WorldWideScience

Sample records for nerve cell activity

  1. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells

    Lin, Guiting; Zhang, Haiyang; Sun, Fionna; Lu, Zhihua; Reed-Maldonado, Amanda; Lee, Yung-Chin; Wang, Guifang; Banie, Lia

    2016-01-01

    Background Radical prostatectomy (RP) carries the risk of erectile dysfunction (ED) due to cavernous nerve (CN) injury. Schwann cells are essential for the maintenance of integrity and function of peripheral nerves such as the CNs. We hypothesize that brain-derived neurotrophic factor (BDNF) activates the Janus kinase (JAK)/(signal transducer and activator of transcription) STAT pathway in Schwann cells, not in neuronal axonal fibers, with the resultant secretion of cytokines from Schwann cells to facilitate nerve recovery. Methods Using four different cell lines—human neuroblastoma BE(2)-C and SH-SY5Y, human Schwann cell (HSC), and rat Schwann cell (RSC) RT4-D6P2T—we assessed the effect of BDNF application on the activation of the JAK/STAT pathway. We also assessed the time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment. We then assayed cytokine release from HSCs as a response to BDNF treatment using oncostatin M and IL6 as markers. Results We showed extensive phosphorylation of STAT3/STAT1 by BDNF at high dose (100 pM) in RSCs, with no JAK/STAT pathway activation in human neuroblastoma cell lines. The time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment showed an initial peak at shortly after treatment and then a second higher peak at 24–48 hours. Cytokine release from HSCs increased progressively after BDNF application, reaching statistical significance for IL6. Conclusions We demonstrated for the first time the indirect mechanism of BDNF enhancement of nerve regeneration through the activation of JAK/STAT pathway in Schwann cells, rather than directly on neurons. As a result of BDNF application, Schwann cells produce cytokines that promote nerve regeneration.

  2. Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats

    Kanje Martin

    2011-01-01

    Full Text Available Abstract Background Extracellular-signal regulated kinase (ERK1/2 is activated by nerve damage and its activation precedes survival and proliferation of Schwann cells. In contrast, activation of caspase 3, a cysteine protease, is considered as a marker for apoptosis in Schwann cells. In the present study, axonal outgrowth, activation of ERK1/2 by phosphorylation (p-ERK 1/2 and immunoreactivity of cleaved caspase 3 were examined after immediate, delayed, or no repair of transected rat sciatic nerves. Results Axonal outgrowth, detected by neurofilament staining, was longer after immediate repair than after either the delayed or no repair conditions. Immediate repair also showed a higher expression of p-ERK 1/2 and a lower number of cleaved caspase 3 stained Schwann cells than after delayed nerve repair. If the transected nerve was not repaired a lower level of p-ERK 1/2 was found than in either the immediate or delayed repair conditions. Axonal outgrowth correlated to p-ERK 1/2, but not clearly with cleaved caspase 3. Contact with regenerating axons affected Schwann cells with respect to p-ERK 1/2 and cleaved caspase 3 after immediate nerve repair only. Conclusion The decreased regenerative capacity that has historically been observed after delayed nerve repair may be related to impaired activation of Schwann cells and increased Schwann cell death. Outgrowing axons influence ERK 1/2 activation and apoptosis of Schwann cells.

  3. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus

    Oertel, Donata; Bal, Ramazan; Stephanie M. Gardner; Smith, Philip H; Joris, Philip X

    2000-01-01

    The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter t...

  4. Adipose derived stem cells and nerve regeneration

    Faroni, Alessandro; Smith, Richard JP; Reid, Adam J

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients alongside high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacrificing a section of nerve from elsewhere in the body to provide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacrifice of a functional nerve. Stem cells are prime candidates as accelerators of regeneration in t...

  5. Nerve compression activates selective nociceptive pathways and upregulates peripheral sodium channel expression in Schwann cells.

    Frieboes, Laura Rummler; Palispis, Winnie Anne; Gupta, Ranjan

    2010-06-01

    Chronic nerve compression (CNC) injuries, such as carpal tunnel syndrome, are common musculoskeletal conditions that affect patients with debilitating loss of sensory function and pain. Although early detection and treatment are important, our understanding of pain-related molecular mechanisms remains largely unclear. Here we investigate these mechanisms using an animal model for CNC injury. To confirm that CNC injury induces pain, we assessed expression of c-fos, a gene that is rapidly expressed in spinal sensory afferents in response to painful peripheral stimuli, and TNF-alpha and IL-6, two proinflammatory cytokines that are crucial to development of inflammatory-mediated pain. Results show c-fos upregulation 1-2 weeks postinjury in the absence of TNF-alpha or IL-6 expression, indicating increased neural sensitivity without an inflammatory response. This is consistent with previous studies that showed no morphologic evidence of inflammation in the CNC model. Surprisingly, we also found de novo expression of Na(V)1.8, a sodium channel linked to the development of neuropathic pain, in endoneurial Schwann cells following injury. Until now, Na(V)1.8 expression was thought to be restricted to sensory neurons. CNC injury appears to be a unique model of noninflammatory neuropathic pain. Further investigation of the underlying molecular basis could yield promising targets for early diagnosis and treatment. PMID:20014316

  6. Pharmacology of airway afferent nerve activity

    Carr Michael J

    2001-05-01

    Full Text Available Abstract Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology.

  7. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    Frödin, M; Sekine, N; Roche, E; Filloux, C; Prentki, M; Wollheim, C B; Van Obberghen, E

    1995-01-01

    of this kinase is not sufficient for secretion. In the presence of glucose, however, nerve growth factor potentiated insulin secretion. In INS-1 cells, activation of 44-kDa MAP kinase was partially correlated with the induction of early response genes junB, nur77, and zif268 but not with stimulation......The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK...

  8. Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells

    We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors. Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells

  9. Adipose-derived stem cells promote peripheral nerve repair

    Liu, Gui-Bo; Cheng, Yong-Xia; Feng, Yu-Kuan; Pang, Chao-Jian; Li, Qi; Wang, Ying; Jia, Hua; Tong, Xiao-Jie

    2011-01-01

    Introduction Recent evidence suggests that the implantation of bone marrow-derived mesenchymal stem cells improves peripheral nerve regeneration. In this study we aimed to investigate whether adipose-derived stem cells (ADSCs) can be used for peripheral nerve repair. Material and methods In a rat model, nerve regeneration was evaluated across a 15 mm lesion in the sciatic nerve by using an acellular nerve injected with allogenic ADSCs. The walking behaviour of rats was measured by footprint a...

  10. Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity of leech glial and nerve cells.

    Drner, R; Zens, M; Schlue, W R

    1994-11-28

    The membrane potential of neuropile glial cells and Retzius neurones in the central nervous system of the leech Hirudo medicinalis was measured using electrolyte-filled single-barreled microelectrodes. Intracellular Na+ activity (aNai) was recorded with Na(+)-sensitive double-barreled microelectrodes. Bath-application of kainate, quisqualate and L-glutamate elicited concentration-dependent membrane depolarizations in both cell types as demonstrated by dose-response curves. The competitive quinoxalinedione antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the non-NMDA glutamate receptor inhibited the membrane depolarizations in neuropile glial cells completely, but in Retzius neurones only partially. These results confirm that leech neuropile glial cells have a kainate- and quisqualate-preferring non-NMDA glutamate receptor similar to that in the Retzius neurones. The initial decrease in aNai in neuropile glial cells in kainate- or quisqualate-containing solutions and the afterhyperpolarization in these glial cells and the Retzius neurones following the removal of both glutamate antagonists, were blocked in the presence of the cardiac glycoside ouabain (10(-4) M). In saline solutions containing 42.5 mM Li+ instead of Na+ the afterhyperpolarizations were blocked in neuropile glial cells and Retzius neurones. We conclude that the initial aNai changes and the afterhyperpolarization could be due to the stimulation of the electrogenic Na+/K+ pump in the glial and neuronal membranes. PMID:7882017

  11. Demonstrating Electrical Activity in Nerve and Muscle. Part II

    Robinson, D. J.

    1976-01-01

    Describes the construction of an amplifier and force transducer that can be used to demonstrate electrical activity in nerve and muscle using the gastrocnemius muscle and sciatic nerve of the frog. (MLH)

  12. Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells.

    Buchkovich, K J; Ziff, E B

    1994-11-01

    In the absence of serum, nerve growth factor (NGF) promotes the survival and differentiation of the PC12 pheochromocytoma cell line. In the presence of serum, NGF acts primarily as a differentiation factor and negative regulator of cell cycling. To investigate NGF control of cell cycling, we have analyzed the regulation of cyclin dependent kinases during PC12 cell differentiation. NGF treatment leads to a reduction in the steady-state protein levels of p33cdk2 and p34cdc2, two key regulators of cell cycle progression. The decrease in p33cdk2 and p34cdc2 coincides with a decrease in the enzymatic activity of cyclinA-p34cdc2, cyclinB-p34cdc2, cyclinE-p33cdk2, and cyclinA-p33cdk2 kinases. The decline in p33cdk2 and p34cdc2 kinase activity in response to NGF is accelerated in cells that over-express the p140trk NGF receptor, suggesting that the timing of the down- regulation is dependent on the level of p140trk and the strength of the NGF signal. The level of cyclin A, a regulatory subunit of p33cdk2 and p34cdc2, is relatively constant during PC12 differentiation. Nevertheless, the DNA binding activity of the cyclinA-associated transcription factor E2F/DP decreases. Thus, NGF down-regulates the activity of cyclin dependent kinases and cyclin-transcription factor complexes during PC12 differentiation. PMID:7865886

  13. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  14. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    2012-02-09

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detection of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.

  15. Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells.

    Buchkovich, K J; Ziff, E.B.

    1994-01-01

    In the absence of serum, nerve growth factor (NGF) promotes the survival and differentiation of the PC12 pheochromocytoma cell line. In the presence of serum, NGF acts primarily as a differentiation factor and negative regulator of cell cycling. To investigate NGF control of cell cycling, we have analyzed the regulation of cyclin dependent kinases during PC12 cell differentiation. NGF treatment leads to a reduction in the steady-state protein levels of p33cdk2 and p34cdc2, two key regulators ...

  16. Human periodontal ligament stem cells repair mental nerve injury

    Li, Bohan; Jung, Hun-Jong; Kim, Soung-Min; Kim, Myung-Jin; Jahng, Jeong Won; Lee, Jong-Ho

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were al...

  17. Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration

    FAN, LIHONG; YU, ZEFENG; Li, Jia; Dang, Xiaoqian; Wang, KunZheng

    2014-01-01

    Background This study evaluated whether Schwann-like cells (SLCs) induced from bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into acellular nerve grafts (ANGs) could repair nerve defects compared with nerve isografts and ANGs with BM-MSCs. Methods BM-MSCs extracted, separated and purified from the bone marrow of rats, and some of the BM-MSCs were cultured with mixed induction agents that could induce BM-MSCs into SLCs. Either SLCs or BM-MSCs were seeded onto 10-mm ANGs, an...

  18. Denervated sheath cells secrete a new protein after nerve injury.

    Skene, J H; Shooter, E. M.

    1983-01-01

    When rat sciatic nerves are crushed, Schwann cells or other supporting cells distal to the injury site begin to synthesize and secrete an acidic 37-kilodalton (kDa) protein. This crush-induced protein accumulates within the nerve sheath and accounts for 2-5% of the total extracellular protein in the distal nerve stump. Synthesis of the 37-kDa protein increased for 2 weeks after nerve crush and declines slowly, beginning 4-6 weeks after the injury. The synthesis of the protein may be regulated...

  19. Selective activation of the human tibial and common peroneal nerves with a flat interface nerve electrode

    Schiefer, M. A.; Freeberg, M.; Pinault, G. J. C.; Anderson, J.; Hoyen, H.; Tyler, D. J.; Triolo, R. J.

    2013-10-01

    Objective. Electrical stimulation has been shown effective in restoring basic lower extremity motor function in individuals with paralysis. We tested the hypothesis that a flat interface nerve electrode (FINE) placed around the human tibial or common peroneal nerve above the knee can selectively activate each of the most important muscles these nerves innervate for use in a neuroprosthesis to control ankle motion. Approach. During intraoperative trials involving three subjects, an eight-contact FINE was placed around the tibial and/or common peroneal nerve, proximal to the popliteal fossa. The FINE's ability to selectively recruit muscles innervated by these nerves was assessed. Data were used to estimate the potential to restore active plantarflexion or dorsiflexion while balancing inversion and eversion using a biomechanical simulation. Main results. With minimal spillover to non-targets, at least three of the four targets in the tibial nerve, including two of the three muscles constituting the triceps surae, were independently and selectively recruited in all subjects. As acceptable levels of spillover increased, recruitment of the target muscles increased. Selective activation of muscles innervated by the peroneal nerve was more challenging. Significance. Estimated joint moments suggest that plantarflexion sufficient for propulsion during stance phase of gait and dorsiflexion sufficient to prevent foot drop during swing can be achieved, accompanied by a small but tolerable inversion or eversion moment.

  20. ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1.

    Pasten, Consuelo; Cerda, Joaqun; Jausoro, Ignacio; Court, Felipe A; Cceres, Alfredo; Marzolo, Maria-Paz

    2015-11-01

    ApoER2 and its ligand Reelin participate in neuronal migration during development. Upon receptor binding, Reelin induces the proteolytic processing of ApoER2 as well as the activation of signaling pathway, including small Rho GTPases. Besides its presence in the central nervous system (CNS), Reelin is also secreted by Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS). Reelin deficient mice (reeler) show decreased axonal regeneration in the PNS; however neither the presence of ApoER2 nor the role of the Reelin signaling pathway in the PNS have been evaluated. Interestingly SC migration occurs during PNS development and during injury-induced regeneration and involves activation of small Rho GTPases. Thus, Reelin-ApoER2 might regulate SC migration during axon regeneration in the PNS. Here we demonstrate the presence of ApoER2 in PNS. After sciatic nerve injury Reelin was induced and its receptor ApoER2 was proteolytically processed. In vitro, SCs express both Reelin and ApoER2 and Reelin induces SC migration. To elucidate the molecular mechanism underlying Reelin-dependent SC migration, we examined the involvement of Rac1, a conspicuous small GTPase family member. FRET experiments revealed that Reelin activates Rac1 at the leading edge of SCs. In addition, Tiam1, a major Rac1-specific GEF was required for Reelin-induced SC migration. Moreover, Reelin-induced SC migration was decreased after suppression of the polarity protein PAR3, consistent with its association to Tiam1. Even more interesting, we demonstrated that PAR3 binds preferentially to the full-length cytoplasmic tail of ApoER2 corresponding to the splice-variant containing the exon 19 that encodes a proline-rich insert and that ApoER2 was required for SC migration. Our study reveals a novel function for Reelin/ApoER2 in PNS, inducing cell migration of SCs, a process relevant for PNS development and regeneration. PMID:26386179

  1. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin etal. (1998). In the present study, 20mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent offunctional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. PMID:26296589

  2. Early Interfaced Neural Activity from Chronic Amputated Nerves

    Garde, Kshitija; Keefer, Edward; Botterman, Barry; Galvan, Pedro; Romero, Mario I.

    2009-01-01

    Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non-restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8?days post-implantation with high signal-to-noise ratio, as long as 3?months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative multi-electrode arrays of open design allow early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. PMID:19506704

  3. Early interfaced neural activity from chronic amputated nerves

    Kshitija Garde

    2009-05-01

    Full Text Available Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation, currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative on-dependent multi-electrode arrays of open design allow the early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. .

  4. Electron microscopic study of the myelinated nerve fibres and the perineurial cell basement membrane in the diabetic human peripheral nerves

    To study the quantitative and ultrastructural changes in myelinated nerve fibers and the basement membranes of the perineurial cells in diabetic nerves. The study was performed at the Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Saudi Arabia from 2003 to 2005. Human sural nerves were obtained from 15 lower limbs and 5 diabetic nerve biopsies. The total mean and density of myelinated nerve fibers per fascicle were calculated, with density of microtubules and mitochondria in the axoplasm. The number of the perineurial cell basement membrane layers was counted, and thickness of the basement membrane was measured. Among the 15 diabetic and 5 normal human sural nerves, the average diameters, number and surface area of myelinated nerve fibers and axonal microtubules density were found to be less in diabetic nerves. Mitochondrial density was higher in diabetic axons. Thickness of the perineurial cell basement membrane had a greater mean, but the number of perineurial cell layers was less than that of the diabetic group. The inner cellular layer of the perineurium of the diabetic nerves contained large vacuoles containing electron-dense degenerated myelin. A few specimens showed degenerated myelinated nerve fibers, while others showed recovering ones. Retracted axoplasms were encountered with albumin extravasation. Diabetes caused an increase in perineurial permeability. The diabetic sural nerve showed marked decrease in the myelinated nerve fibres, increase degenerated mitochondria, and decreased microtubules. (author)

  5. Mechanical activity of frog esophagus muscle in response to electrical stimulation of intramural nerves.

    Yoshida, Masahide

    2007-04-01

    Microscopic observation of intramural nerves in the frog esophagus, fixed and stained with OsO(4) and ZnI(2), revealed that nerve cell bodies and bundles connecting the nerve cell bodies formed loose and irregular networks. The nerve cell bodies were mostly lying singly in the nerve bundles, with occasional observations of two closely linked nerve cell bodies. Isolated circular and longitudinal segments of esophageal muscle were spontaneously rhythmically contractile, with a frequency of 2.2-3.0 per min. This was not altered by tetrodotoxin (TTX). In longitudinal muscle segments, transmurally applied electrical stimulation produced contractile responses which were not inhibited by atropine or guanethidine, but were reduced in amplitude by TTX, suggesting a nonadrenergic-noncholinergic (NANC) excitatory innervation in the esophagus muscle. In circular muscle segments, transmural application of brief electrical stimulation evoked two types of mechanical response: a biphasic response consisting of an initial relaxation and a following contraction (type I) and a contraction alone (type II). These mechanical responses were not modulated by either atropine or guanethidine. In the type I response, TTX abolished the relaxation component, suggesting that this was produced by non-adrenergic non-cholinergic (NANC) inhibitory nerve excitation. In about half of the type II responses, the amplitude of the contraction was significantly reduced by TTX, suggesting that a part of the contraction was produced by activation of NANC excitatory nerves. Thus, the esophageal smooth muscle of the frog demonstrates myogenic activity, and is innervated by both excitatory and inhibitory NANC nerves. PMID:17598959

  6. Peripheral nerve injury induces glial activation in primary motor cortex

    Julieta Troncoso; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  7. Motor neuron activation in peripheral nerves using infrared neural stimulation

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  8. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, Seeram

    2009-11-01

    Fabrication of scaffolds with suitable chemical, mechanical, and electrical properties is critical for the success of nerve tissue engineering. Electrical stimulation was directly applied to electrospun conductive nanofibrous scaffolds to enhance the nerve regeneration process. In the present study, electrospun conductive nanofibers were prepared by mixing 10 and 15 wt% doped polyaniline (PANI) with poly (epsilon-caprolactone)/gelatin (PG) (70:30) solution (PANI/PG) by electrospinning. The fiber diameter, pore size, hydrophilicity, tensile properties, conductivity, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy spectra of nanofibers were determined, and the in vitro biodegradability of the different nanofibrous scaffolds was also evaluated. Nanofibrous scaffolds containing 15% PANI was found to exhibit the most balanced properties to meet all the required specifications for electrical stimulation for its enhanced conductivity and is used for in vitro culture and electrical stimulation of nerve stem cells. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and scanning electron microscopy results showed that conductive nanofibrous scaffolds are suitable substrates for the attachment and proliferation of nerve stem cells. Electrical stimulation through conductive nanofibrous PANI/PG scaffolds showed enhanced cell proliferation and neurite outgrowth compared to the PANI/PG scaffolds that were not subjected to electrical stimulation. PMID:19496678

  9. Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin

    Kopp, Ulla C.; Grisk, Olaf; Cicha, Michael Z.; Smith, Lori A.; Steinbach, Antje; Schlüter, Torsten; Mähler, Nicole; Hökfelt, Tomas

    2009-01-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which in turn decreases ERSNA via activation of the renorenal reflexes in the overall goal of maintaining low ERSNA. We now examined whether the ERSNA-induced increases in ARNA are modulated by dietary sodium and the role of endothelin (ET). The ARNA response to reflex increases in ERSNA was enhanced in high (HNa)- vs. low-sodium (LNa) diet rats, 7,560 ± 1,470 vs. 900 ± 390%·s. The norepinephrine (NE) concentration required to increase PGE2 and substance P release from isolated renal pelvises was 10 pM in HNa and 6,250 pM in LNa diet rats. In HNa diet pelvises 10 pM NE increased PGE2 release from 67 ± 6 to 150 ± 13 pg/min and substance P release from 6.7 ± 0.8 to 12.3 ± 1.8 pg/min. In LNa diet pelvises 6,250 pM NE increased PGE2 release from 64 ± 5 to 129 ± 22 pg/min and substance P release from 4.5 ± 0.4 to 6.6 ± 0.7 pg/min. In the renal pelvic wall, ETB-R are present on unmyelinated Schwann cells close to the afferent nerves and ETA-R on smooth muscle cells. ETA-receptor (R) protein expression in the renal pelvic wall is increased in LNa diet. In HNa diet, renal pelvic administration of the ETB-R antagonist BQ788 reduced ERSNA-induced increases in ARNA and NE-induced release of PGE2 and substance P. In LNa diet, the ETA-R antagonist BQ123 enhanced ERSNA-induced increases in ARNA and NE-induced release of substance P without altering PGE2 release. In conclusion, activation of ETB-R and ETA-R contributes to the enhanced and suppressed interaction between ERSNA and ARNA in conditions of HNa and LNa diet, respectively, suggesting a role for ET in the renal control of ERSNA that is dependent on dietary sodium. PMID:19474389

  10. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone

    Zhang, Yanru; Hui ZHANG; Zhang, Gechen; Ka, Ka; HUANG, WENHUA

    2014-01-01

    In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone...

  11. Malignant granular cell tumour of the sciatic nerve

    Hurrell, M.A.; McLean, C.; Desmond, P.; Tress, B.M.; Kaye, A. [Royal Melbourne Hospital, Parkville, VIC (Australia)

    1995-05-01

    A case of malignant granular cell tumour of the sciatic nerve is presented. Computed tomography demonstrated isodensity with muscle and minimal enhancement. Magnetic resonance demonstrated T1 isointensity with muscle with marked enhancement, and isointensity with fat on proton and T2 images. Pathological evidence is presented for its probable Schwann cell histogenesis. 9 refs., 3 figs.

  12. Malignant granular cell tumour of the sciatic nerve

    A case of malignant granular cell tumour of the sciatic nerve is presented. Computed tomography demonstrated isodensity with muscle and minimal enhancement. Magnetic resonance demonstrated T1 isointensity with muscle with marked enhancement, and isointensity with fat on proton and T2 images. Pathological evidence is presented for its probable Schwann cell histogenesis. 9 refs., 3 figs

  13. Nerve Growth Factor in Cancer Cell Death and Survival

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  14. In vivo MRI monitoring nerve regeneration of acute peripheral nerve traction injury following mesenchymal stem cell transplantation

    Objective: To assess the continuous process of nerve regeneration in acute peripheral nerve traction injury treated with mesenchymal stem cells (MSCs) transplantation using MRI. Materials and methods: 1 week after acute nerve traction injury was established in the sciatic nerve of 48 New Zealand white rabbits, 5 105 MSCs and vehicle alone were grafted to the acutely distracted sciatic nerves each in 24 animals. Serial MRI and T1 and T2 measurements of the injured nerves were performed with a 1.5-T scanner and functional recovery was recorded over a 10-week follow-up period, with histological assessments performed at regular intervals. Results: Compared with vehicle control, nerves grafted with MSCs had better functional recovery and showed improved nerve regeneration, with a sustained increase of T1 and T2 values during the phase of regeneration. Conclusion: MRI could be used to monitor the enhanced nerve regeneration in acute peripheral nerve traction injury treated with MSC transplantation, reflected by a prolonged increase in T1 and T2 values of the injured nerves

  15. In vivo MRI monitoring nerve regeneration of acute peripheral nerve traction injury following mesenchymal stem cell transplantation

    Duan, Xiao-Hui, E-mail: duanxiaohui-128@163.com [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Cheng, Li-Na, E-mail: kobe10716@163.com [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Zhang, Fang, E-mail: xinxin110007@yahoo.com.cn [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Liu, Jun, E-mail: docliujun@hotmail.com [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Guo, Ruo-Mi, E-mail: guoruomi-521@163.com [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Zhong, Xiao-Mei, E-mail: enough300@yahoo.com.cn [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Wen, Xue-Hua, E-mail: xuehuasuqian@126.com [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China); Shen, Jun, E-mail: junshenjun@hotmail.com [Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong (China)

    2012-09-15

    Objective: To assess the continuous process of nerve regeneration in acute peripheral nerve traction injury treated with mesenchymal stem cells (MSCs) transplantation using MRI. Materials and methods: 1 week after acute nerve traction injury was established in the sciatic nerve of 48 New Zealand white rabbits, 5 10{sup 5} MSCs and vehicle alone were grafted to the acutely distracted sciatic nerves each in 24 animals. Serial MRI and T1 and T2 measurements of the injured nerves were performed with a 1.5-T scanner and functional recovery was recorded over a 10-week follow-up period, with histological assessments performed at regular intervals. Results: Compared with vehicle control, nerves grafted with MSCs had better functional recovery and showed improved nerve regeneration, with a sustained increase of T1 and T2 values during the phase of regeneration. Conclusion: MRI could be used to monitor the enhanced nerve regeneration in acute peripheral nerve traction injury treated with MSC transplantation, reflected by a prolonged increase in T1 and T2 values of the injured nerves.

  16. Tissue Engineering the Retinal Ganglion Cell Nerve Fiber Layer

    Karl E. Kador; Montero, Ramon B.; Venugopalan, Praseeda; Hertz, Jonathan; Zindell, Allison N.; Valenzuela, Daniel A.; Uddin, Mohammed S.; Lavik, Erin B; Muller, Kenneth J.; Andreopoulos, Fotios M.; Goldberg, Jeffrey L

    2013-01-01

    Retinal degenerative diseases, such as glaucoma and macular degeneration, affect millions of people worldwide and ultimately lead to retinal cell death and blindness. Cell transplantation therapies for photoreceptors demonstrate integration and restoration of function, but transplantation into the ganglion cell layer is more complex, requiring guidance of axons from transplanted cells to the optic nerve head in order to reach targets in the brain. Here we create a biodegradable electrospun (E...

  17. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration

    Li, Ruixin; Li, Dong; Feng, Shiqing

    2016-01-01

    As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the bodys natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair. PMID:26799619

  18. Brain Lipid Binding Protein in Axon-Schwann Cell Interactions and Peripheral Nerve Tumorigenesis

    Miller, Shyra J.; Li, Hongzhen; Rizvi, Tilat A.; Huang, Yuan; Johansson, Gunnar; Bowersock, Jason; Sidani, Amer; Vitullo, John; Vogel, Kristine; Parysek, Linda M.; DeClue, Jeffrey E.; Ratner, Nancy

    2003-01-01

    Loss of axonal contact characterizes Schwann cells in benign and malignant peripheral nerve sheath tumors (MPNST) from neurofibromatosis type 1 (NF1) patients. Tumor Schwann cells demonstrate NF1 mutations, elevated Ras activity, and aberrant epidermal growth factor receptor (EGFR) expression. Using cDNA microarrays, we found that brain lipid binding protein (BLBP) is elevated in an EGFR-positive subpopulation of Nf1 mutant mouse Schwann cells (Nf1?/? TXF) that grows away from axons; BLBP expression was not affected by farnesyltransferase inhibitor, an inhibitor of H-Ras. BLBP was also detected in EGFR-positive cell lines derived from Nf1:p53 double mutant mice and human MPNST. BLBP expression was induced in normal Schwann cells following transfection with EGFR but not H-Ras12V. Furthermore, EGFR-mediated BLBP expression was not inhibited by dominant-negative H-Ras, indicating that BLBP expression is downstream of Ras-independent EGFR signaling. BLBP-blocking antibodies enabled process outgrowth from Nf1?/? TXF cells and restored interaction with axons, without affecting cell proliferation or migration. Following injury, BLBP expression was induced in normal sciatic nerves when nonmyelinating Schwann cells remodeled their processes. These data suggest that BLBP, stimulated by Ras-independent pathways, regulates Schwann cell-axon interactions in normal peripheral nerve and peripheral nerve tumors. PMID:12612091

  19. Changes in Na-K ATPase and protein kinase C activities in peripheral nerve of acrylamide-treated rats.

    Lehning, E J; LoPachin, R M; Mathew, J; Eichberg, J

    1994-07-01

    In previous studies on rat peripheral nerve, we showed that acrylamide (ACR) exposure was associated with alterations in axonal and Schwann cell elemental composition that were consistent with decreased Na-K ATPase activity. In the present corollary study, the effects of ACR exposure on Na-K ATPase activity were determined in sciatic and tibial nerves. Subacute ACR treatment (50 mg/kg/d x 10 d, ip) significantly (p < .05) decreased Na-K ATPase activity by 45% in sciatic nerve but did not affect this activity in tibial nerve. Subchronic ACR treatment (2.8 mM in drinking water for 30 d) significantly decreased (p < .05) Na-K ATPase activities by 19% and 35% in sciatic and tibial nerves, respectively. Na-K ATPase activity was not altered in sciatic nerve homogenates exposed to 1.0 mM ACR in vitro. Since protein kinase C (PKC) has been proposed to play a role in the modulation of membrane Na-K ATPase function, PKC activity was also measured in sciatic nerve homogenates and subcellular fractions prepared from control and ACR-treated rats. Regardless of the ACR treatment protocol, PKC activity was elevated in nerve cytosol, but not in a particulate fraction. The results of this study suggest that decreased Na-K ATPase activity is involved in ACR-induced perturbation of axoplasmic and Schwann cell elemental composition in rat peripheral nerves and that loss of activity is not due to direct chemical inhibition of the enzyme. The role of PKC in ACR neurotoxicity requires further elucidation. PMID:8021966

  20. Anti-Apoptotic Proteins in Nerve Cell Survival and Neurodegeneration

    Korhonen, Laura

    2002-01-01

    Apoptosis is a genetically regulated cell death program, which shows distinct morphological characteristics. It takes place during neuronal development and in some neurodegenerative diseases. During apoptosis, the intracellular proteins are degraded by various caspases, cysteine aspartases, which are regulated by pro- and anti-apoptotic signals. This thesis elucidates the role of anti-apoptotic proteins in nerve cell survival and neurodegeneration. Studies have focused on Bcl-2 family members...

  1. Lignosus rhinocerotis (Cooke) Ryvarden mimics the neuritogenic activity of nerve growth factor via MEK/ERK1/2 signaling pathway in PC-12 cells.

    Seow, Syntyche Ling-Sing; Eik, Lee-Fang; Naidu, Murali; David, Pamela; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2015-01-01

    The traditional application of the sclerotium of Lignosus rhinocerotis (tiger's milk mushroom) by the indigenous folks as tonic and remedy to treat a variety of ailments has been documented in Malaysia. Indigenous communities claimed to have consumed the decoction to boost their alertness during hunting. Mental alertness is believed to be related to neuronal health and neuroactivity. In the present study, the cell viability and neuritogenic effects of L. rhinocerotis sclerotium hot aqueous and ethanolic extracts, and crude polysaccharides on rat pheochromocytoma (PC-12) cells were studied. Interestingly, the hot aqueous extract exhibited neuritogenic activity comparable to NGF in PC-12 cells. However, the extracts and crude polysaccharides stimulated neuritogenesis without stimulating the production of NGF in PC-12 cells. The involvements of the TrkA receptor and MEK/ERK1/2 pathway in hot aqueous extract-stimulated neuritogenesis were examined by Trk (K252a) and MEK/ERK1/2 (U0126 and PD98059) inhibitors. There was no significant difference in protein expression in NGF- and hot aqueous extract-treated cells for both total and phosphorylated p44/42 MAPK. The neuritogenic activity in PC-12 cells stimulated by hot aqueous and ethanolic extracts, and crude polysaccharides of L. rhinocerotis sclerotium mimicking NGF activity via the MEK/ERK1/2 signaling pathway is reported for the first time. PMID:26542212

  2. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties

    Hua Jin

    2015-01-01

    Full Text Available The transplantation of embryonic stem cells can effectively improve the creeping strength of nerves near an injury site in animals. Amniotic epithelial cells have similar biological properties as embryonic stem cells; therefore, we hypothesized that transplantation of amniotic epithelial cells can repair peripheral nerve injury and recover the creeping strength of the brachial plexus nerve. In the present study, a brachial plexus injury model was established in rabbits using the C 6 root avulsion method. A suspension of human amniotic epithelial cells was repeatedly injected over an area 4.0 mm lateral to the cephal and caudal ends of the C 6 brachial plexus injury site (1 10 6 cells/mL, 3 ?L/injection, 25 injections immediately after the injury. The results showed that the decrease in stress and increase in strain at 7,200 seconds in the injured rabbit C 6 brachial plexus nerve were mitigated by the cell transplantation, restoring the viscoelastic stress relaxation and creep properties of the brachial plexus nerve. The forepaw functions were also significantly improved at 26 weeks after injury. These data indicate that transplantation of human amniotic epithelial cells can effectively restore the mechanical properties of the brachial plexus nerve after injury in rabbits and that viscoelasticity may be an important index for the evaluation of brachial plexus injury in animals.

  3. Peripheral nerve regeneration after experimental section in ovine radial and tibial nerves using synthetic nerve grafts, including expanded bone marrow mesenchymal cells: morphological and neurophysiological results.

    Casaas, Joaquim; de la Torre, Jaime; Soler, Francesc; Garca, Felix; Rodellar, Clementina; Pumarola, Mart; Climent, Jana; Soler, Robert; Orozco, Llus

    2014-10-01

    The standard treatment of peripherical nerve injuries with substance gap is to introduce the nerve free extremes in a biodegradable tube which, as a biocamera, allows the continuity of the nerve, promote the neuroconduction and save the lesion from the surrounding fibrosis. However, this procedure has not any direct effect on the neuroregeneration nor to resolve high severe lesions. The mesenchymal stem cells (MSC) can derivate "in vitro" in different lineages, including Schwann cells. Different studies have shown MSC can promote the nerve regeneration in rodents, dogs and primates. Moving to the human clinical application requires the procedure standardization, including the optimal cell dose which we have to use. In the sheep model animal we performed a study of 1 cm. nerve section-ressection and repair with a Neurolac biocamera, in whose gap we applied between 30 to 5010(6) MSC from cancellous bone, all of them selected and cultured with GMP procedures. The results were compared with controls (saline serum platelet-rich plasma). We used radial nerve (sensitive) and tibial nerve (motor) from 7 sheep. In the first step we performed the surgical lesion and bone marrow aspiration, and in 3 weeks we performed the surgical repair. 3 sheep were sacrificed in 3 months, and 4 sheep in 6 months. In all surgeries we performed a neurophysiological register. When we obtained the tissue samples, we performed an histological, immunohistiquimical and morphometrical study. The recovery percentage was defined comparing the axonal density from the proximal and distal lesion margins. The 3 months samples results were wrong. In 6 months samples results we observed a significative myelined nervous fibers and conduction increasing, in front of controls, both radial and tibial nerves. These results suggest the MSC application in biodegradable scaffold in nerve injuries promotes good results in terms of regeneration and functional recovery. PMID:25384470

  4. Intracisternal injection of inflammatory soup activates the trigeminal nerve system.

    Hoffmann, J; Neeb, L; Israel, H; Dannenberg, F; Triebe, F; Dirnagl, U; Reuter, U

    2009-11-01

    The release of calcitonin gene-related peptide (CGRP) and sensitization of the trigeminal nerve system are important elements in migraine pathophysiology. Sensitization can be induced by topical meningeal administration of inflammatory soup (IS). CGRP release is a marker of trigeminal nerve activation. We examined the effect of intracisternal IS administration on CGRP release in rat jugular vein blood at baseline, 2 and 15 min after the beginning of IS infusion. IS administration caused a significant increase of CGRP levels after 2 and 15 min compared with baseline. Daily oral treatment with topiramate for 4 and 8 weeks led to a dose- and time-dependent reduction of IS-induced CGRP release. Sumatriptan also attenuated stimulated neuropeptide release. These results indicate that intracisternal IS administration leads to activation of the trigeminal system. The inhibition of CGRP release by topiramate offers a possible mechanism that may in part account for the preventative antimigraine activity of this drug. PMID:19558535

  5. Cancer's got nerve: Schwann cells drive perineural invasion.

    Azam, Salma H; Pecot, Chad V

    2016-04-01

    The invasion of cancer cells around and into nerves is associated with increased cancer aggression and poor patient outcome. As this perineural invasion increases disease severity, a better understanding of how the process is regulated may help in the development of therapeutics to target neuronal involvement in cancer. In this issue of the JCI, Deborde and colleagues show that direct contact between Schwann cells and cancer cells promotes cancer cell dissociation, migration, and invasion. Moreover, their data specifically suggest NCAM1 as an important molecular mediator of this Schwann cell-directed regulation of cancer cells in perineural invasion. The results of this study provide new insight into the cellular and molecular mechanisms of perineural invasion. PMID:26999601

  6. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair.

    Uemura, Takuya; Takamatsu, Kiyohito; Ikeda, Mikinori; Okada, Mitsuhiro; Kazuki, Kenichi; Ikada, Yoshito; Nakamura, Hiroaki

    2012-03-01

    In spite of the extensive research using induced pluripotent stem (iPS) cells, the therapeutic potential of iPS cells in the treatment of peripheral nerve injury is largely unknown. In this study, we repaired peripheral nerve gaps in mice using tissue-engineered bioabsorbable nerve conduits coated with iPS cell-derived neurospheres. The secondary neurospheres derived from mouse iPS cells were suspended in each conduit (4000,000 cells per conduit) and cultured in the conduit in three-dimensional (3D) culture for 14 days. We then implanted them in the mouse sciatic nerve gaps (5 mm) (iPS group; n=10). The nerve conduit alone was implanted in the control group (n=10). After 4, 8 and 12 weeks, motor and sensory functional recovery in mice were significantly better in the iPS group. At 12 weeks, all the nerve conduits remained structurally stable without any collapse and histological analysis indicated axonal regeneration in the nerve conduits of both groups. However, the iPS group showed significantly more vigorous axonal regeneration. The bioabsorbable nerve conduits created by 3D-culture of iPS cell-derived neurospheres promoted regeneration of peripheral nerves and functional recovery in vivo. The combination of iPS cell technology and bioabsorbable nerve conduits shows potential as a future tool for the treatment of peripheral nerve defects. PMID:22333572

  7. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells

    Yan-ru Zhang; Ka Ka; Ge-chen Zhang; Hui Zhang; Yan Shang; Guo-qiang Zhao; Wen-hua Huang

    2015-01-01

    Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ci...

  8. Intrathecally Transplanting Mesenchymal Stem Cells (MSCs) Activates ERK1/2 in Spinal Cords of Ischemia-Reperfusion Injury Rats and Improves Nerve Function.

    Wang, Yonghong; Liu, He; Ma, Hong

    2016-01-01

    BACKGROUND We investigated whether an intrathecal transplantation of mesenchymal stem cells (MSCs) activates extracellular adjusting protein kinase1 and 2(ERK1/2) in the spinal cords of rats following an ischemia-reperfusion injury, resulting in improved spinal cord function and inhibition of apoptosis. MATERIAL AND METHODS We observed the relationship between the activation of ERK1/2 in the rat spinal cord and intrathecal transplantation of MSCs, as well as the effect of U0126, a MEK1/2 (upstream protein of ERK1/2) inhibitor, on a spinal cord ischemia-reperfusion injury model in rats using Basso Beattie Bresnahan (BBB) scoring, somatosensory evoked potentials (SSEPs), immunohistochemistry, and Western blot analysis. RESULTS After transplantation of MSCs, the lower limb motor function score increased, and the incubation period of SSEPs and amplitude were improved. Moreover, following transplantation of MSCs, Bcl2 expression increased, whereas Bax expression decreased after reperfusion. Transplantation of MSCs significantly enhanced pERK1/2 expression in the spinal cord, as well as pERK1/2 in immunoreactive cells located in the grey matter of the L4/5 levels of the spinal cord, following ischemia reperfusion injury in rats. The effective dose of U0126 required to inhibit pERK1/2 expression was 200 µg/kg. Bcl-2 decreased and the level of Bax expression increased in the spinal cord after ischemia reperfusion injury, and the protective effects of MSCs were attenuated. CONCLUSIONS Our findings suggest that intrathecal transplantation of MSCs activates ERK1/2 in the spinal cord following ischemia reperfusion injury, partially improves spinal cord function, and inhibits apoptosis in rats. PMID:27135658

  9. Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips

    Fromherz, Peter

    2008-09-01

    The direct electrical interfacing of semiconductor chips with individual nerve cells and with brain tissue is considered. At first, the structure of the cell-chip contact is described and then the electrical coupling is characterized between ion channels, the electrical elements of nerve cells, and transistors and capacitors of silicon chips. On that basis, the signal transmission between microelectronics and microionics is implemented in both directions. Simple hybrid systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue on silicon. The application of CMOS chips with capacitively coupled recording sites allows an imaging of neuronal activity with high spatiotemporal resolution. Goal of the work is an integration of neuronal network dynamics and digital electronics on a microscopic level for applications in brain research, medical prosthetics and information technology.

  10. Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve.

    Van Steenwinckel, Juliette; Auvynet, Constance; Sapienza, Anas; Reaux-Le Goazigo, Annabelle; Combadire, Christophe; Melik Parsadaniantz, Stphane

    2015-03-01

    Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. In particular, the contribution of individual CCL2-expressing cell populations (i.e. stromal and leukocytes) to immune cell recruitment into the injured nerve has not been established. Here, in preclinical model of peripheral neuropathic pain (i.e. chronic constriction injury of the sciatic nerve), we have demonstrated that, CCL2 content was increased specifically in nerve fibers. This upregulation of CCL2 correlated with local monocyte/macrophage infiltration and pain processing. Furthermore, sciatic intraneural microinjection of CCL2 in nave animals triggered long-lasting pain behavior associated with local monocyte/macrophage recruitment. Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling. PMID:25449579

  11. AUTOCRINE/PARACRINE MODULATION OF BARORECEPTOR ACTIVITY AFTER ANTIDROMIC STIMULATION OF AORTIC DEPRESSOR NERVE IN VIVO

    Valter J. Santana-Filho; Davis, Greg J.; Castania, Jaci A.; Ma, Xiuying; Salgado, Helio C; Abboud, Francois M.; Fazan, Rubens; Chapleau, Mark W.

    2014-01-01

    Activation of the sensory nerve endings of nonmyelinated C-fiber afferents evokes release of autocrine/paracrine factors that cause localized vasodilation, neurogenic inflammation, and modulation of sensory nerve activity. The aims of this study were to determine the effect of antidromic electrical stimulation on afferent baroreceptor activity in vivo, and investigate the role of endogenous prostanoids and hydrogen peroxide (H2O2) in mediating changes in nerve activity. Baroreceptor activity ...

  12. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit.

    Wang, Peng; Du, Chao; Chen, Fei-Xue; Li, Chang-Qing; Yu, Yan-Bo; Han, Ting; Akhtar, Suhail; Zuo, Xiu-Li; Tan, Xiao-Di; Li, Yan-Qing

    2016-01-01

    The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF(+/-) mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation. PMID:26837784

  13. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit

    Wang, Peng; Du, Chao; Chen, Fei-Xue; Li, Chang-Qing; Yu, Yan-Bo; Han, Ting; Akhtar, Suhail; Zuo, Xiu-Li; Tan, Xiao-Di; Li, Yan-Qing

    2016-01-01

    The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF+/− mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation. PMID:26837784

  14. Nerve growth factor-mediated targeting of liposomes to cells

    Derivatives of beta-nerve growth factor (NGF), modified by biotinylation of carboxyl groups, were used to target the specific binding of liposomes to cultured rat and human cells bearing NGF receptors. Streptavidin was conjugated via peptide bonds to amino groups on liposomes. Biotinylated NGF, but not unmodified NGF, mediated the binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 40C. In contrast, biotinylated NGF did not increase the binding of hemoglobin-conjugated liposomes tested as a control for specificity. Biotinylated NGF also mediated the specific binding of streptavidin-liposomes containing fluorescein isothiocyanate-labeled dextran to PC12 cells and human melanoma HS294 cells. When HS294 cells were incubated at 370C following liposome binding at 40C, the cell-associated fluorescence appeared to become internalized, in that some cells displayed a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 40C but did not affect the fluorescence in cells following incubation at 370C. When liposomes containing carboxyfluorescein, a dye that can diffuse out of acidic compartments, were targeted to HS294 cells, incubation at 370C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles

  15. Role of sympathetic nerve activity in the process of fainting

    SatoshiIwase

    2014-09-01

    Full Text Available Syncope is defined as a transient loss of consciousness and postural tone, characterized by rapid onset, short duration, and spontaneous recovery, and the process of syncope progression will be described with two types of sympathetic change. Simultaneous recordings of microneurographically recorded MSNA and continuous and noninvasive blood pressure measurement have disclose what is going on in the course of progression of the syncope. Vasovagal or neurally mediated syncope, three stages are identified in the course of syncope onset, oscillation, imbalance, and catastrophe phases. The vasovagal syncope is characterized by the sympathoexcitation, followed by vagal overcome via the Bezold-Jarisch reflex. Orthostatic syncope is caused by the response failure or lack of sympathetic nerve activity toward the orthostatic challenge followed by the fluid shift, and subsequent cerebral low perfusion. Four causes are considered for the compensatory failure, which triggers the orthostatic syncope; hypovolemia, increased pooling in the lower body, failure to activate the sympathetic activity, and failure of vasoconstriction against sympathetic vasoconstrictive stimulation. Many pathophysiological conditions were described in the viewpoint of 1 exaggerated sympathoexcitation and 2 failure to activate the sympathetic nerve. We conclude that the sympathetic nervous system can control the cardiovascular function, and its failure resulted syncope, however, responses of the system by microneurographically recorded MSNA would determine the pathophysiology of the onset and progression of syncope, explaining the treatment effect that could be achieved by the analysis of this mechanism.

  16. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. J. Cell. Physiol. 231: 1301-1312, 2016. © 2015 Wiley Periodicals, Inc. PMID:26516696

  17. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog

    Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.

    2013-04-01

    Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.

  18. Fetal Nerve Cell Transplantation in Early Post-Resuscitation Period in Rats

    Damira Tazhibayeva

    2015-02-01

    Full Text Available Introduction. Fetal cell transplantation is a promising biomedical approach for disease treatment; however, the use of fetal cell therapy is still experimental. This research was deemed a necessity to provide evidence-based research for the application of cell transplantation as a treatment method. The aim of this study was to evaluate the effect of fetal nerve cell transplantation in rat survivors (and non-survivors after clinical death by mechanical asphyxia.Methods. 68 white laboratory rats were divided into two groups of identical age and sex: a control group of 12-month adult male rats (n = 26 and an experimental group (n = 42. Rats were fixed under ether anesthesia. We then blocked the oral and nasal regions with cotton wool soaked in saline solution. A four-minute clinical death though acute mechanical asphyxia was simulated by applying the method of N. Shim. After the 4-minute clinical death, we resuscitated the rats using external cardiac massage and artifical respiration. Suspension of the fetal nerve cells was injected intraperitoneally at 1mm3 per 25g at the time of cardiac activity restoration. Lactate dehydrogenase (LDH and creatine phosphokinase (CPK levels were examined in the homogenate cerebral cortex of reanimated animals. We recorded the survival rate during the post-resuscitation period and analyzed the integrative brain functions using anxiety-phobic status and latent inhibition.Results. After fetal nerve cell transplantation, the enzymatic reactions in the experimental group became normal with a significant decrease in LDH and an increase in CPK levels compared to the control group. In the control group, 10 rats died and 16 lived (62% survival rate, while 7 rats died and 35 lived (83% survival rate in the experimental group during the first 7 days. Rats that did not receive the treatment tended to die sooner than those in the experimental group. As a result of transplantation, the anxiety level in the experimental group was less than in the control group. Moreover, cell therapy improved the reflexes in the experimental animals. Conclusions. The study revealed the positive neuroprotective effect of the fetal nerve cells on the recovery in the early post-resuscitation period. This was confirmed by the normalization of enzymatic reactions, improvement reflective activity, and increase in the survival rate of the resuscitated animals in the group treated with fetal nerve cell transplantation. These findings warrant future research on the mechanisms associated with reflex improvement. 

  19. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  20. Low-dose carbon monoxide inhalation protects neuronal cells from apoptosis after optic nerve crush.

    Chen, Zeli; Wang, Ruobing; Wu, Jiangchun; Xia, Fangzhou; Sun, Qinglei; Xu, Jiajun; Liu, Lin

    2016-01-22

    Glaucomatous optic neuropathy, including axonal degeneration and apoptotic death of retinal ganglion cells (RGCs), eventually leads to irreversible visual impairment. Carbon monoxide (CO) acts as a therapeutic agent against neural injury via its anti-apoptotic effect. Here we hypothesized that low-dose CO inhalation can protect RGCs in a rat model of optic nerve crush (ONC). ONC was performed on adult male Sprague Dawley rats to imitate glaucomatous optic damage. Low-dose CO (250ppm) or air was inhaled for 1h immediately after ONC, and all the tests were carried out 2 weeks later. Flash visual evoked potentials (FVEP) and pupil light relax (PLR) were recorded for the assessment of visual function. RGC density was evaluated by hematoxylin and eosin staining and Fluorogold labeling. Retinal apoptotic process was assessed by TUNEL staining and caspase-3 activity measurement. Low-dose CO treatment significantly ameliorated the abnormalities of FVEP and PLR induced by ONC. As expected, the RGC density was increased remarkably by CO inhalation after the glaucomatous optic nerve insult. Moreover, CO treatment after ONC significantly decreased the number of TUNEL-positive cells in ganglion cell layer and attenuated the retinal caspase-3 activity. Low-dose CO inhalation protects RGCs from optic nerve injury via inhibiting caspase-3 dependent apoptosis. PMID:26707638

  1. Are Natural Killer Cells Distributed in Relationship to Nerve Fibers in the Pregnant Mouse Uterus?

    A.K. Sheikhi

    2007-01-01

    Full Text Available Specialized lymphocytes, called uterine Natural Killer (uNK cells, appear in human and rodent uteri and become abundant at implantation sites during decidualization and early pregnancy. The hallmark of human uNK cells is intense expression of CD56, a neural cell adhesion glycoprotein (NCAM-1 while mature (granulated mouse uNK cells express asialoGM1, a brain ganglioside. Murine uNK cells initiate the normal structural changes induced in maternal spiral arteries by pregnancy but regulation of their recruitment, localization and activation is incompletely understood. To address whether uNK cell distribution is co-localized with nerve fiber distribution, sections of gestation day (gd 6-12 implantation sites from C57BL/6 (B6 mice were studied. Nerve fibers reactive with antibodies to pan neurofilament 150 kD or with tyrosine hydroxylase, an enzyme restricted to sympathetic fibers, were present the walls of branches from the uterine artery in the mesentery. Reactivity was lost as the vessels crossed the myometrium and entered endometrium/decidua. Periodic Acid Schiff’s reactive uNK cells were absent from the mesentery and enriched in decidua basalis where they transcribed NCAM-1 and associated with non-innervated segments of the uterine arteries, including spiral arteries. These data suggest that the localization and activation of mature uNK cells are unlikely to be neurotransmitter regulated.

  2. [Progress in repair of sciatic nerve injury by bone marrow mesenchymal stem cells].

    Wang, Changhui; Li, Dehua

    2010-10-01

    Bone marrow mesenchymal stem cells (BMSCs) possess the potential of self-duplication, multi-directional differentiation, and also the ability to differentiate (in the direction of ectoderm) into neuron and neuroglial cells in vitro as well as to promote the reparation of sciatic nerve injury in vivo, especially for the reparation of the long-segment nerve. Progress in repair of sciatic nerve injury by BMSCs has been reviewed in this article. PMID:21089698

  3. Electrical interfacing of nerve cells and semiconductor chips.

    Fromherz, Peter

    2002-03-12

    The electrical interfacing of individual nerve cells and silicon microstructures is considered, as well as the assembly of elementary hybrid systems made of neuronal networks and semiconductor microelectronics. Without electrochemical processes, coupling of the electron-conducting semiconductor and the ion-conducting neurons relies on a close contact of cell membrane and oxidised silicon with a high resistance of the junction and a high conductance of the attached membrane. Neuronal excitation can be elicited and recorded from the chip by capacitive contacts and by field-effect transistors with an open gate. Integrated iono-electronic system are obtained by the outgrowth of neuronal networks on the surface of the silicon chip, by implementing electrical circuits in the chip and by two-way interfacing of the neuronal and the electronic components. PMID:12503174

  4. Semiconductor chips with ion channels, nerve cells and brain

    Fromherz, Peter

    2003-01-01

    The electrical interfacing of individual nerve cells and semiconductor microstructures as well as the assembly of neuronal networks and microelectronic circuits, is considered. At first the planar core-coat conductor of a neuron-silicon junction is studied as it determines the coupling of ion-conducting neurons and electron-conducting silicon. The width of the cleft between cell and chip, the resistance of cleft and voltage-gate ion channels in the junction are investigated. On that basis, a subsequent section describes the electronic interfacing of individual cultured neurons with silicon microstructures as well as the integration of microelectronics with small neuronal networks grown in culture. In a final part, the electronic interfacing of cultured brain slices is addressed. The goal of this approach is an integration of neuronal network dynamics and digital computation on a microscopic level for studies in brain research, biosensorics, information technology and medical prosthetics.

