WorldWideScience

Sample records for multidrug resistance p-glycoprotein

  1. Interaction of tamoxifen with the multidrug resistance P-glycoprotein.

    Callaghan, R; Higgins, C F

    1995-01-01

    Tamoxifen is an anti-oestrogen which is currently being assessed as a prophylactic for women at high risk of breast cancer. Taxoxifen has also been shown to reverse multidrug resistance in P-glycoprotein (P-gp)-expressing cells, although the mechanism of action is unknown. In this study we demonstrate that tamoxifen interacts directly with P-gp. Plasma membranes from P-gp-expressing cells bound [3H]tamoxifen in a specific and saturable fashion. A 180 kDa membrane protein in these membranes, l...

  2. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural a

  3. Dynamics of multidrug resistance : P-glycoprotein analyses with positron emission tomography

    Hendrikse, NH; Vaalburg, W

    2002-01-01

    Multidrug resistance (MDR) is characterized by the occurrence of cross-resistance to a broad range of structurally and functionally unrelated drugs. Several mechanisms are involved in MDR. One of the most well-known mechanisms is the overexpression of P-glycoprotein (P-gp), encoded by the MDR1 gene

  4. Pharmacokinetic modeling of multidrug resistance P-glycoprotein transport of gamma-emitting substrates

    Bae, K. T.; Piwnica-Worms, D. [St. Louis, Washington Univ. (United States). Mallinckrodt Institute of Radiology. Lab. of Molecular Radiopharmacology]|[St. Louis, Washington Univ. (United States). Dept. of Molecular Biology and Pharmacology

    1997-06-01

    P-glycoprotein, the human multidrug resistance (MDR1) gene product, is an integral membrane protein expressed on the plasma membrane of MDR tumor cells and is the best characterized of a family of efflux transporters that confer chemotherapeutic resistance. The use of gamma-emitting {sup 99m}Tc-agents to image P-glycoprotein function in human tumors in vivo has been proposed. Net tumor cell content of {sup 99m}Tc-Sestamibi, {sup 99m}Tc-Tetrofosmin and several {sup 99m}Tc-Q-complexes ({sup 99m}Tc-Q58 and {sup 99m}Tc-Q63) are function of passive potential-dependent influx and MDR1 P-glycoprotein-mediated active extrusion. To better understand the overall fidelity of these P-glycoprotein substrates to report MDR activity in vivo in relation to tissue perfusion, a compartmental model of tracer pharmacokinetics was developed. Modeling indicates that tissue perfusion will impact pharmacokinetics in vivo in a manner that will tend to diminish P-glycoprotein-mediated phenotypic differences between tissues when they are perfusion-limited. However, dynamic imaging to extract efflux rate constants is independent of perfusion and may represent the highest quality methodology for collecting the desired information regarding activity of the efflux transporter. Much work remains to translate these concepts and biological targeting properties into clinical practice.

  5. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    Piwnica-Worms, D.; Vallabhaneni, V.R. [Washington Univ. Medical School, St. Louis, MO (United States); Kronauge, J.F. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  6. HZ08 Reverse P-Glycoprotein Mediated Multidrug Resistance In Vitro and In Vivo

    Hu, Zheyi; Zhou, Zaigang; Hu, Yahui; Wu, Jinhui; Li, Yunman; Huang, Wenlong

    2015-01-01

    Background Multidrug efflux transporter P-glycoprotein (P-gp) is highly expressed on membrane of tumor cells and is implicated in resistance to tumor chemotherapy. HZ08 is synthesized and studied in order to find a novel P-gp inhibitor. Methods MDCK-MDR1 monolayer transport, calcein-AM P-gp inhibition and P-gp ATPase assays were used to confirm the P-gp inhibition capability of HZ08. Furthermore, KB-WT and KB-VCR cells were used to evaluate the P-gp inhibitory activity of HZ08 both in vitro a...

  7. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  8. Effect of methylxanthines derived from pentoxifylline on P-glycoprotein mediated multidrug resistance

    In this paper study of multidrug resistance (MDR) antitumor agents - P-glycoprotein (PGP) is presented. The ability of pentoxifylline (PTX) to depress resistance mediated by overexpression of PGP in mouse leukemic cell line L 121 ONCR resistant to vincristine (VCR) was described earlier. PTX depressed the resistance of these cells in a dose and time dependent manner. This effect was accompanied by increased level of [3H]-vincristine accumulation by these cells. The methylxanthines with different length of this aliphatic side chain were synthesized and their capability to depress MDR was tested. The results indicated that the position of carbonyl group plays a crucial role for the ability of the derivative to depress MDR of L 121 ONCR cells. (authors)

  9. Modulation of P-Glycoprotein Mediated Multidrug Resistance (Mdr in Cancer Using Chemosensitizers.

    Velingkar V.S

    2010-03-01

    Full Text Available Multidrug resistance (MDR is one of the main obstacles in the chemotherapy of cancer. MDR is associated with the over expression of P-glycoprotein (P-gp, resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. First-generation agents were limited by unacceptable toxicity, whereas second-generation agents had bettertolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on drug metabolism and no clinically significant drug interactions with common chemotherapy agents. Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.

  10. CLASSICAL AND NOVEL FORMS OF MULTIDRUG-RESISTANCE AND THE PHYSIOLOGICAL FUNCTIONS OF P-GLYCOPROTEINS IN MAMMALS

    BORST, P; SCHINKEL, AH; SMIT, JJM; WAGENAAR, E; VANDEEMTER, L; SMITH, AJ; EIJDEMS, EWHM; BAAS, F; ZAMAN, GJR

    1993-01-01

    In this paper, we review recent work on multidrug resistance (MDR) in Amsterdam. We have generated mice homozygous for a disruption of one of their P-glycoprotein (Pgp) genes. The mutations do not interfere with viability or fertility, showing that these Pgps have no indispensable role in early deve

  11. Reversion of P-Glycoprotein-Mediated Multidrug Resistance in Human Leukemic Cell Line by Diallyl Trisulfide

    Qing Xia

    2012-01-01

    Full Text Available Multidrug resistance (MDR is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-mediated MDR in K562/A02 cells, and to investigate whether NF-κB suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79 without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-κB/p65 (downregulation was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of IκBα was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-κB possibly involves the molecular mechanism in the course of reversion by DATS.

  12. Reversion of p-glycoprotein-mediated multidrug resistance in human leukemic cell line by diallyl trisulfide.

    Xia, Qing; Wang, Zhi-Yong; Li, Hui-Qing; Diao, Yu-Tao; Li, Xiao-Li; Cui, Jia; Chen, Xue-Liang; Li, Hao

    2012-01-01

    Multidrug resistance (MDR) is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS) is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-)mediated MDR in K562/A02 cells, and to investigate whether NF-κB suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79) without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-κB/p65 (downregulation) was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of IκBα was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-κB possibly involves the molecular mechanism in the course of reversion by DATS. PMID:22919419

  13. Modulation of P-glycoprotein function and multidrug resistance in cancer cells by Thai plant extracts.

    Takano, M; Kakizoe, S; Kawami, M; Nagai, J; Patanasethnont, D; Sripanidkulchai, B; Yumoto, R

    2014-11-01

    The effects of ethanol extracts from Thai plants belonging to the families of Annonaceae, Rutaceae, and Zingiberaceae on P-glycoprotein (P-gp) function and multidrug resistance were examined in paclitaxel-resistant HepG2 (PR-HepG2) cells. All the extracts tested, significantly increased the accumulation of [3H]paclitaxel, a P-gp substrate, in the cells. Among nine extracts, Z01 and Z02, extracts from Curcuma comosa and Kaempferia marginata (Zingiberaceae family), respectively, potently increased the accumulation. In addition, Z01 and Z02 increased the accumulation of other P-gp substrates, rhodamine 123 and doxorubicin, in PR-HepG2 cells in a concentration-dependent manner. Increased accumulation of rhodamine 123 and doxorubicin by Z01 and Z02 was also confirmed by confocal laser scanning microscopy. The effect of Z01 and Z02 pretreatment on the expression of MDR1 mRNA was also examined. The expression of MDR1 mRNA was not affected by the treatment of PR-HepG2 cells with these extracts for 48 hours. Cytotoxicity of paclitaxel was examined by XTT and protein assays in the absence and presence of Z02. Z02 potentiated the cytotoxicity of paclitaxel in PR-HepG2 cells. These results suggest that Curcuma comosa and Kaempferia marginata belonging to Zingiberaceae are useful sources to search for new P-gp modulator(s) that can be used to overcome multidrug resistance of cancer cells. PMID:25985578

  14. Binding of modulators to mouse and human multidrug resistance P-glycoprotein. A computational study.

    Jara, Gabriel E; Vera, D Mariano A; Pierini, Adriana B

    2013-11-01

    The human multidrug resistance (MDR) P-glycoprotein (P-gp) mediates the extrusion of chemotherapeutic drugs from cancer cells. Modulators are relevant pharmaceutical targets since they are intended to control or to inhibit its pumping activity. In the present work, a common binding site for Rhodamine 123 and modulators with different modulation activity was found by molecular docking over the crystal structure of the mouse P-gp. The modulators involved a family of compounds, including derivatives of propafenone (3-phenylpropiophenone nucleus) and XR9576 (tariquidar). Our results showed that the relative binding energies estimated by molecular docking were in good correlation with the experimental activities. Preliminary classical molecular dynamics results on selected P-gp/modulator complexes were also performed in order to understand the nature of the prevalent molecular interactions and the possible main molecular features that characterize a modulator. Besides, the results obtained with a human P-gp homology model from the mouse structure are also presented and analyzed. Our observations suggest that the hydrophobicity and molecular flexibility are the main features related to the inhibitory activity. The latter factor would increase the modulator ability to fit the aromatic rings inside the transmembrane domain. PMID:24095875

  15. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites

    Cordon-Cardo, C.; O' Brien, J.P.; Casals, D.; Biedler, J.L.; Melamed, M.R.; Bertino, J.R. (Memorial Sloan-Kettering Cancer Center, New York, NY (USA)); Rittman-Grauer, L. (Hybritech, Inc., San Diego, CA (USA))

    1989-01-01

    Endothelial cells of human capillary blood vessels at the blood-brain and other blood-tissue barrier sites express P-glycoprotein as detected by mouse monoclonal antibodies against the human multidrug-resistance gene product. This pattern of endothelial cell expression may indicate a physiological role for P-glycoprotein in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as the testes. These tissues, which limit the access of systemic drugs, are known pharmacologic sanctuaries for metastatic cancer. P-glycoprotein expression in capillary endothelium of brain and testes and not other tissues (i.e., kidney and placenta) may in part explain this phenomenon and could have important implications in cancer chemotherapy.

  16. Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells

    Abraham, Ioana; Jain, Sandeep; Wu, Chung-pu; Khanfar, Mohammad A.; Kuang, Yehong; Dai, Chun-ling; Shi, Zhi; Chen, Xiang; FU, LIWU; Suresh V Ambudkar; Sayed, Khalid El; Chen, Zhe-Sheng

    2010-01-01

    Previously, we reported sipholenol A, a sipholane triterpenoid from the Red Sea sponge Callyspongia siphonella, as a potent reversal of multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp). Through extensive screening of several related sipholane triterpenoids that have been isolated from the same sponge, we identified sipholenone E, sipholenol L and siphonellinol D as potent reversals of MDR in cancer cells. These compounds enhanced the cytotoxicity of several ...

  17. In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance

    P-glycoprotein (Pgp) is an ABC (ATP binding cassette) transporter that is often overexpressed in tumours, contributing significantly to their multidrug resistance. In this study, we explored whether the radiotracers used in tumour diagnostics can be used for in vivo visualisation of Pgp-related multidrug resistance. We also examined the effects of different Pgp modulators on the accumulation of these radioligands in tumours with or without Pgp expression. In a SCID BC-17 mouse model, cells of the drug-sensitive KB-3-1 (MDR-) and the KB-V1 Pgp-expressing (MDR+) human epidermoid carcinoma cell lines were inoculated to yield tumours in opposite flanks. For in vivo scintigraphic (biodistribution) and positron emission tomography (PET) examinations, the mice were injected with technetium-99m hexakis-2-methoxybutylisonitrile (99mTc-MIBI), carbon-11 labelled methionine and fluorine-18 fluoro-2-deoxy-d-glucose (18FDG). For validation, in vitro cell studies with 99mTc-MIBI,99mTc-tetrofosmin, [11C]methionine and 18FDG were carried out using a gamma counter. The expression and function of the MDR product were proved by immunohistochemistry and spectrofluorimetry. 99mTc-MIBI uptake was significantly lower in KB-V1 cells as compared with KB-3-1-derived tumours in vivo (Pgp+/Pgp- =0.61±0.13; P+/Pgp- =0.08±0.01; P99mTc-MIBI uptake in the Pgp+ cells, while verapamil failed to modify it. 18FDG uptake was significantly higher in KB-V1 tumours (Pgp+/Pgp- =1.36±0.05; P+/Pgp-=1.52 ±0.12; P + and MDR - cell lines, verapamil significantly increased it. When the animals were treated with verapamil, the ratio of 99mTc-MIBI uptake in the MDR + tumours to that in the MDR - tumours decreased to 0.38 ±0.05 (P 18FDG uptake increased to 2.1 ±0.3 (P 11C]methionine uptake in the MDR + and MDR - tumours and cell lines, nor was [ 11C]methionine accumulation modified by cyclosporin A. Parallel administration of 18FDG and 99mTc-MIBI combined with verapamil treatment seems to be a good candidate

  18. In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance

    Marian, Terez; Balkay, Laszlo; Mikecz, Pal; Tron, Lajos [PET Center, University of Debrecen (Hungary); Szabo, Gabor; Goda, Katalin; Nagy, Henrietta; Krasznai, Zoltan [Department of Biophysics and Cell Biology, University of Debrecen, Nagyerdei krt 98, 4012, Debrecen (Hungary); Szincsak, Nora; Juhasz, Istvan [Department of Dermatology, University of Debrecen (Hungary); Galuska, Laszlo [Center of Nuclear Medicine, University of Debrecen (Hungary)

    2003-08-01

    P-glycoprotein (Pgp) is an ABC (ATP binding cassette) transporter that is often overexpressed in tumours, contributing significantly to their multidrug resistance. In this study, we explored whether the radiotracers used in tumour diagnostics can be used for in vivo visualisation of Pgp-related multidrug resistance. We also examined the effects of different Pgp modulators on the accumulation of these radioligands in tumours with or without Pgp expression. In a SCID BC-17 mouse model, cells of the drug-sensitive KB-3-1 (MDR{sup -}) and the KB-V1 Pgp-expressing (MDR{sup +}) human epidermoid carcinoma cell lines were inoculated to yield tumours in opposite flanks. For in vivo scintigraphic (biodistribution) and positron emission tomography (PET) examinations, the mice were injected with technetium-99m hexakis-2-methoxybutylisonitrile ({sup 99m}Tc-MIBI), carbon-11 labelled methionine and fluorine-18 fluoro-2-deoxy-d-glucose ({sup 18}FDG). For validation, in vitro cell studies with {sup 99m}Tc-MIBI,{sup 99m}Tc-tetrofosmin, [{sup 11}C]methionine and {sup 18}FDG were carried out using a gamma counter. The expression and function of the MDR product were proved by immunohistochemistry and spectrofluorimetry. {sup 99m}Tc-MIBI uptake was significantly lower in KB-V1 cells as compared with KB-3-1-derived tumours in vivo (Pgp{sup +}/Pgp{sup -} =0.61{+-}0.13; P<0.01) and cells in vitro (Pgp{sup +}/Pgp{sup -} =0.08{+-}0.01; P<0.001).Cyclosporin A reversed {sup 99m}Tc-MIBI uptake in the Pgp+ cells, while verapamil failed to modify it. {sup 18}FDG uptake was significantly higher in KB-V1 tumours (Pgp{sup +}/Pgp{sup -} =1.36{+-}0.05; P<0.01) and cells (Pgp{sup +}/Pgp{sup -}=1.52 {+-}0.12; P <0.001). Whereas cyclosporin A eliminated the difference between FDG uptake in MDR {sup +} and MDR {sup -} cell lines, verapamil significantly increased it. When the animals were treated with verapamil, the ratio of {sup 99m}Tc-MIBI uptake in the MDR {sup +} tumours to that in the MDR {sup

  19. High Levels of Expression of P-glycoprotein/Multidrug Resistance Protein Result in Resistance to Vintafolide.

    Guertin, Amy D; O'Neil, Jennifer; Stoeck, Alexander; Reddy, Joseph A; Cristescu, Razvan; Haines, Brian B; Hinton, Marlene C; Dorton, Ryan; Bloomfield, Alicia; Nelson, Melissa; Vetzel, Marilynn; Lejnine, Serguei; Nebozhyn, Michael; Zhang, Theresa; Loboda, Andrey; Picard, Kristen L; Schmidt, Emmett V; Dussault, Isabelle; Leamon, Christopher P

    2016-08-01

    Targeting surface receptors overexpressed on cancer cells is one way to specifically treat cancer versus normal cells. Vintafolide (EC145), which consists of folate linked to a cytotoxic small molecule, desacetylvinblastine hydrazide (DAVLBH), takes advantage of the overexpression of folate receptor (FR) on cancer cells. Once bound to FR, vintafolide enters the cell by endocytosis, and the reducing environment of the endosome cleaves the linker, releasing DAVLBH to destabilize microtubules. Vintafolide has shown efficacy and improved tolerability compared with DAVLBH in FR-positive preclinical models. As the first FR-targeting drug to reach the clinic, vintafolide has achieved favorable responses in phase II clinical trials in FR-positive ovarian and lung cancer. However, some FR-positive patients in these clinical trials do not respond to vintafolide. We sought to identify potential biomarkers of resistance to aid in the future development of this and other FR-targeting drugs. Here, we confirm that high P-glycoprotein (P-gp) expression was the strongest predictor of resistance to DAVLBH in a panel of 359 cancer cell lines. Furthermore, targeted delivery of DAVLBH via the FR, as in vintafolide, fails to overcome P-gp-mediated efflux of DAVLBH in both in vitro and in vivo preclinical models. Therefore, we suggest that patients whose tumors express high levels of P-gp be excluded from future clinical trials for vintafolide as well as other FR-targeted therapeutics bearing a P-gp substrate. Mol Cancer Ther; 15(8); 1998-2008. ©2016 AACR. PMID:27256377

  20. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    Nielsen, D; Maare, C; Eriksen, J;

    2001-01-01

    ATPase activity was neither stimulated by vinblastine nor VER. CONCLUSION: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was characterized by increased expression of Mrp1 mRNA, Mrp1, and PGP but decreased expression of mdr1a + b mRNA. The influence of......PURPOSE: To characterize irradiated murine tumor cells with respect to drug resistance, drug kinetics, and ATPase activity, and to evaluate the possible role of P-glycoprotein (PGP) and murine multidrug resistance associated protein (Mrp1) in the drug-resistant phenotype of these cells. METHODS AND...... MATERIALS: Sensitive Ehrlich ascites tumor cells (EHR2) were in vitro exposed to fractionated irradiation (60 Gy). Western blot analysis was performed for determination of PGP and Mrp1, reverse transcriptase-polymerase chain reaction (RT-PCR) for determination of mdr1a + b mRNA, and semiquantitative RT...

  1. Characterisation of non-P-glycoprotein multidrug-resistant Ehrlich ascites tumour cells selected for resistance to mitoxantrone

    Nielsen, D; Eriksen, J; Maare, C;

    2000-01-01

    (i) value for P-glycoprotein-positive cells. However, whereas verapamil (50 microM) inhibited the ATPase activity of EHR2/MITOX microsomes, it stimulated the ATPase activity of microsomes derived from P-glycoprotein-positive cells. In conclusion, the resistance in EHR2/MITOX was multifactorial and appeared...

  2. Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype.

    Kramer, R.; Weber, T K; Arceci, R.; Ramchurren, N.; Kastrinakis, W. V.; Steele, G.; Summerhayes, I. C.

    1995-01-01

    Characterisation of altered glycosylation of P-glycoprotein (P-gp) found associated with the absence of a multidrug resistance (MDR) phenotype in cell lines prompted an investigation to assess the role of post-translational processing in establishing P-gp efflux pump functionally. The clone A cell line used in this study displays a strong MDR phenotype mediated by high constitutive levels of expression of P-gp. Incubation of clone A cells with tunicamycin for different periods resulted in a t...

  3. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  4. Function of the ABC transporters, P-glycoprotein, multidrug resistance protein and breast cancer resistance protein, in minimal residual disease in acute myeloid leukemia.

    Pol, van der M.A.; Broxterman, H.J.; Pater, JM; Feller, N.; Maas, M.; Weijers, GW; Scheffer, G.L.; Allen, JD; Scheper, R.J.; Loevezijn, van A; Ossenkoppele, G.J.; Schuurhuis, G.J.

    2003-01-01

    BACKGROUND AND OBJECTIVES: Relapse is common in acute myeloid leukemia (AML) because of persistence of minimal residual disease (MRD). ABC-transporters P-glycoprotein (Pgp) and multidrug resistance protein (MRP), are thought to contribute to treatment failure, while it is unknown whether breast canc

  5. Comparison of the kinetics of active efflux of Tc-99m-MIBI in cells with P-glycoprotein-mediated and multidrug-resistance protein-associated multidrug-resistance phenotypes

    Vergote, J; Moretti, JL; De Vries, EGE; Garnier-Suillerot, A

    1998-01-01

    The overexpression of two membrane glycoproteins, P-glycoprotein and multidrug-resistance protein (MRP1) is a major cause of resistance to chemotherapeutic agents in the treatment of human cancers. Both proteins confer a similar multidrug-resistant (MDR) phenotype. Tc-99m-MIBI, a myocardial imaging

  6. Phosphorylation of the multidrug resistant associated glycoprotein (p-glycoprotein): Preparation and characterization of 7-acetyltaxol

    To assess the role of phosphorylation in P-glycoprotein function, phosphorylation of P-glycoprotein in intact cells and in cell-free membrane fractions has been studied. Results obtained with cell-free membrane fractions indicate that P-glycoprotein is a substrate for a membrane-associated protein kinase A (PK-A). To assess whether P-glycoprotein was phosphorylated in vivo by PK-A, MDR cells were incubated with [32P]Pi in the presence or absence of 100 uM 8Br-cAMP. The tryptic phosphopeptides of six P-glycoproteins from five independently derived MDR cell lines were analyzed by HPLC. A similar analysis carried out with two other P-glycoproteins (from J7.V3-1 and the lower band of J7.T1-50) demonstrated a major phosphopeptide with a retention time of 26 min. Fraction 26 was resolved as a single phosphopeptide by 2-D mapping. The phosphorylation of fraction 26 which was derived from P-glycoprotein in J7.V3-1 or the J7.T1-50 lower band was enhanced when the cells were treated with 8BrcAMP

  7. Phosphorylation of the multidrug resistant associated glycoprotein (p-glycoprotein): Preparation and characterization of 7-acetyltaxol

    Mellado, W.

    1988-01-01

    To assess the role of phosphorylation in P-glycoprotein function, phosphorylation of P-glycoprotein in intact cells and in cell-free membrane fractions has been studied. Results obtained with cell-free membrane fractions indicate that P-glycoprotein is a substrate for a membrane-associated protein kinase A (PK-A). To assess whether P-glycoprotein was phosphorylated in vivo by PK-A, MDR cells were incubated with ({sup 32}P)Pi in the presence or absence of 100 uM 8Br-cAMP. The tryptic phosphopeptides of six P-glycoproteins from five independently derived MDR cell lines were analyzed by HPLC. A similar analysis carried out with two other P-glycoproteins (from J7.V3-1 and the lower band of J7.T1-50) demonstrated a major phosphopeptide with a retention time of 26 min. Fraction 26 was resolved as a single phosphopeptide by 2-D mapping. The phosphorylation of fraction 26 which was derived from P-glycoprotein in J7.V3-1 or the J7.T1-50 lower band was enhanced when the cells were treated with 8BrcAMP.

  8. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense

    In tumor cell lines, multidrug resistance is often associated with an ATP-dependent decrease in cellular drug accumulation which is attributed to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. ABC proteins that confer drug resistance include (but are not limited to) P-glycoprotein (gene symbol ABCB1), the multidrug resistance protein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2), and the breast cancer resistance protein (BCRP, gene symbol ABCG2). In addition to their role in drug resistance, there is substantial evidence that these efflux pumps have overlapping functions in tissue defense. Collectively, these proteins are capable of transporting a vast and chemically diverse array of toxicants including bulky lipophilic cationic, anionic, and neutrally charged drugs and toxins as well as conjugated organic anions that encompass dietary and environmental carcinogens, pesticides, metals, metalloids, and lipid peroxidation products. P-glycoprotein, MRP1, MRP2, and BCRP/ABCG2 are expressed in tissues important for absorption (e.g., lung and gut) and metabolism and elimination (liver and kidney). In addition, these transporters have an important role in maintaining the barrier function of sanctuary site tissues (e.g., blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier or placenta). Thus, these ABC transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, excretion, and toxicity of xenobiotics. In this review, the role of these four ABC transporter proteins in protecting tissues from a variety of toxicants is discussed. Species variations in substrate specificity and tissue distribution of these transporters are also addressed since these properties have implications for in vivo models of toxicity used for drug discovery and development

  9. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion : Dissection of a compound MDR phenotype

    EIJDEMS, EWHM; BORST, P; JONGSMA, APM; de Jong, Steven; DEVRIES, EGE; VANGROENIGEN, M; VERSANTVOORT, CHM; NIEUWINT, AWM; BAAS, F

    1992-01-01

    A non-P-glycoprotein-mediated mechanism of multidrug resistance (non-Pgp MDR) bas been identified in doxorubicin-selected sublines of the human non-small cell lung carcinoma cell lines SW-1573. These sublines are cross-resistant to daunorubicin, VP16-213, Vinca alkaloids, colchicine, gramicidin D, a

  10. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10-3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  11. Astragaloside Ⅳ reduces the expression level of P-glycoprotein in multidrug-resistant human hepatic cancer cell lines.

