WorldWideScience

Sample records for multidrug resistance p-glycoprotein

  1. Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma

    OpenAIRE

    Krishnakumar, S.; Mallikarjuna, K.; Desai, N.; Muthialu, A; Venkatesan, N; Sundaram, A.; Khetan, V; Shanmugam, M P

    2004-01-01

    Background/aim: Retinoblastoma is the commonest primary intraocular tumour in children. Chemotherapy now plays a big part in the treatment of these tumours. There is not much information about the role of the multidrug resistance proteins (MDR)—P-glycoprotein (P-gp) and vault protein lung resistance protein (LRP)—in retinoblastoma. The authors investigated the expression of P-gp and LRP in retinoblastoma and correlated them clinicopathologically.

  2. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCB1)-mediated multidrug resistance

    OpenAIRE

    Pitchakarn, Pornsiri; Ohnuma, Shinobu; Pintha, Komsak; Pompimon, Wilart; Ambudkar, Suresh V.; Limtrakul, Pornngarm

    2011-01-01

    Multidrug-resistance (MDR), a phenomenon in which cancer cells exhibit simultaneous resistance to chemically unrelated drugs, is a major factor in the failure of chemotherapy in cancer patients. Resistance to chemotherapy has been correlated to the overexpression of ABC drug transporters including P-glycoprotein (P-gp) that actively efflux chemotherapeutic drugs from cancer cells. Our previous study showed that bitter melon (Momordica charantia) leaf extract (BMLE) was able to reverse the MDR...

  3. Multidrug-resistance due to p-glycoprotein.

    Science.gov (United States)

    Symes, M

    1993-09-01

    Multi-drug resistance (MDR) is due to the presence in neoplastic cells of the transmembrane glycoprotein P-170. The P-170 increases drug efflux by combining with the drug and adenosine triphosphate. This energy dependent drug efflux may be reversed by agents, e.g. verapamil, which compete with drugs for receptors on the plasma membrane. High expression of P-170 is associated with reduced sensitivity to MDR-associated cytotoxic drugs, e.g. doxorubicin in vitro by renal and breast carcinoma cells. Verapamil has been most effective in increasing the effect of chemotherapy in patients with multiple myeloma. In contrast, negative results have been reported for 'solid' tumours such as carcinoma of the colon and kidney. PMID:21573398

  4. Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative.

    OpenAIRE

    Dale, I. L.; Tuffley, W.; Callaghan, R.; Holmes, J. A.; Martin, K.; Luscombe, M.; Mistry, P.; Ryder, H.; Stewart, A. J.; Charlton, P.; Twentyman, P. R.; Bevan, P.

    1998-01-01

    XR9051 (N-(4-(2-(6,7-Dimethoxy-1,2,3,4-tetrahydro-2-isoquinolyl)ethyl)phe nyl)-3-((3Z,6Z)-6-benzylidene-1-methyl-2,5-dioxo-3-pipera zinylidene) methylbenzamide) was identified as a potent modulator of P-glycoprotein-mediated multidrug resistance (MDR) following a synthetic chemistry programme based on a natural product lead compound. The activity of XR9051 was determined using a panel of human and murine drug-resistant cell lines (H69/LX4, 2780AD, EMT6/AR 1.0, MC26 and P388/DX Johnson). XR905...

  5. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes

    Directory of Open Access Journals (Sweden)

    C.G. Machado

    2003-12-01

    Full Text Available The multidrug resistance P-glycoprotein is a transmembrane efflux pump expressed by lymphocytes and is involved in their cytolytic activity. In the present study, we investigated the age-related changes of P-glycoprotein function in normal peripheral blood lymphocytes. Blood samples from 90 normal volunteers (age range, 0 to 86 years were analyzed. P-glycoprotein function was assessed by the flow cytometric rhodamine 123 assay. P-glycoprotein function was highest in cord blood and progressively declined with age in peripheral blood T CD4+ and CD8+ cells. In contrast, P-glycoprotein function did not vary with age in CD19+ B or CD16+CD56+ natural killer cells. These data suggest that the decline in P-glycoprotein function in T CD4+ and CD8+ lymphocytes as a function of age may contribute to the decrease in T cell cytolytic activity with aging.

  6. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes

    Scientific Electronic Library Online (English)

    C.G., Machado; R.T., Calado; A.B., Garcia; R.P., Falcão.

    1653-16-01

    Full Text Available The multidrug resistance P-glycoprotein is a transmembrane efflux pump expressed by lymphocytes and is involved in their cytolytic activity. In the present study, we investigated the age-related changes of P-glycoprotein function in normal peripheral blood lymphocytes. Blood samples from 90 normal v [...] olunteers (age range, 0 to 86 years) were analyzed. P-glycoprotein function was assessed by the flow cytometric rhodamine 123 assay. P-glycoprotein function was highest in cord blood and progressively declined with age in peripheral blood T CD4+ and CD8+ cells. In contrast, P-glycoprotein function did not vary with age in CD19+ B or CD16+CD56+ natural killer cells. These data suggest that the decline in P-glycoprotein function in T CD4+ and CD8+ lymphocytes as a function of age may contribute to the decrease in T cell cytolytic activity with aging.

  7. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    International Nuclear Information System (INIS)

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-[3-125I]salicyl]-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts

  8. Modulation of P-Glycoprotein Mediated Multidrug Resistance (Mdr in Cancer Using Chemosensitizers.

    Directory of Open Access Journals (Sweden)

    Velingkar V.S

    2010-03-01

    Full Text Available Multidrug resistance (MDR is one of the main obstacles in the chemotherapy of cancer. MDR is associated with the over expression of P-glycoprotein (P-gp, resulting in increased efflux of chemotherapy from cancer cells. Inhibiting P-gp as a method to reverse MDR in cancer patients has been studied extensively, but the results have generally been disappointing. First-generation agents were limited by unacceptable toxicity, whereas second-generation agents had bettertolerability but were confounded by unpredictable pharmacokinetic interactions and interactions with other transporter proteins. Third-generation inhibitors have high potency and specificity for P-gp. Furthermore, pharmacokinetic studies to date have shown no appreciable impact on drug metabolism and no clinically significant drug interactions with common chemotherapy agents. Third-generation P-gp inhibitors have shown promise in clinical trials. The continued development of these agents may establish the true therapeutic potential of P-gp-mediated MDR reversal.

  9. Laurus nobilis L. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells.

    Science.gov (United States)

    Saab, Antoine M; Guerrini, Alessandra; Zeino, Maen; Wiench, Benjamin; Rossi, Damiano; Gambari, Roberto; Sacchetti, Gianni; Greten, Henry Johannes; Efferth, Thomas

    2015-01-01

    The frequent failure of standard cancer chemotherapy requires the development of novel drugs capable of killing otherwise drug-resistant tumors. Here, we have investigated a chloroform extract of Laurus nobilis seeds. Fatty acids and 23 constituents of the volatile fraction were identified by gas chromotography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS), in good agreement with (1)H NMR (nuclear magnetic resonance) spectrum. Multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells were hypersensitive (collaterally sensitive) toward this extract compared to drug-sensitive CCRF-CEM cells, whereas CEM/ADR5000 cells were 2586-fold resistant to doxorubicin as control drug. Collateral sensitivity was verified by measurement of apoptotic cells by flow cytometry. The log10IC50 values of 3 compounds in the extract (limonene, eucalyptol, oleic acid) did not correlate with mRNA expression of the P-glycoprotein-coding ABCB1/MDR1 gene and accumulation of the P-glycoprotein substrate rhodamine in the NCI panel of tumor cell lines. A microarray-based profile of 20 genes predicted resistance to doxorubicin and 7 other anticancer drugs involved in the multidrug resistance phenotype but not to limonene, eucalyptol and oleic acid. In conclusion, our results show that Laurus nobilis seed extract is suitable to kill multidrug-resistant P-glycoprotein expressing tumor cells. PMID:25837780

  10. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCB1)-mediated multidrug resistance.

    Science.gov (United States)

    Pitchakarn, Pornsiri; Ohnuma, Shinobu; Pintha, Komsak; Pompimon, Wilart; Ambudkar, Suresh V; Limtrakul, Pornngarm

    2012-01-01

    Multidrug resistance (MDR) is a major factor in the failure of chemotherapy in cancer patients. Resistance to chemotherapy has been correlated to the overexpression of ABC drug transporters including P-glycoprotein (P-gp) that actively efflux chemotherapeutic drugs from cancer cells. Our previous study showed that bitter melon (Momordica charantia) leaf extract (BMLE) was able to reverse the MDR phenotype by increasing the intracellular accumulation of chemotherapeutic drugs. In the present study, bioguided fractionation was used to identify the active component(s) of BMLE that is able to modulate the function of P-gp and the MDR phenotype in a human cervical carcinoma cell line (KB-V1). We found that kuguacin J, one of the active components in BMLE, increased sensitivity to vinblastine and paclitaxel in KB-V1 cells. A flow cytometry assay indicated that kuguacin J inhibits the transport function of P-gp and thereby significantly increases the accumulation of rhodamine 123 and calcein AM in the cells. These results were confirmed by [³H]-vinblastine transport assay. Kuguacin J significantly increases intracellular [³H]-vinblastine accumulation and decreased the [³H]-vinblastine efflux in the cells. Kuguacin J also inhibited the incorporation of [¹²?I]-iodoarylazidoprazosin into P-gp in a concentration-dependent manner, indicating that kuguacin J directly interacts with the drug-substrate-binding site on P-gp. These results indicate that kuguacin J modulates the function of P-gp by directly interacting at the drug-substrate-binding site, and it appears to be an effective inhibitor of P-gp activity in vitro and thus could be developed as an effective chemosensitizer to treat multidrug-resistant cancers. PMID:21414769

  11. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185 ? Val-185 substitution in P-glycoprotein

    International Nuclear Information System (INIS)

    Expression of P-glycoprotein, encoded by the human MDR1 gene, results in cross-resistance to many lipophilic cytotoxic drugs (multidrug resistance). P-glycoprotein is believed to function as an energy-dependent efflux pump that is responsible for decreased drug accumulation in multidrug-resistant cells. Previous work showed that preferential resistance to colchicine in a colchicine-selected multidrug-resistant cell line was caused by spontaneous mutations in the MDR1 gene that resulted in a Gly-185 ? Val-185 substitution in P-glycoprotein. The authors have now compared transfectant cell lines expressing the wild-type Gly-185 or the mutant Val-185 P-glycoprotein with regard to their levels of resistance to and accumulation and binding of different drugs. In cells expressing the mutant protein, increased resistance to colchicine and decreased resistance to vinblastine correlated with a decreased accumulation of colchicine and increased accumulation of vinblastine. Expression of the mutant P-glycoprotein also resulted in significantly increased resistance to epipodophyllotoxin and decreased resistance to vincristine and actinomycin D; smaller changes in resistance were observed for several other drugs. Unexpectedly, the mutant P-glycoprotein showed increased binding of photoactive analogs of vinblastine and verapamil and the photoactive compound azidopine and decreased binding of a photoactive colchicine analog. These results suggest that the Gly-185 ? Val-185 substigest that the Gly-185 ? Val-185 substitution affects not the initial drug-binding site of P-glycoprotein but another site, associated with the release of P-glycoprotein-bound drugs to the outside of the cell

  12. Characterisation of non-P-glycoprotein multidrug-resistant Ehrlich ascites tumour cells selected for resistance to mitoxantrone

    DEFF Research Database (Denmark)

    Nielsen, D; Eriksen, J

    2000-01-01

    An Ehrlich ascites tumour cell line (EHR2) was selected in vivo for resistance to mitoxantrone (MITOX). The resistant cell line (EHR2/MITOX) was 6123-, 33-, and 30-fold-resistant to mitoxantrone, daunorubicin, and etoposide, respectively, but retained sensitivity to vincristine. The resistant cells showed moderate sensitisation to mitoxantrone on treatment with verapamil or cyclosporin A. Compared with EHR2, the multidrug resistance-associated protein mRNA was increased 13-fold in EHR2/MITOX. Western blot analysis showed an unchanged, weak expression of P-glycoprotein. Topoisomerase IIalpha was reduced to one-third in EHR2/MITOX relative to EHR2 cells, whereas topoisomerase IIbeta was present in EHR2 but could not be detected in EHR2/MITOX. In the resistant subline, net accumulation of MITOX (120 min) and daunorubicin (60 min) was reduced by 43% and 27%, respectively, as compared with EHR2. The efflux of daunorubicin from preloaded EHR2/MITOX cells was significantly increased. EHR2/MITOX microsomes had a significant basal unstimulated ATPase activity. The apparent K(i) value for vanadate inhibition of the ATPase activity in EHR2/MITOX microsomes was not significantly different from the K(i) value for P-glycoprotein-positive cells. However, whereas verapamil (50 microM) inhibited the ATPase activity of EHR2/MITOX microsomes, it stimulated the ATPase activity of microsomes derived from P-glycoprotein-positive cells. In conclusion, the resistance in EHR2/MITOX was multifactorial and appeared to be associated with: 1) a quantitative reduction in topoisomerase IIalpha and beta protein; 2) reduced drug accumulation, probably as a result of increased expression of a novel transport protein with ATPase activity; and 3) increased expression of MRP mRNA.

  13. Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein.

    Science.gov (United States)

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2004-01-01

    The human multidrug resistance P-glycoprotein (P-gp) uses ATP to transport a wide variety of structurally unrelated cytotoxic compounds out of the cell. The relatively high expression of P-gp in organs such as the intestine, kidney, blood-brain/testes barrier and in some tumor cells can compromise chemotherapy treatments for patients with cancer or AIDS/HIV. It has been difficult to inhibit P-gp during chemotherapy with noncovalent inhibitors because the relatively high levels of inhibitors have severe side effects. An alternative approach to inhibit P-gp would be to covalently modify cysteine residues within the NBDs. In this study, we tested whether metabolites of disulfiram, a drug currently used to treat chronic alcoholism, could inhibit P-gp. We show that the disulfiram metabolites, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the verapamil-stimulated ATPase activity of P-gp with IC50 values (concentrations that result in 50% inhibition of activity) of 9 and 4.8 microM, respectively. Similarly, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the activity of aldehyde dehydrogenase with IC50 values of 3.2 and 1.7 microM, respectively. Inhibition of P-gp by the metabolites was not reversed by addition of the reducing compound, dithiothreitol. We then determined which endogenous cysteine residue was responsible for inhibiting P-gp activity after exposure to the disulfiram metabolites. Treatment of P-gp mutants containing a single cysteine residue showed that inactivation was primarily due to modification of Cys1074 in NBD2. These results indicate that metabolites of disulfiram can covalently inactivate P-gp. Covalent modification of drug transporters could be a useful approach for inhibiting their activities during chemotherapy. PMID:16028354

  14. The novel bis-benzylisoquinoline PY35 reverses P-glycoprotein-mediated multidrug resistance.

    Science.gov (United States)

    Cao, Zhonglian; Wright, Meredith; Cheng, Jiekai; Huang, Xiaoxing; Liu, Li; Wu, Lixing; Yang, Ping

    2014-09-01

    Multidrug resistance (MDR) to chemotherapeutic drugs is the main cause of chemotherapy failure in cancer treatment, and it generally results from expression of ATP-dependent efflux pump P-glycoprotein (P-gp). MDR reversal agents typically act by inhibiting the drug efflux activity of P-gp, thereby increasing intracellular drug levels. PY35 is a novel 5-substituted tetrandrine (Tet) derivative (CN Application No. 201210238709.6). The present study was performed to investigate the ability of PY35 to reverse P-gp-mediated MDR and its mechanism in resistant K562/Adriamycin (ADM), MCF-7/ADM cells and their sensitive cell lines K562 and MCF-7. The ability of PY35 to reverse drug resistance was evaluated by MTT assay. The results showed that PY35 can reverse MDR more effectively than the drug prototype?Tet. The P-gp function was assessed by the Rhodamine 123 (Rho-123; a P-gp substrate) uptake assay with flow cytometry (FCM) and laser scanning confocal microscopes (LSCM); it showed that the MDR cells pumped Rho-123 out the cells, while their sensitive cells scarcely showed efflux. The presence of PY35 efficiently decreased the efflux of the Rho-123, showing that PY35 can reverse P-gp-mediated MDR by increasing the intracellular concentration of Rho-123. The intracellular accumulation of ADM was analyzed by FCM and showed that the coadministration of PY35 and ADM had clearer accumulation than the treatment of Tet and ADM, and was also more evident than treatment with only ADM. The effect of PY35 on the expression of P-gp was assessed by western blotting. The results indicated that PY35 does not inhibit the expression level of the P-gp. This study indicated that PY35 can effectively reverse P-gp-mediated MDR, not by inhibiting the expression of P-gp, but by the coadministration of PY35 and ADM that could increase the intracellular accumulation of drugs. Thus, PY35 may be a potential inhibitor to overcome drug resistance. PMID:25017650

  15. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  16. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells.

    Science.gov (United States)

    Sun, Yan Fang; Wink, Michael

    2014-01-01

    The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy. PMID:24856768

  17. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10-3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidra novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  18. Astragaloside ? reduces the expression level of P-glycoprotein in multidrug-resistant human hepatic cancer cell lines.

    Science.gov (United States)

    Wang, Pei-Pei; Xu, Du-Juan; Huang, Can; Wang, Wei-Ping; Xu, Wen-Ke

    2014-06-01

    Astragaloside is a saponin widely used in traditional Chinese medicine and has been reported to be a potent multidrug resistance (MDR) reversal agent. The present study investigated the role of astragaloside ? (ASIV) in the regulation of P-glycoprotein (P-gp, encoded by the mdr1 gene) and its effect on the reversal of MDR. The activity of ASIV was evaluated using human hepatic cancer cells Bel-7402 and the corresponding 5-fluorouracil (5-FU) resistant cells Bel-7402/FU. ASIV (0.08 mg/ml) potentiated the cytotoxicity of 5-FU which was demonstrated using the MTT assay on Bel-7402/FU cells. ASIV reduced the expression of P-gp as was revealed by immunocytochemistry. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that ASIV inhibited P-gp-mediated drug efflux. Furthermore, it was demonstrated that AS? enhanced the drug accumulation of 5-FU using a high performance liquid chromatography (HPLC) assay for drug resistant cells. Furthermore, ASIV may downregulate the expression of P-gp, which was examined using western blot analysis and polymerase chain reaction. In conclusion, the results of the present study indicated that ASIV reverses the drug resistance of Bel-7402/FU cells by downregulating the expression of mdr1. ASIV may represent a potent modulator of P-gp-mediated MDR in hepatic cancer therapy. PMID:24676670

  19. Diatrizoate, Iopromide and Iotrolan Enhanced Cytotoxicity of Daunorubicin in Multidrug Resistant K562/adr Cells: Impaired the Mitochondrial and Inhibited the P-Glycoprotein Function

    OpenAIRE

    Nitaya S.N. Ayudhya; Samlee Mankhetkorn

    2009-01-01

    Multidrug resistance was an obstacle in cancer chemotherapy because the cells decreased their intracellular drug accumulation by energy-dependent compounds efflux pumps such as P-glycoprotein (P-gp). This study observed some iodinated radiographic contrast media, diatrizoate, iopromide and iotrolan affected the cellular energetic state and the kinetics of P-gp in drug-sensitive K562 and drug resistant K562/adr cell lines using spectrophotometer and spectrofluorometer. By colorimetric MTT assa...

  20. Parguerenes: Marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells.

    Science.gov (United States)

    Huang, Xiao-Cong; Sun, Yue-Li; Salim, Angela A; Chen, Zhe-Sheng; Capon, Robert J

    2013-05-01

    High intrinsic or acquired expression of membrane spanning, adenosine triphosphate binding cassette (ABC) transporter proteins, such as P-glycoprotein (P-gp), in cancers represents a major impediment to chemotherapy, with accelerated drug efflux leading to multi-drug resistance (MDR). Although ABC transporter inhibitors offer the prospect of reversing the MDR phenotype, no inhibitors have advanced to the clinic. We employed a range of intracellular fluorescence and radio-ligand accumulation and efflux assays, together with cytotoxicity and MDR reversal assays, as well as flow cytometry, fluorescence microscopy and radioimmunoprecipitation, to discover and evaluate new P-gp inhibitors from a unique library of southern Australian and Antarctic marine natural products. This study successfully characterized two rare bromoditerpenes, parguerenes I and II, sourced from a southern Australian collection of the red alga Laurencia filiformis, as P-gp inhibitors. We determined that the parguerenes were non-cytotoxic, dose-dependent inhibitors of P-gp mediated drug efflux, that modify the extracellular antibody binding epitope of P-gp in a manner that differs markedly from that of the known inhibitors verapamil and cyclosporine A. We confirmed that parguerenes were capable of reversing P-gp mediated vinblastine, doxorubicin and paclitaxel MDR, that inhibitory properties span both P-gp and multidrug resistant protein 1 (MRP1), but do not extend to breast cancer resistance protein (BCRP), and that parguerene II is superior (more potent) to verapamil. Our investigations validate the proposition that marine natural products can deliver new ABC transporter inhibitor scaffolds, with structure characteristics fundamentally different from existing inhibitor classes. PMID:23415901

  1. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. PMID:25765837

  2. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hai-chang Zhang

    2012-06-01

    Full Text Available Objective To explore the interaction of Anxa2 with P- Glycoprotein (P-gp in the migration and invasion of the multidrug-resistant (MDR human breast cancer cell line MCF-7/ADR. Methods A pair of short hairpin RNA (shRNA targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. Results P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05. There was a close interaction between Anxa2 and P-gp.Conclusions MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells.

  3. Design, synthesis and evaluation of novel triazole core based P-glycoprotein-mediated multidrug resistance reversal agents.

    Science.gov (United States)

    Jiao, Lei; Qiu, Qianqian; Liu, Baomin; Zhao, Tianxiao; Huang, Wenlong; Qian, Hai

    2014-12-15

    A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80?M) and K562/A02 cells (IC50 >80?M) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development. PMID:25464884

  4. Lamellarins as inhibitors of P-glycoprotein-mediated multidrug resistance in a human colon cancer cell line.

    Science.gov (United States)

    Plisson, Fabien; Huang, Xiao-Cong; Zhang, Hua; Khalil, Zeinab; Capon, Robert J

    2012-06-01

    Chemical analysis of a Didemnum sp. (CMB-01656) collected during scientific Scuba operations off Wasp Island, New South Wales, yielded five new lamellarins A1 (1), A2 (2), A3 (3), A4 (4) and A5 (5) and eight known lamellarins C (6), E (7), K (8), M (9), S (10), T (11), X (12) and ? (13). Analysis of a second Didemnum sp. (CMB-02127) collected during scientific trawling operations along the Northern Rottnest Shelf, Western Australia, yielded the new lamellarin A6 (14) and two known lamellarins G (15) and Z (16). Structures were assigned to 1-16 on the basis of detailed spectroscopic analysis with comparison to literature data and authentic samples. Access to this unique library of natural lamellarins (1-16) provided a rare opportunity for structure-activity relationship (SAR) investigations, probing interactions between lamellarins and the ABC transporter efflux pump P-glycoprotein (P-gp) with a view to reversing multidrug resistance in a human colon cancer cell line (SW620 Ad300). These SAR studies, which were expanded to include the permethylated lamellarin derivative (17) and a series of lamellarin-inspired synthetic coumarins (19-24) and isoquinolines (25-26), successfully revealed 17 as a promising new non-cytotoxic P-gp inhibitor pharmacophore. PMID:22473938

  5. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C

    2001-01-01

    PURPOSE: To characterize irradiated murine tumor cells with respect to drug resistance, drug kinetics, and ATPase activity, and to evaluate the possible role of P-glycoprotein (PGP) and murine multidrug resistance associated protein (Mrp1) in the drug-resistant phenotype of these cells. METHODS AND MATERIALS: Sensitive Ehrlich ascites tumor cells (EHR2) were in vitro exposed to fractionated irradiation (60 Gy). Western blot analysis was performed for determination of PGP and Mrp1, reverse transcriptase-polymerase chain reaction (RT-PCR) for determination of mdr1a + b mRNA, and semiquantitative RT-PCR for Mrp1 mRNA. The clonogenic assay was applied to investigate sensitivity, whereas the steady-state drug accumulation of daunorubicin (DNR), 3H-vincristine (VCR), and 3H-etoposide (VP16) was measured by spectrofluorometry and scintillation counting, respectively. For determining of ATPase activity, the release of inorganic phosphate from ATP was quantified using a colorimetric method. RESULTS: Compared with EHR2, the irradiated cell line EHR2/irr showed increased expression of PGP (threefold), Mrp1 (eightfold), and Mrp1 mRNA (sixfold), and a slight reduction of mdr1b mRNA, whereas mdr1a was present in EHR2 but could not be detected in EHR2/irr. EHR2/irr developed sixfold resistance to VP16, twofold resistance to vincristine, but remained sensitive to DNR. Addition of the PGP inhibitor, verapamil (VER) or depletion of glutathione by buthionine sulfoximine (BSO) partly reversed the resistance in EHR2/irr. In EHR2/irr, the steady-state accumulation of 3H-VCR and 3H-VP16 was significantly decreased as compared with EHR2, whereas the accumulation of DNR was unchanged. The ATPase activity of plasma membrane vesicles prepared from EHR2/irr cells was similar to that of wild-type EHR2 cells. The ATPase activity was neither stimulated by vinblastine nor VER. CONCLUSION: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was characterized by increased expression of Mrp1 mRNA, Mrp1, and PGP but decreased expression of mdr1a + b mRNA. The influence of irradiation on PGP and Mrp1 expression seemed to be different.

  6. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance

    Directory of Open Access Journals (Sweden)

    Douglas J. Swartz

    2014-06-01

    Full Text Available Pgp (P-glycoprotein is a prototype ABC (ATP-binding-cassette transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively and Cys1070 (37 and 25% of the Walker A motifs in the NBDs (nucleotide-binding domains, Cys1223 in NBD2 (25 and 8% and Cys638 in the linker region (24 and 16%, whereas close-by Cys669 tolerated glycine (16% and alanine (14%, but not serine (absent. Cys1121 in NBD2 showed a clear preference for positively charged arginine (38% suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2 may stabilize domain interactions. In contrast, three Cys residues in transmembrane ?-helices could be successfully replaced by alanine. The resulting CL (Cys-less Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful.