  5. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects.

  6. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects

  7. Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of PC12 cells: a serial electron microscopic study of the development and control of neurite shape

    1986-01-01

    After exposure to nerve growth factor, PC12 cells differentiate within a period of only a few days into cholinergic sympathetic neurons. Using computer-assisted three-dimensional serial electron microscopic reconstruction, we describe the progressive cytoskeletal and structural changes of PC12 neurites at different stages in their differentiation. Developmental changes in these neurites can be characterized by two major transitions. First, microtubules (MTs), which define the longitudinal axi...

  8. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide conduits in the field of nerve tissue engineering. PMID:25580010

  9. A forgotten facial nerve tumour: granular cell tumour of the parotid and its implications for treatment.

    Lerut, B; Vosbeck, J; Linder, T E

    2011-04-01

    We present a rare case of a facial nerve granular cell tumour in the right parotid gland, in a 10-year-old boy. A parotid or neurogenic tumour was suspected, based on magnetic resonance imaging. Intra-operatively, strong adhesions to surrounding structures were found, and a midfacial nerve branch had to be sacrificed for complete tumour removal. Recent reports verify that granular cell tumours arise from Schwann cells of peripheral nerve branches. The rarity of this tumour within the parotid gland, its origin from peripheral nerves, its sometimes misleading imaging characteristics, and its rare presentation with facial weakness and pain all have considerable implications on the surgical strategy and pre-operative counselling. Fine needle aspiration cytology may confirm the neurogenic origin of this lesion. When resecting the tumour, the surgeon must anticipate strong adherence to the facial nerve and be prepared to graft, or sacrifice, certain branches of this nerve. PMID:21106139

  10. Fibroblast-derived tenascin-C promotes Schwann cell migration through ?1-integrin dependent pathway during peripheral nerve regeneration.

    Zhang, Zhanhu; Yu, Bin; Gu, Yun; Zhou, Songlin; Qian, Tianmei; Wang, Yongjun; Ding, Guohui; Ding, Fei; Gu, Xiaosong

    2016-03-01

    Peripheral nerve regeneration requires precise coordination and dynamic interaction among various types of cells in the tissue. It remains unclear, however, whether the cellular crosstalk between fibroblasts and Schwann cells (SCs) is related to phenotype modulation of SCs, a critical cellular process after peripheral nerve injury. In this study, microarray analysis revealed that a total of 6,046 genes were differentially expressed in the proximal nerve segment after sciatic nerve transection in rats, and bioinformatics analysis further identified tenascin-C (TNC), an extracellular matrix (ECM) protein, as a key gene regulator. TNC was abundantly produced by nerve fibroblasts accumulating at the lesion site, rather than by SCs as usually expected. TNC significantly promoted SC migration without effects on SC proliferation in primary culture. In co-culture of fibroblasts and SCs, inhibition of TNC expression either by siRNA transfection or antibody blockade could suppress SC migration, while TNC-stimulated SC migration was mediated by TNC binding to ?1-integrin receptor in SCs through activation of Rac1 effectors. The in vivo evidence showed that exogenous TNC protein enhanced SC migration and axonal regrowth. Our results highlight that TNC-mediated cellular interaction between fibroblasts and SCs may regulate SC migration through ?1-integrin-dependent pathway during peripheral nerve regeneration. GLIA 2016;64:374-385. PMID:26497118

  11. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    Takaku, Yasuharu

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  12. Lignosus rhinocerotis (Cooke) Ryvarden mimics the neuritogenic activity of nerve growth factor via MEK/ERK1/2 signaling pathway in PC-12 cells

    Syntyche Ling-Sing Seow; Lee-Fang Eik; Murali Naidu; Pamela David; Kah-Hui Wong; Vikineswary Sabaratnam

    2015-01-01

    The traditional application of the sclerotium of Lignosus rhinocerotis (tiger’s milk mushroom) by the indigenous folks as tonic and remedy to treat a variety of ailments has been documented in Malaysia. Indigenous communities claimed to have consumed the decoction to boost their alertness during hunting. Mental alertness is believed to be related to neuronal health and neuroactivity. In the present study, the cell viability and neuritogenic effects of L. rhinocerotis sclerotium hot aqueous an...

  13. Hirschsprung’s disease: Is there a relationship between mast cells and nerve fibers?

    Yadav, Amit Kumar; Mishra, Kiran; Mohta, Anup; Agarwal, Sarla

    2009-01-01

    AIM: To define the topography of mast cells and their numbers in cases of Hirschsprung’s disease (HD) and non-HD, assess neural hypertrophy using imaging software and to study the relationship between mast cells and nerve fibers.

  14. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells

    Yan-ru Zhang

    2015-01-01

    Full Text Available Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury.

  15. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  16. Synergistic effects of low-level laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves.

    Yang, Chen-Chia; Wang, John; Chen, Shyh-Chang; Hsieh, Yueh-Ling

    2016-02-01

    Transplantation of mesenchymal stem cells (MSCs) has been proposed to exert beneficial effects on peripheral nerve regeneration after a peripheral nerve injury, but the functional recovery in the denervated limb is still limited. In this study, we used low-level laser therapy (LLLT) as an adjunct therapy for MSC transplantation on the functional recovery of crushed sciatic nerve in rats. Peripheral nerve injury was induced in 48 Sprague-Dawley rats by crushing the unilateral sciatic nerve, using a vessel clamp. The animals with crushed injury were randomly divided into four groups: control group, with no treatment; MSC group, treated with MSC alone; LLLT group, treated with LLLT alone; and MSCLLLT group, treated with a combination of MSC and LLLT. The sciatic function index (SFI), vertical activity of locomotion (VA) and ankle angle (AA) of rats were examined for functional assessments after treatment. Electrophysiological, morphological and S100 immunohistochemical studies were also conducted. The MSCLLLT group showed a greater recovery in SFI, VA and AA, with significant difference from MSC, LLLT and control groups (p?treatment (p?treatment of MSC or LLLT alone. LLLT has a synergistic effect in providing greater functional recovery with MSC transplantation after nerve crush injury. Copyright 2013 John Wiley & Sons, Ltd. PMID:23468370

  17. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve

    Zarbakhsh, Sam; Goudarzi, Nasim; Shirmohammadi, Maryam; Safari, Manouchehr

    2016-01-01

    Objective Bone marrow and umbilical cord stromal cells are multipotential stem cells that have the ability to produce growth factors that play an important role in survival and generation of axons. The goal of this study was to evaluate the effects of the two different mesenchymal stem cells on peripheral nerve regeneration. Materials and Methods In this experimental study, a 10 mm segment of the left sciatic nerve of male Wistar rats (250-300 g) was removed with a silicone tube interposed into this nerve gap. Bone marrow stromal cells (BMSCs) and human umbilical cord stromal cells (HUCSCs) were respectively obtained from rat and human. The cells were sepa- rately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histo- morphology of the gastrocnemius muscle was observed. Results The nerve regeneration in the BMSCs and HUCSCs groups that had received the stem cells was significantly more favorable than the control group. In addition, the BM- SCs group was significantly more favorable than the HUCSCs group (P<0.05). Conclusion The results of this study suggest that both homograft BMSCs and het- erograft HUCSCs may have the potential to regenerate peripheral nerve injury and transplantation of BMSCs may be more effective than HUCSCs in rat. PMID:26862526

  18. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve

    Sam Zarbakhsh

    2016-02-01

    Full Text Available Objective: Bone marrow and umbilical cord stromal cells are multipotential stem cells that have the ability to produce growth factors that play an important role in survival and generation of axons. The goal of this study was to evaluate the effects of the two different mesenchymal stem cells on peripheral nerve regeneration. Materials and Methods: In this experimental study, a 10 mm segment of the left sciatic nerve of male Wistar rats (250-300 g was removed with a silicone tube interposed into this nerve gap. Bone marrow stromal cells (BMSCs and human umbilical cord stromal cells (HUCSCs were respectively obtained from rat and human. The cells were separately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histomorphology of the gastrocnemius muscle was observed. Results: The nerve regeneration in the BMSCs and HUCSCs groups that had received the stem cells was significantly more favorable than the control group. In addition, the BMSCs group was significantly more favorable than the HUCSCs group (P<0.05. Conclusion: The results of this study suggest that both homograft BMSCs and heterograft HUCSCs may have the potential to regenerate peripheral nerve injury and transplantation of BMSCs may be more effective than HUCSCs in rat.

  19. Decreased choline acetyltransferase activity in nerve growth factor-transgenic mice during brain development.

    Faivre-Bauman, A; Loudes, C; Neveu, I; Naveilhan, P; Vantini, G; Epelbaum, J; Onteniente, B

    1994-09-01

    Activity of the synthetic enzyme for acetylcholine, choline acetyltransferase was investigated during development and in adult nerve growth factor-transgenic mice. A conspicuous reduction of choline acetyltransferase activity was observed in the anterior brain of nerve growth factor-transgenic embryos from embryonic days 13 to 16 (E13 to E16). Choline acetyltransferase activity levels subsequently resumed to normal levels, with the exception of a 15% increase in the adult hippocampus. Nerve growth factor contents followed a similar time-course and regional distribution in normal and nerve growth factor-transgenic animals and displayed significantly higher values from E14 to the early postnatal period. Nerve growth factor contents were normal in the adult brain. In vitro experiments confirmed the involvement of nerve growth factor in the decrease of choline acetyltransferase activity levels observed in transgenic neurons during development. These results suggest a role for nerve growth factor in the initial phase of the phenotypic differentiation of cholinergic neurons. They show that nerve growth factor may, under specific development conditions, lead to a paradoxical down-regulation of choline acetyltransferase activity. PMID:7830881

  20. Obesity-induced increases in sympathetic nerve activity: sex matters

    Brooks, Virginia L.; Shi, Zhigang; Holwerda, Seth W.; Fadel, Paul J.

    2016-01-01

    Abundant evidence obtained largely from male human and animal subjects indicates that obesity increases sympathetic nerve activity (SNA), which contributes to hypertension development. However, recent studies that included women reported that the strong relationships between muscle SNA and waist circumference or body mass index (BMI) found in men are not present in overweight and obese women. A similar sex difference in the association between adiposity and hypertension development has been identified in animal models of obesity. In this brief review, we consider two possible mechanisms for this sex difference. First, visceral adiposity, leptin, insulin, and angiotensin II have been identified as potential culprits in obesity-induced sympathoexcitation in males. We explore if these factors wield the same impact in females. Second, we consider if sex differences in vascular reactivity to sympathetic activation contribute. Our survey of the literature suggests that premenopausal females may be able to resist obesity-induced sympathoexcitation and hypertension in part due to differences in adipose disposition as well as its muted inflammatory response and reduced production of pressor versus depressor components of the renin-angiotensin system. In addition, vascular responsiveness to increased SNA may be reduced. However, more importantly, we identify the urgent need for further study, not only of sex differences per se, but also of the mechanisms that may mediate these differences. This information is required not only to refine treatment options for obese premenopausal women but also to potentially reveal new therapeutic avenues in obese men and women. PMID:25435000

  1. Effect of morphine on sympathetic nerve activity in humans

    Carter, Jason R.; Sauder, Charity L.; Ray, Chester A.

    2002-01-01

    There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.

  2. A comparison between complete immobilisation and protected active mobilisation in sensory nerve recovery following isolated digital nerve injury.

    Henry, F P

    2012-06-01

    Post-operative immobilisation following isolated digital nerve repair remains a controversial issue amongst the microsurgical community. Protocols differ from unit to unit and even, as evidenced in our unit, may differ from consultant to consultant. We undertook a retrospective review of 46 patients who underwent isolated digital nerve repair over a 6-month period. Follow-up ranged from 6 to 18 months. Twenty-four were managed with protected active mobilisation over a 4-week period while 22 were immobilised over the same period. Outcomes such as return to work, cold intolerance, two-point discrimination and temperature differentiation were used as indicators of clinical recovery. Our results showed that there was no significant difference noted in either clinical assessment of recovery or return to work following either post-operative protocol, suggesting that either regime may be adopted, tailored to the patient\\'s needs and resources of the unit.

  3. Effects of nerve growth factor on X-irradiated reaggregation cultures of rat brain cells

    Dimberg, Y. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)); Aspberg, A.; Tottmar, O. (Uppsala Univ. (Sweden). Dept. of Zoophysiology)

    1993-12-01

    The effects of exogenously added nerve growth factor (NGF) on reaggregation cultures of foetal rat brain cells after X-irradiation with 2 Gy were studied. Irradiation caused decreased protein and DNA levels, which was not prevented by NGF. The activities of the cholinergic marker enzymes choline acetyl transferase and acetylcholine esterase were increased in irradiated cultures. However, no difference in the activities of these enzymes was found between irradiated and unirradiated NGF-treated cultures. Irradiation did not affect the activity of the marker enzyme for oligodendrocytes (2',3'-cyclic nucleotide 3'-phosphodiesterase), but caused an increase in the astrocyte marker (glutamine synthetase) activity. This effect on astrocytes was prevented by NGF. (Author).

  4. Tetramethylpyrazine protects Schwann cells from ischemia-like injury and increases cell survival in cold ischemic rat nerves

    Ming-Ming, Yang; Wei, Huang; Dian-Ming, Jiang.

    2015-03-01

    Full Text Available Tetrametilpirazina (TMP), o principal componente do extrato de Ligusticum wallichi Franchat (erva chinesa), apresenta propriedades neuroprotetoras na isquemia. Nesse estudo, avaliamos seus efeitos protetores nas clulas de Schwann (SC), cultivando-as na presena de condies de depleo de oxignio [...] da glicose (OGD) e medindo a sobrevivncia dos nervos de ratos isqumicos pelo resfriamento. No modelo de leso isqumica em SC induzida por OGD, demonstramos que o tratamento com TMP no somente reduziu as perdas de viabilidade celular induzida por OGD, a morte celular, a apoptose de SC dose-dependente e inibiu a liberao de LDH, mas, tambm, suprimiu a infra-regulao do Vcl-2 e a supra-regulao de Bax e caspase-3, e inibiu a consequente ativao da caspase-3. No modelo de nervo isqumico por resfriamento, observamos que a exposio prolongada ao resfriamento por quatro semanas estava, marcadamente, associada com a ausncia de SC, com o decrscimo da viabilidade celular e a apoptose em segmentos de nervo incubados na soluo da Universidade de Wisconsin apenas. Entretanto, a TMP atenuou o dano no segmento do nervo preservando SC e antagonizando a diminuio da viabilidade da fibra nervosa e o aumento das clulas TUNEL-positiva de modo dose-dependente. De forma conjunta, nossos resultados indicam que o TMP no s fornece efeitos protetores em um modelo de dano semelhante isquemia de SC de ratos cultivados pela regulao de BCl-2, Bax e caspase 3, mas, tambm, aumenta a sobrevivncia celular e suprime a apoptose no modelo de isquemia por resfriamento por exposio prolongada por quatro semanas. Ento, TMP pode ser uma estratgia teraputica eficaz para prevenir doenas isqumicas do sistema nervoso perifrico e melhora a armazenagem do nervo perifrico. Abstract in english Tetramethylpyrazine (TMP), a major active ingredient of Ligusticum wallichi Franchat extract (a Chinese herb), exhibits neuroprotective properties in ischemia. In this study, we assessed its protective effects on Schwann cells (SCs) by culturing them in the presence of oxygen glucose deprivation (OG [...] D) conditions and measuring cell survival in cold ischemic rat nerves. In the OGD-induced ischemic injury model of SCs, we demonstrated that TMP treatment not only reduced OGD-induced cell viability losses, cell death, and apoptosis of SCs in a dose-dependent manner, and inhibited LDH release, but also suppressed OGD-induced downregulation of Bcl-2 and upregulation of Bax and caspase-3, as well as inhibited the consequent activation of caspase-3. In the cold ischemic nerve model, we found that prolonged cold ischemic exposure for four weeks was markedly associated with the absence of SCs, a decrease in cell viability, and apoptosis in preserved nerve segments incubated in University of Wisconsin solution (UWS) alone. However, TMP attenuated nerve segment damage by preserving SCs and antagonizing the decrease in nerve fiber viability and increase in TUNEL-positive cells in a dose-dependent manner. Collectively, our results indicate that TMP not only provides protective effects in an ischemia-like injury model of cultured rat SCs by regulating Bcl-2, Bax, and caspase-3, but also increases cell survival and suppresses apoptosis in the cold ischemic nerve model after prolonged ischemic exposure for four weeks. Therefore, TMP may be a novel and effective therapeutic strategy for preventing peripheral nervous system ischemic diseases and improving peripheral nerve storage.

  5. Acrylamide neuropathy. I. Spatiotemporal characteristics of nerve cell damage in rat cerebellum.

    Lehning, E J; Balaban, C D; Ross, J F; Reid, M A; LoPachin, R M

    2002-09-01

    Based on evidence from morphometric studies of PNS, we suggested that acrylamide (ACR)-induced distal axon degeneration was a secondary effect related to duration of exposure [Toxicol. Appl. Pharmacol. 151 (1998) 211]. To test this hypothesis in CNS, the cupric-silver stain method of de Olmos was used to define spatiotemporal characteristics of nerve somal, dendritic, axonal and terminal degeneration in rat cerebellum. Rats were exposed to ACR at either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.) and at selected times (i.p. = 5, 8 and 11 days; p.o. = 7, 14, 21, 28 and 38 days) brains were removed and processed for silver staining. Results demonstrate that intoxication at the higher ACR dose-rate produced early (day 5) and progressive degeneration of Purkinje cell dendrites in cerebellar cortex. Nerve terminal degeneration occurred concurrently with somatodendritic argyrophilia in cerebellar and brainstem nuclei that receive afferent input from Purkinje neurons. Relatively delayed (day 8), abundant axon degeneration was present in cerebellar white matter but not in cortical layers or in tracts carrying afferent fibers (cerebellar peduncles) from other brain nuclei. Axon argyrophilia coincided with the appearance of perikaryal degeneration, which was selective for Purkinje cells since silver impregnation of other cerebellar neurons was not evident in the different cortical layers or cerebellar nuclei. Intoxication at the lower ACR dose-rate produced simultaneous (day 14) dendrite, axon and nerve terminal argyrophilia and no somatic Purkinje cell degeneration. The spatiotemporal pattern of dendrite, axon and nerve terminal loss induced by both ACR dose-rates is consistent with Purkinje cell injury. Injured neurons are likely to be incapable of maintaining distal processes and, therefore, axon degeneration in the cerebellum is a component of a "dying-back" process of neuronal injury. Because cerebellar coordination of somatomotor activity is mediated solely through efferent projections of the Purkinje cell, injury to this neuron might contribute significantly to gait abnormalities that characterize ACR neurotoxicity. PMID:12387366

  6. Trigeminal nerve involvement in T-cell acute lymphoblastic leukemia: value of MR imaging

    Karadag, Demet; Karaguelle, Ayse Tuba; Erden, Ilhan; Erden, Ayse E-mail: erden@ada.net.tr

    2002-10-01

    A 30-year-old male with T-cell acute lymphoblastic leukemia presented with facial numbness. Neurological examination revealed paresthesia of the left trigeminal nerve. Cerebrospinal fluid (CSF) cytology showed no atypical cells. Gadolinium-enhanced magnetic resonance (MR) imaging demonstrated enlargement and enhancement of intracranial portions of the left trigeminal nerve. The abnormal MR imaging findings almost completely resolved after the chemotherapy. Gadolinium-enhanced MR imaging is not only a useful procedure for the early diagnosis of cranial nerve invasion by leukemia but it might be helpful to follow the changes after the treatment.

  7. Trigeminal nerve involvement in T-cell acute lymphoblastic leukemia: value of MR imaging

    A 30-year-old male with T-cell acute lymphoblastic leukemia presented with facial numbness. Neurological examination revealed paresthesia of the left trigeminal nerve. Cerebrospinal fluid (CSF) cytology showed no atypical cells. Gadolinium-enhanced magnetic resonance (MR) imaging demonstrated enlargement and enhancement of intracranial portions of the left trigeminal nerve. The abnormal MR imaging findings almost completely resolved after the chemotherapy. Gadolinium-enhanced MR imaging is not only a useful procedure for the early diagnosis of cranial nerve invasion by leukemia but it might be helpful to follow the changes after the treatment

  8. Elimination of microwave effects on the vitality of nerves after blockage of active transport

    McRee, D.I.; Wachtel, H.

    1986-12-01

    We have previously reported that exposure to microwave fields (a specific absorption rate of 10 W/kg at 2.45-GHz continuous wave) would consistently lower the survival time of isolated frog sciatic nerves stimulated at high repetition rates (50 pulse pairs per second, ppps). The time course of the loss of excitability of the exposed nerve (as compared to its unexposed contralateral mate) is reminiscent of that seen when the active transport of sodium (Na) and potassium (K) is blocked by certain agents--such as the cardiac glycoside ouabain. To assess the role that these microwaves may have in interfering with or counteracting active transport, we performed a series of experiments in which the active Na-K pump was substantially blocked by ouabain prior to microwave exposure. The paired nerves were soaked for 5 min in a high concentration (10(-3) g/liter) of ouabain to achieve the fastest and most complete blockage of the Na-K pump prior to stimulation at 50 ppps. The ''rundown time course'' was, as expected, accelerated in all ouabain-treated nerves, but the microwave-exposed nerves showed no additional shortening of survival time. The experiments were repeated at a slower stimulation rate (5 ppps) so that the survival time of the nerves more closely approximated that of nerves not treated with ouabain (1 to 2 h versus 30 min or less for ouabain-treated nerves stimulated at 50 ppps). Results of these lower stimulation rates also showed that there was no significant difference in the survival time of ouabain-treated exposed and control nerves. These results lend support to the view that the relative loss of excitability in microwave-exposed nerves is related to an interference with or counteraction of the Na-K pump.

  9. Radiosensitizing activity and pharmacokinetics of multiple dose administered KU-2285 in peripheral nerve tissue in mice

    In a clinical trial in which a 2-nitroimidazole radiosensitizer was administered repeatedly, the dose-limiting toxicity was found to be peripheral neuropathy. In the present study, the in vivo radiosensitizing activity of KU-2285 in combination with radiation dose fractionation, and the pharmacokinetics of cumulative dosing of KU-2285 in the peripheral nerves were examined. The ability of three nitroimidazoles, misonidazole (MISO), etanidazole (SR-2508) and KU-2285, to sensitize SCCVII tumors to radiation treatment has been compared for drug doses in the range 0-200 mg/kg. Single radiation doses or two different fractionation schedules (6 Gy/fractions x three fractions/48 h or 5 Gy/fractions x five fractions/48 h) were used; the tumor cell survival was determined using an in vivo/in vitro colony assay. The pharmacokinetics in the sciatic nerves were undertaken, when KU-2285 or etanidazole were injected at a dose of 200 mg/kg intravenously one, two, three, or four times at 2-h intervals. At less than 100 mg/kg, KU-2285 sensitized SCCVII tumors more than MISO and SR-2508 by fractionated irradiation. Evaluation of pharmacokinetics in the peripheral nerves showed that the apparent biological half-life of SR-2508 increased with the increases in the number of administrations, whereas that of KU-2285 became shorter. Since most clinical radiotherapy is given in small multiple fractions, KU-2285 appears to be a hypoxic cell radiosensitizer that could be useful in such regimens, and that poses no risk of chronic peripheral neurotoxicity. 12 refs., 5 figs., 1 tab

  10. [Optic nerve sheath meningeoma--from expectation to active treatment].

    Kerty, Emilia

    2005-02-17

    The management of optic nerve sheath meningeoma has been controversial and difficult. The conservative strategy was "to wait and see" until the patient became blind on the affected eye. Surgical excision had poor outcome and, with the exception of a few anecdotal case stories, led to blindness or postoperative eye motility disturbances. It has been long known that radiation therapy can prevent tumour progression, but the end result was very often visual deterioration and blindness. A few recent well documented studies describe how stereotactic fractionated conformal radiotherapy can provide stabilisation or improvement in the visual function in optic nerve sheath meningeoma. This article gives an overview, illustrated by a case story. PMID:15742013

  11. M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator.

    Bahia El Idrissi, Nawal; Das, Pranab K; Fluiter, Kees; Rosa, Patricia S; Vreijling, Jeroen; Troost, Dirk; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2015-05-01

    Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients. PMID:25772973

  12. Macrophage polarization in nerve injury: do Schwann cells play a role?

    Stratton, Jo Anne; Shah, Prajay T.

    2016-01-01

    In response to peripheral nerve injury, the inflammatory response is almost entirely comprised of infiltrating macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efficient regeneration. There are several cells within the microenvironment that likely interact with macrophages to support their function – most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior.

  13. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension. PMID:17179381

  14. Afferent renal denervation impairs baroreflex control of efferent renal sympathetic nerve activity

    Kopp, Ulla C.; Jones, Susan Y.; DiBona, Gerald F.

    2008-01-01

    Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which decreases ERSNA to prevent sodium retention. High-sodium diet enhances ARNA, suggesting an important role for ARNA in suppressing ERSNA during excess sodium intake. Mean arterial pressure (MAP) is elevated in afferent renal denervated by dorsal rhizotomy (DRX) rats fed high-sodium diet. We examined whether the increased MAP in DRX is due to impaired arterial baroreflex function. ...

  15. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration.

    Yamamoto, Tsubasa; Osako, Yohei; Ito, Masataka; Murakami, Masashi; Hayashi, Yuki; Horibe, Hiroshi; Iohara, Koichiro; Takeuchi, Norio; Okui, Nobuyuki; Hirata, Hitoshi; Nakayama, Hidenori; Kurita, Kenichi; Nakashima, Misako

    2016-01-01

    Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis. PMID:25903498

  16. Distribution of Neuron Cell Bodies in the Intraspinal Portion of the Spinal Accessory Nerve in Humans.

    Boehm, Karl E; Kondrashov, Peter

    2016-01-01

    The spinal accessory nerve is often identified as a purely motor nerve innervating the trapezius and sternocleidomastoid muscles. Although it may contain proprioceptive neurons found in cervical spinal levels C2-C4, limited research has focused on the histology of the spinal accessory nerve. The objective of the present study was to examine the spinal accessory nerve to determine if there are neuronal cell bodies within the spinal accessory nerve in humans. Cervical spinal cords were dissected from eight cadavers that had previously been used for dissection in other body regions. The segmental rootlets were removed to quantify the neuron cell bodies present at each spinal level. Samples were embedded in paraffin; sectioned; stained with hematoxylin and eosin; and examined using a microscope at 4×, 10×, and 40× magnification. Digital photography was used to image the samples. Neuronal cell bodies were found in 100% of the specimens examined, with non-grossly visible ganglia found at spinal levels C1-C4. The C1 spinal level of the spinal accessory nerve had the highest number of neuron cell bodies. Anat Rec, 299:98-102, 2016. © 2015 Wiley Periodicals, Inc. PMID:26474532

  17. A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells

    Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon

    2015-06-01

    Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.

  18. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem ...

  19. Bone Marrow Mesenchymal Stem Cell and Vein Conduit on Sciatic Nerve Repair in Rats

    Seyed Foroutan, Kamal; Khodarahmi, Ali; Alavi, Hootan; Pedram, Sepehr; Baghaban Eslaminejad, Mohamad Reza; Bordbar, Sima

    2015-01-01

    Background: Peripheral nerve repair with sufficient functional recovery is an important issue in reconstructive surgery. Stem cells have attracted extensive research interest in recent years. Objectives: The purpose of this study was to compare the vein conduit technique, with and without the addition of mesenchymal stem cells in gap-less nerve injury repair in rats. Materials and Methods: In this study, 36 Wistar rats were randomly allocated to three groups: In the first group, nerve repair was performed with simple neurorrhaphy (control group), in the second group, nerve repair was done with vein conduit over site (vein conduit group) and in the third group, bone marrow stem cells were instilled into the vein conduit (stem cell group) after nerve repair with vein conduit over site. Six weeks after the intervention, the sciatic function index, electrophysiological study and histological examination were performed. Results: All animals tolerated the surgical procedures and survived well. The sciatic function index and latency were significantly improved in the vein conduit (P = 0.04 and 0.03, respectively) and stem cell group (P = 0.02 and 0.03, respectively) compared with the control group. No significant difference was observed in sciatic function and latency between the vein conduit and stem-cell groups. Moreover, histological analysis showed no significant difference in regenerative density between these two groups. Conclusions: The results of this study showed that the meticulous microsurgical nerve repair, which was performed using the vein tubulization induced significantly better sciatic nerve regeneration. However, the addition of bone marrow mesenchymal stem cell to vein conduit failed to promote any significant changes in regeneration outcome. PMID:25825699

  20. Bone marrow-derived mesenchymal stem cells differentiate into nerve-like cells in vitro after transfection with brain-derived neurotrophic factor gene

    Liu, Qianxu; Cheng, Guangui; WANG, Zhiwei; Zhan, Shujie; Xiong, Binbin; Zhao, Xiaoming

    2015-01-01

    Bone marrow-derived mesenchymal stem cells can differentiate into a variety of adult cells. Brain-derived neurotrophic factor (BDNF) is briefly active during differentiation and induces mesenchymal stem cells to differentiate into nerve cells. In this study, we cloned human BDNF to generate a recombinant pcDNA3.1(−)-BDNF vector and transfected the vector into bone marrow-derived mesenchymal stem cells. We selected these cells with Geneticin-418 to obtain BDNF-BMSCs, which were induced with re...

  1. Cardiac nerve growth factor overexpression induces bone marrow–derived progenitor cells mobilization and homing to the infarcted heart

    Meloni, Marco; Cesselli, Daniela; Caporali, Andrea; Mangialardi, Giuseppe; Avolio, Elisa; Reni, Carlotta; Fortunato, Orazio; Martini, Stefania; Madeddu, Paolo; Valgimigli, Marco; Nikolaev, Evgeni; Kaczmarek, Leszek; Angelini, Gianni D.; Beltrami, Antonio P; Emanueli, Costanza

    2015-01-01

    Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we ...

  2. Evaluation of Na+/K+ pump function following repetitive activity in mouse peripheral nerve

    Moldovan, Mihai; Krarup, Christian

    2006-01-01

    excitability measures simultaneously from the evoked plantar compound muscle action potential (CMAP) and sciatic compound nerve action potential (CNAP). Three minutes after repetitive supramaximal stimulation maximal CMAP and CNAP amplitudes recovered but the threshold was increased approximately 40% for motor......After conduction of prolonged trains of impulses the increased Na+/K+ pump activity leads to hyperpolarization. The aim of this study was to develop a mouse model to investigate the Na+/K+ pump function in peripheral nerve by measuring the decrease in excitability during activity......-dependent hyperpolarization. Acute electrophysiological investigations were carried out in seven adult mice. Nerve excitability was evaluated by tracking the change in threshold current after 5 min of 100 Hz stimulation of the tibial nerve at ankle. We developed a threshold tracking system that allowed us to follow several...

  3. Morphine attenuates cholinergic nerve activity in human isolated colonic muscle.

    Burleigh, D E; Trout, S. J.

    1986-01-01

    The action of morphine on cholinergic nerves in human sigmoid taenia coli muscle strips (taenia) was investigated using a radiolabelling technique. Basal release of tritiated material from taenia was increased by electrical field stimulation (EFS). This increase was tetrodotoxin (3.14 microM)-sensitive and calcium-dependent. Analysis of basal and stimulated release of tritiated material indicated that evoked release (i.e. stimulated minus basal) is almost entirely due to an increase in [3H]-a...

  4. Active cheerleading with radial nerve palsy following supracondylar humerus fracture

    Herold, C.; Redeker, J; Knobloch, K.; Vogt, PM

    2013-01-01

    Cheerleading is associated with substantial morbidity. As such, cheerleading fall-related injuries may cause serious to fatal outcomes especially falls from attempted pyramids. We report on a female adolescent cheerleader age 14 suffering a supracondylar humerus fracture related to a fall from a pyramid. Unfortunately, lateral pinning led to complete iatrogenic radial nerve palsy. However, given an intriguing compensatory athletic function of the wrist she was able to perform cheerleading art...

  5. Distribution of Mesenchymal Stem Cells and Effects on Neuronal Survival and Axon Regeneration after Optic Nerve Crush and Cell Therapy

    Mesentier-Louro, Louise Alessandra; Zaverucha-do-Valle, Camila; da Silva-Junior, Almir Jordão; Nascimento-dos-Santos, Gabriel; Gubert, Fernanda; de Figueirêdo, Ana Beatriz Padilha; Torres, Ana Luiza; Paredes, Bruno D; Teixeira, Camila; Tovar-Moll, Fernanda; Mendez-Otero, Rosalia; MARCELO F. SANTIAGO

    2014-01-01

    Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanopartic...

  6. Differential activation of nerve fibers with magnetic stimulation in humans

    Olree Kenneth S

    2006-07-01

    Full Text Available Abstract Background Earlier observations in our lab had indicated that large, time-varying magnetic fields could elicit action potentials that travel in only one direction in at least some of the myelinated axons in peripheral nerves. The objective of this study was to collect quantitative evidence for magnetically induced unidirectional action potentials in peripheral nerves of human subjects. A magnetic coil was maneuvered to a location on the upper arm where physical effects consistent with the creation of unidirectional action potentials were observed. Electromyographic (EMG and somatosensory evoked potential (SEP recordings were then made from a total of 20 subjects during stimulation with the magnetic coil. Results The relative amplitudes of the EMG and SEP signals changed oppositely when the current direction in the magnetic coil was reversed. This effect was consistent with current direction in the coil relative to the arm for all subjects. Conclusion A differential evocation of motor and sensory fibers was demonstrated and indicates that it may be possible to induce unidirectional action potentials in myelinated peripheral nerve fibers with magnetic stimulation.

  7. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  8. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle

  9. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Albarracn, A. L.; Farfn, F. D.; Felice, C. J.

    2007-11-01

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  10. Effect on pancreatic beta cells and nerve cells by low let x-ray

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu health College, Daegu (Korea, Republic of)

    2014-03-15

    Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia condition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

  11. Effects of L-carnosine on splenic sympathetic nerve activity and tumor proliferation.

    Horii, Yuko; Shen, Jiao; Fujisaki, Yoshiyuki; Yoshida, Kokichi; Nagai, Katsuya

    2012-02-21

    l-Carnosine (?-alanyl-l-histidine), a dipeptide of the amino acids ?-alanine and histidine, is found in mammalian tissues including those in the central nervous system and in skeletal muscles. In the present study, we examined the effects of intraduodenal (ID) injection of l-carnosine on splenic sympathetic nerve activity (splenic-SNA) in urethane-anesthetized rats and found that ID injection of 3.3mg/kg of body weight of l-carnosine significantly suppressed splenic-SNA. Since it has been suggested that splenic-SNA reduction increases natural killer (NK) activity of splenic cells, which in turn elevates tumor immunity, we then investigated the effect of l-carnosine on the proliferation of human colon cancer cells transplanted into athymic nude mice. The findings of this study revealed that 1mg/mL of l-carnosine solution given as the only drinking water inhibited tumor proliferation. These results suggest that l-carnosine suppresses splenic-SNA and inhibits cancer cell proliferation, probably by elevating NK activity. PMID:22240100

  12. Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization.

    Zuñiga-Aguilar, E; Olayo, R; Ramírez-Fernández, O; Morales, J; Godínez, R

    2014-01-01

    Currently, there are several techniques for modified cell culture surfaces under research to improve cell growth and adhesion. Recently, different methods have been used for surface coating, using biomolecules that enhance cell attachment and growth of nerve cells from spinal cord, such as the use of Poly-DL-Ornithine/Laminin. Plasma-polymerized pyrrole (PPy)-treated surfaces have showed improvement on surfaces biocompatibility with the cells in culture since they do not interfere with any of the biological cell functions. In the present work, we present a novel mouse nerve cell culture technique, using PPy-treated cell culture surfaces. A comparative study of cell survival using Poly-DL-Ornithine/Laminin-treated surfaces was performed. Our results of cell survival when compared with data already reported by other investigators, show that cells cultured on the PPy-modified surface increased survival up to 21 days when compared with Poly-DL-Ornithine/Laminin-coated culture, where 8 days cell survival was obtained. There were electrical and morphological differences in the nerve cells grown in the different surfaces. By comparing the peak ion currents of Poly-DL-Ornithine/Laminin-seeded cells for 8 days with cells grown for 21 days on PPy, an increase of 516% in the Na(+) current and 127% in K(+) currents in cells seeded on PPy were observed. Immunofluorescence techniques showed the presence of cell synapses and culture viability after 21 days. Our results then showed that PPy-modified surfaces are an alternative culture method that increases nerve cells survival from lumbar spinal cord cell culture by preserving its electrical and morphological features. PMID:24650203

  13. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.

  14. Effects of nicotinic receptor agonists on bladder afferent nerve activity in an in vitro bladder-pelvic nerve preparation.

    Yu, Yongbei; Daugherty, Stephanie L; de Groat, William C

    2016-04-15

    Effects of nicotinic receptor agonists (epibatidine and nicotine) on mechano-sensitive bladder afferent nerve (MS-BAN) activity were studied in an in vitro bladder-pelvic afferent nerve preparation. MS-BAN activity was induced by isotonic distention of the bladder at pressures of 10-40cmH2O. The effect of epibatidine varied according to the concentration, route of administration and the intravesical pressure stimulus. Epibatidine (300-500nM) administered in the perfusate to the serosal surface of the bladder decreased distension evoked afferent firing by 30-50% depending on the bladder pressure. However these concentrations also produced an immediate increase in tonic afferent firing in the empty bladder. Lower concentrations (50-100nM) elicited weaker and more variable effects. The inhibitory effects were blocked by bath application of mecamylamine (150µM) a nicotinic receptor antagonist. Bath application of nicotine (20µM) elicited similar effects. Intravesical administration of epibatidine (500nM) significantly increased MS-BAN firing by 15-30%; while lower concentrations (200-300nM) were ineffective. This facilitatory effect of epibatidine was blocked by intravesical administration of mecamylamine (250µM). Electrical stimulation on the surface of the bladder elicited action potentials (AP) in BAN. Bath application of epibatidine (300nM) or nicotine (20µM) did not change either the voltage threshold or the area of evoked AP. These results indicate that nicotinic agonists: (1) enhance MS-BAN activity originating at afferent receptors near the urothelium, (2) inhibit MS-BAN activity originating at afferent receptors located at other sites in the bladder, (3) directly excite unidentified afferents, (4) do not alter afferent axonal excitability. PMID:26876739

  15. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats.

    Gómez, Rosa M; Ghotme, Kemel; Botero, Lucía; Bernal, Jaime E; Pérez, Rosalía; Barreto, George E; Bustos, Rosa Helena

    2016-02-01

    Olfactory nerve derived and olfactory bulb derived olfactory ensheathing cells (OECs) have the ability to promote axonal regeneration and remyelination, both of which are essential in a successful cell transplant. Thus, morphological identification of OECs is a key aspect to develop an applicable cell therapy for injuries to the nervous system. However, there is no clear definition regarding which developmental stage or anatomical origin of OECs is more adequate for neural repair. In the present study, an ultrastructural comparison was made between OECs recovered from primary cultures of olfactory nerve and bulb in two developmental stages. The most notorious difference between cells obtained from olfactory nerve and bulb was the presence of indented nuclei in bulb derived OECs, suggesting a greater ability for possible chemotaxis. In neonatal OECs abundant mitochondria, lipid vacuoles, and smooth endoplasmic reticulum were detected, suggesting an active lipid metabolism, probably involved in synthesis of myelin. Our results suggest that neonatal OECs obtained from olfactory bulb have microscopic properties that could make them more suitable for neural repair. PMID:26254553

  16. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function.

    Knipper, M; Bandtlow, C; Gestwa, L; Kpschall, I; Rohbock, K; Wiechers, B; Zenner, H P; Zimmermann, U

    1998-09-01

    All cranial nerves, as well as the VIIIth nerve which invades the cochlea, have a proximal end in which myelin is formed by Schwann cells and a distal end which is surrounded by oligodendrocytes. The question which arises in this context is whether peripheral and central parts of these nerves myelinate simultaneously or subsequently and whether the myelination of either of the parts occurs simultaneously at the onset of the cochlea function and under the control of neuronal activity. In the present paper, we examined the relative time course of the myelinogenesis of the distal part of the VIIIth nerve by analyzing the expression of peripheral protein P0, proteolipid protein and myelin basic protein. To our surprise, we observed that the expression of myelin markers in the peripheral and central part of the intradural part of the VIIIth nerve started simultaneously, from postnatal day 2 onwards, long before the onset of cochlea function. The expression rapidly achieved saturation levels on the approach to postnatal day 12, the day on which the cochlea function commenced. Because of its importance for the neuronal and morphological maturation of the cochlea during this time, an additional role of thyroid hormone in cochlear myelinogenesis was considered. Indeed, it transpires that this hormone ensures the rapid accomplishment of glial gene expression, not only in the central but also in the peripheral part of the cochlea. Furthermore, an analysis of the thyroid hormone receptors, TRaplha and TRbeta, indicates that TRbeta is necessary for myelinogenesis of the VIIIth nerve. Rapid thyroid hormone-dependent saturation of myelin marker gene expression in Schwann cells and oligodendrocytes of the VIIIth nerve may guarantee nerve conduction and synchronized impulse transmission at the onset of hearing. The thyroid hormone-dependent commencement of nerve conduction is discussed in connection with the patterning refinement of central auditory pathways and the acquisition of deafness. PMID:9716536

  17. [Mechanism of stimulation of the motor activity of the stomach by the greater splanchnic nerve].

    Smironov, V M; Klevtsov, V A; Lychkov, A A; Popova, L M; Smirnov, N A

    1986-05-01

    The activating effect of the splanchnic nerve on motor activity of the gastro-intestinal tract could not be eliminated either with bilateral vagotomy or separate or joint administration of ornid and benzohexonium, but could be well prevented with atropin blockade of the vegetative ganglia M-serotoninergic receptors as well as diprazin blockade of the smooth muscle D-serotoninergic receptors. The data obtained reveal non-cholinergic and non-adrenergic fibers in the thoracic portion of the major splanchnic nerve which exert obvious activating effect on the stomach contractile function, serotonin being their transmitter. PMID:3013699

  18. Nitric Oxide Signaling and Neural Stem Cell Differentiation in Peripheral Nerve Regeneration

    Tao Li, Jessica; Somasundaram, Chandra; Bian, Ka; Xiong, Weijun; Mahmooduddin, Faiz; Nath, Rahul K; Murad, Ferid

    2010-01-01

    Objective: The objective was to examine whether nitric oxide signaling plays a role in human embryonic stem cell differentiation into neural cells. This article reviews current literature on nitric oxide signaling and neural stem cell differentiation for potential therapeutic application to peripheral nerve regeneration. Methods: Human embryonic H9-stem cells were grown, maintained on mitomycin C–treated mouse embryonic fibroblast feeder layer, cultured on Matrigel to be feeder-free, and used...

  19. Specific hunger- and satiety-induced tuning of guinea pig enteric nerve activity.

    Roosen, Lina; Boesmans, Werend; Dondeyne, Marjan; Depoortere, Inge; Tack, Jan; Vanden Berghe, Pieter

    2012-09-01

    Although hunger and satiety are mainly centrally regulated, there is convincing evidence that also gastrointestinal motor activity and hormone fluctuations significantly contribute to appetite signalling. In this study, we investigated how motility and enteric nerve activity are set by fasting and feeding. By means of video-imaging, we tested whether peristaltic activity differs in ex vivo preparations from fasted and re-fed guinea pigs. Ca(2+) imaging was used to investigate whether the feeding state directly alters neuronal activity, either occurring spontaneously or evoked by (an)orexigenic signalling molecules. We found that pressure-induced (2 cmH(2)O) peristaltic activity occurs at a higher frequency in ileal segments from re-fed animals (re-fed versus fasted, 6.12 ± 0.22 vs. 4.84 ± 0.52 waves min(-1), P = 0.028), even in vitro hours after death. Myenteric neuronal responses were tuned to the feeding status, since neurons in tissues from re-fed animals remained hyper-responsive to high K(+)-evoked depolarization (P fasting and re-feeding is present in the enteric nervous system, increasing responses to depolarization and anorexigenic molecules in the re-fed state, while decreasing responses to orexigenic ghrelin. Unlike the hypothalamus, where specific cell populations sensitive to either orexigenic or anorexigenic molecules exist, the enteric feeding state-related memory system is present at the functional level of receptor signalling rather than confined to specific neuron subtypes. PMID:22711954

  20. Ultrastructural effects of acute tetraethyllead poisoning on nerve cells of the rabbit brain

    Niklowitz, W.J.

    1974-08-01

    A study of the ultrastructural alterations of nerve cell components in specific areas of the brain of the rabbit after acute poisoning with tetraethyllead (TEL). A single dose of 100 mg/kg of TEL caused neurological disorders such as convulsions after a latency of 12 to 18 h. An electron microscopic study revealed that the nerve cells of the areas investigated contained different stages of degenerative changes not demonstrated by light microscopy. These appear to be dependent on location and antedate the neurological disorders. The cytopathogenesis is discussed in the light of these findings and available biochemical data. (CIS Abstract Vol. 2)

  1. Nerve growth factor-mediated regulation of low density lipoprotein receptor-related protein promoter activation.

    Grana, Tomas R; LaMarre, Jonathan; Kalisch, Bettina E

    2013-03-01

    The mechanisms by which nerve growth factor (NGF) increases the level of low density lipoprotein receptor-related protein (LRP1) are not known. Administration of nitric oxide synthase (NOS) inhibitors modulates several of the neurotrophic actions of NGF, including TrkA signalling pathway activation, increases in gene expression and neurite outgrowth. The present study investigated whether NGF regulates the transcription of LRP1 as well as the role of NO and the individual TrkA signalling pathways in this action of NGF. PC12 cells were transfected with luciferase reporter constructs containing various sized fragments of the LRP1 promoter and treated with NGF (50 ng/mL) to establish whether NGF altered LRP transcription. NGF significantly increased luciferase activity in all LRP1 promoter construct-transfected cells with the NGF-responsive region of the promoter identified to be present in the first 1000 bp. The non-selective NOS inhibitor N(ω)-nitro-L-arginine methylester (L-NAME; 20 mM) had no effect on the NGF-mediated increase in luciferase activity, while the inducible NOS selective inhibitor s-methylisothiourea (S-MIU; 2 mM) attenuated the NGF-induced activation of the LRP1 promoter. Pretreatment of PC12 cells with 10 μM bisindolylmaleimide 1 (BIS-1) prevented the NGF-mediated increase in LRP1 promoter activation while 50 μM U0126 partially inhibited this response. In combination with S-MIU, all of the TrkA signalling pathway inhibitors blocked the ability of NGF to increase LRP1 transcription. These data suggest the NGF-mediated increase in LRP1 levels occurs, at least in part, at the level of transcription and that NO and the TrkA signalling pathways cooperate in the modulation of LRP1 transcription. PMID:23192564

  2. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus

    Stephan Brenowitz

    2014-07-01

    Full Text Available Feedforward inhibition represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs, principal neurons of the dorsal cochlear nucleus (DCN that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and feed-forward inhibition in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven feed-forward inhibition (FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of feed-forward inhibition had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  3. Exogenous cholecystokinin-8 reduces vagal efferent nerve activity in rats through CCKA receptors

    Bucinskaite, Violeta; Kurosawa, Mieko; Lundeberg, Thomas

    2000-01-01

    It has been proposed that the vagus nerve plays a role in mediating cholecystokinin-8 (CCK-8) effect on such gastric functions as motility, emptying and gastric acid secretion. To examine the contribution of the efferent pathways in realizing these effects, efferent mass activity in the ventral gastric vagal nerve in Sprague-Dawley rats was recorded.Intravenous infusion of CCK-8 (0.1–1 nmol) suppressed the efferent activity. The effect of CCK-8 was significantly reduced in animals with total ...

  4. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  5. Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases

    Shimokawa Hiroaki

    2011-07-01

    Full Text Available Abstract Background Several studies have investigated the involvement of nitric oxide (NO in acute and chronic pain using mice lacking a single NO synthase (NOS gene among the three isoforms: neuronal (nNOS, inducible (iNOS and endothelial (eNOS. However, the precise role of NOS/NO in pain states remains to be determined owing to the substantial compensatory interactions among the NOS isoforms. Therefore, in this study, we used mice lacking all three NOS genes (n/i/eNOS-/-mice and investigated the behavioral phenotypes in a series of acute and chronic pain assays. Results In a model of tissue injury-induced pain, evoked by intraplantar injection of formalin, both iNOS-/-and n/i/eNOS-/-mice exhibited attenuations of pain behaviors in the second phase compared with that in wild-type mice. In a model of neuropathic pain, nerve injury-induced behavioral and cellular responses (tactile allodynia, spinal microglial activation and Src-family kinase phosphorylation were reduced in n/i/eNOS-/-but not iNOS-/-mice. Tactile allodynia after nerve injury was improved by acute pharmacological inhibition of all NOSs and nNOS. Furthermore, in MG-5 cells (a microglial cell-line, interferon-? enhanced NOSs and Mac-1 mRNA expression, and the Mac-1 mRNA increase was suppressed by L-NAME co-treatment. Conversely, the NO donor, sodium nitroprusside, markedly increased mRNA expression of Mac-1, interleukin-6, toll-like receptor 4 and P2X4 receptor. Conclusions Our results provide evidence that the NOS/NO pathway contributes to behavioral pain responses evoked by tissue injury and nerve injury. In particular, nNOS may be important for spinal microglial activation and tactile allodynia after nerve injury.

  6. Promoting Nerve Cell Functions on Hydrogels Grafted with Poly(L-lysine)

    Cai, Lei; Lu, Jie; Sheen, Volney; Wang, Shanfeng

    2012-01-01

    We present a novel photo-polymerizable poly(L-lysine) (PLL) and use it to modify polyethylene glycol diacrylate (PEGDA) hydrogels for creating a better, permissive nerve cell niche. Compared with their neutral counterparts, these PLL-grafted hydrogels greatly enhance pheochromocytoma (PC12) cell survival in encapsulation, proliferation, and neurite growth, and also promote neural progenitor cell proliferation and differentiation capacity, represented by percentages of both differentiated neur...

  7. Selective control of muscle activation with a multipolar nerve cuff electrode.

    Veraart, C; Grill, W M; Mortimer, J T

    1993-07-01

    Acute experiments were performed on adult cats to study selective activation of medial gastrocnemius, soleus, tibialis anterior, and extensor digitorum longus with a cuff electrode. A spiral nerve cuff containing twelve "dot" electrodes was implanted around the sciatic nerve and evoked muscle twitch forces were recorded in six experiments. Spatially isolated "dot" electrodes in four geometries: monopolar, longitudinal tripolar, tripolar with four common anodes, and two parallel tripoles, were combined with transverse field steering current(s) from an anode(s) located 180 degrees around from the cathode(s) to activate different regions of the nerve trunk. To quantify the degree of selectivity, a selectivity index was defined as the ratio of the force in one muscle to the force in all four muscles in response to a particular stimulus. The selectivity index was used to construct recruitment curves for a muscle with the optimal degree of selectivity. Physiological responses were correlated with the anatomical structure of the sciatic nerve by identifying the nerve fascicles innervating the four muscles, and by determining the relative positions of the electrodes and the nerve fascicles. The results indicated that the use of transverse field steering current improved selectivity. We also found that tripoles with individual dot anodes were more selective than tripoles with four common dot anodes. Stimulation with two parallel tripoles was effective in activating selectively fascicles that could not be activated selectively with only a single tripole. The multipolar cuff proved an effective method to control selectively and progressively the force in muscles innervated by fascicles that were well defined at the level of the cuff. PMID:8244425

  8. Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair

    Bhangra, Kulraj Singh; Busuttil, Francesca

    2016-01-01

    Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.

  9. Distribution of Mesenchymal Stem Cells and Effects on Neuronal Survival and Axon Regeneration after Optic Nerve Crush and Cell Therapy

    Mesentier-Louro, Louise Alessandra; Zaverucha-do-Valle, Camila; da Silva-Junior, Almir Jordão; Nascimento-dos-Santos, Gabriel; Gubert, Fernanda; de Figueirêdo, Ana Beatriz Padilha; Torres, Ana Luiza; Paredes, Bruno D.; Teixeira, Camila; Tovar-Moll, Fernanda; Mendez-Otero, Rosalia; Santiago, Marcelo F.

    2014-01-01

    Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime. PMID:25347773

  10. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy.

    Mesentier-Louro, Louise Alessandra; Zaverucha-do-Valle, Camila; da Silva-Junior, Almir Jordão; Nascimento-Dos-Santos, Gabriel; Gubert, Fernanda; de Figueirêdo, Ana Beatriz Padilha; Torres, Ana Luiza; Paredes, Bruno D; Teixeira, Camila; Tovar-Moll, Fernanda; Mendez-Otero, Rosalia; Santiago, Marcelo F

    2014-01-01

    Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3-5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime. PMID:25347773

  11. Calcineurin activation causes retinal ganglion cell degeneration

    Qu, Juan; Matsouaka, Roland Albert; Betensky, Rebecca Aubrey; Hyman, Bradley Theodore; Grosskreutz, Cynthia Lee

    2012-01-01

    Purpose: We previously reported that calcineurin, a Ca2+/calmodulin-dependent serine/threonine phosphatase, is activated and proposed that it participates in retinal ganglion cell (RGC) apoptosis in two rodent ocular hypertension models. In this study, we tested whether calcineurin activation by itself, even in the absence of ocular hypertension, is sufficient to cause RGC degeneration. Methods: We compared RGC and optic nerve morphology after adeno-associated virus serotype 2 (AAV2)–mediated...

