/S1402925109000431].

  7. Processing magnesium alloys by severe plastic deformation

    Figueiredo, Roberto B.; Aguilar, Maria Teresa P.; Cetlin, Paulo Roberto; Langdon, Terence G.

    2014-08-01

    The use of severe plastic deformation techniques for processing magnesium alloys has moved from the early difficulties of processing to a stage of tailoring the best properties of these materials. The present paper reviews processing, structure and mechanical properties characterization. It is shown that ultrafine-grained structures are obtained in magnesium alloys processed by multiple passes of Equal-Channel Angular Pressing at moderate temperatures. Ultrafine-grained structures are also obtained by room temperature processing by High- Pressure Torsion. The ultrafine-grained structures increase strength and introduce excellent superplastic capabilities in many magnesium alloys. Moreover, processing magnesium alloys by severe plastic deformation leads to the development of anisotropy in mechanical behavior.

  8. Symmetric $q$-deformed KP hierarch

    Tian, Kelei; He, Jingsong; Su, Yucai

    2014-01-01

    Based on the analytic property of the symmetric $q$-exponent $e_q(x)$, a new symmetric $q$-deformed Kadomtsev-Petviashvili ($q$-KP) hierarchy associated with the symmetric $q$-derivative operator $\\partial_q$ is constructed. Furthermore, the symmetric $q$-CKP hierarchy and symmetric $q$-BKP hierarchy are defined. Here we also investigate the additional symmetries of the symmetric $q$-KP hierarchy.

  9. When Shape Matters: Deformations of Tiling Spaces

    Clark, Alex; Sadun, Lorenzo

    2003-01-01

    We investigate the dynamics of tiling dynamical systems and their deformations. If two tiling systems have identical combinatorics, then the tiling spaces are homeomorphic, but their dynamical properties may differ. There is a natural map ${\\mathcal I}$ from the parameter space of possible shapes of tiles to $H^1$ of a model tiling space, with values in $\\R^d$. Two tiling spaces that have the same image under ${\\mathcal I}$ are mutually locally derivable (MLD). When the difference of the imag...

  10. Mathematical textbook of deformable neuroanatomies.

    Miller, M I; Christensen, G E; Amit, Y; Grenander, U

    1993-12-15

    Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical properties of neuroanatomies. This information is obtained via sensor probes such as magnetic resonance, as well as computed axial and emission tomography, along with symbolic information such as white- and gray-matter tracts, nuclei, etc. Human variability associated with individuals is accommodated by defining probabilistic transformations on the textbook coordinate system, the transformations forming mathematical translation groups of high dimension. The ideal is applied to the individual patient by finding the transformation which is consistent with physical properties of deformable elastic solids and which brings the coordinate system of the textbook to that of the patient. Registration, segmentation, and fusion all result automatically because the textbook carries symbolic values as well as multisensor features. PMID:8265653

  11. Weak associativity and deformation quantization

    V.G. Kupriyanov

    2016-09-01

    Full Text Available Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  12. Weak associativity and deformation quantization

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  13. Hydroxyl induced eclogite fabric and deformation mechanism

    ZHANG Junfeng; JIN Zhenmin; Harry W. Green II

    2005-01-01

    Eclogites from orogens often show strong plastic deformation and high hydroxyl content. We have studied the correlation between crystallographic preferred orientations of garnet and omphacite from natural eclogites with their hydroxyl contents using the electron back-scat- tered diffraction technique. The results show: 1) Omphacite has typical L-type or SL-type crystrallographic preferred orientations, that is, [001] is distributed in a girdle in the foliation plane with a maximum parallel to lineation; (010) is distributed in a girdle normal to the lineation with a maximum parallel to the foliation plane, suggesting a shear dominant deformation regime. Omphacite fabrics do not vary significantly with hydroxyl content, although the hydrous component may cause lower flow strength. 2) Hydroxyl can influence significantly flow properties of garnet in eclogite. Garnets behave as rigid bodies under low temperature and dry conditions. Grain boundary processes will dominate the deformation and lower the flow strength of garnet under high water fugacity conditions. Garnets show no crystallographic preferred orientation in both cases. These results may have important implications for a better understanding of deformation mechanisms and associated fluid activities during deep subduction and exhumation processes.

  14. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  15. Quantizing Earth surface deformations

    C. O. Bowin

    2015-03-01

    Full Text Available The global analysis of Bowin (2010 used the global 14 absolute Euler pole set (62 Myr history from Gripp and Gordon (1990 and demonstrated that plate tectonics conserves angular momentum. We herein extend that analysis using the more detailed Bird (2003 52 present-day Euler pole set (relative to a fixed Pacific plate for the Earth's surface, after conversion to absolute Euler poles. Additionally, new analytical results now provide new details on upper mantle mass anomalies in the outer 200 km of the Earth, as well as an initial quantizing of surface deformations.

  16. A General Polygon-based Deformable Model for Object Recognition

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic...... distribution, which combined with a match of the warped intensity template and the image form the final criteria used for localization and recognition of a given object. The chosen representation gives the model an ability to model an almost arbitrary object. Beside the actual model a full general scheme for...

  17. Structure of collective modes in transitional and deformed nuclei

    Caprio, M. A.

    2005-01-01

    The collective structure of atomic nuclei intermediate between spherical and quadrupole deformed structure presents challenges to theoretical understanding. However, models have recently been proposed in terms of potentials which are soft with respect to the quadrupole deformation variable beta. To test these models, information is needed on low-spin states of transitional nuclei. The present work involves measurement of electromagnetic decay properties of low-spin states for nuclei in the A=...

  18. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    Šrámek Juraj

    2015-01-01

    The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E*) measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two...

  19. TORSIONAL DEFORMATION AND FATIGUE BEHAVIOUR OF 6061 ALUMINIUM ALLOY

    Marini Marno; Ahmad Badri Ismail

    2012-01-01

    Torsional deformation and fatigue behaviour of both solid and thin-walled tubular specimens were made from as-received and heat treated 6061 aluminium alloy were studied. 6061 aluminium alloy have been widely used as a candidate material in automobile, aerospace, aircraft and structural application because of their superior mechanical properties such as high strength to weight ratio, good ductility and others. The differences in cyclic deformation and fatigue behaviours between round and soli...

  20. Polarization of the nuclear surface in deformed nuclei

    Scamps, G.; Lacroix, D.; Adamian, G. G.; Antonenko, N.V.

    2013-01-01

    The density profiles of around 750 nuclei are analyzed using the Skyrme energy density functional theory. Among them, more than 350 nuclei are found to be deformed. In addition to rather standard properties of the density, we report a non-trivial behavior of the nuclear diffuseness as the system becomes more and more deformed. Besides the geometric effects expected in rigid body, the diffuseness acquires a rather complex behavior leading to a reduction of the diffuseness along the main axis o...