  7. Technetium-99m methoxyisobutylisonitrile imaging for parathyroid adenoma: relationship to P-glycoprotein or multidrug resistance-related protein expression

    International Nuclear Information System (INIS)

    Gland size has been reported to have a major influence on localisation of parathyroid adenomas by technetium-99m methoxyisobutylisonitrile (99mTc-MIBI) imaging. It has also been suggested that P-glycoprotein (Pgp) expression in parathyroid adenomas may influence localisation because false negative studies have been reported with large tumours and true positives with very small tumours. Therefore, the purpose of this study was to retrospectively evaluate the relationship between 99mTc-MIBI parathyroid imaging results and Pgp or multidrug resistance-related protein (MRP) expression in parathyroid adenomas. Before surgery, 47 patients with large parathyroid adenomas (larger than 1.5 g) underwent early and delayed parathyroid imaging, 10 min and 2 h after intravenous injection of 99mTc-MIBI. Immunohistochemical analyses (IHA) were performed, using multiple non-consecutive sections of the operative specimens, to detect Pgp or MRP expression. According to the results of IHA, the 34 parathyroid adenomas were separated into four groups: (1) three adenomas positive for both Pgp and MRP expression, (2) one adenoma positive for Pgp but negative for MRP expression, (3) four adenomas negative for Pgp but positive for MRP expression and (4) 39 adenomas with negative for both Pgp and MRP expression. All 39 adenomas in group 4 could be detected by 99mTc-MIBI parathyroid imaging. None of the eight adenomas in groups 1-3 could be detected by enomas in groups 1-3 could be detected by 99mTc-MIBI parathyroid imaging (P99mTc-MIBI imaging in localising parathyroid adenomas preoperatively. (orig.)

  8. Comparison of western blot analysis and immunocytochemical detection of P-glycoprotein in multidrug resistant cells.

    OpenAIRE

    Friedlander, M. L.; Bell, D. R.; Leary, J.; Davey, R. A.

    1989-01-01

    A sensitive immunocytochemical technique was developed to detect a 170,000 dalton cell membrane glycoprotein (P-gp) in cell lines resistant to vincristine and vinblastine with varying degrees of resistance. P-gp was shown very clearly using the C219 monoclonal antibody and immunocytochemical detection with either antialkaline phosphate or peroxidase-antiperoxidase with silver gold intensification. There was good correlation between the results obtained with immunocytochemical detection of P-g...

  9. Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma.

    Science.gov (United States)

    Zandvliet, M; Teske, E; Schrickx, J A

    2014-12-01

    Canine lymphoma is routinely treated with a doxorubicin-based multidrug chemotherapy protocol, and although treatment is initially successful, tumor recurrence is common and associated with therapy resistance. Active efflux of chemotherapeutic agents by transporter proteins of the ATP-Binding Cassette superfamily forms an effective cellular defense mechanism and a high expression of these transporters is frequently observed in chemotherapy-resistant tumors in both humans and dogs. In this study we describe the ABC-transporter expression in a canine lymphoid cell line and a sub-cell line with acquired drug resistance following prolonged exposure to doxorubicin. This sub-cell line was more resistant to doxorubicin and vincristine, but not to prednisolone, and had a highly increased P-glycoprotein (P-gp/abcb1) expression and transport capacity for the P-gp model-substrate rhodamine123. Both resistance to doxorubicin and vincristine, and rhodamine123 transport capacity were fully reversed by the P-gp inhibitor PSC833. No changes were observed in the expression and function of the ABC-transporters MRP-1 and BCRP. It is concluded that GL-40 cells represent a useful model for studying P-gp dependent drug resistance in canine lymphoid neoplasia, and that this model can be used for screening substances as potential P-gp substrates and their capacity to modulate P-gp mediated drug resistance. PMID:24975508

  10. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance and thermoresistance was investigated in the parental human gastric carcinoma cell line EPG85-257P, the atypical MDR subline EPG85-257RNOV, the classical MDR subline EPG85-257RDB and their thermoresistant counterparts EPG85-257P-TR, EPG85-257RNOV-TR and EPG85-257RDB-TR. Within the atypical MDR subline EPG85-257RNOV expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP was increased relative to thermosensitive sublines. Although it could be shown that the overexpressedABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found to be dependent on the appropriate type of chemoresistance; correlating with a classical or atypical MDR phenotype. Within the thermoresistant variants, however, the increase in ABC transporter expression did obviously not influence the MDR phenotype.

  11. Icaritin reverses multidrug resistance of HepG2/ADR human hepatoma cells via downregulation of MDR1 and P?glycoprotein expression.

    Science.gov (United States)

    Sun, Li; Chen, Weigang; Qu, Lili; Wu, Jie; Si, Jin

    2013-12-01

    Multidrug resistance (MDR) of tumor cells is a serious obstacle encountered in cancer treatment. In the current study a multiple drug?resistant HepG2/adriamycin (HepG2/ADR) cell line was established and its MDR was characterized. Icaritin, an active ingredient isolated from the medical plant Herba Epimedium, was observed to reverse MDR in the present model. Icaritin significantly increased the intracellular accumulation of ADR and decreased the expression of the MDR1 gene in HepG2/ADR cells compared with drug?sensitive HepG2 cells. In addition, the present results showed that icaritin may significantly downregulate the expression of P?glycoprotein. These results indicate that icaritin is a novel and potent MDR reversal agent and may be a promising drug for tumor chemotherapy. PMID:24145579

  12. Effect of P-glycoprotein and multidrug resistance associated protein gene expression on Tc-99m MIBI imaging in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP) expressions as well as Tc-99m methoxisobutylisonitrile (MIBI) images were assessed in 25 patients hepatocellular carcinoma (HCC). Tc-99m MIBI imaging was performed 10 minutes after intravenous injection of 20 mCi Tc-99m MIBI. Using immunohistochemical staining, 60% of the HCC lesions showed positive for Pgp and 64% showed positive for MRP. In 3 patients with MIBI uptake, immunohistochemical study of tumor tissue showed no Pgp stained cells. Nevertheless, they were all positive for MRP. The result of Tc-99m MIBI imaging is more related to the expression of Pgp than MRP gene. It is possible that other membrane transporters as well as Pgp and MRP are involved in the efflux of Tc-99m MIBI

  13. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: conceptual development.

    Directory of Open Access Journals (Sweden)

    Apte Shireesh Prakash

    2010-12-01

    Full Text Available Amphiphilic excipients, such as surfactants, have been shown to be inhibitors of the multidrug resistance (MDR efflux pump transporter protein, P-glycoprotein (Pgp. In vitro studies using manysurfactants have demonstrated that those with an optimum hydrophilic-lipophilic balance (HLB exhibit greater efflux pump inhibition than those that are either very hydrophobic, or very hydrophilic, although the correlation of HLB to Pgp inhibition activity remains weak. Using the data from multiple in vitro studies, a model has been conceptualized that underscores the attributes of both the HLB and the critical micellar concentration (CMC, occurring in tandem, and unable of being varied independently, as key determinants toward prediction of surfactant Pgp inhibition activity. The algorithm that formalizes this concept provides a ‘semi-rational’ method of choosingsurfactants for a specific type of cancer for maximum inhibition of MDR.

  14. Drug Resistance in Cortical and Hippocampal Slices from Resected Tissue of Epilepsy Patients: No Significant Impact of P-Glycoprotein and Multidrug Resistance-Associated Proteins

    Science.gov (United States)

    Sandow, Nora; Kim, Simon; Raue, Claudia; Päsler, Dennis; Klaft, Zin-Juan; Antonio, Leandro Leite; Hollnagel, Jan Oliver; Kovacs, Richard; Kann, Oliver; Horn, Peter; Vajkoczy, Peter; Holtkamp, Martin; Meencke, Heinz-Joachim; Cavalheiro, Esper A.; Pragst, Fritz; Gabriel, Siegrun; Lehmann, Thomas-Nicolas; Heinemann, Uwe

    2015-01-01

    Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs [carbamazepine (CBZ), sodium valproate, phenytoin] and two unspecific inhibitors of Pgp and MRPs [verapamil (VPM) and probenecid (PBN)] on seizure-like events (SLEs) induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices) were studied. Although in slice preparations the blood brain barrier is not functional, we found that SLEs predominantly persisted in the presence of anticonvulsant drugs (90%) and also in the presence of VPM and PBN (86%). Following subsequent co-administration of anti-epileptic drugs and drug transport inhibitors, SLEs continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30%) or as suppression (7%), particularly by perfusion with CBZ in PBN containing solutions (43, 9%). Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7% of patients. Patients whose tissue was completely or partially sensitive (65%) presented with higher seizure frequencies than those with resistant tissue (35%). However, corresponding subgroups of patients do not differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue. PMID:25741317

  15. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters. PMID:24803409

  16. Reversal of P-glycoprotein-mediated multi-drug resistance by the E3 ubiquitin ligase Cbl-b in human gastric adenocarcinoma cells.

    Science.gov (United States)

    Zhang, Ye; Qu, Xiujuan; Hu, Xuejun; Yang, Xianghong; Hou, Kezuo; Teng, Yuee; Zhang, Jingdong; Sada, Kiyonao; Liu, Yunpeng

    2009-06-01

    P-glycoprotein (P-gp)-mediated multi-drug resistance (MDR) is a major barrier to the effective chemotherapy of many cancers. Recent studies have shown that inhibition of the PI3K/Akt signalling pathway can reverse P-gp-mediated MDR. We investigated the expression of activated Akt (p-Akt) in 124 human gastric carcinoma tissue samples. Ubiquitous p-Akt expression was recorded in the majority (88/124). There was a significant correlation between p-Akt expression and the expression of P-gp. In the adriamycin-resistant MDR gastric carcinoma cell line SGC7901/ADR, p-Akt expression was increased in comparison with the parental cell line SGC7901. Treatment of SGC7901/ADR cells with the PI3K inhibitor LY294002 reduced the expression of both p-Akt and P-gp. To explore the role of ubiquitin ligase Cbl-b in this regulatory pathway, SGC7901/ADR cells were transfected with a plasmid overexpressing wild-type Cbl-b. This down-regulated the expression of both p-Akt and P-gp. Furthermore, resistance to chemotherapeutic drugs was partially reversed. These results demonstrate an important role for Cbl-b in reversing P-gp-mediated gastric cancer MDR through suppression of the PI3K/Akt signalling pathway and the down-regulation of P-gp expression. PMID:19274672

  17. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    99mTc-sestamibi(MIBI) and 99mTc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99mTc-MIBI and 99mTc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsAsmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (? < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But increases in tumoral uptake were not significantly different between MIBI and tetrofosmin for both tumors. MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators in vitro, but these differences were not evident in vivo tumoral uptake. Both MIBI and tetrofosmin seem to be suitable tracers for imaging Pgp-and MRP=mediated drug resistance in tumors

  18. Detecting parathyroid adenoma using technetium-99m tetrofosmin: comparison with P-glycoprotein and multidrug resistance related protein expression--a preliminary report

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the relationships among technetium-99m tetrofosmin (Tc-TF) accumulation in parathyroid adenoma and the expression of P-glycoprotein (Pgp) or multidrug resistance related protein (MRP). Before operation, 33 patients with parathyroid adenomas (larger than 1.5 gm) were studied with parathyroid scintigraphy 10 minutes and 2 hours after intravenous injection of Tc-TF before operation. Immunohistochemical analyses (IHA) were performed on multiple nonconsecutive sections of operative parathyroid specimens to detect Pgp or MRP expression. According to the results of IHA, the 33 parathyroid adenomas were separated into four groups: (1) 2 adenomas with both positive Pgp and positive MRP expression, (2) 1 adenomas with positive Pgp but negative MRP expression, (3) 2 adenomas with negative Pgp but positive MRP expression, and (4) 28 adenomas with both negative Pgp and negative MRP expression. All of 28 adenomas in the group 4 could be detected by Tc-TF parathyroid imaging. All of 5 adenomas in the groups 1 to 3 could not be detected by TcTF parathyroid imaging (p < 0.05). Not only the size of parathyroid adenomas, but also significant Pgp or MRP expression limited the sensitivity of Tc-TF parathyroid imaging to localize parathyroid adenomas before operation

  19. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line

    Science.gov (United States)

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-01-01

    Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer. PMID:25298673

  20. Increased P-glycoprotein expression in mitochondria is related to acquired multidrug resistance in human hepatoma cells depleted of mitochondrial DNA.

    Science.gov (United States)

    Ling, Xianlong; He, Yuqi; Zhang, Guoqiao; Zhou, Yuan; Yan, Bin

    2012-01-01

    Mitochondrial DNA-depleted ?0 cells are resistant to apoptosis, but the mechanism remains unclear. A human hepatoma cell line (SK-Hep1) depleted of mtDNA (?0SK-Hep1) was induced by ethidium bromide treatment. The ?0SK-Hep1 cells were resistant to both doxorubicin- and cisplatin-induced apoptosis, while cybrids (SK-Hep1Cyb) prepared by fusing ?0SK-Hep1 cells with platelets showed restored susceptibility to both drugs. We observed P-glycoprotein and MRP1 were both overexpressed in ?0 cells, and more P-glycoproteins were localized in the mitochondria and were functionally active. ?0 cells showed resistance to chemotherapeutic drug-induced apoptosis. The increased expression and localization of P-glycoproteins in the mitochondria of ?0 cells may facilitate the exclusion of chemotherapeutic drugs from the mitochondria to the cytosol. PMID:21887461

  1. Multi-drug resistance (MDR1 gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs

    Directory of Open Access Journals (Sweden)

    Linardi Renata Lehn

    2006-01-01

    Full Text Available (MDR1 gene expressed in tumor cells and also in several normal tissues, such as intestine, liver, kidney, blood-brain barrier, spinal cord, and placenta. P-gp has been identified in mice, rat, bovine, monkey, rodents, and human beings and has been receiving a particular clinical relevance because this protein expression limits brain access and intestinal absorption of many drugs. This protein plays a role as a protective barrier against a wide variety of substrates, avoiding drug entry into the central nervous system. P-glycoprotein also interferes with drug bioavailability and disposition, including absorption, distribution, metabolization, and excretion, influencing pharmacokinetic and pharmacodynamic of drugs. Modulation of P-gp may help the efficacy of treatment of several diseases and can explain some adverse central nervous system effects induced by drugs after intravenous administration and the poor response of oral administration in patients. Alteration in P-gp expression or function has been associated with several diseases susceptibility in humans and animals. Furthermore, additional studies relating MDR1 and P-gp expression has an important clinical implication also in terms of treatment efficacy.

  2. Diatrizoate, Iopromide and Iotrolan Enhanced Cytotoxicity of Daunorubicin in Multidrug Resistant K562/adr Cells: Impaired the Mitochondrial and Inhibited the P-Glycoprotein Function

    Directory of Open Access Journals (Sweden)

    Nitaya S.N. Ayudhya

    2009-01-01

    Full Text Available Multidrug resistance was an obstacle in cancer chemotherapy because the cells decreased their intracellular drug accumulation by energy-dependent compounds efflux pumps such as P-glycoprotein (P-gp. This study observed some iodinated radiographic contrast media, diatrizoate, iopromide and iotrolan affected the cellular energetic state and the kinetics of P-gp in drug-sensitive K562 and drug resistant K562/adr cell lines using spectrophotometer and spectrofluorometer. By colorimetric MTT assay, it was found that contrast media (0-3500 µM had no effect on both K562 and K562/adr cell viabilities, but in co-treatment with daunorubicin (DNR, diatrizoate decreased cell viability in K562/adr cells by decreasing ICso of DNR from 610.7 ±74.5 nM to 360±108.9 nM. The change in cellular energetic state was studied using rhodamine B as a probe to estimate mitochondrial membrane potential (??m. The results showed that 3500 µM diatrizoate decreased ??m from 162.2±0.3 mV to 86.9±9.9 mV in K562/adr cells. The kinetics of P-gp-mediated efflux of DNR could be reduced by diatrizoate from 0 (no inhibition to 0.65±0.11. This inhibition could be partially prevented in co-incubation with 20 nM concanamycin A or 10 µM cytochalasin B. Among the three molecules, diatrizoate showed the best efficiency. It could be proposed for further studies that diatrizoate could be used as MDR identification or MDR imaging and also acted as MDR sensitizing agent in cancer treatments.

  3. TGF-?1 regulation of multidrug resistance P-glycoprotein in the developing male blood-brain barrier.

    Science.gov (United States)

    Baello, Stephanie; Iqbal, Majid; Bloise, Enrrico; Javam, Mohsen; Gibb, William; Matthews, Stephen G

    2014-02-01

    P-glycoprotein (P-gp), an efflux transporter encoded by the abcb1 gene, protects the developing fetal brain. Levels of P-gp in endothelial cells of the blood-brain barrier (BBB) increase dramatically during the period of peak brain growth. This is coincident with increased release of TGF-?1 by astrocytes and neurons. Although TGF-?1 has been shown to modulate P-gp activity in a number of cell types, little is known about how TGF-?1 regulates brain protection. In the present study, we hypothesized that TGF-?1 increases abcb1 expression and P-gp activity in fetal and postnatal BBB in an age-dependent manner. We found TGF-?1 to potently regulate abcb1 mRNA and P-gp function. TGF-?1 increased P-gp function in brain endothelial cells (BECs) derived from fetal and postnatal male guinea pigs. These effects were more pronounced earlier in gestation when compared with BECs derived postnatally. To investigate the signaling pathways involved, BECs derived at gestational day 50 and postnatal day 14 were exposed to ALK1 and ALK5 inhibitors and agonists. Through inhibition of ALK5, we demonstrated that ALK5 is required for the TGF-?1 effects on P-gp function. Activation of ALK1, by the agonist BMP-9, produced similar results to TGF-?1 on P-gp function. However, TGF-?1 signaling through the ALK1 pathway is age-dependent as dorsomorphin, an ALK1 inhibitor, attenuated TGF-?1-mediated effects in BECs derived at postnatal day 14 but not in those derived at gestational day 50. In conclusion, TGF-?1 regulates P-gp at the fetal and neonatal BBB and both ALK5 and ALK1 pathways are implicated in the regulation of P-gp function. Aberrations in TGF-?1 levels at the developing BBB may lead to substantial changes in fetal brain exposure to P-gp substrates, triggering consequences for brain development. PMID:24265456

  4. The study of relationship between breast cancer 99Tcm-MIBI imaging with the expression of P-glycoprotein and multidrug resistance-associated protein

    International Nuclear Information System (INIS)

    Objective: To evaluate the relationship between the uptake, washout of 99Tcm-methoxy-isobutylisonitrile (MIBI) and P-glycoprotein (P-gp) or multidrug resistance-related protein (MRP) expression in 36 breast cancer patients. Methods: 36 patients with untreated breast cancer were studied prospectively a week before surgical operation, all were injected intravenously with 740 MBq 99Tcm-MIBI in the arm contralateral to the lesion. Anterior planar images were acquired at 10 and 180 min after injection and the tumor-to-normal breast ratios (T/N) and washout rates (WR) were calculated. Immunohistochemical analyses of P-gp and MRP expression were used to evaluate the removed tumor tissues after operation and categorized into four groups. The differences of the early T/N ratios, the late T/N ratios and the WR among them were compared. Results: The early T/N ratios in group A and B were higher than that in group D. There was statistic difference between group A and D (P=0.001 ), and also in group B and D (P=0.045). The late T/N ratios had no statistic differences among them (F=0.499, P=0.686). The WR of group A, B, C were higher than that in group D and there were significant differences between them (P99Tcm-MIBI from the lesions and expression of P-gp or MRP in untreated breast cancer patients. 9999Tcm-MIBI imaging with washout analysis might be a useful method for evaluating P-gp or MRP overexpression and their function in breast cancer. (authors)

  5. Reversal of P-glycoprotein-medicated multidrug resistance by LBM-A5 in vitro and a study of its pharmacokinetics in vivo.

    Science.gov (United States)

    Zhao, Tianxiao; Song, Yun; Liu, Baomin; Qiu, Qianqian; Jiao, Lei; Li, Yunman; Huang, Wenlong; Qian, Hai

    2015-01-01

    The overexpression of P-glycoprotein (P-gp) in tumors leads to multidrug resistance (MDR), which is a significant obstacle in clinical cancer chemotherapy. The co-administration of anticancer drugs and MDR modulators is a promising strategy for overcoming this problem. Our study aimed to explore the reversal mechanism and safety of the MDR modulator LBM-A5 in vitro, and evaluate its pharmacokinetics and effects on doxorubicin metabolism in vivo. We evaluated an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of anticancer agents mediated by LBM-A5, the effect of LBM-A5 on rhodamine123 intracellular accumulation, and the efflux in K562/DOX cells to investigate the reversal mechanisms of LBM-A5. The results showed that LBM-A5 inhibits rhodamine123 efflux and increases intracellular accumulation by inhibiting the efflux pump function of P-gp. Furthermore, the therapeutic index and CYP3A4 activity analysis in vitro suggested that LBM-A5 is reasonably safe to use. Also, LBM-A5 (10 mg/kg body mass) achieved the required plasma concentration in sufficient time to reverse MDR in vivo. Importantly, the LBM-A5 treatment group shared similar doxorubicin (DOX) pharmacokinetics with the free DOX group. Our results suggest that LBM-A5 effectively reverses MDR (EC50 = 483.6 ± 81.7 nmol·L(-1)) by inhibiting the function of P-gp, with relatively ideal pharmacokinetics and in a safe manner, and so may be a promising candidate for cancer chemotherapy research. PMID:25427107

  6. Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance.

    Science.gov (United States)

    Sakata, K; Kwok, T T; Murphy, B J; Laderoute, K R; Gordon, G R; Sutherland, R M

    1991-11-01

    In this report, we investigate several examples of hypoxia-induced drug resistance and compare them with P-glycoprotein associated multidrug resistance (MDR). EMT6/Ro cells exposed to drugs in air immediately after hypoxic treatment developed resistance to adriamycin, 5-fluorouracil, and actinomycin D. However, these cells did not develop resistance to colchicine, vincristine or cisplatin. When the cells were returned to a normal oxygen environment, they lost resistance. There was no correlation between the content of adriamycin and the development of adriamycin resistance induced by hypoxia. There was no difference between the efflux of adriamycin from aerobic cells and that from hypoxia-treated cells. The mRNA for P-glycoprotein was not detected in the hypoxia-treated cells. These results suggest that hypoxia-induced drug resistance is different from P-glycoprotein associated multidrug resistance. PMID:1681885

  7. Coniferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein

    OpenAIRE

    Hui Zhao; Jian Gao; Zhiyong Yan; Xinhua Lu; Chuanhong Wu; Chang Chen; Shaojing Li

    2013-01-01

    Glutathione S-transferase (GST) is the key enzyme in multidrug resistance (MDR) of tumour. Inhibition of the expression or activity of GST has emerged as a promising therapeutic strategy for the reversal of MDR. Coniferyl ferulate (CF), isolated from the root of Angelica sinensis (Oliv.) Diels (Radix Angelicae sinensis, RAS), showed strong inhibition of human placental GST. Its 50% inhibition concentration (IC50) was 0.3??M, which was greater than a known GSTP1-1 inhibitor, ethacrynic acid...

  8. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2).

    Science.gov (United States)

    Videmann, Bernadette; Tep, Jonathan; Cavret, Séverine; Lecoeur, Sylvaine

    2007-10-01

    Deoxynivalenol (DON) is a major mycotoxic contaminant of cereal grains in Europe and North America. Human and animal contamination occurs mainly orally, and the toxin must traverse the intestinal epithelial barrier before inducing potential health effects. This study investigates the mechanisms of DON transepithelial transfer. Investigations using the human intestinal Caco-2 cell line showed a basal-to-apical polarized transport of the toxin. Both apical-basolateral (AP-BL) and basolateral-apical (BL-AP) transfers were time- and concentration-dependent, and not saturable between 5 and 30 microM DON. Arrhenius plot analysis revealed that transfer of 10 microM DON was temperature-dependent, with apparent activation energy E(a)=3.2 kcal mol(-1) in the AP-BL direction, and E(a)=10.4 kcal mol(-1) in the BL-AP direction. Intracellular DON accumulation was increased and DON efflux was decreased by ATP depletion, by P-glycoprotein inhibitor valspodar and by MRP2 inhibitor MK571, but not by BCRP inhibitor Ko143. Intracellular DON accumulation was then investigated using epithelial cell lines transfected with human P-glycoprotein or MRP2. This accumulation was decreased in LLCPK1-MDR1 and MDCKII-MRP2 cells, compared to wild-type cells, and the decrease could be reversed by valspodar or MK571. Taken together, these results suggest that DON is a substrate for both P-glycoprotein and MRP2. PMID:17543436

  9. 6,7-Dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinolines as superior reversal agents for P-glycoprotein-mediated multidrug resistance.

    Science.gov (United States)

    Liu, Baomin; Qiu, Qianqian; Zhao, Tianxiao; Jiao, Lei; Li, Yunman; Huang, Wenlong; Qian, Hai

    2015-02-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major obstacle for successful cancer chemotherapy. Based on our previous study, 17 novel compounds with the 6,7-dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinoline scaffold were designed and synthesized. Among them, 2-[(1-{4-[2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl]phenyl}-1H-1,2,3-triazol-4-yl)methoxy]-N-(p-tolyl)benzamide (compound 7 h) was identified as a potent modulator of P-gp-mediated MDR, with high potency (EC50 =127.5 ± 9.1 nM), low cytotoxicity (TI>784.3), and long duration (>24 h) in reversing doxorubicin (DOX) resistance in K562/A02 cells. Compound 7 h also enhanced the effects of other MDR-related cytotoxic agents (paclitaxel, vinblastine, and daunorubicin), increased the accumulation of DOX and blocked P-gp-mediated rhodamine 123 efflux function in K562/A02 MDR cells. Moreover, 7 h did not have any effect on cytochrome (CYP3A4) activity. These results indicate that 7 h is a relatively safe modulator of P-gp-mediated MDR that has good potential for further development. PMID:25470220

  10. Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump.