  12. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration

    Rutkowski, Gregory E.; Miller, Cheryl A.; Jeftinija, Srdija; Mallapragada, Surya K.

    2004-09-01

    This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.

  13. Hirschsprungs disease: Is there a relationship between mast cells and nerve fibers?

    Amit Kumar Yadav, Kiran Mishra, Anup Mohta, Sarla Agarwal

    2009-03-01

    Full Text Available AIM: To define the topography of mast cells and their numbers in cases of Hirschsprung’s disease (HD and non-HD, assess neural hypertrophy using imaging software and to study the relationship between mast cells and nerve fibers.METHODS: HE stained sections of 32 cases of chronic constipation in the age group of 0-14 years were reviewed for ganglion cells. AChE staining was performed on frozen sections of colonic and rectal biopsies. Based on their findings cases were divided into HD and non-HD and mast cells stained by toluidine blue were evaluated. Image analysis by computerized software was applied to S-100 stained sections for assessment of neural hypertrophy.RESULTS: Difference between number of mast cells in HD group (mean = 36.44 and in non-HD group (mean = 14.79 was statistically significant. Image analysis morphometry on S-100 stained sections served as a useful adjunct. The difference between number, size, and perimeter of the nerve fibers between HD and non-HD group was statistically significant.CONCLUSION: Mast cells are significantly increased in HD and their base line values are much higher in Indian children than that reported in Western literature. Their role in HD needs further research. Morphometry of S-100 stained nerve fibers is a useful adjunct to conventional methods for diagnosis of HD.

  14. Malignant trigeminal nerve sheath tumor and anaplastic astrocytoma collision tumor with high proliferative activity and tumor suppressor p53 expression.

    Kurdi, Maher; Al-Ardati, Hosam; Baeesa, Saleh S

    2014-01-01

    Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53) gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST) and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa. PMID:25386378

  15. Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity.

    Holbein, Walter W; Toney, Glenn M

    2015-03-01

    We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA. PMID:25519737

  16. The Use of Fiber-Reinforced Scaffolds Cocultured with Schwann Cells and Vascular Endothelial Cells to Repair Rabbit Sciatic Nerve Defect with Vascularization

    Hongyang Gao; Yang You; Guoping Zhang; Feng Zhao; Ziyi Sha; Yong Shen

    2013-01-01

    To explore the feasibility of biodegradable fiber-reinforced 3D scaffolds with satisfactory mechanical properties for the repair of long-distance sciatic nerve defect in rabbits and effects of vascularized graft in early stage on the recovery of neurological function, Schwann cells and vascular endothelial cells were cocultured in the fiber-reinforced 3D scaffolds. Experiment group which used prevascularized nerve complex for the repair of sciatic nerve defect and control group which only cul...

  17. Advantage of recording single-unit muscle sympathetic nerve activity in heart failure

    HISAYOSHIMURAI

    2012-05-01

    Full Text Available Elevated sympathetic activation is a characteristic feature of heart failure (HF. Excessive sympathetic activation under resting conditions has been shown to increase from the early stages of the disease, and is related to prognosis. Direct recording of multiunit efferent muscle sympathetic nerve activity (MSNA by microneurography is the best method for quantifying sympathetic nerve activity in humans. To date, this technique has been used to evaluate the actual central sympathetic outflow to the periphery in HF patients at rest and during exercise; however, because the firing occurrence of sympathetic activation is mainly synchronized by pulse pressure, multiunit MSNA, expressed as burst frequency (bursts/min and burst incidence (bursts/100heartbeats, may have limitations for the quantification of sympathetic nerve activity. In HF, multiunit MSNA is near the maximum level, and cannot increase further than the heartbeat. Single-unit MSNA analysis in humans is technically demanding, but provides more detailed information regarding central sympathetic firing. Although a great deal is known about the response of multiunit MSNA to stress, little information is available regarding the responses of single-unit MSNA to physiological stress and disease. The purposes of this review are to describe the differences between multiunit and single-unit MSNA during stress and to discuss the advantages of single-unit MSNA recording in improving our understanding the pathology of increased sympathetic activity in HF.

  18. Whole body heat stress attenuates baroreflex control of muscle sympathetic nerve activity during postexercise muscle ischemia

    Cui, Jian; Shibasaki, Manabu; Davis, Scott L; Low, David A; Keller, David M; Crandall, Craig G.

    2009-01-01

    Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when mus...

  19. Concentrated growth factor increases Schwanncellproliferation and neurotrophic factorsecretionandpromotes functional nerve recovery in vivo.

    Qin, Jie; Wang, Lin; Sun, Yue; Sun, Xiaolin; Wen, Chaoju; Shahmoradi, Mahdi; Zhou, Yanmin

    2016-02-01

    Concentrated growth factor(CGF) is a newly generated complex that comprises a fibrin matrix incorporating growth factors and plasmatic and leukocyte cytokines. It has been widely used in bone regenerative medicine. However, the effect of CGF on peripheral nerve regeneration had not been previously investigated. The aim of the present study was to evaluate the possibility of using CGF for nerve regeneration by i)investigating the effect of CGF on the proliferation of Schwann cells(SCs) and secretion of neurotrophic factors nerve growth factor(NGF) and glial cell line?derived neurotrophic factor(GDNF) invitro; and ii)analyzing the effect of CGF on functional nerve recovery after nerve injury invivo. CGF was prepared from venous blood taken from rats, and using scanning electron microscopy(SEM) we noted that it featured a fiber?like appearance with pore size ranging from 0.1 to 1.0m. The soluble component of CGF was used to produce conditioned media with which to treat the Schwann cell line. A cell counting kit-8 assay and cell cycle analysis were both used to study the proliferative effect of CGF on SCs. Reverse transcription-quantitative PCR and western blot analysis demonstrated that there was an increase in the mRNA and protein expression of NGF and GDNF, both of which are markers of SC neurotrophic secretion. A model of sciatic nerve crush injury was established for the invivo experiment, and CGF was found to increase the sciatic functional index (indicative of nerve function). We noted that CGF increased SC proliferation and secretion of neurotrophic factors invitro, and promoted functional recovery after peripheral nerve injuries invivo. These results suggest that CGF is a promising candidate biomaterial for peripheral nerve regeneration, and may potentially be utilized to repair nerve injuries. PMID:26709397

  20. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  1. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  2. The effect of sodium nitroprusside on resting membrane potential of the leech Retzius nerve cells

    Stojanovi? Jasna

    2006-01-01

    Full Text Available We have investigated the effect of sodium nitroprusside (SNP on the membrane resting potential of the leech (Haemopis sanguisuga Retzius nerve cells (RNC. The membrane potential of RNC of isolated ganglia was recorded in Ringer solution, in SNP solution during the next 30 minutes and after washing out with Ringer solution. We used 1 mmol/L, 2 mmol/L and 5 mmol/L solutions of SNP. Kruskal-Wallis ANOVA test was used to compare the fall of membrane potential of the leech Retzius nerve cells when different SNP concentrations were used. There was no change in the membrane resting potential of the leech Retzius nerve cells with 1 mmol/L concentration of SNP whilst 2 mmol/L concentration of SNP induced hyperpolarization during the first 20 minutes. The highest concentration of 5 mmol/L SNP induced hyperpolarization in 50% of cells during the first minute and during the next 10 minutes in the other 50%. The significant fall of membrane potential was recorded with 5mmol/L SNP concentration (p<0.05. The SNP induced hyperpolarization of RNC might be the effect of this NO donor on the potassium channels of leech RNC.

  3. Increased autophagic activity in dorsal root ganglion attenuates neuropathic pain following peripheral nerve injury.

    Guo, Jian-Shuang; Jing, Peng-Bo; Wang, Ji-An; Zhang, Rui; Jiang, Bao-Chun; Gao, Yong-Jing; Zhang, Zhi-Jun

    2015-07-10

    Autophagy is a process of cellular self-cannibalization, and provides an adaptive mechanism to protect cells against diverse pathological settings. Following peripheral nerve injury, autophagic process was changed in Schwann cells and spinal neurons and glial cells, implicating a vital role of autophagy in chronic pain. However, little is known about the role of autophagy in dorsal root ganglion (DRG) in neuropathic pain. In the present study, we investigated the autophagic process in DRG and its effect on neuropathic pain induced by L5 spinal nerve ligation (SNL). The level of microtubule associated protein 1 light chain 3 (LC3)-II, a general marker for autophagy, was increased in L5 DRG after SNL. Immunofluorescence staining showed that LC3-II puncta were observed in DRG neurons after SNL. Injection of autophagy inducer rapamycin into L5 DRG before or after SNL dose-dependently attenuated neuropathic pain. The expression of LC3 was enhanced in L5 DRG by rapamycin. These data suggest that the autophagy in L5 DRG neurons is a defensive reaction to L5 spinal nerve injury, and pharmacological enhancement of autophagy may be a potential treatment to prevent the onset and chronification of neuropathic pain. PMID:26021876

  4. Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord.

    Lehning, E J; Balaban, C D; Ross, J F; LoPachin, R M

    2003-01-01

    Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. 151 (1998) 211] and cerebellum [NeuroToxicology 23 (2002) 397] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To continue morphological examination of ACR neurotoxicity in CNS, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal degeneration in brainstem and spinal cord. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.), and at selected times brains and spinal cord were removed and processed for silver staining. Results show that intoxication at the higher ACR dose-rate produced a nearly pure terminalopathy in brainstem and spinal cord regions, i.e. widespread nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the lower ACR dose-rate caused initial nerve terminal argyrophilia in selected brainstem and spinal cord regions. As intoxication continued, axon degeneration developed in white matter of these CNS areas. At both dose-rates, argyrophilic changes in brainstem nerve terminals developed prior to the onset of significant gait abnormalities. In contrast, during exposure to the lower ACR dose-rate the appearance of axon degeneration in either brainstem or spinal cord was relatively delayed with respect to changes in gait. Thus, regardless of dose-rate, ACR intoxication produced early, progressive nerve terminal degeneration. Axon degeneration occurred primarily during exposure to the lower ACR dose-rate and developed after the appearance of terminal degeneration and neurotoxicity. Spatiotemporal analysis suggested that degeneration began at the nerve terminal and then moved as a function of time in a somal direction along the corresponding axon. These data suggest that nerve terminals are a primary site of ACR action and that expression of axonopathy is restricted to subchronic dosing-rates. PMID:12564387

  5. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae

    Ceci, Maria Laura; Mardones-Krsulovic, Camila; SÁNCHEZ, MARIO; Valdivia, Leonardo E; Allende, Miguel L

    2014-01-01

    Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral...

  6. The neuroprotective effect of resveratrol on retinal ganglion cells after optic nerve transection

    Kim, Seok Hwan; Park, Joo Hyun; Kim, Yu Jeong; Park, Ki Ho

    2013-01-01

    Purpose This study aimed to investigate the neuroprotective effect of resveratrol in an optic nerve transection (ONT) model and to identify the neuroprotective mechanism of resveratrol in retinal ganglion cells (RGCs). Methods ONT and retrograde labeling were performed in Sprague-Dawley rats. Various concentrations of resveratrol were injected intravitreally immediately after ONT. The number of labeled RGCs was determined at 1 and 2 weeks after ONT. The effect of resveratrol and sirtinol (a s...

  7. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies.

    Goedert, M

    1999-01-01

    Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, fam...

  8. Enhancement of Median Nerve Regeneration by Mesenchymal Stem Cells Engraftment in an Absorbable Conduit: Improvement of Peripheral Nerve Morphology with Enlargement of Somatosensory Cortical Representation.

    Julia Teixeira Oliveira

    2014-10-01

    Full Text Available We studied the morphology and the cortical representation of the median nerve (MN, 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL conduit with or without bone marrow-derived mesenchymal stem cell (MSC transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1, electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in 3 groups: MN Intact (n=4, PCL-Only (n=3 and PCL+MSC (n=3. Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group or without (PCL-Only group injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to 5 animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383±390 fibers; 2.3 mm2, respectively than the PCL-Only group (2,226±575 fibers; 1.6 mm2. In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  9. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier.

    Yang, Shaobing; Krug, Susanne M; Heitmann, Johanna; Hu, Liu; Reinhold, Ann Kristin; Sauer, Solange; Bosten, Judith; Sommer, Claudia; Fromm, Michael; Brack, Alexander; Rittner, Heike L

    2016-03-01

    The peripheral nerve contains three barriers which include the blood-nerve barrier consisting of endoneurial vessels and the perineurium as well as autotypic junctions in Schwann cells. The perineurium prevents diffusion of perineurally injected drugs that can be used for selective regional pain control. It is composed of a basal membrane and layers of perineurial cells sealed by tight junction proteins like claudin-1. Claudin-1 expression and barrier function are regulated via low-density lipoprotein receptor-related protein (LRP-1). Perisciatic application of recombinant tissue plasminogen activator (rtPA) or the catalytically inactive rtPAi - both agonists of LRP-1 - reduced claudin-1 mRNA and protein expression in the rat nerve. This facilitated an increase of nociceptive thresholds after local application of hydrophilic opioids or the voltage gated sodium channel blocker (NaV1.7) ProToxin-II without apparent nerve toxicity. RtPA-induced barrier opening was mediated by LRP-1 and intracellularly by Erk phosphorylation. In silico, microRNA (miR)-rno-29b-2-5p and rno-miR-183-5p were identified as potential regulators of claudin-1 transcription in the rat. RtPA application increased miR-183-5p in the sciatic nerve. MiR-183-5p mimics functionally opened the perineurium and downregulated claudin-1 expression invivo. Invitro, hsa-miR-183-3p mimics reduced claudin-1 expression in human HT-29/B6 cells. Overall, rtPA regulates perineurial barrier tightness via LRP-1, Erk phosphorylation and miR-183-5p/3p. This mechanism might serve as a new principle to facilitate drug delivery to peripheral nerves in humans. PMID:26735170

  10. Vagus nerve stimulation magnet activation for seizures: a critical review.

    Fisher, R S; Eggleston, K S; Wright, C W

    2015-01-01

    Some patients receiving VNS Therapy report benefit from manually activating the generator with a handheld magnet at the time of a seizure. A review of 20 studies comprising 859 subjects identified patients who reported on-demand magnet mode stimulation to be beneficial. Benefit was reported in a weighted average of 45% of patients (range 0-89%) using the magnet, with seizure cessation claimed in a weighted average of 28% (range 15-67%). In addition to seizure termination, patients sometimes reported decreased intensity or duration of seizures or the post-ictal period. One study reported an isolated instance of worsening with magnet stimulation (Arch Pediatr Adolesc Med, 157, 2003 and 560). All of the reviewed studies assessed adjunctive magnet use. No studies were designed to provide Level I evidence of efficacy of magnet-induced stimulation. Retrospective analysis of one pivotal randomized trial of VNS therapy showed significantly more seizures terminated or improved in the active stimulation group vs the control group. Prospective, controlled studies would be required to isolate the effect and benefit of magnet mode stimulation and to document that the magnet-induced stimulation is the proximate cause of seizure reduction. Manual application of the magnet to initiate stimulation is not always practical because many patients are immobilized or unaware of their seizures, asleep or not in reach of the magnet. Algorithms based on changes in heart rate at or near the onset of the seizure provide a methodology for automated responsive stimulation. Because literature indicates additional benefits from on-demand magnet mode stimulation, a potential role exists for automatic activation of stimulation. PMID:25145652

  11. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge

    Mllgrd, K; Jespersen, Anders; Lutterodt, M C; Hyer, Poul Erik; Mllgrd, Kjeld; Jespersen, A; Lutterodt, Melissa Catherine Refsgaard; Yding Andersen, C; Hyer, P E; Byskov, A G

    2010-01-01

    The aim of this study was to investigate the spatiotemporal development of autonomic nerve fibers and primordial germ cells (PGCs) along their migratory route from the dorsal mesentery to the gonadal ridges in human embryos using immunohistochemical markers and electron microscopy. Autonomic nerve...... their intimate contact with PGCs. PGCs expressed GAGE, MAGE-A4, OCT4 and c-Kit. Serial paraffin sections showed that most PGCs were located inside bundles of autonomic nerve fibers with the majority adjacent to the most peripheral fibers (close to Schwann cells). We also show that both nerve fibers and...... PGCs arrive at the gonadal ridge between 29 and 33 days pc. In conclusion, our data suggest that PGCs in human embryos preferentially migrate along autonomic nerve fibers from the dorsal mesentery to the developing gonad where they are delivered via a fine nerve plexus....

  12. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  13. Skin sympathetic nerve activity in humans during exposure to emotionally-charged images: sex differences

    Brown, Rachael; Vaughan G. Macefield

    2014-01-01

    While it is known that anxiety or emotional arousal affects skin sympathetic nerve activity (SSNA), the galvanic skin response (GSR) is the most widely used parameter to infer increases in SSNA during stress or emotional studies. We recently showed that SSNA provides a more sensitive measure of emotional state than effector-organ responses. The aim of the present study was to assess whether there are gender differences in the responses of SSNA and other physiological parameters such as blood ...

  14. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade

    Bruno, Martin A.; Cuello, A Claudio

    2006-01-01

    In this report, we provide direct demonstration that the neurotrophin nerve growth factor (NGF) is released in the extracellular space in an activity-dependent manner in its precursor form (proNGF) and that it is in this compartment that its maturation and degradation takes place because of the coordinated release and the action of proenzymes and enzyme regulators. This converting protease cascade and its endogenous regulators (including tissue plasminogen activator, plasminogen, neuroserpin,...

  15. Nuclear accumulation of nerve growth factor and its receptor in meningioma and glioma tumor cells

    The distribution of the nerve growth factor (NGF) and the NGF receptor was investigated in meningioma and glioma tumors cells grown to confluence and then incubated with either 125I-NGF or the 125I-labelled antibody directed against the NGF receptor. The distribution of the epidermal growth factor (EGF) and its receptor was also studied for comparison. In both cell types the labelled growth factors as well as their receptors were distributed among cell membrane and chromatin fractions. The major quantitative differences were shown, manifesting the higher NGF and EGF receptors content in meningioma, as compared with glioma cells. However, there was noted the lower accumulation of EGF in comparison with NGF in chromatin of both cell types and much higher concentration of the EGF receptor in meningioma not only in comparison to glioma cells, but also to the NGF receptor in the same cells. (author). 16 refs, 2 figs, 3 tabs

  16. Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration

    Wilhelm, Jennifer C.; Xu, Mei; Cucoranu, Delia; Chmielewski, Sarah; Holmes, Tiffany; Lau, Kelly; Bassell, Gary J.; English, Arthur W.

    2012-01-01

    After peripheral nerve injury, neurotrophins play a key role in the regeneration of damaged axons which can be augmented by exercise, although the distinct roles played by neurons and Schwann cells are unclear. In this study, we evaluated the requirement for the neurotrophin, brain derived neurotrophic factor (BDNF), in neurons and Schwann cells, for the regeneration of peripheral axons after injury. Common fibular or tibial nerves in thy-1-YFP-H mice were cut bilaterally and repaired using a...

  17. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  18. Acrylamide neuropathy. III. Spatiotemporal characteristics of nerve cell damage in forebrain.

    Lehning, E J; Balaban, C D; Ross, J F; LoPachin, R M

    2003-01-01

    Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. (1998) 151:211-221] and in spinal cord, brainstem and cerebellum [NeuroToxicology (2002a) 23:397-414; NeuroToxicology (2002b) 23:415-429] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To conclude our studies of neurodegeneration in rat CNS during ACR neurotoxicity, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal argyrophilia in forebrain regions and nuclei. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.) and at selected times brains were removed and processed for silver staining. Results show that intoxication at either ACR dose-rate produced a terminalopathy, i.e. nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the higher ACR dose-rate caused early onset (day 5), widespread nerve terminal degeneration in most of the major forebrain areas, e.g. cerebral cortex, thalamus, hypothalamus and basal ganglia. At the lower dose-rate, nerve terminal degeneration in the forebrain developed early (day 7) but exhibited a relatively limited spatial distribution, i.e. anteroventral thalamic nucleus and the pars reticulata of the substantia nigra. Several hippocampal regions were affected at a later time point (day 28), i.e. CA1 field and subicular complex. At both dose-rates, argyrophilic changes in forebrain nerve terminals developed prior to the onset of significant gait abnormalities. Thus, in forebrain, ACR intoxication produced a pure terminalopathy that developed prior to the onset of significant neurological changes and progressed as a function of exposure. Neither dose-rate used in this study was associated with axon degeneration in any forebrain region. Our findings indicate that nerve terminals were selectively affected in forebrain areas and, therefore, might be primary sites of ACR action. PMID:12564388

  19. Unusual Spread of Renal Cell Carcinoma to the Clivus with Cranial Nerve Deficit

    Okudo, Jerome; Anusim, Nwabundo

    2016-01-01

    Renal cell carcinoma (RCC) has unusual presentation affecting elderly males with a smoking history. The incidence of RCC varies while the incidence of spread of RCC to the clivus is rare. The typicality of RCC presentation includes hematuria, flank pain, and a palpable flank mass; however, RCC can also present with clival metastasis. The unique path of the abducens nerve in the clivus makes it susceptible to damage in metastasis. We report a case of a 54-year-old African American female that was evaluated for back pain, weakness, numbness, and tingling of bilateral lower extremities and subsequently disconjugate gaze and diplopia. Brain MRI confirmed metastasis to the clivus. She was started on radiotherapy and was planned for chemotherapy and transfer to a nursing home. When a patient presents with sudden unusual cranial nerve pathology, the possibility of metastatic RCC should be sought.

  20. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis

    Zhang, Xiang; Zhang, Fang; Lu, Liejing; Li, Haojiang; Wen, Xuehua; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2014-05-15

    To investigate the role of MR imaging in neurotmesis combined with surgical repair and Toll-like receptor 4 (TLR4) activation. Forty-eight rats received subepineurial microinjection of the TLR4 agonist lipopolysaccharide (LPS, n = 24) or phosphate buffered saline (PBS, n = 24) immediately after surgical repair of the transected sciatic nerve. Sequential fat-suppressed T2-weighted imaging and quantitative T2 measurements were obtained at 3, 7, 14 and 21 days after surgery, with histologic assessments performed at regular intervals. T2 relaxation times and histological quantification of the distal stumps were measured and compared. The distal stumps of transected nerves treated with LPS or PBS both showed persistent enlargement and hyperintense signal. T2 values of the distal stumps showed a rapid rise to peak level followed by a rapid decline pattern in nerves treated with LPS, while exhibiting a slow rise to peak value followed by a slow decline in nerves treated with PBS. Nerves treated with LPS exhibited more prominent macrophage recruitment, faster myelin debris clearance and more pronounced nerve regeneration. Nerves treated with TLR4 activation had a characteristic pattern of T2 value change over time. Longitudinal T2 measurements can be used to detect the enhanced repair effect associated with TLR4 activation in the surgical repair of neurotmesis. (orig.)

  1. Activation of endothelin A-receptors contributes to the impaired responsiveness of renal mechanosensory nerves in congestive heart failure

    Kopp, Ulla C.; Cicha, Michael Z.; Jones, Susan Y.

    2010-01-01

    Increasing renal pelvic pressure results in PGE2-mediated release of substance P leading to increases in afferent renal nerve activity (ARNA) and natriuresis: renorenal reflex response. The renorenal reflexes are impaired in congestive heart failure (CHF). Impairment of the renorenal reflexes may contribute to the increased renal sympathetic nerve activity and sodium retention in CHF. Endothelin (ET)-1contributes to the pathological changes in cardiac and renal function in CHF. Therefore, we ...

  2. Degenerative Nerve Diseases

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many ... and viruses. Sometimes the cause is not known. Degenerative nerve diseases include Alzheimer's disease Amyotrophic lateral sclerosis Friedreich's ataxia ...

  3. Effect of SIRT1 regulating cholesterol synthesis in repairing retinal ganglion cells after optic nerve injury in rats

    Yan Zhang

    2014-10-01

    Full Text Available AIM: To investigate the repair mechanism associated with cholesterol synthesis regulated by silent information regulator 1(SIRT1in rat model of optic nerve damage. METHODS: Preparation of optic nerve damage in 70 rats was randomly divided into normal group(10 rats, resveratrol treatment group(experimental group 30 ratsand PBS buffer control group(30 rats. The experimental group and control group was further divided into 3 subgroups(each group 10 rats, respectively. After 7, 14, 21d injected resveratrol or PBS, optic nerve injury were observed, then the rats were sacrificed. Retina was segregated; the surviving retinal ganglion cell(RGCswas counted. Dissection of optic nerve, cholesterol content of them were tested; RT-PCR was used to detect mRNA expression of SIRT1, SREBP2 and HMGCR; Western blot assay was used to test the protein expression levels of SIRT1, cholesterol regulatory element binding protein 2(SREBP2and HMGCR. RESULTS: The numbers of RGCs and cholesterol levels of rat model with optic nerve injury decreased significantly(PPPPCONCLUSION: Up-regulating the expression of SIRT1, SREBP2 and down-regulating HMGCR by resveratrol could repair the injury of optic nerve through promoting the synthesis of cholesterol in neurons and retinal ganglion cells in the repair process. SIRT1 may be as a promising new target for treatment on optic nerve damage.

  4. Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans.

    White, Daniel W; Shoemaker, J Kevin; Raven, Peter B

    2015-12-01

    The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA. PMID:26299824

  5. Painful nerve injury increases plasma membrane Ca2+-ATPase activity in axotomized sensory neurons

    Gemes Geza

    2012-06-01

    Full Text Available Abstract Background The plasma membrane Ca2+-ATPase (PMCA is the principal means by which sensory neurons expel Ca2+ and thereby regulate the concentration of cytoplasmic Ca2+ and the processes controlled by this critical second messenger. We have previously found that painful nerve injury decreases resting cytoplasmic Ca2+ levels and activity-induced cytoplasmic Ca2+ accumulation in axotomized sensory neurons. Here we examine the contribution of PMCA after nerve injury in a rat model of neuropathic pain. Results PMCA function was isolated in dissociated sensory neurons by blocking intracellular Ca2+ sequestration with thapsigargin, and cytoplasmic Ca2+ concentration was recorded with Fura-2 fluorometry. Compared to control neurons, the rate at which depolarization-induced Ca2+ transients resolved was increased in axotomized neurons after spinal nerve ligation, indicating accelerated PMCA function. Electrophysiological recordings showed that blockade of PMCA by vanadate prolonged the action potential afterhyperpolarization, and also decreased the rate at which neurons could fire repetitively. Conclusion We found that PMCA function is elevated in axotomized sensory neurons, which contributes to neuronal hyperexcitability. Accelerated PMCA function in the primary sensory neuron may contribute to the generation of neuropathic pain, and thus its modulation could provide a new pathway for peripheral treatment of post-traumatic neuropathic pain.

  6. A PET activation study of brush-evoked allodynia in patients with nerve injury pain

    Witting, Nanna; Kupers, Ron; Svensson, Peter; Jensen, Troels Staehelin

    2006-01-01

    . A direct post hoc comparison of brush -and allodynia-induced rCBF changes showed that allodynia was associated with significantly stronger activations in orbitofrontal cortex and ipsilateral insula whereas non-painful brushing more strongly activated SI and BA 5/7. These findings indicate that...... allodynia. Nine patients with peripheral nerve injury were scanned during rest, brush-evoked allodynia, and brushing of normal contralateral skin. PET data were analyzed for the whole group and for single subjects. Allodynic stimulation activated the contralateral orbitofrontal cortex (BA 11) in every...... patient. Whereas normal brushing activated most strongly the contralateral insular cortex, allodynic brushing produced an ipsilateral activation in this area. Another important difference between normal and allodynic brushing was the absence of a contralateral primary somatosensory cortex (SI) activation...

  7. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury

    Chen, Xin; Yang, Qiyun; Zheng, Tao; Bian, Jun; Sun, Xiangzhou; Shi, Yanan; Liang, Xiaoyan; Gao, Guoquan; Liu, Guihua; Deng, Chunhua

    2016-01-01

    The paracrine effect is the major mechanism of stem cell therapy. However, the details of the effect's mechanism remain unknown. The aim of this study is to investigate whether adipose tissue-derived stem cells (ADSCs) can ameliorate cavernous nerve injury-induced erectile dysfunction (CNIED) rats and to determine its mechanism. Twenty-eight days after intracavernous injection of 5-ethynyl-2-deoxyuridine- (EdU-) labeled ADSCs, the erectile function of all the rats was evaluated by intracavernosal pressure (ICP). The ADSCs steadily secreted detectable pigment epithelium-derived factor (PEDF) in vitro. The expression of PEDF increased in the penis of the bilateral cavernous nerve injury (BCNI) group for 14 days and then gradually decreased. On day 28 after the intracavernous injection, the ADSCs group exhibited a significantly increased ICP compared with the phosphate buffered saline- (PBS-) treated group. Moreover, the neuronal nitric oxide synthase (nNOS) and S100 expression in penile dorsal nerves and the smooth muscle content to collagen ratio in penile tissues significantly increased. Furthermore, elevated PEDF, p-Akt, and p-eNOS were identified in the ADSCs group. This study demonstrated that intracavernous injection of ADSCs improved erectile function, repaired the nerve, and corrected penile fibrosis. One potential mechanism is the PEDF secretion of ADSCs and subsequent PI3K/Akt pathway activation.

  8. Regulation of Schwann cell proliferation in cultured segments of the adult rat sciatic nerve

    Svenningsen, sa Fex; Kanje, M

    1998-01-01

    Schwann cell proliferation was studied in cultured segments of the rat sciatic nerve by measurement of [3H] thymidine incorporation or through bromodeoxyuridine-(BrdU)-labelling and immunocytochemistry. The aim was to delineate mechanisms involved in the injury-induced proliferative response of...... incorporation while phorbol-12-myristate-13-acetate (PMA) enhanced incorporation. Manipulation of the cAMP system showed that increased cAMP levels inhibited proliferation. Inhibition of protein kinase A by HA 1004 increased the incorporation of [3H] thymidine. Immunostaining for BrdU and glial specific markers...

  9. Primary CD56-positive NK/T-cell lymphoma of median nerve: a case report.

    KIM, J.; Kim, Y S; Lee, E.J.; Kang, C. S.; Shim, S I

    1998-01-01

    Primary extranodal lymphomas of the central nervous system constitute 2% of all malignant lymphomas. The involvement of the peripheral nervous system is very rare. A solitary primary CD56-positive NK/T-cell lymphoma of the median nerve is described in a 70-year-old woman. On physical examination, a rubbery hard mass measuring 2.0 cm in diameter was palpated on the volar aspect of second to third finger of left hand. Excisional biopsy was performed. Under the fascia, a large fusiform tumor of ...

  10. Myenteric plexus in a freshwater teleost intestine. I. Quantitative study of nerve cells.

    de Souza, R R; Ferri, S; Ferraz de Carvalho, C A; Paranhos, G S

    1982-01-01

    The number of nerve cells in the myenteric plexus of a freshwater teleost (Pimelodus maculatus) was obtained with the aid of statistical methods. 1. The density of neurons/cm2 was the following: 91,142 in the duodenum; 93,133 in the ileum and 82,857 in the rectum. These 3 portions have not showed statistically significant differences. 2. The mean surface area of the intestine being 48 cm2, the total number of neurons in myenteric plexus of the duodenum, ileum and rectum was calculated to be 4,274,112. PMID:7165118

  11. Regulation of sympathetic nerve activity by L-carnosine in mammalian white adipose tissue.

    Shen, Jiao; Yao, Jia-Fei; Tanida, Mamoru; Nagai, Katsuya

    2008-08-15

    Previously, we showed that l-carnosine, a bioactive dipeptide, influences the sympathetic nerve activity innervating kidney and brown adipose tissue. Because the autonomic nervous system plays an important role in the regulation of lipid metabolism, we investigated the in vivo effects of L-carnosine on the sympathetic nerve activity innervating white adipose tissue (SNA-WAT) and lipolysis. We found that intraperitoneal (ip) administration of L-carnosine at doses of 100 ng/rat and 10 microg/rat elevated and suppressed SNA-WAT, respectively. The effect of lower dose of L-carnosine (100 ng/rat) was eliminated by pretreatment with diphenhydramine hydrochloride, a histamine H(1) receptor antagonist. In contrast, the effect of higher dose of L-carnosine (10 microg/rat) was suppressed by thioperamide maleate salt, a histamine H(3) receptor antagonist. Moreover, ip administration of 100 ng and 10 microg of L-carnosine increased and decreased the levels of plasma free fatty acids (FFAs), respectively. The changes of plasma FFAs resulting from the exposure to 100 ng and 10 microg of L-carnosine were diminished by the beta-adrenergic receptor blocker propranolol hydrochloride and the muscarinic receptor blocker atropine sulfate, respectively; and eliminated by the corresponding histamine receptor antagonists, which eliminated the changes in SNA-WAT. Our results suggest that low doses of L-carnosine may regulate the lipolytic processes in adipose tissue through facilitation of the sympathetic nervous system, which is driven by histamine neurons through the H(1) receptor, and that the beta(3)-receptor may be involved in this enhanced lipolytic response. High doses of L-carnosine, on the other hand, may lower lipolysis by suppressing sympathetic nerve activity via the H(3) receptor, and the muscarinic receptor may be related to this response. PMID:18599216

  12. Radioautographic characterization of a serotonin-accumulating nerve cell group in adult rat hypothalamus

    Intensely labeled nerve cell bodies were identified by radioautography within the pars ventralis of nucleus dorsomedialis hypothalami (hdv), following intraventricular perfusion with 10-5 or 10-4 M tritiated serotonin [3H]5-HT in adult rats pretreated with a monoamine oxidase inhibitor. This selective reaction, which involved approximately 1000 neurons on each side of the third ventricle, was unaltered by concomitant administration of 10-3 M non-radioactive norepinephrine, and was absent after intraventricular injection of 10-5 or 10-4 M tritiated norepinephrine. The 3H-labeled 5-HT nerve cell bodies were loosely grouped within the inner and caudal half of the hdv, and appeared morphologically similar to the unreactive neurons among which they were interspersed. Within the same region, numerous labeled axonal varicosities were also detected which were never found in synaptic contact with the reactive cells. If the 3H-labeled 5-HT neurons endogenous 5-HT, they might constitute an intrinsic source of 5-HT innervation in the adult rat hypothalamus. (Auth.)

  13. Nerve growth factor effects and receptors in cultured human neuroblastoma cell lines.

    Sonnenfeld, K H; Ishii, D N

    1982-01-01

    We studied the effects of nerve growth factor (NGF) to determine whether neuroblastoma (NB) cells share the pattern of altered response to growth regulatory factors shown by various malignant transformed cells. NGF induces neurite outgrowth, arrests growth, and enhances survival in normal neurons and in the rat pheochromocytoma, a tumor cell closely related to NB. With respect to neurite outgrowth, lines SK-N-SH, SH-SY5Y, LA-N-5, and CHP-126 were sensitive, IMR-32 was resistant, and SH-EP1, SK-N-MC, MC-IXC, CHP-100, and CHP-134 were unresponsive. Conditioned media from unresponsive cells did not inhibit response in sensitive cells. Unexpectedly, NGF neither reduced the growth rate nor enhanced survival in any NB cell line. Conditioned medium from all NB cell lines enhanced 125I-NGF binding in embryonic sensory cells. Regulation of growth rate and neurite outgrowth, then, are separable. A fundamental defect in NB may be the acquisition of a capacity for growth and survival independent of NGF. 125I-NGF was bound to both Fast and Slow receptors in MC-IXC cells, but only to Slow receptors in NGF-responsive SH-SY5Y and LA-N-5 cells, showing Fast receptors are not required for neurite outgrowth. Independence from NGF-regulated growth and survival is unexplainable by an absence of NGF receptors. PMID:6296415

  14. Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis

    Brambilla Roberta

    2012-09-01

    Full Text Available Abstract Background Optic neuritis is an acute, demyelinating neuropathy of the optic nerve often representing the first appreciable symptom of multiple sclerosis. Wallerian degeneration of irreversibly damaged optic nerve axons leads to death of retinal ganglion cells, which is the cause of permanent visual impairment. Although the specific mechanisms responsible for triggering these events are unknown, it has been suggested that a key pathological factor is the activation of immune-inflammatory processes secondary to leukocyte infiltration. However, to date, there is no conclusive evidence to support such a causal role for infiltrating peripheral immune cells in the etiopathology of optic neuritis. Methods To dissect the contribution of the peripheral immune-inflammatory response versus the CNS-specific inflammatory response in the development of optic neuritis, we analyzed optic nerve and retinal ganglion cells pathology in wild-type and GFAP-IκBα-dn transgenic mice, where NF-κB is selectively inactivated in astrocytes, following induction of EAE. Results We found that, in wild-type mice, axonal demyelination in the optic nerve occurred as early as 8 days post induction of EAE, prior to the earliest signs of leukocyte infiltration (20 days post induction. On the contrary, GFAP-IκBα-dn mice were significantly protected and showed a nearly complete prevention of axonal demyelination, as well as a drastic attenuation in retinal ganglion cell death. This correlated with a decrease in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, as well as a prevention of NAD(PH oxidase subunit upregulation. Conclusions Our results provide evidence that astrocytes, not infiltrating immune cells, play a key role in the development of optic neuritis and that astrocyte-mediated neurotoxicity is dependent on activation of a transcriptional program regulated by NF-κB. Hence, interventions targeting the NF-κB transcription factor in astroglia may be of therapeutic value in the treatment of optic neuritis associated with multiple sclerosis.

  15. Channels Active in the Excitability of Nerves and Skeletal Muscles across the Neuromuscular Junction: Basic Function and Pathophysiology

    Goodman, Barbara E.

    2008-01-01

    Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the

  16. Effects of hyperpolarization-activated channel blocker ZD7288 on polar excitations of frog sciatic nerve.

    Matsuda, Yoshiki; Ang, Foong Yen; Nakajima, Kazuyuki; Kogure, Shinichi

    2008-04-01

    Previous studies have demonstrated that Ar(+) laser irradiation shows a more selective blocking effect on the generation of anode-break-excitation (AE) than on cathode-make-excitation (CE), and that the effects of laser irradiation closely resemble those following the application of hyperpolarization-activated current (Ih) blocker, ZD7288. We therefore examined the effects of ZD7288 and tetrodotoxin (TTX) on polar excitations to reveal whether such a selective effect of ZD7288 on AE is specific in frog sciatic nerve. Supramaximal stimuli (10-ms pulse) were applied while for 30 min each channel blocker was applied to the stimulating sites. Analyses of chronological changes in polar excitations were performed using CEs induced by positive stimuli and AEs induced by negative stimuli, because both were generated on the same stimulating grid against the recording grids. TTX application (1 mM) decreased all types of polar excitations at 30 min after initiation of the application. When ZD7288 (1 mM) was applied, the amplitude of AE displayed a significant decrease after 30 min. When TTX or ZD7288 was applied to the middle portion between the stimulating and recording electrode grids, TTX showed the conduction block, but the latter yielded almost no effect. Western blotting analyses demonstrated expressions of the second and the third subunits of hyperpolarization-activated and cyclic-nucleotide-gated nonselective cation channels in frog sciatic nerve. Ih channels thus exist in the frog sciatic nerve, and its specific blocker, ZD7288, has the potential to selectively block the generation of AE. PMID:18284714

  17. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity.

    Mingin, Gerald C; Heppner, Thomas J; Tykocki, Nathan R; Erickson, Cuixia Shi; Vizzard, Margaret A; Nelson, Mark T

    2015-09-15

    Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms. PMID:26224686

  18. Axonal elongation through long acellular nerve segments depends on recruitment of phagocytic cells from the near-nerve environment. Electrophysiological and morphological studies in the cat

    Sørensen, J; Fugleholm, K; Moldovan, M; Schmalbruch, H; Krarup, C

    The distal nerve stump plays a central role in the regeneration of peripheral nerve but the relative importance of cellular and humoral factors is not clear. We have studied this question by freezing the tibial nerve distal to a crush lesion in cat. The importance of constituents from the near...... nerve segments (ANS) and the near-nerve environment was ascertained by breaching the silicone cuff to allow access of cellular or humoral components. Tibial nerves were crushed and frozen for 40 mm and enclosed in nerve cuffs with 0.45-microm holes or 2.0-mm holes to allow access of humoral factors or...

  19. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve

    Hiroyuki Tanaka

    2015-08-01

    Full Text Available Schwann cells (SCs are constituents of the peripheral nervous system. The differentiation of SCs in injured peripheral nerves is critical for regeneration after injury. Methylcobalamin (MeCbl is a vitamin B12 analog that is necessary for the maintenance of the peripheral nervous system. In this study, we estimated the effect of MeCbl on SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC coculture system, myelination was promoted by MeCbl. In a focal demyelination rat model, MeCbl promoted remyelination and motor and sensory functional regeneration. MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat demyelination model and may be a novel therapy for several types of nervous disorders.

  20. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  1. Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning

    Raven Mary A

    2008-07-01

    Full Text Available Abstract Background Multiple technologies have been brought to bear on understanding the three-dimensional morphology of individual neurons and glia within the brain, but little progress has been made on understanding the rules controlling cellular patterning. We describe new matlab-based software tools, now available to the scientific community, permitting the calculation of spatial statistics associated with 3D point patterns. The analyses are largely derived from the Delaunay tessellation of the field, including the nearest neighbor and Voronoi domain analyses, and from the spatial autocorrelogram. Results Our tools enable the analysis of the spatial relationship between neurons within the central nervous system in 3D, and permit the modeling of these fields based on lattice-like simulations, and on simulations of minimal-distance spacing rules. Here we demonstrate the utility of our analysis methods to discriminate between two different simulated neuronal populations. Conclusion Together, these tools can be used to reveal the presence of nerve cell patterning and to model its foundation, in turn informing on the potential developmental mechanisms that govern its establishment. Furthermore, in conjunction with analyses of dendritic morphology, they can be used to determine the degree of dendritic coverage within a volume of tissue exhibited by mature nerve cells.

  2. A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells.

    Hlzel, Michael; Landsberg, Jennifer; Glodde, Nicole; Bald, Tobias; Rogava, Meri; Riesenberg, Stefanie; Becker, Albert; Jnsson, Gran; Tting, Thomas

    2016-01-15

    Human melanomas exhibit considerable genetic, pathologic, and microenvironmental heterogeneity. Genetically engineered mice have successfully been used to model the genomic aberrations contributing to melanoma pathogenesis, but their ability to recapitulate the phenotypic variability of human disease and the complex interactions with the immune system have not been addressed. Here, we report the unexpected finding that immune cell-poor pigmented and immune cell-rich amelanotic melanomas developed simultaneously in Cdk4R24C-mutant mice upon melanocyte-specific conditional activation of oncogenic BrafV600E and a single application of the carcinogen 7,12-dimethylbenz(a)anthracene. Interestingly, amelanotic melanomas showed morphologic and molecular features of malignant peripheral nerve sheath tumors (MPNST). A bioinformatic cross-species comparison using a gene expression signature of MPNST-like mouse melanomas identified a subset of human melanomas with a similar histomorphology. Furthermore, this subset of human melanomas was found to be highly associated with a mast cell gene signature, and accordingly, mouse MPNST-like melanomas were also extensively infiltrated by mast cells and expressed mast cell chemoattractants similar to human counterparts. A transplantable mouse MPNST-like melanoma cell line recapitulated mast cell recruitment in syngeneic mice, demonstrating that this cell state can directly reconstitute the histomorphologic and microenvironmental features of primary MPNST-like melanomas. Our study emphasizes the importance of reciprocal, phenotype-dependent melanoma-immune cell interactions and highlights a critical role for mast cells in a subset of melanomas. Moreover, our BrafV600E-Cdk4R24C model represents an attractive system for the development of therapeutic approaches that can target the heterogeneous tumor microenvironment characteristic of human melanomas. Cancer Res; 76(2); 251-63. 2015 AACR. PMID:26511633

  3. Attenuated baroreflex control of sympathetic nerve activity after cardiovascular deconditioning in rats

    Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.

    1998-01-01

    The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.

  4. Protective effect of S-allyl-L-cysteine, a garlic compound, on amyloid beta-protein-induced cell death in nerve growth factor-differentiated PC12 cells.

    Ito, Yoshihisa; Kosuge, Yasuhiro; Sakikubo, Taeko; Horie, Kayo; Ishikawa, Natsue; Obokata, Naoya; Yokoyama, Eiko; Yamashina, Kumiko; Yamamoto, Machiko; Saito, Hiroshi; Arakawa, Motoki; Ishige, Kumiko

    2003-05-01

    Aged garlic extract (AGE) contains several neuroactive compounds, including S-allyl-L-cysteine (SAC) and allixin. We characterized cell death induced by amyloid beta-protein (Abeta), 4-hydroxynonenal (HNE), tunicamycin, an endoplasmic reticulum (ER) stressor, or trophic factor deprivation, and investigated whether and how SAC could prevent this in nerve growth factor (NGF)-differentiated PC12 cells, a model of neuronal cells. Exposure of the cells to amyloid beta-protein(1-40) (Abeta(1-40)) decreased the extent of [3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction activity and loss of neuronal integrity, but these effects were not prevented by Ac-DEVD-CHO, a caspase-3 inhibitor. Simultaneously applied SAC protected the cells against Abeta-induced cell death in a concentration-dependent manner. It also protected them against tunicamycin-induced neuronal death. In contrast, it afforded no protection against cell death induced by HNE and trophic factor deprivation, which is mediated by a caspase-3-dependent pathway. These results suggest that SAC may selectively protect cell death induced by Abeta and tunicamycin, which may be triggered by ER dysfunction in NGF-differentiated PC12 cells. PMID:12725918

  5. Local cutaneous nerve terminal and mast cell responses to manual acupuncture in acupoint LI4 area of the rats.

    Wu, Mei-Ling; Xu, Dong-Sheng; Bai, Wan-Zhu; Cui, Jing-Jing; Shu, Hong-Ming; He, Wei; Wang, Xiao-Yu; Shi, Hong; Su, Yang-Shuai; Hu, Ling; Zhu, Bing; Jing, Xiang-Hong

    2015-10-01

    Previous studies have shown that the effects of manual acupuncture (MA) are contributed by collagen fibers and mast cells in local acupoints, at which acupuncture stimulation causes various afferent fiber groups to be excited. However what happens in local nerve fibers and mast cells after MA remains unclear. The aim of this study was to examine the response of cutaneous nerve fibers and mast cells to MA stimulation in acupoint Hegu (LI4). The contralateral LI4 of the same rat was used as a non-stimulated control. Immnohistochemistry analysis were carried out to observe the expression of histamine (HA), serotonin (5-HT) and nociceptive neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), in the LI4 area. Mast cells were labeled with anti-mast cell tryptase antibody and simultaneously with HA or 5-HT primary antibodies to observe their co-expression. Our results showed that SP and CGRP were expressed more highly on the cutaneous nerve fibers of LI4 after MA stimulation than that of the control. Mast cells aggregated in close proximity to the blood vessels in intra-epidermis and dermis and some of them with degranulation in the lower dermis and subcutaneous tissue of LI4. Both mast cells and their granules appeared with HA (+) and 5-HT (+) expression at stimulated L14 sites, while a few intact mast cells with a little expression of 5-HT and HA were distributed in areas of non-stimulated L14. The results indicated that local cutaneous nerve terminals and mast cells responded to MA with higher expression of SP and CGRP in nerve fibers, as well as with aggregation and degranulation of mast cells with HA and 5-HT granules at acupoint LI4. These neuroactive substances may convey signals to certain pathways that contribute to the effects of acupuncture. PMID:26148746

  6. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment

    KEILHOFF, GERBURG; LUCAS, BENJAMIN; UHDE, KATJA; FANSA, HISHAM

    2016-01-01

    The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline. PMID:27168790

  7. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  8. Nerve regeneration in chitosan conduits and in autologous nerve grafts in healthy and in type2 diabetic Goto-Kakizaki rats.

    Stenberg, Lena; Kodama, Akira; Lindwall-Blom, Charlotta; Dahlin, Lars B

    2016-02-01

    Knowledge about nerve regeneration after nerve injury and reconstruction in appropriate diabetic animal models is incomplete. Short-term nerve regeneration after reconstruction of a 10-mm sciatic nerve defect with either a hollow chitosan conduit or an autologous nerve graft was investigated in healthy Wistar and diabetic Goto-Kakizaki (GK) rats. After 21days, axonal outgrowth, the presence of activated and apoptotic Schwann cells and the thickness of the formed matrix in the conduits were measured. In general, nerve regeneration was superior in autologous nerve grafts. In chitosan conduits, a matrix, which was thicker in diabetic rats, was formed and was positively correlated with length of axonal outgrowth. Axonal outgrowth in conduits and in nerve grafts extended further in diabetic rats than in healthy rats. There was a higher percentage of activating transcription factor3 (ATF3)-immunostained cells in nerve segments from healthy rats than in diabetic rats after autologous nerve graft reconstruction. In chitosan conduits, more cleaved caspase 3-stained Schwann cells were generally observed in the matrix from the diabetic rats than in healthy rats. However, there were fewer apoptotic cells in the distal segment in diabetic rats reconstructed with a chitosan conduit. Preoperative glucose levels were positively correlated with axonal outgrowth after both reconstruction methods. Axonal regeneration was better in autologous nerve grafts than in hollow chitosan conduits and was enhanced in diabetic GK rats compared to healthy rats after reconstruction. This study provides insights into the nerve regeneration process in a clinically relevant diabetic animal model. PMID:26355640

  9. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  10. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft axonal regeneration compared with autografts (n = 6). At 6 weeks, axonal regeneration was observed in the midconduit region of all five channels in each experimental animal. The cross-sectional area comprising axons relative to the open conduit cross sectional area (mean 26.3%, SD 10. 1%) compared favorably with autografts (mean 23.8%, SD 3.6%). Our methodology can be used to create polymer foam conduits containing longitudinally aligned channels, to introduce Schwann cells into them, and to implant them into surgically created neural defects. These conduits provide an environment permissive to axonal regeneration. Furthermore, this polymer foam-processing method and unique channeled architecture allows the introduction of neurotrophic factors into the conduit in a controlled fashion. Deposition of different factors into distinct regions within the conduit may be possible to promote more precisely guided neural regeneration. PMID:10941207

  11. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; Iida, Masahiro; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2-8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks. PMID:26372044

  12. Giant cell arteritis mimicking infiltrative leptomeningeal disease of the optic nerves.

    Kornberg, Michael D; Ratchford, John N; Subramaniam, Rathan M; Probasco, John C

    2015-01-01

    A 67-year-old man presented with several days of progressive, painless left eye vision loss. He reported mild jaw claudication but denied headache, scalp tenderness or constitutional symptoms. Examination revealed palpable temporal arteries, blurring of the left optic disc, and 20/100 vision in the left eye with mild relative afferent pupillary defect. Inflammatory markers were sent, and methylprednisolone was initiated for presumptive giant cell arteritis (GCA). Erythrocyte sedimentation rate was normal, however, and C reactive protein was only mildly elevated, prompting further investigation. Orbital MRI revealed nodular enhancement of the optic nerve sheaths bilaterally from optic nerve head to chiasm, raising concern for an infiltrative leptomeningeal process such as sarcoidosis or lymphoma. Methylprednisolone was temporarily stopped while a broad work up for inflammatory and neoplastic causes was pursued. Fluorodeoxyglucose-positron emission tomography ultimately revealed hypermetabolism in the temporal, ophthalmic and occipital arteries suggesting GCA, which was confirmed by temporal artery biopsy. Steroids were restarted, and the patient's vision stabilised. PMID:25858943

  13. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush.

    Sharma, T P; Liu, Y; Wordinger, R J; Pang, I-H; Clark, A F

    2015-01-01

    Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6-7, Pdpc) (n=6, Pprotein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5-8, Pprotein 43 (Gap43; 36%, n=3, Pdpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5-6, P<0.05) expression was observed within the optic nerves of the AAV2-hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases. PMID:25719245

  14. Evoked bioelectrical activity of efferent fibers of the sciatic nerve of white rats in experimental menopause

    Rodinsky A.G.

    2016-03-01

    Full Text Available The aim of our work was analysis of the bioelectrical activity of efferent fibers of the sciatic nerve in experimental menopause condition. Experiments were performed on 25 female white rats, divided into experimental and control groups. Menopause was modeled by total ovariohysterectomy. In 120 days after modeling we had recorded evoked action potentials of fibers of isolated ventral root L5 induced by stimulation of sciatic nerve with rectangular pulses. Threshold, chronaxia, latency, amplitude and duration of the action potential (AP were analysed. Refractory phenomenon was investigated by applying paired stimuli at intervals of 2 to 20 ms. In the context of long-term hypoestrogenemy threshold of AP appearance was 55,32±7,69%, chronaxy – 115,09±2,67%, latent period – 112,62±1,74% as compared with the control animals (p<0.01. In conditions of paired stimuli applying the amplitude of response to the testing stimulus in animals with ovariohysterectomy at intervals 3 and 4 ms was 61,25±36,45% and 53,48±18,64% (p<0.05 respectively.

  15. Hypoglossal nerve paralysis results in hypermetabolic activity on positron emission tomography/computed tomography in the contralateral tongue.

    Timbang, Mary R; Trosman, Samuel J; Lorenz, Robert R

    2015-06-01

    False-positive results on combined positron emission tomography/computed tomography can complicate detection and surveillance of head and neck cancers. We present a rare case of false-positive contralateral [18F]-2-fluoro-2-deoxy-D-glucose tongue uptake after hypoglossal nerve paralysis caused by squamous cell carcinoma originating from the base of the tongue. PMID:25825133

  16. Leptin into the rostral ventral lateral medulla (RVLM augments renal sympathetic nerve activity and blood pressure

    MariaJBarnes

    2014-08-01

    Full Text Available Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb. Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3µg; 40nL into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP and renal sympathetic nerve activity (RSNA. When the 3µg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1ng, it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin’s actions within the RVLM may influence blood pressure and renal sympathetic nerve activity.