    Wang, Pei-Pei; Xu, Du-Juan; Huang, Can; Wang, Wei-Ping; Xu, Wen-Ke

    2014-06-01

    Astragaloside is a saponin widely used in traditional Chinese medicine and has been reported to be a potent multidrug resistance (MDR) reversal agent. The present study investigated the role of astragaloside Ⅳ (ASIV) in the regulation of P-glycoprotein (P-gp, encoded by the mdr1 gene) and its effect on the reversal of MDR. The activity of ASIV was evaluated using human hepatic cancer cells Bel-7402 and the corresponding 5-fluorouracil (5-FU) resistant cells Bel-7402/FU. ASIV (0.08 mg/ml) potentiated the cytotoxicity of 5-FU which was demonstrated using the MTT assay on Bel-7402/FU cells. ASIV reduced the expression of P-gp as was revealed by immunocytochemistry. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that ASIV inhibited P-gp-mediated drug efflux. Furthermore, it was demonstrated that ASⅣ enhanced the drug accumulation of 5-FU using a high performance liquid chromatography (HPLC) assay for drug resistant cells. Furthermore, ASIV may downregulate the expression of P-gp, which was examined using western blot analysis and polymerase chain reaction. In conclusion, the results of the present study indicated that ASIV reverses the drug resistance of Bel-7402/FU cells by downregulating the expression of mdr1. ASIV may represent a potent modulator of P-gp-mediated MDR in hepatic cancer therapy. PMID:24676670

  12. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. PMID:25765837

  13. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus.

    Yang, C P; DePinho, S G; Greenberger, L M; Arceci, R J; Horwitz, S B

    1989-01-15

    P-Glycoprotein (P-GP) plays a pivotal role in maintaining the multidrug-resistant (MDR) phenotype. This membrane glycoprotein is overproduced in MDR cells and the endometrium of the mouse gravid uterus (Arceci, R.J., Croop, J.M., Horwitz, S.B., and Housman, D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 4350-4354). This latter observation and an interest in endogenous substrates for P-GP led to a study of the interaction of steroids with P-GP found in the endometrium of the mouse gravid uterus and in MDR cells derived from the murine macrophage-like cell J774.2. [3H]Azidopine labeling of P-GP from these two sources was inhibited by various steroids, particularly progesterone. Progesterone also markedly inhibited [3H]vinblastine binding to membrane vesicles prepared from MDR cells, enhanced vinblastine accumulation in MDR cells, and increased the sensitivity of MDR cells to vinblastine. In addition, we have demonstrated that the hydrophobicity of a steroid is important in determining its effect on inhibition of drug binding to P-GP. It is concluded that progesterone, a relatively nontoxic endogenous steroid, interacts with P-GP and is capable of reversing drug resistance in MDR cells. PMID:2562956

  14. Optimization by Molecular Fine Tuning of Dihydro-β-agarofuran Sesquiterpenoids as Reversers of P-Glycoprotein-Mediated Multidrug Resistance.

    Callies, Oliver; Sánchez-Cañete, María P; Gamarro, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Bazzocchi, Isabel L

    2016-03-10

    P-glycoprotein (P-gp) plays a crucial role in the development of multidrug resistance (MDR), a major obstacle for successful chemotherapy in cancer. Herein, we report on the development of a natural-product-based library of 81 dihydro-β-agarofuran sesquiterpenes (2-82) by optimization of the lead compound 1. The compound library was evaluated for its ability to inhibit P-gp-mediated daunomycin efflux in MDR cells. Selected analogues were further analyzed for their P-gp inhibition constant, intrinsic toxicity, and potency to reverse daunomycin and vinblastine resistances. Analogues 6, 24, 28, 59, and 66 were identified as having higher potency than compound 1 and verapamil, a first-generation P-gp modulator. SAR analysis revealed the size of the aliphatic chains and presence of nitrogen atoms are important structural characteristics to modulate reversal activity. The present study highlights the potential of these analogues as modulators of P-gp mediated MDR in cancer cells. PMID:26836364

  15. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Jianfang Chen

    Full Text Available BACKGROUND: Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α. METHODS: A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed. RESULTS: The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression. CONCLUSIONS: HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance

  16. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. PMID:27073052

  17. Modulation of the multidrug resistance P-glycoprotein: Detection with technetium-99m-sestamibi in vivo

    Luker, G.D.; Fracasso, P.M.; Dobkin, J.; Piwnica-Worms, D. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-03-01

    Overexpression of the multidrug resistance (MDR1) P-glycoprotein (Pgp) has been documented in nearly all forms of human cancers and increased levels of Pgp in some tumors correlate with poor response to treatment. Technetium-99m-sestamibi has recently been validated as a Pgp transport substrate. Pgp is also normally expressed along the biliary canalicular surface of hepatocytes and the luminal side of proximal tubule cells in the kidney, while not expressed in heart. Focused on these organs with known Pgp status, we present the findings on {sup 99m}Tc-sestamibi showed normal, prompt clearance of the radiotracer from the liver and kidneys relative to the heart. After administration of the Pgp modulator, {sup 99m}Tc-sestamibi was selectively retained in the liver and kidneys. Hepatobiliary and renal clearance of {sup 99m}Tc-sestamibi are Pgp-mediated, and inhibition of Pgp transport in these organs can be successfully imaged using {sup 99m}Tc-sestamibi in patients. Similar results might be expected with this and related radiopharmaceuticals for functional imaging of Pgp transport and modulation in tumors. 34 refs., 2 figs.

  18. Design, synthesis and evaluation of novel triazole core based P-glycoprotein-mediated multidrug resistance reversal agents.

    Jiao, Lei; Qiu, Qianqian; Liu, Baomin; Zhao, Tianxiao; Huang, Wenlong; Qian, Hai

    2014-12-15

    A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80μM) and K562/A02 cells (IC50 >80μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development. PMID:25464884

  19. Synthesis and bioevaluation of novel benzodipyranone derivatives as P-glycoprotein inhibitors for multidrug resistance reversal agents.

    Chen, Chien-Yu; Liu, Nai-Yu; Lin, Hui-Chang; Lee, Chih-Yu; Hung, Chin-Chuan; Chang, Chih-Shiang

    2016-08-01

    Multidrug resistance (MDR) is a phenomenon in which cells become resistant to structurally and mechanistically unrelated drugs, and it is one of the emerging problems in cancer therapy today. The relation between overexpression of the ABC transporter subfamily B member 1 (ABCB1/P-glycoprotein) and resistant cancers has been well characterized. In the present study, we successfully synthesized 52 novel benzodipyranone analogs and evaluated for their P-gp inhibitory activity in a P-gp transfected cell line, ABCB1/Flp-In™-293. Among these derivatives, 5a bearing on the 3-methylphenyl substituent, displayed the most potent P-gp inhibitory activity, which can enable the increase of the intracellular accumulation of P-gp substrate Calcein-AM. 5a exhibited more potency on promoted anticancer drugs cytotoxicity by reversing P-gp-mediated drug resistance in both ABCB1/Flp-In™-293 and KBvin cell lines. In particular, the compound 5a sensitized ABCB1/Flp-In™-293 cells toward paclitaxel, vincristine, and doxorubicin by 16.1, 21.0, and 1.6-fold at 10 μM, respectively. Further, 5a dramatically sensitized the resistant cell line KBvin toward paclitaxel and vincristine by 23.1 and 29.7-fold at 10 μM, respectively. It's possible that its mechanism of MDR inhibition can restore the intracellular accumulation of drugs and eventually chemosensitize cancer cells to anticancer drugs and reduce ABCB1 mRNA expression level. PMID:27131064

  20. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    Purpose: To characterize irradiated murine tumor cells with respect to drug resistance, drug kinetics, and ATPase activity, and to evaluate the possible role of P-glycoprotein (PGP) and murine multidrug resistance associated protein (Mrp1) in the drug-resistant phenotype of these cells. Methods and Materials: Sensitive Ehrlich ascites tumor cells (EHR2) were in vitro exposed to fractionated irradiation (60 Gy). Western blot analysis was performed for determination of PGP and Mrp1, reverse transcriptase-polymerase chain reaction (RT-PCR) for determination of mdr1a + b mRNA, and semiquantitative RT-PCR for Mrp1 mRNA. The clonogenic assay was applied to investigate sensitivity, whereas the steady-state drug accumulation of daunorubicin (DNR), 3H-vincristine (VCR), and 3H-etoposide (VP16) was measured by spectrofluorometry and scintillation counting, respectively. For determining of ATPase activity, the release of inorganic phosphate from ATP was quantified using a colorimetric method. Results: Compared with EHR2, the irradiated cell line EHR2/irr showed increased expression of PGP (threefold), Mrp1 (eightfold), and Mrp1 mRNA (sixfold), and a slight reduction of mdr1b mRNA, whereas mdr1a was present in EHR2 but could not be detected in EHR2/irr. EHR2/irr developed sixfold resistance to VP16, twofold resistance to vincristine, but remained sensitive to DNR. Addition of the PGP inhibitor, verapamil (VER) or depletion of glutathione by buthionine sulfoximine (BSO) partly reversed the resistance in EHR2/irr. In EHR2/irr, the steady-state accumulation of 3H-VCR and 3H-VP16 was significantly decreased as compared with EHR2, whereas the accumulation of DNR was unchanged. The ATPase activity of plasma membrane vesicles prepared from EHR2/irr cells was similar to that of wild-type EHR2 cells. The ATPase activity was neither stimulated by vinblastine nor VER. Conclusion: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was

  1. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance.

    Seebacher, Nicole; Lane, Darius J R; Richardson, Des R; Jansson, Patric J

    2016-07-01

    Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within. PMID:27154979

  2. Binding diversity of antibodies against external and internal epitopes of the multidrug resistance gene product P-glycoprotein

    Lehne, G.; De Angelis, P.; Clausen, O.P.F.; Egeland, T.; Rugstad, H.E. [National Hospital, Oslo (Norway)] [and others

    1995-07-01

    P-glycoprotein (Pgp) is a trans-membraneous protein that is associated with multidrug resistance (MDR) in human cancer, including hepatocellular carcinomas and leukemia. There is no consensus regarding methods of choice for analysis of Pgp expression, and development of reliable analytical methods is now essential. We have studied the Pgp expression in human hepatoma and leukemia cell lines using flow cytometry. The aim of the study was to compare binding properties of anti-Pgp antibodies reacting with surface (MRK16, UIC2) and cytoplasmic (C219, JSB-1) epitopes to assess which antibody performed best with respect to fluorescence discrimination. By histogram subtraction the fractions of resistant human hepatoma cells positive for Pgp were 99% (MRK16), 97% (UIC2), 77% (USB-1), and 51% (C219), demonstrating variations in antibody reactivity. The resolution in detecting decreasing levels of Pgp in hepatoma cells was superior for the externally binding antibodies, showing that there is a correlation between antibody reactivity and fluorescence discrimination. Similar results were obtained for parental and resistant KG1a human leukemia cell lines. The Pgp epitopes remained reactive to the anti-Pgp MAbs after methanol fixation and cryopreservation. By dual parameter flow cytometry it was shown that Pgp expression in viable cells may be assessed together with uptake of epirubicin, which was low in cells expressing high levels of Pgp and vice versa. In conclusion, all tested antibodies proved useful for flow cytometric detection of high levels of Pgp, but the externally binding ones were superior in detection of low and variable levels of Pgp. 36 refs., 8 figs., 1 tab.

  3. In vivo imaging and specific targeting of P-glycoprotein expression in multidrug resistant nude mice xenografts with [125I]MRK-16 monoclonal antibody

    Multidrug resistance (MDR) in tumors is associated with P-glycoprotein (Pgp) expression. In vivo quantitation of Pgp may allow MDR to be evaluated noninvasively prior to treatment planning. The purpose of this study was to radiolabel MRK-16, a monoclonal antibody that targets an external epitope of P-glycoprotein, and perform in vivo quantitation of P-glycoprotein in a MDR xenograft nude mouse model. MRK-16 was labeled with 125I by the iodogen method, with subsequent purification by size exclusion chromatography. Groups of 10 Balb/c mice were each xenografted with colchicine-resistant or -sensitive neuroblastoma cell lines, respectively. Whole body clearance and tumor uptake over time was quantitated by gamma camera imaging, and biodistribution studies were performed with [125]MRK-16 and an isotype matched control antibody, A33. Quantitative autoradiography and immunohistochemistry analysis of tumors was also evaluated to confirm specific targeting of [125I]MRK-16. Peak tumor uptake was at 2-3 days post-injection, and was significantly greater in resistance compared to sensitive tumors (mean % injected dose/g ± SD) (18.76 ± 2.94 vs 10.93 ± 0.96; p 125I]MRK-16 was confirmed by comparison to [131I]A33 in biodistribution studies, and localized to cellular components of tissue stroma by comparison of histologic and autoradiographic sections of sensitive and resistant tumors. Immunoblot analysis demonstrated a 4.5-fold difference in P-glycoprotein expression between sensitive and resistant cell lines without colchicine selective pressure. We conclude that in vivo quantitation of P-glycoprotein in MDR tumors can be performed with [125I]MRK-16. These findings suggest a potential clinical application for radiolabeled MRK-16 in the in vivo evaluation of multidrug resistance in tumors

  4. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance

    Douglas J. Swartz

    2014-06-01

    Full Text Available Pgp (P-glycoprotein is a prototype ABC (ATP-binding-cassette transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively and Cys1070 (37 and 25% of the Walker A motifs in the NBDs (nucleotide-binding domains, Cys1223 in NBD2 (25 and 8% and Cys638 in the linker region (24 and 16%, whereas close-by Cys669 tolerated glycine (16% and alanine (14%, but not serine (absent. Cys1121 in NBD2 showed a clear preference for positively charged arginine (38% suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2 may stabilize domain interactions. In contrast, three Cys residues in transmembrane α-helices could be successfully replaced by alanine. The resulting CL (Cys-less Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful.

  5. Technetium-99m methoxyisobutylisonitrile imaging for parathyroid adenoma: relationship to P-glycoprotein or multidrug resistance-related protein expression

    Gland size has been reported to have a major influence on localisation of parathyroid adenomas by technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) imaging. It has also been suggested that P-glycoprotein (Pgp) expression in parathyroid adenomas may influence localisation because false negative studies have been reported with large tumours and true positives with very small tumours. Therefore, the purpose of this study was to retrospectively evaluate the relationship between 99mTc-MIBI parathyroid imaging results and Pgp or multidrug resistance-related protein (MRP) expression in parathyroid adenomas. Before surgery, 47 patients with large parathyroid adenomas (larger than 1.5 g) underwent early and delayed parathyroid imaging, 10 min and 2 h after intravenous injection of 99mTc-MIBI. Immunohistochemical analyses (IHA) were performed, using multiple non-consecutive sections of the operative specimens, to detect Pgp or MRP expression. According to the results of IHA, the 34 parathyroid adenomas were separated into four groups: (1) three adenomas positive for both Pgp and MRP expression, (2) one adenoma positive for Pgp but negative for MRP expression, (3) four adenomas negative for Pgp but positive for MRP expression and (4) 39 adenomas with negative for both Pgp and MRP expression. All 39 adenomas in group 4 could be detected by 99mTc-MIBI parathyroid imaging. None of the eight adenomas in groups 1-3 could be detected by 99mTc-MIBI parathyroid imaging (P99mTc-MIBI imaging in localising parathyroid adenomas preoperatively. (orig.)

  6. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3.

    Michaelis, Martin; Rothweiler, Florian; Klassert, Denise; von Deimling, Andreas; Weber, Kristoffer; Fehse, Boris; Kammerer, Bernd; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2009-01-15

    Murine double minute 2 (MDM2) negatively regulates the activity of the tumor suppressor protein p53. Nutlin-3 is a MDM2 inhibitor under preclinical investigation as nongenotoxic activator of the p53 pathway for cancer therapy. Here, nutlin-3 was evaluated for its activity alone or in combination with established chemotherapeutic drugs for antitumor action in chemosensitive and chemoresistant neuroblastoma and rhabdomyosarcoma cell lines. Effects of nutlin-3 single treatment were much more pronounced in p53 wild-type cell lines (IC(50)s 17 micromol/L). In sharp contrast to the expectations, nutlin-3 concentrations that did not affect viability of p53-mutated cell lines strongly increased the efficacy of vincristine in p53-mutated, P-glycoprotein (P-gp)-overexpressing cell lines (decrease in IC(50)s 92- to 3,434-fold). Similar results were obtained for other P-gp substrates. Moreover, nutlin-3 reduced efflux of rhodamine 123 and other fluorescence dyes that are effluxed by P-gp. Investigation of Madin-Darby canine kidney (MDCK) II cells stably transfected with plasmids encoding for P-gp (MDCKII MDR1) or multidrug resistance protein 1 (MRP-1, MDCKII MRP1) revealed that nutlin-3 not only interferes with P-gp but also affects MRP-1-mediated efflux. Kinetic studies and investigation of P-gp-ATPase activity showed that nutlin-3 is likely to act as a P-gp transport substrate. Examination of the nutlin-3 enantiomers nutlin-3a and nutlin-3b revealed that, in contrast to MDM2-inhibitory activity that is limited to nutlin-3a, both enantiomers similarly interfere with P-gp-mediated drug efflux. In conclusion, nutlin-3-induced inhibition of P-gp and MRP-1 was discovered as a novel anticancer mechanism of the substance in this report. PMID:19147553

  7. Non-alkaloids extract from Stemona sessilifolia enhances the activity of chemotherapeutic agents through P-glycoprotein-mediated multidrug-resistant cancer cells.

    Han, Lu; Ma, Yang-Mei; An, Li; Zhang, Qiao; Wang, Chang-Li; Zhao, Qing-Chun

    2016-01-01

    One of the major impediments to the successful treatment of cancer is the development of resistant cancer cells, which could cause multidrug resistance (MDR), and overexpression of ABCB1/P-glycoprotein (P-gp) is one of the most common causes of MDR in cancer cells. Recently, natural products or plant-derived chemicals have been investigated more and more widely as potential multidrug-resistant (MDR) reversing agents. The current study demonstrated for the first time that non-alkaloids extract from Stemona sessilifolia significantly reversed the resistance of chemotherapeutic agents, adriamycin, paclitaxel and vincristine to MCF-7/ADR cells compared with MCF-7/S cells in a dose-dependent manner. The results obtained from these studies indicated that the non-alkaloids extract from S. sessilifolia plays an important role in reversing MDR of cancer as a P-gp modulator in vitro and may be effective in the treatment of multidrug-resistant cancers. PMID:26190165

  8. Nilotinib counteracts P-glycoprotein-mediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas.

    Victor Hugo Villar

    Full Text Available The therapeutic effect of doxorubicin (DXR in the treatment of soft tissue sarcomas (STS is limited by its toxicity and the development of multidrug resistance (MDR, the latter mainly induced by high expression of efflux pumps (e.g., P-glycoprotein [P-gp]. Therefore, the search for alternative therapies, which sensitize these tumors to chemotherapy while maintaining a low toxicity profile, is a rational approach. We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of the tyrosine kinase inhibitors, nilotinib and imatinib, as single agents or in combination with DXR, in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound nilotinib (1-10 µM was more potent than imatinib inhibiting the growth of SK-UT-1 and SW982 cells by 33.5-59.6%, respectively. Importantly, only nilotinib synergized the antitumoral effect of DXR (0.05-0.5 µM by at least 2-fold, which clearly surpassed the mere sum of effects according to isobolographic analysis. Moreover, nilotinib in combination with DXR had a sustained effect on cell number (-70.3±5.8% even 12 days after withdrawal of drugs compared to DXR alone. On the molecular level, only nilotinib fully blocked FBS-induced ERK1 and p38 MAPK activation, hence, reducing basal and DXR-induced up-regulation of P-gp levels. Moreover, efflux activity of the MDR-related proteins P-gp and MRP-1 was inhibited, altogether resulting in intracellular DXR retention. In high-risk STS tumors 53.8% and 15.4% were positive for P-gp and MRP-1 expression, respectively, with high incidence of P-gp in synovial sarcoma (72.7%. In summary, nilotinib exhibits antiproliferative effects on cellular models of STS and sensitizes them to DXR by reverting DXR-induced P-gp-mediated MDR and inhibiting MRP-1 activity, leading to a synergistic effect with potential for clinical treatment.

  9. In vivo imaging and specific targeting of P-glycoprotein expression in multidrug resistant nude mice xenografts with [{sup 125}I]MRK-16 monoclonal antibody

    Scott, Andrew M.; Rosa, Eddie; Mehta, Bippin M.; Divgi, Chaitanya R.; Finn, Ronald D.; Biedler, June L.; Tsuruo, Takashi; Kalaigian, Hovannes; Larson, Steven M

    1995-05-01

    Multidrug resistance (MDR) in tumors is associated with P-glycoprotein (Pgp) expression. In vivo quantitation of Pgp may allow MDR to be evaluated noninvasively prior to treatment planning. The purpose of this study was to radiolabel MRK-16, a monoclonal antibody that targets an external epitope of P-glycoprotein, and perform in vivo quantitation of P-glycoprotein in a MDR xenograft nude mouse model. MRK-16 was labeled with {sup 125}I by the iodogen method, with subsequent purification by size exclusion chromatography. Groups of 10 Balb/c mice were each xenografted with colchicine-resistant or -sensitive neuroblastoma cell lines, respectively. Whole body clearance and tumor uptake over time was quantitated by gamma camera imaging, and biodistribution studies were performed with [{sup 125}]MRK-16 and an isotype matched control antibody, A33. Quantitative autoradiography and immunohistochemistry analysis of tumors was also evaluated to confirm specific targeting of [{sup 125}I]MRK-16. Peak tumor uptake was at 2-3 days post-injection, and was significantly greater in resistance compared to sensitive tumors (mean % injected dose/g {+-} SD) (18.76 {+-} 2.94 vs 10.93 {+-} 0.96; p < 0.05). Quantitative autoradiography verified these findings (19.13 {+-} 0.622 vs 12.08 {+-} 0.38, p < 0.05). Specific binding of [{sup 125}I]MRK-16 was confirmed by comparison to [{sup 131}I]A33 in biodistribution studies, and localized to cellular components of tissue stroma by comparison of histologic and autoradiographic sections of sensitive and resistant tumors. Immunoblot analysis demonstrated a 4.5-fold difference in P-glycoprotein expression between sensitive and resistant cell lines without colchicine selective pressure. We conclude that in vivo quantitation of P-glycoprotein in MDR tumors can be performed with [{sup 125}I]MRK-16. These findings suggest a potential clinical application for radiolabeled MRK-16 in the in vivo evaluation of multidrug resistance in tumors.

  10. Protein kinase C-mediated phosphorylation of the human multidrug resistance P-glycoprotein regulates cell volume-activated chloride channels.

    Hardy, S P; Goodfellow, H R; Valverde, M. A. (Miguel ??ngel), 1963-; Gill, D. R.; Sepúlveda, V; Higgins, C F

    1995-01-01

    The multidrug resistance P-glycoprotein (P-gp), which transports hydrophobic drugs out of cells, is also associated with volume-activated chloride currents. It is not yet clear whether P-gp is a channel itself, or whether it is a channel regulator. Activation of chloride currents by hypotonicity in cells expressing P-gp was shown to be regulated by protein kinase C (PKC). HeLa cells exhibited volume-activated chloride currents indistinguishable from those obtained in P-gp-expressing cells exc...

  11. Selective modulation of P-glycoprotein-mediated drug resistance

    Bebawy, M; Morris, M B; Roufogalis, B. D.

    2001-01-01

    Multidrug resistance associated with the overexpression of the multidrug transporter P-glycoprotein is a serious impediment to successful cancer treatment. We found that verapamil reversed resistance of CEM/VLB 100 cells to vinblastine and fluorescein-colchicine, but not to colchicine. Chlorpromazine reversed resistance to vinblastine but not to fluorescein-colchicine, and it increased resistance to colchicine. Initial influx rates of fluorescein-colchicine were similar in resistant and paren...

  12. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas;

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... and thermoresistance was investigated in the parental human gastric carcinoma cell line EPG85-257P, the atypical MDR subline EPG85-257RNOV, the classical MDR subline EPG85-257RDB and their thermoresistant counterparts EPG85-257P-TR, EPG85-257RNOV-TR and EPG85-257RDB-TR. Within the atypical MDR subline...... EPG85-257RNOV expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP...

  13. Effect of P-glycoprotein and multidrug resistance associated protein gene expression on Tc-99m MIBI imaging in hepatocellular carcinoma

    P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP) expressions as well as Tc-99m methoxisobutylisonitrile (MIBI) images were assessed in 25 patients hepatocellular carcinoma (HCC). Tc-99m MIBI imaging was performed 10 minutes after intravenous injection of 20 mCi Tc-99m MIBI. Using immunohistochemical staining, 60% of the HCC lesions showed positive for Pgp and 64% showed positive for MRP. In 3 patients with MIBI uptake, immunohistochemical study of tumor tissue showed no Pgp stained cells. Nevertheless, they were all positive for MRP. The result of Tc-99m MIBI imaging is more related to the expression of Pgp than MRP gene. It is possible that other membrane transporters as well as Pgp and MRP are involved in the efflux of Tc-99m MIBI

  14. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: conceptual development.

    Apte Shireesh Prakash

    2010-12-01

    Full Text Available Amphiphilic excipients, such as surfactants, have been shown to be inhibitors of the multidrug resistance (MDR efflux pump transporter protein, P-glycoprotein (Pgp. In vitro studies using manysurfactants have demonstrated that those with an optimum hydrophilic-lipophilic balance (HLB exhibit greater efflux pump inhibition than those that are either very hydrophobic, or very hydrophilic, although the correlation of HLB to Pgp inhibition activity remains weak. Using the data from multiple in vitro studies, a model has been conceptualized that underscores the attributes of both the HLB and the critical micellar concentration (CMC, occurring in tandem, and unable of being varied independently, as key determinants toward prediction of surfactant Pgp inhibition activity. The algorithm that formalizes this concept provides a ‘semi-rational’ method of choosingsurfactants for a specific type of cancer for maximum inhibition of MDR.

  15. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes.