    Science.gov (United States)

    Vincent, Mark

    2006-01-01

    Tesmilifene is a novel potentiator of chemotherapy which, when added to doxorubicin, achieved an unexpected and very large survival advantage over doxorubicin alone in a randomized trial in advanced breast cancer. This trial was unusual in that the early endpoints (response rate and median progression-free survival) were equivalent in the two arms, despite the ultimate survival difference. These aspects, coupled with the absence of a coherent molecular mechanism of action, and a pending confirmatory trial, have led oncologists to hold judgement on this drug. This paper reacts to this in three ways: firstly, a forensic subgroup analysis is presented with an explanation as to why it strongly supports the veracity of the survival difference; secondly a novel cellular explanation is provided for the decoupling of the early and late (survival) endpoints; finally, a molecular mechanism of action is proposed, for the first time, which reconciles the peculiarities of the trial with the laboratory data and background literature. This hypothesis explains how tesmilifene could meld two of the apparent strengths of the cancer cell (drug resistance pumps, and hypoxia-adapted energetics) into a potent weapon of self-destruction. Tesmilifene is proposed to allow chemotherapy (e.g. anthracycline or taxane) to additionally kill a small but critical population (clone) of aggressive, multi-drug resistant cells, the benefits of which cannot be appreciated until a period of time (about 6-8 months) has elapsed. These cells, present in women with more rapidly relapsing disease, very likely carry an energy-dependent extrusion pump which is paradoxically activated by tesmilifene plus the chemotherapy. The result is that, despite the chemotherapy's remaining extracellular, the cell dies from reactive oxygen species leaking from the electron chain transport in the abnormal mitochondria which characterize cancer. These mitochondria are activated in response to the ATP cost of this pump activation, in these predominantly glycolytic cells. PMID:16413681

  11. To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression

    International Nuclear Information System (INIS)

    Our preliminary studies found technetium-99m tetrofosmin (Tc- TF) chest imaging was related to Pgp or MRP1 expression and successfully predict chemotherapy response and in SCLC in human. However, there was no published literature to study relationship of Tc-TF chest images and LRP expression in SCLC patients. Therefore, the aim of this study was to investigate the relationships among Tc- TF accumulation in untreated small cell lung cancer (SCLC), the expression of P-glycoprotein (Pgp), multidrug resistance related protein-1 (MRP1), and lung resistance-related protein (LRP), as well as the response to chemotherapy in patients with untreated SCLC. Thirty patients with SCLC were studied with chest images 15 to 30 minutes after intravenous injection of Tc-TF before chemotherapeutic induction. Tumor-to-background (T/B) ratios were obtained on the static and plantar Tc-TF chest images. The response to chemotherapy was evaluated upon completion of chemotherapy by clinical and radiological methods. These patients were separated into 15 patients with good response and 15 patients with poor response. No significant differences of prognostic factors (Karnofsky performance status, tumor size, or tumor stage) were found between the patients with good and poor responses. Immunohistochemical analyses were performed on multiple nonconsecutive sections of biopsy specimens to detect Pgp, MRP1, and LRP expression. The difference in T/B ratios on the Tc-TF chest images of the patients wi the Tc-TF chest images of the patients with good versus poor response was significant. The differences in T/B ratios of the patients with positive versus negative Pgp expression and with positive versus negative MRP1 expression were significant. The difference in T/B ratios of the patients with positive versus negative LRP expression was not significant. We concluded that Tc-TF chest images could accurately predict chemotherapy response of patients with SCLC. In addition, The Tc-TF tumor uptake was related to Pgp or MRP1 but not LPR expression in SCLC

  12. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp).

    Science.gov (United States)

    Jansson, Patric J; Yamagishi, Tetsuo; Arvind, Akanksha; Seebacher, Nicole; Gutierrez, Elaine; Stacy, Alexandra; Maleki, Sanaz; Sharp, Danae; Sahni, Sumit; Richardson, Des R

    2015-04-10

    Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity. PMID:25720491

  13. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    Science.gov (United States)

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ?63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas. PMID:25036383

  14. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Cara Andrea

    2007-03-01

    Full Text Available Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN (IN inhibitors, IINs has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA derivatives active on the HIV-1 IN strand transfer (ST step and with EC50 ranging from 1.83 to >50 ?m in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR reversing ability. Results The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells. Conclusion To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.

  15. Usefulness of technetium-99m tetrofosmin liver imaging to detect hepatocellular carcinoma and related to expression of P-glycoprotein or multidrug resistance associated protein-a preliminary report

    International Nuclear Information System (INIS)

    Technetium-99m Tetrofsomin (Tc-TF) has been shown to be useful in identifying several types of tumors, such as breast, lung, and thyroid cancers. There was no report in the literature for Tc-TF uptake in hepatocellular carcinoma (HCC). The aim of this study was to evaluate the usefulness of Tc-TF liver imaging to detect HCC and investigate the relationship between Tc-TF liver imaging findings and P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP) expression. Before any therapy, 22 patients with HCC were enrolled in this study. Tc-TF liver images were performed l0 minutes after intravenous injection of 20mCi Tc-TF. All patients had liver biopsy or surgery within l week after Tc-TF liver imaging. Immunohistochemical study of the biopsy or resected HCC specimens was performed using anti-human Pgp and MRP antibodies. Twenty of the 22 (90.9%) patients showed negative Tc-TF liver imaging results without significant Tc-TF uptake in HCC, whereas only the remaining 2 (9.1%) patients showed positive Tc-TF liver imaging results with significant Tc-TF uptake in HCC. Positive Pgp expression was observed in 13 of 20 patients with negative Tc-TF liver imaging results, whereas positive MRP expression was observed in 6 of the remaining 7 patients with negative both Tc-TF liver imaging results and Pgp expression. However, negative Pgp expression but positive MRP expression was observed in all of the remaining 2 patients with positive Tc-TF liver imaging results. The positive Tc-TF liver imaging results. The correlation between Tc-TF liver imaging findings and Pgp expression was significant and better than between Tc-TF liver imaging findings and MRP expression. Pgp or MRP expression in HCC may induce no significant Tc-TF uptake in HCC resulting in negative Tc-TF liver imaging findings. Therefore, Tc-TF liver imaging is potential to be a non-invasive method to predict Pgp or MRP expression in HCC. However, further studies with a larger series of patients and longer follow-up time are necessary to confirm our findings

  16. Modulation of P-glycoprotein expression by triptolide in adriamycin-resistant K562/A02 cells

    OpenAIRE

    Li, Hao; Hui, Lulu; Xu, Wenlin; Shen, Huiling; Chen, Qiaoyun; Long, Lulu; Zhu, Xiaolan

    2011-01-01

    Multidrug resistance is a serious obstacle encountered in leukemia treatment. Previous studies have found drug resistance in human leukemia is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1). The aim of the present study was to investigate the modulation of P-glycoprotein expression by triptolide in adriamycin-resistant K562/A02 cells. The reverse effects of triptolide on drug resistance in K562/A02 cells were assessed by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphe...

  17. P-glycoprotein-mediated resistance to HSP90-directed therapy is eclipsed by the heat shock response

    OpenAIRE

    Mccollum, Andrea K.; Teneyck, Cynthia J.; Stensgard, Bridget; Morlan, Bruce W.; Ballman, Karla V.; Jenkins, Robert B.; Toft, David O.; Erlichman, Charles

    2008-01-01

    Despite studies that demonstrate the antitumor activity of Hsp90 inhibitors such as geldanamycin (GA) and its derivative 17-allylamino-demethoxygeldanamycin (17-AAG), recent reports indicate that these inhibitors lack significant single-agent clinical activity. Resistance to Hsp90 inhibitors has been previously linked to expression of P-glycoprotein (P-gp), and the multidrug resistant (MDR) phenotype. However, the stress response induced by GA treatment can also cause resistance to Hsp90-targ...

  18. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance.

    Science.gov (United States)

    Jaspers, Janneke E; Sol, Wendy; Kersbergen, Ariena; Schlicker, Andreas; Guyader, Charlotte; Xu, Guotai; Wessels, Lodewyk; Borst, Piet; Jonkers, Jos; Rottenberg, Sven

    2015-02-15

    Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this. PMID:25511378

  19. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    OpenAIRE

    Tomohiro Nabekura

    2010-01-01

    Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural comp...

  20. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    FrancesJaneSharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat clinical drug resistance.

  1. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    Directory of Open Access Journals (Sweden)

    Tomohiro Nabekura

    2010-05-01

    Full Text Available Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (--epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized.

  2. Paclitaxel sensitises multidrug resistant cells to radiation

    International Nuclear Information System (INIS)

    The unique action of paclitaxel to stabilise microtubules and block cells at the radiosensitive G2/M phase of the cell cycle, suggests it may sensitise tumours to radiotherapy. Since the use of paclitaxel may be compromised in drug resistant tumours due to drug efflux by P-glycoprotein, the ability of paclitaxel to sensitise multidrug resistant cells to radiation was examined in HL60 cells and a multidrug resistant subline, H/E8, developed by intermittent treatment with epirubicin. Poster 201. (author)

  3. Evidence that natural killer cells express mini P-glycoproteins but not classic 170 kDa P-glycoprotein.

    Science.gov (United States)

    Trambas, C; Wang, Z; Cianfriglia, M; Woods, G

    2001-07-01

    Several lines of evidence including reverse transcription polymerase chain reaction, immunoreactivity and their ability to efflux rhodamine 123 have implied the existence of P-glycoprotein in natural killer (NK) cells. It has been a natural tendency to assume that NK-cell P-glycoprotein is identical to the P-glycoprotein of multidrug resistant (MDR) cell lines, however, the present study uncovered major differences. Functionally, NK cells demonstrated a restricted substrate profile, being unable to transport daunorubicin and calcein acetoxymethylester while efficiently transporting other P-glycoprotein substrates. Furthermore, physical differences in NK-cell P-glycoprotein were established by differential reactivity with P-glycoprotein antibodies. NK cells demonstrated strong reactivity with C494 and JSB-1, but did not react appreciably with C219. In addition, NK cells were unable to bind to the antibody MM4.17 unless they had been fixed and permeabilized, yet this antibody normally recognizes an extracellular epitope of P-glycoprotein. These differences culminated in the demonstration using Western analysis that NK cells did not express detectable levels of 170 kDa P-glycoprotein. Instead, NK cells expressed small-molecular-weight 'mini P-glycoprotein' products, of approximately 70 and 80 kDa. Collectively, these data indicate that the predominant P-glycoprotein species of NK cells are novel mini P-glycoproteins and not the classic P-glycoprotein of MDR models. PMID:11472365

  4. Inhibition of P-glycoprotein by two artemisinin derivatives

    OpenAIRE

    Steglich, Babette; Mahringer, Anne; Li, Ying; Posner, Gary H.; Fricker, Gert; Efferth, Thomas

    2012-01-01

    P-Glycoprotein/MDR1 represents an important component of the blood brain barrier and contributes to multidrug resistance. We investigated two derivatives of the anti-malarial artemisinin, SM616 and GHP-AJM-3/23, concerning their ability to interact with P-glycoprotein. The ability of the two compounds to inhibit P-glycoprotein (P-gp) activity was examined in sensitive CCRF-CEM and P-gp over-expressing and multidrug-resistant CEM/ADR5000 cells as well as in porcine brain capillary endothelial ...

  5. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor / Expressão da glicoproteína-P, proteína associada à múltiplas drogas, glutationa-S-transferase pi e p53 no tumor venéreo transmissível canino

    Scientific Electronic Library Online (English)

    Daniel G., Gerardi; Mirela, Tinucci-Costa; Ana Carolina T., Silveira; Juliana V., Moro.

    2014-01-01

    Full Text Available A superexpressão das proteínas glicoproteína-P (Gp-P), proteína associada à resistência à múltiplas drogas 1 (MRP1) e p53 mutante e a enzima glutationa-S-transferase pi (GSTpi) está relacionada com resistência à quimioterapia em neoplasias humanas e caninas. Este estudo avaliou a expressão, por meio [...] da imuno-histoquímica desses marcadores em espécimes de TVT caninos sem histórico de quimioterapia prévia (TVT1, n=9) e em TVT caninos que apresentaram resposta clínica insatisfatória ao sulfato de vincristina (TVT2, n=5). A porcentagem de espécimes positivos para Gp-P, MRP1, GSTpi e p53 foram, respectivamente 88,8%, 0%, 44,5% e 22,2% no grupo TVT1 e 80%, 0%, 80% e 0% no grupo TVT2. No TVT1, um espécime apresentou expressão positiva para três marcadores e quatro para dois marcadores. No TVT2, três espécimes expressaram a Gp-P e GSTpi. Em conclusão, os TVTs caninos estudados expressaram os quatro marcadores avaliados, no entanto apenas a Gp-P e GSTpi foram significativamente expressas, principalmente no citoplasmas e no citoplasma e no núcleo, respectivamente, tanto antes da quimioterapia quanto após à exposição ao sulfato de vincristina. Estudos futuros são necessários para demonstrar a função desses dois marcadores em conferir resistência à multiplas drogas (RMD) ou predizer a resposta a quimioterapia no TVT canino. Abstract in english The overexpression of proteins P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP1), mutant p53, and the enzyme glutathione-S-transferase (GSTpi) are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in t [...] wo groups of canine TVT, without history of prior chemotherapy (TVT1, n=9) and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5). The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR) or predict the response to chemotherapy in canine TVT.

  6. P-glycoprotein Mediates Drug Resistance via a Novel Mechanism Involving Lysosomal Sequestration*

    Science.gov (United States)

    Yamagishi, Tetsuo; Sahni, Sumit; Sharp, Danae M.; Arvind, Akanksha; Jansson, Patric J.; Richardson, Des R.

    2013-01-01

    Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation. PMID:24062304

  7. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration.

    Science.gov (United States)

    Yamagishi, Tetsuo; Sahni, Sumit; Sharp, Danae M; Arvind, Akanksha; Jansson, Patric J; Richardson, Des R

    2013-11-01

    Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation. PMID:24062304

  8. Multi-drug resistance (MDR1) gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs / Influência do gene de resistência múltipla (MDR1) e da P-glicoproteína na farmacocinética e farmacodinâmica de drogas terapêuticas

    Scientific Electronic Library Online (English)

    Renata Lehn, Linardi; Cláudio Corrêa, Natalini.

    2006-02-01

    Full Text Available P-glicoproteína (P-gp) é um transportador de membrana ligado ao gene de resistência múltipla (MDR1), expressado em células tumorais e também em tecidos normais como intestino, fígado, rins, membranas hematoencefálica, hemo-placentária e medula espinhal. A P-gp já foi identificada em camundongos, rat [...] os, bovinos, macacos, roedores e seres humanos e tem ganhado relevância clínica particular em função de sua expressão limitar o acesso de drogas ao cérebro e interferir com a absorção intestinal quando administradas pela via oral. Esta proteína participa da função protetora do organismo contra uma grande variedade de substratos, evitando a entrada de drogas no sistema nervoso central. A P-gp interfere também com a biodisponibilidade dos fármacos, incluindo absorção, distribuição, metabolização e excreção, influenciando assim, a farmacocinética e dinâmica dos mesmos. Desta maneira, a modulação da P-gp pode explicar alguns efeitos adversos no sistema nervoso central, induzidos por alguns fármacos após administração intravenosa, e a pobre resposta após administração oral em pacientes. A alteração na expressão ou função da P-glicoproteína tem sido associada a uma maior susceptibilidade a diversas doenças em humanos e animais. Estudos adicionais relacionados à expressão e à função da P-gp espécie-específica têm implicação clínica importante em termos de eficiência de tratamento. Abstract in english (MDR1) gene expressed in tumor cells and also in several normal tissues, such as intestine, liver, kidney, blood-brain barrier, spinal cord, and placenta. P-gp has been identified in mice, rat, bovine, monkey, rodents, and human beings and has been receiving a particular clinical relevance because t [...] his protein expression limits brain access and intestinal absorption of many drugs. This protein plays a role as a protective barrier against a wide variety of substrates, avoiding drug entry into the central nervous system. P-glycoprotein also interferes with drug bioavailability and disposition, including absorption, distribution, metabolization, and excretion, influencing pharmacokinetic and pharmacodynamic of drugs. Modulation of P-gp may help the efficacy of treatment of several diseases and can explain some adverse central nervous system effects induced by drugs after intravenous administration and the poor response of oral administration in patients. Alteration in P-gp expression or function has been associated with several diseases susceptibility in humans and animals. Furthermore, additional studies relating MDR1 and P-gp expression has an important clinical implication also in terms of treatment efficacy.

  9. Multidrug Resistance in Bacteria

    OpenAIRE

    Nikaido, Hiroshi

    2009-01-01

    Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur b...

  10. Overexpression of the multidrug resistance gene mdr3 in spontaneous and chemically induced mouse hepatocellular carcinomas.

    OpenAIRE

    Teeter, L D; Becker, F F; F. V. Chisari; Li, D. J.; Kuo, M.T.

    1990-01-01

    Overexpression of a family of plasma membrane glycoproteins, known as P-glycoproteins, is commonly associated with multidrug resistance in animal cells. In rodents, three multidrug resistance (mdr or pgp) genes have been identified, but only two can confer the multidrug resistance phenotype upon transfection into animal cells. Using the RNase protection method, we demonstrated that the levels of three mdr gene transcripts differ among mouse tissues, confirming a previous report that the expre...

  11. Assessment of Multidrug Resistance Reversal Using Dielectrophoresis and Flow Cytometry

    OpenAIRE

    Labeed, Fatima H.; Coley, Helen M; Thomas, Hilary; Hughes, Michael P

    2003-01-01

    In cancer, multidrug resistance (MDR) is the simultaneous resistance of tumor cells to different natural product anticancer drugs that have no common structure. This is an impediment to the successful treatment of many human cancers. A common correlate of MDR is the overexpression of a membrane protein, P-glycoprotein. Many studies have shown that MDR can be reversed after the use of substrate analogs, called MDR modulators. However, our understanding of MDR modulation is incomplete. In this ...

  12. Resistance to Paclitaxel in a Cisplatin-Resistant Ovarian Cancer Cell Line Is Mediated by P-Glycoprotein

    OpenAIRE

    Stordal, Britta; Hamon, Marion; Mceneaney, Victoria; Roche, Sandra; Gillet, Jean-pierre; O’leary, John J.; Gottesman, Michael; Clynes, Martin

    2012-01-01

    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. ...

  13. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2008-10-28

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.  Created: 10/28/2008 by Emerging Infectious Diseases.   Date Released: 10/28/2008.

  14. Multidrug-resistant tuberculosis

    OpenAIRE

    McNerney Ruth; Zager Ellen M

    2008-01-01

    Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB) has been reported i...

  15. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Science.gov (United States)

    Stordal, Britta; Hamon, Marion; McEneaney, Victoria; Roche, Sandra; Gillet, Jean-Pierre; O'Leary, John J; Gottesman, Michael; Clynes, Martin

    2012-01-01

    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy. PMID:22792399

  16. Reversal of vinblastine transport by chlorpromazine in membrane vesicles from multidrug-resistant human CCRF-CEM leukaemia cells.

    OpenAIRE

    Syed, S. K.; Christopherson, R. I.; Roufogalis, B D

    1998-01-01

    The mechanism of action of 2-chlorpromazine (2-chloro-10-(3-dimethylaminopropyl)-phenothiazine) as a reversal agent for P-glycoprotein-mediated multidrug resistance was investigated using inside out-orientated membrane vesicles prepared from vinblastine-resistant human CCRF-CEM leukaemia cells (VBL1000). 2-Chlorpromazine (10 microM) completely inhibited ATP-dependent P-glycoprotein-mediated vinblastine accumulation in the vesicles. Whereas in the absence of added ligands VBL transport was des...

  17. Dynamic Assessment of Mitoxantrone Resistance and Modulation of Multidrug Resistance by Valspodar (PSC833) in Multidrug Resistance Human Cancer Cells

    OpenAIRE

    Shen, Fei; Bailey, Barbara J.; Chu, Shaoyou; Bence, Aimee K.; Xue, Xinjian; Erickson, Priscilla; Ahmad R. Safa; Beck, William T; Erickson, Leonard C.

    2009-01-01

    P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, is one of the major causes for multidrug resistance (MDR). We report using confocal microscopy to study the roles of Pgp in mediating the efflux of the anticancer agent mitoxantrone and the reversal of MDR by the specific Pgp inhibitor valspodar (PSC833). The net uptake and efflux of mitoxantrone and the effect of PSC833 were quantified and compared in Pgp-expressing human cancer MDA-MB-435 ...

  18. Synthesis of 5-oxyquinoline derivatives for reversal of multidrug resistance

    Directory of Open Access Journals (Sweden)

    Torsten Dittrich

    2012-10-01

    Full Text Available The inhibition of ABC (ATP binding cassette transporters is considered a powerful tool to reverse multidrug resistance. Zosuquidar featuring a difluorocyclopropyl-annulated dibenzosuberyl moiety has been found to be an inhibitor of the P-glycoprotein, one of the best-studied multidrug efflux pumps. Twelve 5-oxyisoquinoline derivatives, which are analogues of zosuquidar wherein the dibenzosuberyl-piperazine moiety is replaced by either a diarylaminopiperidine or a piperidone-derived acetal or thioacetal group, have been synthesized as pure enantiomers. Their inhibitory power has been evaluated for the bacterial multidrug-resistance ABC transporter LmrCD and fungal Pdr5. Four of the newly synthesized compounds reduced the transport activity to a higher degree than zosuquidar, being up to fourfold more efficient than the lead compound in the case of LmrCD and about two times better for Pdr5.

  19. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Álvarez-Gaviria Manuel

    2013-06-01

    Full Text Available Introduction: tuberculosis is an increasing problem of global health and the microbialdrug resistance a generating element of worry.Clinical case: 19 year-old patient, who admitted to the emergency room for presentinghemoptysis and who had history of pulmonary tuberculosis with irregular treatment.Multidrug-resistant tuberculosis was documented and different strategies of availablemedical treatment were considered. Due to the increased epidemiological risk and thehistory of poor adherence to the treatment, an in-hospital treatment was carried outwith a satisfactory response.Conclusion: multidrug-resistant tuberculosis is a social risk, keeping the route oftransmission of the disease. Rev.cienc.biomed. 2013;4(1:159-164RESUMEN:Introducción: la tuberculosis (TB pulmonar es un problema creciente de saludmundial y la resistencia a los antibióticos un elemento de preocupación.Caso clínico: paciente de 19 años, quien ingresó al servicio de urgencias por presentarhemoptisis. Antecedente de TB con tratamiento irregular. Se documentó resistenciaa varios medicamentos. Se consideraron las diferentes estrategias de tratamientodisponible. Debido al elevado riesgo epidemiológico y la historia de pobre adherencia altratamiento, se realizó manejo intrahospitalario con respuesta satisfactoria.Conclusiones: la tuberculosis multirresistente (MDR-TB representa un riesgo parala comunidad, teniendo en cuenta la vía de transmisión de la entidad. Rev.cienc.biomed. 2013;4(1:159-164

  20. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  1. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Scientific Electronic Library Online (English)

    A., Di Pietro; G., Dayan; G., Conseil; E., Steinfels; T., Krell; D., Trompier; H., Baubichon-Cortay; J.-M., Jault.

    1999-08-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane dom [...] ain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  2. Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib.

    Science.gov (United States)

    Ao, Lin; Wu, Ying; Kim, Donghern; Jang, Eun Ryoung; Kim, Kyunghwa; Lee, Do-Min; Kim, Kyung Bo; Lee, Wooin

    2012-08-01

    Carfilzomib is a novel class of peptidyl epoxyketone proteasome inhibitor and has demonstrated promising activity in multiple clinical trials to treat patients with multiple myeloma and other types of cancers. Here, we investigated molecular mechanisms underlying acquired resistance to carfilzomib and a potential strategy to restore cellular sensitivity to carfilzomib. H23 and DLD-1 cells (human lung and colon adenocarcinoma cell lines) with acquired resistance to carfilzomib displayed marked cross-resistance to YU-101, a closely related proteasome inhibitor, and paclitaxel, a known substrate of Pgp. However, carfilzomib-resistant cells remained sensitive to bortezomib, a clinically used dipeptide with boronic acid pharmacophore. In accordance with these observations, carfilzomib-resistant H23 and DLD-1 cells showed marked upregulation of P-glycoprotein (Pgp) as compared to their parental controls, and coincubation with verapamil, a Pgp inhibitor, led to an almost complete restoration of cellular sensitivity to carfilzomib. These results indicate that Pgp upregulation plays a major role in the development of carfilzomib resistance in these cell lines. In developing a potential strategy to overcome carfilzomib resistance, we as a proof of concept prepared a small library of peptide analogues derived from the peptide backbone of carfilzomib and screened these molecules for their activity to restore carfilzomib sensitivity when cotreated with carfilzomib. We found that compounds as small as dipeptides are sufficient in restoring carfilzomib sensitivity. Taken together, we found that Pgp upregulation plays a major role in the development of resistance to carfilzomib in lung and colon adenocarcinoma cell lines and that small peptide analogues lacking the pharmacophore can be used as agents to reverse acquired carfilzomib resistance. Our findings may provide important information in developing a potential strategy to overcome drug resistance. PMID:22734651

  3. Kinetic Validation of the Models for P-Glycoprotein ATP Hydrolysis and Vanadate-Induced Trapping. Proposal for Additional Steps

    OpenAIRE

    Lugo, Miguel Ramo?n; Sharom, Frances Jane

    2014-01-01

    P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich d...

  4. Influence of Chemotherapeutic Treatment on Expression of Human Multidrug Resistance Protein (ABCC, ABCB) Family Members in Pancreatic Cancer Cell Lines

    OpenAIRE

    Michael Gock; Michael Linnebacher; Ernst Klar; Sven Eisold; Dirk Nauheimer; Jan Schmidt

    2013-01-01

    AIM: Chemotherapeutic treatment of pancreatic carcinomas isoften impeded by intrinsic multidrug resistance (MDR). This MDRphenotype can be caused by transporters of the MDR P-glycoprotein(ABCB) or multidrug resistance related protein (MRP) family(ABCC). To elucidate the role of ABCB and ABCC family membersin pancreatic carcinomas, we analyzed mRNA expression of MDR-1,MDR-3, MRP-1, MRP-3 and MRP-5, which have been shown toconfer resistance to chemotherapeutic drugs.METHODS: mRNA expression was...

  5. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Scientific Electronic Library Online (English)

    VIVIAN M., RUMJANEK; GILMA S., TRINDADE; KAREN, WAGNER-SOUZA; MICHELE C., MELETTI-DE-OLIVEIRA; LUIS F., MARQUES-SANTOS; RAQUEL C., MAIA; MÁRCIA A. M., CAPELLA.

    2001-03-01

    Full Text Available A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Est [...] udos de mecanismos de resistência múltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado da linhagem eritro-leucêmica K562. Esta linhagem celular, denominada Lucena 1, super-expressa a glicoproteína P e tem sua resistência revertida pelos quimio-sensibilizantes verapamil, trifluoperazina e ciclosporinas A, D e G. Ademais, demonstramos que o azul de metileno era capaz de reverter parcialmente a resistência nesta linhagem celular. Em contraste, o uso de 5-flúor-uracil aumentava a resistência de Lucena 1. Adicionalmente aos quimioterápicos, células Lucena 1 eram resistentes radiação ultra-violeta A e peróxido de hidrogênio e deixavam de mobilizar o cálcio intra-celular quando se usava tapsigargina. Mudanças no cito-esqueleto desta linhagem foram também observadas. Abstract in english Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidr [...] ug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.

  6. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose that inclusion of population based statistics in global surveillance data is necessary to better inform debate on the control of drug resistant tuberculosis. Summary Re-appraisal of global MDR-TB data to include population based statistics suggests that the problem of drug resistant tuberculosis in sub-Saharan Africa is more critical than previously perceived.

  7. Multidrug-resistant tuberculosis

    Scientific Electronic Library Online (English)

    Antônio Carlos Moreira, Lemos; Eliana Dias, Matos.