  17. Release of chemical transmitters from cell bodies and dendrites of nerve cells

    De-Miguel, Francisco F.; Nicholls, John G.

    2015-01-01

    Papers in this issue concern extrasynaptic transmission, namely release of signalling molecules by exocytosis or diffusion from neuronal cell bodies, dendrites, axons and glia. Problems discussed concern the molecules, their secretion and importance for normal function and disease. Molecules secreted extrasynaptically include transmitters, peptides, hormones and nitric oxide. For extrasynaptic secretion, trains of action potentials are required, and the time course of release is slower than at synapses. Questions arise concerning the mechanism of extrasynaptic secretion: how does it differ from the release observed at synaptic terminals and gland cells? What kinds of vesicles take part? Is release accomplished through calcium entry, SNAP and SNARE proteins? A clear difference is in the role of molecules released synaptically and extrasynaptically. After extrasynaptic release, molecules reach distant as well as nearby cells, and thereby produce long-lasting changes over large volumes of brain. Such changes can affect circuits for motor performance and mood states. An example with clinical relevance is dyskinesia of patients treated with l-DOPA for Parkinson's disease. Extrasynaptically released transmitters also evoke responses in glial cells, which in turn release molecules that cause local vasodilatation and enhanced circulation in regions of the brain that are active. PMID:26009760

  18. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.

    Tamaki, Tetsuro; Okada, Yoshinori; Uchiyama, Yoshiyasu; Tono, Kayoko; Masuda, Maki; Wada, Mika; Hoshi, Akio; Akatsuka, Akira

    2007-10-01

    In order to establish the practical isolation and usage of skeletal muscle-derived stem cells (MDSCs), we determined reconstitution capacity of CD34(-)/CD45(-) (Sk-DN) cells as a candidate somatic stem cell source for transplantation. Sk-DN cells were enzymatically isolated from GFP transgenic mice (C57/BL6N) skeletal muscle and sorted using fluorescence activated cell sorting (FACS), and expanded by collagen gel-based cell culture with bFGF and EGF. The number of Sk-DN cells was small after sorting (2-8 x 10(4)); however, the number increased 10-20 fold (2-16 x 10(5)) after 6 days of expansion culture, and the cells maintained immature state and multipotency, expressing mRNAs for mesodermal and ectodermal cell lineages. Transplantation of expanded Sk-DN cells into the severe muscle damage model (C57/BL6N wild-type) resulted in the synchronized reconstitution of blood vessels, peripheral nerves and muscle fibers following significant recovery of total muscle mass (57%) and contractile function (55%), whereas the non-cell-transplanted control group showed around 20% recovery in both factors. These reconstitution capacities were supported by the intrinsic plasticity of Sk-DN cells that can differentiate into muscular (skeletal muscle), vascular (pericyte, endothelial cell and smooth muscle) and peripheral nerve (Schwann cells and perineurium) cell lineages that was revealed by transplantation to non-muscle tissue (beneath renal capsule) and fluorescence in situ hybridization (FISH) analysis. PMID:17762938

  19. Regulation of protein kinase activities in PC12 pheochromocytoma cells.

    Blenis, J; Erikson, R. L.

    1986-01-01

    Stimulation of serine protein kinase activity (referred to as S6 kinase) occurs within minutes of addition of nerve growth factor (NGF) to PC12 rat pheochromocytoma cells. This enzyme activity is not related to the cAMP-dependent protein kinase (protein kinase A) or the Ca2+- and phospholipid-dependent protein kinase (protein kinase C), two other protein kinases potentially involved in signal transduction. Two peaks of NGF-stimulated S6 phosphotransferase activity are observed upon ion exchan...

  20. Transcriptional startpoints and methylation patterns in the PMP22 promoters of peripheral nerve, leukocytes and tumor cell lines.

    Huehne, K; Rautenstrauss, B

    2001-06-01

    PMP22 is a dosage sensitive gene responsible for Charcot-Marie-Tooth type 1A (CMT1A) neuropathy and hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is expressed in myelinating Schwann cells in the peripheral nerve, but also in a variety of other tissues. PMP22 expression is regulated by alternatively used promoters, the relative expression of the different PMP22 transcripts is tissue-specific. At first we analysed the transcriptional startpoints of the different PMP22 transcripts. Transcript 1A starts from a distinct nucleotide, whereas transcript 1B and the here described transcript 1C revealed multiple transcriptional startpoints in sciatic nerve as well as in the osteosarcoma and glioblastoma cell lines, RH30 and SF763. Using promoter specific primers we identified transcripts from each of the three promoters in sciatic nerve and RH30, whereas transcript 1B is absent in SF763. Leukocytes do not express PMP22 at all. Additionally, we determined the methylation pattern of CpG islands present in the PMP22 promoters 1B and 1C for leukocytes, sciatic nerve, SF763 and RH30, the latter carrying multiple copies of the PMP22 gene. We observed that there was no methylation in promoter 1B and 1C in sciatic nerve and leukocytes. However, hypermethylation of promoter 1B was discovered in SF763 and indicates a silencing effect. In RH30 most copies of promoters 1B and 1C were methylated but the few remaining hypomethylated copies were sufficient for strong expression of PMP22. These results indicate that the transcriptional control in tumor cell lines is probably different from leukocytes and sciatic nerve. PMID:11351283

  1. Effects of acrylamide on subcellular distribution of elements in rat sciatic nerve myelinated axons and Schwann cells.

    LoPachin, R M; Castiglia, C M; Lehning, E; Saubermann, A J

    1993-04-16

    Electron probe X-ray microanalysis was used to determine whether experimental acrylamide (ACR) neuropathy involves deregulation of subcellular elements (Na, P, S, Cl, K, Ca and Mg) and water in Schwann cells and small, medium and large diameter myelinated axons of rat sciatic nerve. Results show that in proximal but not distal sciatic nerve, ACR treatment (2.8 mM in drinking water) was associated with an early (15 days of exposure), moderate increase in mean axoplasmic K concentrations (mmol/kg) of medium and small diameter fibers. However, all axons in proximal and distal nerve regions displayed small increases in dry and wet weight contents of axoplasmic Na and P. As ACR treatment progressed (up to 60 days of exposure), Na and P changes persisted whereas proximal axonal K levels returned to control values or below. Alterations in mitochondrial elemental content paralleled those occurring in axoplasm. Schwann cells in distal sciatic nerve exhibited a progressive loss of K, Mg and P and an increase in Na, Cl and Ca. Proximal glia displayed less extensive elemental modifications. Elemental changes observed in axons are not typical of those associated with cell injury and might reflect compensatory or secondary responses. In contrast, distal Schwann cell alterations are consistent with injury, but whether these changes represent primary or secondary mechanisms remains to be determined. PMID:8495358

  2. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central

  3. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    Tiradentes, R.V. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Pires, J.G.P. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Silva, N.F. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Ramage, A.G. [Department of Neuroscience, Physiology and Pharmacology, University College London, London (United Kingdom); Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Futuro, H.A. Neto [Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil)

    2014-05-30

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central.

  4. Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans

    ivkovi? Vladimir

    2008-01-01

    Full Text Available Background/Aim. Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC (postganglionic sympathetic cell bodies of superior cervical ganglion in humans during ageing. Methods. We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive sections 5 ?m thick were made and stained with hematoxylin and eosin method (HE, silver impregnation technique by Masson Fontana and trichrome stain by Florantin. Results. Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent, unipolar type (lipofuscin granules were grouped at the end of the cell, bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell, annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one. Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells completely filled with lipofuscin, but cells without lipofuscin were also present even in the oldest persons. Conclusion. Lipofuscin is present in all periods of ageing with a different intensity of accumulation. GC without the pigment, diffusely distributed, as well as very rare cells with a unipolar type of lipofuscin distribution are characteristic for the age of 20- 60 years. In the age above 60 years, except the cells without pigment and diffuse accumulation type, there are also bipolar and annular types and forms in which cells are completely filled with lipofuscin granules.

  5. Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells

    Ulloth, Joel E.; Casiano, Carlos A; De Leon, Marino

    2003-01-01

    Apoptotic cell death has been proposed to play a role in the neuronal loss observed following traumatic injury in the CNS and PNS. The present study uses an in vitro tissue culture model to investigate whether free fatty acids (FFAs), at concentrations comparable to those found following traumatic brain injury, trigger cell death. Nerve growth factor (NGF)-differentiated PC12 cells exposed to oleic and arachidonic acids (2 : 1 ratio FFA/BSA) showed normal cell survival. However, when cells we...

  6. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  7. Effect of Atorvastatin vs. Rosuvastatin on cardiac sympathetic nerve activity in non-diabetic patients with dilated cardiomyopathy

    Effects of statin therapy on cardiac sympathetic nerve activity in patients with chronic heart failure (CHF) have not previously been evaluated. To compare the effects of lipophilic atorvastatin and hydrophilic rosuvastatin on cardiac sympathetic nerve activity in CHF patients with dilated cardiomyopathy (DCM), 63 stable outpatients with DCM, who were already receiving standard therapy for CHF, were randomized to atorvastatin (n=32) or rosuvastatin (n=31). We evaluated cardiac sympathetic nerve activity by cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and after 6 months of treatment. There were no differences in the baseline characteristics of the 2 groups. In the rosuvastatin group, there were no changes in MIBG parameters, left ventricular ejection fraction or plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) after 6 months of treatment. In contrast, the atorvastatin group showed a significant increase in the delayed heart/mediastinum count ratio (2.18±0.4 vs. 2.36±0.4, P<0.0001), and the washout rate was significantly decreased (34.8±5.7 vs. 32.6±6.3%, P=0.0001) after 6 months of treatment compared with the baseline values. The plasma NT-proBNP level was also significantly decreased (729±858 vs. 558±747 pg/ml, P=0.0139). Lipophilic atorvastatin but not hydrophilic rosuvastatin improves cardiac sympathetic nerve activity in CHF patients with DCM. (author)

  8. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity.

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-12-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC. PMID:26834354

  9. Studies on the effects of gamma-irradiation on the histochemistry of mammalian nerve cells

    The effects of gamma-irradiation on the histochemical and cellular constituents of the cerebellar and spinal cord nerve cells have been studied in order to elucidate the harmful effects of radiation on man and his environment to take the necessary precautions against it. Fragmentation, dissolution and almost disappearance of nissl bodies or tigrolysis in general had occurred after exposure to the high dose level of gamma-irradiation in the cerebellar and spinal cord neurons. Disturbance in RNA inclusions of cells has also been observed following gamma-irradiation. As it was noticed in case of nissl bodies, the effects on the RNA containing particles were more drastic in the neurons of cerebellum than those of the spinal cord. Worthy of mentioning is that same cells, especially that of the spinal cord, were not always affected in the same way. It was noticed that tigrolysis and inhibition of RNA which had occurred after treatment with a low dose of gamma-irradiation (4 and 6 Gy) were recovered within few days. This was in contrast with the high dose level of 10 Gy, in which case no recovery was attained. 28 fig

  10. Stem Cell Ophthalmology Treatment Study (SCOTS for retinal and optic nerve diseases: a preliminary report

    Jeffrey N Weiss

    2015-01-01

    Full Text Available In this report, we present the results of a single patient with optic neuropathy treated within the Stem Cell Ophthalmology Treatment Study (SCOTS. SCOTS is an Institutional Review Board approved clinical trial and is the largest ophthalmology stem cell study registered at the National Institutes of Health to date- www.clinicaltrials.gov Identifier NCT 01920867. SCOTS utilizes autologous bone marrow-derived stem cells in the treatment of optic nerve and retinal diseases. Pre- and post-treatment comprehensive eye exams were independently performed at the Wilmer Eye Institute at the Johns Hopkins Hospital, USA. A 27 year old female patient had lost vision approximately 5 years prior to enrollment in SCOTS. Pre-treatment best-corrected visual acuity at the Wilmer Eye Institute was 20/800 Right Eye (OD and 20/4,000 Left Eye (OS. Four months following treatment in SCOTS, the central visual acuity had improved to 20/100 OD and 20/40 OS.

  11. Muscle pain perception and sympathetic nerve activity to exercise during opioid modulation

    Cook, D. B.; O'Connor, P. J.; Ray, C. A.

    2000-01-01

    The purpose of this experiment was to examine the effects of the endogenous opioid system on forearm muscle pain and muscle sympathetic nerve activity (MSNA) during dynamic fatiguing exercise. Twelve college-age men (24 +/- 4 yr) performed graded (1-min stages; 30 contractions/min) handgrip to fatigue 1 h after the ingestion of either 60 mg codeine, 50 mg naltrexone, or placebo. Pain (0-10 scale) and exertion (0-10 and 6-20 scales) intensities were measured during the last 15 s of each minute of exercise and every 15 s during recovery. MSNA was measured continuously from the peroneal nerve in the left leg. Pain threshold occurred earlier [1.8 +/- 1, 2. 2 +/- 1, 2.2 +/- 1 J: codeine, naltrexone, and placebo, respectively] and was associated with a lower rating of perceived exertion (RPE) (2.7 +/- 2, 3.6 +/- 2, 3.8 +/- 2: codeine, naltrexone, and placebo, respectively) in the codeine condition compared with either the naltrexone or placebo conditions. There were no main effects (i.e., drugs) or interaction (i.e., drugs x time) for either forearm muscle pain or RPE during exercise [pain: F (2, 22) = 0.69, P = 0.51]. There was no effect of drug on MSNA, heart rate, or blood pressure during baseline, exercise, or recovery. Peak exercise MSNA responses were 21 +/- 1, 21 +/- 2.0, and 21 +/- 2.0 bursts/30 s for codeine, naltrexone, and placebo conditions, respectively. Peak mean arterial pressure responses were 135 +/- 4, 131 +/- 3, and 132 +/- 4 mmHg for codeine, naltrexone, and placebo conditions, respectively. It is concluded that neither 60 mg codeine nor 50 mg naltrexone has an effect on forearm muscle pain, exertion, or MSNA during high- intensity handgrip to fatigue.

  12. Arousal elicits exaggerated inhibition of sympathetic nerve activity in phobic syncope patients.

    Donadio, Vincenzo; Liguori, Rocco; Elam, Mikael; Karlsson, Tomas; Montagna, Pasquale; Cortelli, Pietro; Baruzzi, Agostino; Wallin, B Gunnar

    2007-06-01

    Alerting stimuli causing arousal have been shown to elicit a reproducible transient inhibition of muscle sympathetic nerve activity (MSNA) in healthy subjects. The aim of the present study was to test whether this inhibitory response to arousal is exaggerated in patients with a history of vasovagal syncope. We studied 24 untreated syncope patients, 12 of whom met the DSM-IV-TR diagnostic criteria for blood/injury phobia and 18 age-matched healthy subjects. MSNA was recorded from the peroneal nerve at the fibular head. Arousal was induced by randomly presented trains of five electrical pulses delivered to a finger. The pulses were triggered on five consecutive R waves of the ECG, with a delay of 200 ms. Patients also underwent cardiological and neurological examinations, tilt test and a structured interview to investigate diagnostic criteria for specific phobia. The syncope patients had significantly lower resting MSNA (29 +/- 2 bursts/min) and diastolic blood pressure (BP, 78 +/- 2 mmHg) compared to controls (36 +/- 2 bursts/min and 84 +/- 3 mmHg; P < 0.05), whereas no significant differences were found for resting heart rate and systolic BP. The phobic patient group exhibited prolonged sympathetic inhibitions to arousal stimuli compared to controls and non-phobic patients, whereas no difference was found between tilt-positive and tilt-negative patients or between controls and non-phobic patients. The findings suggest that the degree of inhibition in response to arousal stimuli is related to a subjective factor coupled to fear of blood/injury. The exaggerated inhibition in patients with phobia to blood/injury may be a factor predisposing to syncope in those patients. PMID:17395613

  13. Leptin Receptor Signaling in the Hypothalamus Regulates Hepatic Autonomic Nerve Activity via Phosphatidylinositol 3-Kinase and AMP-Activated Protein Kinase

    Yamamoto, Naoki; Morgan, Donald A.; Kurata, Yasutaka; Shibamoto, Toshishige

    2015-01-01

    Leptin action in the brain has emerged as an important regulator of liver function independently from its effects on food intake and body weight. The autonomic nervous system plays a key role in the regulation of physiological processes by leptin. Here, we used direct recording of nerve activity from sympathetic or vagal nerves subserving the liver to investigate how brain action of leptin controls hepatic autonomic nerve activity. Intracerebroventricular (ICV) administration of leptin activated hepatic sympathetic traffic in rats and mice in dose- and receptor-dependent manners. The hepatic sympatho-excitatory effects of leptin were also observed when leptin was microinjected directly into the arcuate nucleus (ARC), but not into the ventromedial hypothalamus (VMH). Moreover, using pharmacological and genetic approaches, we show that leptin-induced increase in hepatic sympathetic outflow depends on PI3K but not AMP-activated protein kinase (AMPK), STAT3, or ERK1/2. Interestingly, ICV leptin also increased hepatic vagal nerve activity in rats. We show that this response is reproduced by intra-ARC, but not intra-VMH, leptin administration and requires PI3K and AMPK. We conclude that central leptin signaling conveys the information to the liver through the sympathetic and parasympathetic branches of the autonomic nervous system. Our data also provide important insight into the molecular events underlying leptin's control of hepatic autonomic nerve activity by implicating PI3K and AMPK pathways. PMID:25589743

  14. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor

    Kumi Kimura; Mamoru Tanida; Naoto Nagata; Yuka Inaba; Hitoshi Watanabe; Mayumi Nagashimada; Tsuguhito Ota; Shun-ichiro Asahara; Yoshiaki Kido; Michihiro Matsumoto; Koji Toshinai; Masamitsu Nakazato; Toshishige Shibamoto; Shuichi Kaneko; Masato Kasuga

    2016-01-01

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action ac...

  15. Stereology and ultrastructure of chronic phase axonal and cell soma pathology in stretch-injured central nerve fibers.

    Mohammed Sulaiman, Ahmed; Denman, Nicola; Buchanan, Shaun; Porter, Nicola; Vijay, Sauparnika; Vesi, Sauparnika; Sharpe, Rachel; Graham, David I; Maxwell, William L

    2011-03-01

    Magnetic resonance imaging (MRI) suggests that with survival after human traumatic brain injury (TBI), there is ongoing loss of white and grey matter from the injured brain during the chronic phase. However; direct quantitative experimental evidence in support of this observation is lacking. Using the guinea pig stretch-injury optic nerve model, quantitative evidence by stereology of damage to the optic nerve and retina was sought. Stretch injury was applied to the right optic nerve of 15 adult male guinea pigs. Three animals each at 1, 2, 3, 8, or 12 weeks' survival were killed and prepared for transmission electron microscopy (TEM). The estimated number of intact and injured axons within bins of transverse diameters 0-0.5, 0.51-1.0, 1.01-1.5, 1.51-2.0, 2.01-2.5, and 2.51-3.0??m in the middle segment of each injured optic nerve and from 5 control animals were compared across all survival time points. The estimated numbers of intact and pyknotic retinal ganglion cells from the same animals were also compared. Loss of myelinated fibers continued throughout the experimental period. The most rapid loss was of the largest fibers; loss of intermediate-sized fibers continued, but the numbers of the smallest fibers increased from 3 weeks onward. There was hypertrophy and proliferation of glial cells within the surrounding neuropil. A relatively low-grade loss of retinal ganglion cells occurred throughout the experiment, with about 60% remaining at 12 weeks' survival. We provide quantitative evidence that after traumatic axonal injury (TAI) there is a continuing loss of nerve fibers and their cell bodies from a CNS tract over a 3-month post-traumatic interval. PMID:21190396

  16. Active skin perfusion and thermoregulatory response in the hand following nerve injury and repair in human upper extremities.

    Deng, Aidong; Liu, Dan; Gu, Chen; Gu, Xiaosong; Gu, Jianhui; Hu, Wen

    2016-01-01

    Cutaneous vasoconstriction/vasodilatation occurs in response to whole body and local cooling/heating, and the vasomotor activities play a pivotal role in thermal control of the human body. The mechanisms underlying regulation of skin blood flow involve both neurogenic and humeral/local chemical influence, contributing to the initial response to thermal stimuli and the prolonged phase of response, respectively. Previous studies have suggested the impairment of cutaneous thermal regulation after nerve injury. However, the evidence regarding how the skin perfusion and thermoregulatory response evolve after nerve injury and repair remains limited. Here we observed, by utilizing laser-Doppler perfusion imaging, baseline skin perfusion and perfusion change in response to thermal stimuli after median and ulnar nerve injury, and the results showed that baseline perfusion in autonomous skin area profoundly decreased and active rewarming after clod stress dramatically diminished before sensory recovery of the skin became detectable. In addition, baseline cutaneous perfusion was recovered as the skin regained touch sensation, and exhibited positive correlation to touch sensibility of the skin. These data indicate that both active perfusion and thermoregulatory response of the skin are markedly compromised during skin denervation and can be recovered by re-innervation. This suggests the importance of timely repair of injured nerve, especially in the practice of replantation. PMID:26529641

  17. Cell Proliferation and Interleukin-6–Type Cytokine Signaling Are Implicated by Gene Expression Responses in Early Optic Nerve Head Injury in Rat Glaucoma

    Johnson, Elaine C; Doser, Thomas A.; Cepurna, William O.; Dyck, Jennifer A.; Jia, Lijun; Guo, Ying; Lambert, Wendi S.; Morrison, John C

    2011-01-01

    Although the optic nerve head is the likely site of axonal injury in glaucoma, little is known about the initial cellular responses to elevated intraocular pressure exposure. The authors used microarray analysis and their rat glaucoma model to identify cell proliferation and potential interleukin-6 type cytokine signaling as important early nerve head responses.

  18. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. PMID:26897537

  19. Malignant peripheral nerve cell sheath tumour of the upper lip: a rare case

    Joseph Ward

    2010-07-01

    Full Text Available We present the case of a malignant peripheral nerve sheath tumour (MPNST that developed on the upper lip of an 86 year old woman. MPNSTs are highly aggressive sarcomas that very rarely occur in the face. We know of no other reported cases of a malignant peripheral nerve sheath tumour arising from the upper lip.

  20. Stimulation of a Ca(2+)-dependent protein kinase by GM1 ganglioside in nerve growth factor-treated PC12 cells.

    Hilbush, B S; Levine, J.M.

    1991-01-01

    We have investigated the ability of exogenous gangliosides to modulate nerve growth factor (NGF) signal transduction in PC12 cells. The effects of exogenous ganglioside GM1 on multiple protein kinase activities were assayed by analyzing site-specific serine phosphorylation of tyrosine hydroxylase (TyrOHase) by two-dimensional phosphopeptide mapping. In the presence of NGF, exogenous GM1 (1-10 microM) increased 32P incorporation into TyrOHase phosphopeptide T2, a Ca2+/calmodulin-dependent prot...

  1. Role of bone marrow derived pluripotent stem cells in peripheral nerve repair in adult rats: A morphometric evaluation

    Nilesh S Kurwale

    2015-01-01

    Full Text Available Objectives: Semi-quantitative and quantitative assessment of the effect of bone marrow-derived mononuclear cells (BM-MNC on early and late phase of nerve regeneration in rat sciatic nerve model. Materials and Methods: Sciatic nerve transection and repair was performed in 50 inbred female Wistar albino rats divided equally in two groups. In the test group the gap was filled with BM-MNCs obtained from the two male rats and fibrin sealant, while in the control group only fibrin sealant was used. Sciatic nerve was harvested at 15 days and at 60 days interval. Parameters of regeneration were assessed at anastomosis (G, intermediate distal (C, and distal site (A. Semi-quantitative (histopathological and quantitative (morphometric parameters were analyzed. Results: At 15 days there was a statistically significant difference found in mean axon diameter, mean nerve thickness and myelin thickness at the repair site (P < 0.05. However, in the distal areas, the axons were sparse and myelin rings were very thin in both the groups. At 60 days, the difference in above-mentioned parameters was statistically significant at the distal most sites. FISH assay confirmed the presence of Y chromosome, confirming the presence of BM-MNCs from the male rats. Conclusions: Transplanting BM-MNC S at the site of peripheral nerve injury leads to significantly better recovery. These differences were evident at the repair site and at the intermediate distal site at 15 days and at the distal most sites at 60 days. With practically no ethical issue regarding their isolation and application, they can be easily used for clinical trials.

  2. The Impact of Motor and Sensory Nerve Architecture on Nerve Regeneration

    MORADZADEH, ARASH; Borschel, Gregory H.; Luciano, Janina P.; Whitlock, Elizabeth L.; Hayashi, Ayato; Hunter, Daniel A.; Mackinnon, Susan E.

    2008-01-01

    Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve’s Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to cross a nerve graft repair. Architecture may partially explain the suboptimal clinical results seen with sensory nerve grafting techniques. ...

  3. [Sciatic nerve intraneural perineurioma].

    Bonhomme, Benjamin; Poussange, Nicolas; Le Collen, Philippe; Fabre, Thierry; Vital, Anne; Lepreux, Sbastien

    2015-12-01

    Intraneural perineurioma is a benign tumor developed from the perineurium and responsible for localized nerve hypertrophy. This uncommon tumor is characterized by a proliferation of perineural cells with a "pseudo-onion bulb" pattern. We report a sciatic nerve intraneural perineurioma in a 39-year-old patient. PMID:26586011

  4. A quantitative histological study of cell division and changes in cell number in the meningeal sheath of the embryonic human optic nerve.

    Sturrock, R R

    1987-01-01

    Mitotic cells are present in all layers of the meninges of the human optic nerve between 8 and 18 weeks post-conception. The number of meningeal cells per section remains constant between 8 and 12 weeks before rising rapidly from 234 at 12 weeks to 747 at 18 weeks. The mitotic index is only 0.17% at 8 weeks but rises to 1.02% at 10 weeks before falling gradually to 0.29% at 18 weeks. A comparison of the results of this study with a previous one on gliogenesis in the same nerves (Sturrock, 197...

  5. Methylglyoxal, the foe and friend of glyoxalase and Trx/TrxR systems in HT22 nerve cells.

    Dafre, A L; Goldberg, J; Wang, T; Spiegel, D A; Maher, P

    2015-12-01

    Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc(-), which is also controlled by Nrf2, was also induced. The increased cystine import (system xc(-)) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3mM), GLO2 is strongly induced, but at high MGO (0.75mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc(-) system activity. PMID:26165190

  6. Selective suppression of sphincter activation during sacral anterior nerve root stimulation.

    Bhadra, Narendra; Grnewald, Volker; Creasey, Graham; Mortimer, J Thomas

    2002-01-01

    The purpose of this work was to electrically activate small-diameter motor fibers in the sacral anterior roots innervating the urinary bladder, without activating the large-diameter fibers to the sphincter. Quasitrapezoidal current pulses were applied through tripolar spiral nerve electrodes on selected anterior sacral roots during acute experiments on eight dogs, maintained under pentobarbital anesthesia. Pressures were recorded from the bladder and sphincter with catheter-mounted gauges. Stimulation with biphasic quasitrapezoidal pulses showed decrease in sphincter recruitment with increasing pulse amplitudes. The minimum current amplitude that resulted in maximum sphincter suppression was used to stimulate the roots with trains of 20 Hz pulses, with 60 mL of saline filling the bladder. Pressures were also recorded when 100 micros rectangular pulse trains at 20 Hz, both continuous and intermittent, were applied. Trains of stimuli were applied before and after dorsal root rhizotomy. Suppression of sphincter activation was defined to be a percentage, [(Maximum pressure -Minimum pressure)/Maximum pressure x100. The results from 22 roots in eight animals show that with single pulses, the average percentage suppression of sphincter activation was 76.3% (+/-14.0). The minimum current for maximum sphincter suppression was 1.29 mA (+/-0.62). The average bladder pressure evoked was 50 cm of water during pulse train stimulation, with no significant difference due to pulse type. With pulse trains, the sphincter pressures were significantly higher when the bladder was filled. Evacuation of fluid occurred in three animals with average flow rates of 1.0 mL/s. PMID:11835425

  7. [Plasma cell leukemia (IgG kappa) presenting bilateral neurosensory hearing loss and left sixth cranial nerve plasy].

    Aikawa, S; Morimoto, K; Kumagai, T; Saitoh, T; Tsuboi, I; Sawada, U; Horie, T

    1998-07-01

    A 30-year-old man who had been given a diagnosis of IgG-kappa multiple myeloma by another hospital and treated with melphalan, prednisone, and cyclophosphamide 6 months earlier, was admitted to our hospitaly in July 1994 because of progressively impaired hearing in both ears, vertigo, and worsening fatigue. Peripheral blood examination showed a white blood cell count 25,000/microliter, with 77.5% atypical plasma cells. Examination at the time of hospitalization also revealed retinal hemorrhages and serum hyperviscosity. The diagnosis was plasma cell leukemia with hyperviscosity syndrome. Subsequent treatment consisted of vincristine, doxorubicine, and prednisone and repeated plasmapheresis. This resulted in a partial response and a reduction of serum viscosity but no reversal of hearing loss. One month after admission, left sixth cranial nerve plasy was demonstrated. Cranial computed tomography studies disclosed a tumoral mass in the sphenoid sinus. The patient received local radiotherapy and intensive chemotherapy, but exhibited no notable alleviation of his cranial nerve palsy. He died of septicemia and progressive disease in August 1994. This case was rare in that it involved plasma cell leukemia and bilateral neurosensory hearing loss associated with serum hyperviscosity and sixth cranial nerve plasy due to plasmacytoma within the sphenoid sinus. PMID:9750458

  8. Nerves and Anesthesia: A physics perspective on medicine

    Heimburg, Thomas

    2014-01-01

    We present a recent theory for nerve pulse propagation and anesthesia and argue that both nerve activity and the action of anesthetics can be understood on the basis of simple physical laws. It was found experimentally that biological membranes melt from a solid state to a liquid state just below physiological temperature. Such melting processes have a profound influence on the physical properties of cell membranes. They make it possible for mechanical pulses (solitons) to travel along nerve axons. In these pulses, a region of solid phase travels in the liquid nerve membrane. These pulses display many properties associated with the action potential in nerves. Both general and local anesthetics lower melting temperatures of membranes. Thus, they make it more difficult to excite the nerve membrane. Since hydrostatic pressure increases melting temperatures, it counteracts anesthesia. This theory has the virtue of providing a simple explanation of the famous Meyer-Overton correlation, which states that the effect...

  9. BRAF Duplications and MAPK Pathway Activation Are Frequent in Gliomas of the Optic Nerve Proper

    Rodriguez, Fausto J.; Ligon, Azra H.; Horkayne-Szakaly, Iren; Rushing, Elisabeth J; Ligon, Keith L; Vena, Natalie; Garcia, Denise I.; Cameron, J. Douglas; Eberhart, Charles G

    2012-01-01

    Optic pathway gliomas represent a specific subtype of astrocytoma with unique clinicopathologic and biological properties but studies of tumors in the optic nerve proper have been hampered by limited tissue availability. We analyzed optic nerve gliomas of 59 patients (median age 9 years, range = 3 months to 66 years; 33 female; 26 male) using formalin-fixed paraffin embedded material in tissue microarrays. Seven patients had the clinical diagnosis of neurofibromatosis type 1 (NF1). Fluorescen...

  10. Effects of Yiqi Huayu Recipe on neural cell adhesion molecule in rats with lumbar nerve root compression

    Chong-Jian ZHOU

    2006-03-01

    Full Text Available Objective: To study the effects of Yiqi Huayu Recipe on neural cell adhesion molecule (N-CAM in neuromuscular junctions during nerve regeneration in rats with lumbar nerve root compression. Methods: The rats with lumbar nerve root compression were given Yiqi Huayu Recipe for 10, 20 and 30 days respectively. The distribution of N-CAM in neuromuscular junctions of soleus muscle in rats was examined with immunohistochemical method and confocal laser scanning microscopy technique. The acetylcholine receptor (AChR was visualized with fluorescein-conjugated ?-bungarotoxin (?-BTX. The overlap areas of N-CAM and AChR sites were measured with NIH image technique.Results: The aggregates, sprouts and extensions of N-CAM in the neuromuscular junctions and the overlap areas of N-CAM and AChR sites in the Yiqi Huayu Recipe-treated group were all better improved than those in the untreated group. Conclusion: The expression of N-CAM is regulated according to the state of innervation for muscles. Yiqi Huayu Recipe may accelerate this nerve regeneration process.

  11. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury.

    Zhao, Hao; Yang, Bao-Lin; Liu, Zeng-Xu; Yu, Qing; Zhang, Wen-Jun; Yuan, Keng; Zeng, Hui-Hong; Zhu, Gao-Chun; Liu, De-Ming; Li, Qing

    2015-08-01

    Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain. PMID:26487865

  12. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  13. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus

    Mehmet Demir

    2014-01-01

    Full Text Available Aim: The aim of the following study is to evaluate the retinal nerve fiber layer (RNFL and ganglion cell complex (GCC thickness in patients with type 2 diabetes mellitus (DM. Materials and Methods: Average, inferior, and superior values of RNFL and GCC thickness were measured in 123 patients using spectral domain optical coherence tomography. The values of participants with DM were compared to controls. Diabetic patients were collected in Groups 1, 2 and 3. Group 1 = 33 participants who had no diabetic retinopathy (DR; Group 2 = 30 participants who had mild nonproliferative DR and Group 3 = 30 participants who had moderate non-proliferative DR. The 30 healthy participants collected in Group 4. Analysis of variance test and a multiple linear regression analysis were used for statistical analysis. Results: The values of RNFL and GCC in the type 2 diabetes were thinner than controls, but this difference was not statistically significant. Conclusions: This study showed that there is a nonsignificant loss of RNFL and GCC in patients with type 2 diabetes.

  14. Cardiopulmonary baroreceptor control of muscle sympathetic nerve activity in heat-stressed humans

    Crandall, C. G.; Etzel, R. A.; Farr, D. B.

    1999-01-01

    Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7-10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 +/- 3 to 39 +/- 3 bursts/min (P 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 +/- 3 to 93 +/- 4 mmHg (P heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.

  15. Baroreflex modulation of sympathetic nerve activity to muscle in heat-stressed humans

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To identify whether whole body heating alters arterial baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA and beat-by-beat arterial blood pressure were recorded in seven healthy subjects during acute hypotensive and hypertensive stimuli in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature (P 0.05). During both normothermic and heat stress conditions, MSNA increased and then decreased significantly when blood pressure was lowered and then raised via intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure during heat stress (-128.3 +/- 13.9 U x beats(-1) x mmHg(-1)) was similar (P = 0.31) with normothermia (-140.6 +/- 21.1 U x beats(-1) x mmHg(-1)). Moreover, no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that arterial baroreflex modulation of MSNA and heart rate are not altered by whole body heating, with the exception of an upward shift of these baroreflex curves to accommodate changes in these variables that occur with whole body heating.

  16. Neuromuscular activity of Bothrops neuwiedi pauloensis snake venom in mouse nerve-muscle preparations

    A. M. Durigon

    2005-03-01

    Full Text Available The pharmacological effects of Bothrops neuwiedi pauloensis venom on mouse phrenic nerve-diaphragm (PND preparations were studied. Venom (20 mug/ml irreversibly inhibited indirectly evoked twitches in PND preparations (60 10% inhibition, mean SEM; p<0.05; n=6. At 50 mug/ml, the venom blocked indirectly and directly (curarized preparations evoked twitches in mouse hemidiaphragms. In the absence of Ca2+, venom (50 mug/ml, produced partial blockade only after an 80 min incubation, which reached 40.3 7.8% (p<0.05; n=3 after 120 min. Venom (20 mug/ml increased (25 2%, p< 0.05 the frequency of giant miniature end-plate potentials in 9 of 10 end-plates after 30 min and the number of miniature end-plate potentials which was maximum (562 3%, p<0.05 after 120 min. During the same period, the resting membrane potential decreased from - 81 1.4 mV to - 41.3 3.6 mV 24 fibers; p<0.01; n=4 in the end-plate region and from - 77.4 1.4 to -44.6 3.9 mV (24 fibers; p<0.01; n=4 in regions distant from the end-plate. These results indicate that B. n. pauloensis venom acts primarily at presynaptic sites. They also suggest that enzymatic activity may be involved in this pharmacological action.

  17. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Wright, K.T. [Keele University at the RJAH Orthopaedic Hospital, Oswestry, Shropshire (United Kingdom); Seabright, R.; Logan, A. [Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, Birmingham University, Birmingham (United Kingdom); Lilly, A.J.; Khanim, F.; Bunce, C.M. [Biosciences, Birmingham University, Birmingham (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [Life and Health Sciences, Aston University, Birmingham (United Kingdom)

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  18. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Research highlights: → Extracellular Nm23H1 stimulates nerve growth. → Extracellular Nm23H1 provides pathfinding cues to growth cones. → The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. → The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  19. A tissue-engineered bioabsorbable nerve conduit created by three-dimensional culture of induced pluripotent stem cell-derived neurospheres.

    Uemura, Takuya; Takamatsu, Kiyohito; Ikeda, Mikinori; Okada, Mitsuhiro; Kazuki, Kenichi; Ikada, Yoshito; Nakamura, Hiroaki

    2011-01-01

    We previously reported a bioabsorbable nerve conduit coated with Schwann cells for the treatment of peripheral nerve defects. Since there have been dramatic developments in induced pluripotent stem (iPS) cells in recent years, the purpose of the present study was to create a tissue-engineered nerve conduit coated with iPS cell-derived neurospheres. Such a conduit was constructed by three-dimensional (3D)-culture of these cells using a bioabsorbable polymer conduit as a scaffold. The nerve conduit was composed of a mesh of poly L-lactide, and a porous sponge of 50% poly L-lactide and 50% poly ε-caprolactone. The primary and secondary neurospheres (PNS and SNS, respectively) induced from iPS cells were suspended in individual conduits. The conduits were incubated for 7 or 14 days in vitro and then evaluated using immunohistochemistry. All of the 7- and 14-day differentiated PNS and SNS were observed to have adhered to the inner surface of the conduits and to have migrated into the inner porous sponge. The engrafted cells were positive for anti-Tuj1, -S-100 and -GFAP antibodies, indicating that their pluripotent ability to form neural or glial cells was maintained. These findings indicate the feasibility of creating nerve conduits coated with a 3D-culture of iPS cell-derived neurospheres for the treatment of peripheral nerve defects. PMID:22561252

  20. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation

    Saito, Kosuke; Tamaki, Tetsuro; Hirata, Maki; Hashimoto, Hiroyuki; Nakazato, Kenei; Nakajima, Nobuyuki; Kazuno, Akihito; Sakai, Akihiro; IIDA, MASAHIRO; Okami, Kenji

    2015-01-01

    Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The...

  1. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells

    Anna Sofia Trigos; Rafael Medina

    2015-01-01

    Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium cu...

  2. Cell Proliferation and Interleukin-6–Type Cytokine Signaling Are Implicated by Gene Expression Responses in Early Optic Nerve Head Injury in Rat Glaucoma

    Doser, Thomas A.; Cepurna, William O.; Dyck, Jennifer A.; Jia, Lijun; Guo, Ying; Lambert, Wendi S.; Morrison, John C.

    2011-01-01

    Purpose. In glaucoma, the optic nerve head (ONH) is the principal site of initial axonal injury, and elevated intraocular pressure (IOP) is the predominant risk factor. However, the initial responses of the ONH to elevated IOP are unknown. Here the authors use a rat glaucoma model to characterize ONH gene expression changes associated with early optic nerve injury. Methods. Unilateral IOP elevation was produced in rats by episcleral vein injection of hypertonic saline. ONH mRNA was extracted, and retrobulbar optic nerve cross-sections were graded for axonal degeneration. Gene expression was determined by microarray and quantitative PCR (QPCR) analysis. Significantly altered gene expression was determined by multiclass analysis and ANOVA. DAVID gene ontology determined the functional categories of significantly affected genes. Results. The Early Injury group consisted of ONH from eyes with <15% axon degeneration. By array analysis, 877 genes were significantly regulated in this group. The most significant upregulated gene categories were cell cycle, cytoskeleton, and immune system process, whereas the downregulated categories included glucose and lipid metabolism. QPCR confirmed the upregulation of cell cycle-associated genes and leukemia inhibitory factor (Lif) and revealed alterations in expression of other IL-6–type cytokines and Jak-Stat signaling pathway components, including increased expression of IL-6 (1553%). In contrast, astrocytic glial fibrillary acidic protein (Gfap) message levels were unaltered, and other astrocytic markers were significantly downregulated. Microglial activation and vascular-associated gene responses were identified. Conclusions. Cell proliferation and IL-6–type cytokine gene expression, rather than astrocyte hypertrophy, characterize early pressure-induced ONH injury. PMID:20847120

  3. Enhancement of the nerve growth factor-mediated neurite outgrowth from PC12D cells by Chinese and Paraguayan medicinal plants.

    Li, P; Matsunaga, K; Ohizumi, Y

    1999-07-01

    It is very important to search for natural compounds possessing nerve growth factor (NGF)-potentiating activity. Extracts of 7 Chinese and 10 Paraguayan medicinal plants were examined for their effects on the NGF-mediated neurite outgrowth from PC12D cells to evaluate their NGF-potentiating activities. In the methanol extracts, Gymmopteris rufa (LINN.) BERNH, Ruta graveolens LINN. and Picrorhiza scrophulariiflora PENNELL markedly increased the proportion of neurite-bearing cells. In the case of ethyl acetate fractions, Equisetum giganteum LINN. produced the most powerful enhancement of the proportion of the neurite-bearing cells, and the activities were in the following decreasing order: Equisetum giganteum LINN., Gymmopteris rufa (LINN.) BERNH, Ruta graveolens LINN., and Picrorhiza scrophulariiflora PENNELL. In the water fractions, Imperata cylindrica, Ginseng Radix, Gymmopteris rufa (LINN.) BERNH, Gochnatia polymorpha (LESS) CAB and Picrorhiza scrophulariiflora PENNELL caused a weak enhancement of the proportion of PC12D cells with neurites. Of all the extracts and fractions, the methanol extract of Picrorhiza scrophulariiflora PENNELL induced the longest neurites in PC12D cells. In the ethyl acetate and water fractions of Nardostachys chinensis, long neurites were observed although only a small proportion of PC12D cells had neurites. On the other hand, in the ethyl acetate fraction of Equisetum gigantheum LINN., while the length of the neurites was short, the proportion of neurite-bearing cells was largest among all the extracts and fractions. PMID:10443479

  4. Effects of L-carnosine on renal sympathetic nerve activity and DOCA-salt hypertension in rats.

    Niijima, Akira; Okui, Tomoko; Matsumura, Yasuo; Yamano, Toshihiko; Tsuruoka, Nobuo; Kiso, Yoshinobu; Nagai, Katsuya

    2002-05-31

    The effects of L-carnosine (beta-alanyl-L-histidine) on the neural activity of the renal sympathetic nerve and on DOCA-salt hypertension in rats were examined. Intravenous injection of 1 microg L-carnosine inhibited renal sympathetic nerve activity in urethane-anesthetized animals, and a diet containing 0.0001% or 0.001% L-carnosine decreased blood pressure elevation in DOCA-salt hypertensive rats. Since L-carnosine is mainly synthesized in the skeletal muscles of mammals, it is not unreasonable to postulate that L-carnosine is an endogenous factor controlling the blood pressure in a manner possibly antagonistic to the obesity-associated hypertensive effect of leptin. PMID:12132650

  5. C nociceptor activity in human nerve during painful and non painful skin stimulation.

    Van Hees, J; Gybels, J

    1981-07-01

    Percutaneous recordings from more than one hundred single C fibres have been performed in the radial nerve of conscious human subjects. All these fibres belong to the poly-modal C nociceptor group, being excited by mechanical and thermal and also by chemical stimulation. Conduction velocities showed a monophasic distribution with a mean value of 0.86 m/s (SD: 0.17). The mechanical threshold, measured with von Frey hairs, varied between 2.3 and 13.1 g. The receptive field was circular or elliptical; for 33 units the mean axes were 6 mm and 7 mm. Mechanically evoked C fibre discharge even up to more than 10 spikes/s was not necessarily accompanied by pain sensation. Nettle sting evoked an irregular C fibre discharge (maximum 10 spikes/s) accompanied by a pricking and burning sensation; the sensation of itch which was sometimes reported, was not correlated with the discharge frequency. C fibre activation by a chemical irritant (paint remover) also evoked an irregular discharge (maximum 3 to 6 spikes/s), accompanied by pricking and burning pain sensation. The C threshold for radiant heat usually lay below the subject's pain threshold. Increasing skin temperature produced increasing neural firing rate. The mean spike frequency rarely exceeded two spikes/s even with stimuli evoking strong heat pain. The occurrence of subjective heat pain response could be as well predicted from th C fibre spike frequency as from the skin temperature. It is concluded that nociceptive C input provoked by thermal or chemical stimuli correlates well with pain sensation. However, similar C input provided by mechanical stimulation which activates also A beta mechanoreceptors, did not necessarily produce pain sensation. PMID:7288447

  6. Arterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans

    MasashiIchinose

    2012-08-01

    Full Text Available The mechanisms by which blood pressure is maintained against the orthostatic stress caused by gravity’s effect on the fluid distribution within the body are important issues in physiology, especially in humans who usually adopt an upright posture. Peripheral vasoconstriction and increased heart rate are major cardiovascular adjustments to orthostatic stress and comprise part of the reflex response elicited via the carotid sinus and aortic baroreceptors (arterial baroreflex: ABR and cardiopulmonary stretch receptors (cardiopulmonary baroreflex. In a series of studies, we have been characterizing the ABR-mediated regulation of cardiovascular hemodynamics and muscle sympathetic nerve activity (MSNA while applying orthostatic stress in humans. We have found that under orthostatic stress, dynamic carotid baroreflex responses are modulated as exemplified by the increases in the MSNA, blood pressure and heart rate responses elicited by carotid baroreflex unloading and the shorter period of MSNA suppression, comparable reduction and faster recovery of MAP and greater heart rate response to carotid baroreflex stimulation. Our results also show that ABR-mediated beat-to-beat control over burst incidence, burst strength and total MSNA is progressively modulated as orthostatic stress is increased until induction of syncope, and that the sensitivity of ABR control over the aforementioned MSNA variables is substantially reduced during the development of syncope. We suggest that in humans, the modulation of ABR function under orthostatic stress may be one of the mechanisms by which blood pressure is maintained and orthostatic hypotension limited, and impairment of ABR control over sympathetic vasomotor activity leads to the severe hypotension associated with orthostatic syncope.

  7. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat. PMID:26098641

  8. Low Intensity Repetitive Transcranial Magnetic Stimulation Does Not Induce Cell Survival or Regeneration in a Mouse Optic Nerve Crush Model

    Tang, Alexander D.; Makowiecki, Kalina; Bartlett, Carole; Rodger, Jennifer

    2015-01-01

    Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (?-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma. PMID:25993112

  9. Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration.

    Shi, Haiyan; Gong, Yanpei; Qiang, Liang; Li, Xiaoli; Zhang, Shibo; Gao, Jiawen; Li, Kai; Ji, Ximeng; Tian, Ling; Gu, Xiaosong; Ding, Fei

    2016-05-01

    We have previously successfully enriched post-migratory neural crest cells (NCCs) from postnatal rat bone marrow (BM). These BM-NCCs possess glial and neuronal differentiating potential. Based on the neural crest origin of Schwann cells (SCs), in this study, we aimed at using a straightforward protocol to derive Schwann cell precursors (SCPs) from BM-NCCs. Several clonal subpopulations were isolated from BM-NCCs, displaying long-term proliferative capacity and maintaining the NCC identity. The BM-NCC clones could be induced to differentiate into SCs. In particular, clone N1 gave rise to a large and pure population of SCs. Clone N1-derived SCs demonstrated the myelinating capacity in their co-culture with primary dorsal root ganglion (DRG) neurons. The decreased expression of NCC-markers and increased expression of SC-markers were related to the differentiation state of clone N1-derived SCs. To investigate the repair-promoting effects of clone N1 on injured peripheral neurons in vitro and in vivo, on one hand, the oxygen glucose deprivation-injured DRG neurons were treated with clone N1-conditioned medium, improving the cell survival and axon growth of neurons; on the other hand, clone N1 or clone N1-derived SCs were respectively implanted to the crush sciatic nerve of rats, and clone N1 yielded the better outcome of nerve regeneration and function restoration than clone N1-derived SCs. Taken together, all the results collectively showed that clone N1 could be identified as SCPs, which might hold promise for cell therapy to improve peripheral nerve regeneration. PMID:26946403

  10. Effects of Yogurt Containing Lactobacillus gasseri OLL2716 on Autonomic Nerve Activities and Physiological Functions

    Kaiho Otomi; Takuji Ymaguchi; Shin Watanabe; Akiko Kobayashi; Hiroyuki Kobayashi; Naoyuki Hashiguchi

    2015-01-01

    The purpose of this study was to investigate the effects of yogurt containing Lactobacillus gasseri OLL2716 (LG21) on autonomic nerve activities, peripheral blood flow, skin condition (skin pig-mentations and moisture), saliva s-IgA and examination of quality of life (QOL). 20 healthy female volunteers (yogurt containing LG21 group: 10 people, yogurt containing Bifidobacterium (Bif) group: 10 people) were examined. The subjects ingested 100 g of yogurt twice daily for 4 weeks. Analysis was be...

  11. Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: a case report

    Alessandro Lambiase

    2009-12-01

    Full Text Available Age-related macular degeneration (ARMD is a severe disease affecting visual function in the elderly. Currently available surgical and medical options do not guarantee a significant impact on the outcome of the disease. We describe the effects of nerve growth factor eye drop treatment in a 94 years old female with ARMD, whose visual acuity was progressively worsening in spite of previous surgical and medical treatments. NGF eye drops improved visual acuity and electrofunctional parameters as early as 3 months after initiation of treatment. These results are in line with previous reports on a neuroprotective effect of NGF on retinal cells and on NGF eye drops bioavailability in the retina and optic nerve. No side effects were observed after five years of follow-up, suggesting that topical NGF treatment may be a safe and effective therapy for ARMD.

  12. Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: a case report

    Alessandro, Lambiase; Marco, Coassin; Paola, Tirassa; Flavio, Mantelli; Luigi, Aloe.

    2009-12-01

    Full Text Available Age-related macular degeneration (ARMD) is a severe disease affecting visual function in the elderly. Currently available surgical and medical options do not guarantee a significant impact on the outcome of the disease. We describe the effects of nerve growth factor eye drop treatment in a 94 years [...] old female with ARMD, whose visual acuity was progressively worsening in spite of previous surgical and medical treatments. NGF eye drops improved visual acuity and electrofunctional parameters as early as 3 months after initiation of treatment. These results are in line with previous reports on a neuroprotective effect of NGF on retinal cells and on NGF eye drops bioavailability in the retina and optic nerve. No side effects were observed after five years of follow-up, suggesting that topical NGF treatment may be a safe and effective therapy for ARMD.

  13. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally-charged images

    RachaelBrown

    2012-10-01

    Full Text Available The sympathetic innervation of the skin primarily subserves thermoregulation, but the system has also been commandeered as a means of expressing emotion. While it is known that the level of skin sympathetic nerve activity (SSNA is affected by anxiety, the majority of emotional studies have utilized the galvanic skin response as a means of inferring increases in SSNA. The purpose of the present study was to characterize the changes in SSNA when showing subjects neutral or emotionally-charged images from the International Affective Picture System. Skin sympathetic nerve activity was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in ten subjects. Neutral images, positively-charged images (erotica or negatively-charged images (mutilation were presented in blocks of fifteen images of a specific type, each block lasting two minutes. Images of erotica or mutilation were presented in a quasi-random fashion, each block following a block of neutral images. Both images of erotica or images of mutilation caused significant increases in SSNA, but the increases in SSNA were greater for mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction, however, these markers were not always consistent with the SSNA increases. We conclude that SSNA, comprising cutaneous vasoconstrictor and sudomotor activity, increases with both positively-charged and negatively-charged emotional images. Measurement of SSNA provides a more comprehensive assessment of sympathetic outflow to the skin than does the use of sweat release alone as a marker of emotional processing.

  14. Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse

    Shang Yuze

    2008-04-01

    Full Text Available Abstract Neuronal plasticity along the pathway for sensory transmission including the spinal cord and cortex plays an important role in chronic pain, including inflammatory and neuropathic pain. While recent studies indicate that microglia in the spinal cord are involved in neuropathic pain, a systematic study has not been performed in other regions of the central nervous system (CNS. In the present study, we used heterozygous Cx3cr1GFP/+mice to characterize the morphological phenotypes of microglia following common peroneal nerve (CPN ligation. We found that microglia showed a uniform distribution throughout the CNS, and peripheral nerve injury selectively activated microglia in the spinal cord dorsal horn and related ventral horn. In contrast, microglia was not activated in supraspinal regions of the CNS, including the anterior cingulate cortex (ACC, prefrontal cortex (PFC, primary and secondary somatosensory cortex (S1 and S2, insular cortex (IC, amygdala, hippocampus, periaqueductal gray (PAG and rostral ventromedial medulla (RVM. Our results provide strong evidence that nerve injury primarily activates microglia in the spinal cord of adult mice, and pain-related cortical plasticity is likely mediated by neurons.

  15. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.