    Hsu, S I; Lothstein, L; Horwitz, S B

    1989-07-15

    A hallmark of the multidrug-resistant phenotype is the overproduction of a family of 130-180-kDa integral membrane phosphoglycoproteins collectively called P-glycoprotein. Gene-specific hybridization probes were derived from three classes of mouse P-glycoprotein cDNAs. These probes revealed the differential amplification and/or transcriptional activation of three distinct but closely related mdr genes (mdr1a, mdr1b, and mdr2) in independently selected multidrug-resistant J774.2 mouse cell lines. Overexpression of mdr1a and mdr1b was found to correlate, in general, with the differential overproduction of either a 120- or 125-kDa P-glycoprotein precursor, respectively. This same correlation was observed in a single cell line during the course of stepwise selection for resistance to vinblastine in which a switch in gene expression from mdr1b to mdr1a resulted in a switch from the 125- to 120-kDa P-glycoprotein precursor. These findings suggest that differential overexpression of distinct mdr genes which encode unique P-glycoprotein isoforms is a possible mechanism for generating diversity in the multidrug-resistant phenotype. PMID:2473069

  16. Reversal of P-glycoprotein-mediated multidrug resistance in human hepatoma cells by hedyotiscone A, a compound isolated from Hedyotis corymbosa.

    Yue, Grace Gar-Lee; Kin-Ming Lee, Julia; Cheng, Ling; Chung-Lap Chan, Ben; Jiang, Lei; Fung, Kwok-Pui; Leung, Ping-Chung; Bik-San Lau, Clara

    2012-06-01

    Multidrug resistance is a major problem in hepatocellular carcinoma. Hedyotiscone A, a compound isolated from Chinese herbal medicine Hedyotis corymbosa (HC, family Rubiaceae), was used as the chemical marker to distinguish between HC and an anticancer herb Hedyotis diffusa (HD) in our previous study. The present study aimed to investigate whether HA exhibited antiproliferative activities in multidrug-resistant hepatocellular carcinoma cells R-HepG2 and the parental cells HepG2 using MTT assay and [(3)H]-thymidine incorporation assay. Our results showed that HA could significantly inhibit cell proliferation in R-HepG2 and HepG2 (IC(50) = 43.7 and 56.3 µg/mL, respectively), but not in normal human liver cells WRL-68 (IC(50) > 100 µg/mL) cells, suggesting its selective cytotoxic effects. Besides, HA induced apoptosis in R-HepG2 cells, as confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant increase of cleaved caspases-3, -7 and -9 in HA-treated R-HepG2 cells. The activities and protein expression of P-glycoprotein as well as mRNA expression of MDR1 were also decreased in HA-treated R-HepG2 cells. Our study demonstrated for the first time the antiproliferative activities of hedyotiscone A in multidrug-resistant R-HepG2 cells. The findings revealed the potential of this compound in treating multidrug-resistant tumor. PMID:22352391

  17. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of P-glycoprotein and Multidrug resistance associated proteins.

    Nora eSandow

    2015-02-01

    Full Text Available Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp and multidrug resistance associated proteins (MRPs expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs (carbamazepine, sodium valproate, phenytoin and two unspecific inhibitors of Pgp and MRPs (verapamil and probenecid on seizure-like events induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices were studied. Although in slice preparations the blood brain barrier is not functional, we found that seizure-like events predominantly persisted in the presence of anticonvulsant drugs (90% and also in the presence of verapamil and probenecid (86%. Following subsequent co-administration of antiepileptic drugs and drug transport inhibitors, seizure-like events continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30% or as suppression (7%, particularly by perfusion with carbamazepine in probenecid containing solutions (43%, 9%. Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7 % of patients. Patients whose tissue was completely or partially sensitive (65 % presented with higher seizure frequencies than those with resistant tissue (35 %. However, corresponding subgroups of patients don’t differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.

  18. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  19. Glicoproteína-P, resistência a múltiplas drogas (MDR) e relação estrutura-atividade de moduladores P-glycoprotein and multidrug resistance: structure-activity relationships of modulators

    Paula C. Huber; Cintia H. Maruiama; Wanda P. Almeida

    2010-01-01

    Multidrug resistance, MDR is a major obstacle for cancer chemotherapy. MDR can be reversed by drugs that vary in their chemical structure and main biological activity. Many efforts have been done to overcome MDR based on studies of structure-activity relationships and in this review we summarize some aspects of MDR mediated by P-glycoprotein (P-gp), as the most experimentally and clinically tested form of drug resistance. The most significant MDR mechanisms revealed until now are shortly disc...

  20. Overexpression of P-glycoprotein on fibroblast-like synoviocytes in refractory rheumatoid arthritis patients: a potential mechanism for multidrug resistance in rheumatoid arthritis treatment.

    Liu, Y M; Chen, J W; Chen, L X; Xie, X; Mao, N

    2016-01-01

    This study aims to investigate the role of P-glycoprotein (P-gp) expression level in drug resistance to disease-modifying anti-rheumatic drugs in refractory rheumatoid arthritis (RRA). We evaluated and compared the expression levels of P-gp in fibroblast-like synoviocyte (FLS) cells in patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and investigated the potential mechanism of P-gp-induced multidrug resistance in RRA. Ten patients were enrolled and divided into two groups: six in the RA group and four in the OA group. The expression level of P-gp in FLS cells was detected by western blotting following cell culture. A linear correlation algorithm was used to assess the association between the level of P-gp and disease activity  (using DAS28 scoring), as well as the duration of methotrexate (MTX) treatment in the RRA patients. The level of P-gp in the RRA patients was markedly higher than that in the OA patients (P P-gp level in FLS cells and the duration of MTX treatment in the RRA group (Г = 0.733, P P-gp level and DAS28 scoring (Г = 0.206, P > 0.05). P-gp might be upregulated during the progression of RRA, which possibly correlates with the development of resistance to MTX. PMID:27323187

  1. Multi-drug resistance (MDR1 gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs

    Linardi Renata Lehn

    2006-01-01

    Full Text Available (MDR1 gene expressed in tumor cells and also in several normal tissues, such as intestine, liver, kidney, blood-brain barrier, spinal cord, and placenta. P-gp has been identified in mice, rat, bovine, monkey, rodents, and human beings and has been receiving a particular clinical relevance because this protein expression limits brain access and intestinal absorption of many drugs. This protein plays a role as a protective barrier against a wide variety of substrates, avoiding drug entry into the central nervous system. P-glycoprotein also interferes with drug bioavailability and disposition, including absorption, distribution, metabolization, and excretion, influencing pharmacokinetic and pharmacodynamic of drugs. Modulation of P-gp may help the efficacy of treatment of several diseases and can explain some adverse central nervous system effects induced by drugs after intravenous administration and the poor response of oral administration in patients. Alteration in P-gp expression or function has been associated with several diseases susceptibility in humans and animals. Furthermore, additional studies relating MDR1 and P-gp expression has an important clinical implication also in terms of treatment efficacy.

  2. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants. PMID:27129170

  3. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. PMID:27286705

  4. Detecting parathyroid adenoma using technetium-99m tetrofosmin: comparison with P-glycoprotein and multidrug resistance related protein expression--a preliminary report

    Shiau, Y.C.; Tsai, S.C.; Wang, J.J.; Ho, S.T.; Kao, A. E-mail: albertkaotw@yahoo.com.tw

    2002-04-01

    The aim of this study was to investigate the relationships among technetium-99m tetrofosmin (Tc-TF) accumulation in parathyroid adenoma and the expression of P-glycoprotein (Pgp) or multidrug resistance related protein (MRP). Before operation, 33 patients with parathyroid adenomas (larger than 1.5 gm) were studied with parathyroid scintigraphy 10 minutes and 2 hours after intravenous injection of Tc-TF before operation. Immunohistochemical analyses (IHA) were performed on multiple nonconsecutive sections of operative parathyroid specimens to detect Pgp or MRP expression. According to the results of IHA, the 33 parathyroid adenomas were separated into four groups: (1) 2 adenomas with both positive Pgp and positive MRP expression, (2) 1 adenomas with positive Pgp but negative MRP expression, (3) 2 adenomas with negative Pgp but positive MRP expression, and (4) 28 adenomas with both negative Pgp and negative MRP expression. All of 28 adenomas in the group 4 could be detected by Tc-TF parathyroid imaging. All of 5 adenomas in the groups 1 to 3 could not be detected by TcTF parathyroid imaging (p < 0.05). Not only the size of parathyroid adenomas, but also significant Pgp or MRP expression limited the sensitivity of Tc-TF parathyroid imaging to localize parathyroid adenomas before operation.

  5. Detecting parathyroid adenoma using technetium-99m tetrofosmin: comparison with P-glycoprotein and multidrug resistance related protein expression--a preliminary report

    The aim of this study was to investigate the relationships among technetium-99m tetrofosmin (Tc-TF) accumulation in parathyroid adenoma and the expression of P-glycoprotein (Pgp) or multidrug resistance related protein (MRP). Before operation, 33 patients with parathyroid adenomas (larger than 1.5 gm) were studied with parathyroid scintigraphy 10 minutes and 2 hours after intravenous injection of Tc-TF before operation. Immunohistochemical analyses (IHA) were performed on multiple nonconsecutive sections of operative parathyroid specimens to detect Pgp or MRP expression. According to the results of IHA, the 33 parathyroid adenomas were separated into four groups: (1) 2 adenomas with both positive Pgp and positive MRP expression, (2) 1 adenomas with positive Pgp but negative MRP expression, (3) 2 adenomas with negative Pgp but positive MRP expression, and (4) 28 adenomas with both negative Pgp and negative MRP expression. All of 28 adenomas in the group 4 could be detected by Tc-TF parathyroid imaging. All of 5 adenomas in the groups 1 to 3 could not be detected by TcTF parathyroid imaging (p < 0.05). Not only the size of parathyroid adenomas, but also significant Pgp or MRP expression limited the sensitivity of Tc-TF parathyroid imaging to localize parathyroid adenomas before operation

  6. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    99mTc-sestamibi(MIBI) and 99mTc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99mTc-MIBI and 99mTc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  7. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  8. Metalloprobes: Fluorescence imaging of multidrug resistance (MDR1) P-Glycoprotein (Pgp)-mediated functional transport activity in cellulo.

    Sundaram, G S M; Sharma, Monica; Kaganov, Daniel; Cho, Junsang; Harpstrite, Scott E; Sharma, Vijay

    2016-06-01

    Radiolabeled metalloprobes offer sensitive tools for evaluating quantitative accumulation of chemical entities within pooled cell populations. Although beneficial in translational nuclear imaging, this method precludes interrogation of effects resulting from variations at a single cell level, within the same segment of cell population. Compared with radiotracer bioassays, fluorescence imaging offers a cost-efficient technique to assess accumulation of metalloprobes at a single cell level, and determine their intracellular localization under live cell conditions. To evaluate, whether or not radiotracer assay and fluorescence imaging provide complementary information on utility of metalloprobes to assess functional expression of P-glycoprotein (Pgp) on plasma membrane of tumor cells, imaging studies of fluorescent cationic Ga(III)-ENBDMPI (bis(3-ethoxy-2-hydroxy-benzylidene)-N,N'-bis(2,2-dimethyl-3-amino-propyl)ethylenediamine) and its neutral counterpart Zn(II)-ENBDMPI are performed. While the uptake profiles of the cationic metalloprobe are inversely proportional to expression of Pgp in tumor cells, the accumulation profiles of the neutral Zn(II)-ENBDMPI in non-MDR and MDR cells are not significantly impacted. The cationic Ga(III)-ENBDMPI maps with Mito-Tracker Red, thereby confirming localization within mitochondria of non-MDR (Pgp-) cells. Depolarization of both plasmalemmal and mitochondrial potentials decreased retention of the cationic Ga(III)-ENBDMPI within the mitochondria. Additionally, LY335979, an antagonist-induced accumulation of the cationic Ga(III) metalloprobe in MDR (Pgp+) cells indicated specificity of the agent. Compared with traits of Ga(III)-ENBDMPI as a Pgp recognized substrate, Zn(II)-ENBDMPI demonstrated uptake in both MDR and non-MDR cells thus indicating the significance of overall molecular charge in mediating Pgp recognition profiles. Combined data indicate that live cell imaging can offer a cost-effective methodology for monitoring

  9. P-Glycoprotein-Mediated Efflux and Drug Sequestration in Lysosomes Confer Advantages of K562 Multidrug Resistance Sublines to Survive Prolonged Exposure to Cytotoxic Agents

    Nathupakorn Dechsupa

    2009-01-01

    Full Text Available Problem statement: Cellular drug resistance to anticancer agents is major obstacle in cancer chemotherapy and the mechanisms by which these MDR cells possess for protecting themselves to survive prolonged exposure to cytotoxic agents still debating. The study aimed to clarify the role of P-glycoprotein (Pgp and enhanced drug sequestration in lysosomes to confer the multidrug resistance K562 cells with varied degree of Pgp expression. Approach: Erythromyelogenous leukemic K562 and its corresponding Pgp-over expression K562/adr (RF = 26.5 and K562/10000 (RF = 39.6 cells were used. The transport of intrinsic fluorescence molecules including acridine orange and pirarubicin across plasma membrane of living cells was performed by using spectrofluorometric and flow cytometric analysis. Results: Pirarubicin passively diffused through the plasma membrane of K562, K562/adr and K562/10000 cells with the same values of k+ = 3.4±0.3 pL. s-1.cell-1. Similar results were found for acridine orange, which passively diffused through plasma membrane of these cell lines about 30-fold faster than pirarubicin. The mean rate of Pgp-mediated efflux coefficient (ka of pirarubicin was equal to 2.6 ± 0.9 pL.s-1.cell-1 for K562/adr and 4.7 ± 1.0 pL.s-1.cell-1 for K562/10000 cells. The Pgp-mediated efflux of acridine orange could not be determined for K562/adr cells while an enhancement of exocytosis in K562/10000 cells was characterized. The acridine orange exhibited antiproliferative activity and IC50 for K562, K562/adr and K562/10000 cells was 447±40, 715±19 and 1,719±258 nM, respectively. Cytotoxicity of acridine orange was increased by 2-fold in the presence of and 25 nM monensin. Conclusion: The results clearly demonstrated for the first time that by using the same methods and cell lines. The predominant cellular defense mechanism determined in multidrug resistant cells depends upon the nature of molecular probes used. As molecular probe, pirarubicin clearly

  10. Multidrug resistance P-glycoprotein dampens SR-BI cholesteryl ester uptake from high density lipoproteins in human leukemia cells.

    Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Collu, Maria; Angius, Fabrizio; Batetta, Barbara

    2016-01-01

    Tumor cells are characterised by a high content of cholesterol esters (CEs), while tumor-bearing patients show low levels of high-density lipoproteins (HDLs). The origin and significance of high CE levels in cancer cell biology has not been completely clarified. Recent evidence that lymphoblastic cells selectively acquire exogenous CE from HDL via the scavenger receptor SR-BI has drawn attention to the additional membrane proteins involved in this pathway. P-glycopotein-MDR1 (P-gp) is a product of the MDR1 gene and confers resistance to antitumor drugs. Its possible role in plasma membrane cholesterol trafficking and CE metabolism has been suggested. In the present study this aspect was investigated in a lymphoblastic cell line selected for MDR1 resistance. CEM were made resistant by stepwise exposure to low (LR) and high (HR) doses of vincristine (VCR). P-gp activity ((3)H-vinblastine), CE content, CE and triglycerides (TG) synthesis ((14)C-oleate), neutral lipids and Dil-HDL uptake (fluorescence), SR-BI, ABCA1 and P-gp protein expression (western blotting) were determined. To better evaluate the relationship between CE metabolism and P-gp activity, the ACAT inhibitor Sandoz-58035 and the P-gp inhibitors progesterone, cyclosporine and verapamil were used. CE content and synthesis were similar in the parental and resistant cells. However, in the latter population, SR-BI protein expression increased, whereas CE-HDL uptake decreased. These changes correlated with the degree of VCR-resistance. As well as reverting MDR1-resistance, the inhibitors of P-gp activity induced the CE-HDL/SR-BI pathway by reactivating membrane cholesterol trafficking. Indeed, CE-HDL uptake, SRBI expression and CE content increased, whereas there was a decrease in cholesterol esterification. These results demonstrated that P-gp overexpression impairs anticancer drug uptake as well as the SR-BI mediated selective CE-HDL uptake. This suggests that these membrane proteins act in an opposite

  11. Reversal of P-glycoprotein-medicated multidrug resistance by LBM-A5 in vitro and a study of its pharmacokinetics in vivo.

    Zhao, Tianxiao; Song, Yun; Liu, Baomin; Qiu, Qianqian; Jiao, Lei; Li, Yunman; Huang, Wenlong; Qian, Hai

    2015-01-01

    The overexpression of P-glycoprotein (P-gp) in tumors leads to multidrug resistance (MDR), which is a significant obstacle in clinical cancer chemotherapy. The co-administration of anticancer drugs and MDR modulators is a promising strategy for overcoming this problem. Our study aimed to explore the reversal mechanism and safety of the MDR modulator LBM-A5 in vitro, and evaluate its pharmacokinetics and effects on doxorubicin metabolism in vivo. We evaluated an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of anticancer agents mediated by LBM-A5, the effect of LBM-A5 on rhodamine123 intracellular accumulation, and the efflux in K562/DOX cells to investigate the reversal mechanisms of LBM-A5. The results showed that LBM-A5 inhibits rhodamine123 efflux and increases intracellular accumulation by inhibiting the efflux pump function of P-gp. Furthermore, the therapeutic index and CYP3A4 activity analysis in vitro suggested that LBM-A5 is reasonably safe to use. Also, LBM-A5 (10 mg/kg body mass) achieved the required plasma concentration in sufficient time to reverse MDR in vivo. Importantly, the LBM-A5 treatment group shared similar doxorubicin (DOX) pharmacokinetics with the free DOX group. Our results suggest that LBM-A5 effectively reverses MDR (EC50 = 483.6 ± 81.7 nmol·L(-1)) by inhibiting the function of P-gp, with relatively ideal pharmacokinetics and in a safe manner, and so may be a promising candidate for cancer chemotherapy research. PMID:25427107

  12. The study of relationship between breast cancer 99Tcm-MIBI imaging with the expression of P-glycoprotein and multidrug resistance-associated protein

    Objective: To evaluate the relationship between the uptake, washout of 99Tcm-methoxy-isobutylisonitrile (MIBI) and P-glycoprotein (P-gp) or multidrug resistance-related protein (MRP) expression in 36 breast cancer patients. Methods: 36 patients with untreated breast cancer were studied prospectively a week before surgical operation, all were injected intravenously with 740 MBq 99Tcm-MIBI in the arm contralateral to the lesion. Anterior planar images were acquired at 10 and 180 min after injection and the tumor-to-normal breast ratios (T/N) and washout rates (WR) were calculated. Immunohistochemical analyses of P-gp and MRP expression were used to evaluate the removed tumor tissues after operation and categorized into four groups. The differences of the early T/N ratios, the late T/N ratios and the WR among them were compared. Results: The early T/N ratios in group A and B were higher than that in group D. There was statistic difference between group A and D (P=0.001 ), and also in group B and D (P=0.045). The late T/N ratios had no statistic differences among them (F=0.499, P=0.686). The WR of group A, B, C were higher than that in group D and there were significant differences between them (P99Tcm-MIBI from the lesions and expression of P-gp or MRP in untreated breast cancer patients. 99Tcm-MIBI imaging with washout analysis might be a useful method for evaluating P-gp or MRP overexpression and their function in breast cancer. (authors)

  13. Induction of actin disruption and downregulation of P-glycoprotein expression by solamargine in multidrug-resistant K562/A02 cells

    LI Xia; ZHAO Ying; JI Mei; LIU Shan-shan; CUI Min; LOU Hong-xiang

    2011-01-01

    Background Solamargine (SM), a steroidal glycoalkaloid isolated from the Chinese herb Solarium incanum, has been shown to inhibit the growth of some cancer cell lines and induce significant apoptosis. However, the effects of SM on multidrug-resistant (MDR) cells and the molecular mechanisms involved are poorly understood. The purpose of this study was to evaluate the anti-MDR effects of SM and the associated mechanisms in MDR K562/A02 cells.Methods The cytotoxicity of SM was measured by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The 14',6-diamidino-2-phenylindole (DAPI) nuclear staining and flow cytometry were used to detect SM-induced apoptosis. The mRNA expression of P-glycoprotein (P-gp) was investigated by real-time PCR (RT-PCR). Western blotting was used to determine the expression of Bcl-2, Bax, and actin. The changes in the morphology of actin were examined with immunofluorescence staining.Results MTT results showed that SM effectively killed the MDR sublines K562/A02, KB/VCR, and H460/paclitaxel (Taxol), and their parental cell lines K562, KB, and H460 to an equivalent or more sensitive degree. Based on the results by flow cytometry and immunostaining, the pro-apoptotic effects of SM were observed in MDR K562/A02 cells. Furthermore, the RT-PCR results showed that SM induced the downregulation of MDR1 mRNA. In addition, the expression of P-gp and actin was decreased in the SM-treated cells, as measured by western blotting and immunostaining.Conclusions These results demonstrate that SM effectively triggers apoptosis in MDR tumor cells, which is associated with actin disruption and downregulation of MDR1 expression. This compound may merit further investigation as a potential therapeutic agent that bypasses the MDR mechanism for the treatment of MDR tumors.

  14. Reversion effects of curcumin on multidrug resistance of MNNG/HOS human osteosarcoma cells in vitro and in vivo through regulation of P-glycoprotein

    SI Meng; ZHAO Jie; LI Xin; TIAN Ji-guang; LI Yong-gang; LI Jian-min

    2013-01-01

    Background P-glycoprotein (P-gp) encoded by ATP-binding cassette sub-family B member 1 (ABCB1) gene is a kind of ATP-dependent drug transporter,which plays important roles in multidrug resistance (MDR) of human cancers,such as osteosarcoma.Curcumin is a natural phenolic coloring compound originating from the rhizomes of Curcuma longa,which is proved to possess antitumor biological activities including reversion of MDR.However,the effect and molecular mechanisms of curcumin to osteosarcoma MDR remain unclear.Methods We established a human osteosarcoma drug-resistant cell line MNNG/HOS/MTX by pulse exposure to methotrexate (MTX) and verified that the new cell lines were cross-resistant to other anticancer agents.Then,according to the cytotoxicity assay,we reversed MDR of MNNG/HOS/MTX by 30 μmol/L curcumin,and detected the mechanisms of curcumin reversing MDR through Real-time PCR,Western blotting assay,and Rhodamine123 (Rh123)transport test.Finally,we evaluated the effect of curcumin reversing MDR in vivo by MNNG/HOS/MTX cells xenograft-nude mice model.Results MNNG/HOS/MTX was proved to be a human osteosarcoma MDR cell line.MTT tumor chemosensitivity test indicates that 30 μmol/L curcumin attenuates the half maximal inhibitory concentration (IC50) and resistance index (RI)to MTX,diamminedichloroplatinum (DDP),adriamycin (ADM),ifosfamide (IFO),and epirubicin (EPI) in MNNG/HOS/MTX cells (P <0.05).Real-time PCR and Western blotting assays demonstrated that curcumin down-regulated P-gp expression of MNNG/HOS/MTX cells.Rh123 transport test showed that curcumin inhibited the transport function of P-gp in vitro.In vivo studies showed that curcumin displayed the features of sensitizing antitumor drugs and inhibiting the proliferation,invasion,and metastasis of osteosarcoma MDR cells.Conclusion Down-regulation of P-gp and inhibition of the function of P-gp efflux pump may contribute to MDR reversion induced by curcumin in vitro and in vivo.

  15. Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma

    Zandvliet, M; Teske, E; Schrickx, J A

    2014-01-01

    Canine lymphoma is routinely treated with a doxorubicin-based multidrug chemotherapy protocol, and although treatment is initially successful, tumor recurrence is common and associated with therapy resistance. Active efflux of chemotherapeutic agents by transporter proteins of the ATP-Binding Casset

  16. Assessment of the in vitro and in vivo properties of a 99mTc-labeled inhibitor of the multidrug resistant gene product P-glycoprotein

    Overexpression of P-glycoprotein (Pgp), which is present in the plasma membrane of various tumor cells and in several normal cell types, contributes to the multidrug resistance (MDR) phenotype of many human cancers. As a prerequisite for therapy, the expression of Pgp must be studied. The available clinical radiopharmaceuticals for studying the expression of Pgp include the lipophilic 99mTc cations (sestamibi, tetrofosmin) as well as [99mTc]Q57, [99mTc]Q58, and [99mTc]Q63. Here we describe the in vitro and in vivo properties of the structurally different complex (3-thiapentane-1,5-dithiolato)[[N-(3-phenylpropyl)-N-2(3-quinazoline-2,4 -dionyl)-ethyl]amino-ethylthiolato] oxotechnetium(V) (99/99mTc1) as a potential inhibitor of Pgp. 99Tc1 enhances the net cell accumulation of Pgp substrates [3H]vinblastine, [3H]vincristine, [3H]colchicine, [99mTc]sestamibi, and [99mTc]tetrofosmin in rat brain endothelial cells (RBE4), an immortalized endothelial cell line that expresses Pgp. In addition, the cell accumulation of 99mTc1 could be increased by verapamil and reserpine, which are known Pgp inhibitors. A multitracer approach was used to study the side effects of 99Tc1 on cell metabolism. The cells were simultaneously incubated with [99mTc]sestamibi, 2-[18F]fluoro-2-deoxyglucose ([18F]FDG), and various 3H-labeled tracers. Two-dimensional scatter plots of [99mTc]sestamibi uptake/[18F]FDG uptake show typical changes of known Pgp inhibitors including 99Tc1. The effects of 99Tc1 on the in vivo distribution of [99mTc]sestamibi and [18F]FDG in rats also are comparable with the effects of verapamil, an established Pgp inhibitor and calcium channel blocker. We conclude that 99/99mTc1 is a transport substrate and a potential inhibitor of Pgp. Our approach may be useful in the design of further radiotracers with specificity to Pgp

  17. Differential roles of P-glycoprotein, multidrug resistance-associated protein 2, and CYP3A on saquinavir oral absorption in Sprague-Dawley rats.