    2013-04-01

    Full Text Available Despite the efforts made worldwide to reduce the number of cases of drug-susceptible tuberculosis, multidrug-resistant tuberculosis (MDR-TB) constitutes an important public health issue. Around 440,000 new cases of MDR-TB are estimated annually, although in 2008 only 7% of these (29,423 cases) were [...] notified. The laboratory tests for diagnosing resistance may be phenotypic (based on culture growth in the presence of drugs) or genotypic (i.e. identification of the presence of mutations that confer resistance). The urgent need for a rapid means of detecting resistance to anti-TB drugs has resulted in the development of many genotypic methods over recent years. The treatment of MDR-TB is expensive, complex, prolonged (18-24 months) and associated with a higher incidence of adverse reactions. Some basic principles must be observed when prescribing an adequate treatment regimen for MDR-TB: (a) the association of at least four drugs (three of which should not have been used previously); (b) use of a fluoroquinolone; and (c) use of an injectable anti-TB drug. In Brazil, the therapeutic regimen for MDR-TB has been standardized and consists of five drugs: terizidone, levofloxacin, pyrazinamide, ethambutol and an aminoglycoside (streptomycin or amikacin). Pulmonary resection is an important tool in the coadjuvant treatment of MDR-TB. While a recent meta-analysis revealed an average cure rate of MDR-TB of 69%, clinical studies are currently being conducted with new drugs and with drugs already available on the market but with a new indication for TB, with encouraging results that will enable more effective treatment regimens to be planned in the future.

  8. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    Science.gov (United States)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  9. Nocardioazines: a novel bridged diketopiperazine scaffold from a marine-derived bacterium inhibits P-glycoprotein.

    Science.gov (United States)

    Raju, Ritesh; Piggott, Andrew M; Huang, Xiao-Cong; Capon, Robert J

    2011-05-20

    An Australian marine sediment-derived isolate, Nocardiopsis sp. (CMB-M0232), yielded a new class of prenylated diketopiperazine, indicative of the action of a uniquely regioselective diketopiperazine indole prenyltransferase. The bridged scaffold of nocardioazine A proved to be a noncytotoxic inhibitor of the membrane protein efflux pump P-glycoprotein, reversing doxorubicin resistance in a multidrug resistant colon cancer cell. PMID:21513295

  10. Enhanced Brain Disposition and Effects of ?9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice

    OpenAIRE

    Spiro, Adena S.; Wong, Alexander; Boucher, Aurélie A.; Arnold, Jonathon C.

    2012-01-01

    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis ?9-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cann...

  11. The role of half-transporters in multidrug resistance

    DEFF Research Database (Denmark)

    Bates, S E; Robey, R

    2001-01-01

    ATP-binding cassette proteins comprise a superfamily of transporter proteins, a subset of which have been implicated in multidrug resistance. Although P-glycoprotein was described over 15 years ago, the recent expansion in the number of transporters identified has prompted renewed interest in the role of drug transporters in clinical drug resistance. These newly identified transporters include additional members of the MRP family, ABC2, and a new half-transporter, MXR/BCRP/ABCP1. This half-transporter confers high levels of resistance to mitoxantrone, anthracyclines, and the camptothecins SN-38 and topotecan. At 72 kDa, MXR localizes to the plasma membrane in cells which highly overexpress the protein either through gene amplification or though gene rearrangement. Future studies will be aimed at identifying an inhibitor, and attempting to translate recognition of this new transporter into a target for anticancer treatment.

  12. Multidrug resistance phenotype associated with selection of an aminopterin resistant dog kidney cell line.

    Science.gov (United States)

    Turker, M S; Duffin, K Z; Smith, A C; Martin, G M; Martin, A W; DiMartino, D L; Kersey, D S

    1991-12-01

    A determination of the mechanisms of drug resistance in tumour cells is important for developing strategies to combat such resistance in persons receiving chemotherapy. This report describes a combined cellular, biochemical, and molecular analysis of a dog kidney cell line selected for resistance to increasing levels of the hydrophilic antifolate, aminopterin. Three distinct drug resistance phenotypes were observed in cells exhibiting high levels of aminopterin resistance. Two of these phenotypes were decreased aminopterin accumulation and increased levels of dihydrofolate reductase specific activity. The third drug resistance phenotype was noted initially as cross resistance to a variety of hydrophobic drugs indicating multidrug resistance. Biochemical assays demonstrated reduced accumulation of the hydrophobic fluorescent drug daunorubicin and of 3H-colchicine in the aminopterin resistant cells. These results were then correlated with increased levels of the multidrug resistance (mdr) gene product, P-glycoprotein, and mdr mRNA levels in the aminopterin resistant cells. However, experiments designed to prove a role for expression of the mdr gene in providing a degree of aminopterin resistance were unsuccessful. It is concluded that aminopterin selection in these dog kidney cells resulted in expression of at least three distinct drug resistance phenotypes and that one of these phenotypes, multidrug resistance, represented a secondary response to the aminopterin selection. PMID:1688246

  13. Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking.

    Science.gov (United States)

    Saeed, Mohamed; Kadioglu, Onat; Khalid, Hassan; Sugimoto, Yoshikazu; Efferth, Thomas

    2015-01-01

    Apigenin is a common dietary flavonoid with considerable cytotoxic activity in vitro and in vivo. Despite many mechanistic studies, less is known about resistance factors hampering apigenin's activity. We investigated the ATP-binding cassette (ABC) transporters BCRP/ABCG2, P-glycoprotein/ABCB1 and its close relative ABCB5. Multidrug-resistant cells overexpressing these ABC transporters were not cross-resistant toward apigenin. Moreover, apigenin inhibited not only P-glycoprotein but also BCRP by increasing cellular uptake of doxorubicin and synergistic inhibition of cell viability in combination with doxorubicin or docetaxel in multidrug-resistant cells. To perform in silico molecular docking studies, we first generated homology models for human P-glycoprotein and ABCB5 based on the crystal structure of murine P-glycoprotein. Their nucleotide binding domains (NDBs) revealed the highest degrees of sequence homologies (89%-100%), indicating that ATP binding and cleavage is of crucial importance for ABC transporters. Molecular docking of apigenin bound to the NDBs of P-glycoprotein and ABCB5 in molecular docking studies. Hence, apigenin may compete with ATP for NDB-binding leading to energy depletion to fuel the transport of ABC transporter substrates. Furthermore, we performed COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression profiles of the National Cancer Institute tumor cell line panel. Microarray-based mRNA expressions of genes of diverse biological functions (signal transduction, transcriptional regulation, ubiquitination, autophagy, metabolic activity, xenobiotic detoxification and microtubule formation) significantly predicted responsiveness of tumor cells to apigenin. In conclusion, apigenin's activity is not hampered by classical mechanisms of multidrug resistance and the inhibition of ABC transporters by apigenin indicates that apigenin may overcome multidrug resistance in otherwise refractory tumors. PMID:25459885

  14. Immunosuppressors as multidrug resistance reversal agents.

    Science.gov (United States)

    Morjani, Hamid; Madoulet, Claudie

    2010-01-01

    Multidrug-resistance (MDR) is the major reason for failure of cancer therapy. ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp), which is encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and other ABC transporters remained a major goal for the past 20 years. The calcium blocker verapamil was the first drug shown to be a modulator of Pgp, and since many different chemical compounds have been shown to exert the same effect in vitro by blocking Pgp activity. These included particularly immunosuppressors. Cyclosporin A (CSA) was the first immunosuppressor that have been shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival, and overall survival, which were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 (valspodar) was subsequently developed. This compound showed tenfold higher potency in reversal of MDR mediated by Pgp. However, pharmacokinetic interactions required reductions in the dose of the concurrently administered anticancer agents. The pharmacokinetic interactions were likely because of decreased clearance of the anticancer agents, possibly as a result of Pgp inhibition in organs such as the gastrointestinal tract and kidney, as well as inhibition of cytochrome P450. Finally, CSA and PSC833 have been shown also to modulate the ceramide metabolism which stands as second messenger of anticancer agent-induced apoptosis. In fact, CSA and PSC833 are also able to respectively inhibit ceramide glycosylation and stimulate de novo ceramide synthesis. This could enhance the cellular level of ceramide and potentiate apoptosis induced by some anticancer agents. PMID:19949935

  15. Current Status on Marine Products with Reversal Effect on Cancer Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Huiqin Guo

    2012-10-01

    Full Text Available The resistance of tumor cells to a broad range of anticancer agents continues to be a problem for the success of cancer chemotherapy. Multidrug resistance (MDR is due in part to three drug transporter proteins: ABCB1/P-glycoprotein (P-gp, ABCC1/multidrug resistance protein 1 (MRP1 and ABCG2/breast cancer resistance protein (BCRP. These transporters are part of the ATP-binding cassette (ABC superfamily, whose members function as ATP-dependent drug-efflux pumps. Their activity can be blocked by various drugs such as verapamil (calcium channel blocker and cyclosporin A (immunosuppressive agent, etc. These compounds are called MDR modulators or reversals. This review highlights several marine natural products with reversal effect on multidrug resistance in cancer, including agosterol A, ecteinascidin 743, sipholane triterpenoids, bryostatin 1, and welwitindolinones.

  16. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2)

    DEFF Research Database (Denmark)

    Litman, Thomas; Brangi, M

    2000-01-01

    Mechanisms of drug resistance other than P-glycoprotein are of increasing interest as the list of newly identified members of the ABC transport family has grown. We sought to characterize the phenotype of the newly discovered ABC transporter encoded by the mitoxantrone resistance gene, MXR, also known as ABCP1 or BCRP. The pharmacodynamics of mitoxantrone and 12 other fluorescent drugs were evaluated by confocal microscopy in four multidrug-resistant human colon (S1) and breast (MCF-7) cancer cell lines. We utilized two sublines, MCF-7 AdVp3000 and S1-M1-80, and detected overexpression of MXR by PCR, immunoblot assay and immunohistochemistry. These MXR overexpressing sublines were compared to cell lines with P-glycoprotein- and MRP-mediated resistance. High levels of cross-resistance were observed for mitoxantrone, the anthracyclines, bisantrene and topotecan. Reduced levels of mitoxantrone, daunorubicin, bisantrene, topotecan, rhodamine 123 and prazosin were observed in the two sublines with high MXR expression. Neither the P-glycoprotein substrates vinblastine, paclitaxel, verapamil and calcein-AM, nor the MRP substrate calcein, were extruded from MCF-7 AdVp3000 and S1-M1-80 cells. Thus, the multidrug-resistant phenotype due to MXR expression is overlapping with, but distinct from, that due to P-glycoprotein. Further, cells that overexpress the MXR protein seem to be more resistant to mitoxantrone and topotecan than cells with P-glycoprotein-mediated multidrug resistance. Our studies suggest that the ABC half-transporter, MXR, is a potent, new mechanism for conferring multiple drug resistance. Definition of its mechanism of transport and its role in clinical oncology is required.

  17. Direct interaction between verapamil and doxorubicin causes the lack of reversal effect of verapamil on P-glycoprotein mediated resistance to doxorubicin in vitro using L1210/VCR cells

    International Nuclear Information System (INIS)

    Mouse leukemic cell sub-line L 1210/VCR exerts expressive multidrug resistance (MDR) that is mediated by P-glycoprotein. Cells originally adapted to vincristine are also extremely resistant to doxorubicin. Resistance to both vincristine and doxorubicin is connected with depression of drug uptake. While resistance of L 121 O cells to vincristine could be reversed by verapamil as chemo-sensitizer, resistance of cells to doxorubicin was insensitive to verapamil. Action of verapamil (well-known inhibitor of PGP activity) on multidrug resistance was often used as evidence that MDR is mediated by PGP. From this point it may be possible that the resistance of L1210/VCR cells to vincristine is mediated by PGP and the resistance to doxorubicin is mediated by other PGP-independent system. Another and more probable explanation of different effect of verapamil on resistance of L1210/VCR cells to vincristine and doxorubicin may be deduced from the following fact: Using UV spectroscopy we found that doxorubicin dissolved in water buffered medium interacts effectively with verapamil. This interaction may be responsible for the decrease of concentration of both drugs in free effective form and consequently for higher survival of cells. In contrast to doxorubicin vincristine does not give any interaction with verapamil that is measurable by UV spectroscopy and resistance of L1210/VCR cells to vincristine may be fully reversed by verapamil. (authors)thors)

  18. Functional detection of MDR1/P170 and MRP/P190-mediated multidrug resistance in tumour cells by flow cytometry.

    OpenAIRE

    Feller, N.; Kuiper, C.M.; Lankelma, J.; Ruhdal, J. K.; Scheper, R J; Pinedo, H.M.; Broxterman, H.J.

    1995-01-01

    Multidrug resistance (MDR) in tumour cells is often caused by the overexpression of the plasma membrane drug transporter P-glycoprotein (P-gp) or the recently discovered multidrug resistance-associated protein (MRP). In this study we investigated the specificity and sensitivity of the fluorescent probes rhodamine 123 (R123), daunorubicin (DNR) and calcein acetoxymethyl ester (calcein-AM) in order to detect the function of the drug transporters P-gp and MRP, using flow cytometry. The effects o...

  19. Visualization of multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other 99mTc radiopharmaceuticals, such as 99mTc-tetrofosmin and several 99Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [11C]colchicine, [11C]verapamil and [11C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumes with which to image Pgp function in tumours. Uptake of [11C]colchicine and [11C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[11C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively. Results obtained in MRP2 mutated GY/TR rats have demonstrated visualization of MRP-mediated transport. This tracer permits the study of MRP transport function abnormalities in vivo, e.g. in Dubin-Johnson patients, who are MRP2 gene deficient. Results obtained show the feasibility of using SPET and PET to study the functionality of MDR transporters in vivo. (orig.)

  20. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    Directory of Open Access Journals (Sweden)

    Dioxelis Lopez

    2014-01-01

    Full Text Available P-glycoprotein (P-gp is a protein belonging to the ATP-binding cassette (ABC transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters.

  1. P-glycoprotein interfering agents potentiate ivermectin susceptibility in ivermectin sensitive and resistant isolates of Teladorsagia circumcincta and Haemonchus contortus.

    Science.gov (United States)

    Bartley, D J; McAllister, H; Bartley, Y; Dupuy, J; Ménez, C; Alvinerie, M; Jackson, F; Lespine, A

    2009-08-01

    P-glycoprotein (P-gp) homologues, belonging to the ATP Binding Cassette (ABC) transporter family, are thought to play an important role in the resistance of gastro-intestinal nematode parasites against macrocyclic lactones. The aim of this study was to investigate the influence of various P-gp interfering compounds on the efficacy of ivermectin (IVM) in sensitive and resistant nematode isolates. The feeding of IVM resistant and sensitive Teladorsagia circumcincta and Haemonchus contortus first-stage larvae (L1) was assessed using a range of IVM concentrations (0.08-40 nm) with or without P-gp inhibitors: valspodar, verapamil, quercetin, ketoconazole and pluronic P85. The P-gp inhibitors were selected on the basis of their ability to interfere with P-gp transport activity in an epithelial cell line over-expressing murine P-gp. In the presence of P-gp interfering agents, the in vitro susceptibility to IVM of both sensitive and resistant isolates of T. circumcincta and H. contortus was increased. These results show that compounds interfering with P-gp transport activity could enhance IVM efficacy in sensitive isolates, and also restore IVM sensitivity in resistant nematodes. These results support the view that ABC transporters can play an important role in resistance to IVM, at least in the free-living stages of these economically important gastro-intestinal nematodes. PMID:19549355

  2. Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression.

    Science.gov (United States)

    Wang, Shengpeng; Wang, Lu; Chen, Meiwan; Wang, Yitao

    2015-06-25

    The development of resistance to chemotherapeutic agents remains a major challenge to breast cancer chemotherapy. Overexpression of drug efflux transporters like P-glycoprotein (P-gp) and resistance to apoptosis are the two key factors that confer cancer drug resistance. Gambogic acid (GA), a major component of Gamboge resin, has potent anticancer effects and can inhibit the growth of several types of human cancers. However, the potential and underlying mechanisms of GA in reversing cancer resistance remain poorly understood. In the present study, we found that GA can markedly sensitize doxorubicin (DOX)-resistant breast cancer cells to DOX-mediated cell death. GA increased the intracellular accumulation of DOX by inhibiting both P-gp expression and activity. Meanwhile, the combination effect was associated with the generation of intracellular reactive oxygen species (ROS) and the suppression of anti-apoptotic protein survivin. Scavenging intracellular ROS or overexpression of survivin blocked the sensitizing effects of GA in DOX-induced apoptosis. Furthermore, ROS-mediated activation of p38 MAPK was revealed in GA-mediated suppression of survivin expression. This study gives rise to the possibility of applying GA as an anticancer agent for the purpose of combating DOX-resistant breast cancer. PMID:25824409

  3. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo

    Scientific Electronic Library Online (English)

    Wei-Dong, Lu; Yong, Qin; Chuang, Yang; Lei, Li.

    2013-05-01

    Full Text Available OBJECTIVE: To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. METHODS: In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5- [...] diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. RESULTS: Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 ?M, but the growth of cells was significantly inhibited. At concentrations greater than 25 ?M, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p

  4. Immunohistochemical detection of P-glycoprotein in various subtypes of canine lymphomas.

    Science.gov (United States)

    Soko?owska, J; Urba?ska, K; Gizi?ski, S; Zabielska, K; Lechowski, R

    2015-01-01

    Combination chemiotherapy is the current standard of care for dogs with lymphoma. Multidrug resistance is one of the most important factors contributing to the efficacy of chemiotherapy. The major protein responsible for this phenomenon is P-glycoprotein. Little is known about P-glycoprotein expression in particular subtypes of lymphomas. The aim of the study was evaluation of P-glycoprotein expression in various subtypes of canine lymphomas. Positive reaction with P-glycoprotein was found in 12/25 cases of various morphological subtypes of lymphomas, however, in 3/11 lymphomas the percentage of positively weakly stained cells was lymphomas P-glycoprotein expression exceeded 50% of tumor cells. Those cases were found among centroblastic, centroblastic-centrocytic, lymphoblastic and Burkitt-like subtypes. Positive reaction was observed mainly in the cell cytoplasm, however, in some cases prominent perinuclear dot-like staining pattern was found. In 2 cases focal staining pattern comprised dominant type of immunolabelling. Among all lymphomas containing P-glycoprotein positive cells intensity of imunolabelling was assessed as weak (6/25), moderate (2/25) and strong (3/25). Our results indicate that P-glycoprotein expression is present in nearly one third of newly diagnosed canine lymphomas of different morphological subtypes including those most commonly occurring, such as cenroblastic lymphomas. Hence, determination of P-glycoprotein expression at the time of diagnosis could provide valuable information for the design of treatment protocols. Moreover, our results have shown that P-glycoprotein expression in canine tumors could be located in Golgi-zone. PMID:25928919

  5. Functional imaging of the multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. 99mTc-sestaMIBI and other 99mTc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-(11C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo

  6. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [{sup 11}C]gefitinib

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Kazunori [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)], E-mail: kawamur@nirs.go.jp; Yamasaki, Tomoteru; Yui, Joji; Hatori, Akiko; Konno, Fujiko; Kumata, Katsushi; Irie, Toshiaki; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Kanno, Iwao; Zhang Mingrong [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-04-15

    Gefitinib (Iressa) is a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase. Recent studies confirmed that gefitinib interacted with the breast cancer resistance protein (BCRP) at submicromolar concentrations, whereas other multidrug transporters, including P-glycoprotein (P-gp), showed much lower reactivity toward gefitinib. Recently, many tracers for positron emission tomography (PET) have been prepared to study P-gp function in vivo; however, PET tracers had not been evaluated for both P-gp and BCRP modulation in the brain. Therefore, we evaluated in vivo brain penetration-mediated P-gp and BCRP in mice using [{sup 11}C]gefitinib. Co-injection with gefitinib (over 50 mg/kg), a nonspecific P-gp modulator cyclosporin A (50 mg/kg), and the dual P-gp and BCRP modulator GF120918 (over 5 mg/kg) induced an increase in the brain uptake of [{sup 11}C]gefitinib in mice 30 min after injection. In the PET study of mice, the radioactivity level in the brain with co-injection of GF120918 (5 mg/kg) was three- to fourfold higher than that in control after initial uptake. The radioactivity level in the brain in P-gp and Bcrp knockout mice was approximately eightfold higher than that in wild-type mice 60 min after injection. In conclusion, [{sup 11}C]gefitinib is a promising PET tracer to evaluate the penetration of gefitinib into the brain by combined therapy with P-gp or BCRP modulators, and into brain tumors. Furthermore, PET study with GF120918 is a promising approach for evaluating brain penetration-mediated P-gp and BCRP.

  7. Management of multidrug resistant tuberculosis.

    Science.gov (United States)

    Daley, Charles L; Caminero, Jose A

    2013-02-01

    Drug-resistant strains of Mycobacterium tuberculosis have emerged as a major threat to global tuberculosis control. Despite the availability of curative antituberculosis therapy for nearly half a century, inappropriate and inadequate treatment has allowed M. tuberculosis to acquire resistance to our most important antituberculosis drugs. The epidemic of drug-resistant tuberculosis has spread quickly in some areas due to the convergence of resistant strains of M. tuberculosis in high-risk patients (e.g., those with human immunodeficiency virus/acquired immunodeficiency syndrome) and high-risk environments (e.g., hospitals and prisons). The World Health Organization (WHO) estimates that there were 650,000 cases of multidrug resistant tuberculosis (MDR-TB) in 2010, defined as strains that are resistant to at least isoniazid (INH) and rifampicin (RIF). Globally, WHO estimates that 3.7% of new tuberculosis cases and 20% of re-treatment cases have MDR-TB. By the end of 2012, 84 countries had reported at least one case of extensively drug resistant strains (XDR-TB), which are MDR-TB strains that have acquired additional resistance to fluoroquinolones and at least one second-line injectable. Recently, cases of "totally drug resistant" tuberculosis have been reported. It is estimated that only 10% of all MDR-TB cases are currently receiving therapy and only 2% are receiving quality-assured drugs. This article reviews the management of MDR and XDR-TB and highlights the updated 2011 WHO guidelines on the programmatic management of drug-resistant tuberculosis. PMID:23460005

  8. P-glycoprotein and Topoisomerase II ? Expression in Advanced Gastric Cancer Patients: Association with Clinicopathological Findings

    OpenAIRE

    Sepideh Arbabi Bidgoli; Bagher Minaee; Mansoor Djamali Zavarehi; Shamileh Fouladdel; Ebrahim Azizi

    2006-01-01

    Comparative study of markers of drug resistance in cancer tissues may be extremely helpful in selection of effective chemotherapeutic regimen. P-glycoprotein (P-gp) and Topoisomerase II ? (Topo II ?) are two fundamental proteins in multi-drug resistance phenomenon (MDR). This study determined the expression and significance of P-gp and Topo II ? proteins in advanced gastric carcinomas and correlated molecular alterations with clinicopathological findings. Tissue samples of 35 patients with ad...

  9. Development of peptide-based reversing agents for P-glycoprotein-mediated resistance to carfilzomib

    OpenAIRE

    Ao, Lin; Wu, Ying; Kim, Donghern; Jang, Eun Ryoung; Kim, Kyunghwa; Lee, Do-min; Kim, Kyung Bo; Lee, Wooin

    2012-01-01

    Carfilzomib is a novel class of peptidyl epoxyketone proteasome inhibitor and has demonstrated promising activity in multiple clinical trials to treat patients with multiple myeloma and other types of cancers. Here, we investigated molecular mechanisms underlying acquired resistance to carfilzomib and a potential strategy to restore cellular sensitivity to carfilzomib. H23 and DLD-1 cells (human lung and colon adenocarcinomas cell lines) with acquired resistance to carfilzomib displayed marke...

  10. Nanodrug Delivery in Reversing Multidrug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    MayurYergeri

    2014-07-01

    Full Text Available Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance(MDR which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp, multidrug resistance-associated proteins(MRP1, MRP2 and breast cancer resistance protein(BCRP. Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1? gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-?B. “Theragnostics” combining a cytotoxic agent, targeting moiety, chemosensitizing agent and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome MDR in cancer cell

  11. Effect of P-glycoprotein and breast cancer resistance protein inhibition on the pharmacokinetics of sunitinib in rats.

    Science.gov (United States)

    Kunimatsu, Sachiko; Mizuno, Tomoyuki; Fukudo, Masahide; Katsura, Toshiya

    2013-08-01

    The aim of this study was to elucidate the roles of P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the plasma concentration, biliary excretion, and distribution to the liver, kidney, and brain of sunitinib. The pharmacokinetics of sunitinib was examined in rats treated with PSC833 (valspodar) and pantoprazole, potent inhibitors of P-gp and BCRP, respectively. The sunitinib concentrations in plasma, bile, liver, kidney, and brain were determined by liquid chromatography-tandem mass spectrometry. It was found that the area under the concentration-time curve for 4 hours (AUC0-4) and maximum concentration (Cmax) of sunitinib administered intraintestinally were significantly increased by pretreatment with PSC833 or pantoprazole. Each inhibitor markedly reduced the biliary excretion of sunitinib for 60 minutes after an intravenous administration and significantly increased the distribution of sunitinib to the liver as well as kidney. In addition, the brain distribution of sunitinib was significantly increased by PSC833 but not pantoprazole, and coadministration of both inhibitors further enhanced the accumulation of sunitinib in the brain. These results demonstrate that plasma concentrations of sunitinib and the biliary excretion and distribution to the kidney, liver, and brain of sunitinib are influenced by pharmacologic inhibition of P-gp and/or BCRP. PMID:23749551

  12. Impact of genetic deficiencies of P-glycoprotein and breast cancer resistance protein on pharmacokinetics of aripiprazole and dehydroaripiprazole.