    Neubauer, Heinrich; Köppl, Christine; Heil, Peter

    2009-06-01

    In vertebrate auditory systems, the conversion from graded receptor potentials across the hair-cell membrane into stochastic spike trains of the auditory nerve (AN) fibers is performed by ribbon synapses. The statistics underlying this process constrain auditory coding but are not precisely known. Here, we examine the distributions of interspike intervals (ISIs) from spontaneous activity of AN fibers of the barn owl (Tyto alba), a nocturnal avian predator whose auditory system is specialized for precise temporal coding. The spontaneous activity of AN fibers, with the exception of those showing preferred intervals, is commonly thought to result from excitatory events generated by a homogeneous Poisson point process, which lead to spikes unless the fiber is refractory. We show that the ISI distributions in the owl are better explained as resulting from the action of a brief refractory period ( approximately 0.5 ms) on excitatory events generated by a homogeneous stochastic process where the distribution of interevent intervals is a mixture of an exponential and a gamma distribution with shape factor 2, both with the same scaling parameter. The same model was previously shown to apply to AN fibers in the cat. However, the mean proportions of exponentially versus gamma-distributed intervals in the mixture were different for cat and owl. Furthermore, those proportions were constant across fibers in the cat, whereas they covaried with mean spontaneous rate and with characteristic frequency in the owl. We hypothesize that in birds, unlike in mammals, more than one ribbon may provide excitation to most fibers, accounting for the different proportions, and that variation in the number of ribbons may underlie the variation in the proportions. PMID:19357334

  16. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice.

    Moldovan, Mihai; Alvarez, Susana; Rosberg, Mette R; Krarup, Christian

    2016-02-01

    Excitability of regenerated fibers remains impaired due to changes in both passive cable properties and alterations in the voltage-dependent membrane function. These abnormalities were studied by mathematical modeling in human regenerated nerves and experimental studies in mice. In three adult male patients with surgically repaired complete injuries of peripheral nerves of the arm 22 months-26 years prior to investigation, deviation of excitability measures was explained by a hyperpolarizing shift in the resting membrane potential and an increase in the passive 'Barrett and Barrett' conductance (GBB) bridging the nodal and internodal compartments. These changes were associated with an increase in the 'fast' K(+) conductance and the inward rectifier conductance (GH). Similar changes were found in regenerated mouse tibial motor axons at 1 month after a sciatic crush lesion. During the first 5 months of regeneration, GH showed partial recovery, which paralleled that in GBB. The internodal length remained one-third of normal. Excitability abnormalities could be reversed by the energy-dependent Na(+) /K(+) pump blocker ouabain resulting in membrane depolarization. Stressing the Na(+) pumping system during a strenuous activity protocol triggered partial Wallerian degeneration in regenerated nerves but not in control nerves from age-matched mice. The current data suggest that the nodal voltage-gated ion channel machinery is restored in regenerated axons, although the electrical separation from the internodal compartment remains compromised. Due to the persistent increase in number of nodes, the increased activity-dependent Na(+) influx could lead to hyperactivity of the Na(+) /K(+) pump resulting in membrane hyperpolarization and neurotoxic energy insufficiency during strenuous activity. PMID:26435009

  17. Morphological changes in gland cells and axons resulting from stimulation of the salivary nerves of the cockroach, Nauphoeta cinerea.

    Maxwell, D J

    1981-01-01

    The salivary glands of the cockroach, Nauphoeta cinerea (Oliver, 1789), are innervated and there is considerable evidence to suggest that dopamine is the neurotransmitter at the neuroglandular junction. As the gland is a bilaterally symmetrical structure it was possible to electrically stimulate the salivary nerve supplying the ipsilateral side of the gland whilst the contralateral side of the gland served as a convenient control. Saliva elicited from the glands by electrical stimulation of these nerves was collected and used to monitor the physiological state of the tissue. Glands were fixed for light and electron microscopy during secretion and it was observed that the ductules in peripheral acinar cells were distended in stimulated sides of the glands but not in contralateral unstimulated sides. This evidence implies that peripheral cells are responsible for the initiation of salivary fluid secretion. Changes were also observed in the catecholamine containing axons that innervate the glands. In stimulated axons a statistically significant reduction in numbers of small agranular vesicles was observed when compared with contralateral unstimulated controls and freshly fixed tissue. This was not the case with the larger granular vesicles of the same axons which showed no reduction in number as a result of stimulation. In addition it was also noted that the small agranular vesicles tended to aggregate and change their shapes in response to nerve stimulation. These results imply that the small agranular vesicles play a role in transmitter release. PMID:7222008

  18. Baroreflex modulation of muscle sympathetic nerve activity at rest does not differ between morning and afternoon

    Hissen, Sarah L.; Macefield, Vaughan G.; Brown, Rachael; Witter, Trevor; Taylor, Chloe E.

    2015-01-01

    The incidence of cardiovascular events is significantly higher in the morning than other times of day. This has previously been associated with poor blood pressure control via the cardiac baroreflex. However, it is not known whether diurnal variation exists in vascular sympathetic baroreflex function, in which blood pressure is regulated via muscle sympathetic nerve activity (MSNA). The aim of this study was to compare vascular sympathetic baroreflex sensitivity (BRS) in the same participants between the morning and afternoon. In 10 participants (mean age 22 2.9 years), continuous measurements of blood pressure, heart rate and MSNA were made during 10 min of rest in the morning (between 0900 and 1000 h) and afternoon (between 1400 and 1500 h). Spontaneous vascular sympathetic BRS was quantified by plotting MSNA burst incidence against diastolic pressure (vascular sympathetic BRSinc), and by plotting total MSNA against diastolic pressure (vascular sympathetic BRStotal). Significant vascular sympathetic BRSinc and vascular sympathetic BRStotal slopes were obtained for 10 participants at both times of day. There was no significant difference in vascular sympathetic BRSinc between morning (?2.2 0.6% bursts/mmHg) and afternoon (?2.5 0.2% bursts/mmHg; P = 0.68) sessions. Similarly, vascular sympathetic BRStotal did not differ significantly between the morning (?3.00.5 AU/beat/mmHg) and afternoon (?2.9 0.4 AU/beat/mmHg; P = 0.89). It is concluded that in healthy, young individuals baroreflex modulation of MSNA at rest does not differ between the morning and afternoon. The results indicate that recording MSNA at different times of the day is a valid means of assessing sympathetic function. PMID:26388723

  19. Quantal potential fields around individual active zones of amphibian motor-nerve terminals.

    Bennett, M.R.; Farnell, L.; Gibson, W. G.; Macleod, G T; Dickens, P

    2000-01-01

    The release of a quantum from a nerve terminal is accompanied by the flow of extracellular current, which creates a field around the site of transmitter action. We provide a solution for the extent of this field for the case of a quantum released from a site on an amphibian motor-nerve terminal branch onto the receptor patch of a muscle fiber and compare this with measurements of the field using three extracellular electrodes. Numerical solution of the equations for the quantal potential fiel...

  20. Investigation of developmentally regulated membrane proteins in muscle and nerve cells

    The developmental regulation of membrane glycoproteins in muscle and nerve cells has been studied. One of these glycoproteins, designated 5B4 antigen, is recognized by a monoclonal antibody (5B4) in rat brain neurons. On immunoblots of fetal rat brain membranes, 5B4 stains a diffuse band with an M/sub r/ of 180-250 kilodalton (kd). Prior digestion of such membranes with a bacteriophage-encoded endoneuraminidase specific for ?-2,8-linked poly(sialic acid) results in a shift in the form of the antigen to two sharp bands of 140 and 180 kd. In adult brain, 5B4 recognizes a pair of sharp bands of M/sub r/ 140 and 180 kd, which are neither sensitive to endo-neuraminidase digestion nor recognized by H.46. V8 peptide maps of the enzymatically iodinated 140 kd adult antigen and the 140 kd endo-neuraminidase digested fetal antigen are identical. These results demonstrate that the polypeptide backbone of the adult and fetal forms of the 5B4 antigen are similar, and that the observed microheterogeneity in the native fetal antigen is due to polysialation. Membrane glycoproteins are through to play an essential role in myoblast fusion during muscle development. In order to identify such glycoproteins, L6 myoblasts were labeled with 3H-N-acetylglucosamine and 3H-mannose during several stages of differentiation. The effects of various inhibitors of fusion of protein expression were also studied. After identifying membrane glycoproteins whose developmental regulation coincides with myoblast fusion, it is important to establish their role in the fusion process, possibly through reconstitution into phospholipid membrane vesicles (liposomes)

  1. Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model

    Sun Chong

    2008-11-01

    Full Text Available Abstract The implantation of neural stem cells (NSCs in artificial scaffolds for peripheral nerve injuries draws much attention. NSCs were ex-vivo expanded in hyaluronic acid (HA-collagen composite with neurotrophin-3, and BrdU-labeled NSCs conduit was implanted onto the ends of the transected facial nerve of rabbits. Electromyography demonstrated a progressive decrease of current threshold and increase of voltage amplitude in de-innervated rabbits after implantation for one, four, eight and 12 weeks compared to readouts derived from animals prior to nerve transection. The most remarkable improvement, observed using Electrophysiology, was of de-innervated rabbits implanted with NSCs conduit as opposed to de-innervated counterparts with and without the implantation of HA-collagen, NSCs and HA-collagen, and HA-collagen and neurotrophin-3. Histological examination displayed no nerve fiber in tissue sections of de-innervated rabbits. The arrangement and S-100 immunoreactivity of nerve fibers in the tissue sections of normal rabbits and injured rabbits after implantation of NSCs scaffold for 12 weeks were similar, whereas disorderly arranged minifascicles of various sizes were noted in the other three arms. BrdU+ cells were detected at 12 weeks post-implantation. Data suggested that NSCs embedded in HA-collagen biomaterial could facilitate re-innervations of damaged facial nerve and the artificial conduit of NSCs might offer a potential treatment modality to peripheral nerve injuries.

  2. Terminal nerve: cranial nerve zero

    Jorge Eduardo Duque Parra

    2006-12-01

    Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.

  3. The neuromuscular activity of Bothriopsis bilineata smaragdina (forest viper) venom and its toxin Bbil-TX (Asp49 phospholipase A2) on isolated mouse nerve-muscle preparations.

    Floriano, Rafael Stuani; Rocha, Thalita; Carregari, Victor Corasolla; Marangoni, Sergio; da Cruz-Hfling, Maria Alice; Hyslop, Stephen; Rodrigues-Simioni, La; Rowan, Edward G

    2015-03-01

    The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations invitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3?g/ml) caused a quadriphasic response in PND twitch height whilst at 10?g/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3?g/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10?g/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10?g/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3?g/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10?g/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression. PMID:25572337

  4. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus

    Stephan Brenowitz

    2014-01-01

    Feedforward inhibition represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and in...

  5. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer

    Fjord-Larsen, L; Kusk, Poul Henrik; Emerich, D F; Thanos, C; Torp, Maja; Bintz, B; Tornøe, Jens; Johnsen, A H; Wahlberg, L U

    2012-01-01

    Nerve growth factor (NGF) is a potential therapeutic agent for Alzheimer's disease (AD) as it has positive effects on the basal forebrain cholinergic neurons whose degeneration correlates with the cognitive decline in AD. We have previously described an encapsulated cell biodelivery device, NsG0202......, capable of local delivery of NGF by a genetically modified human cell line, NGC-0295. The NsG0202 devices have shown promising safety and therapeutic results in a small phase 1b clinical study. However, results also show that the NGF dose could advantageously be increased. We have used the sleeping beauty...... transposon expression technology to establish a new clinical grade cell line, NGC0211, with at least 10 times higher NGF production than that of NGC-0295. To test whether encapsulation of this cell line provides a relevant dose escalation step in delivering NGF for treatment of the cognitive decline in AD...

  6. Activation of Satellite Glial Cells in Rat Trigeminal Ganglion after Upper Molar Extraction

    The neurons in the trigeminal ganglion (TG) are surrounded by satellite glial cells (SGCs), which passively support the function of the neurons, but little is known about the interactions between SGCs and TG neurons after peripheral nerve injury. To examine the effect of nerve injury on SGCs, we investigated the activation of SGCs after neuronal damage due to the extraction of the upper molars in rats. Three, 7, and 10 days after extraction, animals were fixed and the TG was removed. Cryosections of the ganglia were immunostained with antibodies against glial fibrillary acidic protein (GFAP), a marker of activated SGCs, and ATF3, a marker of damaged neurons. After tooth extraction, the number of ATF3-immunoreactive (IR) neurons enclosed by GFAP-IR SGCs had increased in a time-dependent manner in the maxillary nerve region of the TG. Although ATF3-IR neurons were not detected in the mandibular nerve region, the number of GFAP-IR SGCs increased in both the maxillary and mandibular nerve regions. Our results suggest that peripheral nerve injury affects the activation of TG neurons and the SGCs around the injured neurons. Moreover, our data suggest the existence of a neuronal interaction between maxillary and mandibular neurons via SGC activation

  7. Non-thermal influence of a weak microwave on nerve fiber activity

    Shneider, M N

    2014-01-01

    This paper presents a short selective review of the non-thermal weak microwave field impact on a nerve fiber. The published results of recent experiments are reviewed and analyzed. The theory of the authors is presented, according to which there are strongly pronounced resonances in the range of about 30-300 GHz associated with the excitation of ultrasonic vibrations in the membrane as a result of interactions with the microwave radiation. These forced vibrations create acoustic pressure, which may lead to the redistribution of the protein transmembrane channels, thus changing the threshold of the action potential excitation in the axons of the neural network. The problem of surface charge on the bilayer lipid membrane of the nerve fiber is discussed. Various experiments for observing the effects considered are also discussed.

  8. Pathways Mediating Activity-Induced Enhancement of Recovery From Peripheral Nerve Injury.

    Sabatier, Manning J; English, Arthur W

    2015-07-01

    This article outlines the novel hypothesis that exercise promotes axon regeneration after peripheral nerve injury through neuronal brain-derived neurotrophic factor (BDNF), and there are three required means of promoting BDNF expression: 1) increased signaling through androgen receptors, 2) increased cAMP-responsive element-binding protein expression, and 3) increased expression of the transcription factor SRY-box containing gene 11. PMID:25906422

  9. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  10. Prejunctional modulatory action of neuropeptide Y on responses due to antidromic activation of peripheral terminals of capsaicin-sensitive sensory nerves in the isolated guinea-pig ileum.

    Takaki, M.; Nakayama, S.

    1991-01-01

    1. The effect of neuropeptide Y (NPY) on motor responses produced by activation of capsaicin-sensitive primary afferents in the guinea-pig isolated ileum was determined by use of capsaicin itself and electrical mesenteric nerve stimulation as stimuli. 2. NPY inhibited or suppressed the cholinergic contractile response produced by electrical mesenteric nerve stimulation while leaving the contractile response to a threshold concentration of capsaicin. 3. NPY had no effect on motor responses pro...

  11. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  12. Solid state theory of competitive diffusion of associated Na+ and K+ in cells by free cation and vacancy (hole) mechanisms, with application to nerve.

    Cope, F W

    1977-01-01

    If, as recent evidence indicates, most cell potassium is associated with macromolecular fixed charge, then diffusion of potassium ions in cells might occur by (1) diffusion of the small fraction of free potassium in cell water (analogous to electrons in the conduction band of a semiconductor) or by (2) diffusion of vacancies on association sites (analogous to holes in a semiconductor). Derivations of the Fick first law of diffusion predict that partial substitution of sodium for potassium in the cell produces opposite effects on the effective diffusion constant of potassium for those mechanisms. Application of that substitution to nerve data suggests that rubidium ions diffuse by a free cation result when the nerve is clamped at its resting potential, but by a vacancy mechanism when the nerve is clamped at zero voltage. PMID:613332

  13. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay

    The cellular basis of radiation-induced demyelination and white matter necrosis of the central nervous system (CNS), is poorly understood. Glial cells responsible for myelination in the CNS might be the target cells of this type of damage. Glial cells with stem cell properties derived from the perinatal and adult rat CNS can be cultured in vitro. These cells are able to differentiate into oligodendrocytes or type-2 astrocytes (O-2A) depending on the culture conditions. Growth factors produced by monolayers of type-1 astrocytes inhibit premature differentiation of O-2A progenitor cells and allow colony formation. A method which employs these monolayers of type-1 astrocytes to culture O-2A progenitor cells has been adapted to allow the analysis of colonies of surviving cells after X-irradiation. In vitro survival curves were obtained for glial progenitor cells derived from perinatal and adult optic nerves. The intrinsic radiosensitivity of perinatal and adult O-2A progenitor cells showed a large difference. Perinatal O-2A progenitor cells are quite radiosensitive, in contrast to adult O-2A progenitor cells. For both cell types an inverse relationship was found between the dose and the size of colonies derived from surviving cells. Surviving O-2A progenitor cells maintain their ability to differentiate into oligo-dendrocytes or type-2 astrocytes. This system to assess radiation-induced damage to glial progenitor cells in vitro systems to have a great potential in unraveling the cellular basis of radiation-induced demyelinating syndromes of the CNS. (author). 28 refs.; 4 figs.; 1 tab

  14. Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli.

    Borisovska, Maria; McGinley, Matthew J; Bensen, AeSoon; Westbrook, Gary L

    2011-04-15

    Odours generate activity in olfactory receptor neurons, whose axons contact the dendritic tufts of mitral cells within olfactory bulb glomeruli. These axodendritic synapses are anatomically separated from dendrodendritic synapses within each glomerulus. Mitral cells within a glomerulus show highly synchronized activity as assessed with whole-cell recording from pairs of mitral cells. We examined glomerular activity in mice lacking the olfactory cell adhesion molecule (OCAM). Glomeruli in mice lacking OCAM show a redistribution of synaptic subcompartments, but the total area occupied by axonal inputs was similar to wild-type mice. Stimulation of olfactory nerve bundles showed that excitatory synaptic input to mitral cells as well as dendrodendritic inhibition was unaffected in the knockout. However, correlated spiking in mitral cells was significantly reduced, as was electrical coupling between apical dendrites. To analyse slow network dynamics we induced slow oscillations with a glutamate uptake blocker. Evoked and spontaneous slow oscillations in mitral cells and external tufted cells were broader and had multiple peaks in OCAM knockout mice, indicating that synchrony of slow glomerular activity was also reduced. To assess the degree of shared activity between mitral cells under physiological conditions, we analysed spontaneous sub-threshold voltage oscillations using coherence analysis. Coherent activity was markedly reduced in cells from OCAM knockout mice across a broad range of frequencies consistent with a decrease in tightly time-locked activity. We suggest that synchronous activity within each glomerulus is dependent on segregation of synaptic subcompartments. PMID:21486802

  15. Fluorescence activated cell sorting.

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  16. [Interdependent changes of the axon and Schwann cell in the process of reactive remodeling of a myelinated nerve fiber].

    Kokurina, T N; Sotnikov, O S; Novakovskaia, S A; Egorov, A S; Kozhevets, R V; Solnushkin, S D; Chikhman, V N

    2013-01-01

    Using the inverted phase-contrast microscope, the living undamaged frog sciatic nerve fibers and the fibers mechanically injured to varying degrees, were studied. It was found that the swelling of myelin incisures (MI) (of Schmidt-Lanterman) occured according to the principles similar to those controlling the changes of the myelin gap (node of Ranvier) and depended on the swelling of a Schwann cell (SC) perikaryon. It was detected that this was a single process, which which could be united in a complex of nonspecific changes of a myelinated nerve fiber. It was also demonstrated that under the action of mechanical injury and hypotonic solution, swelling of MI, nodes of Ranvier and SC perikaryon occurred without modifications of outer fiber diameter, due to the pronounced local axon thinning. Electron microscopic study of the cytoskeletal axonal structures showed that there was not a simple local contraction of an axon, but a significant local increase in the density of cytoskeletal components of the axoplasm (by 200-275%). Reactive reversible remodeling of a myelinated fiber suggests a new type of interaction between the axon and SC, the mechanism of reversible translocation of liquid axoplasmic fraction to the glial cell cytoplasm. PMID:23898720

  17. Repair of sciatic nerve defects using tissue engineered nerves

    Zhang, Caishun; Lv, Gang

    2013-01-01

    In this study, we constructed tissue-engineered nerves with acellular nerve allografts in Sprague-Dawley rats, which were prepared using chemical detergents-enzymatic digestion and mechanical methods, in combination with bone marrow mesenchymal stem cells of Wistar rats cultured in vitro, to repair 15 mm sciatic bone defects in Wistar rats. At postoperative 12 weeks, electrophysiological detection results showed that the conduction velocity of regenerated nerve after repair with tissue-engine...

  18. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone.

    Malhotra, R K; Wakade, A R

    1987-02-01

    1. Effects of nicotinic (mecamylamine) and muscarinic (atropine) receptor antagonists were investigated on the secretion of catecholamines evoked by stimulation of splanchnic nerve terminals and acetylcholine in the isolated perfused adrenal gland of the rat to determine whether non-cholinergic substances released from nerve terminals participate in the secretion of catecholamines. 2. Increasing the frequency of stimulation from 0.5 to 10 Hz (300 pulses) caused enhanced secretion of catecholamines (26-110 ng/collection period). After blockade of nicotinic and muscarinic receptors with mecamylamine and atropine, the secretion was reduced by 40, 65 and 80% at 0.5, 1 and 10 Hz, respectively. Acetylcholine-evoked secretion of catecholamines, which was roughly equivalent to that produced by stimulation at 10 Hz, was blocked by over 90% by the cholinergic antagonists. 3. Naloxone (3-300 microM) caused a concentration-dependent inhibition of catecholamine secretion evoked by stimulation of splanchnic nerves (1 Hz); acetylcholine-evoked secretion was much less affected by naloxone. 4. The secretion of catecholamines that remained after blockade of cholinergic receptors at different frequencies of stimulation (see 2 above) was almost completely inhibited by inclusion of 30 microM-naloxone in the medium. The inhibitory effect of naloxone was concentration dependent (3-30 microM) and reversible. 5. Splanchnic nerve-evoked secretion of catecholamines was facilitated by 400% in the presence of tetraethylammonium or tetraethylammonium plus mecamylamine and atropine. The facilitatory effect of tetraethylammonium was inversely related to the frequency of stimulation. 6. The residual secretion of catecholamines obtained after blockade of cholinergic receptors was facilitated by increasing concentrations of tetraethylammonium (1-5 mM). 30 microM-naloxone antagonized the facilitatory effects of tetraethylammonium at 1 and 3 mM by 60% and 25%, respectively, but failed at 5 mM-tetraethylammonium; higher concentrations of naloxone (100 microM) were also ineffective. 7. It is concluded that neurally evoked secretion of catecholamines is mediated by acetylcholine and a non-cholinergic substance(s); the contribution of non-cholinergic substance(s) predominates at low neuronal activity, whereas that of acetylcholine is maximum at high neuronal activity. Blockade of the non-cholinergic component by naloxone suggests that an opioid peptide may be involved in the secretion of catecholamines in the rat adrenal medulla. PMID:3656137

  19. Microvascular Cranial Nerve Palsy

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Aug. 02, 2012 Microvascular cranial nerve palsy ( ...

  20. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation

    Minev, Ivan R.; Chew, Daniel J.; Delivopoulos, Evangelos; Fawcett, James W.; Lacour, Stéphanie P.

    2012-04-01

    Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of -58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s-1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

  1. Characteristic element of matrix attachment region mediates vector attachment and enhances nerve growth factor expression in Chinese hamster ovary cells.

    Wang, X Y; Zhang, J H; Sun, Q L; Yao, Z Y; Deng, B G; Guo, W Y; Wang, L; Dong, W H; Wang, F; Zhao, C P; Wang, T Y

    2015-01-01

    Preliminary studies have suggested that a characteristic element of the matrix attachment region (MAR) in human interferon-? mediates the adhesion of vectors to Chinese hamster ovary (CHO) cells. In this study, we investigated if vector adhesion increased nerve growth factor (NGF) expression in CHO cells. The MAR characteristic element sequence of human interferon-? was inserted into the multiple-cloning site of the pEGFP-C1 vector. The target NGF gene was inserted upstream of the MAR characteristic element sequence to construct the MAR/NGF expression vector. The recombinant plasmid was transfected into CHO cells and stable monoclonal cells were selected using G418. NGF mRNA and protein expression was detected by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Plasmid reduction experiments were used to determine the state of transfected plasmid in mammalian cells. The insertion of MAR into the vector increased NGF expression levels in CHO cells (1.93- fold) compared to the control. The recombinant plasmid expressing the MAR sequence was digested into a linear space vector. The inserted MAR and NGF sequences were consistent with those inserted into the plasmid before recombination. Therefore, we concluded that the MAR characteristic element mediates vector adhesion to CHO cells and enhances the stability and efficiency of the target gene expression. PMID:26345852

  2. Comparison of Central Corneal Thickness and Retinal Nerve Fiber Layer Thickness and Ganglion Cell Complex in Patients with Ocular Hypertension

    Gamze Mumcu Ta?l?

    2013-12-01

    Full Text Available Purpose: To evaluate the correlation of retinal nerve fiber layer thickness (RNFLT with ganglion cell complex and central corneal thickness (CCT measurements in patients with ocular hypertension and healthy subjects. Material and Method: Seventy-six eyes of 38 patients with ocular hypertension and 76 eyes of 38 healthy subjects were included in this study. Both groups were stratified by CCT into 579 m (p0.05. In the control group, there was no significant correlation between CCT and RNFLT (average, superior average, inferior average measurements (p>0.05. There was no significant correlation between CCT and average, superior average, inferior average ganglion cell complex in both groups. Discussion: Ocular hypertension patients with CCT <550 m may represent patients who have very early undetected glaucoma. This may in part explain the higher risk of these patients for progression to glaucoma. (Turk J Ophthalmol 2013; 43: 385-90

  3. Nasal-Type Extranodal Natural Killer/T-cell Neurolymphomatosis Confined to the Lumbar Nerve Roots: A Case Report

    Neurolymphomatosis refers to lymphoma that has infiltrated the peripheral nervous system and this is the least common clinical presentation of nervous system lymphoma. Most neurolymphomatosis is due to B-cell non-Hodgkin lymphoma, and most patients show lymphomatous infiltration in the meninges and brain parenchyma, in addition to peripheral nervous system involvement. We diagnosed a case of neurolymphomatosis that was confined to the right 4th and 5th lumbar nerve roots without involvement of the meninges or brain parenchyma in a patient with the nasal-type extranodal natural killer/T-cell lymphoma. We made this diagnosis based on the MRI and 18F-FDG PET-CT findings and the clinical manifestations

  4. Nasal-Type Extranodal Natural Killer/T-cell Neurolymphomatosis Confined to the Lumbar Nerve Roots: A Case Report

    Park, Jong Chun; Mun, Sung Hee; Lee, Young Hwan [Catholic University, Daegu (Korea, Republic of)

    2009-11-15

    Neurolymphomatosis refers to lymphoma that has infiltrated the peripheral nervous system and this is the least common clinical presentation of nervous system lymphoma. Most neurolymphomatosis is due to B-cell non-Hodgkin lymphoma, and most patients show lymphomatous infiltration in the meninges and brain parenchyma, in addition to peripheral nervous system involvement. We diagnosed a case of neurolymphomatosis that was confined to the right 4th and 5th lumbar nerve roots without involvement of the meninges or brain parenchyma in a patient with the nasal-type extranodal natural killer/T-cell lymphoma. We made this diagnosis based on the MRI and 18F-FDG PET-CT findings and the clinical manifestations.

  5. Cholinesterase activity in sensory-nerve endings, capillaries and motor end plates of the facial skin of the brush-tailed possum (Trichosurus vulpecula).

    Loo, S K; Halata, Z; Strasmann, T

    1990-01-01

    The facial skin of two adult and one 50-day-old pouch animal of the marsupial mammal Trichosurus vulpecula was removed after the animals has been suitably anesthetized and perfused for electron microscopy. Small blocks of tissue (1 x 0.5 mm) were cut and incubated in acetylthiocholine iodide substrate for cholinesterase studies. The blocks were then subsequently postfixed in osmium tetroxide. Thin sections were cut and stained with lead acetate. Specific cholinesterase was found within the nerves of both the adult and the 50-day-old pouch animal, and in the motor end plates. Nonspecific cholinesterase was present in pinocytotic vesicles and interlamellar spaces of terminal Schwann cells associated with nerve end organs in the adult, and in the same areas in Schwann cells of nonmyelinated nerves in the pouch animal. It was also present in the pinocytotic vesicles of the capillary endothelium. PMID:2075803

  6. Optic nerve aspergillosis.

    Yuan, Lisi; Prayson, Richard A

    2015-07-01

    We report a 55-year-old woman with optic nerve Aspergillosis. Aspergillus is an ubiquitous airborne saprophytic fungus. Inhaled Aspergillus conidia are normally eliminated in the immunocompetent host by innate immune mechanisms; however, in immunosuppressed patients, they can cause disease. The woman had a past medical history of hypertension and migraines. She presented 1 year prior to death with a new onset headache behind the left eye and later developed blurred vision and scotoma. A left temporal artery biopsy was negative for giant cell arteritis. One month prior to the current admission, she had an MRI showing optic nerve thickening with no other findings. Because of the visual loss and a positive antinuclear antibody test, she was given a trial of high dose steroids and while it significantly improved her headache, her vision did not improve. At autopsy, the left optic nerve at the level of the cavernous sinus and extending into the optic chiasm was enlarged in diameter and there was a 1.3 cm firm nodule surrounding the left optic nerve. Histologically, an abscess surrounded and involved the left optic nerve. Acute angle branching, angioinvasive fungal hyphae were identified on Grocott's methenamine silver stained sections, consistent with Aspergillus spp. No gross or microscopic evidence of systemic vasculitis or infection was identified in the body. The literature on optic nerve Aspergillosis is reviewed. PMID:25861888

  7. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  8. Correlation between the ganglion cell complex and structural measures of the optic disc and retinal nerve fiber layer in glaucoma.

    Bresciani-Battilana, Erica; Teixeira, Ivan C; Barbosa, Diego T Q; Caixeta-Umbelino, Cristiano; Paolera, Maurcio D; Kasahara, Niro

    2015-10-01

    To correlate the ganglion cell complex (GCC) parameters with structural measures of the optic nerve head (ONH) and retinal nerve fiber layer (RNFL) as evaluated by Fourier-Domain optic coherence tomography (OCT). This retrospective study included patients with glaucoma, ocular hypertensive patients and glaucoma suspects who had previously undergone OCT examination with the RTVue-100. The parameters of GCC (average, superior, inferior, focal loss volume [FLV], global loss volume [GLV]) were correlated with the values of the ONH (cup volume, cup area, horizontal cup-to-disk ratio, vertical cup-to-disk ratio, and rim area) and RNFL (average, superior, and inferior) using Pearson's correlation coefficient. The sample included 74 eyes of 37 patients. All correlations between GCC parameters and RNFL were strong (r>0.60). The correlation between GCC parameters and ONH were good for most parameters, except that for FLV and cup volume (r=0.13), GLV and cup volume (r=0.09), and GLV and cup area (r=0.21). The GCC parameters can be used as structural measures of the glaucomatous optic neuropathy. PMID:25183459

  9. Autocrine protective mechanisms of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush.

    Huang, Shun-Ping; Fang, Kan-Tang; Chang, Chung-Hsing; Huang, Tzu-Lun; Wen, Yao-Tseng; Tsai, Rong-Kung

    2016-02-01

    This study investigated the role of autocrine mechanisms in the anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells (RGCs) after optic nerve (ON) crush. We observed that both G-CSF and G-CSF receptor (G-CSFR) are expressed in normal rat retina. Further dual immunofluorescence staining showed G-CSFR immunoreactive cells were colocalized with RGCs, Müller cells, horizontal and amacrine cells. These results confirm that G-CSF is an endogenous ligand in the retina. The semi-quantitative RT-PCR finding demonstrated the transcription levels of G-CSF and G-CSFR were up-regulated after ON crush injury. G-CSF treatment further increased and prolonged the expression level of G-CSFR in the retina. G-CSF has been shown to enhance transdifferentiation of the mobilized hematopoietic stem cells into tissue to repair central nervous system injury. We test the hypothesis that the hematopoietic stem cells recruited by G-CSF treatment can transdifferentiate into RGCs after ON crush by performing sublethal irradiation of the rats 5 days before ON crush. The flow cytometric analysis showed the number of CD34 positive cells in the peripheral blood is significantly lower in the irradiated, crushed and G-CSF-treated group than the sham control group or crush and G-CSF treated group. Nevertheless, the G-CSF treatment enhances the RGC survival after sublethal irradiation and ON crush injury. These data indicate that G-CSF seems unlikely to induce hematopoietic stem cell transdifferentiation into RGCs after ON crush injury. In conclusion, G-CSF may serve an endogenous protective signaling in the retina through direct activation of intrinsic G-CSF receptors and downstream signaling pathways to rescue RGCs after ON crush injury, exogenous G-CSF administration can enhance the anti-apoptotic effects on RGCs. PMID:26518178

  10. The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy.

    Stratton, Jo Anne; Shah, Prajay T; Kumar, Ranjan; Stykel, Morgan G; Shapira, Yuval; Grochmal, Joey; Guo, Gui Fang; Biernaskie, Jeff; Midha, Rajiv

    2016-02-01

    Skin-derived precursor Schwann cell (SKPSC) therapy has been identified as a potentially beneficial treatment for peripheral nerve injuries. One hypothesised mechanism by which SKPSCs enhance recovery is via the modulation of macrophages. In the present study, we investigated the immunomodulatory properties of adult rat SKPSCs, and demonstrated that these cells expressed a battery of cytokines, including interferon-γ (IFN-γ), interleukin (IL)-1β, and, most abundantly, IL-6. Whereas macrophages exposed to depleted or fibroblast-conditioned medium secreted minimal amounts of tumor necrosis factor-α (TNF-α), in the presence of SKPSC-conditioned medium, macrophages secreted > 500 pg/mL TNF-α. Following the transplantation of SKPSCs into injured rat sciatic nerves, we observed an SKPSC density-dependent increase in the number of macrophages (Pearson's r = 0.66) and an SKPSC density-dependent decrease in myelin debris (Pearson's r = -0.68). To determine the effect of IL-6 in a proinflammatory context, macrophage cultures were primed with either lipopolysaccharide (LPS)/IFN-γ/IL-1β or LPS/IFN-γ/IL-1β + IL-6, and this showed a 212% and 301% increase in the number of inducible nitric oxide synthase (iNOS)-positive proinflammatory macrophages respectively. In contrast to neurons exposed to conditioned medium from unprimed macrophages, neurons treated with conditioned medium from proinflammatory-primed macrophages showed a 13-26% reduction in neurite outgrowth. Anti-IL-6 antibody combined with SKPSC transplant therapy following nerve injury did not alter macrophage numbers or debris clearance, but instead reduced iNOS expression as compared with SKPSC + IgG-treated rats. SKPSC + anti-IL-6 treatment also resulted in a two-fold increase in gastrocnemius compound muscle action potential amplitudes as compared with SKPSC + IgG treatment. Understanding the mechanisms underlying immunomodulatory aspects of SKPSC therapy and developing approaches to manipulate these responses are important for advancing Schwann cell-based therapies. PMID:26121489

  11. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    Costello, Richard W

    2012-02-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  12. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    Costello, Richard W

    2011-05-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  13. GRP nerves in pig antrum

    Holst, J J; Poulsen, Steen Seier

    We extracted gastrin-releasing peptide (GRP) and its C-terminal decapeptide corresponding to 6.4 and 6.8 pmol/g from pig antrum mucosa. By immunohistochemistry GRP was localized to mucosal, submucosal, and myenteric nerve fibers. A few nerve cell bodies were also identified. Using isolated perfused...

  14. Endocrine cells and nerve ganglia of the small intestine of the Opossum Didelphis aurita Wied-Neuwied, 1826 (Mammalia: Didelphidae

    Glucia M. Freitas-Ribeiro

    2012-09-01

    Full Text Available The nervous and endocrine systems jointly control intestinal movements, secretions of their glands and also participate of the processes of nutrient digestion and absorption. Therefore, the central objective of this study was to verify the existence of a possible relationship between the number of nervous cells and ganglia of the submucosal and myenteric plexuses and the number of endocrine cells in the small intestine of adult D. aurita. The utilized staining techniques were Grimelius, modified Masson-Fontana, direct immunoperoxidase and H-E. Argyrophillic, argentaffin and insulin immunoreactive endocrine cells do not numerically vary between the initial, mid and final regions of the duodenum, jejunum and ileum (P>0.05, except for argyrophillic cells in the jejunum (P>0.05. No numerical relationship has yet been verified between the number of nerve ganglia and endocrine cells, and also between nervous and endocrine cells. We recommended the use of new immunohistochemical techniques to confirm the numerical correlation between the nervous and endocrine systems in the small intestine. The morphology and distribution of endocrine cells and the nerve ganglia studied were similar to those encountered in eutherian mammals.Os sistemas nervoso e endcrino controlam integra-damente os movimentos intestinais, a secreo de suas glndulas e tambm participam dos processos de digesto e absoro de nutrientes. Portanto, o objetivo central deste estudo foi verificar a existncia de uma possvel relao entre o nmero de clulas nervosas e gnglios dos plexos submucosos e mioentricos e o nmero de clulas endcrinas no intestino delgado de adultos de D. aurita. As tcnicas de colorao utilizadas foram Grimelius, Masson-Fontana modificada, imunoperoxidase direta e H-E. As clulas endcrinas argirfilas, argentafins e imunorreativas insulina no variaram numericamente entre as regies inicial, mdia e final do duodeno, jejuno e leo (P>0,05, exceto as clulas argirfilas no jejuno (P<0,05. Nenhuma relao numrica foi verificada entre o nmero de gnglios nervosos e clulas endcrinas, e tambm entre clulas nervosas e endcrinas. Ns recomendamos o emprego de novas tcnicas imunohistoqumicas para confirmar a correlao numrica entre os sistemas nervoso e endcrino no intestino delgado. A morfologia e a distribuio das clulas endcrinas e dos gnglios nervosos estudados foram similares queles encontrados em mamferos eutrios.

  15. Cbl Negatively Regulates JNK Activation and Cell Death

    Sproul, Andrew A.; Xu, Zhiheng; Wilhelm, Michael; Gire, Stephen; Greene, Lloyd A.

    2009-01-01

    Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis – nerve growth factor (NGF) deprivation and DNA damage – cellular levels of c-Cbl and Cbl-b fell well before onset of death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activation) of c-Cbl. Targeting c-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage....

  16. Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

    Lehrberg, Jeffrey; Gardiner, David M

    2015-01-01

    We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response. PMID:25923915

  17. Axonal transport of labelled proteins and increased functional activity in sciatic nerve of the frog Rana hexadactyla in vitro

    In vitro speed of fast moving labelled protein fraction was investigated in the lumbar 8 nerve of R.hexadactyla during normal and electrical stimulation conditions. 3H-leucine labelled oroteins moved in a proximo-distal direction at a speed of 144 mm/day at 25 deg C. No change was observed in the rate of proteins transported in stimulated nerves but the amount of protein bound radioactivity increased over stimulation. In ligature experiments, amount of labelled proteins accumulating at a ligature was higher in stimulated nerves. Electrical stimulation of nerve resulted in an increase in protein synthetic rate in the respective ganglion. (author)

  18. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design

    Gnavi, Sara; Fornasari, Benedetta Elena; Tonda-Turo, Chiara; Laurano, Rossella; Zanetti, Marco; Ciardelli, Gianluca; Geuna, Stefano

    2015-01-01

    Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction. PMID:26062130

  19. Regional tissue immune responses after sciatic nerve injury in rats

    Chen, Yu-Ming; Shen, Ruo-wu; Zhang, Bei; Zhang, Wei-Ning

    2015-01-01

    Inflammatory cells play a critical role during nerve regeneration following peripheral nerve injury. In this study, we investigated immune responses in rat sciatic nerve after injury. Wistar rats were randomly divided into the sciatic nerve injury (model) group and control group. The right sciatic nerve of rats in the model group was transected and sutured end-to-end. Our results showed that rats in the model group functionally recovered following sciatic nerve injury. We detected inflammator...

  20. Schwann cells: activated peripheral glia and their role in neuropathic pain.

    Campana, Wendy Marie

    2007-07-01

    Schwann cells provide trophic support and in some cases, insulation to axons. After injury, Schwann cells undergo phenotypic modulation, acquiring the capacity to proliferate, migrate, and secrete soluble mediators that control Wallerian degeneration and regeneration. Amongst the soluble mediators are pro-inflammatory cytokines that function as chemoattractants but also may sensitize nociceptors. At the same time, Schwann cells produce factors that counterbalance the pro-inflammatory cytokines, including, for example, interleukin-10 and erythropoietin (Epo). Epo and its receptor, EpoR, are up-regulated in Schwann cells after peripheral nerve injury. EpoR-dependent cell signaling may limit production of TNF-alpha by Schwann cells within the first five days after injury. In addition, EpoR-dependent cell signaling may reduce axonal degeneration and facilitate recovery from chronic pain states. Other novel factors that regulate Schwann cell phenotype in nerve injury have been recently identified, including the low-density lipoprotein receptor related protein (LRP-1). Our recent studies indicate that LRP-1 may be essential for Schwann cell survival after peripheral nerve injury. To analyze the function of specific Schwann cell gene products in nerve injury and sensory function, conditional gene deletion and expression experiments in mice have been executed using promoters that are selectively activated in myelinating or non-myelinating Schwann cells. Blocking ErbB receptor-initiated cell-signaling in either myelinating or non-myelinating Schwann cells results in unique sensory dysfunctions. Data obtained in gene-targeted animals suggest that sensory alterations can result from changes in Schwann cell physiology without profound myelin degeneration or axonopathy. Aberrations in Schwann cell biology may lie at the foundation of neuropathic pain and represent an exciting target for therapeutic intervention. PMID:17321718

  1. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF

  2. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells

    Trigos, Anna Sofa; Longart, Marines; Garca, Lisbeth; Castillo, Cecilia; Forsyth, Patricia; Medina, Rafael

    2015-01-01

    Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the CM, is one of the main inhibitors of full neuronal differentiation, acting through sortilin receptor. PMID:26441535

  3. Cbl negatively regulates JNK activation and cell death.

    Sproul, Andrew A; Xu, Zhiheng; Wilhelm, Michael; Gire, Stephen; Greene, Lloyd A

    2009-08-01

    Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis - nerve growth factor (NGF) deprivation and DNA damage - cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activation) of c-Cbl. Targeting c-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl proteins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK activation and on cell death. PMID:19546888

  4. Facial Nerve Palsy In Secondary Syphilis

    Masuria B. L; Batra A; Kothiwala R.K; Khuller R; Singhi M.K

    1999-01-01

    A case of secondary syphilis with right facial nerve palsy is reported. A 28 year old unmarried male presented with diffuse maculopapular rash and facial nerve palsy. He had elevated while cells and protein in cerebrospinal fluid. Serum and cerebrospinal fluid were positive for VDRL and TPHA tests. Facial nerve palsy and maculopapular rash improved with penicillin therapy.

  5. Facial Nerve Palsy In Secondary Syphilis

    Masuria B.L

    1999-01-01

    Full Text Available A case of secondary syphilis with right facial nerve palsy is reported. A 28 year old unmarried male presented with diffuse maculopapular rash and facial nerve palsy. He had elevated while cells and protein in cerebrospinal fluid. Serum and cerebrospinal fluid were positive for VDRL and TPHA tests. Facial nerve palsy and maculopapular rash improved with penicillin therapy.

  6. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity

    Huizinga, J D; Thuneberg, L; Klüppel, M; Malysz, J; Mikkelsen, Hanne Birte; Bernstein, A

    1995-01-01

    The pacemaker activity in the mammalian gut is responsible for generating anally propagating phasic contractions. The cellular basis for this intrinsic activity is unknown. The smooth muscle cells of the external muscle layers and the innervated cellular network of interstitial cells of Cajal......, which is closely associated with the external muscle layers of the mammalian gut, have both been proposed to stimulate pacemaker activity. The interstitial cells of Cajal were identified in the last century but their developmental origin and function have remained unclear. Here we show that the...... of Cajal associated with Auerbach's nerve plexus and intestinal pacemaker activity....

  7. Malignant peripheral nerve sheath tumor: A rarity

    Yaga, Uday Shankar; Shivakumar, Rashmi; Kumar, M. Ashwini; Sathyaprakash,

    2015-01-01

    Malignant peripheral nerve sheath tumor (MPNST) of the mandible is an uncommon tumor that develops either from a preexisting neurofibroma or de novo. MPNSTs are sarcomas that originate from peripheral nerves or from cells associated with the nerve sheath, such as Schwann cells, perineural cells or from fibroblasts. Because MPNSTs can arise from multiple cell types, the overall appearance can vary greatly from one case to the next. A case of MPNST of the right side of the mandible in a 23-year...

  8. Unravelling crucial biomechanical resilience of myelinated peripheral nerve fibres provided by the Schwann cell basal lamina and PMP22

    Gonzalo Rosso; Ivan Liashkovich; Burkhard Gess; Peter Young; Alejandra Kun; Victor Shahin

    2014-01-01

    There is an urgent need for the research of the close and enigmatic relationship between nerve biomechanics and the development of neuropathies. Here we present a research strategy based on the application atomic force and confocal microscopy for simultaneous nerve biomechanics and integrity investigations. Using wild-type and hereditary neuropathy mouse models, we reveal surprising mechanical protection of peripheral nerves. Myelinated peripheral wild-type fibres promptly and fully recover f...

  9. The influence of vagus nerve and spinal cord stimulation on the ictal fast ripple activity in a spike-and-wave rat model of seizures

    Jiao, Jianhang; Sevcencu, Cristian; Jensen, Winnie; Yang, Xiaoyu; Harreby, Kristian R.

    2016-01-01

    OBJECTIVES: Fast ripple (FR) activity has received increasing attention as a potential epileptic marker. The current knowledge on how neurostimulation affects FRs is, however, very limited. In this study, we assess the influence of the vagus nerve stimulation (VNS) and spinal cord stimulation (SCS...

  10. Nerve growth factor stimulates the hydrolysis of glycosylphosphatidylinositol in PC-12 cells: A mechanism of protein kinase C regulation

    Treatment of PC-12 pheochromocytoma cells with nerve growth factor (NGF) results in the differentiation of these cells into a sympathetic neuron-like phenotype. Although the initial intracellular signals elicited by NGF remain unknown, some of the cellular effects of NGF are similar to those of other growth factors, such as insulin. The authors have investigated the involvement of a newly identified inositol-containing glycolipid in signal transduction for the actions of NGF. NGF stimulates the rapid generation of a species of diacylglycerol that is labeled with [3H]myristate but not with [3H]arachidonate. NGF stimulates [3H]myristate- or [32P]phosphate-labeled phosphatidic acid production over the same time course. Although NGF alone has no effect on the turnover of inositol phospholipids, it does stimulate the hydrolysis of glycosylphosphatidylinositol. The NGF-dependent cleavage of this lipid is accompanied by an increase in the accumulation of its polar head group, an inositol phosphate glycan, which is generated within 30-60 sec of NGF treatment. In an unresponsive PC-12 mutant cell line, neither the diacylglycerol nor inositol phosphate glycan response is detected. A possible role for the NGF-stimulated diacylglycerol is suggested by the inhibition of NGF-dependent c-fos induction by staurosporin, a potent inhibitor of protein kinase C. These results suggest that, like insulin, some of the cellular effects of NGF may be mediated by the phospholipase C-catalyzed hydrolysis of glycosylphosphatidylinositol

  11. Effects of ionizing radiation on purinergic signaling modulation in rat brain nerve cells

    Purinergic signaling is composed of three modulatory components: a) source of extracellular nucleotides, b) specific receptor expression for these transmitter molecules and c) ectonucleotidase selection that dictate cell response gradually degradation extracellular nucleotides to nucleosides. ATP acts as a fast excitatory transmitter in the CNS. Postsynaptic actions of ATP are mediated by an extended family of purinergic, P2X receptors, widely expressed throughout the CNS. NTPDases hydrolyse extracellular ATP and ADP to AMP and are responsive for purinergfic termination. To investigate if ionizing irradiation could modulate CNS purinergic signalization we monitored activity of NTPDases and abundance of P2X7 receptor in synaptic plasma membranes after whole-body acute irradiation using low (0,5Gy) or therapeutic (2Gy) doses, 1h i 72h after irradiating juvenile (15-day old) and adult (90-day old) rats. Acute irradiation modulate purinergic system components investigated at the different ways in the rat development brain SPM and in the adult brain dependent of dose and time after irradiation

  12. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. PMID:25839150

  13. Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells

    Lpez-Domnguez, Adriana M; Espinosa, Juan Luis; Navarrete, Araceli; Avila, Guillermo; Cota, Gabriel

    2006-01-01

    In clonal pituitary GH3 cells, spontaneous action potentials drive the opening of Cav1 (L-type) channels, leading to Ca2+ transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH3 cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca2+ currents. By using RT-PCR, NGF (50 ng ml?1) was found to augment prolactin mRNA levels by ?80% when applied to GH3 cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca2+ current by ?2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (? 24 h) with NGF amplified the T-type current, which flows through Cav3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca2+ that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca2+ currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca2+ influx through L-type channels, which in turn up-regulates the prolactin mRNA. PMID:16690703

  14. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury

    Xin Chen; Qiyun Yang; Tao Zheng; Jun Bian; Xiangzhou Sun; Yanan Shi; Xiaoyan Liang; Guoquan Gao; Guihua Liu; Chunhua Deng

    2016-01-01

    The paracrine effect is the major mechanism of stem cell therapy. However, the details of the effects mechanism remain unknown. The aim of this study is to investigate whether adipose tissue-derived stem cells (ADSCs) can ameliorate cavernous nerve injury-induced erectile dysfunction (CNIED) rats and to determine its mechanism. Twenty-eight days after intracavernous injection of 5-ethynyl-2-deoxyuridine- (EdU-) labeled ADSCs, the erectile function of all the rats was evaluated by intracavern...

  15. Nerve Transfers in Tetraplegia.

    Fox, Ida K

    2016-05-01

    Hand and upper extremity function is instrumental to basic activities of daily living and level of independence in cervical spinal cord injury (SCI). Nerve transfer surgery is a novel and alternate approach for restoring function in SCI. This article discusses the biologic basis of nerve transfers in SCI, patient evaluation, management, and surgical approaches. Although the application of this technique is not new; recent case reports and case series in the literature have increased interest in this field. The challenges are to improve function, achieve maximal gains in function, avoid complications, and to primum non nocere. PMID:27094894

  16. The effect of orally administered glycogen on anti-tumor activity and natural killer cell activity in mice.

    Kakutani, Ryo; Adachi, Yoshiyuki; Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Ohno, Naohito

    2012-01-01

    Natural killer (NK) cells, innate immune effectors that mediate rapid responses to various antigens, play an important role in potentiating host defenses through the clearance of tumor cells and virally infected cells. By using enzymatically synthesized glycogen (ESG) with the same characteristics as natural glycogen, we examined whether orally administered glycogen enhances the innate defense of tumor-implanted mice and the cytotoxicity of NK cells. Oral administration of ESG led to the suppression of tumor proliferation and the prolongation of survival times of tumor-bearing mice. Splenic NK activities of BALB/c mice treated orally with ESG were significantly higher than those of water-treated mice, which were used as a negative control. In addition, intraduodenal injections of ESG gradually and markedly lowered splenic sympathetic nerve activity, which has an inverse correlation with NK activity. Furthermore, ESG activated Peyer's patch cells to induce the production of macrophage inflammatory protein-2 (MIP-2), interleukin-6 (IL-6), and immunoglobulin A (IgA) from these cells. These results demonstrated that orally administrated glycogen significantly enhanced the cytotoxicity of NK cells by acting on Peyer's patch cells and autonomic nerves, and eventually induced the potentiation of host defenses. We propose that glycogen functions not only as an energy source for life support but also as an oral adjuvant for immunopotentiation. PMID:22080051

  17. Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2

    Marcus Kernt

    2010-06-01

    Full Text Available Marcus Kernt, Aljoscha S Neubauer, Kirsten H Eibl, Armin Wolf, Michael W Ulbig, Anselm Kampik, Cristoph HirneissDepartment of Ophthalmology, Ludwig-Maximilians-University, Munich, GermanyIntroduction: Primary open-angle glaucoma (POAG is one of the leading causes of blindness. Activation of optic nerve head astrocytes (ONHA and loss of trabecular meshwork cells (TMC are pathognomonic for this neurodegenerative disease. Oxidative stress and elevated levels of transforming growth factor beta (TGF? play an important role in the pathogenesis of POAG. This study investigates the possible antiapoptotic and cytoprotective effects of minocycline on TMC and ONHA under oxidative stress and increased TGF? levels.Methods: TMC and ONHA were treated with minocycline 1150 ?M. Possible toxic effects and IC50 were evaluated after 48 hours. Cell proliferation and viability were examined in order to assess the protective effects of minocycline on TMC and ONHA. Expression of Bcl-2, XIAP, and survivin, as well as their mRNA expression, were assessed by real time polymerase chain reaction (RT-PCR and Western Blot analysis 48 hours after treatment with minocycline alone and additional incubation with TGF?-2 or oxidative stress.Results: Minocycline 175 ?M showed no toxic effects on TMC and ONHA. Under conditions of oxidative stress, both TMC and ONHA showed an increase in viability and an ability to proliferate when treated with minocycline 2040 ?M. RT-PCR and Western blotting yielded an overexpression of Bcl-2, XIAP, and survivin when TMC or ONHA were treated with minocycline 2040 ?M under conditions of oxidative stress and when additionally incubated with TGF?-2.Conclusion: Minocycline up to 75 ?M does not have toxic effects on TMC and ONHA. Treatment with minocycline 2040 ?M led to increased viability and proliferation under oxidative stress and TGF?-2, as well as overexpression of Bcl-2, XIAP, and survivin. This protective pathway may help to prevent apoptotic cell death of TMC and ONHA and therefore be a promising approach to avoidance of progression of glaucomatous degeneration.Keywords: glaucoma, apoptosis, minocycline, trabecular meshwork, optic nerve head astrocytes

  18. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  19. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-01-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the...