    Usansky, Helen H; Hu, Peidi; Sinko, Patrick J

    2008-05-01

    The objective of this investigation was to differentiate the roles of P-glycoprotein (Pgp), multidrug resistance-associated protein 2 (Mrp2), and CYP3A on saquinavir (SQV) oral absorption. With use of single-pass jejunal perfusion (in situ) and portal vein-cannulated rats (in vivo), SQV absorption was studied under chemical inhibition of Pgp [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2 isoquinolinyl)-ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918)], Mrp2 [(3-(((3-(2-(7-chloro-2-quinolinyl)-(E)-ethenyl)phenyl) ((3-(dimethylamino-3-oxopropyl)thio)methyl)-thio) propanoic acid (MK571)], and/or CYP3A (midazolam). Plasma concentrations of SQV and related metabolites were analyzed by liquid chromatography-tandem mass spectrometry. When given alone, SQV absorption was extremely low both in situ (F(a) = 0.07%) and in vivo [C(max) = 0.068 microg/ml; area under the curve (AUC) = 6.8 microg x min/ml]. Coadministration of GF120918 boosted SQV absorption by more than 20-fold with decreased variation in AUCs (percent coefficient of variation = 30% versus 100%). In contrast, coadministration of MK571 or midazolam increased SQV absorption only 2- to 3-fold without improving the variation in AUCs. SQV oral absorption was not further improved when it was given with GF120918 and midazolam or with GF120918 and MK571. The current results provide, for the first time, direct and explicit evidence that the low oral absorption of SQV is controlled by a secretory transporter, Pgp, and not by limited passive diffusion owing to its poor physicochemical properties. Pgp-mediated transport is also responsible for the highly variable oral bioavailability of SQV. In contrast, intestinal Mrp2 and intestinal CYP3A appear to play minor roles in SQV oral bioavailability. Given the differential and complex roles of Pgp and CYP3A in SQV oral absorption, the optimization of AIDS boosting regimens requires careful consideration to avoid therapy-limiting drug-drug transporter

  18. Expression and significance of glucose transporter-1, P-glycoprotein, multidrug resistance-associated protein and glutathione S-transferase-π in laryngeal carcinoma

    MAO, ZHONG-PING; ZHAO, LI-JUN; ZHOU, SHUI-HONG; LIU, MENG-QIN; TAN, WEI-FENG; YAO, HONG-TIAN

    2015-01-01

    Increasing glucose transporter-1 (GLUT-1) activity is one of the most important ways to increase the cellular influx of glucose. We previously demonstrated that increased GLUT-1 expression was an independent predictor of survival in patients with laryngeal carcinoma. Thus, GLUT-1 may present a novel therapeutic target in laryngeal carcinoma. In this study, the expression of GLUT-1, P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and glutathione S-transferase-π (GST-π) in laryngeal carcinomas was investigated by immunohistochemistry. Additionally, possible correlations between GLUT-1 and P-gp, MRP1 and GST-π and various clinicopathological parameters were analyzed. In this study, 52.9% (18/34), 58.8% (20/34), 20.6% (7/34) and 58.8% (20/34) of the laryngeal carcinomas were positive for GLUT-1, P-gp, MRP1 and GST-π, respectively. The expression of GLUT-1, P-gp, MRP1 and GST-π was higher in laryngeal carcinoma specimens when compared with laryngeal precancerous lesions (P<0.05). Pearson’s correlation analysis showed correlations between GLUT-1 and P-gp (r=0.364; P=0.034), GLUT-1 and MRP1 (r=0.359; P=0.037) and P-gp and GST-π (r=0.426; P=0.012). GLUT-1 expression was found to significantly correlate with tumor-node-metastasis classification (P=0.02) and clinical stage (P=0.037). Furthermore, P-gp was found to significantly correlate with clinical stage (P=0.026). Univariate analysis showed that MRP1 expression was significantly associated with poor survival (c2=5.16; P=0.023). Multivariate analysis revealed that lymph node metastasis (P=0.009) and MRP1 overexpression (P=0.023) were significant predictors of poor survival. In the present study, the expression of GLUT-1, P-gp, MRP1 and GST-π in laryngeal carcinomas was investigated, as well as the correlations between these proteins. P-gp was found to significantly correlate with clinical stage, while MRP1 overexpression was significantly associated with poor survival. PMID:25621055

  19. Assessment of the in vitro and in vivo properties of a {sup 99m}Tc-labeled inhibitor of the multidrug resistant gene product P-glycoprotein

    Bergmann, R. E-mail: R.Bergmann@fz-rossendorf.de; Brust, P.; Scheunemann, M.; Pietzsch, H.-J.; Seifert, S.; Roux, F.; Johannsen, B

    2000-02-01

    Overexpression of P-glycoprotein (Pgp), which is present in the plasma membrane of various tumor cells and in several normal cell types, contributes to the multidrug resistance (MDR) phenotype of many human cancers. As a prerequisite for therapy, the expression of Pgp must be studied. The available clinical radiopharmaceuticals for studying the expression of Pgp include the lipophilic {sup 99m}Tc cations (sestamibi, tetrofosmin) as well as [{sup 99m}Tc]Q57, [{sup 99m}Tc]Q58, and [{sup 99m}Tc]Q63. Here we describe the in vitro and in vivo properties of the structurally different complex (3-thiapentane-1,5-dithiolato)[[N-(3-phenylpropyl)-N-2(3-quinazoline-2,4 -dionyl)-ethyl]amino-ethylthiolato] oxotechnetium(V) ({sup 99/99m}Tc1) as a potential inhibitor of Pgp. {sup 99}Tc1 enhances the net cell accumulation of Pgp substrates [{sup 3}H]vinblastine, [{sup 3}H]vincristine, [{sup 3}H]colchicine, [{sup 99m}Tc]sestamibi, and [{sup 99m}Tc]tetrofosmin in rat brain endothelial cells (RBE4), an immortalized endothelial cell line that expresses Pgp. In addition, the cell accumulation of {sup 99m}Tc1 could be increased by verapamil and reserpine, which are known Pgp inhibitors. A multitracer approach was used to study the side effects of {sup 99}Tc1 on cell metabolism. The cells were simultaneously incubated with [{sup 99m}Tc]sestamibi, 2-[{sup 18}F]fluoro-2-deoxyglucose ([{sup 18}F]FDG), and various {sup 3}H-labeled tracers. Two-dimensional scatter plots of [{sup 99m}Tc]sestamibi uptake/[{sup 18}F]FDG uptake show typical changes of known Pgp inhibitors including {sup 99}Tc1. The effects of {sup 99}Tc1 on the in vivo distribution of [{sup 99m}Tc]sestamibi and [{sup 18}F]FDG in rats also are comparable with the effects of verapamil, an established Pgp inhibitor and calcium channel blocker. We conclude that {sup 99/99m}Tc1 is a transport substrate and a potential inhibitor of Pgp. Our approach may be useful in the design of further radiotracers with specificity to Pgp.

  20. Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: biological and clinical implications.

    Diestra, JE; Condom, E; Muro, XG Del; Scheffer, G.L.; Perez, J; Zurita, AJ; Munoz-Segui, J; Vigues, F; Scheper, R.J.; Capella, G; Germa-Lluch, JR; Izquierdo, M.A.

    2003-01-01

    PURPOSE: Resistance to chemotherapy is a major obstacle to overcome in the conservative treatment of patients with locally advanced bladder cancer (LABC). We investigated the predictive value of the response to neoadjuvant chemotherapy (NACT) and prognosis of the expression of multidrug resistance (

  1. Jatrophane Diterpenoids as Modulators of P-Glycoprotein-Dependent Multidrug Resistance (MDR): Advances of Structure-Activity Relationships and Discovery of Promising MDR Reversal Agents.

    Zhu, Jianyong; Wang, Ruimin; Lou, Lanlan; Li, Wei; Tang, Guihua; Bu, Xianzhang; Yin, Sheng

    2016-07-14

    The phytochemical study of Pedilanthus tithymaloides led to the isolation of 13 jatrophane diterpenoids (1-13), of which eight (1-8) are new. Subsequent structural modification of the major components by esterification, hydrolysis, hydrogenation, or epoxidation yielded 22 new derivatives (14-35). Thus, a jatrophane library containing two series of compounds was established to screen for P-glycoprotein (Pgp)-dependent MDR modulators. The activity was evaluated through a combination of Rho123 efflux and chemoreversal assays on adriamycin resistant human hepatocellular carcinoma cell line HepG2 (HepG2/ADR) and adriamycin resistant human breast adenocarcinoma cell line MCF-7 (MCF-7/ADR). Compounds 19, 25, and 26 were identified as potent MDR modulators with greater chemoreversal ability and less cytotoxicity than the third-generation drug tariquidar. The structure-activity relationship (SAR) was discussed, which showed that modifications beyond just increasing the lipophilicity of this class of Pgp inhibitors are beneficial to the activity. Compound 26, which exhibited a remarkable metabolic stability in vitro and a favorable antitumor effect in vivo, would serve as a promising lead for the development of new MDR reversal agents. PMID:27328029

  2. The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane

    Garrigues, Alexia; Escargueil, Alexandre E.; Orlowski, Stéphane

    2002-01-01

    P-glycoprotein (P-gp) is a plasma membrane ATP-binding cassette transporter, responsible for multidrug resistance in tumor cells. P-gp catalyzes the ATP hydrolysis-dependent efflux of numerous amphiphilic compounds of unrelated chemical structures. In the absence of any identified substrate, P-gp exhibits an apparently futile, basal ATPase activity. By using native membrane vesicles containing high amounts of P-gp, we show here that (i) this basal ATPase activity is tightly dependent on the p...

  3. Distinct P-glycoprotein precursors are overproduced in independently isolated drug-resistant cell lines.

    Greenberger, L M; Lothstein, L; Williams, S S; Horwitz, S B

    1988-06-01

    A family of P-glycoproteins are overproduced in multidrug-resistant cells derived from the murine macrophage-like line J774.2. To determine whether individual family members are overproduced in response to different drugs, the P-glycoprotein precursors in several independently isolated cell lines, which were selected for resistance to vinblastine or taxol, were compared. Individual cell lines selected with vinblastine overproduced P-glycoprotein precursors of either 120 or 125 kDa. Taxol-selected cell lines overproduced either the 125-kDa precursor or both precursors simultaneously. Two similar but distinct peptide maps for the mature P-glycoproteins were observed. These maps corresponded to each precursor regardless of the drug used for selection. One vinblastine-resistant cell line switched from the 125- to the 120-kDa precursor when grown in increasing concentrations of drug. This change coincided with the overexpression of a distinct subset of mRNA species that code for P-glycoprotein. It is concluded that precursor expression is not drug-specific. These data suggest that individual overproduced P-glycoprotein family members are translated as distinct polypeptides. The results may help to explain the diversity in the multidrug-resistant phenotype. PMID:2897689

  4. Nude mice multi-drug resistance model of orthotopic transplantation of liver neoplasm and Tc-99m MIBI SPECT on p-glycoprotein

    Yu Han; Xiao-Ping Chen; Zhi-Yong Huang; Hong Zhu

    2005-01-01

    AIM: To establish a model of drug-resistant neoplasms using a nude mice model, orthotopic transplantation of liver neoplasm and sporadic abdominal chemotherapy.METHODS: Hepatocellular carcinoma cells HepG2 were cultured and injected subdermally to form the tumorsupplying mice. The orthotopic drug-resistant tumors were formed by implanting the tumor bits under the envelope of the mice liver and induced by abdominal chemotherapy with Pharmorubicin. Physical examination, ultrasonography, spiral CT and visual inspection were used to examine tumor progression. RT-PCR and immunohistochemistry wereused to detect expression of mdr1 mRNA and its encodedprotein p-glycoprotein (p-gp). Tc-99m sestamibi scintigraphy was performed by obtaining planar abdominal images at 20 min after injection, and the liver/heart ratios werecalculated.RESULTS: Post-implantation mortality was 0% (0/25),tumor implantation success was 90% (22/25), and the rate of implanting successfully for the second time was 100% (3/3). Tumor induction using Pharmorubicin was 80% (16/20). The mdr1 mRNA expression of the induced group was 23 times higher than that of the control group, and p-gp protein expression was 13-fold higher compared to the control group. The liver/heart ratio (as assessed in vivo, using Tc-99m radiography) was decreased significantly in the induced group as compared to the control group. CONCLUSION: We have established an in vivo model of mdr1 in nude mice by orthotopic transplantation of liver neoplasm coupled to chemotherapy. We propose that identification of drug resistance as characterized by decreased 99mTc-ppm radiography due to enhanced clearance by p-gp may be useful in detecting in vivo drug resistance, as well as a useful tool in designing more effective therapies.

  5. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    FrancesJaneSharom

    2014-01-01

    Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1), which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the ...

  6. Using 99mTc-MIBI to Evaluate the Effects of Chemosensitizer on P-glycoprotein in Multidrug-resistant Carcinoma Cells

    ZHANGZhenwei; ZHANGXuemei; WUHua; ZHAOMing; XIANYUZhiqun; ZHOUJian; LAIShiying

    2005-01-01

    Objective: To establish a method to evaluate the effects of chemosensitizer on P-glycoprotein using 99mTc-MIBI, and observe the changes of 99mTc-MIBI uptake kinetics and P-glycoprotein levels after using verapamil in MDR human breast cells MCF-7/Adr. Methods: MDR breast carcinoma cells, MCF-7/Adr, were incubated and different protocols were performed. Protocol I: a chemosensitizer, verapamil (10μmol/L), was added into cell culture medium, while in control group, the same volume of DMEM was given. Cells were harvested after 2 h incubation with 99mTc-MIBI. Protocol Ⅱ: Verapamil (10μmol/L) was added into cell culture medium and incubated for 20 min, 40 min, 60 rain, 80 min, 8 h, 24 h, 48 h and 72 h respectively. Cells were harvested after 2 h incubation with 99mTc-MIBI. The radioactivity of the cells was measured and P-glycoprotein expression levels were determined with immunohistochemical stain. Results: Protocol I: After 2h incubation with verapamil the cellular uptake of 99mTc-MIBI was remarkably higher than control group (t=2.33, P0.05). Protocol

  7. P-glycoprotein and its Role in Treatment Resistance

    Göğcegöz Gül, Işıl; Eryılmaz, Gül; Karamustafalıoğlu, K. Oğuz

    2016-01-01

    Polypharmacy which has often used to increase efficacy of treatment and to prevent resistance in psychiatry may lead to pharmacokinetic and pharmacodynamic drug interactions. One of the intensively studied topic in recent years to clarify the mechanism of drug interactions, in the pharmacokinetic area is p-glycoprotein related drug-drug and drug-food interactions. The interactions of some drugs with p-glycoprotein which is a carrier protein, can lead to a decrease in the bioavailability of th...

  8. To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression

    Our preliminary studies found technetium-99m tetrofosmin (Tc- TF) chest imaging was related to Pgp or MRP1 expression and successfully predict chemotherapy response and in SCLC in human. However, there was no published literature to study relationship of Tc-TF chest images and LRP expression in SCLC patients. Therefore, the aim of this study was to investigate the relationships among Tc- TF accumulation in untreated small cell lung cancer (SCLC), the expression of P-glycoprotein (Pgp), multidrug resistance related protein-1 (MRP1), and lung resistance-related protein (LRP), as well as the response to chemotherapy in patients with untreated SCLC. Thirty patients with SCLC were studied with chest images 15 to 30 minutes after intravenous injection of Tc-TF before chemotherapeutic induction. Tumor-to-background (T/B) ratios were obtained on the static and plantar Tc-TF chest images. The response to chemotherapy was evaluated upon completion of chemotherapy by clinical and radiological methods. These patients were separated into 15 patients with good response and 15 patients with poor response. No significant differences of prognostic factors (Karnofsky performance status, tumor size, or tumor stage) were found between the patients with good and poor responses. Immunohistochemical analyses were performed on multiple nonconsecutive sections of biopsy specimens to detect Pgp, MRP1, and LRP expression. The difference in T/B ratios on the Tc-TF chest images of the patients with good versus poor response was significant. The differences in T/B ratios of the patients with positive versus negative Pgp expression and with positive versus negative MRP1 expression were significant. The difference in T/B ratios of the patients with positive versus negative LRP expression was not significant. We concluded that Tc-TF chest images could accurately predict chemotherapy response of patients with SCLC. In addition, The Tc-TF tumor uptake was related to Pgp or MRP1 but not LPR

  9. Coniferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein

    Chang Chen

    2013-01-01

    Full Text Available Glutathione S-transferase (GST is the key enzyme in multidrug resistance (MDR of tumour. Inhibition of the expression or activity of GST has emerged as a promising therapeutic strategy for the reversal of MDR. Coniferyl ferulate (CF, isolated from the root of Angelica sinensis (Oliv. Diels (Radix Angelicae sinensis, RAS, showed strong inhibition of human placental GST. Its 50% inhibition concentration (IC50 was 0.3 μM, which was greater than a known GSTP1-1 inhibitor, ethacrynic acid (EA, using the established high-throughput screening model. Kinetic analysis and computational docking were used to examine the mechanism of GST inhibition by CF. Computational docking found that CF could be fully docked into the gorge of GSTP1-1. The further exploration of the mechanisms showed that CF was a reversible noncompetitive inhibitor with respect to GSH and CDNB, and it has much less cytotoxicity. Apoptosis and the expression of P-gp mRNA were evaluated in the MDR positive B-MD-C1 (ADR+/+ cell line to investigate the MDR reversal effect of CF. Moreover, CF showed strong apoptogenic activity and could markedly decrease the overexpressed P-gp. The results demonstrated that CF could inhibit GST activity in a concentration-dependent manner and showed a potential MDR reversal effect for antitumour adjuvant therapy.

  10. Synthesis of new steroidal inhibitors of P-glycoprotein-mediated multidrug resistance and biological evaluation on K562/R7 erythroleukemia cells.

    de Ravel, Marc Rolland; Alameh, Ghina; Melikian, Maxime; Mahiout, Zahia; Emptoz-Bonneton, Agnès; Matera, Eva-Laure; Lomberget, Thierry; Barret, Roland; Rocheblave, Luc; Walchshofer, Nadia; Beltran, Sonia; El Jawad, Lucienne; Mappus, Elisabeth; Grenot, Catherine; Pugeat, Michel; Dumontet, Charles; Le Borgne, Marc; Cuilleron, Claude Yves

    2015-02-26

    A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/β-pregnane-3,20-dione or 5β-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/β-pregnane-3,20-dione, among which the 5β-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 μM versus 1.2 and 10.6 μM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5β-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 μM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport. PMID:25634041

  11. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells

    Chen HH

    2015-08-01

    Full Text Available Hsin-Hung Chen,1 Wen-Chia Huang,2 Wen-Hsuan Chiang,2 Te-I Liu,2 Ming-Yin Shen,2,3 Yuan-Hung Hsu,4 Sung-Chyr Lin,1 Hsin-Cheng Chiu2 1Department of Chemical Engineering, National Chung Hsing University, Taichung, 2Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 3Department of Surgery, National Taiwan University Hospital-Hsinchu Branch, 4Pharmaceutical Optimization Technology Division, Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan Abstract: In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs carrying doxorubicin (DOX capable of overcoming multidrug resistance (MDR breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20 with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 µM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the

  12. 6,7-Dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinolines as superior reversal agents for P-glycoprotein-mediated multidrug resistance.

    Liu, Baomin; Qiu, Qianqian; Zhao, Tianxiao; Jiao, Lei; Li, Yunman; Huang, Wenlong; Qian, Hai

    2015-02-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major obstacle for successful cancer chemotherapy. Based on our previous study, 17 novel compounds with the 6,7-dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinoline scaffold were designed and synthesized. Among them, 2-[(1-{4-[2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]phenyl}-1H-1,2,3-triazol-4-yl)methoxy]-N-(p-tolyl)benzamide (compound 7 h) was identified as a potent modulator of P-gp-mediated MDR, with high potency (EC50 =127.5 ± 9.1 nM), low cytotoxicity (TI>784.3), and long duration (>24 h) in reversing doxorubicin (DOX) resistance in K562/A02 cells. Compound 7 h also enhanced the effects of other MDR-related cytotoxic agents (paclitaxel, vinblastine, and daunorubicin), increased the accumulation of DOX and blocked P-gp-mediated rhodamine 123 efflux function in K562/A02 MDR cells. Moreover, 7 h did not have any effect on cytochrome (CYP3A4) activity. These results indicate that 7 h is a relatively safe modulator of P-gp-mediated MDR that has good potential for further development. PMID:25470220

  13. P-glycoprotein and Its Role in Treatment Resistance

    Isil Gogcegoz Gul

    2016-03-01

    Full Text Available Polypharmacy which has often used to increase efficacy of treatment and to prevent resistance in psychiatry may lead to pharmacokinetic and pharmacodynamic drug interactions. One of the inten-sively studied topic in recent years to clarify the mechanism of drug interactions, in the pharmacoki-netic area is p-glycoprotein related drug-drug and drug-food interactions. The interactions of some drugs with p-glycoprotein which is a carrier protein, can lead to a decrease in the bioavailability of these drugs and reduction in passage through the blood-brain barrier. In this review, the role of p-glycoprotein on drug pharmacokinetics and bioavailability of psychiatric drugs are discussed. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(1: 19-31

  14. Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone (Dp44mT) Overcomes Multidrug Resistance by a Novel Mechanism Involving the Hijacking of Lysosomal P-Glycoprotein (Pgp)*

    Jansson, Patric J.; Yamagishi, Tetsuo; Arvind, Akanksha; Seebacher, Nicole; Gutierrez, Elaine; Stacy, Alexandra; Maleki, Sanaz; Sharp, Danae; Sahni, Sumit; Richardson, Des R.

    2015-01-01

    Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2′,7′-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport

  15. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp).

    Jansson, Patric J; Yamagishi, Tetsuo; Arvind, Akanksha; Seebacher, Nicole; Gutierrez, Elaine; Stacy, Alexandra; Maleki, Sanaz; Sharp, Danae; Sahni, Sumit; Richardson, Des R

    2015-04-10

    Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity

  16. Technetium-99m sestamibi single photon emission computed tomography findings correlated with p-glycoprotein expression, encoded by the multidrug resistance gene-1 messenger ribonucleic acid, in intracranial meningiomas

    The present study evaluated whether technetium-99m sestamibi (99mTc-MIBI) single photon emission computed tomography (SPECT) characteristics of intracranial meningioma are correlated with the histological malignancy, proliferative potential, and P-glycoprotein (Pgp) expression, encoded by the multidrug resistance gene-1 (MDR-1) messenger ribonucleic acid (mRNA). Twenty-one patients with intracranial meningiomas, including 17 benign and four nonbenign meningiomas, underwent 99mTc-MIBI SPECT imaging at 15 minutes (early) and 3 hours (delayed) after injection. The tumor-to-normal pituitary gland ratio was calculated on both early (ER) and delayed (DR) images. Retention index (RI) was calculated using the following formula: (DR-ER)/ER x 100%. Meningioma specimens were examined by immunohistochemistry using anti-Pgp and MIB-1 monoclonal antibody. MDR-1 mRNA expression was also investigated using reverse transcription-polymerase chain reaction assay. 99mTc-MIBI was highly accumulated and retained in the tumors. 99mTc-MIBI SPECT findings were not related to MIB-1 labeling index. 99mTc-MIBI SPECT RI of the Pgp-positive group (-9.12±22.27%) was significantly lower than that of the Pgp-negative group (28.79±22.80%) (p=0.0016). No significant difference was seen in ER and DR between the positive and negative groups. These results show that 99mTc-MIBI may not be useful for determining proliferative potential and histological malignancy, but could predict anticancer drug resistance related to the expression of MDR-1 mRNA and its gene product Pgp in patients with intracranial meningiomas. (author)

  17. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Cara Andrea; Andreotti Mauro; Galluzzo Clementina; Verdoliva Antonio; Costi Roberta; Molinari Agnese; Dupuis Maria; Cianfriglia Maurizio; Di Santo Roberto; Palmisano Lucia

    2007-01-01

    Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN) (IN inhibitors, IINs) has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp) thereby reducing their intracellular accumulation. To ad...

  18. Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells.

    Bo-xin Zhao

    Full Text Available The expression and function of P-glycoprotein (P-gp is associated with the phenotype of multi-drug resistance (MDR, leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-κB(NF-κB activity, IκB degradation level and NF-κB/p65 nuclear translocation induced by lipopolysaccharide (LPS and receptor activator for nuclear factor-κB ligand (RANKL were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1 activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-κB and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-κB and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-κB and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-κB activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic.

  19. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  20. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Cara Andrea

    2007-03-01

    Full Text Available Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN (IN inhibitors, IINs has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA derivatives active on the HIV-1 IN strand transfer (ST step and with EC50 ranging from 1.83 to >50 μm in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR reversing ability. Results The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells. Conclusion To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.

  1. Usefulness of technetium-99m tetrofosmin liver imaging to detect hepatocellular carcinoma and related to expression of P-glycoprotein or multidrug resistance associated protein-a preliminary report

    Technetium-99m Tetrofsomin (Tc-TF) has been shown to be useful in identifying several types of tumors, such as breast, lung, and thyroid cancers. There was no report in the literature for Tc-TF uptake in hepatocellular carcinoma (HCC). The aim of this study was to evaluate the usefulness of Tc-TF liver imaging to detect HCC and investigate the relationship between Tc-TF liver imaging findings and P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP) expression. Before any therapy, 22 patients with HCC were enrolled in this study. Tc-TF liver images were performed l0 minutes after intravenous injection of 20mCi Tc-TF. All patients had liver biopsy or surgery within l week after Tc-TF liver imaging. Immunohistochemical study of the biopsy or resected HCC specimens was performed using anti-human Pgp and MRP antibodies. Twenty of the 22 (90.9%) patients showed negative Tc-TF liver imaging results without significant Tc-TF uptake in HCC, whereas only the remaining 2 (9.1%) patients showed positive Tc-TF liver imaging results with significant Tc-TF uptake in HCC. Positive Pgp expression was observed in 13 of 20 patients with negative Tc-TF liver imaging results, whereas positive MRP expression was observed in 6 of the remaining 7 patients with negative both Tc-TF liver imaging results and Pgp expression. However, negative Pgp expression but positive MRP expression was observed in all of the remaining 2 patients with positive Tc-TF liver imaging results. The correlation between Tc-TF liver imaging findings and Pgp expression was significant and better than between Tc-TF liver imaging findings and MRP expression. Pgp or MRP expression in HCC may induce no significant Tc-TF uptake in HCC resulting in negative Tc-TF liver imaging findings. Therefore, Tc-TF liver imaging is potential to be a non-invasive method to predict Pgp or MRP expression in HCC. However, further studies with a larger series of patients and longer follow-up time are necessary to confirm

  2. Multidrug resistance in ocular melanoma.

    McNamara, M.; Clynes, M.; Dunne, B; NicAmhlaoibh, R; Lee, W. R.; Barnes, C; Kennedy, S M

    1996-01-01

    AIMS/BACKGROUND: Metastatic disease in patients with ocular melanoma is resistant to chemotherapy. One of the main mechanisms of modulating multidrug resistance is the expression of the multidrug resistance gene 1 (MDR1) product (p-glycoprotein) by tumour cells. The purpose of this study was to evaluate the frequency of expression of the MDR1 gene in ocular melanoma whose primary treatment was surgical excision or enucleation. METHODS: Twelve recent ocular melanomas were received fresh, snap ...