    Science.gov (United States)

    Nagasaka, Yasuhisa; Sano, Tomokazu; Oda, Kazuo; Kawamura, Akio; Usui, Takashi

    2014-10-01

    1. We investigated how deficiencies in P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) affect the pharmacokinetics of atypical antipsychotics aripiprazole and its active metabolite (dehydroaripiprazole) using normal Friend leukemia virus strain B (FVB) mice, BCRP knockout (Bcrp[-/-]) mice, and P-gp and BCRP triple knockout (Mdr1a/1b[-/-]Bcrp[-/-]) mice. 2. While plasma concentrations of aripiprazole and dehydroaripiprazole after oral administration were slightly higher in both Bcrp(-/-) and Mdr1a/1b(-/-)/Bcrp(-/-) mice than in normal FVB mice, the difference was not marked. The increase in absolute bioavailability (F) compared with normal mice (approximately 1.3-fold increase) was comparable between Bcrp(-/-) and Mdr1a/1b(-/-)/Bcrp(-/-) mice. This finding suggests that BCRP may be involved in the intestinal absorption of aripiprazole in mice, albeit with minimal contribution to absorption at best. 3. In contrast, the brain-to-plasma concentration ratio (Kp,brain) for aripiprazole and dehydroaripiprazole after oral administration was significantly higher in Mdr1a/1b(-/-)/Bcrp(-/-) mice than in normal mice, whereas Bcrp(-/-) mice exhibited Kp,brain values similar to those in normal mice. In addition, the Kp,brain values in Mdr1a/1b(-/-)/Bcrp(-/-) mice were not drastically different from those previously reported in Mdr1a/1b(-/-) mice, suggesting that brain penetration of aripiprazole and dehydroaripiprazole can be affected by P-gp, but with little synergistic effect of BCRP. PMID:24666334

  13. Multidrug Resistance: An Emerging Crisis

    Science.gov (United States)

    Tanwar, Jyoti; Fatima, Zeeshan; Hameed, Saif

    2014-01-01

    The resistance among various microbial species (infectious agents) to different antimicrobial drugs has emerged as a cause of public health threat all over the world at a terrifying rate. Due to the pacing advent of new resistance mechanisms and decrease in efficiency of treating common infectious diseases, it results in failure of microbial response to standard treatment, leading to prolonged illness, higher expenditures for health care, and an immense risk of death. Almost all the capable infecting agents (e.g., bacteria, fungi, virus, and parasite) have employed high levels of multidrug resistance (MDR) with enhanced morbidity and mortality; thus, they are referred to as “super bugs.” Although the development of MDR is a natural phenomenon, the inappropriate use of antimicrobial drugs, inadequate sanitary conditions, inappropriate food-handling, and poor infection prevention and control practices contribute to emergence of and encourage the further spread of MDR. Considering the significance of MDR, this paper, emphasizes the problems associated with MDR and the need to understand its significance and mechanisms to combat microbial infections. PMID:25140175

  14. Characterisation of multidrug-resistant Ehrlich ascites tumour cells selected in vivo for resistance to etoposide

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C

    2000-01-01

    An Ehrlich ascites tumour cell line (EHR2) was selected for resistance to etoposide (VP16) by in vivo exposure to this agent. The resulting cell line (EHR2/VP16) was 114.3-, 5.7-, and 4.0-fold resistant to VP16, daunorubicin, and vincristine, respectively. The amount of salt-extractable immunoreactive topoisomerase IIalpha and beta in EHR2/VP16 was reduced by 30-40% relative to that in EHR2. The multidrug resistance-associated protein (MRP) mRNA was increased 20-fold in EHR2/VP16 as compared with EHR2, whereas the expression of P-glycoprotein was unchanged. In EHR2/VP16, the steady-state accumulation of [(3)H]VP16 and daunorubicin was reduced by 64% and 17%, respectively, as compared with EHR2. Deprivation of energy by addition of sodium azide increased the accumulation of both drugs to the level of sensitive cells. When glycolysis was restored by the addition of glucose to EHR2/VP16 cells loaded with drug in the presence of sodium azide, extrusion of [(3)H]VP16 and daunorubicin was induced. Addition of verapamil (25 microM) decreased the efflux of daunorubicin to the level of sensitive cells, but had only a moderate effect on the efflux of [(3)H]VP16. The resistant cells showed moderate sensitisation to VP16 on treatment with verapamil, whereas cyclosporin A had no effect. Compared with that of sensitive cells, the ATPase activity of plasma membrane vesicles prepared from EHR2/VP16 cells was very low. Vanadate inhibited the ATPase activity of EHR2/VP16 microsomes with a K(i) value of 30 microM. ATPase activity was slightly stimulated by daunorubicin, whereas vinblastine, verapamil, and cyclosporin A had no effect. In conclusion, development of resistance to VP16 in EHR2 is accompanied by a significant reduction in topoisomerase II (alpha and beta) and by increased expression of MRP mRNA (20-fold). MRP displays several points of resemblance to P-glycoprotein in its mode of action: 1) like P-glycoprotein, MRP causes resistance to a range of hydrophobic drugs; 2) MRP decreases drug accumulation in the cells and this decrease is abolished by omission of energy; and 3) MRP increases efflux of drug from cells. However, compared with that of P-glycoprotein-positive cells, the ATPase activity of MRP-positive cells is found to be low and not able to be stimulated by verapamil.

  15. Modulation of P-glycoprotein-mediated multidrug resistance in the CC531 rat colon tumor model

    OpenAIRE

    Vrie, W. van de

    1997-01-01

    About half of the patients that come to the physician with cancer have a localized stage of the disease and can be cured by surgery or radiotherapy. The remaining cancers have spread systemically because the primary tumor has metastasized or because they are systemic cancers by nature. The only hope for cure for patients with these cancers lies in systemic treatment such as chemotherapy or immunotherapy. Cure can be obtained by intensive chemotherapy in childhood acute leukemia...

  16. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: yunmanlicpu@hotmail.com [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein inhibitors. • The accumulation of HZ08 increased via gene interference targeting P-glycoprotein. • HZ08 competitively bound to P-glycoprotein under the presence of verapamil.

  17. Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity

    OpenAIRE

    Harati Rania; Villégier Anne-Sophie; Banks William A; Mabondzo Aloise

    2012-01-01

    Abstract Background P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB) efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS) and BBB drug efflux transporters d...

  18. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR1) gene single nucleotide polymorphisms (SNPs) G2677T and C3435T using the model drug digoxin.

  19. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components.

    Science.gov (United States)

    Patanasethanont, Denpong; Nagai, Junya; Matsuura, Chie; Fukui, Kyoko; Sutthanut, Khaetthareeya; Sripanidkulchai, Bung-orn; Yumoto, Ryoko; Takano, Mikihisa

    2007-07-01

    In this study, the effects of extracts and flavone derivatives from the rhizome of Kaempferia parviflora on multidrug resistance associated-proteins (MRP)-mediated transport in A549 cells were examined. The cells employed express MRP1 and MRP2, but not P-glycoprotein. The cellular accumulation of calcein, an MRP substrate, was significantly increased by various MRP inhibitors without being affected by verapamil, a typical P-glycoprotein inhibitor. Ethanol and aqueous extracts from K. parviflora rhizome increased the accumulation of calcein and doxorubicin in A549 cells in a concentration-dependent manner. The inhibitory potency of the ethanol extract for MRP function was greater than that of the aqueous extract. Among six flavone derivatives isolated from K. parviflora rhizome, 5,7-dimethoxyflavone exhibited a maximal stimulatory effect on the accumulation of doxorubicin in A549 cells. The accumulation of doxorubicin was increased by four flavone derivatives without 5-hydroxy group, but not by the other two flavone derivatives with 5-hydroxy group. In addition, 5,7-dimethoxyflavone and 3,5,7,3',4'-pentamethoxyflavone decreased resistance to doxorubicin in A549 cells. These findings indicate that extracts and flavone derivatives from the rhizome of K. parviflora suppress MRP function, and therefore may be useful as modulators of multidrug resistance in cancer cells. PMID:17481606

  20. Dynamic assessment of mitoxantrone resistance and modulation of multidrug resistance by valspodar (PSC833) in multidrug resistance human cancer cells.

    Science.gov (United States)

    Shen, Fei; Bailey, Barbara J; Chu, Shaoyou; Bence, Aimee K; Xue, Xinjian; Erickson, Priscilla; Safa, Ahmad R; Beck, William T; Erickson, Leonard C

    2009-08-01

    P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, is one of the major causes for multidrug resistance (MDR). We report using confocal microscopy to study the roles of Pgp in mediating the efflux of the anticancer agent mitoxantrone and the reversal of MDR by the specific Pgp inhibitor valspodar (PSC833). The net uptake and efflux of mitoxantrone and the effect of PSC833 were quantified and compared in Pgp-expressing human cancer MDA-MB-435 (MDR) cells and in parental wild-type cells. The MDR cells, transduced with the human Pgp-encoding gene MDR1 construct, were approximately 8-fold more resistant to mitoxantrone than the wild-type cells. Mitoxantrone accumulation in the MDR cells was 3-fold lower than that in the wild-type cells. The net uptake of mitoxantrone in the nuclei and cytoplasm of MDR cells was only 58 and 67% of that in the same intracellular compartment of the wild-type cells. Pretreatment with PSC833 increased the accumulation of mitoxantrone in the MDR cells to 85% of that in the wild-type cells. In living animals, the accumulation of mitoxantrone in MDA-MB-435mdr xenograft tumors was 61% of that in the wild-type tumors. Administration of PSC833 to animals before mitoxantrone treatment increased the accumulation of mitoxantrone in the MDR tumors to 94% of that in the wild-type tumors. These studies have added direct in vitro and in vivo visual information on how Pgp processes anticancer compounds and how Pgp inhibitors modulate MDR in resistant cancer cells. PMID:19423841

  1. Multidrug resistance in patients with osteoarticular tuberculosis

    Directory of Open Access Journals (Sweden)

    Layla Amanzholova

    2011-04-01

    Full Text Available This paper describes prevalence of multidrug resistant tuberculosis (MDR TB among 285 patients treated in clinic of National Center for TB Problems (Kazakhstan during 2007-2009. Data were obtained through clinical examination of patients and bacteriological culture investigation of postoperative material. The drug resistance in patients with OAT in 54.0% was confirmed on the base of microbiological investigation (culturing on Lowenstein-Jensen medium, and in 12.6% clinical resistance took place. The relatively high multidrug resistance revealed in patients with OAT is connected to the thorough sampling of the pathological material intraoperatively.

  2. Patupilone acts as radiosensitizing agent in multidrug-resistant cancer cells in vitro and in vivo.

    Science.gov (United States)

    Hofstetter, Barbara; Vuong, Van; Broggini-Tenzer, Angela; Bodis, Stephan; Ciernik, Ilja F; Fabbro, Doriano; Wartmann, Markus; Folkers, Gerd; Pruschy, Martin

    2005-02-15

    Interference with microtubule function is a promising antitumoral concept. Paclitaxel is a clinically validated tubulin-targeting agent; however, treatment with paclitaxel is often limited by taxane-related toxicities and is ineffective in tumors with multidrug-resistant cells. Patupilone (EPO906, epothilone B) is a novel non-taxane-related microtubule-stabilizing natural compound that retains full activity in multidrug-resistant tumors and is clinically less toxic than paclitaxel. Here we have investigated the effect of combined treatment with ionizing radiation and patupilone or paclitaxel in the P-glycoprotein-overexpressing, p53-mutated human colon adenocarcinoma cell line SW480 and in murine, genetically defined E1A/ras-transformed paclitaxel-sensitive embryo fibroblasts. Patupilone and paclitaxel alone and in combination with ionizing radiation reduced the proliferative activity of the E1A/ras-transformed cell line with similar potency in the sub and low nanomolar range. SW480 cells were only sensitive to patupilone, and combined treatment with low-dose patupilone (0.1 nmol/L) followed by clinically relevant doses of ionizing radiation (2 and 5 Gy) resulted in a supra-additive cytotoxic effect. Inhibition of the drug efflux protein P-glycoprotein with verapamil resensitized SW480 cells to treatment with low doses of paclitaxel alone and in combination with IR. In tumor xenografts derived from SW480 cells a minimal treatment regimen with patupilone and fractionated irradiation (1 x 2 mg/kg plus 4 x 3 Gy) resulted in an at least additive tumor response with extended tumor growth arrest. Analysis by flow cytometry in vitro revealed an apoptosis- and G(2)-M-independent mode of radiosensitization by patupilone. Interestingly though, a transient accumulation of cells in S phase was observed on combined treatment.Overall, patupilone might be a promising alternative in paclitaxel-resistant, P-glycoprotein-overexpressing tumors for a combined treatment regimen using ionizing radiation and a microtubule inhibitor. PMID:15746064

  3. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Directory of Open Access Journals (Sweden)

    Buddhasukh Duang

    2004-04-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170, thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn, were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.

  4. Detection of multidrug resistance using molecular nuclear technique

    International Nuclear Information System (INIS)

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. 99m-Tc-MIBI and other 99m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-(11C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. Weso evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo

  5. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  6. The T687G SNP in a P-glycoprotein gene of Fasciola hepatica is not associated with resistance to triclabendazole in two resistant Australian populations.

    Science.gov (United States)

    Elliott, Timothy P; Spithill, Terry W

    2014-11-01

    Triclabendazole (TCBZ) is widely used for control of Fasciola hepatica (liver fluke) in animals and humans and resistance to this drug is now widespread. However, the mechanism of resistance to TCBZ is not known. A T687G single nucleotide polymorphism (SNP) in a P-glycoprotein gene was proposed as a molecular marker for TCBZ resistance in F. hepatica (Wilkinson et al., 2012). We analyzed this Pgp gene from TCBZ-susceptible and TCBZ-resistant populations from Australia to determine if the SNP was a marker for TCBZ resistance. From the 21 parasites studied we observed 27 individual haplotypes in the Pgp sequences which comprised seven haplotypic groups (A-G), with haplotypes A and B representing 81% of the total observed. The T687G SNP was not observed in either of the resistant or susceptible populations. We conclude that the T687G SNP in this Pgp gene is not associated with TCBZ resistance in these Australian F. hepatica populations and therefore unlikely to be a universal molecular marker for TCBZ resistance. PMID:25481750

  7. Kinetic validation of the models for P-glycoprotein ATP hydrolysis and vanadate-induced trapping. Proposal for additional steps.

    Science.gov (United States)

    Lugo, Miguel Ramón; Sharom, Frances Jane

    2014-01-01

    P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s) include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the nature of the occluded nucleotide-bound state. PMID:24897122

  8. Effects of cyclosporin at various concentrations on dexamethasone intracellular uptake in multidrug resistant cells

    Science.gov (United States)

    Maillefert, J; Duchamp, O; Solary, E; Genne, P; Tavernier, C

    2000-01-01

    BACKGROUND—The multidrug resistance phenomenon results from the expression of P-glycoprotein (P-gp), a drug-efflux pump. Corticosteroids are substrates for P-gp, whose function can be inhibited by cyclosporin. This study evaluates the ability of cyclosporin to modulate dexamethasone uptake in multidrug resistant cells.?METHODS—The K 562 cell line, which does not express P-gp and a P-gp expressing clone, K562/ADM, were used. Cells were incubated with H3-dexamethasone in the absence or presence of cyclosporin at various concentrations. Then, cells were washed, lysed, and radioactivity was measured.?RESULTS—The uptake of dexamethasone alone was higher in sensitive than in resistant cells. Addition of cyclosporin induced a dose dependent increase of dexamethasone uptake in resistant cells, whereas the drug did not influence dexamethasone uptake in parental cells.?CONCLUSION—Cyclosporin, at therapeutic concentrations induces a moderate, but significant increase in dexamethasone accumulation in multidrug resistant cells. Thus, cyclosporin might increase the intestinal absorption of corticosteroids or their accumulation in mononuclear cells, or both, thereby increasing their therapeutic efficacy.?? PMID:10666173

  9. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from theng which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  10. Multidrug-Resistant Mycobacterium tuberculosis, Southwestern Colombia

    OpenAIRE

    Beatriz E Ferro; Nieto, Luisa Maria; Rozo, Juan C.; Forero, Liliana; van Soolingen, Dick

    2011-01-01

    Using spoligotyping, we identified 13 genotypes and 17 orphan types among 160 Mycobacterium tuberculosis isolates from patients in Valle del Cauca, Colombia. The Beijing genotype represented 15.6% of the isolates and was correlated with multidrug-resistant tuberculosis, female sex of the patients, and residence in Buenaventura and may represent a new public health threat.

  11. Multidrug-resistant Tuberculosis in Military Recruits

    OpenAIRE

    Freier, Grace; Wright, Allen; Nelson, Gregory; Brenner, Eric; Mase, Sundari; Tasker, Sybil; Matthews, Karen L.; Bohnker, Bruce K.

    2006-01-01

    We conducted a tuberculosis contact investigation for a female military recruit with an unreported history of multidrug-resistant tuberculosis (MDRTB) and subsequent recurrence. Pertinent issues included identification of likely contacts from separate training phases, uncertainty on latent MDRTB infection treatment regimens and side effects, and subsequent dispersal of the contacts after exposure.

  12. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

    Directory of Open Access Journals (Sweden)

    Ren Y

    2012-05-01

    Full Text Available Yanyan Ren1,2,*, Haijun Zhang1,2,*, Baoan Chen1, Jian Cheng1, Xiaohui Cai1, Ran Liu1, Guohua Xia1, Weiwei Wu1, Shuai Wang1, Jiahua Ding1, Chong Gao1, Jun Wang1, Wen Bao1, Lei Wang1, Liang Tian1, Huihui Song1, Xuemei Wang1,2 1Department of Hematology and Oncology, Key Medical Discipline, Jiangsu Province, Zhongda Hospital, and Faculty of Oncology, Medical School, Nanjing, 2State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia.Methods: Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet, with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance.Results: Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression.Conclusion: Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.Keywords: magnetic nanoparticles, daunorubicin, 5-bromotetrandrine, multidrug resistance, hyperthermia

  13. Tissue distribution of the multidrug resistance protein.

    OpenAIRE

    Flens, M. J.; Zaman, G. J.; Valk, P.; Izquierdo, M. A.; Schroeijers, A. B.; Scheffer, G. L.; Groep, P.; Haas, M.; Meijer, C. J.; Scheper, R. J.

    1996-01-01

    The human multidrug resistance protein (MRP) is a 190 kd membrane glycoprotein that can cause resistance of human tumor cells to various anticancer drugs, by extruding these drugs out of the cell. Three different monoclonal antibodies, directed against different domains of MRP, allowed us to determine the localization of MRP in a panel of normal human tissues and malignant tumors. Whereas in malignant tumors strong plasma membrane MRP staining was frequently observed, in normal human tissues ...

  14. Overcoming of P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cells could be induced by pentoxifylline but not by theophylline and caffeine

    International Nuclear Information System (INIS)

    Effects of xanthine derivatives (pentoxifylline (PTX), caffeine, theophylline, 1-methyl-3-isobutylxanthine) on P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cell sub-line were studied. From the applied xanthines only PTX was found to reverse the vincristine resistance of the above cells. Moreover, only PTX, but not other xanthine, increased the accumulation of [3H]vincristine by L1210/VCR cells. Thus it may be concluded that PTX-induced reversal of vincristine (VCR) resistance could not be explained from the point of known pharmacological effects of PTX that are common for other xanthines such as inhibition of phosphodiesterase activity, calcium mobilizing effect, inhibition of tumor necrosis factor ? (TNF), etc. (author)

  15. Study of tea polyphenol as a reversal agent for carcinoma cell lines' multidrug resistance (study of TP as a MDR reversal agent)

    International Nuclear Information System (INIS)

    The aim of this study was to examine MDR1 expression product P-glycoprotein (Pgp) and study the effect and mechanism of tea polyphenol (TP) in reversion of multidrug resistance (MDR) in carcinoma cell lines. Immunocytochemical method was used for qualitative detection of Pgp. A comparative study of cytotoxicity and multidrug resistance reversion effect was made by MTT assay for tea polyphenol and quinidine in MCF-7 and MCF-7/Adr cell lines. The multidrug resistance reversion effect and mechanism were studied by measuring the uptake of 99mTc-tetrofosmin in the carcinoma cell lines. (1) The Pgp overexpression in MCF-7/Adr cells was found to be strong positive, while the Pgp expression of MCF-7 was negative. (2) Although both tea polyphenol and quinidine could not remarkably change the toxicity of adriamycin to MCF-7, they could improve the sensitivity of MCF-7/Adr to adriamycin. The reversion index of tea polyphenol and quinidine was 3 and 10 respectively. (3) The cellular uptake of 99mTc-tetrofosmin was remarkably lower in MCF-7/Adr than in MCF-7. The uptake of 99mTc-tetrofosmin in MCF-7/Adr exhibited a 4, 13, 16 fold increase in the presence of 200, 400 and 500 ?g/ml of tea polyphenol respectively. The uptake of 99mTc-tetrofosmin in MCF-7/Adr exhibited only a 4-fold increase in the presence of 200 ?M of quinidine. Immunocytochemistry can detect P-glycoprotein expression level qualitatively. Tea polyphenol is not only an antively. Tea polyphenol is not only an anti-tumor agent, but also a multidrug resistant modulator similar to quinidine. The multidrug resistance reversion mechanism of tea polyphenol seems to be its inhibition of the activity of P-glycoprotein. Tea polyphenol has the advantage of very low toxicity in tumor treatment

  16. Effect of multidrug resistance modulators on the activity of ivermectin and moxidectin against selected strains of Haemonchus contortus infective larvae Efeito de drogas moduladoras da resistência múltipla na atividade da ivermectina e moxidectina contra larvas infectantes selecionadas de Haemonchus contortus

    OpenAIRE

    Molento, Marcelo B.; Prichard, Roger K.

    2001-01-01

    Nematode parasites have shown resistance to the anthelmintics, ivermectin and moxidectin, and there is evidence that the over-expression of parasite P-glycoprotein (P-gp) may account, at least in part, for resistance to ivermectin. The objective of this study was to evaluate whether the multidrug resistance (MDR) modulators, verapamil, CL 347.099 (an analog of verapamil) and cyclosporin A, would enhance the efficacy of ivermectin and moxidectin against selected strains of Haemonchus contortus...

  17. Facing multi-drug resistant tuberculosis.

    Science.gov (United States)

    Sotgiu, Giovanni; Migliori, Giovanni Battista

    2015-06-01

    Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains resistant to at least two of the most effective anti-tuberculosis drugs (i.e., isoniazid and rifampicin). Therapeutic regimens based on second- and third-line anti-tuberculosis medicines showed poor efficacy, safety, and tolerability profiles. It was estimated that in 2012 the multi-drug resistant tuberculosis incidence ranged from 300,000 to 600,000 cases, mainly diagnosed in the Eastern European and Central Asian countries. The highest proportion of cases is among individuals previously exposed to anti-tuberculosis drugs. Three main conditions can favour the emergence and spread of multi-drug resistant tuberculosis: the poor implementation of the DOTS strategy, the shortage or the poor quality of the anti-tuberculosis drugs, and the poor therapeutic adherence of the patients to the prescribed regimens. Consultation with tuberculosis experts (e.g., consilium) is crucial to tailor the best anti-tuberculosis therapy. New therapeutic options are necessary: bedaquiline and delamanid seem promising drugs; in particular, during the development phase they demonstrated a protective effect against the emergence of further resistances towards the backbone drugs. In the recent past, other antibiotics have been administered off-label: the most relevant efficacy, safety, and tolerability profile was proved in linezolid-, meropenem/clavulanate-, cotrimoxazole-containing regimens. New research and development activities are needed in the diagnostic, therapeutic, preventive fields. PMID:24792579

  18. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    OpenAIRE

    Wei Xu; Yuyang Jiang; Xuyu Zu; Shengnan He; Zhenhua Xie; Feng Liu

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of...

  19. Synthesis of poly[N-(2-hydroxypropyl)methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro.

    Czech Academy of Sciences Publication Activity Database

    Šubr, Vladimír; Sivák, Ladislav; Koziolová, Eva; Braunová, Alena; Pechar, Michal; Strohalm, Ji?í; Kabešová, Martina; ?íhová, Blanka; Ulbrich, Karel; Ková?, Marek

    2014-01-01

    Ro?. 15, ?. 8 (2014), s. 3030-3043. ISSN 1525-7797 R&D Projects: GA ?R GAP301/12/1254; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : N-(2-hydroxypropyl)methacrylamide copolymers * multidrug resistance * P-glycoprotein inhibitors Subject RIV: CD - Macromolecular Chemistry; FD - Oncology ; Hematology (MBU-M) Impact factor: 5.788, year: 2013

  20. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Directory of Open Access Journals (Sweden)

    Deep Pokharel

    2014-08-01

    Full Text Available Cancer multidrug resistance (MDR occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp, transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS, in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM; and cytoskeleton motor proteins within the MP cargo.

  1. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Science.gov (United States)

    Pokharel, Deep; Padula, Matthew P.; Lu, Jamie F.; Tacchi, Jessica L.; Luk, Frederick; Djordjevic, Steven P.; Bebawy, Mary

    2014-01-01

    Cancer multidrug resistance (MDR) occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs) and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp), transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS), in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM); and cytoskeleton motor proteins within the MP cargo. PMID:25206959

  2. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells.

    Science.gov (United States)

    Figueroa-González, Gabriela; Jacobo-Herrera, Nadia; Zentella-Dehesa, Alejandro; Pereda-Miranda, Rogelio

    2012-01-27

    Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 ?g/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 ?g/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy. PMID:22148475

  3. Chromosomal Instability Confers Intrinsic Multidrug Resistance

    DEFF Research Database (Denmark)

    Lee, Alvin J. X.; Endesfelder, David

    2011-01-01

    Aneuploidy is associated with poor prognosis in solid tumors. Spontaneous chromosome missegregation events in aneuploid cells promote chromosomal instability (CIN) that may contribute to the acquisition of multidrug resistance in vitro and heighten risk for tumor relapse in animal models. Identification of distinct therapeutic agents that target tumor karyotypic complexity has important clinical implications. To identify distinct therapeutic approaches to specifically limit the growth of CIN tumors, we focused on a panel of colorectal cancer (CRC) cell lines, previously classified as either chromosomally unstable (CIN+) or diploid/near-diploid (CIN-), and treated them individually with a library of kinase inhibitors targeting components of signal transduction, cell cycle, and transmembrane receptor signaling pathways. CIN+ cell lines displayed significant intrinsic multidrug resistance compared with CIN- cancer cell lines, and this seemed to be independent of somatic mutation status and proliferation rate. Confirming the association of CIN rather than ploidy status with multidrug resistance, tetraploid isogenic cells that had arisen from diploid cell lines displayed lower drug sensitivity than their diploid parental cells only with increasing chromosomal heterogeneity and isogenic cell line models of CIN+ displayed multidrug resistance relative to their CIN- parental cancer cell line derivatives. In a meta-analysis of CRC outcome following cytotoxic treatment, CIN+ predicted worse progression-free or disease-free survival relative to patients with CIN- disease. Our results suggest that stratifying tumor responses according to CIN status should be considered within the context of clinical trials to minimize the confounding effects of tumor CIN status on drug sensitivity. Cancer Res; 71(5); 1858-70. (c) 2011 AACR.