  20. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy.

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J; Turmaine, Mark; Wilton, Daniel K; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona; Jessen, Kristjn R

    2014-11-01

    Charcot-Marie-Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot-Marie-Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot-Marie-Tooth disease type 1A. In line with our previous findings in humans with Charcot-Marie-Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun(-/-) mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot-Marie-Tooth disease type 1A: on the one hand they are the genetic source of the disease, on the other, they respond to it by mounting a c-Jun-dependent response that significantly reduces its impact. Because axonal death is a central feature of much nerve pathology it will be important to establish whether an axon-supportive Schwann cell response also takes place in other conditions. Amplification of this axon-supportive mechanism constitutes a novel target for clinical intervention that might be useful in Charcot-Marie-Tooth disease type 1A and other neuropathies that involve axon loss. PMID:25216747

  1. Role of the vestibular system in sudden shutdown of renal sympathetic nerve activity during microgravity in rats.

    Fujiki, N; Hagiike, M; Tanaka, K; Tsuchiya, Y; Miyahara, T; Morita, H

    2000-05-26

    The purpose of this study was to examine the effect of microgravity (muG) on renal sympathetic nerve activity (RNA) in rats. Additionally, we estimated the participation of the vestibular system in the response of RNA to muG. Eight normal Sprague-Dawley (SD) rats and five chemically and bilaterally labyrinthectomied SD rats were used to measure RNA during free-drop examination (4.5-s duration of muG); arterial pressure (AP) and aortic flow velocity (AFV) were additionally monitored. Although AFV showed no particular change, AP tended to decrease during muG in the later phase. Prior to this AP fall-off, RNA was immediately and markedly attenuated by muG. This attenuation was transient and RNA returned to 1G level within the mu;muG condition. Interestingly, this phenomenon remained even in labyrinthectomied rats. In conclusion, cephalad shift of the body fluid by loading of muG may cause cardiopulmonary low-pressure receptor activation and consequent RNA attenuation, but the participation of the vestibulosympathetic reflex in this phenomenon is not obvious. PMID:10822153

  2. Neurogenesis in the crustacean ventral nerve cord: homology of neuronal stem cells in Malacostraca and Branchiopoda?

    Harzsch, S

    2001-01-01

    In Insecta and malacostracan Crustacea, neurons in the ventral ganglia are generated by the unequal division of neuronal stem cells, the neuroblasts (Nbs), which are arranged in a stereotyped, grid-like pattern. In malacostracans, however, Nbs originate from ectoteloblasts by an invariant lineage, whereas Nbs in insects differentiate without a defined lineage by cell-to-cell interactions within the neuroectoderm. As the ventral ganglia in entomostracan crustaceans were thought to be generated by a general inward proliferation of ectodermal cells, the question arose as to whether neuroblasts in Euarthropoda represent a homologous type of stem cell. In the current project, neurogenesis in metanauplii of the entomostracan crustaceans Triops cancriformis Fabricius, 1780 (Branchiopoda, Phyllopoda) and Artemia salina Linn, 1758 (Branchiopoda, Anostraca) was examined by in vivo incorporation of the mitosis marker bromodeoxyuridine (BrdU) and compared to stem cell proliferation in embryos of the malacostracan Palaemonetes argentinus Nobili, 1901 (Eucarida, Decapoda). The developmental expression of synaptic proteins (synapsins) was studied immunohistochemically. Results indicate that in the ventral neurogenic zone of Branchiopoda, neuronal stem cells with cellular characteristics of malacostracan neuroblasts are present. However, a pattern similar to the lineage-dependent, grid-like arrangement of the malacostracan neuroblasts was not found. Therefore, the homology of entomostracan and malacostracan neuronal stem cells remains uncertain. It is now well established that during arthropod development, identical and most likely homologous structures can emerge, although the initiating steps or the mode of generation of these structures are different. Recent evidence suggests that adult Entomostraca and Malacostraca share corresponding sets of neurons so that the present report provides an example that those homologous neurons may be generated via divergent developmental pathways. In this perspective, it remains difficult at this point to discuss the question of common patterns of stem cell proliferation with regard to the phylogeny and evolution of Atelocerata and Crustacea. PMID:11440250

  3. Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells.

    Tanaka, Toshiaki; Kikuchi, Noriaki; Goto, Kaoru; Iino, Mitsuyoshi

    2016-05-01

    Sec6 and Sec8, which are components of the exocyst complex, has been concerned with various roles independent of its role in secretion, such as cell migration, invadopodia formation, cytokinesis, glucose uptake, and neural development. Given the vital roles of the exocyst complex in cellular and developmental processes, the disruption of its function may be closely related to various diseases such as cancer, diabetes, and neuronal disorders. Malignant peripheral nerve sheath tumors (MPNSTs) have high malignant potential and poor prognosis because of aggressive progression and metastasis. To date, no chemotherapeutic agents have been validated for MPNSTs treatment because how MPNSTs are resistant to chemotherapeutic agents remains unknown. This study demonstrates that combination of doxorubicin and sorafenib induces apoptosis in MPNST cells through downregulation of B cell lymphoma protein 2 (Bcl-2), Bcl-2-related protein long form of Bcl-x (Bcl-xl), and myeloid cell leukemia 1 (Mcl-1). Moreover, both Sec6 and Sec8 levels decreased after treatment with doxorubicin and sorafenib and were found to be associated with Bcl-2 and Mcl-1 expressions, but not Bcl-xl. Although Sec8 was found to be involved in the regulation of both Bcl-2 and Mcl-1 at the mRNA level, Sec6 regulated Bcl-2 at the mRNA level and the binding affinity of F-box and WD repeat domain containing 7 and Mcl-1, thereby controlling Mcl-1 at the protein level. Bcl-2 or Mcl-1 mRNA suppression by Sec6 or Sec8 depletion resulted in significant changes in nuclear factor-kappa B, cAMP response element, and p53 transcriptional activity. These results suggest that Sec6 and Sec8 are therapeutic target molecules in MPNST. PMID:26892009

  4. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity

    Levy, Dan; Kainz, Vanessa; BURSTEIN, RAMI; Strassman, Andrew M.

    2011-01-01

    Mast cells (MCs) are tissue resident immune cells that participate in a variety of allergic and other inflammatory conditions. In most tissues, MCs are found in close proximity to nerve endings of primary afferent neurons that signal pain (i.e. nociceptors). Activation of MCs causes the release of a plethora of mediators that can activate these nociceptors and promote pain. Although MCs are ubiquitous, conditions associated with systemic MC activation give rise primarily to two major types of...

  5. Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve

    Palchesko, Rachelle N.; Zhang, Ling; Sun, Yan; Adam W. Feinberg

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable sy...

  6. Induction of Nerve Injury-Induced Protein 1 (Ninjurin 1) in Myeloid Cells in Rat Brain after Transient Focal Cerebral Ischemia.

    Lee, Hye-Kyung; Lee, Hahnbie; Luo, Lidan; Lee, Ja-Kyeong

    2016-04-01

    Nerve injury-induced protein-1 (Ninjurin-1, Ninj1) was initially identified as a novel adhesion molecule in rat sciatic nerve and to be up-regulated in neurons and Schwann cells of distal nerve segments after nerve transection or crush injury. Recently, Ninj1 was found to act as a modulator of cell migration, angiogenesis, and apoptosis. Accumulating evidence indicates that innate immune response plays beneficial and deleterious roles in brain ischemia, and the trans-endothelial migration of blood-derived immune cells is key initiator of this response. In the present study, we examined the expression profile and cellular distribution of Ninj1 in rat brain after transient focal cerebral ischemia. Ninj1 expression was found to be significantly induced in cortical penumbras 1 day after 60 min of middle cerebral artery occlusion (MCAO) and to increase gradually for 8 days and then declined. In infarction cores of cortices, patterns of Ninj1 expression were similar to those observed in cortical penumbras, except induction was maintained for 10 days. At 1 day post-MCAO, Ninj1 inductions were detected mainly in neutrophils and endothelial cells in both infarction cores and penumbras, but reactive macrophages were the major cellular expressers of Ninj1 at 4 days post-MCAO. Expressional induction in reactive macrophages was maintained in infarction cores after 12 days post-MCAO but not in penumbras. These dynamic expressions of Ninj1 in different immune cells at different times suggest that this protein performs various, critical roles in the modulation of acute and delayed immune responses in the postischemic brain. PMID:27122992

  7. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation. PMID:23240031

  8. IN VITRO ACTIVITY OF DUVERNOY'S GLAND SECRETIONS FROM THE AFRICAN BOOMSLANG, Dispholidus typus, ON NERVE-MUSCLE PREPARATIONS

    Young, R A

    1996-01-01

    In vitro toxicity assays were performed using Duvernoy's gland secretions from the African boomslang, Dispholidus typus, and isolated rat duodenum and frog sciatic nerve-gastrocnemius muscle preparations. The Duvernoy's gland secretions of D. typus had no apparent effect on the frog sciatic nerve-gastrocnemius muscle preparation. The secretions produced an increase in baseline tonus and an increase in the rhythmic contractile force of the rat duodenum, but had no significant effect on the fre...

  9. Brain-Derived Neurotrophic Factor Inhibits Calcium Channel Activation, Exocytosis, and Endocytosis at a Central Nerve Terminal

    Baydyuk, Maryna; Wu, Xin-sheng; He, Liming; Wu, Ling-Gang

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we re...

  10. Potential genotoxic effects of GSM-1800 exposure on human cutaneous and nerve cells

    Introduction The GSM-1800 signal has been in use for several years in Europe and questions raised about its potential biological effects, in view of the fact that, with respect to GSM-900, the increase in the carrier frequency corresponds to a more superficial absorption in the tissues. Consequently, the skin becomes an even more important target for the absorption of the radiofrequency radiation (R.F.R.) emitted by mobile phones. Nevertheless, brain tissues remain a critical target. Cells In order to determine whether R.F.R. at 1800 MHz could behave as a genotoxic agent, skin and brain cells were exposed to a 217-Hz-modulated GSM-1800 signal and assayed using the comet assay: (1) normal human epidermal keratinocytes (N.H.E.K.) and dermal fibroblasts (N.H.D.F.) which are cutaneous cells from epidermis and dermis respectively, and (2) the S.H. -S.Y.5.Y. and C.H.M.E.-5 human cell lines, which are neuroblastoma and micro-glial cells, respectively. Exposure The R.F.R. exposure system that was used in these experiments was manufactured by I.T. I.S. (Zurich, Switzerland). It consists in two shorted waveguides allowing to run exposed and sham conditions at the same time in the same culture incubator, at 37 Celsius degrees, 5% CO2. It is controlled by a software, which provides blind conditions until completion of data analysis. The specific absorption rate (S.A.R.) used was 2 W/kg, corresponding to the public exposure limit recommended by I.C.N.I.R.P. and the exposure duration was 48 hours. Comet assay At the end of the exposure, cells were removed from their Petri dish by trypsin/EDTA treatment, counted and 5 x 104 cells were used to detect DNA damage including single DNA breaks. Positive controls were performed using hydrogen peroxidase (1%, 1 hour). The genotoxic effects were detected using the alkaline comet assay kit (Trevigen slides) following the supplier procedure. Under these conditions, 6 independent experiments were performed for each cell type (2 Petri dishes by run). The analysis was done on at least 100 images from two comet slides (one per Petri dish) for each cellular model and exposure condition. Results The analysis of the slides is ongoing. Once the data analysis is completed, I.T.I.S. will break the blinding codes, and the results will be presented at the meeting. Acknowledgement: This work was supported by France Telecom R and D, Bouygues Telecom, the Cnrs and the Aquitaine Council for Research. (authors)

  11. Potential genotoxic effects of GSM-1800 exposure on human cutaneous and nerve cells

    Sanchez, S.; Poulletier De Gannes, F.; Haro, E.; Ruffie, G.; Lagroye, I.; Billaudel, B.; Veyret, B. [PIOM laboratory, UMR 5501 CNRS, ENSCPB, 33 -Pessac (France)

    2006-07-01

    Introduction The GSM-1800 signal has been in use for several years in Europe and questions raised about its potential biological effects, in view of the fact that, with respect to GSM-900, the increase in the carrier frequency corresponds to a more superficial absorption in the tissues. Consequently, the skin becomes an even more important target for the absorption of the radiofrequency radiation (R.F.R.) emitted by mobile phones. Nevertheless, brain tissues remain a critical target. Cells In order to determine whether R.F.R. at 1800 MHz could behave as a genotoxic agent, skin and brain cells were exposed to a 217-Hz-modulated GSM-1800 signal and assayed using the comet assay: (1) normal human epidermal keratinocytes (N.H.E.K.) and dermal fibroblasts (N.H.D.F.) which are cutaneous cells from epidermis and dermis respectively, and (2) the S.H. -S.Y.5.Y. and C.H.M.E.-5 human cell lines, which are neuroblastoma and micro-glial cells, respectively. Exposure The R.F.R. exposure system that was used in these experiments was manufactured by I.T. I.S. (Zurich, Switzerland). It consists in two shorted waveguides allowing to run exposed and sham conditions at the same time in the same culture incubator, at 37 Celsius degrees, 5% CO{sub 2}. It is controlled by a software, which provides blind conditions until completion of data analysis. The specific absorption rate (S.A.R.) used was 2 W/kg, corresponding to the public exposure limit recommended by I.C.N.I.R.P. and the exposure duration was 48 hours. Comet assay At the end of the exposure, cells were removed from their Petri dish by trypsin/EDTA treatment, counted and 5 x 10{sup 4} cells were used to detect DNA damage including single DNA breaks. Positive controls were performed using hydrogen peroxidase (1%, 1 hour). The genotoxic effects were detected using the alkaline comet assay kit (Trevigen slides) following the supplier procedure. Under these conditions, 6 independent experiments were performed for each cell type (2 Petri dishes by run). The analysis was done on at least 100 images from two comet slides (one per Petri dish) for each cellular model and exposure condition. Results The analysis of the slides is ongoing. Once the data analysis is completed, I.T.I.S. will break the blinding codes, and the results will be presented at the meeting. Acknowledgement: This work was supported by France Telecom R and D, Bouygues Telecom, the Cnrs and the Aquitaine Council for Research. (authors)

  12. Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea

    Rania H. Fatouleh

    2014-01-01

    Full Text Available Muscle sympathetic nerve activity (MSNA is greatly elevated in patients with obstructive sleep apnoea (OSA during daytime wakefulness, leading to hypertension, but the underlying mechanisms are poorly understood. By recording MSNA concurrently with functional Magnetic Resonance Imaging (fMRI of the brain we aimed to identify the central processes responsible for the sympathoexcitation. Spontaneous fluctuations in MSNA were recorded via tungsten microelectrodes inserted percutaneously into the common peroneal nerve in 17 OSA patients and 15 healthy controls lying in a 3 T MRI scanner. Blood Oxygen Level Dependent (BOLD contrast gradient echo, echo-planar images were continuously collected in a 4 s ON, 4 s OFF (200 volumes sampling protocol. Fluctuations in BOLD signal intensity covaried with the intensity of the concurrently recorded bursts of MSNA. In both groups there was a positive correlation between MSNA and signal intensity in the left and right insulae, dorsolateral prefrontal cortex (dlPFC, dorsal precuneus, sensorimotor cortex and posterior temporal cortex, and the right mid-cingulate cortex and hypothalamus. In OSA the left and right dlPFC, medial PFC (mPFC, dorsal precuneus, anterior cingulate cortex, retrosplenial cortex and caudate nucleus showed augmented signal changes compared with controls, while the right hippocampus/parahippocampus signal intensity decreased in controls but did not change in the OSA subjects. In addition, there were significant increases in grey matter volume in the left mid-insula, the right insula, left and right primary motor cortices, left premotor cortex, left hippocampus and within the brainstem and cerebellum, and significant decreases in the mPFC, occipital lobe, right posterior cingulate cortex, left cerebellar cortex and the left and right amygdala in OSA, but there was no overlap between these structural changes and the functional changes in OSA. These data suggest that the elevated muscle vasoconstrictor drive in OSA may result from functional changes within these brain regions, which are known to be directly or indirectly involved in the modulation of sympathetic outflow via the brainstem. That there was no overlap in the structural and functional changes suggests that asphyxic damage due to repeated episodes of nocturnal obstructive apnoea is not the main cause of the sympathoexcitation.

  13. Stimulation of a Ca sup 2+ -dependent protein kinase by G sub M1 ganglioside in nerve growth factor-treated PC12 cells

    Hilbush, B.S.; Levine, J.M. (State Univ. of New York, Stony Brook (United States))

    1991-07-01

    The authors have investigated the ability of exogenous gangliosides to modulate nerve growth factor (NGF) signal transduction in PC12 cells. The effects of exogenous ganglioside G{sub M1} on multiple protein kinase activities were assayed by analyzing site-specific serine phosphorylation of tyrosine hydroxylase (TyrOHase) by two-dimensional phosphopeptide mapping. In the presence of NGF, exogenous G{sub M1} increased {sup 32}P incorporation into TyrOHase phosphopeptide T2, a Ca{sup 2+}/calmodulin-dependent protein kinase substrate whose phosphorylation is not normally affected by NGF treatment. In the absence of NGF, G{sub M1} treatment had no significant effects on TyrOHase phosphorylation. The removal of extracellular Ca{sup 2+} or blockade of dihydropyridine-sensitive Ca{sup 2+} channels prevented the G{sub M1}-induced increases in {sup 32}P incorporation into phosphopeptide T2. Exogenous G{sub M1} also potentiated K{sup +} depolarization-induced increases in the phosphorylation of TyrOHase. These results suggest that the stimulatory effects of exogenous G{sub M1} ganglioside on NGF actions may be due to its ability to potentiate a Ca{sup 2+}-dependent signaling pathway.

  14. Schwannomatosis of the sciatic nerve

    Yamamoto, Tetsuji; Maruyama, Shigeki; Mizuno, Kosaku [Dept. of Orthopaedic Surgery, Kobe University School of Medicine (Japan)

    2001-02-01

    A 52-year-old woman with schwannomatosis in the left sciatic nerve is presented. The patient had no stigmata of neurofibromatosis (NF) type 1 or 2. Cutaneous or spinal schwannomas were not detected. Magnetic resonance (MR) imaging of the sciatic nerve revealed more than 15 tumors along the course of the nerve. Histological examination revealed schwannomas consisting of Antoni A and B areas. Immunohistochemical study showed most cells reacting intensely for S-100 protein. The patient underwent conservative follow-up treatment due to the minimal symptoms. The relationship of the disease with NF-2 and plexiform schwannoma is discussed. (orig.)

  15. Schwannomatosis of the sciatic nerve

    A 52-year-old woman with schwannomatosis in the left sciatic nerve is presented. The patient had no stigmata of neurofibromatosis (NF) type 1 or 2. Cutaneous or spinal schwannomas were not detected. Magnetic resonance (MR) imaging of the sciatic nerve revealed more than 15 tumors along the course of the nerve. Histological examination revealed schwannomas consisting of Antoni A and B areas. Immunohistochemical study showed most cells reacting intensely for S-100 protein. The patient underwent conservative follow-up treatment due to the minimal symptoms. The relationship of the disease with NF-2 and plexiform schwannoma is discussed. (orig.)

  16. The K+-H+ Exchanger, Nigericin, Modulates Taste Cell pH and Chorda Tympani Taste Nerve Responses to Acidic Stimuli

    Sturz, Gregory R.; Phan, Tam-Hao T.; Mummalaneni, Shobha; Ren, Zuojun; DeSimone, John A.; Lyall, Vijay

    2011-01-01

    The relationship between acidic pH, taste cell pHi, and chorda tympani (CT) nerve responses was investigated before and after incorporating the K+-H+ exchanger, nigericin, in the apical membrane of taste cells. CT responses were recorded in anesthetized rats in vivo, and changes in pHi were monitored in polarized fungiform taste cells in vitro. Under control conditions, stimulating the tongue with 0.15 M potassium phosphate (KP) or 0.15 M sodium phosphate (NaP) buffers of pHs between 8.0 and ...

  17. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1

    Bock, E; Richter-Landsberg, C; Faissner, A; Schachner, M

    1985-01-01

    The nerve growth factor-inducible large external (NILE) glycoprotein and the neural cell adhesion molecule L1 were shown to be immunochemically identical. Immunoprecipitation with L1 and NILE antibodies of [3H]fucose-labeled material from culture supernatants and detergent extracts of NGF......]methionine-labeled early post-natal cerebellar cell cultures or [3H]fucose-labeled NGF-treated PC12 cells, all immunoreactivity for NILE antibody could be removed by pre-clearing with L1 antibody and vice versa....

  18. Size of the Optic Nerve Head and Its Relationship with the Thickness of the Macular Ganglion Cell Complex and Peripapillary Retinal Nerve Fiber Layer in Patients with Primary Open Angle Glaucoma

    Enomoto, Nobuko; Anraku, Ayako; Ishida, Kyoko; Takeyama, Asuka; Yagi, Fumihiko; Tomita, Goji

    2015-01-01

    Purpose. To evaluate the relationships among the optic nerve head (ONH) area, macular ganglion cell complex (mGCC) thickness, circumpapillary retinal nerve fiber layer (cpRNFL) thickness, and visual field defects in patients with primary open angle glaucoma (POAG). Methods. This retrospective study included 90 eyes of 90 patients with POAG. The ONH area, rim area, mGCC thickness, and cpRNFL thickness were measured using optical coherence tomography. Mean deviation (MD) was measured using standard automated perimetry. The relationships among clinical factors including age, refraction, the ONH area, the rim area, the mGCC thickness, the cpRNFL thickness, and MD were evaluated using correlation coefficients and multiple regression analyses. Results. The significant correlation of the ONH area with refraction (r = 0.362, P < 0.001), the mGCC thickness (r = 0.225, P = 0.033), and the cpRNFL thickness (r = 0.253, P = 0.016) was found. Multiple regression analysis showed that the ONH area, rim area, and MD were selected as significant contributing factors to explain the mGCC thickness and cpRNFL thickness. No factor was selected to explain MD. Conclusions. The ONH area, in other words, the disc size itself may affect the mGCC thickness and cpRNFL thickness in POAG patients. PMID:26339503

  19. Maintained inspiratory activity during proportional assist ventilation in surfactant-depleted cats early after surfactant instillation: phrenic nerve and pulmonary stretch receptor activity

    Schaller Peter

    2006-03-01

    Full Text Available Abstract Background Inspiratory activity is a prerequisite for successful application of patient triggered ventilation such as proportional assist ventilation (PAV. It has recently been reported that surfactant instillation increases the activity of slowly adapting pulmonary stretch receptors (PSRs followed by a shorter inspiratory time (Sindelar et al, J Appl Physiol, 2005 [Epub ahead of print]. Changes in lung mechanics, as observed in preterm infants with respiratory distress syndrome and after surfactant treatment, might therefore influence the inspiratory activity when applying PAV early after surfactant treatment. Objective To investigate the regulation of breathing and ventilatory response in surfactant-depleted young cats during PAV and during continuous positive airway pressure (CPAP early after surfactant instillation in relation to phrenic nerve activity (PNA and the activity of PSRs. Methods Seven anesthetized, endotracheally intubated young cats were exposed to periods of CPAP and PAV with the same end-expiratory pressure (0.2–0.5 kPa before and after lung lavage and after surfactant instillation. PAV was set to compensate for 75% of the lung elastic recoil. Results Tidal volume and respiratory rate were higher with lower PaCO2 and higher PaO2 during PAV than during CPAP both before and after surfactant instillation (p Conclusion PSR activity and the control of breathing are maintained during PAV in surfactant-depleted cats early after surfactant instillation, with a higher ventilatory response and a lower breathing effort than during CPAP.

  20. Palmar Nerve Sheath Myxoma: A Case Report

    Amany Fathaddin; Rehab Fatani

    2012-01-01

    Nerve sheath myxoma is a rare benign tumor of the peripheral nerves. It typically presents as a painless, firm, and slow growing nodule with a predilection for extremities mostly fingers and knees. Microscopically, it has characteristic multilobules of spindle cells in an abundant myxoid stroma. The cells are strongly positive for S-100 protein. However, this rare tumor is usually misdiagnosed as other more common benign neuronal tumors. This report describes a rare case of nerve sheath myxom...

  1. Signaling pathways mediating a selective induction of nitric oxide synthase II by tumor necrosis factor alpha in nerve growth factor-responsive cells

    Saragovi H Uri

    2005-09-01

    Full Text Available Abstract Background Inflammation and oxidative stress play a critical role in neurodegeneration associated with acute and chronic insults of the nervous system. Notably, affected neurons are often responsive to and dependent on trophic factors such as nerve growth factor (NGF. We previously showed in NGF-responsive PC12 cells that tumor necrosis factor alpha (TNF? and NGF synergistically induce the expression of the free-radical producing enzyme inducible nitric oxide synthase (iNOS. We proposed that NGF-responsive neurons might be selectively exposed to iNOS-mediated oxidative damage as a consequence of elevated TNF? levels. With the aim of identifying possible therapeutic targets, in the present study we investigated the signaling pathways involved in NGF/TNF?-promoted iNOS induction. Methods Western blotting, RT-PCR, transcription factor-specific reporter gene systems, mutant cells lacking the low affinity p75NTR NGF receptor and transfections of TNF?/NGF chimeric receptors were used to investigate signalling events associated with NGF/TNF?-promoted iNOS induction in PC12 cells. Results Our results show that iNOS expression resulting from NGF/TNF? combined treatment can be elicited in PC12 cells. Mutant PC12 cells lacking p75NTR did not respond, suggesting that p75NTR is required to mediate iNOS expression. Furthermore, cells transfected with chimeric TNF?/NGF receptors demonstrated that the simultaneous presence of both p75NTR and TrkA signaling is necessary to synergize with TNF? to mediate iNOS expression. Lastly, our data show that NGF/TNF?-promoted iNOS induction requires activation of the transcription factor nuclear factor kappa B (NF-?B. Conclusion Collectively, our in vitro model suggests that cells bearing both the high and low affinity NGF receptors may display increased sensitivity to TNF? in terms of iNOS expression and therefore be selectively at risk during acute (e.g. neurotrauma or chronic (e.g. neurodegenerative diseases conditions where high levels of pro-inflammatory cytokines in the nervous system occur pathologically. Our results also suggest that modulation of NF?B-promoted transcription of selective genes could serve as a potential therapeutic target to prevent neuroinflammation-induced neuronal damage.

  2. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells

    Anna Sofia Trigos

    2015-09-01

    Full Text Available Several reports have shown that a sciatic nerve conditioned media (CM causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous proNGF from the CM (pNGFd-CM. Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt and mutated (pNGFmut proNGF isoforms over sodium currents and, whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT, a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the CM, is one of the main inhibitors of full neuronal differentiation, acting through sortilin receptor.

  3. Activation of pelvic afferent nerves from the rat bladder during filling.

    Morrison, J; Wen, J; Kibble, A

    1999-01-01

    This short paper has reviewed current information on the physiology of bladder mechanoreceptors. Afferents in the bladder mucosa appear to be sensitive to distension but not to contraction of the viscus, and are also sensitive to the chemical composition of the bladder contents. Evidence is provided that suggest that Neurokinin A is released from primary afferent endings in the submucosa and is involved in both the normal response to distension, and the sensitization process. The results suggest that the low threshold mechanoreceptors are polymodal, and are modulated by various mediators, including some peptides that may originate from the sensory endings themselves, and that these mediators may be active during normal filling. PMID:10573780

  4. Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves.

    Karanth, S; Yang, G; Yeh, J; Richardson, P M

    2006-11-01

    Monocyte chemoattractant protein-1 is produced by Schwann cells during Wallerian degeneration of a peripheral nerve and contributes to a selective accumulation of macrophages in the degenerating segment. An in vitro preparation has been developed to analyze the molecules from axons and non-neuronal cells in nerves that stimulate an increased production of monocyte chemoattractant protein-1 mRNA by Schwann cells. For this purpose, Schwann cells obtained from neonatal rats were maintained in culture, exposed to putative molecular stimuli and analyzed for their content of monocyte chemoattractant protein-1 mRNA. Under basal conditions, the concentration of monocyte chemoattractant protein-1 in Schwann cells was low. Freeze-killed fragments or homogenates of nerve (or brain) but not viable nerve or freeze-killed muscle were effective in inducing monocyte chemoattractant protein-1 mRNA. The inductive activity was abolished by heating. Results of dialysis of supernatants of nerve homogenates indicate that a protein or proteins of 1-10 kDa were capable of stimulating synthesis of monocyte chemoattractant protein-1 by Schwann cells. Also, the activity in nerve homogenates was partially inhibited by antibodies to Toll-like receptor-4. The observations suggest that a non-secreted protein is released from disintegrating axons to initiate the innate immune response that characterizes Wallerian degeneration. PMID:16828744

  5. Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo.

    Potas, Jason R; Haque, Farhia; Maclean, Francesca L; Nisbet, David R

    2015-05-01

    Macrophages play a key role in tissue regeneration following peripheral nerve injury by preparing the surrounding parenchyma for regeneration, however, they can be damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes macrophages toward an anti-inflammatory/wound healing state (M2 phenotype). The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges from minutes to hours in vivo. Our objective was to extend the in vivo bioavailability and bioactivity of IL-10 by attaching the protein onto nanofibrous scaffolds and demonstrating increased expression levels of M2 macrophages when placed around healthy intact peripheral nerves. IL-10 was adsorbed and covalently bound to electrospun poly(?-caprolactone) (PCL) nanofibrous scaffolds. In vivo bioavailability and bioactivity of IL-10 was confirmed by wrapping IL-10 conjugated nanofibres around the sciatic nerves of Wistar rats and quantifying M2 macrophages immunohistochemically double labelled with ED1 and either arginase 1 or CD206. IL-10 remained immobilised to PCL scaffolds for more than 120 days when stored in phosphate buffered saline at room temperature and for up to 14d ays when implanted around the sciatic nerve. IL-10 conjugated nanofibres successfully induced macrophage polarisation towards the M2 activated state within the scaffold material as well as the adjacent tissue surrounding the nerve. PCL biofunctionalised nanofibres are useful for manipulating the cellular microenvironment. Materials such as these could potentially lead to new therapeutic strategies for nervous tissue injuries as well as provide novel investigative tools for biological research. PMID:25837415

  6. Extremely low nerve growth facior (NGF) activity of sea snake (Hydrophiidae) venoms.

    Mariam, Khafizova; Tu, Anthony T

    2002-12-01

    Sea snake venoms contain less protein than those of land snakes (Toom et al., 1969). Sea snake venoms lack arginine ester hydrolyzing activity, whereas those of Crotalidae and Viperidae have such activity (Tu et al., 1966). Sea snakes live in salty water, and their venoms may be different from those of land snakes. Because of the difficulty in obtaining sea snake venoms, information about sea snake venoms is quite incomplete. NGF is commonly present in the venoms of land snakes such as Elapidae, Viperidae, and Crotalidae (Cohen and Levi-Montalcini, 1956; Lipps, 2002). It is therefore of interest to investigate the presence or absence of NGF in sea snake venoms. In order to investigate the presence or absence of NGF, five sea snake venoms were selected. Lapemis hardwickii (Hardwick's sea snake) and Acalyptophis peronii venom were obtained from the Gulf of Thailand. Hydrophis cyanocinctus (common sea snake) and Enhydrina schistosa (beaked sea snake) venom were obtained from the Strait of Malacca. Laticauda semifasciata (broad band blue sea snake) venom was also examined and the venom was obtained from Gato Island in the Philippines. PMID:12503884

  7. Neck proprioceptors contribute to the modulation of muscle sympathetic nerve activity to the lower limbs of humans.

    Bolton, P S; Hammam, E; Macefield, V G

    2014-07-01

    Several different strategies have now been used to demonstrate that the vestibular system can modulate muscle sympathetic nerve activity (MSNA) in humans and thereby contribute to the regulation of blood pressure during changes in posture. However, it remains to be determined how the brain differentiates between head-only movements that do not require changes in vasomotor tone in the lower limbs from body movements that do require vasomotor changes. We tested the hypothesis that neck movements modulate MSNA in the lower limbs of humans. MSNA was recorded in 10 supine young adult subjects, at rest, during sinusoidal stretching of neck muscles (100 cycles, 35° peak to peak at 0.37 ± 0.02 Hz) and during a ramp-and-hold (17.5° for 54 ± 9 s) static neck muscle stretch, while their heads were held fixed in space. Cross-correlation analysis revealed cyclical modulation of MSNA during sinusoidal neck muscle stretch (modulation index 45.4 ± 5.3 %), which was significantly less than the cardiac modulation of MSNA at rest (78.7 ± 4.2 %). Interestingly, cardiac modulation decreased significantly during sinusoidal neck displacement (63.0 ± 9.3 %). By contrast, there was no significant difference in MSNA activity during static ramp-and-hold displacements of the neck to the right or left compared with that with the head and neck aligned. These data suggest that dynamic, but not static, neck movements can modulate MSNA, presumably via projections of muscle spindle afferents to the vestibular nuclei, and may thus contribute to the regulation of blood pressure during orthostatic challenges. PMID:24691758

  8. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    Karasawa, Kensuke; Ayusawa, Mamoru; Noto, Nobutaka; Sumitomo, Naokata; Okada, Tomoo; Harada, Kensuke [Nihon Univ., Tokyo (Japan). School of Medicine

    2000-12-01

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5{+-}6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33{+-}0.22 in chronic heart failure class I, 2.50{+-}0.34 in class II, 1.95{+-}0.61 in class III, and 1.39{+-}0.29 in class IV (p<0.05). %WR was 24.8{+-}12.8% in chronic heart failure class I, 23.3{+-}10.2% in class II, 49.2{+-}24.5% in class III, and 66.3{+-}26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  9. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5±6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33±0.22 in chronic heart failure class I, 2.50±0.34 in class II, 1.95±0.61 in class III, and 1.39±0.29 in class IV (p<0.05). %WR was 24.8±12.8% in chronic heart failure class I, 23.3±10.2% in class II, 49.2±24.5% in class III, and 66.3±26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  10. Comparative effects of long-acting and short-acting loop diuretics on cardiac sympathetic nerve activity in patients with chronic heart failure

    Matsuo, Yae; Kasama, Shu; Toyama, Takuji; Funada, Ryuichi; Takama, Noriaki; Koitabashi, Norimichi; Ichikawa, Shuichi; Suzuki, Yasuyuki; Matsumoto, Naoya; Sato, Yuichi; Kurabayashi, Masahiko

    2016-01-01

    Objective Short-acting loop diuretics are known to enhance cardiac sympathetic nerve activity (CSNA) in patients with chronic heart failure (CHF). The effects of two loop diuretics—long-acting azosemide and short-acting furosemide—on CSNA were evaluated using 123I-metaiodobenzylguanidine (MIBG) scintigraphy in patients with CHF. Methods The present study was a subanalysis of our previously published study, which had reported that serial 123I-MIBG studies were the most useful prognostic indica...

  11. Noradrenaline synthesis after sympathetic nerve activation in rat atria and its dependence on calcium but not CAM kinase II and protein kinases A or C.

    Kotsonis, P.; Binko, J.; Majewski, H.

    1996-01-01

    1. The biosynthesis of noradrenaline following sympathetic nerve activation was investigated in rat atria. In particular the time course of noradrenaline synthesis changes, the relationship of changes in synthesis to transmitter release and the possible roles of second messengers and protein kinases were examined. 2. Rat atria incubated with the precursor [3H]-tyrosine synthesized [3H]-noradrenaline. Synthesis was enhanced following pulsatile electrical field stimulation (3 Hz for 5 min) with...

  12. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclea...

  13. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration.

    Das, Suradip; Sharma, Manav; Saharia, Dhiren; Sarma, Kushal Konwar; Sarma, Monalisa Goswami; Borthakur, Bibhuti Bhusan; Bora, Utpal

    2015-09-01

    We report a novel silk-gold nanocomposite based nerve conduit successfully tested in a neurotmesis grade sciatic nerve injury model in rats over a period of eighteen months. The conduit was fabricated by adsorbing gold nanoparticles onto silk fibres and transforming them into a nanocomposite sheet by electrospinning which is finally given a tubular structure by rolling on a stainless steel mandrel of chosen diameter. The conduits were found to promote adhesion and proliferation of Schwann cells in vitro and did not elicit any toxic or immunogenic responses in vivo. We also report for the first time, the monitoring of muscular regeneration post nerve conduit implantation by recording motor unit potentials (MUPs) through needle electromyogram. Pre-seeding the conduits with Schwann cells enhanced myelination of the regenerated tissue. Histo-morphometric and electrophysiological studies proved that the nanocomposite based conduits pre-seeded with Schwann cells performed best in terms of structural and functional regeneration of severed sciatic nerves. The near normal values of nerve conduction velocity (50 m/sec), compound muscle action potential (29.7 mV) and motor unit potential (133 ?V) exhibited by the animals implanted with Schwann cell loaded nerve conduits in the present study are superior to those observed in previous reports with synthetic materials as well as collagen based nerve conduits. Animals in this group were also able to perform complex locomotory activities like stretching and jumping with excellent sciatic function index (SFI) and led a normal life. PMID:26026910

  14. Regeneration at the predilective damage sites of nerve trunks in treated leprosy.

    Miko, T L; Gschmeissner, S E; le Maitre, C; Kinfu, Y; Kazen, R; Pereira, J H

    1993-12-01

    Superficially located large and medium sized mixed peripheral limb nerves in active leprosy have previously been shown to have well-recognized fusiform swellings. It is generally agreed that these are the sites of predilective nerve involvement where the severest degeneration and fibrosis occur. A semiquantitative histopathological study on one of these sites, the flexor retinaculum region of the posterior tibial nerve, has been carried out on 14 treated leprosy patients who suffered from total sensory loss to the foot for between 2 and 40 years. The following observations were made: (1) large-scale nerve regeneration was present as characterized by numerous Schwann cells and unmyelinated axons which formed regeneration clusters; (2) thick myelinated axons were either absent or present only in very low numbers; (3) the intraneural fibrosis was usually not severe; (4) the presence of active inflammation probably interfered with nerve regeneration; (5) it appeared that this regeneration started shortly after the onset of therapy and persisted for decades; (6) lepromatous cases were characterized by evenly distributed pathology, whereas borderline tuberculoid cases had an unevenly distributed pathology; (7) the massive nerve regeneration observed was functionally ineffective--these findings indicate that the total nerve damage may affect the more peripheral nerve branches. PMID:8127220

  15. Evaluation of sympathetic nerve system activity with MIBG. Comparison with heart rate variability

    Authors attempted to elucidate the relations of plasma concentration of norepinephrine (pNE) and findings of heart rate variability and MIBG myocardial scintigraphy and evaluated cardiac autonomic nervous activity in chronic renal failure. Subjects were 211 patients with various heart diseases (coronary artery lesion, cardiomyopathy, hypertension, diabetes mellitus, renal failure and so on), 60 patients with artificial kidney due to chronic renal failure, 13 of whom were found to have coronary arterial disease by Tl myocardial scintigraphy, and 14 normal volunteers. ECG was recorded with the portable recorder for heart rate variability. Together with collection of blood for pNE measurement, myocardial scintigraphy was done at 15 and 150 min after intravenous administration of 111 MBq of MIBG for acquisition of early and delayed, respectively, images of the frontal breast. Accumulation at and elimination during the time points of MIBG were computed in cps unit. Variability of heart rate was found to have the correlation positive with MIBG delayed accumulation and negative with the elimination, and pNE, negative with heart rate variability and the delayed accumulation and positive with the elimination. Thus cardiac autonomic nervous abnormality was suggested to occur before uremic cardiomyopathy. (K.H.)

  16. Measuring acute changes in adrenergic nerve activity of the heart in the living animal

    Changes in the function of the adrenergic neurons of the heart may be important indicators of the adaptations of an animal to physiologic stress and disease. Rates of loss of norepinephrine (NE) from the heart were considered to be proportional to NE secretion and to adrenergic function. In rat hearts, yohimbine induced almost identical increases in rates of loss of 3H-NE and of 125I-metaiodobenzylguanidine (MIBG), a functional analog of NE. Clonidine induced decreases in rates of loss of 3H-NE that were also mimicked by those of 125I-MIBG. In the dog heart, pharmacologically-induced increases and decreases in rates of loss of 123I-MIBG could be measured externally; these values were similar to those obtained for 125I-MIBG in the rat heart. Thus acute changes in the adrenergic neuron activity can be measured in the living heart. The method is applicable to man in determining the capacity of the adrenergic system to respond to provocative challenges

  17. [Morphological and functional studies on nerve regeneration after corneal nerve injuries].

    Zhang, Z Q; Xie, L X; Dong, X G

    1994-07-01

    Using gold chloride impregnation of nerves and horse-radish peroxidase (HRP) axoplasma retrograde tracing technique, we monitored nerve regeneration over a period of 6 months following penetrating perilimbal incisions and penetrating keratoplasties (PKP) in rabbits. Post-operatively, at 1 month after a 180 degrees perilimbal incision, loose unconnected subepithelial plexus were present in the limbus, at 2 months 1-2 bundles of deep stromal nerve were seen in the stroma and by 6 months only a few stromal nerves regenerated. There was no difference in nerve regeneration between post-operative autograft and allograft PKP. By 6 months, the quantity of HRP-labelled cells in the trigeminal ganglia was less than the normal level. The results indicated that nerve regeneration by 6 months after corneal nerve injuries was inadequate to restore a normal corneal nerve extent and function. PMID:7843026

  18. Cervical Radiculopathy (Pinched Nerve)

    ... the seven small vertebrae that form the neck. Spinal nerve root. AAOS does not endorse any treatments, procedures, ... whether your symptoms are caused by pressure on spinal nerve roots and nerve damage or by another condition ...

  19. Ulnar nerve damage (image)

    The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body ...

  20. Nerve conduction velocity

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... normal body temperature. Being too cold slows nerve conduction. Tell your doctor if you have a cardiac ...

  1. Potentiation of neuritogenic activity of medicinal mushrooms in rat pheochromocytoma cells

    Ling-Sing Seow, Syntyche; Naidu, Murali; David, Pamela; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2013-01-01

    Background Senescence of the neurons is believed to be a focal factor in the development of age-related neurodegenerative diseases such as Alzheimer’s disease. Diminutions in the levels of nerve growth factor (NGF) lead to major declines in brain cell performance. Functional foods, believed to mitigate this deficiency, will be reaching a plateau in the near future market of alternative and preventive medicine. In the search for neuroactive compounds that mimic the NGF activity for the prevent...

  2. Unravelling crucial biomechanical resilience of myelinated peripheral nerve fibres provided by the Schwann cell basal lamina and PMP22.

    Rosso, Gonzalo; Liashkovich, Ivan; Gess, Burkhard; Young, Peter; Kun, Alejandra; Shahin, Victor

    2014-01-01

    There is an urgent need for the research of the close and enigmatic relationship between nerve biomechanics and the development of neuropathies. Here we present a research strategy based on the application atomic force and confocal microscopy for simultaneous nerve biomechanics and integrity investigations. Using wild-type and hereditary neuropathy mouse models, we reveal surprising mechanical protection of peripheral nerves. Myelinated peripheral wild-type fibres promptly and fully recover from acute enormous local mechanical compression while maintaining functional and structural integrity. The basal lamina which enwraps each myelinated fibre separately is identified as the major contributor to the striking fibre's resilience and integrity. In contrast, neuropathic fibres lacking the peripheral myelin protein 22 (PMP22), which is closely connected with several hereditary human neuropathies, fail to recover from light compression. Interestingly, the structural arrangement of the basal lamina of Pmp22(-/-) fibres is significantly altered compared to wild-type fibres. In conclusion, the basal lamina and PMP22 act in concert to contribute to a resilience and integrity of peripheral nerves at the single fibre level. Our findings and the presented technology set the stage for a comprehensive research of the links between nerve biomechanics and neuropathies. PMID:25446378

  3. The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells

    Berezhnaya, E. V.; Neginskaya, M. A.; Kovaleva, V. D.; Rudkovskii, M. V.; Uzdensky, A. B.

    2015-03-01

    Photodynamic therapy (PDT) is used for selective destruction of cells, in particular, for treatment of brain tumors. However, photodynamic treatment damages not only tumor cells, but also healthy neurons and glial cells. To study the possible role of NF-κB in photodynamic injury of neurons and glial cells, we investigated the combined effect of photodynamic treatment and NF-κB modulators: activator betulinic acid, or inhibitors parthenolide and CAPE on an isolated crayfish stretch receptor consisting of a single neuron surrounded by glial cells. A laser diode (670 nm, 0.4 W/cm2) was used as a light source. The inhibition of NF-κB during PDT increased the duration of neuron firing and glial necrosis and decreased neuron necrosis and glial apoptosis. The activation of NF-κB during PDT increased neuron necrosis and glial apoptosis and decreased glial necrosis. The difference between the effects of NF-κB modulators on photosensitized neurons and glial cells indicates the difference in NF-κB-mediated signaling pathways in these cell types. Thus, NF-κB is involved in PDT-induced shortening of neuron firing, neuronal and glial necrosis, and apoptosis of glial cells.

  4. Part I The neurobiology of behaviour (from nerve cells, to genes and behaviour, Part II Cell and molecular biology of the neuron, Part III Elementary interactions between neurons: synaptic transmission, Part VIII The development of the nervous system, Learning and memory: Alzheimer's disease and the dementias

    Cherine Fahim

    2009-11-01

    Full Text Available The brain is a network of more than 100 billion individual nerve cells interconnected in systems that construct our normal and pathological states. The task of neuroscience is to understand the mental processes by which we perceive, act, learn, move and remember. This clear understanding of the brain in its normal state has implications in disease, for example learning disabilities, mental retardation, Parkinson's disease, Alzheimer's disease and neuropsychiatric disorders (i.e., schizophrenia, depression, mania and anxiety disorders. How does the brain produce the remarkable individuality of human action? Are mental processes localized in specific regions of the brain? If specific mental processes are represented locally in different brain regions, what rules relate the anatomy and physiology of a region in mentation? Can these rules be understood better by examining the region as a whole or by studying its individual nerve cells, in either humans or animal models? To what extent are mental processes hard-wired into the neural architecture of the brain? What do genes contribute to behaviour, and how is gene expression in nerve cells regulated by developmental and learning processes? How does experience alter the way the brain processes subsequent events? This intensive course based on the Neural Science book by Kandel, Schwartz and Jessell will address all these issues. To that end, we will describe how neuroscience is attempting to link molecules to mind and how proteins responsible for the activities of individual nerve cells are related to the complexity of mental processes. In essence, neuroscience is an essential science towards the clear understanding of the human brain in its normal and pathological states. This is achieved through the close collaboration between neuroscientists, geneticists, physicists and clinicians. Kandel ER, Schwartz JH, Jessell TM 2000 & 2008 (in august 5th edition, Principles of Neural Science, 4th ed. McGraw-Hill, New York

  5. Effect of renal nerve activity on tubular sodium and water reabsorption in dog kidneys as determined by the lithium clearance method

    Abildgaard, U; Holstein-Rathlou, N H; Leyssac, P P

    1986-01-01

    reabsorption of sodium and water increased significantly by 9 +/- 2% and 8 +/- 2%. Low-frequency electrical stimulation of the distal nerve bundle of the denervated kidney caused a significant decrease in urine flow rate (37 +/- 6%), sodium clearance (31 +/- 4%), lithium clearance (17 +/- 5%) and in fractional......The reliability of the lithium clearance method in studies of the effect of renal nerve activity upon tubular sodium and water handling in the dog kidney was investigated. Following unilateral acute surgical denervation of the kidney a significant increase in urinary flow rate (40 +/- 7%), sodium...... lithium clearance (18 +/- 5%). Calculated absolute proximal reabsorption rate increased significantly by 17 +/- 3%, while calculated absolute rates of distal sodium and water reabsorption decreased significantly by 16 +/- 5% and 16 +/- 5%. These changes in tubular sodium and water reabsorption during...

  6. Mechanisms of nerve injury in leprosy.

    Scollard, David M; Truman, Richard W; Ebenezer, Gigi J

    2015-01-01

    All patients with leprosy have some degree of nerve involvement. Perineural inflammation is the histopathologic hallmark of leprosy, and this localization may reflect a vascular route of entry of Mycobacterium leprae into nerves. Once inside nerves, M. leprae are ingested by Schwann cells, with a wide array of consequences. Axonal atrophy may occur early in this process; ultimately, affected nerves undergo segmental demyelination. Knowledge of the mechanisms of nerve injury in leprosy has been greatly limited by the minimal opportunities to study affected nerves in man. The nine-banded armadillo provides the only animal model of the pathogenesis of M. leprae infection. New tools available for this model enable the study and correlation of events occurring in epidermal nerve fibers, dermal nerves, and nerve trunks, including neurophysiologic parameters, bacterial load, and changes in gene transcription in both neural and inflammatory cells. The armadillo model is likely to enhance understanding of the mechanisms of nerve injury in leprosy and offers a means of testing proposed interventions. PMID:25432810

  7. conduction blockade of the rat sciatic nerve

    L. Leitao

    2009-08-01

    Full Text Available Newly synthesized chiral xanthone derivatives (CXD from L-Valinol (XEVOL, L-Leucinol (XEL and S-(--?-4- dimethylbenzylamine (XEA are structurally very similar to local anaesthetics [1,2], to which they might share common molecular targets regarding their activity in the nervous system (e.g. anti-epileptic and anti- depressant potential. This prompted us to investigate whether these compounds exhibit anaesthetic-like properties at the neuronal cell level, focusing on their ability to block the rat sciatic nerve conduction [3]. Nerve conduction blockade might result from a selective interference with Na+ ionic currents or from a non-selective modification of membrane stabilizing properties. Thus, we also evaluated the ability of xanthone derivatives to prevent hypotonic haemolysis [4], given that erythrocytes are non-excitable cells that are devoid of voltage- gated Na+ channels.Xanthone derivatives (XEVOL, XEA and XEL and the core nucleus, CMX, were about equipotent regarding blockade of the rat sciatic nerve conduction, when these compounds were applied in the low micromolar concentration range (0.100-3 ?M. However, at this concentration range, xanthone derivatives had little or no protective effect against hypotonic haemolysis; protection of hypotonic haemolysis was observed only when XEVOL, XEL and CMX were used in higher micromolar (30-100 ?M concentrations. It is worth noting that XEA (100 ?M was virtually devoid of the anti-haemolytic effect. Data suggest that nerve conduction blockade caused by newly synthesized xanthone derivatives might result predominantly from an action on Na+ ionic currents. This effect can be dissociated from their ability to stabilize cell membranes, which only became apparent upon increasing the concentration of the xanthone derivatives to the high micromolar range.This work was supported by FCT (I&D, n226/2003; I&D, n4040/2007, FEDER, POCI, U. Porto, and Caixa Geral de Depsitos.

  8. Effect of superficial radial nerve stimulation on the activity of nigro-striatal dopaminergic neurons in the cat: role of cutaneous sensory input

    The release of 3H-dopamine (DA) continuously synthesized from 3H-thyrosine was measured in the caudate nucleus (CN) and in the substantia nigra (SN) in both sides of the brain during electrical stimulation of the superficial radial nerve in cats lightly anaesthetized with halothane. Use of appropriate electrophysiologically controlled stimulation led to selective activation of low threshold afferent fibers whereas high stimulation activated all cutaneous afferents. Results showed that low threshold fiber activation induced a decreased dopaminergic activity in CN contralateral to nerve stimulation and a concomitant increase in dopaminergic activity on the ipsilateral side. Stimulation of group I and threshold stimulation of group II afferent fibers induced changes in the release of 3H-DA mainly on the contralateral CN and SN and in the ipsilateral CN. High stimulation was followed by a general increase of the neurotransmitter release in the four structures. This shows that the nigro-striatal dopaminergic neurons are mainly-if not exclusively-controlled by cutaneous sensory inputs. This control, non-specific when high threshold cutaneous fibers are also activated. Such activations could contribute to restablish sufficient release of DA when the dopaminergic function is impaired as in Parkinson's disease. (Author)

  9. Active cheerleading with radial nerve palsy following supracondylar humerus fracture [Cheerleading mit Radialisparese nach suprakondylärer Humerusfraktur

    Herold, Christian

    2013-10-01

    Full Text Available [english] Cheerleading is associated with substantial morbidity. As such, cheerleading fall-related injuries may cause serious to fatal outcomes especially falls from attempted pyramids. We report on a female adolescent cheerleader age 14 suffering a supracondylar humerus fracture related to a fall from a pyramid. Unfortunately, lateral pinning led to complete iatrogenic radial nerve palsy. However, given an intriguing compensatory athletic function of the wrist she was able to perform cheerleading artistic figures such as flic-flac within four months after the injury with a radial nerve palsy, which is highlighted in an attached video. 18 months after the radial palsy she was admitted to our hospital and underwent neuroma resection of the initially transsected radial nerve at the elbow and sural nerve grafting for radial nerve palsy.[german] Cheerleading kann zu verschiedensten Unfällen führen. Insbesondere bei dem Versuch Pyramiden zu bilden sind bereits Todesfälle aufgetreten. Wir berichten von einer 14-jährigen Cheerleaderin welche bei dem Versuch eine Pyramide zu bilden stürzte und sich eine suprakondyläre Humerusfraktur zuzog. Bei der osteosynthetischen Versorgung kam es leider zu einer kompletten Durchtrennung des N. radialis. Dennoch konnte sie bei der gegebenen erstaunlichen Kompensation ihrer Handgelenksgeweglichkeit weiterhin schwierige Cheerleading Übungen wie Flick-Flack durchführen, was im beigefügten Video verdeutlicht wird. 18 Monate nach Eintreten der Radialisparese wurde sie in unserer Klinik vorstellig und es wurde nach einer Neuromresektion eine Suralis Interposition zur Nervenrekonstruktion durchgeführt.