  3. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    Andrea Picchianti-Diamanti

    2014-03-01

    Full Text Available Autoimmune diseases such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA and psoriatic arthritis (PsA are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS, synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.

  4. Astrocytes drive upregulation of the multidrug resistance transporter ABCB1 (P-Glycoprotein) in endothelial cells of the blood-brain barrier in mutant superoxide dismutase 1-linked amyotrophic lateral sclerosis.

    Qosa, Hisham; Lichter, Jessica; Sarlo, Mark; Markandaiah, Shashirekha S; McAvoy, Kevin; Richard, Jean-Philippe; Jablonski, Michael R; Maragakis, Nicholas J; Pasinelli, Piera; Trotti, Davide

    2016-08-01

    The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313. PMID:27158936

  5. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-01

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells. PMID:27422607

  6. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  7. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells

    Xing-Xiang Peng; Amit K. Tiwari; Hsiang-Chun Wu; Zhe-Sheng Chen

    2012-01-01

    Imatinib,a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI),has revolutionized the treatment of chronic myelogenous leukemia (CML).However,development of multidrug resistance(MDR) limits the use of imatinib.In the present study,we aimed to investigate the mechanisms of cellular resistance to imatinib in CML.Therefore,we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process.While characterizing the phenotype of these cells,we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells.In addition,these cells were cross-resistant to second- and third-generation BCR-ABL TKIs.Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells.In addition,accumulation of [14C]6-mercaptopurine (6-MP) was decreased,whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells.These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells.

  8. Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval).

    Xu, Zhifeng; Shi, Li; Peng, Jianfang; Shen, Guangmao; Wei, Peng; Wu, Qiong; He, Lin

    2016-05-01

    Abamectin is an effective acaricide and widely used in the control of Tetranychus cinnabarinus. With the increase of control failures, it is however important to clarify the resistance mechanism to improve the control of this mite. P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump for xenobiotic compounds and is involved in multidrug resistance. In this study, the results showed that verapamil, the specific inhibitor of Pgp, could enhance the lethal effect of abamectin on mites, and this effect is more enhanced in abamectin-resistant strain (AbR, mortality increased 74.51%) than that in susceptible strain (SS, 19.91%). Further analysis showed that the activity of Pgp ATPase in AbR was significantly higher (1.65-fold) than that in SS. After exposure to sublethal concentration of abamectin, the ATPase activity in AbR was significantly increased 1.43-fold to that in control; but there was no significant difference in SS after treatment. Two Pgp gene sequences (TcPgp1 and TcPgp2) from ABCB subfamily were characterized, and their expressions were much more sensitive to abamectin's stimulation in AbR strain than SS. These findings indicate a direct relationship between Pgp and abamectin resistance, and abamectin-induced Pgp expression may be involved in the modulation of abamectin efflux in T. cinnabarinus. PMID:27017885

  9. Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues.

    Kerr, Ian D; Jones, Peter M; George, Anthony M

    2010-02-01

    One of the Holy Grails of ATP-binding cassette transporter research is a structural understanding of drug binding and transport in a eukaryotic multidrug resistance pump. These transporters are front-line mediators of drug resistance in cancers and represent an important therapeutic target in future chemotherapy. Although there has been intensive biochemical research into the human multidrug pumps, their 3D structure at atomic resolution remains unknown. The recent determination of the structure of a mouse P-glycoprotein at subatomic resolution is complemented by structures for a number of prokaryotic homologues. These structures have provided advances into our knowledge of the ATP-binding cassette exporter structure and mechanism, and have provided the template data for a number of homology modelling studies designed to reconcile biochemical data on these clinically important proteins. PMID:19961540

  10. pH regulation in sensitive and multidrug resistant Ehrlich ascites tumor cells

    Litman, Thomas; Pedersen, Stine F.; Kramhøft, Birte;

    1998-01-01

    Multidrug resistance; P-glycoprotein; Intracellular pH; acidification; glucose; Na*O+/H*O+ exchanger; H*O+ efflux......Multidrug resistance; P-glycoprotein; Intracellular pH; acidification; glucose; Na*O+/H*O+ exchanger; H*O+ efflux...

  11. Multidrug Resistance: Physiological Principles and Nanomedical Solutions

    Kunjachan, Sijumon; Rychlik, Błażej; Storm,Gert; Kiessling, Fabian; Lammers, Twan

    2013-01-01

    Multidrug (MDR) resistance is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the ...

  12. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance.

    Jaspers, Janneke E; Sol, Wendy; Kersbergen, Ariena; Schlicker, Andreas; Guyader, Charlotte; Xu, Guotai; Wessels, Lodewyk; Borst, Piet; Jonkers, Jos; Rottenberg, Sven

    2015-02-15

    Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this. PMID:25511378

  13. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress

    Dong, Xiaowei; Mumper, Russell J.

    2010-01-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. P-glycoprotein is an important and the best-known membrane transporter involved in MDR. Several strategies have been used to address MDR, especially P-glycoprotein-mediated drug resistance in tumors. However, clinical success has been limited, largely due to issues regarding lack of efficacy and/or safety. Nanoparticles have shown the ability to target tumors based on their unique physical and biological p...

  14. Cytokine-mediated reversal of multidrug resistance

    Stein, Ulrike; Walther, Wolfgang

    1998-01-01

    The occurrence of the multidrug resistance phenotype still represents a limiting factor for successful cancer chemotherapy. Numerous efforts have been made to develop strategies for reversal and/or modulation of this major therapy obstacle through targeting at different levels of intervention. The phenomenon of MDR is often associated with overexpression of resistance-associated genes. Since the classical type of MDR in human cancers is mainly mediated by the P-glycoprotein encoded by the mul...

  15. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1.

    van Veen, Hendrik W.; Venema, Koen; Bolhuis, Henk; Oussenko, Irina; Kok, Jan; Poolman, Bert; Driessen, Arnold J. M.; Konings, Wil N.

    1996-01-01

    Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophi...

  16. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    Castillo, G.; Vera, J.C.; Rosen, O.M. (Memorial Sloan-Kettering Cancer Research Center, New York, NY (USA)); Yang, Chiaping Huang; Horwitz, S.B. (Albert Einstein College of Medicine, Bronx, NY (USA))

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  17. Potential contribution of P-glycoproteins to macrocyclic lactone resistance in the cattle parasitic nematode Cooperia oncophora.

    Demeler, Janina; Krücken, Jürgen; AlGusbi, Salha; Ramünke, Sabrina; De Graef, Jessie; Kerboeuf, Dominique; Geldhof, Peter; Pomroy, William E; von Samson-Himmelstjerna, Georg

    2013-03-01

    Resistance against macrocyclic lactones such as ivermectin is widespread among parasitic gastrointestinal nematodes of small ruminants and is rapidly increasing in cattle parasites. ABC transporters of the subfamily B, the so-called P-glycoproteins (Pgps) have been frequently implicated in ivermectin resistance and are a major cause of multi-drug resistance in protozoa and helminths. The Pgp inhibitor verapamil (VPL) dramatically enhanced susceptibility of the cattle parasitic nematode Cooperia oncophora to ivermectin in vitro as measured in a larval developmental assay and a larval migration inhibition assay using third stage larvae. Moreover, VPL completely restored susceptibility to ivermectin in a resistant isolate resulting in virtually identical dose-response curves of susceptible and resistant isolates in the presence of VPL. Further characterisation of the molecular mechanisms resulting in Pgp-mediated ivermectin resistance is still hampered by the lack of molecular and biochemical information for Pgps of parasitic nematodes. Using PCR with degenerate primers, fragments of four different C. oncophora Pgps could be amplified and the Conpgp-2, previously implicated in macrocyclic lactone resistance in Haemonchus contortus, and Conpgp-3 full-length cDNAs were obtained by RACE PCR. The pgp sequences presented here contribute important data required to systematically screen resistant C. oncophora isolates for up- or down-regulation of Pgps and for the detection of single nucleotide polymorphisms in Pgps to detect selection of specific Pgp alleles by anthelmintics as early as possible. PMID:23384738

  18. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    Long Wu; Jun Xu; Weiqi Yuan; Baojian Wu; Hao Wang; Guangquan Liu; Xiaoxiong Wang; Jun Du; Shaohui Cai

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity wa...

  19. Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus

    Kwa, M.S.G.; Okoli, M.N.; Schulz-Key, H.; Okongkwo, P.O.; Roos, M.H.

    1998-01-01

    A P-glycoprotein gene probe from the sheep parasitic nematode Haemonchus contortus was developed and used to analyse restriction fragment length polymorphisms between susceptible isolates and isolates resistant to either benzimidazole; levamisole and benzimidazole; or benzimidazole, ivermectin and c

  20. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance

    Campos, Mônica Caroline Oliveira; Castro-Pinto, Denise Barçante; Ribeiro, Grazielle Alves; Berredo-Pinho, Márcia Moreira; Gomes, Leonardo Henrique Ferreira; da Silva Bellieny, Myrtes Santos; Goulart, Carla Marins; Echevarria, Áurea; Leon, Leonor Laura

    2013-01-01

    Drug resistance in protozoan parasites has been associated with the P-glycoprotein (Pgp), an energy-dependent efflux pump that transports substances across the membrane. Interestingly, the genes TcPGP1 and TcPGP2 have been described in Trypanosoma cruzi, although the function of these genes has not been fully elucidated. The main goal of this work was to investigate Pgp efflux pump activity and expression in T. cruzi lines submitted to in vitro induced resistance to the compounds 4-N-(2-metho...

  1. P-glycoprotein in adriamycin-resistant cells functions as an efflux pump for benzopyrene, a chemical carcinogen

    Chao Yeh, G.; Poore, C.M.; Lopaczynska, J.; Phang, J.M. (NCI-FCRDC, Frederick, MD (United States))

    1991-03-15

    The physiological function of multidrug resistant gene (MDR 1) coded P-glycoprotein 170 (P-gp) in normal tissues remains unknown. The authors propose that P-gp functions as an efflux pump in normal tissues for benzopyrene and other xenobiotic substances. To examine their hypothesis the authors used a series of MDR human breast cancer MCF-7 cells with increasing degrees of drug resistance, expression of MDR and levels of P-gp. First, they found the IC{sub 50} for benzopyrene is linearly correlated with the levels of P-gp at different stages of adriamycin resistant MCF-7 cells. Using P-gp ({sup 3}H)azidopine labeling as a measurement of P-gp they found benzopyrene competes for labeling of P-gp. Finally, they directly measured cellular efflux of benzopyrene with adherent cell laser cytometry and found that resistant cells expressing high levels of P-gp showed rapid efflux of benzopyrene. By contrast, drug sensitive wild type cells with undetectable P-gp showed negligible efflux. They conclude that P-gp can function as an efflux pump for benzopyrene and suggest that P-gp may be a cellular mechanism for resistance to carcinogens.

  2. [Multidrug resistance (MDR) in oncology].

    Souvirón Rodríguez, A; Ruiz Gómez, M J; Morales Moreno, J A; Martínez Morillo, M

    1997-03-01

    Multidrug resistance or mdr is a frequent phenomenon for which tumor cells can develop, in only one step, cross-resistance to a different anticancer drugs such as antibiotics, vinca alkaloids and podophylotoxins. This is due to an extrusion of drugs out of the cells, since it is interrelated with the decrease of the intracellular concentration of the drug, compared to sensitive cells. This phenomeno of multidrug resistance (mdr) is considered one of the principal causes of failure in quimiotherapic treatment of cancer, and is associated in many cases to an hyperexpression of mdr-I gene, that codifies for a high molecular weight glycoprotein (p-170) (170-180 Kdaltons), also called p-glycoprotein (pgp). Locadet it in the cellular membrane extracts, like a pump, the quimiotherapic drugs with consumption of ATP. In humans, there are two principal genes that codify for pgp: mdr-I and mdr2/3; being the most important the mdr-I gene. The structure of p-glycoprotein consists in two symmetrical halves anchored in the cellular membrane that includes three extracellular dominances each one, and on intracellular portion with the ATP binding site. Also, has got an for extracellular carbohydrates chain. It is specially important to find drugs that reverse the multidrug resistance. Chemicals such as verapamil, nifedine, quinidine and calmodulin inhibitors are joined to pgp inhibiting it. A Cyclosporine and its non-immunosuppressors derivateds such as SDZ 280-125 and SDZ PSC 833 reverse mdr. At present it is being advancing in clinical trials, but the results are not satisfactory. Most useful chemicals are verapamil, better R-verapamil and A-cyclosporine or its non-immunosuppressors derivates. Futures possibilities are grateful. From diagnostic point of view the mains are: 1. Detection of mdr-I gene. 2. Recognition of the presence of mRNA for pgp. 3. Detection of pgp by flow cytometry or western blot. 4. Immunohistochemistry with monoclonal antibodies to pgp. 5. Rhodamine 123 to

  3. Nuclear Multidrug-Resistance Related Protein 1 Contributes to Multidrug-Resistance of Mucoepidermoid Carcinoma Mainly via Regulating Multidrug-Resistance Protein 1: A Human Mucoepidermoid Carcinoma Cells Model and Spearman's Rank Correlation Analysis

    Bolei Cai; Ye Miao; Yuan Liu; Xiaofang Xu; Sumin Guan; Junzheng Wu; Yanpu Liu

    2013-01-01

    BACKGROUND: Multidrug resistance-related protein 1 (MRP1/ABCC1) and multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1) are both membrane-bound drug transporters. In contrast to MDR1, MRP1 also transports glutathione (GSH) and drugs conjugated to GSH. Due to its extraordinary transport properties, MRP1/ABCC1 contributes to several physiological functions and pathophysiological incidents. We previously found that nuclear translocation of MRP1 contributes to multidrug-resistance (MDR) of...

  4. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  5. Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system.

    Neyfakh, A A; Bidnenko, V E; L. B. CHEN

    1991-01-01

    Bacillus subtilis cells selected for their resistance to rhodamine 6G demonstrated a multidrug-resistance (MDR) phenotype resembling that of mammalian MDR cells. Like MDR in mammalian cells, MDR in bacteria was mediated by the efflux of the drugs from the cells. The bacterial multidrug efflux system transported similar drugs and was sensitive to similar inhibitors as the mammalian multidrug transporter, P-glycoprotein. The gene coding for the bacterial multidrug transporter, like the P-glycop...

  6. Is Resistance Useless? Multidrug Resistance and Collateral Sensitivity

    Hall, Matthew D.; Handley, Misty D.; Gottesman, Michael M.

    2009-01-01

    When cancer cells develop resistance to chemotherapeutics, it is frequently conferred by the ATP-dependent efflux pump P-glycoprotein (MDR1, P-gp, ABCB1). P-gp can efflux a wide range of cancer drugs; thus its expression confers cross-resistance, termed multidrug resistance (MDR), to a wide range of drugs. Strategies to overcome this resistance have been actively sought for over 30 years, yet no clinical solutions exist. A less understood aspect of MDR is the hypersensitivity of resistant can...

  7. Resistant mechanisms of anthracyclines--pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tissues.

    Kubota, T; Furukawa, T; Tanino, H; Suto, A; Otan, Y; Watanabe, M; Ikeda, T; Kitajima, M

    2001-01-01

    Juliano and Ling initially reported the expression of a 170 kDa glycoprotein in the membrane of Chinese hamster ovarian cells in 1976, and named this glycoprotein P-glycoprotein (P-gp) based on its predicted role of causing "permeability" of the cell membrane. After much research on anthracycline-resistance, this P-gp was finally characterized as a multidrug-resistant protein coded by the mdr1 gene. Multidrug resistance associated protein (MRP) was initially cloned from H69AR, a human small cell-lung carcinoma cell line which is resistant to doxorubicin (DXR) but does not express P-gp. MRP also excretes substrates through the cell membrane using energy from ATP catabolism. The substrate of MRP is conjugated with glutathione before active efflux from cell membrane. Recently, membrane transporter proteins were re-categorized as members of "ATP-Binding Cassette transporter"(ABC-transporter) superfamily, as shown at http://www.med.rug.nl/mdl/humanabc.htm and http://www.gene.ucl.ac.uk/nomenclature/genefamily/abc.html. A total of ABC transporters have been defined, and MDR1 and multidrug resistance associated protein 1 (MRP1) were reclassified as ABCB1 and ABCC1, respectively. Their associated superfamilies include 11 and 13 other protein, in addition to ABCB and ABCC, respectively. Lung resistance-related protein (LRP) is not a member of the superfamily of ABC transporter proteins, because it shows nuclear membrane expression and transports substrate between nucleus and cytoplasm. LRP was initially cloned from a non-small cell lung carcinoma cell line, SW1573/2R120 which is resistant to DXR, vincristine, etoposide and gramicidin D and does not express P-gp. The mechanisms of resistance remains unclear, and why some resistant cell lines express P-gp and others express MRP and/or LRP is likewise unclear. PMID:11791127

  8. Intracellular trafficking of P-glycoprotein

    Fu, Dong; Arias, Irwin M.

    2011-01-01

    Overexpression of P-glycoprotein (P-gp) is a major cause of multidrug resistance in cancer. P-gp is mainly localized in the plasma membrane and can efflux structurally and chemically unrelated substrates, including anticancer drugs. P-gp is also localized in intracellular compartments, such as ER, Golgi, endosomes and lysosomes, and cycles between endosomal compartments and the plasma membrane in a microtubular-actin dependent manner. Intracellular trafficking pathways for P-gp and participat...

  9. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  10. Assessment of Multidrug Resistance Reversal Using Dielectrophoresis and Flow Cytometry

    Labeed, Fatima H.; Coley, Helen M; Thomas, Hilary; Hughes, Michael P.

    2003-01-01

    In cancer, multidrug resistance (MDR) is the simultaneous resistance of tumor cells to different natural product anticancer drugs that have no common structure. This is an impediment to the successful treatment of many human cancers. A common correlate of MDR is the overexpression of a membrane protein, P-glycoprotein. Many studies have shown that MDR can be reversed after the use of substrate analogs, called MDR modulators. However, our understanding of MDR modulation is incomplete. In this ...

  11. 盐酸千金藤碱逆转K562/ADR细胞多药耐药性及其机制%Correlation between reversing effect of cepharanthine hydrochloride on multidrug resistance and P-glycoprotein expression and function of K562/ADR cells

    彭有梅; 王宁; 王亚峰; 韩立; 张艳; 江金花; 周玉冰; 王庆端

    2012-01-01

    研究盐酸千金藤碱(cepharanthine hydrochloride,CH)逆转K562/ADR细胞多药耐药性及其机制.采用MTT法检测多柔比星(adriamycin,ADR)单用及分别与CH、维拉帕米(verapamil,VER)合用的细胞毒作用;采用流式细胞仪,测定CH对细胞内ADR蓄积、罗丹明123 (Rho123)蓄积和泵出及P糖蛋白(P-gp)表达的影响.结果表明,CH(4 μmol·L-1)使K562/ADR细胞对ADR的敏感性增加7.43倍,逆转活性是VER的3.19倍,但对K562敏感株基本无影响.同时CH浓度依赖性地增加K562/ADR细胞内ADR和Rho123的蓄积,减少Rho123的泵出,抑制P糖蛋白的表达,但对K562细胞均无明显影响.CH在体外逆转肿瘤细胞多药耐药性的作用可能与其抑制P糖蛋白的功能和表达有关.%In this study, cepharanthine hydrochloride (CH) was tested for its potential ability to modulate the expression and function of P-glycoprotein (P-gp) in the multidmg-resistant human chronic myelogenous leukemia cell line K562/ADR. Cytotoxicity of adriamycin (ADR) alone or in combination with CH or verapamil (VER) in K562 and K562/ADR cells was determined by MTT assay. Based on flow cytometric technology, the effect of CH or VER on the uptake and efflux of rhodaminel23 (Rhol23) and the accumulation of ADR in these cells was detected by measuring Rhol23 or ADR-associated mean fluorescence intensity (MFI). The effects of CH and VER on P-glycoprotein (P-gp) expression in K562 and K562/ADR cells were also measured using a flow cytometry with PE-conjugated P-glycoprotein antibody. The results show that CH significantly enhanced the sensitivity of K562/ADR cells to ADR, 4 μmol·L"1 of CH enhanced the sensitivity of K562/ADR cells to ADR by 7.43 folds, the reversal activity was 3.19 times higher than that of verapamil. However, CH had no effect on drug-sensitive K562 cells (P < 0.05). CH increased Rhol23 and ADR accumulation in a concentration-dependent manner (2-8 umol·L-1) and inhibited the efflux of Rhol23 from these cells, but

  12. Multidrug resistance related molecules in human and murine lung

    Scheffer, G. L.; Pijnenborg, A C L M; Smit, E. F.; Müller, M.; Postma, D.S.; Timens, W.; van der Valk, P.; de Vries, E G E; Scheper, R. J.

    2002-01-01

    Aims: Transporter proteins known to mediate multidrug resistance (MDR) in tumour cells—MDR1 P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1)—are thought to be involved in protecting the lungs against inhaled toxic pollutants. Recently, several new transporter family members have been identified—for example, MRP2, MRP3, and breast cancer resistance protein (BCRP). To study the possible contribution of these proteins and the earlier defined MDR1 and MDR3 P-gp molecules, M...

  13. The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells.

    Lincke, C R; Broeks, A; the, I; Plasterk, R H; Borst, P

    1993-01-01

    P-glycoproteins can cause multidrug resistance in mammalian tumor cells by active extrusion of cytotoxic drugs. The natural function of these evolutionarily conserved, membrane-bound ATP binding transport proteins is unknown. In mammals, P-glycoproteins are abundantly present in organs associated with the digestive tract. We have studied the tissue-specific expression of Caenorhabditis elegans P-glycoprotein genes pgp-1 and pgp-3 by transformation of nematodes with pgp-lacZ gene fusion constr...

  14. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components

    Patanasethanont, Denpong; Nagai, Junya; Matsuura, Chie; Fukui, Kyoko; Sutthanut, Khaetthareeya; Sripanidkulchai, Bung-Orn; Yumoto, Ryoko; Takano, Mikihisa

    2007-01-01

    In this study, the effects of extracts and flavone derivatives from the rhizome of Kaempferia parviflora on multidrug resistance associated-proteins (MRP)-mediated transport in A549 cells were examined. The cells employed express MRP1 and MRP2, but not P-glycoprotein. The cellular accumulation of calcein, an MRP substrate, was significantly increased by various MRP inhibitors without being affected by verapamil, a typical P-glycoprotein inhibitor. Ethanol and aqueous extracts from Kaempferia ...

  15. Multidrug resistance associated proteins in multidrug resistance

    Kamlesh Sodani; Atish Patel; Rishil J. Kathawala; Zhe-Sheng Chen

    2012-01-01

    Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters.These ABC transporters together form the largest branch of proteins within the human body.The MRP family comprises of 13 members,of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell.They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH),glucuronate,or sulphate.In addition,MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH.Collectively,MRPs can transport drugs that differ structurally and mechanistically,including natural anticancer drugs,nucleoside analogs,antimetabolites,and tyrosine kinase inhibitors.Many of these MRPs transport physiologically important anions such as leukotriene C4,bilirubin glucuronide,and cyclic nucleotides.This review focuses mainly on the physiological functions,cellular resistance characteristics,and probable in vivo role of MRP1 to MRP9.

  16. The cyclin-dependent kinase inhibitor roscovitine and the nucleoside analog sangivamycin induce apoptosis in caspase-3 deficient breast cancer cells independent of caspase mediated P-glycoprotein cleavage: Implications for therapy of drug resistant breast cancers

    Cappellini, Alessandra; Chiarini, Francesca; Ognibene, Andrea; McCubrey, James A; Martelli, Alberto M.

    2009-01-01

    Resistance to multiple chemotherapeutic agents is a common clinical problem which can arise during cancer treatment. Drug resistance often involves overexpression of the multidrug resistance MDR1 gene, encoding P-glycoprotein (P-gp), a 170-kDa glycoprotein belonging to the ATP-binding cassette superfamily of membrane transporters. We have recently demonstrated apoptosis-induced, caspase-3-dependent P-gp cleavage in human T-lymphoblastoid CEM-R VBL100 cells. However, P-gp contain many aspartat...

  17. Kinetic Validation of the Models for P-Glycoprotein ATP Hydrolysis and Vanadate-Induced Trapping. Proposal for Additional Steps

    Lugo, Miguel Ramón; Sharom, Frances Jane

    2014-01-01

    P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich d...

  18. Drug accumulation in the presence of the multidrug resistance pump

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced the...

  19. Phosphorylation of the multidrug resistance associated glycoprotein

    Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistant phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl2 was enhanced a minimum of 2-fold by 10 μM cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by [γ-32P]ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance

  20. Phosphorylation of the multidrug resistance associated glycoprotein.

    Mellado, W; Horwitz, S B

    1987-11-01

    Drug-resistant cell lines derived from the mouse macrophage-like cell line J774.2 express the multidrug resistance phenotype which includes the overexpression of a membrane glycoprotein (130-140 kilodaltons). Phosphorylation of this resistant-specific glycoprotein (P-glycoprotein) in intact cells and in cell-free membrane fractions has been studied. The phosphorylated glycoprotein can be immunoprecipitated by a rabbit polyclonal antibody specific for the glycoprotein. Phosphorylation studies done with partially purified membrane fractions derived from colchicine-resistant cells indicated that (a) phosphorylation of the glycoprotein in 1 mM MgCl2 was enhanced a minimum of 2-fold by 10 microM cAMP and (b) the purified catalytic subunit of the cAMP-dependent protein kinase (protein kinase A) phosphorylated partially purified glycoprotein that was not phosphorylated by [gamma-32P]ATP alone, suggesting that autophosphorylation was not involved. These results indicate that the glycoprotein is a phosphoprotein and that at least one of the kinases responsible for its phosphorylation is a membrane-associated protein kinase A. The state of phosphorylation of the glycoprotein, which is a major component of the multidrug resistance phenotype, may be related to the role of the glycoprotein in maintaining drug resistance. PMID:3427052

  1. Multidrug-Resistant Tuberculosis

    2008-10-28

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.  Created: 10/28/2008 by Emerging Infectious Diseases.   Date Released: 10/28/2008.