  4. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  5. Imaging and Targeted Therapy of Multidrug Resistance. Final Report

    International Nuclear Information System (INIS)

    One focus area of DOE Office of Science was the Imaging of Gene Expression in Health and Disease in real time in tissue culture, whole animals and ultimately patients. Investigators of the Molecular Imaging Group, Washington University Medical School, ascribed to this objective and a major focus of this group directly tied into the DOE program through their efforts targeting the multidrug resistance gene (MDR1). Our plans for continuation of the program were to extend and build on this line of investigation, incorporating new molecular tools into our methodology to selectively inhibit MDR1 gene expression with novel modulation strategies. Two approaches were to be pursued: (1) high throughput screening of compounds that disrupted mutant p53 transactivation of the MDR1 promoter, and (2) knockdown of MDR1 messenger RNA with retroviral-mediated delivery of small interfering RNA constructs. These would be combined with our continuing effort to synthesize ligands and examine structure-activity relationships of bis-salicylaldehydes labeled with gallium-68 to generate PET agents for imaging MDR1 P-glycoprotein function. We would be uniquely positioned to correlate therapeutic modulation of MDR1 gene expression and protein function in the same systems in vivo using PET and bioluminescence reporters. Use of animal models such as the mdr1a/1b(-/-) gene deleted mice would also have enabled refined analysis of modulation and tracer pharmacokinetics in vivo. Overall, this DOE program and resultant tools would enable direct monitoring of novel therapeutic strategies and the MDR phenotype in relation to gene expression and protein function in vivo.

  6. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    Science.gov (United States)

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-?B (NF-?B) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-?B activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-? stimulated NF-?B activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-?B inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-?B activation, and may become useful to enhance the efficacy of cancer chemotherapy. PMID:25776492

  7. Study of multidrug resistance and radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance.

  8. Study of multidrug resistance and radioresistance

    International Nuclear Information System (INIS)

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance

  9. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux.

    Science.gov (United States)

    Loo, T W; Clarke, D M

    2005-08-01

    P-glycoprotein (P-gp) is an ATP-dependent drug pump that can transport a broad range of hydrophobic compounds out of the cell. The protein is clinically important because of its contribution to the phenomenon of multidrug resistance during AIDS/HIV and cancer chemotherapy. P-gp is a member of the ATP-binding cassette (ABC) family of proteins. It is a single polypeptide that contains two repeats joined by a linker region. Each repeat has a transmembrane domain consisting of six transmembrane segments followed by a hydrophilic domain containing the nucleotide-binding domain. In this mini-review, we discuss recent progress in determining the structure and mechanism of human P-glycoprotein. PMID:16456713

  10. Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines

    Directory of Open Access Journals (Sweden)

    Lin Ge

    2010-07-01

    Full Text Available Abstract Multi-drug resistance (MDR of cancer cells severely limits therapeutic outcomes. A proposed mechanism for MDR involves the efflux of anti-cancer drugs from cancer cells, primarily mediated by ATP-binding cassette (ABC membrane transporters including P-glycoprotein. This article reviews the recent progress of using active ingredients, extracts and formulae from Chinese medicine (CM in circumventing ABC transporters-mediated MDR. Among the ABC transporters, Pgp is the most extensively studied for its role in MDR reversal effects. While other MDR reversal mechanisms remain unclear, Pgp inhibition is a criterion for further mechanistic study. More mechanistic studies are needed to fully establish the pharmacological effects of potential MDR reversing agents.

  11. Role of p-glycoprotein expression in predicting response to neoadjuvant chemotherapy in breast cancer-a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Bhatia Ashima

    2005-09-01

    Full Text Available Abstract Background Neoadjuvant chemotherapy (NACT is an integral part of multi-modality approach in the management of locally advanced breast cancer. It is vital to predict response to chemotherapy in order to tailor the regime for a particular patient. The prediction would help in avoiding the toxicity induced by an ineffective chemotherapeutic regime in a non-responder and would also help in the planning of an alternate regime. Development of resistance to chemotherapeutic agents is a major problem and one of the mechanisms considered responsible is the expression of 170-k Da membrane glycoprotein (usually referred to as p-170 or p-glycoprotein, which is encoded by multidrug resistance (MDR1 gene. This glycoprotein acts as an energy dependent pump, which actively extrudes certain families of chemotherapeutic agents from the cells. The expression of p-glycoprotein at initial presentation has been found to be associated with refractoriness to chemotherapy and a poor outcome. Against this background a prospective study was conducted using C219 mouse monoclonal antibody specific for p-glycoprotein to ascertain whether pretreatment detection of p-glycoprotein expression could be utilized as a reliable predictor of response to neoadjuvant chemotherapy in patients with breast cancer. Patients and methods Fifty cases of locally advanced breast cancer were subjected to trucut® biopsy and the tissue samples were evaluated immunohistochemically for p-glycoprotein expression and ER, PR status. The response to neoadjuvant chemotherapy was assessed clinically and by using ultrasound after three cycles of FAC regime (cyclophosphamide 600 mg/m2, Adriamycin 50 mg/m2, 5-fluorourail 600 mg/m2 at an interval of three weeks. The clinical response was correlated with both the pre and post chemotherapy p-glycoprotein expression. Descriptive studies were performed with SPSS version 10. The significance of correlation between tumor response and p-glycoprotein expression was determined with chi square test. Results A significant relationship was found between the pretreatment p-glycoprotein expression and clinical response. The positive p-glycoprotein expression was associated with poor clinical response rates. When the clinical response was correlated with p-glycoprotein expression, a statistically significant negative correlation was observed between the clinical response and p- glycoprotein expression (p Conclusion The study concluded that pretreatment p-glycoprotein expression predicts and indicates a poor clinical response to NACT. Patients with positive p-glycoprotein expression before initiation of NACT were found to be poor responders. Thus pretreatment detection of p-glycoprotein expression may be utilized, as a reliable predictor of response to NACT in patients with breast cancer The chemotherapy induced p-glycoprotein positivity observed in the study could possibly explain the phenomenon of acquired chemoresistance and may also serve as an intermediate end point in evaluating drug response particularly if the adjuvant therapy is planned with the same regime.

  12. Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood-brain barrier.

    Science.gov (United States)

    Bihorel, Sébastien; Camenisch, Gian; Lemaire, Michel; Scherrmann, Jean-Michel

    2007-09-01

    Imatinib, a protein tyrosine kinase inhibitor, may prevent the growth of glioblastoma cells. Unfortunately, its brain distribution is restricted by p-glycoprotein (p-gp or multidrug resistance protein Mdr1a), and probably by breast cancer resistance protein (Bcrp1), two efflux pumps expressed at the blood-brain barrier (BBB). We have used in situ brain perfusion to investigate the mechanisms of imatinib transport across the mouse BBB. The brain uptake of imatinib in wild-type mice was limited by saturable efflux processes. The inhibition of p-gp, by valspodar and zosuquidar, increased imatinib uptake (2.5-fold), as did the deficiency of p-gp in Mdr1a/1b(-/-) mice (5.5-fold). Perfusing imatinib with the p-gp/Bcrp1 inhibitor, elacridar, enhanced the brain uptake of imatinib in wild-type (4.1-fold) and Mdr1a/1b(-/-) mice (1.2-fold). However, the brain uptake of imatinib was similar in wild-type and Bcrp1(-/-) mice when it was perfused at a non-saturating concentration. The brain uptake of CGP74588, an active metabolite of imatinib, was low. It was increased by perfusion with elacridar (twofold), but not with valspodar and zosuquidar. CGP74588 uptake was 1.5 times greater in Bcrp1(-/-) mice than in wild-type mice. These data suggest that imatinib transport at the mouse BBB is limited by p-gp and probably by Bcrp1, and that CGP74588 transport is restricted by Bcrp1. PMID:17696988

  13. Comparison of an immunoperoxidase "sandwich" staining method and western blot detection of P-glycoprotein in human cell lines and sarcomas.

    OpenAIRE

    To?th, K.; Vaughan, M. M.; Slocum, H. K.; Fredericks, W. J.; Chen, Y. F.; Arredondo, M. A.; Harstrick, A.; Karakousis, C.; Baker, R. M.; Rustum, Y. M.

    1992-01-01

    The applicability of a multilayer immunoperoxidase "sandwich" method (IpS) developed by Chan14 for the amplified detection of P-glycoprotein (Pgp) was investigated. The authors examined 15 formalin-fixed cell lines, as well as formalin-fixed, paraffin-embedded sections from single biopsies of 46 sarcomas. The cell lines included sensitive and multidrug resistant sublines (KB, A2780, MCF-7, HeLa) with various relative degrees of resistance to doxorubicin (Dox). The sarcoma biopsy specimens wer...

  14. Yeast ABC proteins involved in multidrug resistance.

    Science.gov (United States)

    Piecuch, Agata; Ob??k, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects. PMID:24297686

  15. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    OpenAIRE

    Yaqiong Zu; Zhiyong Yang; Songshan Tang; Ying Han; Jun Ma

    2014-01-01

    P-glycoprotein (P-gp) is a major factor in multidrug resistance (MDR) which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+) and K562/S cells (P-gp?) were subjected to doxorubicin (Dox), serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833), ...

  16. Structure of P-glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding

    OpenAIRE

    Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey

    2009-01-01

    P-glycoprotein (Pgp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance in the treatment of cancers. Substrate promiscuity is a hallmark of Pgp activity, thus a structural description of polyspecific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo-Pgp at 3.8 Å reveals an internal cavity of ?6,000 Å3 with a 30 Å separation of the two nucleotide binding do...

  17. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer

    Directory of Open Access Journals (Sweden)

    Hussain MD

    2012-02-01

    Full Text Available Vipin Saxena, M Delwar HussainDepartment of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USABackground: Delivery of a high concentration of anticancer drugs specifically to cancer cells remains the biggest challenge for the treatment of multidrug-resistant cancer. Poloxamers and D-?-Tocopheryl polyethylene glycol 1000 succinate (TPGS are known inhibitors of P-glycoprotein (P-gp. Mixed micelles prepared from Poloxamer 407 and TPGS may increase the therapeutic efficacy of the drug by delivering high concentrations inside the cells and inhibiting P-gp. Gambogic acid (GA is a naturally derived novel anticancer agent, but poor solubility and toxic side effects limit its use. In this study, we have developed Poloxamer 407 and TPGS mixed micelle-encapsulating GA for the treatment of breast and multidrug-resistant cancer.Methods: GA-loaded Poloxamer 407/TPGS mixed micelles were prepared using a thin film hydration method, and their physicochemical properties were characterized. Cellular accumulation and cytotoxicity of the GA-loaded Poloxamer 407/TPGS mixed micelles were studied in breast cancer cells, MCF-7 cells, and multidrug-resistant NCI/ADR-RES cells.Results: The diameter of GA-loaded Poloxamer 407/TPGS mixed micelles was about 17.4 ± 0.5 nm and the zeta potential -13.57 mV. The entrapment efficiency of GA was 93.1% ± 0.5% and drug loading was about 9.38% ± 0.29%. Differential scanning calorimetry and X-ray powder diffraction studies confirmed that GA is encapsulated by the polymers. The in vitro release studies showed that mixed micelles sustained the release of GA for more than 4 days. Results from cellular uptake studies indicated that GA-loaded Poloxamer 407/TPGS mixed micelles had increased cellular uptake of GA in NCI/ADR-RES cells. Cytotoxicity of GA-loaded Poloxamer 407/TPGS mixed micelles was found to be 2.9 times higher in multidrug-resistant NCI/ADR-RES cells, and 1.6 times higher in MCF-7 cells, as compared with unencapsulated GA.Conclusion: This study suggests that Poloxamer 407/TPGS mixed micelles can be used as a delivery system for GA to treat breast and multidrug-resistant cancer.Keywords: gambogic acid, Poloxamer 407, TPGS, P-glycoprotein, multidrug resistance, breast cancer

  18. Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Xin; Wang, Chunyan; Zhang, Longjiang; Li, Yanjun; Wang, Shouju; Wang, Jiandong; Yuan, Caiyun; Niu, Jia; Wang, Chengsheng; Lu, Guangming

    2015-02-01

    Multidrug resistance (MDR) is a major cause for incurable breast cancer. Salvianolic acid A (SAA), the hydrophilic polyphenolic derivative of Salvia miltiorrhiza Bunge (Danshen/Red Sage), was examined for cytotoxicities to MDR MCF-7 human breast cancer cells and their parental counterparts. We have shown that SAA inhibited proliferation, caused cell cycle arrest at the S phase, and induced apoptosis dose dependently to the two kinds of cancer cells. However, the resistant cells were significantly susceptible to the inhibition of SAA compared with the parental cells. SAA increased the level of reactive oxygen species (ROS) by 6.2-fold in the resistant cells, whereas the level of SAA-induced ROS changed only by 1.6-fold in their parental counterparts. Thus, the data showed that the selective cytotoxicity resulted from the hypersensitivity of the resistant cells to the strongly elevated ROS by SAA. In addition, SAA-triggered apoptosis was associated with increased caspase-3 activity, disrupted mitochondrial membrane potential, downregulated Bcl-2 expression, and upregulated Bax expression in the resistant cells. Moreover, SAA downregulated the level of P-glycoprotein, which was overexpressed in the resistant cells. This indicated that SAA modulated MDR. Furthermore, SAA showed higher antitumor activity than did doxorubicin in xenografts established from the resistant cells. The present work raised a possibility that SAA might be considered a potential choice to overcome MDR for the selective susceptibility of the resistant breast cancer cells to SAA treatment. PMID:25419632

  19. Correlation between uptake of 99TcM-MIBI and multidrug resistant proteins of breast cancer

    International Nuclear Information System (INIS)

    Objectives: To assess the correlation between 99Tcm-MIBI uptake and the expression level of multidrug resistant proteins of breast cancer. Methods: Thirty patients with infiltrating ductal carcinoma were enrolled in this study. 99Tcm-MIBI scintigraphy were performed at 15 min and 90 min after injecting the tracer. The uptake of 99Tcm-MIBI were evaluated as tumor over background ratio with region of interest technique. Such indexes as early uptake ratio (EUR), delay uptake ratio (DUR) and retention index (RI) were calculated respectively. P-gp (P-glycoprotein) and MRP (multidrug resistant-associated protein) expression in surgically resected tumors were investigated by immunohistochemistry. Immunohistochemistry HPIAS-1000 image analysis system was used to determined the level of P-gp and MRP expression. The difference of P-gp and MRP level in the group with RI ? 0 and the group with RI99Tcm-MIBI on delayed scans in breast cancer. The uptake of 99Tcm-MIBI may be not related to the levels of MRP expression. Thus 99Tcm-MIBI scintigraphy may predict the MDR development which associated with P-gp expression in breast carcinoma. (authors)

  20. From MDR to MXR : new understanding of multidrug resistance systems, their properties and clinical significance

    DEFF Research Database (Denmark)

    Litman, Thomas; Druley, T E

    2001-01-01

    The ATP binding cassette (ABC) superfamily of membrane transporters is one of the largest protein classes known, and counts numerous proteins involved in the trafficking of biological molecules across cell membranes. The first known human ABC transporter was P-glycoprotein (P-gp), which confers multidrug resistance (MDR) to anticancer drugs. In recent years, we have obtained an increased understanding of the mechanism of action of P-gp as its ATPase activity, substrate specificity and pharmacokinetic interactions have been investigated. This review focuses on the functional characterization of P-gp, as well as other ABC transporters involved in MDR: the family of multidrug-resistance-associated proteins (MRP1-7), and the recently discovered ABC half-transporter MXR (also known as BCRP, ABCP and ABCG2). We describe recent progress in the analysis of protein structure-function relationships, and consider the conceptual problem of defining and identifying substrates and inhibitors of MDR. An in-depth discussion follows of how coupling of nucleotide hydrolysis to substrate transport takes place, and we propose a scheme for the mechanism of P-gp function. Finally, the clinical correlations, both for reversal of MDR in cancer and for drug delivery, are discussed.

  1. Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and -susceptible isolates of Haemonchus contortus to anthelmintics in vitro.

    Science.gov (United States)

    Raza, Ali; Kopp, Steven R; Jabbar, Abdul; Kotze, Andrew C

    2015-06-30

    P-glycoproteins (P-gps) play an important role in the sensitivity of nematodes to anthelmintic drugs. They have been implicated in a number of anthelmintic resistances, particularly for macrocyclic lactone drugs. Hence, inhibition of nematode P-gps has been suggested as a means of reversing some types of anthelmintic resistance. The present study aimed to investigate the ability of the most-recently developed group of P-gp inhibitors (the so-called 'third generation' of inhibitors) including tariquidar, zosuquidar and elacridar, to increase the sensitivity of Haemonchus contortus larvae to various anthelmintics (ivermectin, levamisole and thiabendazole) in vitro. We compared these compounds to some older P-gp inhibitors (e.g. verapamil and valspodar). Larval migration and development assays were used to measure the sensitivity of larvae to anthelmintics alone, or in combination with P-gp inhibitors. Significant increases in sensitivity to ivermectin were observed with zosuquidar and tariquidar in larval migration assays (synergism ratios up to 6-fold). Several of the inhibitors increased the sensitivity of both the drug-resistant and -susceptible isolates (e.g. tariquidar with ivermectin in migration assays, zosuquidar with ivermectin in larval development assays), while others had significant effects on the resistant isolate only (e.g. zosuquidar with ivermectin in migration assays, verapamil with ivermectin in development assays). This suggests that some of the inhibitors interact with P-gps representing intrinsic pathways present across nematode populations with quite different drug sensitivities, while other inhibitors interact with P-gps of significance only to resistant nematodes, and hence most likely representing an acquired resistance mechanism. The study highlights the potential of the third generation of P-gp inhibitors for increasing the sensitivity of nematodes to anthelmintics. PMID:25986327

  2. Expression and clinical significance of multidrug resistance proteins in brain tumors

    Directory of Open Access Journals (Sweden)

    Guo Zhenhua

    2010-09-01

    Full Text Available Abstract Background To investigate the mechanisms of multidrug resistance of brain tumors, to identify the site of cellular expression of P-gp in human brains in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1. Methods Immunohistochemistry was used to detect the expression and location of P-glycoprotein (P-gp, Multidrug resistance-associated protein (MDR, Lung resistance-related protein (LRP, Topoisomerase II (Topo II and Glutathione-S-? (GST-? in 30 patient tumor tissues and 5 normal brain tissues. The sections were subjected to double labeling for P-gp (TRITC labeled and caveolin-1 (FITC labeled. The location and characteristics of expression of the two proteins in the blood brain barrier(BBB was observed using a laser scanning microscope. Results High expression of P-gp was detected in vessel walls and the tissue surrounding the vessels. However, expression of P-gp was low in tumor cells. The expression of the other 4 multidrug resistance proteins was not observed in the vessel walls. Laser scanning microscopy showed P-gp and caveolin-1 co-expression: the two proteins co-localized either in the luminal endothelial compartment or at the border of the luminal/abluminal compartments. Conclusion Chemotherapeutics drugs are interrupted in the end-feet of neuroepithelial cells of the BBB by P-gp, which weakens the chemotherapeutic effect. P-gp marks the BBB, and the transporter is localized in the luminal endothelial compartment where it co-localizes with caveolin-1.

  3. Genome Sequence of Multidrug-Resistant Pseudomonas aeruginosa NCGM1179

    OpenAIRE

    Tada, Tatsuya; Kitao, Tomoe; Miyoshi-akiyama, Tohru; Kirikae, Teruo

    2011-01-01

    We report the annotated genome sequence of multidrug-resistant Pseudomonas aeruginosa strain NCGM1179, which is highly resistant to carbapenems, aminoglycosides, and fluoroquinolones and is emerging at medical facilities in Japan.

  4. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin

    OpenAIRE

    Buda, G.; Ricci, D.; Huang, C.C.; Favis, R.; Cohen, N.; Zhuang, S.H.; Harousseau, J-L.; Sonneveld, P.; Bladé, J.; Orlowski, R.Z.

    2010-01-01

    Single nucleotide polymorphisms (SNPs) in the multiple drug resistance protein 1 (MRP1) and P-glycoprotein 1 (MDR1) genes modulate their ability to mediate drug resistance. We therefore sought to retrospectively evaluate their influence on outcomes in relapsed and/or refractory myeloma patients treated with bortezomib or bortezomib with pegylated liposomal doxorubicin (PLD). The MRP1/R723Q polymorphism was found in five subjects among the 279 patient study population, all of whom received PLD...

  5. Comparison of 99mTc-Tetrofosmin and 99mTc-Sestamibi Uptake in Glioma Cell Lines: The Role of P-Glycoprotein Expression

    OpenAIRE

    George A Alexiou; Xanthi Xourgia; Evrysthenis Vartholomatos; Spyridon Tsiouris; John A. Kalef-Ezra; Fotopoulos, Andreas D.; Kyritsis, Athanasios P.

    2014-01-01

    99mTc-Tetrofosmin (99mTc-TF) and 99mTc-Sestamibi (99mTc-MIBI) are SPECT tracers that have been used for brain tumor imaging. Tumor's multidrug resistance phenotype, namely, P-glycoprotein (p-gp), and the multidrug resistance related proteins (MRPs) expression have been suggested to influence both tracers' uptake. In the present study we set out to compare 99mTc-TF and 99mTc-MIBI uptake in high-grade glioma cell lines and to investigate the influence of gliomas p-gp expression on both tracers'...

  6. Lobeline, a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells.

    Science.gov (United States)

    Ma, Yonggang; Wink, Michael

    2008-09-01

    Multidrug resistance (MDR) can limit efficacy of chemotherapy. The best studied mechanism involves P-gp (P-glycoprotein) mediated drug efflux. This study focuses on MDR reversal agents from medicinal plants, which can interfere with P-gp. Rhodamine 123 accumulation assay and flow cytometry analysis were employed to screen for P-gp dependant efflux inhibitors. Lobeline, a piperidine alkaloid from Lobelia inflata and several other Lobelia species, inhibited P-gp activity. MDR reversal potential of lobeline could be demonstrated in cells treated with doxorubicin in that lobeline can sensitize resistant tumor cells at non-toxic concentrations. However, lobeline cannot block BCRP (Breast Cancer Resistance Protein) dependent mitoxantrone efflux. Lobeline could be a good candidate for the development of new MDR reversal agents. PMID:18222670

  7. Up-regulation of P-glycoprotein confers acquired resistance to 6-mercaptopurine in human chronic myeloid leukemia cells

    OpenAIRE

    Peng, Xing-Xiang; SHI, ZHI; Tiwari, Amit K.; Damaraju, Vijaya L.; Fu, Liwu; Cass, Carol E.; ASHBY, CHARLES R.; Kruh, Gary D.; CHEN, ZHE-SHENG

    2011-01-01

    To investigate the mechanisms of cellular resistance to 6-mercaptopurine (6-MP) in chronic myeloid leukemia (CML), a 6-MP resistant cell line (K562-MP5) was established by stepwise selection of the CML cell line (K562). The results of the drug sensitivity analysis of the K562-MP5 cell line revealed the cells to be 339-fold more resistant to 6-MP compared with the parental K562 cells. K562-MP5 cells exhibited decreased accumulation and increased efflux of [14C]6-MP and its metabolites. In addi...

  8. Design real-time reversal of tumor multidrug resistance cleverly with shortened carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Wu P

    2014-12-01

    Full Text Available Pingping Wu,1 Shang Li,2 Haijun Zhang2 1Jiangsu Cancer Hospital, Nanjing, People’s Republic of China; 2Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of ChinaAbstract: Multidrug resistance (MDR in tumors renders many currently available chemotherapeutic drugs ineffective. Research in nanobiotechnology-based therapeutic alternatives has provided innovative and promising strategies to overcome MDR. The aim of this study was to investigate whether the new strategy of a co-loaded reversal agent and chemotherapeutic drug with shortened carbon nanotubes (CNTs would show useful effects on the real-time reversal of tumor MDR. CNTs were cut and purified via ultrasonication and oxidative acid treatment to optimize their length for drug-delivery vehicles, then verapamil (Ver and doxorubicin (Dox were co-loaded on shortened CNTs (denoted as Ver/Dox/shortened CNTs, which acted as a drug delivery system. The multidrug resistant leukemia K562/A02 cells were treated with the denoted Ver/Dox/shortened CNTs. The real-time reversal of tumor MDR were evaluated by flow cytometer, 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays, acridine orange/ethidium bromide staining, and Western blot analysis. In the same MDR tumor cells the new strategy of a co-loaded reversal agent and chemotherapeutic drug with CNTs could inhibit the function of P-glycoprotein in real-time by Ver as reversal agent, significantly increase the uptake of Dox, enhance the sensitivity of the MDR cancer cells to the chemotherapeutic agent, and induce apoptosis. It was therefore concluded that a co-loaded reversal agent and chemotherapeutic drug with shortened CNTs could have real-time reversal ability of MDR in tumors, which could represent a promising approach in cancer therapy.Keywords: multidrug resistance, carbon nanotubes, drug delivery system, tumor

  9. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  10. Multidrug-resistant tuberculosis in pregnancy

    International Nuclear Information System (INIS)

    This is a case report of 26 years old pregnant woman with multidrug-resistant tuberculosis (MDR TB), treated at outpatient department of New Delhi Tuberculosis (NDTB) Centre, India with second line agents. Before presentation at NDTB Centre, she had been treated with first line drugs for approximately one and-a-half-year, including category II re-treatment DOTS regimen under RNTCP. Patient conceived twice during her anti-TB treatment. The first one was during her category II treatment, when put on second line drugs. We describe congenital abnormalities documented in her second child exposed in-utero to second line anti-tubercular drugs with a brief review of treatment of MDR TB in pregnancy. (author)

  11. Successful treatment of multidrug resistant Acinetobacter baumannii meningitis

    OpenAIRE

    Acinetobacter Baumannii, Post-surgical Meningitis

    2007-01-01

    Background: Acinetobacter baumannii is a major cause of nosocomial infections in many hospitals and appears to have a propensity for developing multiple antimicrobial resistance rapidly.Cases: We report two cases with post-surgical meningitis due to multidrug resistant A. baumannii which were successfully treated with high-dose intravenous meropenem therapy.Conclusions: Multidrug resistant Acinetobacter spp. in intensive care units are a growing concern. High-dose meropenem is used in the tre...

  12. Multi-drug resistance gene (MDR1) and opioid analgesia in horses Gene de resistência múltipla aos fármacos e analgesia opióide em eqüinos

    OpenAIRE

    Cláudio Corrêa Natalini; Anderson Fávaro da Cunha; Renata Lehn Linardi

    2006-01-01

    Opioid absorption in the intestinal tract as well as its effects in the central nervous system is modulated by the P-glycoprotein (P-gp) encoded in the Multi-drug Resistance gene (MDR1) also named ATP-binding cassete, subfamily B, member 1 (ABCB1). This MDR1 gene acts as a selective pump. The expression of this protein in humans and rodents inhibits cellular uptake of substrate opioids. The presence of the intestinal iso-enzyme CYP3A4 associated with MDR1 gene decreases the opioid analgesic a...