  10. Laminin-based Nanomaterials for Peripheral Nerve Tissue Engineering

    Neal, Rebekah Anne

    Peripheral nerve transection occurs commonly in traumatic injury, causing motor and sensory deficits distal to the site of injury. One option for surgical repair is the nerve conduit. Conduits currently on the market are hollow tubes into which the nerve ends are sutured. Although these conduits fill the gap, they often fail due to the slow rate of regeneration over long gaps. To facilitate increased speed of regeneration and greater potential for functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in peripheral nerve regeneration. In this dissertation, I fabricated laminin-1 and laminin-polycaprolactone (PCL) blend nanofibers that mimic the geometry and functionality of the peripheral nerve basement membrane. These fibers resist hydration in aqueous media and require no harsh chemical crosslinkers. Adhesion and differentiation of both neuron-like and neuroprogenitor cells is improved on laminin nanofibrous meshes over two-dimensional laminin substrates. Blend meshes with varying laminin content were characterized for composition, tensile properties, degradation rates, and bioactivity in terms of cell attachment and axonal elongation. I have established that 10% (wt) laminin content is sufficient to retain the significant neurite-promoting effects of laminin critical in peripheral nerve repair. In addition, I utilized modified collector plate design to manipulate electric field gradients during electrospinning for the fabrication of aligned nanofibers. These aligned substrates provide enhanced directional guidance cues to the regenerating axons. Finally, I replicated the clinical problem of peripheral nerve transection using a rat tibial nerve defect model for conduit implantation. When the lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment, I observed significant recovery of sensory and motor function over six weeks. This recovery was supported by nerve conduction studies and electromyography which described impulse transmission, muscle stimulation, and foot twitch through the region of regeneration. These studies provide a firm foundation for the use of natural-synthetic blend electrospun nanofibers to enhance existing hollow nerve guidance conduits. The similarity in surgical technique and obvious benefit to the patient should lead to rapid translation into clinical application.

  11. The cell biology of T-dependent B cell activation

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  12. Viral Evasion of Natural Killer Cell Activation

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  13. TRANSPLANTATION OF HYPERTHERMIC PRECONDITIONING OLFACTORY ENSHEATHING CELLS COMBINED WITH NEURAL STEM CELLS IN THE TREATMENT OF CENTRAL NERVE INJURY.

    Guo, S G; Wang, C J; Wang, Y X; Qu, C Q

    2015-01-01

    This study aims to observe the effect of the transplantation of hyperthermic preconditioning (HPC) olfactory ensheathing cells (OECs) at 40C combined with neural stem cells (NSCs) in the treatment of spinal cord injury (SCI), based on the OECs and NSCs taken from the olfactory bulbs and cerebral cortex of newborn rats. Forty-two female Sprague Dawley (SD) rats were randomly divided into: control group, NSCs+OECs without HPC group and NSCs+HPC OECs group. Firstly, hemisected spinal cord injury model was established; the motor function recovery of the right lower limb of the rats was compared by Basso-Beatie-Bresnahan rating (BBB rating), climbing score and running time on a rotating platform during the whole experiment. At one day, two weeks and four weeks after transplantation, two rats were randomly selected from each group for section preparation. Hematoxylin and eosin (HE) staining was performed on the sections to observe and analyze the pathological changes of the spinal cord tissue, and bromodeoxyuridine (BrdU) labeling was used to observe the distribution of transplanted cells. The results demonstrated that, BBB score of the rats that were treated by transplantation of NSCs combined with HPC OCEs was distinctly improved; a rapid increase of BBB score was found two weeks after transplantation, while BBB score had slightly increased six weeks later. BBB score of the control group and the NSCs+OECs without HPC group was found with a slight increase, especially in the control group. BBB score of NSCs+HPC OECs was significantly higher than in the control group and the NSCs+OECs without HPC group at the 2nd, 4th, 6th, 8th and 12th week after treatment (Pstaining results of NSCs+HPC OECs indicated that, cells of the spinal cord were neatly arranged, close to normal. BrdU labeling results revealed that, transplanted cells were found in injury tissue, indicating that they were involved in the spinal cord repair. This study proves that, the effect of NSCs combined with HPC OECs in the treatment of SCI is better than NSCs combined with OECs without HPC, and the ratio of NSCs differentiating to neuron after inducing HPC OECs supernate is higher than that after inducing OECs supernate without HPC. PMID:26403406

  14. Nanotechnology for peripheral nerve regeneration

    E. Biazar

    2010-08-01

    Full Text Available Peripheral nerve injuries (PNI can lead to lifetime loss of function and disfigurement. Different methods such as conventional allograft procedures and using of biological tubes have problems for damaged peripheral nerves reconstruction. Designed scaffolds with natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and non-absorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structure can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons and structural features such as porosity provide clearer role of nanofibers for the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of  artificial and natural guides and  the methods to improve the performance of tubes like orientation, nanotechnology applications for nerve reconstruction, fiber and nanofibers, electrospinning methods and their application in the peripheral nerve reconstruction have been reviewed.

  15. Researches of activity of acetylcholinesterase in nerve fibres of both thymus and spleen of rats in remote terms after chronic radioactive and thermal effects

    An activity of acetylcholinesterase (AChE) in nerve fibres of both thymus and spleen in remote period (in a 6 months) after chronic irradiation, thermal effect and combined action of these two factors was investigated. The researches were conducted on 80 rats-males, which were divided into 4 groups: first was the control group, second was subjected to thermal effect (25 sessions - 37 degree, 4 hours ), third - x-ray irradiation (25 sessions -0,02 Gy), fourth - combined action of these two factors. Defined(determined) Activity of AChE was determined by microscope-photometer at length wave 490 nm. Irradiation and heat in used dozes did not cause appreciable changes, but at their combined action the activity of AChE decreased. The additional single thermal effect promoted increase of ferment activity up to a control level in nerve fibres of spleen, but not thymus. Probably, the infringement of interaction processes of systems may be stipulated by changes of activity of endocrine glands. The significant decrease of a level of insulin and glucocorticoids in blood was detected in experiments. 13 refs., 1 fig

  16. Protective effects of Ginkgo biloba extract on morphology and function of retinal ganglion cells after optic nerve transection in guinea pigs

    Zheng-gao XIE

    2009-10-01

    Full Text Available Objective: To investigate the effects of Ginkgo biloba extract (EGb 761 on the morphology and function of retinal ganglion cells (RGC in guinea pigs with optic nerve transection. Methods: Seventy-five albino guinea pigs were randomly divided into five groups: normal control group, sham-operated group, untreated group, normal saline group and EGb 761 group. No operation was performed in the normal control group. Optic nerve was merely exposed in the sham-operated group, but transected at 1.0 mm from posterior pole of the eye ball in the untreated, normal saline and EGb 761 groups. Guinea pigs in the EGb 761 group or the normal saline group received daily intraperitoneal injection of EGb 761 (100 mg/kg or corresponding volume of normal saline from 7 days before experiment to 28 days after experiment. Three guinea pigs in each group were sacrificed for apoptosis assay (TUNEL method of RGC. Pattern electoretinograms (PERGs were recorded 14 and 28 days after transection, respectively. At the end of the examination, six guinea pigs were killed for histological examination and RGC count.Results: No TUNEL-positive cells were observed in the normal control, sham-operated and EGb 761 groups, but there were TUNEL-positive cells in the untreated group and the normal saline group. The numbers of RGCs in the untreated and normal saline groups were less than those in the normal control and sham-operated groups at 14 days or 28 days (P0.05 at 14 days or 28 days. The number of RGCs was positive correlated to N95 amplitude (r=0.859, P=0.001 5.Conclusion: EGb 761 can inhibit the apoptosis of RGCs in guinea pigs after optic nerve transection, thus protect the morphology and function of RGCs.

  17. Stem Cell Ophthalmology Treatment Study (SCOTS for retinal and optic nerve diseases: a case report of improvement in relapsing auto-immune optic neuropathy

    Jeffrey N Weiss

    2015-01-01

    Full Text Available We present the results from a patient with relapsing optic neuropathy treated within the Stem Cell Ophthalmology Treatment Study (SCOTS. SCOTS is an Institutional Review Board approved clinical trial and has become the largest ophthalmology stem cell study registered at the National Institutes of Health to date (www.clinicaltrials.gov Identifier NCT 01920867. SCOTS utilizes autologous bone marrow-derived stem cells (BMSCs for treatment of retinal and optic nerve diseases. Pre-treatment and post-treatment comprehensive eye exams of a 54 year old female patient were performed both at the Florida Study Center, USA and at The Eye Center of Columbus, USA. As a consequence of a relapsing optic neuritis, the patient?s previously normal visual acuity decreased to between 20/350 and 20/400 in the right eye and to 20/70 in the left eye. Significant visual field loss developed bilaterally. The patient underwent a right eye vitrectomy with injection of BMSCs into the optic nerve of the right eyeand retrobulbar, subtenon and intravitreal injection of BMSCs in the left eye. At 15 months after SCOTS treatment, the patient?s visual acuity had improved to 20/150 in the right eye and 20/20 in the left eye. Bilateral visual fields improved markedly. Both macular thickness and fast retinal nerve fiber layer thickness were maximally improved at 3 and 6 months after SCOTS treatment. The patient also reduced her mycophenylate dose from 1,500 mg per day to 500 mg per day and required no steroid pulse therapy during the 15-month follow up.

  18. IN VITRO ACTIVITY OF DUVERNOY'S GLAND SECRETIONS FROM THE AFRICAN BOOMSLANG, Dispholidus typus, ON NERVE-MUSCLE PREPARATIONS

    R. A. YOUNG

    1996-01-01

    Full Text Available In vitro toxicity assays were performed using Duvernoy's gland secretions from the African boomslang, Dispholidus typus, and isolated rat duodenum and frog sciatic nerve-gastrocnemius muscle preparations. The Duvernoy's gland secretions of D. typus had no apparent effect on the frog sciatic nerve-gastrocnemius muscle preparation. The secretions produced an increase in baseline tonus and an increase in the rhythmic contractile force of the rat duodenum, but had no significant effect on the frequency of contractions. Atropine sulfate (10 M effectively antagonized the excitatory effects of the Duvernoy's gland secretions at concentrations 200 g/ml. Although the coagulopathic effects of D. typus are well documented, this report provides preliminary data indicating effects of this venom on neuromuscular preparations.

  19. Evaluation of Retinal Nerve Fiber Layer and Ganglion Cell Complex in Patients with Optic Neuritis or Neuromyelitis Optica Spectrum Disorders Using Optical Coherence Tomography in a Chinese Cohort

    Tian, Guohong; Li, Zhenxin; Zhao, Guixian; Feng, Chaoyi; Li, Mengwei; Huang, Yongheng; Sun, Xinghuai

    2015-01-01

    We evaluate a cohort of optic neuritis and neuromyelitis optica (NMO) spectrum disorders patients in a territory hospital in China. The peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) were measured using spectral-domain OCT after 6 months of acute onset. The results showed that both the peripapillary RNFL and macular GCC were significantly thinner in all optic neuritis subtypes compared to controls. In addition, the recurrent optic neuritis and NMO groups showed more severe damage on the RNFL and GCC pattern. PMID:26649191

  20. Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway

    DUGAN, Laura L; Creedon, Douglas J.; Johnson, Eugene M.; David M. Holtzman

    1997-01-01

    Neurotrophins such as nerve growth factor (NGF) regulate neuronal survival during development and are neuroprotective in certain models of injury to both the peripheral and the central nervous system. Although many effects of neurotrophins involve long-term changes in gene expression, several recent reports have focused on rapid effects of neurotrophins that do not involve synthesis of new gene products. Because enhanced formation of reactive oxygen species (ROS) represents one consequence of...

  1. [Suprascapular nerve entrapment].

    Fansa, H; Schneider, W

    2003-03-01

    Isolated compression of the suprascapular nerve is a rare entity, that is seldom considered in differential diagnosis of shoulder pain. Usually atrophy of supraspinatus and infraspinatus muscles is present, resulting in weakened abduction and external rotation of the shoulder. Mostly the patients do not note the paresis, but complain about a dull and burning pain over the dorsal shoulder region. In a proximal lesion (at level of the superior transverse scapular ligament) electromyography reveals changes in both muscles, while in a distal lesion (spinoglenoidal notch) only the infraspinatus shows a pathology. From 1996 to 2001 we diagnosed an isolated suprascapular entrapment in nine patients. Seven patients were operated: The ligament was removed and the nerve was neurolysed. The average age was 36 years. All patients showed pathological findings in electrophysiological and clinical examination. Five patients had an atrophy of both scapula muscles, two showed only infraspinatus muscle atrophy (one with a ganglion in the distal course of the nerve). Six patients were followed up. All showed an improvement. Pain disappeared and all patients were able to return to work and sport activities. Electrophysiological examination one year after operation revealed normal nerve conduction velocity. The number of motor units, however, showed a reduction by half compared to the healthy side. Lesions without history of trauma are usually caused by repetitive motion or posture. Weight lifting, volley ball and tennis promote the entrapment. Rarely a lesion (either idiopathic or due to external compression) is described for patients who underwent surgery. Patients with a ganglion or a defined cause of compression should be operated, patients who present without a distinct reason for compression should firstly be treated conservatively. Physiotherapy, antiphlogistic medication and avoiding of the pain triggering motion can improve the symptoms. However, if muscle atrophy is evident, an operation is indicated from our experience. PMID:12874724

  2. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  3. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 5913 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 ?g/kg/min before treatment. Patients were divided into good responders (LVEF increase ?15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with ?-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 286 to 1712 (p<0.05), H/M ratio increased from 1.790.26 to 2.070.32 (p<0.05), LVEF increased from 298% to 4810% (p<0.01), and LVDd decreased from 654 mm to 585 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  4. Trigeminal nerve schwannoma

    Prashant Kashyap

    2016-05-01

    Full Text Available Trigeminal schwannomas are uncommon slow growing encapsulated tumours composed of schwann cells. Trigeminal schwannomas are the second most common type of schwannoma, after the far more common acoustic schwannoma. In this case definite diagnosis could not be made after 1 CT (computerized tomography scan and 3 MRI (magnetic resonance imaging (outside hospital but finally after proper clinical examination and discussion with radiologist about the best diagnostic imaging in this case we reached to a diagnosis of trigeminal nerve schwannoma after MRI brain with contrast. [Int J Res Med Sci 2016; 4(5.000: 1739-1741

  5. T cell activation in the intestinal mucosa

    Montufar-Solis, Dina; Garza, Tomas; Klein, John R.

    2007-01-01

    The vast majority of peripheral T cells exist as resting lymphocytes until a signal for activation has been received. In response to antigen, this involves ligation of the T cell receptor (TCR) and signal transmission through the CD3 complex, which then initiates a cascade of intracellular events that leads to the expression of genes used in T cell activation. T cell activation also requires soluble mediators in the form of cytokines and chemokines that regulate the process in both positive a...

  6. Cell division activity during apical hook development

    Raz, V.; Koornneef, M.

    2001-01-01

    Growth during plant development is predominantly governed by the combined activities of cell division and cell elongation. The relative contribution of both activities controls the growth of a tissue. A fast change in growth is exhibited at the apical hypocotyl of etiolated seedlings where cells grow at different rates to form a hook-like structure, which is traditionally assumed to result from differential cell elongation. Using new tools we show asymmetric distribution of cell division duri...

  7. Comparative neuro tissue engineering using different nerve guide implants.

    Sinis, N; Schaller, H E; Schulte-Eversum, C; Lanaras, T; Schlosshauer, B; Doser, M; Dietz, K; Rösner, H; Müller, H W; Haerle, M

    2007-01-01

    At the moment autologous nerve grafting remains the only reasonable technique for reconstruction of peripheral nerve defects. Unfortunately, this technique has a lot of complications and disadvantages. These problems are related to the autologous nerve that is harvested for this procedure. Donor site morbidity with loss of sensitivity, painful neuroma formation and of course the restricted availability of autologous nerves stimulates the idea for alternative techniques on that field. In this paper we describe our experience with different graft materials for reconstruction of a 2 cm nerve gap in a median nerve model in rats. After implantation of various materials (biological/synthetic) the main experiments were conducted with a synthetic, biodegradable nerve conduit seeded with autologous Schwann cells. With this material we were able to reconstruct successfully a 2 cm gap in the rat median nerve. Regeneration with this material was found to be equally to an autologous nerve graft. PMID:17985547

  8. Imatinib mesylate inhibits cell growth of malignant peripheral nerve sheath tumors in vitro and in vivo through suppression of PDGFR-β

    Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive and associated with poor prognosis. Basic research to develop new treatment regimens is critically needed. The effects of imatinib mesylate on MPNSTs were examined in six human MPNST cell lines and in a xenograft mouse model. The results showed expression of platelet-derived growth factor receptor-β and suppression of its phosphorylation by imatinib mesylate in all six cell lines. Imatinib mesylate effectively suppressed MPNST cell growth in vitro at concentrations similar to those used clinically (1.46 − 4.6 μM) in three of six cell lines. Knockdown of PDGFR-β by transfection with a specific siRNA also caused significant reduction in cell proliferation in the sensitive cell lines, but not in the resistant cell lines. Furthermore, imatinib mesylate also significantly suppressed colony formation within soft agar and tumor growth in xenograft models using two of the three sensitive MPNST cell lines. There was excellent agreement between in vitro and in vivo sensitivity to imatinib mesylate, suggesting possible selection of imatinib-sensitive tumors by in vitro analysis. The results suggest that imatinib mesylate may be useful in the treatment of MPNST patients and in vitro studies may help select cells that are sensitive to imatinib mesylate in vivo

  9. Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats

    Cinelli Maria Pia

    2011-01-01

    Full Text Available Abstract The aim of this study was to obtain evidences of a possible analgesic role for palmitoylethanolamide (PEA in chronic granulomatous inflammation sustained by mast cell (MC activation in rats at 96 hours. PEA (200-400-800 ?g/mL, locally administered at time 0, reduced in a concentration-dependent manner the expression and release of NGF in comparison with saline-treated controls. PEA prevented nerve formation and sprouting, as shown by histological analysis, reduced mechanical allodynia, evaluated by Von Frey filaments, and inhibited dorsal root ganglia activation. These results were supported by the evidence that MCs in granuloma were mainly degranulated and closely localized near nerve fibres and PEA significantly reduced MC degranulation and nerves fibre formation. These findings are the first evidence that PEA, by the modulation of MC activation, controls pain perception in an animal model of chronic inflammation, suggesting its potential use for the treatment of all those painful conditions in which MC activation is an initial key step.

  10. Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr. Pers. through its neuroregenerative action

    Kah-Hui WONG

    2015-01-01

    Full Text Available Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.

  11. Role of angiotensin-(1-7) in rostral ventrolateral medulla in blood pressure regulation via sympathetic nerve activity in Wistar-Kyoto and spontaneous hypertensive rats.

    Nakagaki, Toshiaki; Hirooka, Yoshitaka; Ito, Koji; Kishi, Takuya; Hoka, Sumio; Sunagawa, Kenji

    2011-01-01

    Angiotensin (Ang)-(1-7) Ang-(1-7) is formed from angiotensin II by angiotensin-converting enzyme 2 (ACE2) and modulates the renin-angiotensin system. We evaluated whether the Ang-(1-7)-Mas axis in the rostral ventrolateral medulla (RVLM) contributes to neural mechanisms of blood pressure (BP) regulation. We microinjected Ang-(1-7), Ang-(1-7)-Mas receptor antagonist A-779, and ACE2 inhibitor DX600 into the RVLM of anesthetized Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHRs). Unilateral Ang-(1-7) microinjection induced a significantly greater increase in AP (arterial blood pressure) in SHR than in WKY. Bilateral A-779 microinjection induced a significantly greater decrease in AP and renal sympathetic nerve activity in SHR than in WKY. Bilateral DX600 microinjection induced a significantly greater decrease in AP in SHR than in WKY. Our results suggest that endogenous Ang-(1-7) in the RVLM contributes to maintain AP and renal sympathetic nerve activity both in SHR and WKY and that its activity might be enhanced in SHR. PMID:21699448

  12. An effect of wrapping peripheral nerve anastomosis with pedicled muscle flap on nerve regeneration in experiment

    Naumenko L.Yu.

    2010-01-01

    Full Text Available Despite intrinsic capacity of peripheral nerves to regenerate, functional outcomes of peripheral nerves injury remain poor. Nerve ischemia, intra-/perineurial fibrosis and neuroma formation contribute a lot to that. Several authors demonstrated beneficial effects of increased vascularization at the site of injury on peripheral nerves regeneration. The use of highly vascularized autologous tissues (greater omentum as a source of peripheral nerves neovascularization shows promising re-sults. We proposed a surgical technique in which injured peripheral nerves anastomosis was wrapped in a pedicled muscular flap and performed morphological assessment of the efficacy of such technique with the aid of immunohistochemistry. 14 rats (which underwent sciatic nerve transection were operated according to proposed technique. Another 14 rats, in which only end-to-end nerve anastomosis (without muscular wrapping was performed served as controls. Morphological changes were evaluated at 3 weeks and 3 months periods. Higher blood vessel and axon counts were observed in experimental groups at both checkpoints. There was also an increase in Schwann cells and macrophages counts, and less collagen content in pe-ripheral nerves of experimental groups. Axons in neuromas of experimental groups showed a higher degree of arrangement. We conclude that proposed surgical technique provides better vascularisation of injured peripheral nerves, which is beneficial for nerve regeneration.

  13. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  14. Blood cell activation in myeloproliferative neoplasms

    Cervantes, Francisco; Arellano-Rodrigo, Eduardo; Alvarez-Larrán, Alberto

    2009-01-01

    Myeloproliferative neoplasms are characterized by overproduction of mature blood cells and increased risk of thromboembolic complications. However, the molecular lesions associated with these disorders also activate circulating blood cells. In this perspective article, Dr. Cervantes and his colleagues examine the role of blood cell activation in the pathophysiology of thrombosis in myeloproliferative neoplasms. See related article on page 1537.

  15. Modulation of Matrix Metalloproteinases Activity in the Ventral Horn of the Spinal Cord Re-stores Neuroglial Synaptic Homeostasis and Neurotrophic Support following Peripheral Nerve Injury

    Cirillo, Giovanni; Colangelo, Anna Maria; De Luca, Ciro; Savarese, Leonilde; Barillari, Maria Rosaria; Alberghina, Lilia; Papa, Michele

    2016-01-01

    Modulation of extracellular matrix (ECM) remodeling after peripheral nerve injury (PNI) could represent a valid therapeutic strategy to prevent maladaptive synaptic plasticity in central nervous system (CNS). Inhibition of matrix metalloproteinases (MMPs) and maintaining a neurotrophic support could represent two approaches to prevent or reduce the maladaptive plastic changes in the ventral horn of spinal cord following PNI. The purpose of our study was to analyze changes in the ventral horn produced by gliopathy determined by the suffering of motor neurons following spared nerve injury (SNI) of the sciatic nerve and how the intrathecal (i.t.) administration of GM6001 (a MMPs inhibitor) or the NGF mimetic peptide BB14 modulate these events. Immunohistochemical analysis of spinal cord sections revealed that motor neuron disease following SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) response in the ventral horn of the spinal cord, indicative of reactive gliosis. These changes were paralleled by decreased glial aminoacid transporters (glutamate GLT1 and glycine GlyT1), increased levels of the neuronal glutamate transporter EAAC1, and a net increase of the Glutamate/GABA ratio, as measured by HPLC analysis. These molecular changes correlated to a significant reduction of mature NGF levels in the ventral horn. Continuous i.t. infusion of both GM6001 and BB14 reduced reactive astrogliosis, recovered the expression of neuronal and glial transporters, lowering the Glutamate/GABA ratio. Inhibition of MMPs by GM6001 significantly increased mature NGF levels, but it was absolutely ineffective in modifying the reactivity of microglia cells. Therefore, MMPs inhibition, although supplies neurotrophic support to ECM components and restores neuro-glial transporters expression, differently modulates astrocytic and microglial response after PNI. PMID:27028103

  16. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    Frdin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h and...... immunocytochemical staining of cell nuclei. After 6 days in culture in the absence of growth factors, nuclear BrdUrd incorporation was detected in 30% of fetal chromaffin cells, 1.5% of neonatal cells, and 0.1% of adult cells. Addition of 10 nM IGF-I or IGF-II increased the fraction of BrdUrd-labeled nuclei to 50......% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear Brd...

  17. Comparative study of the efficacy of decellularization treatment of allogenic and xenogeneic nerves as nerve conduits.

    Wang, Wei; Itoh, Soichiro; Takakuda, Kazuo

    2016-02-01

    The objective of this study was to compare the results of allogenic and xenogeneic nerve grafts that were treated using decellularization. The sciatic nerves of Sprague-Dawley rats and the median nerves of Japanese white rabbits were decellularized with sodium dodecyl sulfate and Triton X-100 and examined with a scanning electron microscope and immunofluorescence staining. A bridge-graft into the sciatic nerve in Wistar rats was performed with the decellularized nerves (10 mm in length for short-term evaluation; 15 mm in length for long-term evaluation). As a control, an isograft was performed. The specimens were harvested at 4 weeks postoperatively and prepared for immunohistochemistry. Function, electrophysiological and histomorphological analyses were performed to evaluate nerve recovery at 24 weeks postoperatively. The 3-dimensional structure of the basal lamina column, on which the cell adhesion molecules were integrated, was preserved through the decellularization protocols. Limited ED1-positive macrophage invasion was observed, and abundant NF 160-positive axons, which were accompanied by S-100-positive Schwann cells, penetrated through the implanted nerves. The sciatic nerve function and electrophysiological and histomorphological analyses suggest that the xenogeneic nerve graft was statistically indistinguishable from the allogenic nerve graft but slightly inferior to the isograft in supporting the axonal regeneration and functional recovery. 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 445-454, 2016. PMID:26474327

  18. Effects of acute and chronic treatment with imipramine on 5-hydroxytryptamine nerve cell groups and on bulbospinal 5-hydroxytryptamine/substance P/thyrotropin releasing hormone immunoreactive neurons in the rat. A morphometric and microdensitometric analysis.

    Kitayama, I; Janson, A M; Fuxe, K; Agnati, L F; Cintra, A; Ogren, S O; Härfstrand, A; Eneroth, P; Tsutsumi, T; Jonsson, G

    1987-01-01

    Groups of male rats were treated for a period of 14 days with imipramine (10 mumol/kg) given twice daily. Separate groups of rats received a single dose treatment using the same dose and experimental design as for the repeated treatment. Employing the avidin-biotin immunoperoxidase technique for immunohistochemistry 5-hydroxytryptamine (5-HT)-, substance P(SP)- and thyrotropin releasing hormone (TRH)-like immunoreactivities (IRs) were visualized in consecutive coronal sections of the brain stem and of the spinal cord. The IRs were studied by means of morphometric and microdensitometric procedures using automatic image analysis on profiles representing nerve terminal networks of the ventral horn of the cervical and lumbar enlargements of the spinal cord as well as their coexistence (5-HT/SP and 5-HT/TRH). With the same technique 5-HT IR was measured in the 5-HT nerve cell groups of the medulla oblongata (B1, B2, B3) and of the nucleus raphe dorsalis (B7) of the midbrain. In addition 5-HT and 5-hydroxyindolacetic acid (5-HIAA) levels were measured in the ventral and dorsal horns of the cervical and lumbar enlargements of the spinal cord using high performance liquid chromatography (HPLC). In the same parts of the spinal cord SP IR was studied by means of radioimmunoassay (RIA). The microdensitometric studies showed that chronic, but not acute, imipramine treatment selectively increased SP IR in the 5-HT/SP/TRH costoring nerve terminals of the medial part of the ventral horn in both the cervical and the lumbar enlargements. Furthermore, quantitative analysis of the entity of coexistence in the 5-HT nerve terminals networks of these areas showed that all the 5-HT nerve terminals contained SP and TRH IRs and that this phenomenon remained after acute and chronic imipramine treatment. The microdensitometric studies on the 5-HT nerve cell groups of the medulla oblongata and of the nucleus raphe dorsalis demonstrated that chronic, but not acute, imipramine treatment selectively increased 5-HT IR in the nerve cell bodies of the lateral part of group B3 as evaluated from the median grey values. Acute, but not chronic, imipramine treatment significantly increased the field area of 5-HT IR of nerve cell bodies in group B7, reflecting an increase in the mean profile area of the 5-HT IR nerve cell body profiles. Instead, the mean profile area of 5-HT IR cell bodies of group B1 was acutely reduced by imipramine.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2445912

  19. Genetically-increased taste cell population with G?-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice

    Katsukawa Hideo

    2009-12-01

    Full Text Available Abstract Background The peptide gurmarin is a selective sweet response inhibitor for rodents. In mice, gurmarin sensitivity differs among strains with gurmarin-sensitive C57BL and gurmarin-poorly-sensitive BALB strains. In C57BL mice, sweet-responsive fibers of the chorda tympani (CT nerve can be divided into two distinct populations, gurmarin-sensitive (GS and gurmarin-insensitive (GI types, suggesting the existence of two distinct reception pathways for sweet taste responses. By using the dpa congenic strain (dpa CG whose genetic background is identical to BALB except that the gene(s controlling gurmarin sensitivity are derived from C57BL, we previously found that genetically-elevated gurmarin sensitivity in dpa CG mice, confirmed by using behavioral response and whole CT nerve response analyses, was linked to a greater taste cell population co-expressing sweet taste receptors and a G? protein, G?-gustducin. However, the formation of neural pathways from the increased taste cell population to nerve fibers has not yet been examined. Results Here, we investigated whether the increased taste cell population with G?-gustducin-coupled sweet receptors would be associated with selective increment of GS fiber population or nonselective shift of gurmarin sensitivities of overall sweet-responsive fibers by examining the classification of GS and GI fiber types in dpa CG and BALB mice. The results indicated that dpa CG, like C57BL, possess two distinct populations of GS and GI types of sweet-responsive fibers with almost identical sizes (dpa CG: 13 GS and 16 GI fibers; C57BL: 16 GS and 14 GI fibers. In contrast, BALB has only 3 GS fibers but 18 GI fibers. These data indicate a marked increase of the GS population in dpa CG. Conclusion These results suggest that the increased cell population expressing T1r2/T1r3/G?-gustducin in dpa CG mice may be associated with an increase of their matched GS type fibers, and may form the distinct GS sweet reception pathway in mice. G?-gustducin may be involved in the GS sweet reception pathway and may be a key molecule for links between sweet taste receptors and cell type-specific-innervation by their matched fiber class.

  20. Beneficial effect of perindopril on cardiac sympathetic nerve activity and brain natriuretic peptide in patients with chronic heart failure. Comparison with enalapril

    In patients with chronic heart failure (CHF), it remains unclear whether perindopril is more cardioprotective than enalapril. Forty-five stable CHF outpatients undergoing conventional therapy including enalapril therapy were randomized to 2 groups [group I (n=24): continuous enalapril treatment; group II (n=21): enalapril was changed to perindopril]. Cardiac sympathetic nerve activity was evaluated using cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and 6 months after treatment. There was no difference in baseline characteristics between the 2 groups. In group I, there were no changes in MIBG parameters, left ventricular ejection fraction (LVEF) or plasma level of brain natriuretic peptide (BNP). In contrast, in group II delayed heart/mediastinum count ratio was significantly increased (2.00.07 vs 2.150.07, p=0.013) and the washout rate was significantly decreased (33.01.4 vs 30.51.2, p=0.030) after 6 months compared with the baseline value. In addition, LVEF was significantly increased and the plasma BNP level was significantly decreased. These findings suggest that for the treatment of CHF, perindopril is superior to enalapril with respect of cardiac sympathetic nerve activity and BNP. (author)

  1. Ganglion cell complex and retinal nerve fiber layer measured by fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma

    Rolle T

    2011-07-01

    Full Text Available Teresa Rolle, Cristina Briamonte, Daniela Curto, Federico Maria GrignoloEye Clinic, Section of Ophthalmology, Department of Clinical Physiopathology, University of Torino, Torino, ItalyAims: To evaluate the capability of Fourier-domain optical coherence tomography (FD-OCT to detect structural damage in patients with preperimetric glaucoma.Methods: A total of 178 Caucasian subjects were enrolled in this cohort study: 116 preperimetric glaucoma patients and 52 healthy subjects. Using three-dimensional FD-OCT, the participants underwent imaging of the ganglion cell complex (GCC and the optic nerve head. Sensitivity, specificity, likelihood ratios, and predictive values were calculated for all parameters at the first and fifth percentiles. Areas under the curves (AUCs were generated for all parameters and were compared (Delong test. For both the GCC and the optic nerve head protocols, the OR logical disjunction (Boolean logic operator was calculated.Results: The AUCs didn’t significantly differ. Macular global loss volume had the largest AUC (0.81. Specificities were high at both the fifth and first percentiles (up to 97%, but sensitivities were low, especially at the first percentile (55%–27%.Conclusion: Macular and papillary diagnostic accuracies did not differ significantly based on the 95% confidence interval. The computation of the Boolean OR operator has been found to boost diagnostic accuracy. Using the software-provided classification, sensitivity and diagnostic accuracy were low for both the retinal nerve fiber layer and the GCC scans. FD-OCT does not seem to be decisive for early detection of structural damage in patients with no functional impairment. This suggests that there is a need for analysis software to be further refined to enhance glaucoma diagnostic capability.Keywords: OCT, RNFL, GCC, diagnostic accuracy 

  2. Relation between myocardial response to dobutamine stress and sympathetic nerve activation in patients with idiopathic dilated cardiomyopathy. A comparison of 123I-MIBG scintigraphic and echocardiographic data

    It is likely that a close association exists between findings obtained by two methods: dobutamine stress echocardiography and 123I-MIBG scintigraphy. Both of these methods are associated with β-adrenergic receptor mechanisms. This study was conducted to demonstrate the relation between myocardial response to dobutamine stress and sympathetic nerve release of norepinephrine in the failing heart. In 12 patents with heart failure due to idiopathic dilated cardiomyopathy, the myocardial effects of dobutamine stress were evaluated by low-dose dobutamine stress echocardiography; and sympathetic nerve function was evaluated by scintigraphic imaging with iodine-123[123I]meta-iodobenzylguanidine (MIBG), an analogue of norepinephrine. Echocardiography provided quantitative assessment of wall motion and left ventricular dilation; radiotracer studies with 123I-MIBG provided quantitative assessment of the heart-to-mediastinum (H/M) uptake ratio and washout rate. Results showed that H/M correlated with baseline wall motion (r=0.682, p=0.0146), wall motion after dobutamine stress (r=0.758, p=0.0043), the change in wall motion (r=0.667, p=0.0178), and with left ventricular diastolic diameter (r=0.837, p=0.0007). In addition, the 123I-MIBG washout rate correlated with baseline wall motion (r=0.608, p=0.0360), wall motion after dobutamine stress (r=0.703, p=0.0107), and with the change in wall motion (r=0.664, p=0.0185). Wall motion, especially in the myocardial response to dobutamine stress, is related to sympathetic nerve activity in heart failure. (author)

  3. Expression of apolipoprotein E during nerve degeneration and regeneration.

    Ignatius, M J; Gebicke-Härter, P. J.; Skene, J H; Schilling, J W; Weisgraber, K H; Mahley, R W; Shooter, E M

    1986-01-01

    A 37-kDa glycoprotein has been described recently, whose synthesis is dramatically increased after injury of the rat sciatic and optic nerves. Cells in the nerve sheath, distal to the site of injury, produce and secrete large amounts of this protein, so that by 3 weeks after injury, it represents 2-5% of the total soluble extracellular protein in the regenerating sciatic nerve sheath, although it fails to accumulate in damaged optic nerve. Results presented here reveal extensive homology betw...

  4. Cranial Nerve Development Requires Co-Ordinated Shh and Canonical Wnt Signaling

    Kurosaka, Hiroshi; Trainor, Paul A.; Leroux-Berger, Margot; Iulianella, Angelo

    2015-01-01

    Cranial nerves govern sensory and motor information exchange between the brain and tissues of the head and neck. The cranial nerves are derived from two specialized populations of cells, cranial neural crest cells and ectodermal placode cells. Defects in either cell type can result in cranial nerve developmental defects. Although several signaling pathways are known to regulate cranial nerve formation our understanding of how intercellular signaling between neural crest cells and placode cell...

  5. In Vitro Conditioned Bone Marrow-Derived Mesenchymal Stem Cells Promote De Novo Functional Enteric Nerve Regeneration, but Not Through Direct-Transdifferentiation.

    Lin, Rong; Ding, Zhen; Ma, Huan; Shi, Huiying; Gao, Yuanjun; Qian, Wei; Shi, Weina; Sun, Zhaoli; Hou, Xiaohua; Li, Xuhang

    2015-12-01

    Injury or neurodegenerative disorders of the enteric nervous system (ENS) cause gastrointestinal dysfunctions for which there is no effective therapy. This study, using the benzalkonium chloride-induced rat gastric denervation model, aimed to determine whether transplantation of bone marrow-derived mesenchymal stem cells (BMSC) could promote ENS neuron regeneration and if so, to elucidate the mechanism. Fluorescently labeled BMSC, isolated from either WT (BMSC labeled with bis-benzimide [BBM]) or green fluorescent protein (GFP)-transgenic rats, were preconditioned in vitro using fetal gut culture media containing glial cell-derived neurotrophic factor (GDNF), and transplanted subserosally into the denervated area of rat pylorus. In the nerve-ablated pylorus, grafted BMSC survived and migrated from the subserosa to the submucosa 28 days after transplantation, without apparent dedifferentiation. A massive number of PGP9.5/NSE/HuC/D/Tuj1-positive (but GFP- and BBM-negative) neurons were effectively regenerated in denervated pylorus grafted with preconditioned BMSC, suggesting that they were regenerated de novo, not originating from trans-differentiation of the transplanted BMSC. BMSC transplantation restored both basal pyloric contractility and electric field stimulation-induced relaxation. High levels of GDNF were induced in both in vitro-preconditioned BMSC as well as the previously denervated pylorus after transplantation of preconditioned BMSC. Thus, a BMSC-initiated GDNF-positive feedback mechanism is suggested to promote neuron regeneration and growth. In summary, we have demonstrated that allogeneically transplanted preconditioned BMSC initiate de novo regeneration of gastric neuronal cells/structures that in turn restore gastric contractility in pylorus-denervated rats. These neuronal structures did not originate from the grafted BMSC. Our data suggest that preconditioned allogeneic BMSC may have therapeutic value in treating enteric nerve disorders. Stem Cells 2015;33:3545-3557. PMID:26302722

  6. Enhanced rat sciatic nerve regeneration through silicon tubes implanted with valproic acid.

    Wu, Fei; Xing, Danmou; Peng, Zhengren; Rao, Ting

    2008-05-01

    Valproic acid (VPA) is an effective antiepileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal-regulated kinase pathway, and increase B-cell lymphoma/leukemia-2 (bcl-2)and growth cone-associated protein 43 (GAP-43) levels in spinal cord. We hypothesized that VPA could enhance axonal regeneration in the rat. In the present research, we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function through a silicon tube implanted with VPA. The left sciatic nerves were exposed through dorsal-splitting incisions, and 8-mm nerve sections were excised at the middle of the thigh. Then, a 1.0-cm-long silicone tube (internal diameter,1.0 mm; exterior diameter, 2.0 mm) was used to bridge the nerve deficit, anchored to the proximal and distal terminals of the excised deficit of sciatic nerves with 9-0 nylon epineural suture. Sterile petroleum jelly was used to seal the ends of the tubes to avoid leakage. The rats in the VPA group and control group were locally delivered 10 muL VPA injection (400 mg/5 mL) and normal saline, respectively, after the operation. The sciatic nerve index (SFI) was observed in each animal at 2-week intervals and electrophysiology was studied at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed at the end of the experiment (12 weeks after the operation). Using the digital image-analysis system, the thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity, amplitude of activity potential), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the VPA group and controls ( P clinical application of VPA for the treatment of peripheral nerve injury in humans. PMID:18496777

  7. A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury

    Wu Ann

    2011-01-01

    Full Text Available Abstract Background A preconditioning stimulus can trigger a neuroprotective phenotype in the nervous system - a preconditioning nerve lesion causes a significant increase in axonal regeneration, and cerebral preconditioning protects against subsequent ischemia. We hypothesized that a preconditioning nerve lesion induces gene/protein modifications, neuronal changes, and immune activation that may affect pain sensation following subsequent nerve injury. We examined whether a preconditioning lesion affects neuropathic pain and neuroinflammation after peripheral nerve injury. Results We found that a preconditioning crush injury to a terminal branch of the sciatic nerve seven days before partial ligation of the sciatic nerve (PSNL; a model of neuropathic pain induced a significant attenuation of pain hypersensitivity, particularly mechanical allodynia. A preconditioning lesion of the tibial nerve induced a long-term significant increase in paw-withdrawal threshold to mechanical stimuli and paw-withdrawal latency to thermal stimuli, after PSNL. A preconditioning lesion of the common peroneal induced a smaller but significant short-term increase in paw-withdrawal threshold to mechanical stimuli, after PSNL. There was no difference between preconditioned and unconditioned animals in neuronal damage and macrophage and T-cell infiltration into the dorsal root ganglia (DRGs or in astrocyte and microglia activation in the spinal dorsal and ventral horns. Conclusions These results suggest that prior exposure to a mild nerve lesion protects against adverse effects of subsequent neuropathic injury, and that this conditioning-induced inhibition of pain hypersensitivity is not dependent on neuroinflammation in DRGs and spinal cord. Identifying the underlying mechanisms may have important implications for the understanding of neuropathic pain due to nerve injury.

  8. Electromechanical Nerve Stimulator

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  9. Overview of the Cranial Nerves

    ... of the brain to the back). Viewing the Cranial Nerves Twelve pairs of cranial nerves emerge from the ... or computed tomography (CT) is often needed. Testing Cranial Nerves Cranial Nerve Number Name Function Test 1st Olfactory ...

  10. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF)5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO2 and 93% O2). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is impaired. However, central sleep apnea might not directly increase cardiac sympathetic nerve activity. We suggest that central chemosensitivity, which is considered to be one of the mechanisms of CSAS, is correlated with cardiac sympathetic nerve activity. (author)

  11. Lymphoma Nerve Infiltration

    Baehring JM

    2014-01-01

    Neurolymphomatosis (NL) denotes the invasion of cranial nerves, nerve roots, plexus, or nerves by Non-Hodgkin lymphoma (NHL) or leukaemia. This occurs in the absence (primary NL) or presence (primary NL) of systemic NHL. Clinical patterns include a painful polyneuropathy or polyradiculopathy, cranial neuropathy, painless polyneuropathy, and peripheral mononeuropathy. Integration of clinical information, imaging findings, as well as histopathologic examination of involved nerves or non-neural...

  12. Role of intrahepatic innervation in regulating the activity of liver cells

    Streba, Letitia Adela Maria; Vere, Cristin Constantin; Ionescu, Alin Gabriel; Streba, Costin Teodor; Rogoveanu, Ion

    2014-01-01

    Liver innervation comprises sympathetic, parasympathetic and peptidergic nerve fibers, organized as either afferent or efferent nerves with different origins and roles. Their anatomy and physiology have been studied in the past 30 years, with different results published over time. Hepatocytes are the main cell population of the liver, making up almost 80% of the total liver volume. The interaction between hepatocytes and nerve fibers is accomplished through a wealth of neurotransmitters and s...

  13. Effect of Signal Intensity on Measurement of Ganglion Cell Complex and Retinal Nerve Fiber Layer Scans in Fourier-Domain Optical Coherence Tomography

    Zhang, Xinbo; Iverson, Shawn M.; Tan, Ou; Huang, David

    2015-01-01

    Purpose We determined the effect of Fourier-domain optical coherence tomography (OCT) signal strength index (SSI) and cropping on retinal nerve fiber layer (RNFL) and macular ganglion cell complex (GCC) scan repeatability and measurement thickness. Methods Eyes were enrolled in the longitudinal Advanced Imaging for Glaucoma Study. At each visit, three repeat scans from the optic nerve head and macular protocols were obtained. Each measurement was associated with an SSI value from 0 to 100. Measurements with similar SSI scores were grouped to calculate repeatability defined as pooled standard deviation. Within-visit analysis was used to determine how measured thickness changed in relation to change in SSI level. Results The study included 1130 eyes of 569 patients. Cropped images yielded significantly worse repeatability and they were excluded from subsequent analyses. The within-visit repeatability for RNFL and GCC measurements were significantly better with higher signal strength, and optimal cutoffs were SSI ? 37 and ? 44, respectively. The coefficient of variation was RNFL scans with SSI ? 37 and RNFL among normal (slope = 0.056 ?m/SSI unit, P RNFL and GCC thickness measurements may be improved by excluding images with cropped anatomic features and weak signal strength below recommended SSI cutoffs. Translational Relevance Measurement precision and image quality of inner eye structure by advanced imaging modality are important for clinical diagnosis and tracking of glaucoma disease. PMID:26448900

  14. Comparison of two screening bioassays, based on the frog sciatic nerve and yeast cells, for the assessment of herbicide toxicity.

    Papaefthimiou, Chrisovalantis; Cabral, Maria de Guadalupe; Mixailidou, Christina; Viegas, Cristina A; S-Correia, Isabel; Theophilidis, George

    2004-05-01

    Two different test systems, one based on the isolated sciatic nerve of an amphibian and the other on a microbial eukaryote, were used for the assessment of herbicide toxicity. More specifically, we determined the deleterious effects of increasing concentrations of herbicides of different chemical classes (phenoxyacetic acids, triazines, and acetamides), and of 2,4-dichlorophenol (2,4-DCP), a degradation product of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on electrophysiological parameters and the vitality of the axons of the isolated sciatic nerve of the frog (Rana ridibunda) and on the growth curve of the yeast Saccharomyces cerevisiae based on microtiter plate susceptibility assays. The no-observed-effect-concentration (NOEC), defined as the maximum concentration of the tested compound that has no effect on these biological parameters, was estimated. In spite of the different methodological approaches and biological systems compared, the NOEC values were identical and correlated with the lipophilicity of the tested compounds. The relative toxicity established here, 2,4-DCP > alachlor, metolachlor > metribuzin > 2,4-D, 2-methyl-4-chlorophenoxyacetic acid (MCPA), correlates with the toxicity indexes reported in the literature for freshwater organisms. Based on these results, we suggest that the relatively simple, rapid, and low-cost test systems examined here may be of interest as alternative or complementary tests for toxicological assessment of herbicides. PMID:15180372

  15. The Physics of Nerves

    Heimburg, Thomas

    2010-01-01

    The accepted model for nerve pulse propagation in biological membranes seems insufficient. It is restricted to dissipative electrical phenomena and considers nerve pulses exclusively as a microscopic phenomenon. A simple thermodynamic model that is based on the macroscopic properties of membranes allows explaining more features of nerve pulse propagation including the phenomenon of anesthesia that has so far remained unexplained.

  16. Optic nerve oxygenation

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch; la Cour, Morten; Kiilgaard, Jens Folke; Bang, Kurt; Eysteinsson, Thor

    2005-01-01

    glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen...

  17. Intraparotid facial nerve schwannoma.

    Shah H; Kantharia C; Shenoy A

    1997-01-01

    Intraparotid facial nerve schwannoma are uncommon. Preoperative diagnosis of parotid tumour as schwannoma is difficult when facial nerve function is normal. A rare case of solitary schwannoma involving the upper branch of the facial nerve is described and the literature on the subject is reviewed.

  18. Nerve lesioning with direct current

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  19. Effects of electroacupuncture at PC6 and BL15 on nerve electrical activity in spinal dorsal root and norepinephrine and dopamine contents in paraventricular nucleus of hypothalamus in rats with acute myocardial ischemia

    Meng Li

    2012-08-01

    Full Text Available OBJECTIVE: To investigate the effects of electroacupuncture (EA at Neiguan (PC6 and Xinshu (BL15 on the nerve electrical activity in spinal dorsal root and norepinephrine (NE and dopamine (DA concentrations in the paraventricular nucleus of the hypothalamus in rats with acute myocardial ischemia (AMI. METHODS: A total of 100 male Sprague-Dawley rats were randomly divided into sham-operation, model, EA at PC6, EA at BL15 and EA at both PC6 and BL15 groups with 20 rats in each group. The nerve electrical activity in spinal dorsal roots was recorded by bipolar electrodes. NE and DA concentrations in the paraventricular nucleus of the hypothalamus were detected by high-performance liquid chromatography. RESULTS: When compared with the sham-operation group, the nerve electrical activity in spinal dorsal roots was significantly increased while the NE and DA concentrations in the paraventricular nucleus of the hypothalamus were decreased in the model group (P<0.01. The nerve electrical activity in spinal dorsal roots was decreased and the NE and DA concentrations were increased in the paraventricular nucleus of the hypothalamus in the EA at PC6 group, the EA at BL15 group and the EA at both PC6 and BL15 group in comparison to those in the model group (P<0.01. The nerve electrical activity in spinal dorsal roots and the NE and DA concentrations in paraventricular nucleus of hypothalamus of the EA at both PC6 and BL15 group were significantly improved when compared to those of the EA at PC6 and EA at BL15 groups (P<0.05. CONCLUSION: EA at both PC6 and BL15 acupoints exhibits the synergistic protective effects against AMI. The possible mechanism is related to regulating the nerve electrical activity in spinal dorsal roots and the concentrations of NE and DA in paraventricular nucleus of the hypothalamus.

  20. Auditory nerve fibre responses to salicylate revisited.

    Müller, Marcus; Klinke, Rainer; Arnold, Wolfgang; Oestreicher, Elmar

    2003-09-01

    Ototoxicity of salicylate is accompanied by a temporary hearing loss and tinnitus and has therefore been used to study tinnitus in animal models. Salicylate induced elevated central auditory activity has been interpreted as a correlate of tinnitus. Whether this elevated activity in the central auditory system is due to an increased activity in the auditory nerve is still under discussion. To explore this issue, we recorded the activity of single auditory nerve fibres in anaesthetised gerbils following systemic injection of salicylic acid. Firstly, compound action potential (CAP) thresholds were determined at 5-0 min intervals. Fifteen to 30 min after 200 mg/kg salicylic acid, threshold loss developed in the high frequency range. At 2 h CAP threshold loss reached a plateau amounting to 15-20 dB above 16 kHz, 0-5 dB below 2 kHz. An almost immediate start of threshold loss was observed after 400 mg/kg salicylic acid. A plateau of threshold loss was reached after 1.5 h with values of 25 dB in the high, 5-10 dB in the low frequency range. Secondly, responses of single auditory nerve fibres were studied after administration of 200 mg/kg salicylic acid. Frequency tuning curves and rate intensity (RI) functions at characteristic frequency (CF) were measured. Two hours and more after application, single fibre thresholds were elevated by about 20 dB at all CFs. Sharpness of tuning was reduced. Mean spontaneous rate was significantly reduced at CFs below 5 kHz (mean: 44 vs 28 AP/s). At CFs above 5 kHz mean spontaneous rate remained unchanged. In RI functions no change in maximum discharge rate was observed. The altered response properties can be interpreted by the known effects of salicylate on the prestin mediated active process of the outer hair cells. The elevated activity in the central auditory system after salicylate intoxication thus cannot be caused by cochlear nerve hyperactivity. PMID:13679136

  1. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    Jolivalt, CG; Fineman, M; Deacon, Carolyn F.; Carr, RD; Calcutt, NA

    2011-01-01

    -diabetic mice were also treated with the GLP-1R agonist exenatide for 8 weeks to assess the impact of GLP-1R signalling on peripheral nerve function and structure. Results: GLP-1R protein was detected in rat dorsal root ganglia and the neurons and Schwann cells of the sciatic nerve. Protein levels were not...... affected by streptozotocin-induced diabetes. GLP-1R agonists did not signal via ERK1/2 in sciatic nerve of normal rats. However, GLP-1R agonists significantly increased pERK1/2 levels in sciatic nerves from diabetic rats, indicating that GLP-1Rs are functional in this tissue. Exenatide treatment did not...... peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signalling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control....