  2. Enhanced Brain Disposition and Effects of Δ9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice

    Spiro, Adena S.; Alexander Wong; Boucher, Aurélie A.; Arnold, Jonathon C.

    2012-01-01

    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9)-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to ca...

  3. Quercetin as a Potential Modulator of P-Glycoprotein Expression and Function in Cells of Human Pancreatic Carcinoma Line Resistant to Daunorubicin

    Piotr Dziegiel

    2010-02-01

    Full Text Available P-glycoprotein (P-gp is one of the ABC transporters responsible for the resistance of several tumours to successful chemotherapy. Numerous agents are capable of interfering with the P-gp-mediated export of drugs but unfortunately most of them produce serious side effects. Some plant polyphenols, including the flavonol quercetin (Q, manifest anti-neoplastic activity mainly due to their influence on cell cycle control and apoptosis. Reports are also available which show that Q may intensify action of cytostatic drugs and suppress the multidrug resistance (MDR phenomenon. The study aimed at determination if Q sensitizes cells resistant to daunorubicin (DB through its effect on P-gp expression and action. The experiments were conducted on two cell lines of human pancreatic carcinoma, resistant to DB EPP85-181RDB and sensitive EPP85-181P as a comparison. Cells of both lines were exposed to selected concentrations of Q and DB, and then membranous expression of P-gp and its transport function were examined. The influence on expression of gene for P-gp (ABCB1 was also investigated. Results of the studies confirmed that Q affects expression and function of P-gp in a concentration-dependent manner. Moreover it decreased expression of ABCB1. Thus, Q may be considered as a potential modulator of P-gp.

  4. THE ROLE OF P-GLYCOPROTEIN IN RATIONAL PHARMACOTHERAPY IN CARDIOLOGY

    A. V. Shulkin

    2015-09-01

    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.

  5. Dynamic Assessment of Mitoxantrone Resistance and Modulation of Multidrug Resistance by Valspodar (PSC833) in Multidrug Resistance Human Cancer Cells

    Shen, Fei; Barbara J Bailey; Chu, Shaoyou; Bence, Aimee K.; Xue, Xinjian; Erickson, Priscilla; Safa, Ahmad R.; Beck, William T.; Erickson, Leonard C.

    2009-01-01

    P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, is one of the major causes for multidrug resistance (MDR). We report using confocal microscopy to study the roles of Pgp in mediating the efflux of the anticancer agent mitoxantrone and the reversal of MDR by the specific Pgp inhibitor valspodar (PSC833). The net uptake and efflux of mitoxantrone and the effect of PSC833 were quantified and compared in Pgp-expressing human cancer MDA-MB-435 ...

  6. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction.

    Noonan, K E; Beck, C.; Holzmayer, T A; Chin, J E; Wunder, J.S.; Andrulis, I.L.; Gazdar, A F; Willman, C.L.; Griffith, B.; Von Hoff, D. D.

    1990-01-01

    The resistance of tumor cells to chemotherapeutic drugs is a major obstacle to successful cancer chemotherapy. In human cells, expression of the MDR1 gene, encoding a transmembrane efflux pump (P-glycoprotein), leads to decreased intracellular accumulation and resistance to a variety of lipophilic drugs (multidrug resistance; MDR). The levels of MDR in cell lines selected in vitro have been shown to correlate with the steady-state levels of MDR1 mRNA and P-glycoprotein. In cells with a severa...

  7. Clinical imaging of multidrug resistance in cancer

    The most well-characterized mechanism of multidrug resistance (MDR) involves P-glycoprotein (Pgp), a transmembrane protein acting as an ATP-dependent drug efflux pump. The recognition of 99mTc-Sestamibi and other lipophilic cations as transport substrates for Pgp provided the necessary tool for the clinical assessment of Pgp function in patients with cancer. Many clinical studies from different institutions and trials including variety of malignancies indicate that both tumor uptake and clearance of 99mTc-Sestamibi are correlate with Pgp expression and may be used for the phenotypic assessment of multidrug resistance. Although both parameters may predict tumor responsible to chemotherapy, the extraction of efflux rate constants appeared o provide a more direct index of Pgp function as compared tp tracer uptake ratio allowing to trace a continuous spectrum of drug transport activity. Preliminary studies the use of MDR imaging agents to monitor the modulating ability of revertant compounds. Although the results support the feasibility of this approach, the alteration of tracer pharmacokinetics induced by the modulators certainly constitute a challenge in the development of a simple functional test suitable in clinical practice. The extension of the acquired imaging methodology to tumors with redundant intrinsic resistant mechanism. Due to multifactorial nature of phenomenon, the development of new tracers with substrate specificity for other known the complex array of cellular mechanisms contributing to treatment failure

  8. Clinical imaging of multidrug resistance in cancer

    Del Vecchi, S.; Ciarmiello, A.; Salvatore, M. [Naples Univ. Federico 2. (Italy). Medicina Nucleare. Dipt. di Scienze Biomorfologiche e Funzionali

    1999-06-01

    The most well-characterized mechanism of multidrug resistance (MDR) involves P-glycoprotein (Pgp), a transmembrane protein acting as an ATP-dependent drug efflux pump. The recognition of {sup 9}9mTc-Sestamibi and other lipophilic cations as transport substrates for Pgp provided the necessary tool for the clinical assessment of Pgp function in patients with cancer. Many clinical studies from different institutions and trials including variety of malignancies indicate that both tumor uptake and clearance of {sup 9}9mTc-Sestamibi are correlate with Pgp expression and may be used for the phenotypic assessment of multidrug resistance. Although both parameters may predict tumor responsible to chemotherapy, the extraction of efflux rate constants appeared o provide a more direct index of Pgp function as compared tp tracer uptake ratio allowing to trace a continuous spectrum of drug transport activity. Preliminary studies the use of MDR imaging agents to monitor the modulating ability of revertant compounds. Although the results support the feasibility of this approach, the alteration of tracer pharmacokinetics induced by the modulators certainly constitute a challenge in the development of a simple functional test suitable in clinical practice. The extension of the acquired imaging methodology to tumors with redundant intrinsic resistant mechanism. Due to multifactorial nature of phenomenon, the development of new tracers with substrate specificity for other known the complex array of cellular mechanisms contributing to treatment failure.

  9. Synthesis of 5-oxyquinoline derivatives for reversal of multidrug resistance

    Torsten Dittrich

    2012-10-01

    Full Text Available The inhibition of ABC (ATP binding cassette transporters is considered a powerful tool to reverse multidrug resistance. Zosuquidar featuring a difluorocyclopropyl-annulated dibenzosuberyl moiety has been found to be an inhibitor of the P-glycoprotein, one of the best-studied multidrug efflux pumps. Twelve 5-oxyisoquinoline derivatives, which are analogues of zosuquidar wherein the dibenzosuberyl-piperazine moiety is replaced by either a diarylaminopiperidine or a piperidone-derived acetal or thioacetal group, have been synthesized as pure enantiomers. Their inhibitory power has been evaluated for the bacterial multidrug-resistance ABC transporter LmrCD and fungal Pdr5. Four of the newly synthesized compounds reduced the transport activity to a higher degree than zosuquidar, being up to fourfold more efficient than the lead compound in the case of LmrCD and about two times better for Pdr5.

  10. Subtle Structural Differences Trigger Inhibitory Activity of Propafenone Analogues at the Two Polyspecific ABC Transporters: P-Glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP).

    Schwarz, Theresa; Montanari, Floriane; Cseke, Anna; Wlcek, Katrin; Visvader, Lene; Palme, Sarah; Chiba, Peter; Kuchler, Karl; Urban, Ernst; Ecker, Gerhard F

    2016-06-20

    The transmembrane ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are widely recognized for their role in cancer multidrug resistance and absorption and distribution of compounds. Furthermore, they are linked to drug-drug interactions and toxicity. Nevertheless, due to their polyspecificity, a molecular understanding of the ligand-transporter interaction, which allows designing of both selective and dual inhibitors, is still in its infancy. This study comprises a combined approach of synthesis, in silico prediction, and in vitro testing to identify molecular features triggering transporter selectivity. Synthesis and testing of a series of 15 propafenone analogues with varied rigidity and basicity of substituents provide first trends for selective and dual inhibitors. Results indicate that both the flexibility of the substituent at the nitrogen atom, as well as the basicity of the nitrogen atom, trigger transporter selectivity. Furthermore, inhibitory activity of compounds at P-gp seems to be much more influenced by logP than those at BCRP. Exploiting these differences further should thus allow designing specific inhibitors for these two polyspecific ABC-transporters. PMID:26970257

  11. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression.

    Gloria Perazzoli

    Full Text Available The use of temozolomide (TMZ has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated.Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2'-deoxycytidine was used to demethylate the MGMT promoter and O(6-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed.Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229 and high (SF268 and SK-N-SH basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines.These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma multiforme patients.

  12. Multidrug-resistant tuberculosis

    Álvarez-Gaviria Manuel

    2013-06-01

    Full Text Available Introduction: tuberculosis is an increasing problem of global health and the microbialdrug resistance a generating element of worry.Clinical case: 19 year-old patient, who admitted to the emergency room for presentinghemoptysis and who had history of pulmonary tuberculosis with irregular treatment.Multidrug-resistant tuberculosis was documented and different strategies of availablemedical treatment were considered. Due to the increased epidemiological risk and thehistory of poor adherence to the treatment, an in-hospital treatment was carried outwith a satisfactory response.Conclusion: multidrug-resistant tuberculosis is a social risk, keeping the route oftransmission of the disease. Rev.cienc.biomed. 2013;4(1:159-164RESUMEN:Introducción: la tuberculosis (TB pulmonar es un problema creciente de saludmundial y la resistencia a los antibióticos un elemento de preocupación.Caso clínico: paciente de 19 años, quien ingresó al servicio de urgencias por presentarhemoptisis. Antecedente de TB con tratamiento irregular. Se documentó resistenciaa varios medicamentos. Se consideraron las diferentes estrategias de tratamientodisponible. Debido al elevado riesgo epidemiológico y la historia de pobre adherencia altratamiento, se realizó manejo intrahospitalario con respuesta satisfactoria.Conclusiones: la tuberculosis multirresistente (MDR-TB representa un riesgo parala comunidad, teniendo en cuenta la vía de transmisión de la entidad. Rev.cienc.biomed. 2013;4(1:159-164

  13. Thermodynamics and kinetics of P-glycoprotein-substrate interactions

    Äänismaa, Päivi

    2007-01-01

    P-glycoprotein (Pgp, ABCB1) is a transmembrane protein, which extrudes a large number of structurally diverse compounds out of the cell membrane at the expense of ATP hydrolysis. The overexpression of Pgp strongly contributes to multidrug resistance, which hampers the chemotherapy of cancer and some other drug-treatable diseases. Therefore, the general aim of this thesis was to quantitatively characterize the thermodynamics and the kinetics of Pgp-substrate interactions. Specif...

  14. ALTERED MRP IS ASSOCIATED WITH MULTIDRUG-RESISTANCE AND REDUCED DRUG ACCUMULATION IN HUMAN SW-1573 CELLS

    EIJDEMS, EWHM; ZAMAN, GJR; DEHAAS, M; VERSANTVOORT, CHM; FLENS, MJ; SCHEPER, RJ; KAMST, E; BORST, P; BAAS, F

    1995-01-01

    We have analysed the contribution of several parameters, e.g. drug accumulation, MDR1 P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and topoisomerase (topo) II, to drug resistance in a large set of drug-resistant variants of the human non-small-cell lung cancer cell line SW-15

  15. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drags as judged by interference with nucleotide trapping

    Smith, A.J.; van Helvoort, A.; van Meer, G; Szabó, K.; Welker, E; Szakács, G; Váradi, A; Sarkadi, B.; Borst, P

    2000-01-01

    The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, p...

  16. Development and characterization of P-glycoprotein 1 (Pgp1, ABCB1)-mediated doxorubicin-resistant PLHC-1 hepatoma fish cell line

    The development of the multidrug resistance (MDR) phenotype in mammals is often mediated by the overexpression of the P-glycoprotein1 (Pgp, ABCB1) or multidrug resistance-associated protein (MRP)-like ABC transport proteins. A similar phenomenon has also been observed and considered as an important part of the multixenobiotic resistance (MXR) defence system in aquatic organisms. We have recently demonstrated the presence of ABC transporters in the widely used in vitro fish model, the PLHC-1 hepatoma cell line. In the present study we were able to select a highly resistant PLHC-1 sub-clone (PLHC-1/dox) by culturing the wild-type cells in the presence of 1 μM doxorubicin. Using quantitative PCR a 42-fold higher expression of ABCB1 gene was determined in the PLHC-1/dox cells compared to non-selected wild-type cells (PLHC-1/wt). The efflux rates of model fluorescent Pgp1 substrates rhodamine 123 and calcein-AM were 3- to 4-fold higher in the PLHC-1/dox in comparison to the PLHC-1/wt cells. PLHC-1/dox were 45-fold more resistant to doxorubicin cytotoxicity than PLHC-1/wt. Similarly to mammalian cell lines, typical cross-resistance to cytotoxicity of other chemotherapeutics such as daunorubicin, vincristine, vinblastine, etoposide and colchicine, occurred. Furthermore, cyclosporine A, verapamil and PSC833, specific inhibitors of Pgp1 transport activity, completely reversed resistance of PLHC-1/dox cells to all tested drugs, resulting in EC50 values similar to the EC50 values found for PLHC-1/wt. In contrast, MK571, a specific inhibitor of MRP type of efflux transporters, sensitized PLHC-1/dox cells, neither to doxorubicin, nor to any other of the chemotherapeutics used in the study. These data demonstrate for the first time that a specific Pgp1-mediated doxorubicin resistance mechanism is present in the PLHC-1 fish hepatoma cell line. In addition, the fact that low micromolar concentrations of specific inhibitors may completely reverse a highly expressed doxorubicin

  17. Inhibition of tumor cells multidrug resistance by cucumarioside A2-2, frondoside A and their complexes with cholesterol.

    Menchinskaya, Ekaterina S; Aminin, Dmitry L; Avilov, Sergey A; Silchenko, Aleksandra S; Andryjashchenko, Pelageya V; Kalinin, Vladimir I; Stonik, Valentin A

    2013-10-01

    In non-cytotoxic concentrations, frondoside A (1) from the sea cucumber Cucumaria okhotensis and cucumarioside A2-2 (2) from C. japonica, as well as their complexes with cholesterol block the activity of membrane transport P-glycoprotein in cells of the ascite form of mouse Ehrlich carcinoma. They prevent in this way an efflux of fluorescent probe Calcein from the cells. Since the blocking of P-glycoprotein activity results in decrease of multidrug resistance, these glycosides and their complexes with cholesterol may be considered as potential inhibitors of multidrug resistance of tumor cells. PMID:24354179

  18. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism. PMID:22003434

  19. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

    Ryohei Katayama

    2016-01-01

    Full Text Available The anaplastic lymphoma kinase (ALK fusion oncogene is observed in 3%–5% of non-small cell lung cancer (NSCLC. Crizotinib and ceritinib, a next-generation ALK tyrosine kinase inhibitor (TKI active against crizotinib-refractory patients, are clinically available for the treatment of ALK-rearranged NSCLC patients, and multiple next-generation ALK-TKIs are currently under clinical evaluation. These ALK-TKIs exhibit robust clinical activity in ALK-rearranged NSCLC patients; however, the emergence of ALK-TKI resistance restricts the therapeutic effect. To date, various secondary mutations or bypass pathway activation-mediated resistance have been identified, but large parts of the resistance mechanism are yet to be identified. Here, we report the discovery of p-glycoprotein (P-gp/ABCB1 overexpression as a ceritinib resistance mechanism in ALK-rearranged NSCLC patients. P-gp exported ceritinib and its overexpression conferred ceritinib and crizotinib resistance, but not to PF-06463922 or alectinib, which are next-generation ALK inhibitors. Knockdown of ABCB1 or P-gp inhibitors sensitizes the patient-derived cancer cells to ceritinib, in vitro and in vivo. P-gp overexpression was identified in three out of 11 cases with in ALK-rearranged crizotinib or ceritinib resistant NSCLC patients. Our study suggests that alectinib, PF-06463922, or P-gp inhibitor with ceritinib could overcome the ceritinib or crizotinib resistance mediated by P-gp overexpression.

  20. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

    Katayama, Ryohei; Sakashita, Takuya; Yanagitani, Noriko; Ninomiya, Hironori; Horiike, Atsushi; Friboulet, Luc; Gainor, Justin F.; Motoi, Noriko; Dobashi, Akito; Sakata, Seiji; Tambo, Yuichi; Kitazono, Satoru; Sato, Shigeo; Koike, Sumie; John Iafrate, A.; Mino-Kenudson, Mari; Ishikawa, Yuichi; Shaw, Alice T.; Engelman, Jeffrey A.; Takeuchi, Kengo; Nishio, Makoto; Fujita, Naoya

    2015-01-01

    The anaplastic lymphoma kinase (ALK) fusion oncogene is observed in 3%–5% of non-small cell lung cancer (NSCLC). Crizotinib and ceritinib, a next-generation ALK tyrosine kinase inhibitor (TKI) active against crizotinib-refractory patients, are clinically available for the treatment of ALK-rearranged NSCLC patients, and multiple next-generation ALK-TKIs are currently under clinical evaluation. These ALK-TKIs exhibit robust clinical activity in ALK-rearranged NSCLC patients; however, the emergence of ALK-TKI resistance restricts the therapeutic effect. To date, various secondary mutations or bypass pathway activation-mediated resistance have been identified, but large parts of the resistance mechanism are yet to be identified. Here, we report the discovery of p-glycoprotein (P-gp/ABCB1) overexpression as a ceritinib resistance mechanism in ALK-rearranged NSCLC patients. P-gp exported ceritinib and its overexpression conferred ceritinib and crizotinib resistance, but not to PF-06463922 or alectinib, which are next-generation ALK inhibitors. Knockdown of ABCB1 or P-gp inhibitors sensitizes the patient-derived cancer cells to ceritinib, in vitro and in vivo. P-gp overexpression was identified in three out of 11 cases with in ALK-rearranged crizotinib or ceritinib resistant NSCLC patients. Our study suggests that alectinib, PF-06463922, or P-gp inhibitor with ceritinib could overcome the ceritinib or crizotinib resistance mediated by P-gp overexpression. PMID:26870817

  1. Imaging the Function of P-Glycoprotein With Radiotracers: Pharmacokinetics and In Vivo Applications

    Kannan, P.; John, C; Zoghbi, SS; Halldin, C.; Gottesman, MM; Innis, RB; Hall, MD

    2009-01-01

    P-glycoprotein (P-gp), an efflux transporter, controls the pharmacokinetics of various compounds under physiological conditions. P-gp-mediated drug efflux has been suggested as playing a role in various disorders, including multidrug-resistant cancer and medication-refractory epilepsy. However, P-gp inhibition has had, to date, little or no clinically significant effect in multidrug-resistant cancer. To enhance our understanding of its in vivo function under pathophysiological conditions, sub...

  2. Multidrug-resistant tuberculosis

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  3. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition

    Gelsomino, Giada; Corsetto, Paola A.; Campia, Ivana; Montorfano, Gigliola; Kopecka, Joanna; Castella, Barbara; Gazzano, Elena; Ghigo, Dario; Rizzo, Angela M; Riganti, Chiara

    2013-01-01

    Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the respo...

  4. Direct interaction between verapamil and doxorubicin causes the lack of reversal effect of verapamil on P-glycoprotein mediated resistance to doxorubicin in vitro using L1210/VCR cells

    Mouse leukemic cell sub-line L 1210/VCR exerts expressive multidrug resistance (MDR) that is mediated by P-glycoprotein. Cells originally adapted to vincristine are also extremely resistant to doxorubicin. Resistance to both vincristine and doxorubicin is connected with depression of drug uptake. While resistance of L 121 O cells to vincristine could be reversed by verapamil as chemo-sensitizer, resistance of cells to doxorubicin was insensitive to verapamil. Action of verapamil (well-known inhibitor of PGP activity) on multidrug resistance was often used as evidence that MDR is mediated by PGP. From this point it may be possible that the resistance of L1210/VCR cells to vincristine is mediated by PGP and the resistance to doxorubicin is mediated by other PGP-independent system. Another and more probable explanation of different effect of verapamil on resistance of L1210/VCR cells to vincristine and doxorubicin may be deduced from the following fact: Using UV spectroscopy we found that doxorubicin dissolved in water buffered medium interacts effectively with verapamil. This interaction may be responsible for the decrease of concentration of both drugs in free effective form and consequently for higher survival of cells. In contrast to doxorubicin vincristine does not give any interaction with verapamil that is measurable by UV spectroscopy and resistance of L1210/VCR cells to vincristine may be fully reversed by verapamil. (authors)

  5. Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET

    Elsinga, PH; Franssen, EJF; Hendrikse, NH; Fluks, L; Weemaes, AMA; vanderGraaf, WTA; deVries, GE; Visser, GM; Vaalburg, W

    1996-01-01

    One of the mechanisms for multidrug resistance (MDR) of tumors is an overexpression of the P-glycoprotein (P-gp). The cytostatic agent daunorubicin and the modulator verapamil were labeled with C-11 to probe P-gp with PET. Methods: Carbon-11-daunorubicin was prepared from (CCH2N2)-C-11 with an aldeh

  6. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg;

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (M...

  7. Current Status on Marine Products with Reversal Effect on Cancer Multidrug Resistance

    Huiqin Guo; Zhe-Sheng Chen; Khalid El Sayed; Ioana Abraham

    2012-01-01

    The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR) is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp), ABCC1/multidrug resistance protein 1 (MRP1) and ABCG2/breast cancer resistance protein (BCRP). These transporters are part of the ATP-binding cassette (ABC) superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be block...

  8. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  9. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. PMID:23683834

  10. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  11. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [{sup 11}C]gefitinib

    Kawamura, Kazunori [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)], E-mail: kawamur@nirs.go.jp; Yamasaki, Tomoteru; Yui, Joji; Hatori, Akiko; Konno, Fujiko; Kumata, Katsushi; Irie, Toshiaki; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Kanno, Iwao; Zhang Mingrong [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-04-15

    Gefitinib (Iressa) is a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase. Recent studies confirmed that gefitinib interacted with the breast cancer resistance protein (BCRP) at submicromolar concentrations, whereas other multidrug transporters, including P-glycoprotein (P-gp), showed much lower reactivity toward gefitinib. Recently, many tracers for positron emission tomography (PET) have been prepared to study P-gp function in vivo; however, PET tracers had not been evaluated for both P-gp and BCRP modulation in the brain. Therefore, we evaluated in vivo brain penetration-mediated P-gp and BCRP in mice using [{sup 11}C]gefitinib. Co-injection with gefitinib (over 50 mg/kg), a nonspecific P-gp modulator cyclosporin A (50 mg/kg), and the dual P-gp and BCRP modulator GF120918 (over 5 mg/kg) induced an increase in the brain uptake of [{sup 11}C]gefitinib in mice 30 min after injection. In the PET study of mice, the radioactivity level in the brain with co-injection of GF120918 (5 mg/kg) was three- to fourfold higher than that in control after initial uptake. The radioactivity level in the brain in P-gp and Bcrp knockout mice was approximately eightfold higher than that in wild-type mice 60 min after injection. In conclusion, [{sup 11}C]gefitinib is a promising PET tracer to evaluate the penetration of gefitinib into the brain by combined therapy with P-gp or BCRP modulators, and into brain tumors. Furthermore, PET study with GF120918 is a promising approach for evaluating brain penetration-mediated P-gp and BCRP.

  12. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [11C]gefitinib

    Gefitinib (Iressa) is a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase. Recent studies confirmed that gefitinib interacted with the breast cancer resistance protein (BCRP) at submicromolar concentrations, whereas other multidrug transporters, including P-glycoprotein (P-gp), showed much lower reactivity toward gefitinib. Recently, many tracers for positron emission tomography (PET) have been prepared to study P-gp function in vivo; however, PET tracers had not been evaluated for both P-gp and BCRP modulation in the brain. Therefore, we evaluated in vivo brain penetration-mediated P-gp and BCRP in mice using [11C]gefitinib. Co-injection with gefitinib (over 50 mg/kg), a nonspecific P-gp modulator cyclosporin A (50 mg/kg), and the dual P-gp and BCRP modulator GF120918 (over 5 mg/kg) induced an increase in the brain uptake of [11C]gefitinib in mice 30 min after injection. In the PET study of mice, the radioactivity level in the brain with co-injection of GF120918 (5 mg/kg) was three- to fourfold higher than that in control after initial uptake. The radioactivity level in the brain in P-gp and Bcrp knockout mice was approximately eightfold higher than that in wild-type mice 60 min after injection. In conclusion, [11C]gefitinib is a promising PET tracer to evaluate the penetration of gefitinib into the brain by combined therapy with P-gp or BCRP modulators, and into brain tumors. Furthermore, PET study with GF120918 is a promising approach for evaluating brain penetration-mediated P-gp and BCRP.