  13. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of 11C-labeled topotecan using small-animal positron emission tomography

    International Nuclear Information System (INIS)

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [11C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [11C]TPT using small-animal PET. Methods: [11C]TPT was synthesized by the reaction of a desmethyl precursor with [11C]CH3I. In vitro study using [11C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [11C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [11C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b-/-Bcrp1-/- mice, PET results indicated that the brain uptake of [11C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [11C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after t was maintained at a certain level after the injection of [11C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [11C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  14. Drug resistance pattern in multidrug resistance pulmonary tuberculosis patients

    International Nuclear Information System (INIS)

    To evaluate the frequency of drug resistance profiles of multidrug resistant tuberculosis (MDR-TB) isolates of pulmonary tuberculosis patients, against both the first and the second line drugs. Study Design: An observational study. Place and Duration of Study: The multidrug resistant tuberculosis (MDR-TB) ward of Ojha Institute of Chest Diseases (OICD), Karachi, from 1996 to 2006. Methodology: Culture proven MDR-TB cases (resistant to both isoniazid and Rifampicin) were retrospectively reviewed. Susceptibility testing was performed at the clinical laboratory of the Aga Khan University. Sensitivity against both first and second line anti-tuberculosis drugs was done. Susceptibility testing was performed using Agar proportion method on enriched middle brook 7H10 medium (BBL) for Rifampicin, Isoniazid, Streptomycin, Ethambutol, Ethionamide, Capreomycin and Ciprofloxacin. Pyrazinamide sensitivity was carried out using the BACTEC 7H12 medium. During the study period MTB H37Rv was used as control. Results: Out of total 577 patients, all were resistant to both Rifampicin and Isoniazid (INH). 56.5% isolates were resistant to all five first line drugs. Resistances against other first line drugs was 76.60% for Pyrazinamide, 73% for Ethambutol and 68.11% for Streptomycin. Five hundred and ten (88%) cases were MDR plus resistant to one more first line drug. Forty (07%) isolates were MDR plus Quinolone-resistant. They were sensitive to Capreomycin but sensitivity against Amikacin aeomycin but sensitivity against Amikacin and Kanamycin were not tested. Conclusion: There were high resistance rates in MDR-TB to remaining first line and second line drugs. Continuous monitoring of drug resistance pattern especially of MDR isolates and treatment in specialized centers is a crucial need for future TB control in Pakistan. (author)

  15. The Assembly Motif of a Bacterial Small Multidrug Resistance Protein*

    OpenAIRE

    Poulsen, Bradley E.; Rath, Arianna; Deber, Charles M.

    2009-01-01

    Multidrug transporters such as the small multidrug resistance (SMR) family of bacterial integral membrane proteins are capable of conferring clinically significant resistance to a variety of common therapeutics. As antiporter proteins of ?100 amino acids, SMRs must self-assemble into homo-oligomeric structures for efflux of drug molecules. Oligomerization centered at transmembrane helix four (TM4) has been implicated in SMR assembly, but the full complement of residu...

  16. Multidrug resistant yeasts in synanthropic wild birds

    Directory of Open Access Journals (Sweden)

    Somanath Sushela

    2010-03-01

    Full Text Available Abstract Background The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur. Methods Species characterisations of yeast isolates and determinations of antimycotic susceptibility profiles were undertaken using the commercial characterization kit, Integral System Yeasts Plus (Liofilchem, Italy. Results Fourteen species of yeasts were detected in the bird faecal samples.Candida albicans was present in 28.89% of bird faecal samples, Candida krusei (13.33%, Candida tropicalis (4.44%, Candida glabrata (4.44%, Candida parapsilosis (2.22%, Candida lambica (2.22%, Candida stellatoidea (2.22%, Candida rugosa (2.22% and Candida lusitaniae (2.22%. Amongst the non-candidal yeast isolates, Cryptococcus laurentii was present in 6.67% of bird faecal samples, Cryptococcus uniguttulatus (4.44%, Saccharomyces cerevisiae (4.44%, Trichosporon pullulans (2.22%, Trichosporon pullulans/Cryptococcus albidus (8.89% and Rhodotorula rubra/Rhodotorula glutinis (4.44%. Of the isolated yeasts, 18.1% (or 26/144 were found to be resistant to all 11 antimycotic agents they were tested against i.e. Nystatin, Amphotericin B, Flucytosine, Econazole, Ketoconazole, Clotrimazole, Miconazole, Itraconazole, Voriconazole, Fluconazole 16 and Fluconazole 64. 45.8% (or 66/144 of the bird faecal yeast isolates were resistant to four or more of the 11 antimycotic agents they were tested against. Conclusions This finding is of public health significance as these synanthropic wild birds may be reservoirs for transmission of drug resistant yeast infections to humans.

  17. Herbal modulation of P-glycoprotein.

    Science.gov (United States)

    Zhou, Shufeng; Lim, Lee Yong; Chowbay, Balram

    2004-02-01

    P-glycoprotein (Pgp) is a 170 kDa phosphorylated glycoprotein encoded by human MDR1 gene. It is responsible for the systemic disposition of numerous structurally and pharmacologically unrelated lipophilic and amphipathic drugs, carcinogens, toxins, and other xenobiotics in many organs, such as the intestine, liver, kidney, and brain. Like cytochrome P450s (CYP3A4), Pgp is vulnerable to inhibition, activation, or induction by herbal constituents. This was demonstrated by using an ATPase assay, purified Pgp protein or intact Pgp-expressing cells, and proper probe substrates and inhibitors. Curcumin, ginsenosides, piperine, some catechins from green tea, and silymarin from milk thistle were found to be inhibitors of Pgp, while some catechins from green tea increased Pgp-mediated drug transport by heterotropic allosteric mechanism, and St. John's wort induced the intestinal expression of Pgp in vitro and in vivo. Some components (e.g., bergamottin and quercetin) from grapefruit juice were reported to modulate Pgp activity. Many of these herbal constituents, in particular flavonoids, were reported to modulate Pgp by directly interacting with the vicinal ATP-binding site, the steroid-binding site, or the substrate-binding site. Some herbal constituents (e.g., hyperforin and kava) were shown to activate pregnane X receptor, an orphan nuclear receptor acting as a key regulator of MDR1 and many other genes. The inhibition of Pgp by herbal constituents may provide a novel approach for reversing multidrug resistance in tumor cells, whereas the stimulation of Pgp expression or activity has implication for chemoprotective enhancement by herbal medicines. Certain natural flavonols (e.g., kaempferol, quercetin, and galangin) are potent stimulators of the Pgp-mediated efflux of 7,12-dimethylbenz(a)-anthracene (a carcinogen). The modulation of Pgp activity and expression by these herb constituents may result in altered absorption and bioavailability of drugs that are Pgp substrates. This is exemplified by increased oral bioavailability of phenytoin and rifampin by piperine and decreased bioavailability of indinavir, tacrolimus, cyclosporine, digoxin, and fexofenadine by coadministered St. John's wort. However, many of these drugs are also substrates of CYP3A4. Thus, the modulation of intestinal Pgp and CYP3A4 represents an important mechanism for many clinically important herb-drug interactions. Further studies are needed to explore the relative role of Pgp and CYP3A4 modulation by herbs and the mechanism for the interplay of these two important proteins in herb-drug interactions. PMID:15072439

  18. Phorbol esters induce multidrug resistance in human breast cancer cells

    International Nuclear Information System (INIS)

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate [P(BtO)2] led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)2 further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)2 induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resie drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation

  19. Using 99Tcm-MIBI to evaluate tumor multidrug resistance and monitor the reversing of chemosensitizer

    International Nuclear Information System (INIS)

    Objective: To study the correlation between uptake of 99Tcm-methoxyisobutylisonitrile (MIBI) and multidrug-resistant P-glycoprotein (gp), and to evaluate the effect of chemosensitizer. Methods: Tumor bearing mice model was established by implanting human cancer cell line MCF-7/Adr, the model mice were randomized into two groups: chemosensitizer verapamil group and control group. Before and after giving verapamil, 99Tcm-MIBI imaging was performed at 15, 60, 90, 120 min, respectively. Mice of the control group were sacrificed after the pre-verapamil imaging, and mice of the verapamil group were sacrificed after the post-verapamil imaging to get %ID/g of tumor and major organs. The level of P-gp was measured with immunocytochemical assay and mRNA of mdr1 gene determined with RT-PCR was obtained simultaneously. Results: After giving verapamil the TPN ratio of tumor increased significantly except on 120 min imaging. 99Tcm-MIBI uptake difference between the verapamil group and control group was obvious (P=0.045, 0.015, 0.042, respectively). The expression of mdr1 mRNA decreased significantly after verapamil reversing (t=4.873, P=0.008). The level of P-gp declined from 0.1038 ± 0.0078 to 0.0096 ± 0.0059 (t=3.579, P=0.023). The 99Tcm-MIBI uptake of tumor, liver and kidney rose obviously after reversing, %ID/g increments were 106.83%, 40.35%, 166.07%, respectively whereas it was slightly %, respectively whereas it was slightly declined, -12.82%, in heart. Conclusion: 99Tcm-MIBI imaging may evaluate multidrug resistance (MDR) mediated by P-gp and be used to monitor the reversing effect of chemosensitizer in P-gp positive tumors

  20. Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity

    Directory of Open Access Journals (Sweden)

    Harati Rania

    2012-12-01

    Full Text Available Abstract Background P-glycoprotein (P-gp and breast cancer resistance protein (BCRP play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS and BBB drug efflux transporters differ in childhood from those of adults under normal and inflammatory conditions. Therefore, we examined and compared the regulation of P-gp and BCRP expression and transport activity in young and adult BBB and investigated the molecular mechanisms underlying inflammatory responses. Methods Rats at postnatal day (P P21 and P84, corresponding to the juvenile and adult stages of human brain maturation, respectively, were treated with endothelin-1 (ET-1 given by the intracerebroventricular (icv route. Twenty-four hours later, we measured P-gp and BCRP protein expression in isolated brain capillary by immunoblotting as well as by transport activity in vivo by measuring the unbound drug partitioning coefficient of the brain (Kp,uu,brain of known efflux transporter substrates administered intravenously. Glial activation was measured by immunohistochemistry. The release of cytokines/chemokines (interleukins-1?, 1-? (IL-1?, -6 (IL-6, -10 (IL-10, monocyte chemoattractant protein (MCP-1/CCL2, fractalkine and tissue inhibitor of metalloproteinases-1 (TIMP-1 were simultaneously measured in brain and serum samples using the Agilent Technology cytokine microarray. Results We found that juvenile and adult BBBs exhibited similar P-gp and BCRP transport activities in the normal physiological conditions. However, long-term exposure of the juvenile brain to low-dose of ET-1 did not change BBB P-gp transport activity but tended to decrease BCRP transport activity in the juvenile brain, while a significant increase of the activity of both transporters was evidenced at the BBB in the adult brain. Moreover, juvenile and adult brain showed differences in their expression profiles of cytokines and chemokines mediated by ET-1. Conclusions BBB transporter activity during neuroinflammation differs between the juvenile and adult brains. These findings emphasize the importance of considering differential P-gp and BCRP transport regulation mechanisms between adult and juvenile BBB in the context of neuroinflammation.

  1. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression

    OpenAIRE

    Bosia, Amalia; Pescarmona, Gianpiero; Ghigo, Dario Antonio; Miraglia, Erica; Doublier, Sophie; Riganti, Chiara

    2009-01-01

    BACKGROUND AND PURPOSE: Artemisinin is an antimalarial drug exerting pleiotropic effects, such as the inhibition of the transcription factor nuclear factor-kappa B and of the sarcoplasmic/endoplasmic reticulum Ca(++)-ATPase (SERCA) of P. falciparum. As the sesquiterpene lactone thapsigargin, a known inhibitor of mammalian SERCA, enhances the expression of P-glycoprotein (Pgp) by increasing the intracellular Ca(++) ([Ca(++)](i)) level, we investigated whether artemisinin and its structural hom...

  2. Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo.

    Science.gov (United States)

    Cao, Xi; Luo, Jingwen; Gong, Tao; Zhang, Zhi-Rong; Sun, Xun; Fu, Yao

    2015-01-01

    Multidrug resistance has remained a major cause of treatment failure in chemotherapy due to the presence of P-glycoproteins (P-gp) that actively pump drugs from inside the cell to the outside. P-gp inhibitors were developed and coadministered with chemotherapeutic drugs to overcome the effect of efflux pumps thus enhancing the chemosensitivity of therapeutics. Our study aimed at developing a lipid nanoemulsion system for the coencapsulation of doxorubicin (DOX) and bromotetrandrine (W198) to reverse multidrug resistance (MDR) in breast cancer. W198 was a potent P-gp inhibitor, and DOX was selected as a model compound which is a common substrate for P-gp. Coencapsulated DOX and W198 lipid nanoemulsions (DOX/W198-LNs) displayed significantly enhanced cytotoxicity in DOX-resistant human breast cancer cells (MCF-7/ADR) compared with DOX loaded lipid nanoemulsions (DOX-LNs) (p < 0.05), which is due to the enhanced intracellular uptake of DOX in MCF-7/ADR cells. The biodistribution study was performed using a nude mice xenograft model, which demonstrates enhanced tumor uptake of DOX in the DOX/W198-LN treated group. Compared with DOX solution, DOX/W198-LNs showed reduced cardiac toxicity and gastrointestinal injury in rats. Taken together, DOX/W198-LNs represent a promising formulation for overcoming MDR in breast cancer. PMID:25469833

  3. Multi-drug resistance 1 genetic polymorphism and prediction of chemotherapy response in Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Haddadin William J

    2011-07-01

    Full Text Available Abstract Background The human multi-drug resistance gene (MDR1, which encodes the major trans-membrane transporter P-glycoprotein (P-gp, was found to be associated with susceptibility to cancer and response to chemotherapy. The C3435T Polymorphism of MDR1 gene was correlated with expression levels and functions of P-gp. Here, we studied the association between MDR1 C3435T polymorphism and susceptibility to Hodgkin lymphoma (HL and patient's response to ABVD chemotherapy regimen. Methods a total of 130 paraffin embedded tissue samples collected from HL patients were analyzed to identify the C3435T polymorphism. As a control group, 120 healthy subjects were enrolled in the study. The C3435T Polymorphism was genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP method. Data analysis was carried out using the statistical package SPSS version 17 to compute all descriptive statistics. Chi-square and Fisher exact tests were used to evaluate the genotype distribution and allele frequencies of the studied polymorphism. Results these studies revealed that the frequency of T allele was significantly higher in HL patients compared to the controls (P 0.05. Conclusions these results suggest that MDR1 C3435T polymorphism might play a role in HL occurrence; however this polymorphism is not correlated with the clinical response to ABVD.

  4. The flavonoid quercetin: possible solution for anthracycline-induced cardiotoxicity and multidrug resistance.

    Science.gov (United States)

    Czepas, Jan; Gwo?dzi?ski, Krzysztof

    2014-10-01

    Anthracycline chemotherapy is often used in the treatment of various malignancies. Its application, however, encounters several limitations due to development of serious side effects, mainly cardiotoxicity and may be ineffective due to multidrug resistance (MDR). Many different compounds have been evaluated as poorly effective in the protection against anthracycline side effects and in the prevention from MDR. Thus, continuous investigational efforts are necessary to find valuable protectants and the flavonoid quercetin (Q) seems to be a promising candidate. It is present in relatively high amounts in a human diet and the lack of its toxicity, including genotoxicity has been confirmed. The structure of Q favours its high antioxidant activity, the potential to inhibit the activity of oxidative enzymes and to interact with membrane transporter proteins responsible for development of MDR, e.g. P-glycoprotein. Furthermore, Q can influence cellular signalling and gene expression, and thus, alter response to exogenous genotoxicants and oxidative stress in normal cells. It accounts for its chemopreventive and anticancer properties. Overall, these properties might indicate the possibility of application of Q as cardioprotectant during anthracycline chemotherapy. Moreover, numerous biological properties displayed by Q might possibly result in the reversal of MDR in tumour cells and improve the efficacy of chemotherapy. However, these beneficial effects towards anthracycline-induced complications of chemotherapy have to be further explored and confirmed both in animal and clinical studies. Concurrently, investigations aimed at improvement of the bioavailability of Q and further elucidation of its metabolism after application in combination with anthracyclines are needed. PMID:25458790

  5. Multi-drug resistance gene (MDR1 and opioid analgesia in horses

    Directory of Open Access Journals (Sweden)

    Natalini Cláudio Corrêa

    2006-01-01

    Full Text Available Opioid absorption in the intestinal tract as well as its effects in the central nervous system is modulated by the P-glycoprotein (P-gp encoded in the Multi-drug Resistance gene (MDR1 also named ATP-binding cassete, subfamily B, member 1 (ABCB1. This MDR1 gene acts as a selective pump. The expression of this protein in humans and rodents inhibits cellular uptake of substrate opioids. The presence of the intestinal iso-enzyme CYP3A4 associated with MDR1 gene decreases the opioid analgesic activity due to an increase in intestinal metabolism, with a predicted intestinal first pass extraction around 20% which significantly influences the oral availability of opioids. In the central nervous system, P-gp expression decreases opioid neuronal uptake diminishing the analgesic effects. It is unknown if horses have the MDR1 gene and P-gp and what are the effects on opioid absorption, metabolism, and analgesia. Identifying the MDR1 gene and P-gp status in horses is of great importance in order to better understand opioid pharmacologic effects in horses.

  6. Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line

    Directory of Open Access Journals (Sweden)

    Cheng J

    2012-06-01

    Full Text Available Jian Cheng,1,* Lin Cheng,1,* Baoan Chen,1,2 Guohua Xia,1 Chong Gao,1 Huihui Song,1 Wen Bao,1 Qinglong Guo,3 Haiwei Zhang,3 Xuemei Wang41Department of Hematology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, 2Department of Oncology of Southeast University, 3Key Laboratory of Carcinogenesis and Intervention of Jiangsu Province, China Pharmaceutical University, 4State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People's Republic of China *These authors contributed equally to this workBackground: Multidrug resistance is the main obstacle to the efficiency of systemic chemotherapy against hematologic malignancy. This study investigated the reversible effect of the copolymer wogonin and daunorubicin coloaded into Fe3O4 magnetic anoparticles, and the mechanism potentially involved.Methods: The growth inhibition rate of K562/A02 cells was investigated by MTT assay, and apoptosis of cells and the intracellular daunorubicin concentration were detected by flow cytometry. Distribution of nanoparticles taken up by K562/A02 cells was observed under a transmission electron microscope and demonstrated by Prussian blue staining. The transcription level of MDR1 mRNA and expression of P-glycoprotein were determined by reverse transcriptase polymerase chain reaction and Western blotting assay, respectively.Results: The reversible effect of daunorubicin-wogonin magnetic nanoparticles was 8.87-fold that of daunorubicin + wogonin and of daunorubicin magnetic nanoparticles. Transmission electron microscopy and Prussian blue staining revealed that the nanoparticles were located in the endosome vesicles of cytoplasm. Also, the apoptosis rate and accumulation of intracellular daunorubicin in the daunorubicin-wogonin magnetic nanoparticle group were significantly higher than that in the daunorubicin, daunorubicin + wogonin, and daunorubicin magnetic nanoparticle groups. Furthermore, transcription of MDR1 mRNA and expression of P-glycoprotein in K562/A02 cells were significantly downregulated in the daunorubicin-wogonin magnetic nanoparticle group compared with the other groups.Conclusion: These findings suggest that the remarkable effects of the novel daunorubicin-wogonin magnetic nanoparticle formulation on multidrug resistant K562/A02 leukemia cells would be a promising strategy for overcoming multidrug resistance.Keywords: magnetic nanoparticles, Fe3O4, wogonin, multidrug resistance, daunorubicin, P-glycoprotein

  7. Presence of Multidrug Resistant Enteric Bacteria in Dairy Farm Topsoil

    OpenAIRE

    Burgos, J. M.; Ellington, B. A.; Varela, M. F.

    2005-01-01

    In addition to human and veterinary medicine, antibiotics are extensively used in agricultural settings, such as for treatment of infections, growth enhancement and prophylaxis in food animals, leading to selection of drug and multidrug resistant bacteria. In order to help circumvent the problem of bacterial antibiotic resistance, it is first necessary to understand the scope of the problem. However, is it not fully understood how widespread antibiotic resistant bacteria are in agricultural s...

  8. Effect of phenoxazine MDR modulators on photoaffinity labeling of P-glycoprotein by [3H] azidopine: an approach to understand drug resistance in cancer chemotherapy

    International Nuclear Information System (INIS)

    P-glycoprotein (P-gp) rich membrane fractions from KB-VI cells were isolated and the interaction of [3H] azidopine with membrane fractions in the presence of 25, 50 and 100 ?M concentration of each of the twenty N10 -substituted phenoxazines, was under taken and the extent of competition was compared to a standard modulator, verapamil. Competition data showed that only two modulators 4 and 6 exhibited the maximum competition (>50%). Among the compounds examined, three of them interact strongly (>50%), six marginally (<45%) and remaining failed to interact with P-gp, indicating that there may be multiple mechanisms for MDR. (author)

  9. Beneficial effect of tetrandrine on refractory epilepsy via suppressing P-glycoprotein.

    Science.gov (United States)

    Chen, Yinghui; Xiao, Xia; Wang, Cuicui; Jiang, Huiyuan; Hong, Zhen; Xu, Guoxiong

    2014-10-22

    Patients with refractory epilepsy are resistance to antiepileptic drugs (AEDs). The mechanisms of drug resistance are varied, but one of them is the overexpression of multidrug transporters, such as P-glycoprotein (P-gp), in the brain. Tetrandrine (TTD) is a bis-benzylisoquinoline alkaloid isolated from the root of Stephania tetrandra (S, Moore) and is found to have a favorable effect against multidrug resistance (MDR) in chemotherapy. However, whether TTD affects AEDs in refractory epilepsy is unknown. In this study, we investigated the change in AED treatment efficacy in doxorubicin-induced drug resistant cells after TTD administration. We also examined the effect of TTD on seizure behaviors in the refractory epileptic rats, specifically the expression of MDR1 mRNA and P-gp protein in the cortex and hippocampus of the refractory epileptic rats. Our results demonstrated that TTD decreased cell resistance to phenytoin and valproate. TTD decreased seizure rate and increased the treatment efficacy of AEDs by reducing the expression of P-gp at mRNA and protein levels in vivo. These data support the use of TTD as an adjuvant drug for treating refractory epilepsy. PMID:25233150

  10. Functional imaging of multidrug resistance gene expression in patients with recurrent tumor following definitive irradiation

    International Nuclear Information System (INIS)

    Purpose/Objective: Definitive irradiation remains the cornerstone of management for high-grade glial tumors. If failure occurs, then salvage chemotherapy regimens (eg. PCV) are often considered. Tl-201 brain SPECT is a well-established diagnostic method to assess the recurrent or residual viable tumor. Tc-99m-MIBI is a lipophilic, cationic agent and a transport substrate recognized by the multidrug resistance (MDR) P-glycoprotein. This study investigates the feasibility of imaging P-glycoprotein expression by dual isotope Tl-201 and Tc-MIBI scintigraphy and attempts to predict expression of the multidrug resistance gene (MDR) expression in patients with malignant glioma prior to chemotherapy. Material and Methods: Twenty-seven patients with malignant glioma were evaluated with sequential Tl-201 and Tc-MIBI brain SPECT for recurrent brain tumor. Seventeen patients (group 1) were treated with surgery, radiation therapy and chemotherapy. Ten (group 2) were treated with surgery and radiation therapy. There were 6 patients with anaplastic and 21 patients with glioblastoma, ages ranging from 29 to 74 years old (median age:41). Tumor uptake was visually graded by two interpreters and scored with respect to the degree of uptake to determine the concordance and discordance between two tracers. Brain SPECT findings were correlated with clinical follow-up, or a biopsy defined as recurrent or stable at the time of the brain SPECT. Results: Twenty-five of 27 patients showed recurr: Twenty-five of 27 patients showed recurrent brain tumor. Among these, five patients showed discordant findings: two patients had markedly positive thallium tumor uptake without Tc-MIBI uptake. Northern blotting of the resected tumor specimen depicted the expression of multidrug resistance gene. Both patients were proven to have glioblastoma. One patient was in group 1 and another patient was in group 2. Three patients showed partial discordance, namely thallium tumor uptake greater than Tc-MIBI uptake. Two patients were in group 1 and one was in group 2. Conclusion: Our study suggests that the absence of Tc-MIBI tumor uptake in the presence of Tl-201 tumor uptake indicates MDR gene expression in the recurrent brain tumor. The frequency of MDR occurred in 2 out of 9 patients with recurrent brain tumor without chemotherapy and in 3 of 17 patients treated with chemotherapy. The partial discordance finding in 3 out of 5 cases implies that MDR can express heterogenously (partially) within the tumor. Utilizing the dual isotope technique, Tl-201 and Tc-99m-MIBI brain SPECT, it may be feasible to monitor the MDR expression in-vivo and predict MDR gene expression in a patient with recurrent brain tumor before and during chemotherapy. Patients with MDR gene expression should be considered for alternative salvage strategies. (e.g. radiosurgery)

  11. Overcoming cellular multidrug resistance using classical nanomedicine formulations.

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Blauz, A.; Möckel, D.; Theek, B.; Kiessling, F.; Etrych, Tomáš; Ulbrich, K.; van Bloois, L.; Storm, G.; Bartosz, G.; Rychlik, B.; Lammers, T.

    2012-01-01

    Ro?. 45, ?. 4 (2012), s. 421- 428 . ISSN 0928-0987 R&D Projects: GA AV ?R IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : cancer * nanomedicine * multidrug resistance Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.987, year: 2012

  12. Confronting multidrug-resistant Acinetobacter baumannii: a review

    OpenAIRE

    Neonakis, Ioannis K.; Spandidos, Demetrios A; Petinaki, Efthimia

    2011-01-01

    Abstract Multidrug-resistant Acinetobacter baumannii (MDR-AB) infections are difficult to treat owing to the extremely limited armamentarium. The present review reports all available treatment options against MDR-AB, including single molecules, combination schemes, and alternative modes of antimicrobial administration. Additionally, a group of recently reported peptides with anti-MDR-AB activity is described.

  13. Molecular Surveillance for Multidrug-Resistant Plasmodium falciparum, Cambodia

    OpenAIRE

    Shah, Naman K; Alker, Alisa P.; Sem, Rithy; Susanti, Agustina Ika; Muth, Sinuon; Maguire, Jason D; Duong, Socheat; Ariey, Frederic; Meshnick, Steven R; Wongsrichanalai, Chansuda

    2008-01-01

    We conducted surveillance for multidrug-resistant Plasmodium falciparum in Cambodia during 2004–2006 by assessing molecular changes in pfmdr1. The high prevalence of isolates with multiple pfmdr1 copies found in western Cambodia near the Thai border, where artesunate–mefloquine therapy failures occur, contrasts with isolates from eastern Cambodia, where this combination therapy remains highly effective.