  2. Peripheral nerve injuries in the athlete.

    Feinberg, J H; Nadler, S F; Krivickas, L S

    1997-12-01

    Peripheral nerves are susceptible to injury in the athlete because of the excessive physiological demands that are made on both the neurological structures and the soft tissues that protect them. The common mechanisms of injury are compression, traction, ischaemia and laceration. Seddon's original classification system for nerve injuries based on neurophysiological changes is the most widely used. Grade 1 nerve injury is a neuropraxic condition, grade 2 is axonal degeneration and grade 3 is nerve transection. Peripheral nerve injuries are more common in the upper extremities than the lower extremities, tend to be sport specific, and often have a biomechanical component. While the more acute and catastrophic neurological injuries are usually obvious, many remain subclinical and are not recognised before neurological damage is permanent. Early detection allows initiation of a proper rehabilitation programme and modification of biomechanics before the nerve injury becomes irreversible. Recognition of nerve injuries requires an understanding of peripheral neuroanatomy, knowledge of common sites of nerve injury and an awareness of the types of peripheral nerve injuries that are common and unique to each sport. The electrodiagnostic exam, usually referred to as the 'EMG', consists of nerve conduction studies and the needle electrode examination. It is used to determine the site and degree of neurological injury and to predict outcome. It should be performed by a neurologist or physiatrist (physician specialising in physical medicine and rehabilitation), trained and skilled in this procedure. Timing is essential if the study is to provide maximal information. Findings such as decreased recruitment after injury and conduction block at the site of injury may be apparent immediately after injury but other findings such as abnormal spontaneous activity may take several weeks to develop. The electrodiagnostic test assists with both diagnosis of the injury and in predicting outcome. Proximal nerve injuries have a poorer prognosis for neurological recovery. The most common peripheral nerve injury in the athlete is the burner syndrome. Though primarily a football injury, burners have been reported in wrestling, hockey, basketball and weight-lifting as a result of acute head, neck and/or shoulder trauma. Most burners are self-limiting, but they occasionally produce permanent neurological deficits. The axillary nerve is commonly injured with shoulder dislocations but is also susceptible to injury by direct compression. The sciatic and common peroneal nerves can be injured by trauma. The suprascapular, musculocutaneous, ulnar, median and tibial nerves are susceptible to entrapment. The long thoracic and femoral nerves can be injured by severe traction. PMID:9421863

  3. Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38

    Chih-Yang Huang; Tung-Yuan Lai; Wei-Wen Kuo; Fuu-Jen Tsai; Wen-Kuei Fang; Chang-Hai Tsai; Chien-Liang Liu; Yueh-Sheng Chen; Yung-Ming Chang; Ying-Ting Shih

    2011-01-01

    The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic ...

  4. Thermally drawn fibers as nerve guidance scaffolds.

    Koppes, Ryan A; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Abdolrahim Poorheravi, Negin; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina

    2016-03-01

    Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246

  5. Technical Aspects of Intraoperative Monitoring of Lower Cranial Nerve Function

    Mishler, E. Tracy; Smith, Peter G

    1995-01-01

    The efficacy of monitoring facial nerve activity in decreasing long-term morbidity has promoted an interest in monitoring other at-risk cranial nerves during procedures that involve manipulation of the basal cranial nerves. This presentation details practical techniques for monitoring the lower cranial nerves, which have been experientially developed over the past 9 years. Emphasis is placed on the selection of electrodes and procedural changes required for reliable and safe stimulation of th...

  6. Activation of coagulation releases endothelial cell mitogens

    1986-01-01

    Recent studies have indicated that endothelial cell function includes elaboration of growth factors and regulation of coagulation. In this paper we demonstrate that activated coagulation Factor X (Factor Xa), a product of the coagulation mechanism generated before thrombin, induces enhanced release of endothelial cell mitogens, linking these two functions. Mitogenic activity generated by cultured bovine aortic endothelial cells in response to Factor Xa included platelet-derived growth-factor-...

  7. Mammalian nerve globins in search of functions.

    Ascenzi, Paolo; Gustincich, Stefano; Marino, Maria

    2014-04-01

    Nerve globins are present in nonvertebrates and vertebrates, the first nerve globin having been recognized in the nerve cord of the polychaete annelid Aphrodite aculeata in 1872. Later, in 2000, the first vertebrate nerve globin, named neuroglobin (Ngb), has been identified in neuronal tissues of humans and mice. Recently, cytoglobin, hemoglobin, and myoglobin have also been reported to be expressed in the mammalian nervous system. The concentration of mammalian nerve globins is ~1 μM, with the exception of Ngb that reaches approximately 100-200 μM only in the retina rod cells. Mammalian nerve globins have been hypothesized to be involved in the excitability of the nervous system, in the metabolism of reactive nitrogen and oxygen species, and in intracellular signaling pathways leading to the neuronal cell survival. Only in retina cells, mammalian Ngb may help to sustain O2 supply to mitochondria, thereby supporting the visual process in the eye. Here, the putative roles of mammalian nerve globins are reviewed. PMID:24753139

  8. The effects of normal aging on myelinated nerve fibers in monkey central nervous system

    Alan Peters

    2009-07-01

    Full Text Available The effects of aging on myelinated nerve fibers of the central nervous system are complex. Many myelinated nerve fibers in white matter degenerate and are lost, leading to some disconnections between various parts of the central nervous system. Other myelinated nerve fibers are affected differently, because only their sheaths degenerate, leaving the axons intact. Such axons are remyelinated by a series of internodes that are much shorter than the original ones and are composed of thinner sheaths. Thus the myelin-forming cells of the central nervous system, the oligodendrocytes, remain active during aging. Indeed, not only do these neuroglial cell remyelinate axons, with age they also continue to add lamellae to the myelin sheaths of intact nerve fibers, so that sheaths become thicker. It is presumed that the degeneration of myelin sheaths is due to the degeneration of the parent oligodendrocyte, and that the production of increased numbers of internodes as a consequence of remyelination requires additional oligodendrocytes. Whether there is a turnover of oligodendrocytes during life has not been studied in primates, but it has been established that over the life span of the monkey, there is a substantial increase in the numbers of oligodendrocytes. While the loss of some myelinated nerve fibers leads to some disconnections, the degeneration of other myelin sheaths and the subsequent remyelination of axons by shorter internodes slow down the rate conduction along nerve fibers. These changes affect the integrity and timing in neuronal circuits, and there is evidence that they contribute to cognitive decline.

  9. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel.

    Zhu, Yaohui; Huizinga, Jan D

    2008-01-01

    Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from -80 to + 40 mV evoked 357 +/- 159 pA current in the nystatin perforated patch configuration and 1075 +/- 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at -25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability. PMID:18194464

  10. Optic nerve oxygenation

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch; la Cour, Morten; Kiilgaard, Jens Folke; Bang, Kurt; Eysteinsson, Thor

    2005-01-01

    similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  11. Chemokines: A New Dendritic Cell Signal for T Cell Activation

    Thaiss, Christoph A; Semmling, Verena; Franken, Lars; Wagner, Hermann; Kurts, Christian

    2011-01-01

    Dendritic cells (DCs) are the main inducers and regulators of cytotoxic T lymphocyte (CTL) responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and “licensed” by helper lymphocytes. Recen...

  12. Longitudinal and Cross-Sectional Analyses of Age Effects on Retinal Nerve Fiber Layer and Ganglion Cell Complex Thickness by Fourier-Domain OCT

    Zhang, Xinbo; Francis, Brian A.; Dastiridou, Anna; Chopra, Vikas; Tan, Ou; Varma, Rohit; Greenfield, David S.; Schuman, Joel S.; Huang, David

    2016-01-01

    Purpose We studied the effects of age and intraocular pressure (IOP) on retinal nerve fiber layer (NFL) and macular ganglion cell complex (GCC) thickness in normal eyes. Methods Data from subjects from the multicenter Advanced Imaging for Glaucoma Study (AIGS) were analyzed. The data included yearly visits from the normal subjects in the AIGS study. Fourier-domain optical coherence tomography (FD-OCT) was used to measure retinal NFL and macular GCC on each visit. Mixed effect models were used to evaluate the longitudinal effect of age and IOP on the NFL and GCC thickness. The measurements at baseline were used to examine the cross-sectional effects. Results The analysis included 192 eyes (92 participants) from AIGS between 2009 and 2013. The longitudinal analyses showed overall GCC thickness decreased 0.25 ± 0.05 μm per year (P imaging technology in diagnosing and monitoring glaucoma disease. PMID:26966637

  13. The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient.

    Chen, Meilan; Xiang, Zhenghua; Cai, Jiping

    2013-09-26

    Progressive death of retinal ganglion cells (RGCs) is a major cause of irreversible visual impairment after optic nerve injury. Clinically, there are still no effective treatments for recovering the visual function at present. The probable approaches to maintain the vision and RGCs function involve in preventing RGCs from death and/or promoting the regeneration of damaged RGCs. Previous studies have shown that mesenchymal stem cells (MSCs) take neuroprotective effects on ischemia-induced cortical and spinal cord injury, however, whether MSCs have a beneficial effect on the optical nerve injury is not clearly determined. In present study, we transplanted MSCs derived from human umbilical cord blood (hUCB-MSCs) into the vitreous cavity of adult rats and investigated the probable capacity of anti-apoptosis and pro-neuroprotective effects on RGCs. RGCs were retrogradely traced by fluorescent gold particles (FG); cellular apoptosis was investigated by caspase-3 immunohistochemistry and terminal dUTP nick end labeling (TUNEL) staining. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of the retina. Growth associated protein 43 (GAP-43), an established marker for axonal regeneration, was used to visualize the regenerative process over time. Expression of P2X7 receptors (P2X7R), which are responsible for inflammatory and immune responses, was also monitored in our experiments. We found that the hUCB-MSC transplantation significantly decreased cellular apoptosis and promoted the survival of RGCs in early phase. However, this protection was transient and the RGCs could not be protected from death in the end. Consistent with apoptosis detection, P2X7R was also significantly decreased in hUCB-MSC transplanted rats in the early time but without obvious difference to the rats from control group in the end. Thus, our results imply that hUCB-MSCs take anti-apoptotic, pro-neuroregenerative and anti-inflammatory effects in the early time for acute optic nerve injury in adult rats but could not prevent RGCs from death eventually. PMID:23933426

  14. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats

    Filiz Ozyigit

    2015-08-01

    Full Text Available Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group. Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA and nitric oxide (NO, and activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (P < 0.01, levels of MDA, NO, and inducible nitric oxide synthase (iNOS positive cells (P < 0.01, P < 0.05, respectively, and increased SOD, GPx, and CAT activities (P < 0.001, P < 0.01, P < 0.05, respectively compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (P < 0.01, P < 0.05, P < 0.001 and MDA and NO levels (P < 0.05, P < 0.01 and decreased SOD, GPx, and CAT activities (P < 0.05 compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.

  15. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats.

    Ozyigit, Filiz; Kucuk, Aysegul; Akcer, Sezer; Tosun, Murat; Kocak, Emel Fatma; Kocak, Cengiz; Kocak, Ahmet; Metineren, Hasan; Genc, Osman

    2015-01-01

    Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (p<0.01), levels of MDA, NO, and inducible nitric oxide synthase (iNOS) positive cells (p<0.01, p<0.05, respectively), and increased SOD, GPx, and CAT activities (p<0.001, p<0.01, p<0.05, respectively) compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (p<0.01, p<0.05, p<0.001) and MDA and NO levels (p<0.05, p<0.01) and decreased SOD, GPx, and CAT activities (p<0.05) compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects. PMID:26614850

  16. Different dose-dependent effects of ebselen in -sciatic nerve ischemia-reperfusion injury in rats

    Ozyigit, Filiz; Kucuk, Aysegul; Akcer, Sezer; Tosun, Murat; Kocak, Fatma Emel; Kocak, Cengiz; Kocak, Ahmet; Metineren, Hasan; Genc, Osman

    2015-01-01

    Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (P < 0.01), levels of MDA, NO, and inducible nitric oxide synthase (iNOS) positive cells (P < 0.01, P < 0.05, respectively), and increased SOD, GPx, and CAT activities (P < 0.001, P < 0.01, P < 0.05, respectively) compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (P < 0.01, P < 0.05, P < 0.001) and MDA and NO levels (P < 0.05, P < 0.01) and decreased SOD, GPx, and CAT activities (P < 0.05) compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects. PMID:26614850

  17. Additional Nerve Supply of Gluteus Maximus by Common Peroneal Nerve

    Khayati Sant Ram,; Anjali Aggarwal,; Tulika Gupta; Richa Gupta,; Daisy Sahini

    2015-01-01

    During routine dissection, variation of sciatic nerve was discovered bilaterally. Sciatic nerve emerged from the pelvis through greater sciatic foramen. On both sides, it divided into common peroneal nerve and tibial nerve. Common peroneal nerve pierced the piriformis muscle with resultant splitting of the muscle into two parts. Tibial nerve emerged at the lower border of muscle, thus two divisions of sciatic nerve were separated by the inferior belly of the piriformis muscle. On the left sid...

  18. Active Gel Model of Amoeboid Cell Motility

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  19. Alcohol dehydrogenase activity in immobilized yeast cells

    A method for the immobilization of Saccharomyces cerevisiae was developed and the activity of alcohol dehydrogenase of the immobilized cells was determined. The treatment of the yeast cells with 1 % toluene followed by irradiation with acrylamide and bisacrylamide resulted in a high activity of alcohol dehydrogenase in the immobilized cells. The enzyme of the immobilized cells was stable in the pH range of 7.5 - 8.0 and the optimum pH opposed to be 8.5. Although the immobilized cells showed a rather low level of thermostability, it is suggested that they could be used for a long period of time at a temperature of 27 deg C. The immobilized cells did not exhibit any loss in the enzyme activity when stored at 4 deg C or -20 deg C. (author)

  20. Activated protein C modulates the proinflammatory activity of dendritic cells

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C-treated ovalbumin-pulsed dendritic cells had significantly less airway hyperresponsiveness, significantly decreased lung concentrations of Th1 and Th2 cytokines, and less plasma concentration of immunoglobulin E when compared to control mice. Conclusion: These results suggest that dendritic cells mediate the immunosuppressive effect of activated protein C during allergic inflammation. Keywords: allergy, dendritic cells, coagulation, protein C pathway

  1. Neuromodulation of the suprascapular nerve.

    Elahi, Foad; Reddy, Chandan G

    2014-01-01

    The shoulder joint is an enarthrodial or ball-and-socket joint. A complex network of anatomic structures endows the human shoulder with tremendous mobility, greater than any other joint in the body. Many pathologies can been found in those patients with chronic shoulder pain. The painful limitation of shoulder motion affects hand and arm motion as well; therefore, it significantly influences work performance and everyday activities as well as the quality of life. Therefore, the treatment of patients with chronic shoulder pain has major social and health economic implications. In this article we present a patient with a complex history of shoulder pathology including 7 surgeries that left the patient with chronic debilitating shoulder pain. She was suffering from chronic pain and limited mobility of the shoulder joint due to adhesive shoulder capsulitis. She was treated with a multimodality approach with the goals of increasing shoulder range of motion and decreasing her pain. This did not provide significant improvement. The suprascapular nerve supplies motor and sensory innervation to the shoulder, and can be easily accessible in the supraspinatus fossa. A suprascapular nerve block dramatically decreased her pain. This clinical observation along with confirmatory nerve block play an important role during the decision-making process for a trial period of electrical neuromodulation. She was followed for 3 months after the permanent implantation of a suprascapular nerve stimulator. Her pain and shoulder range of motion in all planes improved dramatically. Peripheral nerve stimulation (PNS) of the suprascapular nerve, in addition to multimodality pain management, is one approach to the difficult task of treating adhesive capsulitis with accompanying pain and the inability to move the shoulder. We conducted a literature review on PubMed and found no case describing a similar patient to our knowledge. PMID:25415792

  2. Peripheral Nerve Dysfunction Secondary to Lymphomatous Infiltration of the Nervous System by Non-Hodgkin's Lymphoma

    Grimm S

    2014-01-01

    Full Text Available Lymphomatous meningitis (metastasis of lymphoma cells into the cerebrospinal-fluid spaces [CSF] and neurolymphomatosis (lymphomatous infiltration of a peripheral nerve or root are neurologic complications of non-Hodgkin’s lymphoma (NHL that frequently result in significant neurologic dysfunction. Leptomeningeal metastases most commonly present as cerebral dysfunction (hydrocephalus causing headache or apraxia of gait, encephalopathy, or seizures, cranial neuropathy (diplospia, facial weakness, vertigo, hearing loss, and tongue weakness, and spinal-nerve root dysfunction (incomplete cauda equina syndrome – asymmetric lower- extremity weakness, sensory loss, or incontinence. Diagnosis is made by finding leptomeningeal enhancement on magnetic resonance imaging (MRI of the brain or spine or demonstration of lymphomatous cells by CSF cytology or flow cytometry. Treatment consists of focal radiotherapy for areas of bulky disease followed by intra-CSF chemotherapy or systemic chemotherapy. Neurolymphomatosis typically presents as a painful, sensorimotor peripheral neuropathy affecting multiple limbs in an asymmetric fashion with rapid evolution although variability in presentation can occur. Diagnosis is made by demonstration of enhancement of nerve roots on MRI of the brachial or lumbosacral plexus or peripheral nerves or by increased hyper-metabolic activity following the course of affected nerves on fluordeoxyglucose positron emission tomography (FDG-PET. Treatment of neurolymphomatosis consists of focal radiotherapy (if significant neurologic dysfunction is present and high-dose intravenous methotrexate therapy. Standard systemic chemotherapy agents are not effective since they do not penetrate the physiologic “nerve-blood barrier”. Other disorders that must be differentiated from these entities include peripheral-nerve or nerve root compression and paraneoplastic neuropathy.

  3. Imaging the trigeminal nerve

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  4. Imaging the trigeminal nerve

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  5. Diabetic Neuropathies: The Nerve Damage of Diabetes

    ... thighs hips buttocks legs Focal neuropathy affects eyes facial muscles ears pelvis and lower back chest abdomen thighs ... in response to normal body functions and physical activity. Digestive System Nerve damage to the digestive system ...

  6. The permanent anatomical effects of neonatal capsaicin on somatosensory nerves.

    Scadding, J W

    1980-01-01

    The effects of neonatal capsaicin on the fibre populations of peripheral somatosensory nerves have been investigated in adult mouse sural nerve and rat saphenous nerve. One or two doses of capsaicin, 50 mg/kg, given in the first few days of life, caused a permanent 50% reduction in the number of unmyelinated axons in mouse sural nerve and a 64% reduction in rat saphenous nerve, compared with untreated controls. Schwann cell sub-units were also reduced in number, and on average contained fewer...

  7. Genetic control of Drosophila nerve cord development

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  8. The role of exosomes in peripheral nerve regeneration

    Rosanna C Ching

    2015-01-01

    Full Text Available Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.

  9. Rho GTPase activity analysis in plant cells.

    Xu, Tongda

    2012-01-01

    Rho-family small GTPases are conserved molecular switches of signaling networks in eukaryotic cells, and regulate many cellular responses, such as cytoskeletal reorganization, gene expression, and polarized vesicular trafficking. To understand the functions of Rho GTPase, it is important to investigate how the activity of Rho GTPase is regulated. Plant Rho-like GTPases (ROPs) are known to be regulated by hormones and environmental cues. A rapid activation of ROPs by a stimulus implies a direct signaling role for the ROP GTPases. Here, I describe an ROP activity assay that allows the measurement of ROP GTPase activity that occurs within seconds upon treatment with a stimulus. This method has been successfully used to investigate auxin activation of ROPs in plant cells and will be generally useful for measuring changes in ROP activity with high time resolution (Xu et al., Cell 143:99-110, 2010). PMID:22576091

  10. Activity driven fluctuations in living cells

    Fodor, ; Gov, N S; Visco, P; Weitz, D A; van Wijland, F

    2015-01-01

    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.

  11. Retinal nerve fiber layer and ganglion cell complex thickness assessment in patients with Alzheimer disease and mild cognitive impairment. Preliminary results

    A. S. Tiganov

    2014-07-01

    Full Text Available Purpose: to investigate the retinal nerve fiber layer (RNFL and the macular ganglion cell complex (GCC in patients with Alzheimer`s disease and mild cognitive impairment.Methods: this study included 10 patients (20 eyes with Alzheimer`s disease, 10 patients with mild cognitive impairment and 10 age- and sex-matched healthy controls that had no history of dementia. All the subjects underwent psychiatric examination, including the Mini-Mental State Examination (MMSE, and complete ophthalmological examination, comprising optical coherence tomography and scanning laser polarimetry.Results: there was a significant decrease in GCC thickness in patients with Alzheimer`s disease compared to the control group, global loss volume of ganglion cells was higher than in control group. there was no significant difference among the groups in terms of RNFL thickness. Weak positive correlation of GCC thickness and MMSE results was observed.Conclusion: Our data confirm the retinal involvement in Alzheimer`s disease, as reflected by loss of ganglion cells. Further studies will clear up the role and contribution of dementia in pathogenesis of optic neuropathy.

  12. A novel nerve growth factor-responsive element in the stromelysin-1 (transin) gene that is necessary and sufficient for gene expression in PC12 cells.

    deSouza, S; Lochner, J; Machida, C M; Matrisian, L M; Ciment, G

    1995-04-21

    Stromelysin-1 (ST-1) is an extracellular matrix metalloproteinase whose expression is transcriptionally regulated by nerve growth factor (NGF) in the PC12 rat pheochromocytoma cell line. In this paper, we define sequences in the proximal ST-1 promoter that contain a novel NGF-responsive element(s). We show that this cis-acting promoter element can bind nuclear proteins from both untreated and NGF-treated PC12 cells in a specific and saturable manner and is sufficient to confer NGF-inducibility to a heterologous promoter. At least a portion of this NGF-responsive element lies within a 12-base pair region between positions -241 and -229 of the ST-1 promoter and bears no sequence homology to other known transcriptional elements. In contrast to what has been reported for fibroblasts, an AP1 site centered around position -68 does not seem to be involved in the growth factor regulation of ST-1 in PC12 cells. These results suggest that the NGF regulation of ST-1 gene expression involves different promoter elements, and possibly different transcription factors, from that described for ST-1 induction by other growth factors. PMID:7721824

  13. The furcal nerve revisited

    Nanjundappa S. Harshavardhana

    2014-10-01

    Full Text Available Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked is an independent nerve with its own ventral and dorsal branches (rootlets and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/ professionals involved in spine care.

  14. Spinal accessory nerve neurilemmoma

    A neurilemmoma of the spinal accessory nerve extending from the lower brain stem to the high cervical region, without typical jugular foramen syndome is presented. Preoperative diagnosis is difficult but should be considered in the differential diagnosis of a high cervical intradural extramedullary lesion in patients with lower cranial nerve(s) dysfunction. The value of intrathecal and intravenous contrast enhancement computed tomography (CT) myelogram is emphasized. 13 refs.; 3 figs

  15. Facial Nerve Neuroma Management

    Weber, Peter C.; Osguthorpe, J. David

    1998-01-01

    Three facial nerve neuromas were identified in the academic year 1994-1995. Each case illustrates different management dilemmas. One patient with a grade III facial nerve palsy had a small geniculate ganglion neuroma with the dilemma of decompression versus resection clear nerve section margins. The second patient underwent facial neuroma resection with cable graft reconstruction, but the permanent sections were positive. The last patient had a massive neuroma in which grafting versus other f...

  16. Direct cadherin-activated cell signaling

    Yap, Alpha S; Kovacs, Eva M.

    2003-01-01

    Classical cadherin adhesion molecules are key determinants of cell recognition and tissue morphogenesis, with diverse effects on cell behavior. Recent developments indicate that classical cadherins are adhesion-activated signaling receptors. In particular, early–immediate Rac signaling is emerging as a mechanism to coordinate cadherin–actin integration at the plasma membrane.

  17. Syndecans: synergistic activators of cell adhesion

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  18. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be

  19. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination

    Jin, Fuzi; Dong, Baoxia; Georgiou, John; Jiang, Qiuhong; Zhang, Jinyi; Bharioke, Arjun; Qiu, Frank; Lommel, Silvia; Feltri, M. Laura; Wrabetz, Lawrence; Roder, John C.; Eyer, Joel; Chen, Xiequn; Peterson, Alan C.; Siminovitch, Katherine A.

    2011-01-01

    Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation. PMID:21385763

  20. CONDUCTION IN NERVE FIBRES

    Blair, H. A.

    1934-01-01

    Data by E. A. Blair and Erlanger on the voltage-capacity curves and the nerve impulse velocities of each of several fibres in the same nerve trunk are related to Rashevsky's equation for the velocity of transmission in nerve. The results lend support to Rashevsky's analysis. Other empirical relations between the velocity and the parameters of the excitation equations indicate the correctness of the hypothesis that the action current is the primary factor in transmission, which process is carried on by the electrical excitation of successive regions of the nerve fibre by means of its action current according to the ordinary laws of electrical excitation. PMID:19872822

  1. Activation of p90 Rsk1 is sufficient for differentiation of PC12 cells

    Silverman, Eran; Frödin, Morten; Gammeltoft, Steen; Maller, James L

    2004-01-01

    We investigated the role of Rsk proteins in the nerve growth factor (NGF) signaling pathway in PC12 cells. When rat Rsk1 or murine Rsk2 proteins were transiently expressed, NGF treatment (100 ng/ml for 3 days) caused three- and fivefold increases in Rsk1 and Rsk2 activities, respectively. Increased...... activation of both wild-type Rsk proteins could be achieved by coexpression of a constitutively active (CA) mitogen-activated protein kinase (MAPK) kinase, MEK1-DD, which is known to cause differentiation of PC12 cells even in the absence of NGF. Rsk1 and Rsk2 mutated in the PDK1-binding site were not...... activated by either NGF or MEK1-DD. Expression of constitutively active Rsk1 or Rsk2 in PC12 cells resulted in highly active proteins whose levels of activity did not change either with NGF treatment or after coexpression with MEK1-DD. Rsk2-CA expression had no detectable effect on the cells. However...

  2. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.

    Ahn, Hong-Sun; Hwang, Ji-Young; Kim, Min Soo; Lee, Ja-Yeon; Kim, Jong-Wan; Kim, Hyun-Soo; Shin, Ueon Sang; Knowles, Jonathan C; Kim, Hae-Won; Hyun, Jung Keun

    2015-02-01

    Carbon nanotubes (CNTs), with their unique and unprecedented properties, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Whilst most reports have demonstrated in vitro neural cell responses of the CNTs, few studies have been performed on the in vivo efficacy of CNT-interfaced biomaterials in the repair and regeneration of neural tissues. Thus, we report here for the first time the in vivo functions of CNT-interfaced nerve conduits in the regeneration of transected rat sciatic nerve. Aminated CNTs were chemically tethered onto the surface of aligned phosphate glass microfibers (PGFs) and CNT-interfaced PGFs (CNT-PGFs) were successfully placed into three-dimensional poly(L/D-lactic acid) (PLDLA) tubes. An in vitro study confirmed that neurites of dorsal root ganglion outgrew actively along the aligned CNT-PGFs and that the CNT interfacing significantly increased the maximal neurite length. Sixteen weeks after implantation of a CNT-PGF nerve conduit into the 10 mm gap of a transected rat sciatic nerve, the number of regenerating axons crossing the scaffold, the cross-sectional area of the re-innervated muscles and the electrophysiological findings were all significantly improved by the interfacing with CNTs. This first in vivo effect of using a CNT-interfaced scaffold in the regeneration process of a transected rat sciatic nerve strongly supports the potential use of CNT-interfaced PGFs at the interface between the nerve conduit and peripheral neural tissues. PMID:25463487

  3. Transplantation of Bone Marrow-Derived Mononuclear Cells Improves Mechanical Hyperalgesia, Cold Allodynia and Nerve Function in Diabetic Neuropathy

    Naruse, Keiko; Sato, Jun; Funakubo, Megumi; HATA, MASAKI; Nakamura, Nobuhisa; Kobayashi, Yasuko; Kamiya, Hideki; Shibata, Taiga; Kondo, Masaki; Himeno, Tatsuhito; Matsubara, Tatsuaki; Oiso, Yutaka; Nakamura, Jiro

    2011-01-01

    Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline...

  4. Blockage of the neurokinin 1 receptor and capsaicin-induced ablation of the enteric afferent nerves protect SCID mice against T-cell-induced chronic colitis

    Gad, Monika; Pedersen, Anders Elm; Kristensen, Nanna Ny; Fernandez, Carmen de Felipe; Claesson, Mogens H

    2009-01-01

    BACKGROUND: The neurotransmitter substance P (SP) released by, and the transient receptor potential vanilloid (TRPV1), expressed by afferent nerves, have been implicated in mucosal neuro-immune-regulation. To test if enteric afferent nerves are of importance for the development of chronic colitis...

  5. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain

    Fjord-Larsen, L; Kusk, P; Tornøe, Jens; Juliussen, Brian Nygaard; Torp, M; Bjarkam, Carsten Reidies; Nielsen, Mette Slot; Handberg, Aase; Sørensen, Jens Christian H.; Wahlberg, LU

    2010-01-01

    , capable of local delivery of NGF. The clinical device, named NsG0202, houses an NGF-secreting cell line (NGC-0295), which is derived from a human retinal pigment epithelial (RPE) cell line, stably genetically modified to secrete NGF. Bioactivity and correct processing of NGF was confirmed in vitro. Ns...... promising approach for treating the cognitive decline in AD patients....

  6. Ceramide glycanase activities in human cancer cells.

    Basu, M; Kelly, P; O'Donnell, P; Miguel, M; Bradley, M; Sonnino, S; Banerjee, S; Basu, S

    1999-10-01

    Ceramide glycanase (CGase) activities have been detected in different human tumor cells (colon, carcinoma Colo-205; neuroblastoma, IMR-32; breast cancer lines, SKBr3 and MCF7). However, the level of enzymatic activity is lower in these cells compared to that present in other mammalian tissues reported before (Basu, M., Kelly, P., Girzadas, M. A., Li, Z., and Basu, S. Methods Enzymol. (in press)). The majority of CGase activity was found in the 100,000 g soluble supernatant fraction isolated from all these cell lines and tissues. Using the soluble enzyme, the requirement for optimum CGase activity was found to be consistent with previous observations found for rat and rabbit tissues (Basu, M., Dastgheib, S., Girzadas, M. A., O'Donnell, P. H., Westervelt, C. W., Li, Z., Inokuchi, J. I., and Basu, S. (1998) Acta Pol. Biochim. 42:327). The CGase activities from both Colo-205 and IMR-32 cells are optimum at a protein to detergent ratio of one. All the mammalian CGases, including human cancer cells, show an optimum pH between 5.5 and 5.8 in sodium acetate buffer. The CGase activities from cancer cells are found to be cation-independent; however, mercury, zinc, and copper ions seem to inhibit the enzyme activity substantially in both tumor cells lines. The mercury ion inhibition of CGase activities from all different sources indicates a possible structural homology in the CGase proteins. Radiolabeled substrates, labeled at the sphingosine double bond or at the 3-position of sphingosine without modifying double bond of sphingosine were used in this investigation. Both were active substrates with all enzyme preparations isolated from different cancer cells (apparent Km, 500 microM for nLcOse5[3H-DT]Cer and 350 microM for GgOse4[sph-3-3H]Cer with Colo-205 enzyme). Structural analogues of ceramide and sphingosine (L-PPMP. L-PDMP, alkylamines, and Tamoxifen) inhibited cancer cell CGase activities in vitro. PMID:10763812

  7. US and MR imaging of peripheral nerves in leprosy

    Martinoli, C. [Department of Radiology ' ' R' ' , DICMI, University of Genoa, Genoa (Italy); Cattedra di Radiologia ' ' R' ' , Universita di Genova, Largo Rosanna Benzi, 8, I-16132 Genoa (Italy); Derchi, L.E.; Gandolfo, N. [Department of Radiology ' ' R' ' , DICMI, University of Genoa, Genoa (Italy); Bertolotto, M. [Department of Radiology, University of Trieste, Strada di Fiume, I-34149 Trieste (Italy); Bianchi, S. [Division de Radiodiagnostic. Hopital Cantonal Huniversitaire, Rue Micheli du Crest, Geneva (Switzerland); Fiallo, P.; Nunzi, E. [Department of Tropical Medicine, University of Genoa, Largo Rosanna Benzi 8, I-16132 Genoa (Italy)

    2000-03-30

    Objective. To analyze peripheral nerves with ultrasonography (US) and magnetic resonance imaging (MR) in leprosy and assess the role of imaging in leprosy patients. Results. Leprosy nerves were classified into three groups based on imaging appearance: group I consisted of 17 normal-appearing nerves; group II, of 30 enlarged nerves with fascicular abnormalities; group III, of 11 nerves with absent fascicular structure. Group II nerves were from patients subjected to reversal reactions; 75% of patients with group III nerves had a history of erythema nodosum leprosum. Nerve compression in osteofibrous tunnels was identified in 33% of group II and 18% of group III nerves. Doppler US and MR imaging were 74% and 92% sensitive in identifying active reactions, based on detection of endoneural color flow signals, long T2 and Gd enhancement. In 64% of cases, follow-up studies showed decreased color flow and Gd uptake after steroids and decompressive surgery.Conclusions. US and MR imaging are able to detect nerves abnormalities in leprosy. Active reversal reactions are indicated by endoneural color flow signals as well as by an increased T2 signal and Gd enhancement. These signs would suggest rapid progression of nerve damage and a poor prognosis unless antireactional treatment is started. (orig.)

  8. US and MR imaging of peripheral nerves in leprosy

    Objective. To analyze peripheral nerves with ultrasonography (US) and magnetic resonance imaging (MR) in leprosy and assess the role of imaging in leprosy patients. Results. Leprosy nerves were classified into three groups based on imaging appearance: group I consisted of 17 normal-appearing nerves; group II, of 30 enlarged nerves with fascicular abnormalities; group III, of 11 nerves with absent fascicular structure. Group II nerves were from patients subjected to reversal reactions; 75% of patients with group III nerves had a history of erythema nodosum leprosum. Nerve compression in osteofibrous tunnels was identified in 33% of group II and 18% of group III nerves. Doppler US and MR imaging were 74% and 92% sensitive in identifying active reactions, based on detection of endoneural color flow signals, long T2 and Gd enhancement. In 64% of cases, follow-up studies showed decreased color flow and Gd uptake after steroids and decompressive surgery.Conclusions. US and MR imaging are able to detect nerves abnormalities in leprosy. Active reversal reactions are indicated by endoneural color flow signals as well as by an increased T2 signal and Gd enhancement. These signs would suggest rapid progression of nerve damage and a poor prognosis unless antireactional treatment is started. (orig.)

  9. Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure

    Although cardiac resynchronization using biventricular pacing (BVP) results in significant clinical improvement in patients with chronic heart failure (CHF), there is no evidence of improvement in sympathetic nerve activity (SNA). Eighteen patients with CHF (dilated cardiomyopathy/ischemic cardiomyopathy=14/4) and left ventricular (LV) ejection fraction 160 ms and dyssynchronous LV wall motion were classified into 2 groups based on the findings of 99mTc-methoxyisobutyl isonitrile (MIBI) quantitative gated single-photon emission computed tomography (SPECT) (QGS). Resynchronization was considered to be present when the difference between the QGS frame number for end-systole for the LV septal and lateral walls (dyssynchrony index) disappeared. Group A achieved resynchronization after BVP, but not Group B. In group A, New York Heart Association functional class (p=0.0002), specific activity scale (p=0.0001), total defect score (p123I-metaiodobenzylguanidine imaging (p<0.05) were significantly improved after resynchronization. However, there was no significant change in group B. Cardiac resynchronization after BVP can improve cardiac symptoms, exercise capacity, and SNA in patients with moderate to severe CHF. (author)

  10. Nerve repair: toward a sutureless approach.

    Barton, Matthew J; Morley, John W; Stoodley, Marcus A; Lauto, Antonio; Mahns, David A

    2014-10-01

    Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit. PMID:25015388

  11. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-? abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis

  12. Metabolic activity is necessary for activation of T suppressor cells by B cells

    Elkins, K.L.; Stashak, P.W.; Baker, P.J. (National Institutes of Health, Rockville, MD (USA))

    1990-04-15

    Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must (a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and (b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag.

  13. Signal propagation in nerve fiber

    Zayko, Yuriy N.

    2007-05-01

    In this paper the problem of signal propagation in nerve fiber is considered. Ohm losses and heat processes were taken into account. These permit to combine the two stages (metabolic and non-metabolic) of propagation and Na + and K + ions transmission through cell membrane due propagation. Electrodynamics of nerve fiber with losses is described by telegraph equations. Heat processes in fiber are described by an equation of entropy transfer. Ion motion at metabolic stage against the electro-chemical potential is described by negative conductance, responsible for the escape flow. The running- wave-type solutions of these equations are studied. An integral and an explicit solution of the given system are obtained. The solution represented by a series of quasi-harmonic pulses is investigated numerically. This proves the applicability of telegraph equation to the problem considered. Different types of solitary waves corresponding to various types of conductivity are also investigated.

  14. PKC and Ca2+Effect of Protein kinase C and Ca2+ on p42/p44 MAPK, Pyk2, and Src Activation in Rat Conjunctival Goblet Cells

    Hodges, Robin R.; Horikawa, Yoshitaka; Rios, Jose D.; Shatos, Marie. A.; Dartt, Darlene A.

    2007-01-01

    Conjunctival goblet cells synthesize and secrete mucins onto the ocular surface to lubricate it and protect it from bacterial infections. Mucin secretion is under neural control, and cholinergic agonists released from parasympathetic nerves are major stimuli of this secretion. The signal transduction pathways these agonists use to stimulate secretion involve activating protein kinase C (PKC) and increasing intracellular [Ca2+] to activate the non-receptor kinases Pyk2 and p60Src (Src) to tran...

  15. Optic nerve hypoplasia in fetal alcohol syndrome: an update.

    Pinazo-Duran, M D; Renau-Piqueras, J; Guerri, C; Strömland, K

    1997-01-01

    Optic nerve hypoplasia was detected in up to one half of a group of Swedish children born to alcoholic mothers. Using an experimental model of pre- and postnatal alcohol exposure in rats fed a liquid diet, reduced optic nerve size from gestational day 21 (294 +/- 26 x 10(2) microns2 vs 502 +/- 16 x 10(2) microns2; n = 6; p alcohol levels achieved in dams and their offspring. Altered glial cells and degenerating and atrophic optic axons, myelin sheaths and ganglion cells were frequent in the alcohol-exposed optic nerves. Smaller optic nerve (1.918 +/- 61 x 10(2) microns2 vs 2.195 +/- 40 x 10(2) microns2; n = 4; p alcohol exposure. In summary, alcohol as a major teratogenic agent may induce dysmorphogenesis and irremediable damage to the retina and optic nerve, which frequently manifests itself as hypoplastic optic nerve. PMID:9352281

  16. [Changes in the afferent activity of the vagus nerve and the rectal temperature in rats following Escherichia coli endotoxin administration].

    Lapsha, V I; Lukashenko, T M; Utkina, L N; Gurin, V N

    2001-10-01

    In anaesthetised rats, i.p. administration of the Echerichia coli lipopolysaccharide in doses 5 mcg/kg (LPS) increased afferent activity of the cervical vagus, whereas 100 and 1000 mcg/kg doses inhibited the afferent discharges. Pyrogen-free saline (PFS) did not alter the activity. Rectal temperature (RT) was decreased by the PFS and by large doses of the LPS. Sodium salicylate administration prevented the effects. PMID:11767451

  17. Cerebellar Purkinje cell activity drives motor learning

    Nguyen-Vu, T.D.Barbara; Kimpo, Rhea R; Rinaldi, Jacob M.; Kohli, Arunima; Zeng, Hongkui; Deisseroth, Karl; Raymond, Jennifer L

    2013-01-01

    The climbing fiber input to the cerebellar cortex is thought to provide instructive signals that drive the induction of motor skill learning. We found that optogenetic activation of Purkinje cells, the sole output neurons of the cerebellar cortex, can also drive motor learning in mice. This dual control over the induction of learning by climbing fibers and Purkinje cells can expand the learning capacity of motor circuits.

  18. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.

  19. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    Gruener, R.; Hoeger, G.

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to non-vectorial gravity by clinostat rotation to determine if microgravity, during space flights, may affect cell development and communications. Clinorotated cells showed changes consistent with the hypothesis that cell differentiation, in microgravity, is altered by interference with cytoskeleton-related mechanisms. We found: increases in the myocyte and its nuclear area, "fragmentation" of nucleoli, appearance of neuritic "aneurysms", decreased growth in the presence of "trophic" factors, and decreased yolk utilization. The effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. Some parameters returned to near control values within 48 hrs after cessation of rotation. Cells from cultures rotated at higher speeds (>50 rpm) appeared comparable to controls. Compensation by centrifugal forces may account for this finding. Our data are consistent, in principle, with effects on other, flighted cells and suggest that "vector-free" gravity may simulate certain aspects of microgravity. The distribution of acetylcholine receptor aggregates, on myocytes, was also altered. This indicates that brain development, in microgravity, may also be affected.

  20. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  1. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Maher Kurdi; Hosam Al-Ardati; Baeesa, Saleh S.

    2014-01-01

    Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct...

  2. Electrodynamic activity of healthy and cancer cells

    Pokorný, Jiří

    Vol. 329. Bristol : IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012007 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional research plan: CEZ:AV0Z20670512 Keywords : Boundary elements * Cancer cells * Electric dipole Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Electrodynamic activity of healthy and cancer cells

    Pokorný, Jiří

    Vol. 329. Bristol : IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012007 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional research plan: CEZ:AV0Z20670512 Keywords : Boundary elements * Cancer cells * Electric dipole Subject RIV: JA - Electronics ; Optoelectronics, Electric al Engineering

  4. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  5. Optic nerve sheath meningocele

    Juan Carlos Mesa-Gutirrez

    2008-10-01

    Full Text Available Juan Carlos Mesa-Gutirrez, Silvia Muoz Quiones, Jorge Arruga GinebredaDepartment of Ophthalmology, Hospital Universitari de Bellvitge, LHospitalet de Llobregat, Barcelona, SpainAbstract: A 53-year-old man presented with a 5-month history of visual loss in his left eye. Visual acuity could be corrected to 20/20 with an increased hyperopic correction. Dilated funduscopy showed faint choroidal folds and elevation of the left optic disc. The coronal view of T2-weighted magnetic resonance imaging demonstrated a fluid-filled dilated sheath surrounding normal optic nerves. General physical examination and cerebrospinal fluid analysis were normal. The subject was diagnosed as having dural ectasia of the optic nerve sheath and followed a course of acetazolamide 250 mg twice daily for three months, and displayed good anatomical and functional results during a 2-year follow-up period. Despite the fact that several authors have recommended an optic nerve decompression, most of the patients follow a benign clinical course. The role of corticosteroids is not described in the literature. Raised levels of proteins in the cerebrospinal fluid in the perioptic subarachnoidal space could be a determining factor. On the basis of an osmotic gradient between the cerebral subarachnoid space and perioptic subarachnoid space, carbonic anhydrase inhibitors could be beneficial. In contrast to other reports, we believe that surgical intervention could be reserved for patients with rapid or progressive optic nerve dysfunction.Keywords: optic nerve, perineural subaracnoid space, optic nerve meningocoele, optic nerve tumors

  6. Neuromuscular Junction Integrity after Chronic Nerve Compression Injury

    Mozaffar, Tahseen; Strandberg, Erika; Abe, Kazuko; Hilgenberg, Lutz G.; Smith, Martin A.; Gupta, Ranjan

    2009-01-01

    Chronic nerve compression injuries (CNC) are progressive demyelinating disorders characterized by a gradual decline of the nerve conduction velocity (NCV) in the affected nerve region. CNC injury induces a robust Schwann cell response with axonal sprouting, but without morphologic evidence of axonal injury. We hypothesize that early CNC injury occurs without damage to neuromuscular junction of motor axons. A well-established animal model was used to assess for damage to motor axons. As sprout...

  7. Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration

    Eric P. Knott; Mazen Assi; Pearse, Damien D.

    2014-01-01

    Disruption of axonal integrity during injury to the peripheral nerve system (PNS) sets into motion a cascade of responses that includes inflammation, Schwann cell mobilization, and the degeneration of the nerve fibers distal to the injury site. Yet, the injured PNS differentiates itself from the injured central nervous system (CNS) in its remarkable capacity for self-recovery, which, depending upon the length and type of nerve injury, involves a series of molecular events in both the injured ...

  8. Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper

    HU, LIGANG; GREER, JUSTIN B.; SOLO-GABRIELE, HELENA; FIEBER, LYNNE A.; CAI, YONG

    2013-01-01

    As, Cr, and Cu represent one potential combination of multiple metals/metalloids exposures since these three elements are simultaneously leached from chromated copper arsenate (CCA)-treated wood, a common product used for building construction, at levels that can be potentially harmful. This study investigated the neurotoxicity of As associated with CCA-treated wood when accompanied by Cr and Cu. The toxicity was evaluated on basis of a cytotoxicity model using human neuroblastoma cell line SK-N-SH. The cells were cultured with CCA-treated wood leachates or with solutions containing arsenate [As(V)], divalent copper [Cu(II)], trivalent chromium [Cr(III)] alone or in different combinations of the three elements. The toxicity was evaluated using variations in cell replication compared to controls after 96 hrs exposure. Among the three elements present in wood leachates, As played the primary role in the observed toxic effects, which exerted through multiple pathways, including the generation of oxidative stress. DOM affected the absorption of metals/metalloids into the test cells, which however did not obviously appear to impact toxicity. As toxicity was enhanced by Cu(II) and inhibited by Cr(III) at concentrations below U.S. EPA’s allowable maximum contaminant levels in drinking waters. Thus assessing As toxicity in real environments is not sufficient if based solely on the result from As. PMID:23473430

  9. Anterior interosseous nerve syndrome

    Bäumer, Philipp; Meinck, Hans-Michael; Schiefer, Johannes; Weiler, Markus; Bendszus, Martin; Kele, Henrich

    2014-01-01

    Objective: We sought to determine lesion sites and spatial lesion patterns in spontaneous anterior interosseous nerve syndrome (AINS) with high-resolution magnetic resonance neurography (MRN). Methods: In 20 patients with AINS and 20 age- and sex-matched controls, MRN of median nerve fascicles was performed at 3T with large longitudinal anatomical coverage (upper arm/elbow/forearm): 135 contiguous axial slices (T2-weighted: echo time/repetition time 52/7,020 ms, time of acquisition: 15 minutes 48 seconds, in-plane resolution: 0.25 × 0.25 mm). Lesion classification was performed by visual inspection and by quantitative analysis of normalized T2 signal after segmentation of median nerve voxels. Results: In all patients and no controls, T2 lesions of individual fascicles were observed within upper arm median nerve trunk and strictly followed a somatotopic/internal topography: affected were those motor fascicles that will form the anterior interosseous nerve further distally while other fascicles were spared. Predominant lesion focus was at a mean distance of 14.6 ± 5.4 cm proximal to the humeroradial joint. Discriminative power of quantitative T2 signal analysis and of qualitative lesion rating was high, with 100% sensitivity and 100% specificity (p < 0.0001). Fascicular T2 lesion patterns were rated as multifocal (n = 17), monofocal (n = 2), or indeterminate (n = 1) by 2 independent observers with strong agreement (kappa = 0.83). Conclusion: It has been difficult to prove the existence of fascicular/partial nerve lesions in spontaneous neuropathies using clinical and electrophysiologic findings. With MRN, fascicular lesions with strict somatotopic organization were observed in upper arm median nerve trunks of patients with AINS. Our data strongly support that AINS in the majority of cases is not a surgically treatable entrapment neuropathy but a multifocal mononeuropathy selectively involving, within the main trunk of the median nerve, the motor fascicles that continue distally to form the anterior interosseous nerve. PMID:24415574

  10. Effects of Laser Irradiation on Peripheral Nerve

    Baxter, G. D.; Chow, R.; Armati, P.; Bjordal, J. M.; Laakso, L.

    2009-06-01

    A literature review was undertaken to determine the electrophysiological effects of Laser Irradiation (LI) on peripheral mammalian nerves, as a means of elucidating the potential mechanisms underlying pain relief associated with laser therapy. Relevant computerized databases and reference lists were searched, and experts consulted for further articles. A total of 38 studies, comprising 82 separate experiments were identified. In human studies, all types of LI (red and infrared, pulsed and cw) slowed nerve conduction velocity, and reduced compound action potential of irradiated nerves. In animal studies, infrared LI suppressed conduction velocity, as well as noxious stimulation evoked potential. This review thus indicates the potential of laser irradiation to inhibit activity in peripheral nerves, and highlights one potential mechanism of action for laser-mediated pain relief.

  11. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  12. Suprascapular nerve entrapment.

    Cor, L; Azuelos, A; Alexandre, A

    2005-01-01

    It is important to be aware of neuropathy involving the suprascapular nerve. While direct trauma to the suprascapular nerve is the usual cause (direct blow to the base of the neck or posterior shoulder, shoulder dislocation or fracture), the problem may result from overuse injuries (such as repetitive tennis serving or spiking of a volley ball), excessive horizontal adduction, weight lifting, backpacking or no apparent reason. These last three years we have operated 8 cases of suprascapular nerve neurolysis at the level of suprascapular incision, and section of the transverse scapular ligament through the back supraspinal approach. PMID:15830964

  13. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO2). Cardiac function according to 99mTc-methoxyisobutylisonitrile (MIBI) QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on 123I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1±9.1 to 5.1±3.4), 123I-MIBG TDS (31±8 to 25±9), and 123I-MIBG WR (48±8% to 41±5%) and a greater increase in the specific activity scale (4.0±0.9 to 5.8±1.2 Mets), peak VO2 (16.0±3.8 to 18.3±4.7 ml·min-1·kg-1), and LVEF (27±9% to 37±10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea. (author)

  14. Autotaxin and lysophosphatidic acid1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine

    Aoki Junken

    2010-11-01

    Full Text Available Abstract Background Although neuropathic pain is frequently observed in demyelinating diseases such as Guillain-Barré syndrome and multiple sclerosis, the molecular basis for the relationship between demyelination and neuropathic pain behaviors is poorly understood. Previously, we found that lysophosphatidic acid receptor (LPA1 signaling initiates sciatic nerve injury-induced neuropathic pain and demyelination. Results In the present study, we have demonstrated that sciatic nerve injury induces marked demyelination accompanied by myelin-associated glycoprotein (MAG down-regulation and damage of Schwann cell partitioning of C-fiber-containing Remak bundles in the sciatic nerve and dorsal root, but not in the spinal nerve. Demyelination, MAG down-regulation and Remak bundle damage in the dorsal root were abolished in LPA1 receptor-deficient (Lpar1-/- mice, but these alterations were not observed in sciatic nerve. However, LPA-induced demyelination in ex vivo experiments was observed in the sciatic nerve, spinal nerve and dorsal root, all which express LPA1 transcript and protein. Nerve injury-induced dorsal root demyelination was markedly attenuated in mice heterozygous for autotaxin (atx+/-, which converts lysophosphatidylcholine (LPC to LPA. Although the addition of LPC to ex vivo cultures of dorsal root fibers in the presence of recombinant ATX caused potent demyelination, it had no significant effect in the absence of ATX. On the other hand, intrathecal injection of LPC caused potent dorsal root demyelination, which was markedly attenuated or abolished in atx+/- or Lpar1-/- mice. Conclusions These results suggest that LPA, which is converted from LPC by ATX, activates LPA1 receptors and induces dorsal root demyelination following nerve injury, which causes neuropathic pain.

  15. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    Gruener, Raphael; Hoeger, Glenn

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to nonvectorial gravity by clinostat rotation to determine the effects of microgravity on cell development and communications. Observed effects included increases in the myocyte and its nuclear area, fragmentation of nucleoli, the appearance of neuritic aneurysms, decreased growth in the presence of trophic factors, and decreased yolk utilization. These effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. It is found that, in microgravity, cell differentiation is altered by interference with cytoskeleton-related mechanisms. It is suggested that the alteration of the distribution of acetylcholine receptor aggregates on myocytes which occurs might indicate that microgravity affects brain development.

  16. The facial nerve axotomy model.

    Moran, Linda B; Graeber, Manuel B

    2004-03-01

    Experimental models such as the facial nerve axotomy paradigm in rodents allow the systematic and detailed study of the response of neurones and their microenvironment to various types of challenges. Well-studied experimental examples include peripheral nerve trauma, the retrograde axonal transport of neurotoxins and locally enhanced inflammation following the induction of experimental autoimmune encephalomyelitis in combination with axotomy. These studies have led to novel insights into the regeneration programme of the motoneurone, the role of microglia and astrocytes in synaptic plasticity and the biology of glial cells. Importantly, many of the findings obtained have proven to be valid in other functional systems and even across species barriers. In particular, microglial expression of major histocompatibility complex molecules has been found to occur in response to various types of neuronal damage and is now regarded as a characteristic component of "glial inflammation". It is found in the context of numerous neurodegenerative disorders including Parkinson's and Alzheimer's disease. The detachment of afferent axonal endings from the surface membrane of regenerating motoneurones and their subsequent displacement by microglia ("synaptic stripping") and long-lasting insulation by astrocytes have also been confirmed in humans. The medical implications of these findings are significant. Also, the facial nerve system of rats and mice has become the best studied and most widely used test system for the evaluation of neurotrophic factors. PMID:15003391

  17. Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper

    Hu, Ligang; Greer, Justin B.; SOLO-GABRIELE, HELENA; Fieber, Lynne A; Cai, Yong

    2013-01-01

    As, Cr, and Cu represent one potential combination of multiple metals/metalloids exposures since these three elements are simultaneously leached from chromated copper arsenate (CCA)-treated wood, a common product used for building construction, at levels that can be potentially harmful. This study investigated the neurotoxicity of As associated with CCA-treated wood when accompanied by Cr and Cu. The toxicity was evaluated on basis of a cytotoxicity model using human neuroblastoma cell line S...

  18. Regulation of axolotl (Ambystoma mexicanum) limb blastema cell proliferation by nerves and BMP2 in organotypic slice culture

    Lehrberg, J; Gardiner, DM

    2015-01-01

    © 2015 Lehrberg, Gardiner. We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fe...

  19. Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture

    Lehrberg, Jeffrey; David M. Gardiner

    2015-01-01

    We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was po...

  20. The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a

    Jing, Xiaotang; Wang, Ting; HUANG, SHAOHUA; Glorioso, Joseph C.; Albers, Kathryn M.

    2011-01-01

    Factors that enhance the intrinsic growth potential of adult neurons are key players in the successful repair and regeneration of neurons following injury. Injury-induced activation of transcription factors has a central role in this process because they regulate expression of regeneration-associated genes. Sox11 is a developmentally expressed transcription factor that is significantly induced in adult neurons in response to injury. Its function in injured neurons is however undefined. Here, ...