  13. Multidrug resistance in Lactococcus lactis

    Bolhuis, Hendrik

    1996-01-01

    Multidrug resistance (MDR) was initially recongnized as the major cause of the failure of the drug-based treatment of human cancers. It has become increasingly clear that MDR occurs in mammalian cells but also in lower eukaryotes and bacteria. The appearance of multiple antibiotic resistant micro-or

  14. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier

    Hendrikse, NH; de Vries, EGE; Eriks-Fluks, L; van der Graaf, WTA; Hospers, GAP; Willemsen, ATM; Vaalburg, W; Franssen, EJF

    1999-01-01

    Drug resistance is a major cause of chemotherapy failure in cancer treatment, One reason is the overexpression of the drug efflux pump P-glycoprotein (P-gp), involved in multidrug resistance (MDR), In vivo pharmacokinetic analysis of P-gp transport might identify the capacity of modulation by P-gp s

  15. P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the Aurora-B Kinase Inhibitor barasertib-hQPA

    Russell Nigel H

    2011-06-01

    Full Text Available Abstract Background Aurora kinases play an essential role in orchestrating chromosome alignment, segregation and cytokinesis during mitotic progression, with both aurora-A and B frequently over-expressed in a variety of human malignancies. Over-expression of the ABC drug transporter proteins P-glycoprotein (Pgp and Breast cancer resistance protein (BCRP is a major obstacle for chemotherapy in many tumour types with Pgp conferring particularly poor prognosis in acute myeloid leukaemia (AML. Barasertib-hQPA is a highly selective inhibitor of aurora-B kinase that has shown tumouricidal activity against a range tumour cell lines including those of leukaemic AML origin. Methods Effect of barasertib-hQPA on the pHH3 biomarker and cell viability was measured in a panel of leukaemic cell lines and 37 primary AML samples by flow cytometry. Pgp status was determined by flow cytometry and BCRP status by flow cytometry and real-time PCR. Results In this study we report the creation of the cell line OCI-AML3DNR, which over-expresses Pgp but not BCRP or multidrug resistance-associated protein (MRP, through prolonged treatment of OCI-AML3 cells with daunorubicin. We demonstrate that Pgp (OCI-AML3DNR and KG-1a and BCRP (OCI-AML6.2 expressing AML cell lines are less sensitive to barasertib-hQPA induced pHH3 inhibition and subsequent loss of viability compared to transporter negative cell lines. We also show that barasertib-hQPA resistance in these cell lines can be reversed using known Pgp and BCRP inhibitors. We report that barasertib-hQPA is not an inhibitor of Pgp or BCRP, but by using 14[C]-barasertib-hQPA that it is effluxed by these transporters. Using phosphoHistone H3 (pHH3 as a biomarker of barasertib-hQPA responsiveness in primary AML blasts we determined that Pgp and BCRP positive primary samples were less sensitive to barasertib-hQPA induced pHH3 inhibition (p = 50 inhibition of pHH3 by barasertib-hQPA was achieved in 94.6% of these samples after 1

  16. P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the Aurora-B Kinase Inhibitor barasertib-hQPA

    Aurora kinases play an essential role in orchestrating chromosome alignment, segregation and cytokinesis during mitotic progression, with both aurora-A and B frequently over-expressed in a variety of human malignancies. Over-expression of the ABC drug transporter proteins P-glycoprotein (Pgp) and Breast cancer resistance protein (BCRP) is a major obstacle for chemotherapy in many tumour types with Pgp conferring particularly poor prognosis in acute myeloid leukaemia (AML). Barasertib-hQPA is a highly selective inhibitor of aurora-B kinase that has shown tumouricidal activity against a range tumour cell lines including those of leukaemic AML origin. Effect of barasertib-hQPA on the pHH3 biomarker and cell viability was measured in a panel of leukaemic cell lines and 37 primary AML samples by flow cytometry. Pgp status was determined by flow cytometry and BCRP status by flow cytometry and real-time PCR. In this study we report the creation of the cell line OCI-AML3DNR, which over-expresses Pgp but not BCRP or multidrug resistance-associated protein (MRP), through prolonged treatment of OCI-AML3 cells with daunorubicin. We demonstrate that Pgp (OCI-AML3DNR and KG-1a) and BCRP (OCI-AML6.2) expressing AML cell lines are less sensitive to barasertib-hQPA induced pHH3 inhibition and subsequent loss of viability compared to transporter negative cell lines. We also show that barasertib-hQPA resistance in these cell lines can be reversed using known Pgp and BCRP inhibitors. We report that barasertib-hQPA is not an inhibitor of Pgp or BCRP, but by using 14[C]-barasertib-hQPA that it is effluxed by these transporters. Using phosphoHistone H3 (pHH3) as a biomarker of barasertib-hQPA responsiveness in primary AML blasts we determined that Pgp and BCRP positive primary samples were less sensitive to barasertib-hQPA induced pHH3 inhibition (p = <0.001) than samples without these transporters. However, we demonstrate that IC50 inhibition of pHH3 by barasertib-hQPA was achieved in

  17. Effects of Rifampin and Multidrug Resistance Gene Polymorphism on Concentrations of Moxifloxacin▿

    Weiner, Marc; Burman, William; Luo, Chi-Cheng; Peloquin, Charles A.; Engle, Melissa; Goldberg, Stefan; Agarwal, Vipin; Vernon, Andrew

    2007-01-01

    Treatment regimens combining moxifloxacin and rifampin for drug-susceptible tuberculosis are being studied intensively. However, rifampin induces enzymes that transport and metabolize moxifloxacin. We evaluated the effect of rifampin and the human multidrug resistance gene (MDR1) C3435T polymorphisms (P-glycoprotein) on moxifloxacin pharmacokinetic parameters. This was a single-center, sequential design study with 16 volunteers in which sampling was performed after four daily oral doses of mo...

  18. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Chai, Stella; To, Kenneth KW; Lin, Ge

    2010-01-01

    Multi-drug resistance (MDR) of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC) membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM) in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studie...

  19. Association between Genetic Polymorphism of Multidrug Resistance 1 Gene and Sasang Constitutions

    Hyun-Ju Kim; Seung Yeon Hwang; Ju-Ho Kim; Hye-Jung Park; Sang-Gyu Lee; Si-Woo Lee; Jong-Cheon Joo; Yun-Kyung Kim

    2009-01-01

    Multidrug resistance 1 (MDR1) is a gene that expresses P-glycoprotein (P-gp), a drug transporter protein. Genetic polymorphisms of MDR1 can be associated with Sasang constitutions because Sasang constitutional medicine (SCM) prescribes different drugs according to different constitutions. A Questionnaire for Sasang Constitution Classification II (QSCC II) was used to diagnose Sasang constitutions. Two hundred and seven healthy people whose Sasang constitutions had been identified were tested....

  20. Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking.

    Saeed, Mohamed; Kadioglu, Onat; Khalid, Hassan; Sugimoto, Yoshikazu; Efferth, Thomas

    2015-01-01

    Apigenin is a common dietary flavonoid with considerable cytotoxic activity in vitro and in vivo. Despite many mechanistic studies, less is known about resistance factors hampering apigenin's activity. We investigated the ATP-binding cassette (ABC) transporters BCRP/ABCG2, P-glycoprotein/ABCB1 and its close relative ABCB5. Multidrug-resistant cells overexpressing these ABC transporters were not cross-resistant toward apigenin. Moreover, apigenin inhibited not only P-glycoprotein but also BCRP by increasing cellular uptake of doxorubicin and synergistic inhibition of cell viability in combination with doxorubicin or docetaxel in multidrug-resistant cells. To perform in silico molecular docking studies, we first generated homology models for human P-glycoprotein and ABCB5 based on the crystal structure of murine P-glycoprotein. Their nucleotide binding domains (NDBs) revealed the highest degrees of sequence homologies (89%-100%), indicating that ATP binding and cleavage is of crucial importance for ABC transporters. Molecular docking of apigenin bound to the NDBs of P-glycoprotein and ABCB5 in molecular docking studies. Hence, apigenin may compete with ATP for NDB-binding leading to energy depletion to fuel the transport of ABC transporter substrates. Furthermore, we performed COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression profiles of the National Cancer Institute tumor cell line panel. Microarray-based mRNA expressions of genes of diverse biological functions (signal transduction, transcriptional regulation, ubiquitination, autophagy, metabolic activity, xenobiotic detoxification and microtubule formation) significantly predicted responsiveness of tumor cells to apigenin. In conclusion, apigenin's activity is not hampered by classical mechanisms of multidrug resistance and the inhibition of ABC transporters by apigenin indicates that apigenin may overcome multidrug resistance in otherwise refractory tumors. PMID:25459885

  1. The ABC family of multidrug transporters in microorganisms

    van Veen, H.W; Konings, W.N

    1998-01-01

    Multidrug transporters are membrane proteins that are able to expel a broad range of toxic molecules from the cell. In humans, the overexpression of the multidrug resistance P-glycoprotein (Pgp) and the multidrug resistance-associated protein MRP1 (MRP) is a principal cause of resistance of cancers

  2. Sphingolipids, rafts and multidrug resistance

    Hinrichs, Joann Wilhelm Jakob

    2004-01-01

    The main goal of the research described in this thesis was to obtain more insight into the potential role of sphingolipids in multidrug resistance (MDR) of tumor cells. The approachinvolved the monitoring of sphingolipid dynamics in terms of metabolism and localization in relation to the acquisition

  3. Characterisation of multidrug-resistant Ehrlich ascites tumour cells selected in vivo for resistance to etoposide

    Nielsen, D; Maare, C; Eriksen, J;

    2000-01-01

    -extractable immunoreactive topoisomerase IIalpha and beta in EHR2/VP16 was reduced by 30-40% relative to that in EHR2. The multidrug resistance-associated protein (MRP) mRNA was increased 20-fold in EHR2/VP16 as compared with EHR2, whereas the expression of P-glycoprotein was unchanged. In EHR2/VP16, the steady......M. ATPase activity was slightly stimulated by daunorubicin, whereas vinblastine, verapamil, and cyclosporin A had no effect. In conclusion, development of resistance to VP16 in EHR2 is accompanied by a significant reduction in topoisomerase II (alpha and beta) and by increased expression of MRP mRNA (20......-fold). MRP displays several points of resemblance to P-glycoprotein in its mode of action: 1) like P-glycoprotein, MRP causes resistance to a range of hydrophobic drugs; 2) MRP decreases drug accumulation in the cells and this decrease is abolished by omission of energy; and 3) MRP increases efflux of...

  4. Multidrug resistance in Lactococcus lactis

    Bolhuis, Hendrik

    1996-01-01

    Multidrug resistance (MDR) was initially recongnized as the major cause of the failure of the drug-based treatment of human cancers. It has become increasingly clear that MDR occurs in mammalian cells but also in lower eukaryotes and bacteria. The appearance of multiple antibiotic resistant micro-organisms forms the major cause for the re-emergence of a number of infectious diseases that were believed to be controlled or totally exterminated. ... Zie: Summary

  5. Current Status on Marine Products with Reversal Effect on Cancer Multidrug Resistance

    Huiqin Guo

    2012-10-01

    Full Text Available The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp, ABCC1/multidrug resistance protein 1 (MRP1 and ABCG2/breast cancer resistance protein (BCRP. These transporters are part of the ATP-binding cassette (ABC superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be blocked by various drugs such as verapamil (calcium channel blocker and cyclosporin A (immunosuppressive agent, etc. These compounds are called MDR modulators or reversals. This review highlights several marine natural products with reversal effect on multidrug resistance in cancer, including agosterol A, ecteinascidin 743, sipholane triterpenoids, bryostatin 1, and welwitindolinones.

  6. Pharmacological properties of radiotracers that measure p-glycoprotein function and density

    Kannan, Pavitra

    2012-01-01

    Energy-dependent transporters of the ATP-binding cassette (ABC) family regulate the movement of molecules across cellular membranes. Several of these transporters are expressed in the endothelial cells of brain microvessels (blood-brain barrier) to protect brain tissue from exposure to toxins in the blood. Three of the most common ABC transporters at the blood-brain barrier are P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 1 (M...

  7. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells

    Wanisa PUNFA; Supachai YODKEEREE; Pornsiri PITCHAKARN; Chadarat AMPASAVATE; Pornngarm LIMTRAKUL

    2012-01-01

    Aim:To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells.Methods:Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique.On the surface of Cur-NPs,the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp).The physical properties of the Cur-NPs,including particle size,zeta potential,particle morphology and Cur release kinetics,were investigated.Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry,respectively.Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay.Results:The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm,respectively.The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP).The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells.Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher,as compared to KB-3-1 cells.However,the cellular uptake of Cur-NPs and Cur-NPs-lgG did not differ between the two types of cells.Besides,the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs.Conclusion:The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells,thus enhancing the cellular uptake and cytotoxicity of Cur.

  8. [18F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood–brain barrier

    Introduction: Transport of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) by the multidrug efflux transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood–brain barrier (BBB) may confound the interpretation of [18F]FDG brain PET data. Aim of this study was to assess the influence of ABCB1 and ABCG2 at the BBB on brain distribution of [18F]FDG in vivo by performing [18F]FDG PET scans in wild-type and transporter knockout mice and by evaluating changes in [18F]FDG brain distribution after transporter inhibition. Methods: Dynamic small-animal PET experiments (60 min) were performed with [18F]FDG in groups of wild-type and transporter knockout mice (Abcb1a/b(−/−), Abcg2(−/−) and Abcb1a/b(−/−)Abcg2(−/−)) and in wild-type rats without and with i.v. pretreatment with the known ABCB1 inhibitor tariquidar (15 mg/kg, given at 2 h before PET). Blood was sampled from animals from the orbital sinus vein at the end of the PET scans and measured in a gamma counter. Brain uptake of [18F]FDG was expressed as the brain-to-blood radioactivity concentration ratio in the last PET time frame (Kb,brain). Results: Kb,brain values of [18F]FDG were not significantly different between different mouse types both without and with tariquidar pretreatment. The blood-to-brain transfer rate constant of [18F]FDG was significantly lower in tariquidar-treated as compared with vehicle-treated rats (0.350 ± 0.025 mL/min/g versus 0.416 ± 0.024 mL/min/g, p = 0.026, paired t-test) but Kb,brain values were not significantly different between both rat groups. Conclusion: Our results show that [18F]FDG is not transported by Abcb1 at the mouse and rat BBB in vivo. In addition we found no evidence for Abcg2 transport of [18F]FDG at the mouse BBB. Advances in knowledge and implications for patient care: Our findings imply that functional activity of ABCB1 and ABCG2 at the BBB does not need to be taken into account when interpreting brain [18F]FDG PET data

  9. Structure and expression of the human MDR (P-glycoprotein) gene family.

    Chin, J E; Soffir, R; Noonan, K E; Choi, K.; Roninson, I B

    1989-01-01

    The human MDR (P-glycoprotein) gene family is known to include two members, MDR1 and MDR2. The product of the MDR1 gene, which is responsible for resistance to different cytotoxic drugs (multidrug resistance), appears to serve as an energy-dependent efflux pump for various lipophilic compounds. The function of the MDR2 gene remains unknown. We have examined the structure of the human MDR gene family by Southern hybridization of DNA from different multidrug-resistant cell lines with subfragmen...

  10. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhou, Xianguang [National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing 210016 (China); Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Wang, Jiandong [Department of Pathology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Longjiang [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Teng, Zhaogang, E-mail: tzg@fudan.edu.cn [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Lu, Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2015-03-30

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  11. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  12. Functional detection of MDR1/P170 and MRP/P190-mediated multidrug resistance in tumour cells by flow cytometry

    Feller, N; Kuiper, C. M.; Lankelma, J.; Ruhdal, J. K.; Scheper, R J; Pinedo, H. M.; Broxterman, H. J.

    1995-01-01

    Multidrug resistance (MDR) in tumour cells is often caused by the overexpression of the plasma membrane drug transporter P-glycoprotein (P-gp) or the recently discovered multidrug resistance-associated protein (MRP). In this study we investigated the specificity and sensitivity of the fluorescent probes rhodamine 123 (R123), daunorubicin (DNR) and calcein acetoxymethyl ester (calcein-AM) in order to detect the function of the drug transporters P-gp and MRP, using flow cytometry. The effects o...

  13. Reversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells.

    Sun, Bu Tong; Zheng, Li Hua; Bao, Yong Li; Yu, Chun Lei; Wu, Yin; Meng, Xiang Ying; Li, Yu Xin

    2011-03-01

    Multidrug resistance is a serious obstacle encountered in cancer treatment. Since drug resistance in human cancer is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1), the promoter of the human MDR1 gene may be a target for multidrug resistance reversion drug screening. In the present study, HEK293T cells were transfected with pGL3 reporter plasmids containing the 2kb of MDR1 promoter, and the transfected cells were used as models to screen for candidate multidrug resistance inhibitors from over 300 purified naturally occurring compounds extracted from plants and animals. Dioscin was found to have an inhibiting effect on MDR1 promoter activity. The resistant HepG2 cell line (HepG2/adriamycin) was used to validate the activity of multidrug resistance reversal by Dioscin. Results showed that Dioscin could decrease the resistance degree of HepG2/adriamycin cells, and significantly inhibit P-glycoprotein expression, as well as increase the accumulation of adriamycin in HepG2/adriamycin cells as measured by Flow Cytometric analysis. These results suggest that Dioscin is a potent multidrug resistance reversal agent and may be a potential adjunctive agent for tumor chemotherapy. PMID:21195709

  14. Visualization of multidrug resistance in vivo

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other 99mTc radiopharmaceuticals, such as 99mTc-tetrofosmin and several 99Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [11C]colchicine, [11C]verapamil and [11C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [11C]colchicine and [11C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[11C]acetyl-leukotriene E4 provides an opportunity to study MRP function non

  15. Visualization of multidrug resistance in vivo

    Hendrikse, N.H. [PET Center, University Hospital, Groningen (Netherlands)]|[Department of Internal Medicine, Division of Medical Oncology, University Hospital, Groningen (Netherlands); Franssen, E.J.F. [PET Center, University Hospital, Groningen (Netherlands)]|[Department of Nuclear Medicine, University Hospital, Groningen (Netherlands); Graaf, W.T.A. van der; Vries, E.G.E. de [Department of Internal Medicine, Division of Medical Oncology, University Hospital, Groningen (Netherlands); Vaalburg, W. [PET Center, University Hospital, Groningen (Netherlands)

    1999-03-01

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other {sup 99m}Tc radiopharmaceuticals, such as {sup 99m}Tc-tetrofosmin and several {sup 99}Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [{sup 11}C]colchicine, [{sup 11}C]verapamil and [{sup 11}C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [{sup 11}C]colchicine and [{sup 11}C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[{sup 11}C]acetyl-leukotriene E

  16. Drugs reverting multidrug resistance (chemosensitizers)

    Gualtieri, F. [Florence Univ. (Italy). Dip. di Scienze Farmaceutiche

    1996-12-01

    Drug resistance is a phenomenon that frequently impairs proper treatment of cancer. Multidrug resistance (MDR) is a particular case of acquired drug resistance, resulting from overexpression of a protein (P-170) that functions as a pump, clearing cells from the chemotherapic. The P-170 protein functions can be inhibited by a variety of lipophilic drugs containing a hydrophilic nitrogen, protonated at physiological pH. A considerable effort is underway to identify new drugs able to reverse MDR. Few of these molecules are already undergoing clinical trials.

  17. Sphingolipids, rafts and multidrug resistance

    Hinrichs, Joann Wilhelm Jakob

    2004-01-01

    The main goal of the research described in this thesis was to obtain more insight into the potential role of sphingolipids in multidrug resistance (MDR) of tumor cells. The approachinvolved the monitoring of sphingolipid dynamics in terms of metabolism and localization in relation to the acquisition of MDR and the expression of ATP-binding cassette (ABC) transporters involved in drug efflux. This research was conducted in two model cell lines, both human MDR cancer cells, over expressing eith...

  18. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis.

    Bolhuis, H.; Molenaar, D.; POELARENDS, G; VANVEEN, HW; Poolman, B; Driessen, AJM; KONINGS, WN

    1994-01-01

    Three mutants of Lactococcus lactis subsp. lactis MG1363, termed Eth(R), Dau(R), and Rho(R), were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and functionally unrelated drugs, among which were typical substrates of the mammalian multidrug transporter (P-glycoprotein) such as daunomycin, quinine, actinomycin D, gramicidin D, and rhodamine 6G. The three ...

  19. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: yunmanlicpu@hotmail.com [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  20. HG-829 is a potent noncompetitive inhibitor of the ATP-binding cassette multidrug resistance transporter ABCB1.

    Caceres, Gisela; Robey, Robert W; Sokol, Lubomir; McGraw, Kathy L; Clark, Justine; Lawrence, Nicholas J; Sebti, Said M; Wiese, Michael; List, Alan F

    2012-08-15

    Transmembrane drug export mediated by the ATP-binding cassette (ABC) transporter P-glycoprotein contributes to clinical resistance to antineoplastics. In this study, we identified the substituted quinoline HG-829 as a novel, noncompetitive, and potent P-glycoprotein inhibitor that overcomes in vitro and in vivo drug resistance. We found that nontoxic concentrations of HG-829 restored sensitivity to P-glycoprotein oncolytic substrates. In ABCB1-overexpressing cell lines, HG-829 significantly enhanced cytotoxicity to daunorubicin, paclitaxel, vinblastine, vincristine, and etoposide. Coadministration of HG-829 fully restored in vivo antitumor activity of daunorubicin in mice without added toxicity. Functional assays showed that HG-829 is not a Pgp substrate or competitive inhibitor of Pgp-mediated drug efflux but rather acts as a noncompetitive modulator of P-glycoprotein transport function. Taken together, our findings indicate that HG-829 is a potent, long-acting, and noncompetitive modulator of P-glycoprotein export function that may offer therapeutic promise for multidrug-resistant malignancies. PMID:22761337

  1. Keratinocyte growth factor-2 stimulates P-glycoprotein expression and function in intestinal epithelial cells

    Saksena, Seema; Priyamvada, Shubha; Kumar, Anoop; Akhtar, Maria; Soni, Vikas; Anbazhagan, Arivarasu Natarajan; Alakkam, Anas; Alrefai, Waddah A.; Dudeja, Pradeep K.; Gill, Ravinder K.

    2013-01-01

    Intestinal P-glycoprotein (Pgp/multidrug resistance 1), encoded by the ATP-binding cassette B1 gene, is primarily involved in the transepithelial efflux of toxic metabolites and xenobiotics from the mucosa into the gut lumen. Reduced Pgp function and expression has been shown to be associated with intestinal inflammatory disorders. Keratinocyte growth factor-2 (KGF2) has emerged as a potential target for modulation of intestinal inflammation and maintenance of gut mucosal integrity. Whether K...

  2. A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris

    Bai, Jiangping; Swartz, Douglas J.; Protasevich, Irina I.; Brouillette, Christie G; Harrell, Patina M.; Hildebrandt, Ellen; Gasser, Brigitte; Mattanovich, Diethard; Ward, Andrew; Chang, Geoffrey; Urbatsch, Ina L.

    2011-01-01

    Background Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. Methodology/Principal Findings Codon-optimized “Opti-Pgp” and wild-type Pgp, identical in primary protein sequence, were rigoro...

  3. In vivo P-glycoprotein function before and after epilepsy surgery

    Bauer, Martin; Karch, Rudolf; Zeitlinger, Markus; Liu, Joan; Koepp, Matthias J.; Asselin, Marie-Claude; Sisodiya, Sanjay M; Hainfellner, Johannes A; Wadsak, Wolfgang; Mitterhauser, Markus; Müller, Markus; Pataraia, Ekaterina; Langer, Oliver

    2014-01-01

    Objectives: To study the functional activity of the multidrug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier of patients with temporal lobe epilepsy using (R)-[11C]verapamil (VPM)-PET before and after temporal lobe surgery to assess whether postoperative changes in seizure frequency and antiepileptic drug load are associated with changes in Pgp function. Methods: Seven patients with drug-resistant temporal lobe epilepsy underwent VPM-PET scans pre- and postsurgery. Patient...

  4. P-glycoprotein targeted nanoscale drug carriers

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  5. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes

    Elizabeth E. Bygarski

    2014-12-01

    Full Text Available Our objective was to determine if the resistance mechanism to moxidectin (MOX is similar of that to ivermectin (IVM and involves P-glycoproteins (PGPs. Several Caenorhabditis elegans strains were used: an IVM and MOX sensitive strain, 13 PGP deletion strains and the IVM-R strain which shows synthetic resistance to IVM (by creation of three point mutations in genes coding for α-subunits of glutamate gated chloride channels [GluCls] and cross-resistance to MOX. These strains were used to compare expression of PGP genes, measure motility and pharyngeal pumping phenotypes and evaluate the ability of compounds that inhibit PGP function to potentiate sensitivity or reverse resistance to MOX. The results suggest that C. elegans may use regulation of PGPs as a response mechanism to MOX. This was indicated by the over-expression of several PGPs in both drug sensitive and IVM-R strains and the significant changes in phenotype in the IVM-R strain in the presence of PGP inhibitors. However, as the inhibitors did not completely disrupt expression of the phenotypic traits in the IVM-R strain, this suggests that there likely are multiple avenues for MOX action that may include receptors other than GluCls. If MOX resistance was mediated solely by GluCls then exposure of the IVM-R strain to PGP inhibitors should not have affected sensitivity to MOX. Targeted gene deletions showed that protection of C. elegans against MOX involves complex mechanisms and depends on the PGP gene family, particularly PGP-6. While the results presented are similar to others using IVM, there were some important differences observed with respect to PGPs which may play a role in the disparities seen in the characteristics of resistance to IVM and MOX. The similarities are of concern as parasites resistant to IVM show some degree but not complete cross-resistance to MOX; this could impact nematodes that are resistant to IVM.

  6. Multidrug-Resistant Tuberculosis (MDR TB)

    ... get proper treatment. What is multidrug-resistant tuberculosis (MDR TB)? Multidrug-resistant TB (MDR TB) is caused by an organism that is ... poor quality. Who is at risk for getting MDR TB? Drug resistance is more common in people who: • • Do not ...

  7. [Proteins in cancer multidrug resistance].

    Popęda, Marta; Płuciennik, Elżbieta; Bednarek, Andrzej K

    2014-01-01

    Multidrug Resistance (MDR) is defined as insensitivity to administered medicines that are structurally unrelated and have different molecular targets. Cancers possess numerous mechanisms of drug resistance, involving various aspects of cell biology. A pivotal role in this phenomenon is played by proteins--enzymatic or structural parts of the cell. Membrane transporters, including the main members of ABC protein family--P-gp, MRP1 and BCRP, as well as LRP, which builds structure of vaults, determine the multidrug-resistant phenotype by decreasing drug concentration within the cell or modifying its distribution to intracellular compartments. The π isoform of protein enzyme--glutathione S-transferase (GSTP-1), is responsible for excessive intensity of detoxification of cytostatics. A common example of altered drug target site that does not respond to chemotherapy is topoisomerase II α (TopoIIa). Alterations of programmed cell death result from expression of metallothionein (MT)--inhibitor of the process, and cytokeratin 18 (CK18), which, if in high concentration, also prevents apoptosis of cells. Several methods of decreasing activity of these proteins have been developed, aiming to overcome MDR in cancer cells. However, for a variety of reasons, their clinical suitability is still very low, leading to continuous increase in death rate among patients. This paper presents current state of knowledge on the most important examples of proteins responsible for MDR of cancer cells and molecular mechanisms of their action. PMID:24864112

  8. Expression of P-glycoprotein-mediated drug resistance in CHO cells surviving a single X-ray dose of 30 Gy

    The authors reported previously that Chinese hamster ovary (CHO) cells surviving exposure to repeated doses of 9 Gy of X-irradiation in vitro expressed a multiple drug resistance phenotype characterized by cross-resistance to epipodophyllotoxins and to Vinca alkaloids, and by P-glycoprotein (Pgp) overexpression. They now show that exposure of these CHO cells to a single 30-Gy X-ray dose similarly resulted in the survivors expressing resistance to vincristine and to etoposide and overexpressing Pgp. In agreement with data obtained on cells which received repeated X-ray exposures, this Pgp overexpression occurred in the absence of any significant elevation of Pgp mRNA. However, the reduced ability to accumulate rhodamine 123 identified in these sublines, and the ability of verapamil to reverse this accumulation defect, implies that the Pgp which was overexpressed was functional. (author)

  9. Overcoming of P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cells could be induced by pentoxifylline but not by theophylline and caffeine

    Effects of xanthine derivatives (pentoxifylline (PTX), caffeine, theophylline, 1-methyl-3-isobutylxanthine) on P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cell sub-line were studied. From the applied xanthines only PTX was found to reverse the vincristine resistance of the above cells. Moreover, only PTX, but not other xanthine, increased the accumulation of [3H]vincristine by L1210/VCR cells. Thus it may be concluded that PTX-induced reversal of vincristine (VCR) resistance could not be explained from the point of known pharmacological effects of PTX that are common for other xanthines such as inhibition of phosphodiesterase activity, calcium mobilizing effect, inhibition of tumor necrosis factor α (TNF), etc. (author)

  10. Resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosis patients

    Nafees Ahmad; Arshad Javaid; Syed Azhar Syed Sulaiman; Long Chiau Ming; Izaz Ahmad; Amer Hayat Khan

    2016-01-01

    Abstract Background Fluoroquinolones are the backbone of multidrug resistant tuberculosis treatment regimens. Despite the high burden of multidrug resistant tuberculosis in the country, little is known about drug resistance patterns, prevalence, and predictors of fluoroquinolones resistance among multidrug resistant tuberculosis patients from Pakistan. Objective To evaluate drug resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosi...

  11. Downregulation of gene MDR1 by shRNA to reverse multidrug-resistance of ovarian cancer A2780 cells

    Hongyi Zhang; Jing Wang; Kai Cai; Longwei Jiang; Dandan Zhou; Cuiping Yang,; Junsong Chen,; Dengyu Chen,; Jun Dou

    2012-01-01

    Background: To explore the effects of downregulated multidrug-resistance P-glycoprotein (MDR1/ABCB1) and reversed multidrug-resistance in human A2780 ovarian cancer cells. Materials and Methods: Three shRNAs targeting the MDR1 gene were synthesized, and cloned into plasmid pSUPER-enhanced green fluorescent protein 1 (EGFP1). The formed pSUPER-EGFP1-MDR1-shRNAs were transfected into the A2780 cells, respectively, and the quantitative reverse transcription polymerase chain reaction and west...

  12. Functional imaging of the multidrug resistance in vivo

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. 99mTc-sestaMIBI and other 99mTc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-(11C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo

  13. Functional imaging of the multidrug resistance in vivo

    Lee, Jae Tae [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    2001-07-01

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. {sup 99m}Tc-sestaMIBI and other {sup 99m}Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with {sup 11}C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-{sup (11}C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo.

  14. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane.

    Altenberg, G A; Vanoye, C G; Horton, J K; Reuss, L

    1994-01-01

    P-glycoprotein (Pgp), a plasma membrane protein overexpressed in multidrug-resistant tumor cells, is an ATPase thought to actively export cytotoxic drugs. It has been proposed that Pgp transports drugs directly from the lipid bilayer to the external medium ("vacuum cleaner" hypothesis). A possible mechanism for this model is that the Pgp is a flippase--i.e., it catalyzes the translocation of hydrophobic substrates from the inner to the outer leaflet of the cell membrane. Two immediate predict...

  15. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues.

    Croop, J M; Raymond, M; Haber, D; Devault, A; Arceci, R. J.; Gros, P.; Housman, D.E.

    1989-01-01

    The gene responsible for multidrug resistance (mdr), which encodes the P-glycoprotein, is a member of a multigene family. We have identified distinct mdr gene transcripts encoded by three separate mdr genes in the mouse. Expression levels of each mdr gene are dramatically different in various mouse tissues. Specific mdr RNA transcripts of approximately 4.5, 5, and 6 kilobases have been detected. Each of the mdr genes has a specific RNA transcript pattern. These results should be considered in...

  16. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  17. Kinetic validation of the models for P-glycoprotein ATP hydrolysis and vanadate-induced trapping. Proposal for additional steps.

    Miguel Ramón Lugo

    Full Text Available P-Glycoprotein, a member of the ATP-binding cassette (ABC superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the

  18. P-glycoprotein is expressed and causes resistance to chemotherapy in EBV-positive T-cell lymphoproliferative diseases

    Epstein–Barr virus-positive T-cell lymphoproliferative diseases (EBV-T-LPDs) are rare lymphomas with poor prognosis. Although chemotherapeutic strategies such as CHOP have been often selected, they have exhibited only limited efficacy. To clarify the mechanism of chemoresistance, we examined P-glycoprotein (P-gp) expression. P-gp acts as an energy-dependent efflux pump that excretes drugs from the cytoplasm, resulting in low-intracellular drug concentrations and poor sensitivity to chemotherapy. We examined P-gp expression in EBV-positive cells by immunohistochemistry staining in three patients of EBV-T-LPDs and the expression was detected in all patients. We also examined mdr1 mRNA expression by reverse-transcriptase polymerase-chain reaction (RT-PCR) in EBV-positive tumor cells from these patients and additional three patients. The expression was detected in all examined patients. In five EBV-T-LPDs patients, P-gp function was detected by Rhodamine-123 efflux assay in these cells. The efflux was inhibited by treatment with a P-gp inhibitor, cyclosporine A (CsA). We also examined and detected P-gp expression in EBV-positive T-cell lines SNT8 and SNT16 established from EBV-T-LPDs patients, by RT-PCR and western blotting. The function was also detected by Rhodamine-123 efflux in these cell lines. Inhibition and knock down of P-gp by CsA and siRNA, respectively, enhanced etoposide- and doxorubicin-induced cell death in the EBV-positive T-cell lines. Finally, we infected the T-cell line MOLT4 with EBV, and found that mdr1 mRNA expression and Rhodamine 123 efflux were upregulated after infection. These results indicated that enhanced P-gp expression contributed to the chemoresistance of EBV-T-LPDs

  19. Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility

    Messerli, Shanta M.; Kasinathan, Ravi S.; Morgan, William; Spranger, Stefani; Greenberg, Robert M.

    2009-01-01

    One potential physiological target for new antischistosomals is the parasite’s system for excretion of wastes and xenobiotics. P-glycoprotein (Pgp), a member of the ATP-binding cassette superfamily of proteins, is an ATP-dependent efflux pump involved in transport of toxins and xenobiotics from cells. In vertebrates, increased expression of Pgp is associated with multidrug resistance in tumor cells. Pgp may also play a role in drug resistance in helminths. In this report, we examine the relat...

  20. Nanodrug Delivery in Reversing Multidrug Resistance in Cancer Cells

    Sonali eKapse-Mistry

    2014-07-01

    Full Text Available Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance(MDR which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp, multidrug resistance-associated proteins(MRP1, MRP2 and breast cancer resistance protein(BCRP. Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1 gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-B. Theragnostics combining a cytotoxic agent, targeting moiety, chemosensitizing agent and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  1. Multi-drug resistance 1 genetic polymorphism and prediction of chemotherapy response in Hodgkin's Lymphoma

    Haddadin William J; Matalka Ismail I; Alzoubi Karem H; Khabour Omar F.; Alshogran Osama Y; Mhaidat Nizar M; Mahasneh Ibraheem O; Aldaher Ahmad N

    2011-01-01

    Abstract Background The human multi-drug resistance gene (MDR1), which encodes the major trans-membrane transporter P-glycoprotein (P-gp), was found to be associated with susceptibility to cancer and response to chemotherapy. The C3435T Polymorphism of MDR1 gene was correlated with expression levels and functions of P-gp. Here, we studied the association between MDR1 C3435T polymorphism and susceptibility to Hodgkin lymphoma (HL) and patient's response to ABVD chemotherapy regimen. Methods a ...

  2. Multidrug resistance 1 gene expression and AgNOR in childhood acute leukemias

    Balamurugan, S.; Sugapriya, D.; Shanthi, P.; Thilaka, V.; Venkatadesilalu, S.; Pushpa, V.; Madhavan, M.

    2007-01-01

    The multidrug resistance 1 (MDR1) gene product, P-glycoprotein (Pgp/p170) is a membrane protein, which acts as an ATP dependant efflux pump that expels a wide variety of organic compounds including chemotherapeutic agents from the cell. Pgp over expression has been demonstrated to be linked with poor treatment outcome and poor prognosis in a number of malignant tumors. AgNORs is a simple, reliable and inexpensive method of evaluating the proliferative activity of a tumor. We have studied MDR1...

  3. Imaging of multidrug resistance in cancer

    Dizdarevic, S.; Peters, A M

    2011-01-01

    Abstract Primary intrinsic and/or acquired multidrug resistance (MDR) is the main obstacle to successful cancer treatment. Functional molecular imaging of MDR in cancer using single photon or positron emitters may be helpful to identify multidrug-resistant tumours and predict not only those patients who are resistant to treatment, with a clinically unfavourable prognosis, but also those who are susceptible to the development of drug toxicity or even certain tumours . Variations in the mdr1 ge...

  4. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Long Wu

    Full Text Available P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound.The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions.3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds, paclitaxel (85 folds, daunorubicin (201 folds, and epirubicin (171 folds] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied.We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the

  5. Expression of multidrug resistance-related markers in primary neuroblastoma

    吕庆杰; 董芳; 张锦华; 李晓晗; 马颖; 姜卫国

    2004-01-01

    Background Multidrug resistance is associated with a poor prognosis in various human cancers. However, the clinical significance of the expression of multidrug resistance-related markers in neuroblastoma is still on debate. In this study, the effect of the expression of p-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), and lung resistance protein (LRP) in neuroblastoma was evaluated. Methods The streptavidin-biotin immunoperoxidase (SP) technique was used to evaluate the expression of P-gp, MRP, and LRP in 70 cases of untreated primary neuroblastoma. Results The frequencies of the expression of P-gp, MRP, and LRP were 61.4%, 38.6%, and 24.3%, respectively. A significant positive correlation was observed between P-gp and MRP expression (P=0.001), as well as between LRP and MRP expression (P=0.01). The rates of expression of P-gp and MRP were higher in tumors from patients aged greater than one year old than in tumors from patients aged less than 1 year old at time of diagnosis (P=0.01 and 0.018, respectively). MRP expression in tumors that had metastasized was significantly more frequent than in tumors that had not metastasized (P=0.015). The expression of all tested proteins showed a significant relationship with whether or not the tumor had differentiated (P=0.006, 0.000 or 0.001, respectively). MRP expression was significantly associated with a reduction in both median survival time and 2-year cumulative survival (P=0.02). By contrast, P-gp and MRP expression did not correlate with survival. According to Cox regression analysis, only the co-expression of P-gp and MRP had significant prognostic value (relative hazard, 3.513, P=0.033). Conclusions The intrinsic, multidrug resistance of neuroblastoma involves the combined effects of P-gp, MRP, and LRP. MRP expression may be an important factor determining prognosis in neuroblastoma.

  6. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components.

    Patanasethanont, Denpong; Nagai, Junya; Matsuura, Chie; Fukui, Kyoko; Sutthanut, Khaetthareeya; Sripanidkulchai, Bung-orn; Yumoto, Ryoko; Takano, Mikihisa

    2007-07-01

    In this study, the effects of extracts and flavone derivatives from the rhizome of Kaempferia parviflora on multidrug resistance associated-proteins (MRP)-mediated transport in A549 cells were examined. The cells employed express MRP1 and MRP2, but not P-glycoprotein. The cellular accumulation of calcein, an MRP substrate, was significantly increased by various MRP inhibitors without being affected by verapamil, a typical P-glycoprotein inhibitor. Ethanol and aqueous extracts from K. parviflora rhizome increased the accumulation of calcein and doxorubicin in A549 cells in a concentration-dependent manner. The inhibitory potency of the ethanol extract for MRP function was greater than that of the aqueous extract. Among six flavone derivatives isolated from K. parviflora rhizome, 5,7-dimethoxyflavone exhibited a maximal stimulatory effect on the accumulation of doxorubicin in A549 cells. The accumulation of doxorubicin was increased by four flavone derivatives without 5-hydroxy group, but not by the other two flavone derivatives with 5-hydroxy group. In addition, 5,7-dimethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone decreased resistance to doxorubicin in A549 cells. These findings indicate that extracts and flavone derivatives from the rhizome of K. parviflora suppress MRP function, and therefore may be useful as modulators of multidrug resistance in cancer cells. PMID:17481606

  7. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    Gloria Perazzoli; Jose Prados; Raul Ortiz; Octavio Caba; Laura Cabeza; Maria Berdasco; Beatriz Gónzalez; Consolación Melguizo

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-gly...

  8. Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    Bikadi, Zsolt; Hazai, Istvan; Malik, David; Jemnitz, Katalin; Veres, Zsuzsa; Hari, Peter; Ni, Zhanglin; Loo, Tip W.; Clarke, David M.; Hazai, Eszter; Mao, Qingcheng

    2011-01-01

    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics,...

  9. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway

    Chen, Ting; Wang, Changyuan; Liu, Qi; Meng, Qiang; Sun, Huijun; Huo, Xiaokui; Sun, Pengyuan; Peng, Jinyong; Liu, Zhihao; Yang, Xiaobo; Liu, Kexin

    2014-01-01

    Multidrug resistance (MDR) is one of the major obstacles to the efficiency of cancer chemotherapy, which often results from the overexpression of drug efflux transporters such as P-glycoprotein (P-gp). In the present study, we determined the effect of dasatinib which was approved for imatinib resistant chronic myelogenous leukemia (CML) and (Ph+) acute lymphoblastic leukemia (ALL) treatment on P-gp-mediated MDR. Our results showed that dasatinib significantly increased the sensitivity of P-gp...

  10. Where is it and how does it get there – intracellular localization and traffic of P-glycoprotein

    DongFu

    2013-01-01

    P-glycoprotein (P-gp), an ATP-binding cassette (ABC), is able to transport structurally and chemically unrelated substrates. Overexpression of P-gp in cancer cells significantly decreases the intercellular amount of anticancer drugs, and results in multidrug resistance in cancer cells, a major obstacle in cancer chemotherapy. P-gp is mainly localized on the plasma membrane and functions as a drug efflux pump; however, P-gp is also localized in many intracellular compartments, such as endoplas...

  11. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Wei Xu; Yuyang Jiang; Xuyu Zu; Shengnan He; Zhenhua Xie; Feng Liu

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of...

  12. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Buddhasukh Duang

    2004-04-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170, thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn, were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.

  13. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

  14. The ABCs of multidrug resistance in malaria.

    Koenderink, J.B.; Kavishe, R.A.; Rijpma, S.R.; Russel, F.G.M.

    2010-01-01

    Expanding drug resistance could become a major problem in malaria treatment, as only a limited number of effective antimalarials are available. Drug resistance has been associated with single nucleotide polymorphisms and an increased copy number of multidrug resistance protein 1 (MDR1), an ATP-bindi

  15. Noninvasive functional imaging of P-glycoprotein-mediated doxorubicin resistance in a mouse model of hereditary breast cancer to predict response, and assign P-gp inhibitor sensitivity

    Leeuwen, Fijs W.B. van; Buckle, Tessa; Gilhuijs, Kenneth G.A. [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Departments of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Kersbergen, Ariena; Rottenberg, Sven [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Molecular Biology, Amsterdam (Netherlands)

    2009-03-15

    Using a ''spontaneous'' mammary mouse tumor model we set out to develop diagnostic approaches for non-invasive P-glycoprotein (P-gp) staging and response prediction. {sup 99m}Tc-MIBI efflux rates were measured using a gamma camera in three Brca1 {sup -/-}; p53 {sup -/-} mouse mammary tumors that have different Mdr1a/b expression levels. The efflux rates were quantified in the 10-30-min period after injection. In addition to the P-gp-mediated efflux measurements in untreated tumors, efflux measurements were performed in the presence of the P-gp inhibitor tariquidar. Volumetric doxorubicin response patterns for the different tumors were determined and correlated with the efflux rates. Combined pre- and post-inhibitor treatment imaging of P-gp-mediated efflux correlated with Mdr1a/b expression: basal (0.0026, p = 0.16), 3-fold Mdr1a/b (0.0074, p = 0.02), and 17-fold Mdr1a and 46-fold Mdr1b (0.012, p = 0.002). Based on the doxorubicin response of these tumors, we generated a computer-aided diagnosis model that predicts the likelihood of drug resistance. Quantified {sup 99m}Tc-MIBI efflux has potential to: (1) noninvasively assign Mdr1 expression levels, (2) predict the therapeutic impact of a P-gp inhibitor, and (3) noninvasively assess the probability of drug resistance. (orig.)

  16. The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    Andersen, V.; Agerstjerne, L.; Jensen, D.;

    2009-01-01

    Background: Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(MDR1/ABCB1) gene encodes the transport protein P-glycoprotein (a...

  17. A lack of Adriamycin (ADR) resistance in Chinese hamster ovary (CHO) cells overexpressing P-glycoprotein (Pgp) following in vitro exposure to fractionated X-irradiation

    Using x-ray pretreated CHO cells, the authors demonstrated differing accumulation of adriamycin and vincristine in cells overexpressing P-glycoprotein. Response was also varied by the addition of calcium channel antagonist verapamil. (author)

  18. Detection of multidrug resistance using molecular nuclear technique

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. 99m-Tc-MIBI and other 99m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-(11C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo

  19. Detection of multidrug resistance using molecular nuclear technique

    Lee, Jae Tae; Ahn, Byeong Cheol [School of Medicine, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. {sup 99}m-Tc-MIBI and other {sup 99}m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with {sup 11}C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-({sup 11}C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo.

  20. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  1. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy.

    Fang, Ziyan; Chen, Shuda; Qin, Jiaming; Chen, Bao; Ni, Guanzhong; Chen, Ziyi; Zhou, Jueqian; Li, Ze; Ning, Yuping; Wu, Chuanbin; Zhou, Liemin

    2016-08-01

    P-glycoprotein (Pgp) overexpression in the blood brain barrier (BBB) is hypothesized to lower brain drug concentrations and thus inhibit anticonvulsant effects in drug-resistant epilepsy. Recently, the poly(butylcyanoacrylate) (PBCA) nanoparticle system was shown to overcome the obstacle of the BBB to deliver drugs into the brain. To determine whether pluronic P85-coated phenytoin poly(butylcyanoacrylate) nanoparticles (P85-PHT-PBCA-NPs) target PHT to the brain, PHT-resistant rats overexpressing Pgp in the BBB were screened by response to PHT treatment after chronic temporal lobe epilepsy induced by lithium-pilocarpine, followed by direct verification of PHT transport via measurement of brain PHT concentrations using microdialysis. Thereafter, the PHT-resistant rats were divided into three groups, which were treated with PHT, PHT + tariquidar (TQD), or P85-PHT-PBCA-NPs. PHT + TQD and P85-PHT-PBCA-NPs showed anticonvulsant activity in the PHT-resistant rats and increased the ratio of the area under the curve of the PHT concentrations in the brain/plasma in comparison with that observed in animals subjected to PHT treatment. However, the ratios of the PHT concentrations in the liver/plasma and kidney/plasma following P85-PHT-PBCA-NPs treatment were much lower than those measured following PHT + TQD treatment. Thus, Pgp overexpression decreases therapeutic drug concentrations in the brains of subjects with drug-resistant epilepsy and P85-PHT-PBCA-NPs could increase these drug concentrations. PMID:27162079

  2. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer-a prospective clinical study

    Bhatia Ashima

    2005-09-01

    Full Text Available Abstract Background Neoadjuvant chemotherapy (NACT is an integral part of multi-modality approach in the management of locally advanced breast cancer. It is vital to predict response to chemotherapy in order to tailor the regime for a particular patient. The prediction would help in avoiding the toxicity induced by an ineffective chemotherapeutic regime in a non-responder and would also help in the planning of an alternate regime. Development of resistance to chemotherapeutic agents is a major problem and one of the mechanisms considered responsible is the expression of 170-k Da membrane glycoprotein (usually referred to as p-170 or p-glycoprotein, which is encoded by multidrug resistance (MDR1 gene. This glycoprotein acts as an energy dependent pump, which actively extrudes certain families of chemotherapeutic agents from the cells. The expression of p-glycoprotein at initial presentation has been found to be associated with refractoriness to chemotherapy and a poor outcome. Against this background a prospective study was conducted using C219 mouse monoclonal antibody specific for p-glycoprotein to ascertain whether pretreatment detection of p-glycoprotein expression could be utilized as a reliable predictor of response to neoadjuvant chemotherapy in patients with breast cancer. Patients and methods Fifty cases of locally advanced breast cancer were subjected to trucut® biopsy and the tissue samples were evaluated immunohistochemically for p-glycoprotein expression and ER, PR status. The response to neoadjuvant chemotherapy was assessed clinically and by using ultrasound after three cycles of FAC regime (cyclophosphamide 600 mg/m2, Adriamycin 50 mg/m2, 5-fluorourail 600 mg/m2 at an interval of three weeks. The clinical response was correlated with both the pre and post chemotherapy p-glycoprotein expression. Descriptive studies were performed with SPSS version 10. The significance of correlation between tumor response and p-glycoprotein

  3. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-01-01

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds. PMID:27399665

  4. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  5. INVITRO AND INVIVO MODULATION OF MULTIDRUG RESISTANCE WITH AMIODARONE

    VANDERGRAAF, WTA; DEVRIES, EGE; UGES, DRA; NANNINGA, AG; MEIJER, C; VELLENGA, E; MULDER, POM; MULDER, NH

    1991-01-01

    The modulating effect on drug resistance of amiodarone (AM) and its metabolite desethylamiodarone (DEA) was studied in a P-glycoprotein-positive human colon carcinoma cell line COLO 320, and a human small-cell lung carcinoma cell line GLC4 and its adriamycin (Adr)-resistant subline GLC4-Adr (both P-

  6. The (SNP) of multi-drug resistance 1 protein (MDR1,P-glycoprotein) in Chinese Han population

    DanLI; Guo-liangZHANG; XinWANG; Xiu-yunBU

    2004-01-01

    AIM: To investigate the single nucleotide polymorphism (SNP) of multi-drug resistance 1 protein (MDR1, P-glycoprotein) in the Chinese Han population. METHODS'. DNA was extracted from 200 p,L heparin-anticoagulated whole blood using QIAamp Blood Kit. A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used for the detection of C3435T SNP. The PCR product of 248 bp was digested with

  7. Are altered pHi and membrane potential in hu MDR 1 transfectants sufficient to cause MDR protein-mediated multidrug resistance?

    1996-01-01

    Multidrug resistance (MDR) mediated by overexpression of the MDR protein (P-glycoprotein) has been associated with intracellular alkalinization, membrane depolarization, and other cellular alterations. However, virtually all MDR cell lines studied in detail have been created via protocols that involve growth on chemotherapeutic drugs, which can alter cells in many ways. Thus it is not clear which phenotypic alterations are explicitly due to MDR protein overexpression alone. To more precisely ...

  8. Molecular models of human P-glycoprotein in two different catalytic states

    Tulkens Paul M

    2009-01-01

    Full Text Available Abstract Background P-glycoprotein belongs to the family of ATP-binding cassette proteins which hydrolyze ATP to catalyse the translocation of their substrates through membranes. This protein extrudes a large range of components out of cells, especially therapeutic agents causing a phenomenon known as multidrug resistance. Because of its clinical interest, its activity and transport function have been largely characterized by various biochemical studies. In the absence of a high-resolution structure of P-glycoprotein, homology modeling is a useful tool to help interpretation of experimental data and potentially guide experimental studies. Results We present here three-dimensional models of two different catalytic states of P-glycoprotein that were developed based on the crystal structures of two bacterial multidrug transporters. Our models are supported by a large body of biochemical data. Measured inter-residue distances correlate well with distances derived from cross-linking data. The nucleotide-free model features a large cavity detected in the protein core into which ligands of different size were successfully docked. The locations of docked ligands compare favorably with those suggested by drug binding site mutants. Conclusion Our models can interpret the effects of several mutants in the nucleotide-binding domains (NBDs, within the transmembrane domains (TMDs or at the NBD:TMD interface. The docking results suggest that the protein has multiple binding sites in agreement with experimental evidence. The nucleotide-bound models are exploited to propose different pathways of signal transmission upon ATP binding/hydrolysis which could lead to the elaboration of conformational changes needed for substrate translocation. We identified a cluster of aromatic residues located at the interface between the NBD and the TMD in opposite halves of the molecule which may contribute to this signal transmission. Our models may characterize different steps

  9. Ligand and Structure-Based Classification Models for Prediction of P-Glycoprotein Inhibitors

    Klepsch, Freya; Vasanthanathan, Poongavanam; Ecker, Gerhard F

    2014-01-01

    The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great interest in the field of drug discovery and development. So far in silico P-gp inhibitor prediction was dominated by ligand-based approaches because of the lack of high-quality structural informatio...

  10. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis p-glycoproteins

    BOUCHARD R; Bailly, A; Blakeslee, J.J.; VINCENZETTI V; Paponov, I.; Palme, K; S. Mancuso; Murphy, A.S.; Schulz, B.; Geisler, M.

    2006-01-01

    The immunophilin-like protein TWISTED DWARF1 (TWD1/FKBP42) has been shown to physically interact with the multidrug resistance/P-glycoprotein (PGP) ATP-binding cassette transporters PGP1 and PGP19 (MDR1). Overlapping phenotypes of pgp1/pgp19 and twd1 mutant plants suggested a positive regulatory role of TWD1 in PGP-mediated export of the plant hormone auxin, which controls plant development. Here, we provide evidence at the cellular and plant levels that TWD1 controls PGP-mediated auxin trans...