  14. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    Science.gov (United States)

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, María Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina Inés; Catania, Viviana Alicia; Ruiz, María Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 ?M) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 ?M concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 ?M GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 ?M) and MRP2 induction by GNT (only at 10 ?M), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements. PMID:25781341

  15. Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters.

    Science.gov (United States)

    Eid, Safaa Yehia; El-Readi, Mahmoud Zaki; Wink, Michael

    2012-08-15

    Proteins of the ATP-binding cassette superfamily, mainly P-glycoprotein (P-gp; MDR1), play an important role in the development of multidrug resistance (MDR) in cancer cells and thus in the potential failure of chemotherapy. A selection of carotenoids (?-carotene, crocin, retinoic acid, canthaxanthin, and fucoxanthin) was investigated whether they are substrates of P-gp, and if they can reverse MDR in resistant Caco-2 and CEM/ADR5000 cells as compared to the sensitive parent cell line CCRF-CEM. The activity of ABC transporter was determined in resistant and sensitive cells by spectrofluorometry and flow cytometry using the substrates doxorubicin, rhodamine 123, and calcein as fluorescent probes. The carotenoids increased accumulation of these P-gp substrates in a dose-dependent manner indicating that they themselves also function as substrates. Fucoxanthin and canthaxanthin (50-100 ?M) produced a 3-5-fold higher retention of the fluorescent probes than the known competitive inhibitor verapamil. Carotenoids showed a low cytotoxicity in cells with MDR with IC(50) values between 100 and 200 ?M. The combination of carotenoids with eight structurally different cytotoxic agents synergistically enhanced their cytotoxicity in Caco-2 cells, probably by inhibiting the function of the ABC transporters. For example, fucoxanthin synergistically enhanced the cytotoxicity of 5-FU 53.37-fold, of vinblastine 51.01-fold, and of etoposide 12.47-fold. RT-PCR was applied to evaluate the mRNA levels of P-gp in Caco-2 cells after treatment with carotenoids. Fucoxanthin and canthaxanthin significantly decreased P-gp levels to 12% and 24%, respectively as compared to untreated control levels (p<0.001). This study implies that carotenoids may be utilised as chemosensitisers, especially as adjuvants in chemotherapy. PMID:22770743

  16. Pharmacogenomic and molecular docking studies on the cytotoxicity of the natural steroid wortmannin against multidrug-resistant tumor cells.

    Science.gov (United States)

    Kuete, Victor; Saeed, Mohamed E M; Kadioglu, Onat; Börtzler, Jonas; Khalid, Hassan; Greten, Henry Johannes; Efferth, Thomas

    2015-01-15

    Wortmannin is a cytotoxic compound derived from the endophytic fungi Fusarium oxysporum, Penicillium wortmannii and Penicillium funiculosum that occurs in many plants, including medicinal herbs. The rationale to develop novel anticancer drugs is the frequent development of tumor resistance to the existing antineoplasic agents. Therefore, it is mandatory to analyze resistance mechanisms of novel drug candidates such as wortmannin as well to bring effective drugs into the clinic that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients. In the present project, we found that P-glycoprotein-overexpressing tumor cells displaying the classical multidrug resistance phenotype toward standard anticancer drugs were not cross-resistant to wortmannin. Furthermore, three point-mutated PIK3CA protein structures revealed similar binding energies to wortmannin than wild-type PIK3CA. This protein is the primary target of wortmannin and part of the PI3K/AKT/mTOR signaling pathway. PIK3CA mutations are known to be associated with worse response to therapy and shortened its activity toward wild-type and mutant PIK3CA with similar efficacy. PMID:25636880

  17. Multidrug-Resistant Enterococci Lack CRISPR-cas

    OpenAIRE

    Palmer, Kelli L.; Gilmore, Michael S.

    2010-01-01

    Clustered, regularly interspaced short palindromic repeats (CRISPR) provide bacteria and archaea with sequence-specific, acquired defense against plasmids and phage. Because mobile elements constitute up to 25% of the genome of multidrug-resistant (MDR) enterococci, it was of interest to examine the codistribution of CRISPR and acquired antibiotic resistance in enterococcal lineages. A database was built from 16 Enterococcus faecalis draft genome sequences to identify commonalities and polymo...

  18. Diversity and evolution of the small multidrug resistance protein family

    OpenAIRE

    Turner Raymond J; Bay Denice C

    2009-01-01

    Abstract Background Members of the small multidrug resistance (SMR) protein family are integral membrane proteins characterized by four ?-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC) in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger ?-helical transporters such as the major facilitator superfamily (MFS) and drug/metabolite tr...

  19. Membrane transport proteins associated with drug resistance expressed in human melanoma.

    OpenAIRE

    Schadendorf, D.; Makki, A.; Stahr, C.; Van Dyck, A.; Wanner, R; Scheffer, G.L.; Flens, M. J.; Scheper, R.; Henz, B M

    1995-01-01

    Melanoma cells often display a multidrug-resistant phenotype, but the mechanisms involved are largely unknown. We have studied here the recently identified transport-associated proteins, MRP and LRP, and the well-known drug resistance marker P-glycoprotein using a panel of 16 human melanoma cell lines and 71 benign and malignant melanocytic tissue samples. By flow cytometry and immunohistochemistry, expression of P-glycoprotein was not detectable on the protein level in the 10 cell lines anal...

  20. Characterization and Identification of Multidrug Resistant Bacteria from Some Egyptian Patients

    OpenAIRE

    Seham Abdel-Shafi; Ouda, Sahar M.; Ibrahim Elbalat; Gamal Enan

    2013-01-01

    The isolation of multidrug resistant bacteria from Egyptian patients showed a great interest to study such phenomenon. Hence, simple methods were followed herein to isolate and characterize the antibiotic resistant variants by the common phenotypic, morphological and biochemical characters. Out of 500 clinical bacterial cultures, 50 only were multidrug resistant bacteria with a value of drug resistance ability of about 10%. About 46% of multidrug resistant ...

  1. The Effects and Molecular Mechanisms of MiR-106a in Multidrug Resistance Reversal in Human Glioma U87/DDP and U251/G Cell Lines

    Science.gov (United States)

    Li, Xu; Kan, Pengcheng; Xin, Xin; Zhu, Yu; Yang, Ping

    2015-01-01

    Chemotherapy resistance is one of the major obstacles to effective glioma therapy. Currently, the mechanism underlying chemotherapy resistance is unclear. A recent study showed that miR-106a is an important molecule involved in chemotherapy resistance. To explore the effects and mechanisms of miR-106a on multidrug resistance reversal in human glioma cells, we silenced miR-106a expression in the cisplatin-resistant U87 (U87/DDP) and the gefitinib-resistant U251 (U251/G) glioma cell lines and measured the resulting drug sensitivity, cell apoptosis rate and rhodamine 123 content. In addition, we detected decreased expression of P-glycoprotein, MDR1, MRP1, GST-?, CDX2, ERCC1, RhoE, Bcl-2, Survivin and Topo-II, as well as reduced production of IL-6, IL-8 and TGF-? in these cell lines. Furthermore, we found decreased expression of p-AKT and transcriptional activation of NF-?B, Twist, AP-1 and Snail in these cell lines. These results suggest that miR-106a is a promising therapeutic target for the treatment of human multidrug resistant glioma. PMID:25950430

  2. The Effects and Molecular Mechanisms of MiR-106a in Multidrug Resistance Reversal in Human Glioma U87/DDP and U251/G Cell Lines.

    Science.gov (United States)

    Wang, Qin; Wang, Zhenlian; Chu, LinYang; Li, Xu; Kan, Pengcheng; Xin, Xin; Zhu, Yu; Yang, Ping

    2015-01-01

    Chemotherapy resistance is one of the major obstacles to effective glioma therapy. Currently, the mechanism underlying chemotherapy resistance is unclear. A recent study showed that miR-106a is an important molecule involved in chemotherapy resistance. To explore the effects and mechanisms of miR-106a on multidrug resistance reversal in human glioma cells, we silenced miR-106a expression in the cisplatin-resistant U87 (U87/DDP) and the gefitinib-resistant U251 (U251/G) glioma cell lines and measured the resulting drug sensitivity, cell apoptosis rate and rhodamine 123 content. In addition, we detected decreased expression of P-glycoprotein, MDR1, MRP1, GST-?, CDX2, ERCC1, RhoE, Bcl-2, Survivin and Topo-II, as well as reduced production of IL-6, IL-8 and TGF-? in these cell lines. Furthermore, we found decreased expression of p-AKT and transcriptional activation of NF-?B, Twist, AP-1 and Snail in these cell lines. These results suggest that miR-106a is a promising therapeutic target for the treatment of human multidrug resistant glioma. PMID:25950430

  3. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    KunihikoNishino

    2014-04-01

    Full Text Available Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies with floral source, climate, and harvesting conditions. Methylglyoxal was identified as the dominant antibacterial component of manuka honey. Although it has been known that methylglyoxal has antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there is not much information describing its activity against gram-negative bacteria. In this study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas aeruginosa (MDRP using 53 clinically isolated strains. We also assessed the effect of deleting the five multidrug efflux systems in P. aeruginosa, as well as the efflux systems in Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal. Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of 128–512 µg/ml (1.7–7.1 mM and is not recognized by drug efflux systems.

  4. Lymphokine-activated killer cell susceptibility and adhesion molecule expression of multidrug resistant breast carcinoma

    Directory of Open Access Journals (Sweden)

    Kerr Pauline E

    2006-11-01

    Full Text Available Abstract Reports showing susceptibility of multidrug resistant (MDR cancer cells to immune effectors, together with P-glycoprotein (P-gp expression in immune effector subsets, including immature natural killer (NK cells, and some activated T cells, suggest P-gp or some changes associated with it, have implications in immune-mediated mechanisms. A series of experiments were done to determine the nature of alterations associated with susceptibility to immune effector cells of MDR tumor cells. A cell line isolated from the malignant pleural effusion of a breast cancer patient was transfected with human and murine MDR1 genes, and four variants with different levels of MDR were obtained. Lymphokine-activated killer (LAK activity was measured by a 51Chromium release, and conjugate formation assays. MDR1 transfectant P-gp+ breast carcinoma lines had increased LAK susceptibility compared to their parent line. Some part of the increased LAK susceptibility of drug-resistant cell lines was at the binding/recognition level as shown by conjugate formation assays. This suggests that differences may exist between paired cell lines with respect to the expression of cell adhesion molecules (CAMs. Monoclonal antibodies (mAbs to CAMs and flow cytometry were used to quantitate these antigens. The CAMs studied were those previously found to be upregulated by stimulating NK cells with (interleukin-2 IL-2; ICAM-1 (CD54, LFA-3 (CD58, N-CAM (CD56, and the ? chain of LFA-1 (CD18. Although no differences in these CAMs were found between the breast carcinoma line and its MDR1-transfected variants, the target susceptibility results given above suggest that IL-2 treatment could be effective in combination with current protocols using chemotherapeutics, monoclonal antibodies (mAbs and stem cell transplantation.

  5. Effect of multidrug resistance modulators on the activity of ivermectin and moxidectin against selected strains of Haemonchus contortus infective larvae

    Directory of Open Access Journals (Sweden)

    Molento Marcelo B.

    2001-01-01

    Full Text Available Nematode parasites have shown resistance to the anthelmintics, ivermectin and moxidectin, and there is evidence that the over-expression of parasite P-glycoprotein (P-gp may account, at least in part, for resistance to ivermectin. The objective of this study was to evaluate whether the multidrug resistance (MDR modulators, verapamil, CL 347.099 (an analog of verapamil and cyclosporin A, would enhance the efficacy of ivermectin and moxidectin against selected strains of Haemonchus contortus using an in vitro larval migration assay. The modulators had no effects on the number of migrating larvae when used alone. Ivermectin and moxidectin showed a significant (P<0.05 increase in its efficacy by 52.8 and 58.5% respectively, when used in association with verapamil against a moxidectin-selected strain. CL 347,099 also increased significantly (P<0.05 the ivermectin and moxidectin efficacy by 24.2 and 40.0% respectively, against an ivermectin-selected strain and by 40.0 and 75.6% respectively, against an moxidectin-selected strain. At the concentrations tested cyclosporin A showed a variable effect on increasing the efficacy of the anthelmintics against the susceptible and resistant strains.

  6. Natural Products Modulate the Multifactorial Multidrug Resistance of Cancer

    Directory of Open Access Journals (Sweden)

    Safaa Yehia Eid

    2015-03-01

    Full Text Available Multidrug resistance (MDR is a critical problem in cancer chemotherapy. Cancer cells can develop resistance not only to a single cytotoxic drug, but also to entire classes of structurally and functionally unrelated compounds. Several mechanisms can mediate the development of MDR, including increased drug efflux from the cells by ABC-transporters (ABCT, activation of metabolic enzymes, and defective pathways towards apoptosis. Many plant secondary metabolites (SMs can potentially increase sensitivity of drug-resistant cancer cells to chemotherapeutical agents. The present thesis investigates the modulation of MDR by certain medicinal plants and their active compounds. The inhibition of ABCTs (P-gp/MDR1, MRP1, BCRP and metabolic enzymes (GST and CYP3A4, and the induction of apoptosis are useful indicators of the efficacy of a potential medicinal drug. The focus of this study was the possible mechanisms of drug resistance including: expression of resistance proteins, activation of metabolic enzymes, and alteration of the apoptosis and how to overcome their resistance effect on cancer cells. The overall goal of this review was to evaluate how commonly used medicinal plants and their main active secondary metabolites modulate multidrug resistance in cancer cells in order to validate their uses as anticancer drugs, introduce new therapeutic options for resistant cancer, and facilitate the development of their anticancer strategies and/or combination therapies. In conclusion, SMs from medicinal plants exhibit multitarget activity against MDR-related proteins, metabolic enzymes, and apoptotic signaling, this may help to overcome resistance towards chemotherapeutic drugs.

  7. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma

    OpenAIRE

    Anna Alisi; Cho, William C.; Franco Locatelli; Doriana Fruci

    2013-01-01

    Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes ...

  8. Cost-Effectiveness of Treating Multidrug-Resistant Tuberculosis

    OpenAIRE

    Resch, Stephen C.; Salomon, Joshua A.; Murray, Megan Blanche; Weinstein, Milton C.

    2006-01-01

    Background: Despite the existence of effective drug treatments, tuberculosis (TB) causes 2 million deaths annually worldwide. Effective treatment is complicated by multidrug-resistant TB (MDR TB) strains that respond only to second-line drugs. We projected the health benefits and cost-effectiveness of using drug susceptibility testing and second-line drugs in a lower-middle-income setting with high levels of MDR TB. Methods and Findings: We developed a dynamic state-transition model of TB. In...

  9. Multidrug-Resistant Tuberculosis Management in Resource-Limited Settings

    OpenAIRE

    Nathanson, Eva; Lambregts-van Weezenbeek, Catharina; Gupta, Rajesh; Blo?ndal, Kai; Caminero, Jose? A.; Cegielski, J. Peter; Danilovits, Manfred; Espinal, Marcos A.; Hollo, Vahur; Jaramillo, Ernesto; Leimane, Vaira; Nunn, Paul; Pasechnikov, Alexander; Tupasi, Thelma; Wells, Charles

    2006-01-01

    Evidence of successful management of multidrug-resistant tuberculosis (MDRTB) is mainly generated from referral hospitals in high-income countries. We evaluate the management of MDRTB in 5 resource-limited countries: Estonia, Latvia, Peru, the Philippines, and the Russian Federation. All projects were approved by the Green Light Committee for access to quality-assured second-line drugs provided at reduced price for MDRTB management. Of 1,047 MDRTB patients evaluated, 119 (11%) were new, and 9...

  10. In vitro effects of Mangifera indica and polyphenols derived on ABCB1/P-glycoprotein activity.

    Science.gov (United States)

    Chieli, Elisabetta; Romiti, Nadia; Rodeiro, Idania; Garrido, Gabino

    2009-11-01

    Many plant-derived compounds, including polyphenols, are able to affect the function of MDR-1/P-glycoprotein (P-gp ABCB1) multidrug transporter, leading to potential herb-drug interactions. This study evaluated the effects of mango (Mangifera indica L.) stem bark extract, MSBE, and related phenols on P-gp activity in both the HK-2 proximal tubule cell line, constitutively expressing P-gp, and in a Caco-2 cell sub-line selected by resistance to vincristine (Caco-2/VCR) and overexpressing P-gp. The effects of MSBE, mangiferin, norathyriol, catechin, quercetin and gallic acid on P-gp activity were tested by the rhodamine-123 accumulation as well as by the Calcein-AM assays. Effects on esterase activity, which could influence the results of Calcein-AM test, were also assessed. All investigated compounds except for catechin and gallic acid inhibited P-gp activity in HK-2 cells, in the order of mangiferinquercetinquercetin and norathyriol also inhibited significantly esterase activity. Similar effects were obtained in resistant Caco-2/VCR cells, but were negligible in the wild-type ones, expressing low amounts of P-gp. Our results demonstrate, for the first time, that M. indica and polyphenols derived may affect the activity of the multidrug transporter P-gp ABCB1, suggesting the possibility of herb-drug interactions to be explored in depth. PMID:19632288

  11. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients.

    Science.gov (United States)

    Göhring, Katharina; Hamprecht, Klaus; Jahn, Gerhard

    2015-01-01

    In pediatric and adult patients after stem cell transplantation (SCT) disseminated infections caused by human cytomegalovirus (HCMV) can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV), foscarnet (PFA) and cidofovir (CDV) are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97) and the polymerase-gene (UL54). Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood. PMID:25750703

  12. Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries.

    Science.gov (United States)

    Luna-Munguia, Hiram; Salvamoser, Josephine D; Pascher, Bettina; Pieper, Tom; Getzinger, Thekla; Kudernatsch, Manfred; Kluger, Gerhard; Potschka, Heidrun

    2015-02-01

    As a member of the multidrug-resistance associated protein (MRP) family, MRP2 affects the brain entry of different endogenous and exogenous compounds. Considering the role of this transporter at the blood-brain barrier, the regulation is of particular interest. However, there is limited knowledge regarding the factors that regulate MRP2 in neurologic disease states. Thus, we addressed the hypothesis that MRP2 might be affected by a glutamate-induced signaling pathway that we previously identified as one key mechanism in the regulation of P-glycoprotein. Studies in isolated porcine brain capillaries confirmed that glutamate and N-methyl-d-aspartic acid (NMDA) exposure upregulates expression and function of MPR2. The involvement of the NMDA receptor was further suggested by the fact that the NMDA receptor antagonist MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], as well as the NMDA receptor glycine binding site antagonist L-701,324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], prevented the impact of glutamate. A role of cyclooxygenase-2 was indicated by coincubation with the cyclooxygenase-2 inhibitor celecoxib and the cyclooxygenase-1/-2 inhibitor indomethacin, which both efficaciously abolished a glutamate-induced upregulation of MRP2. Translational studies in human capillaries from surgical specimen demonstrated a relevant MRP2 efflux function and indicated an effect of glutamate exposure as well as its prevention by cyclooxygenase-2 inhibition. Taken together the findings provide first evidence for a role of a glutamate-induced NMDA receptor/cyclooxygenase-2 signaling pathway in the regulation of MRP2 expression and function. The response to excessive glutamate concentrations might contribute to overexpression of MRP2, which has been reported in neurologic diseases including epilepsy. The overexpression might have implications for brain access of various compounds including therapeutic drugs. PMID:25503388

  13. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors.

    Science.gov (United States)

    Roy, Aniruddha; Ernsting, Mark J; Undzys, Elijus; Li, Shyh-Dar

    2015-06-01

    Podophyllotoxin (PPT) exhibited significant activity against P-glycoprotein mediated multidrug resistant (MDR) tumor cell lines; however, due to its poor solubility and high toxicity, PPT cannot be dosed systemically, preventing its clinical use for MDR cancer. We developed a nanoparticle dosage form of PPT by covalently conjugating PPT and polyethylene glycol (PEG) with acetylated carboxymethyl cellulose (CMC-Ac) using one-pot esterification chemistry. The polymer conjugates self-assembled into nanoparticles (NPs) of variable sizes (20-120 nm) depending on the PPT-to-PEG molar ratio (2-20). The conjugate with a low PPT/PEG molar ratio of 2 yielded NPs with a mean diameter of 20 nm and released PPT at ?5%/day in serum, while conjugates with increased PPT/PEG ratios (5 and 20) produced bigger particles (30 nm and 120 nm respectively) that displayed slower drug release (?2.5%/day and ?1%/day respectively). The 20 nm particles exhibited 2- to 5-fold enhanced cell killing potency and 5- to 20-fold increased tumor delivery compared to the larger NPs. The biodistribution of the 20 nm PPT-NPs was highly selective to the tumor with 8-fold higher accumulation than all other examined tissues, while the larger PPT-NPs (30 and 120 nm) exhibited increased liver uptake. Within the tumor, >90% of the 20 nm PPT-NPs penetrated to the hypovascular core, while the larger particles were largely restricted in the hypervascular periphery. The 20 nm PPT-NPs displayed significantly improved efficacy against MDR tumors in mice compared to the larger PPT-NPs, native PPT and the standard taxane chemotherapies, with minimal toxicity. PMID:25818440

  14. Detection of Multidrug Resistance in Mycobacterium tuberculosis?

    OpenAIRE

    Sekiguchi, Jun-ichiro; Miyoshi-akiyama, Tohru; Augustynowicz-kopec?, Ewa; Zwolska, Zofia; Kirikae, Fumiko; Toyota, Emiko; Kobayashi, Intetsu; Morita, Koji; Kudo, Koichiro; Kato, Seiya; Kuratsuji, Tadatoshi; Mori, Toru; Kirikae, Teruo

    2006-01-01

    We developed a DNA sequencing-based method to detect mutations in the genome of drug-resistant Mycobacterium tuberculosis. Drug resistance in M. tuberculosis is caused by mutations in restricted regions of the genome. Eight genome regions associated with drug resistance, including rpoB for rifampin (RIF), katG and the mabA (fabG1)-inhA promoter for isoniazid (INH), embB for ethambutol (EMB), pncA for pyrazinamide (PZA), rpsL and rrs for streptomycin (STR), and gyrA for levofloxacin, were ampl...

  15. Demethoxycurcumin modulates human P-glycoprotein function via uncompetitive inhibition of ATPase hydrolysis activity.

    Science.gov (United States)

    Teng, Yu-Ning; Hsieh, Yow-Wen; Hung, Chin-Chuan; Lin, Hui-Yi

    2015-01-28

    Curcuminoids are major components of Curcuma longa L., which is widely used as spice in food. This study aimed at identifying whether curcumin, demethoxycurcumin, and bisdemethoxycurcumin could modulate efflux function of human P-glycoprotein and be used as chemosensitizers in cancer treatments. Without altering P-glycoprotein expression levels and conformation, the purified curcuminoids significantly inhibited P-glycoprotein efflux function. In rhodamine 123 efflux and calcein-AM accumulation assays, demethoxycurcumin demonstrated the highest inhibition potency (inhibitory IC50 = 1.56 ± 0.13 ?M) among the purified curcuminoids, as well as in the fold of reversal assays. Demethoxycurcumin inhibited P-glycoprotein-mediated ATP hydrolysis under concentrations of <1 ?M and efficiently inhibited 200 ?M verapamil-stimulated ATPase activity, indicating a high affinity of demethoxycurcumin for P-glycoprotein. These results suggested that demethoxycurcumin may be a potential additive natural product in combination with chemotherapeutic agents in drug-resistant cancers. PMID:25594233

  16. Clinical evaluation of multidrug resistance associated protein expression by FDG PET and MIBI SPECT in lung cancer

    International Nuclear Information System (INIS)

    Multidrug resistance is one of the major obstacles in the successful anticancer therapy. The aim of this study is to evaluate whether FDG PET and MIBI SPECT can be markers for p-glycoprotein (Pgp), multidrug resistance-associated protein (MRP), lung resistance protein (LRP) expression in lung cancer tissues. Eighty-eight patients with 92 lung cancer lesions were enrolled in this study. Before surgery, FDG PET imaging was performed 40 min after injection of FDG 185 MBq, and standardized uptake values (SUVs) were obtained. MIBI SPECT imaging was performed 15 min and 3 hour after injection of MIBI 370 MBq. Early ratio (ER), delayed ratio (DR), and washout rate (WR) were obtained. Pgp, MRP, and LRP expression in lung cancer tissues were determined by immunohistochemical staining. No significant correlations were observed between MIBI uptake and expression of Pgp, MRP and LRP. FDG uptake significantly correlated with expression of Pgp and LRP. The lung cancer with high degree of Pgp and LRP expression had significantly low FDG uptake. However, there is no correlation between FDG uptake and MRP expression. Pgp and LRP expression of adenocarcinomas were significantly higher than that of squamous cell carcinomas. FDG uptake of adenocarcinomas were significantly lower than that of squamous cell carcinomas. In lung adenocarcinomas, Pgp and LRP expression of bronchioloalveolar carcinomas were significantly higher than that of poorly differentiated adenocarcinomas. In contrast, Ferentiated adenocarcinomas. In contrast, FDG uptake of bronchioloalveolar carcinomas were significantly low when compared with that of poorly differentiated adenocarcinomas. In addition, it was also suggested that biological behavior of LRP expression was similar to that of Pgp expression. FDG uptake may be a marker for Pgp and LRP expression but not for MRP expression in patients with lung cancer. Both Pgp, LRP expression and FDG uptake correlate with cellular differentiation and histological type. (author)

  17. Multidrug-resistant hela cells overexpressing MRP1 exhibit sensitivity to cell killing by hyperthermia: Interactions with etoposide

    International Nuclear Information System (INIS)

    Purpose: Multidrug resistance (MDR) remains one of the primary obstacles in cancer chemotherapy and often involves overexpression of drug efflux transporters such as P-glycoprotein and multidrug resistance protein 1 (MRP1). Regional hyperthermia is undergoing clinical investigation in combination with chemotherapy or radiotherapy. This study evaluates whether hyperthermia can reverse MDR mediated by MRP1 in human cervical adenocarcinoma (HeLa) cells. Methods and materials: Cytotoxicity of hyperthermia and/or etoposide was evaluated using sulforhodamine-B in HeLa cells overexpressing MRP1 and their drug-sensitive counterparts. Glutathione, glutathione peroxidase (GPx), and glutathione S-transferase (GST) were quantified by spectrophotometry. GST isoenzymes were quantified by immunodetection. Caspase activation was evaluated by fluorometry and chromatin condensation by fluorescence microscopy using Hoechst 33258. Necrosis was determined using propidium iodide. Results: The major finding is that HeLa and HeLaMRP cells are both sensitive to cytotoxicity of hyperthermia (41-45 deg C). Hyperthermia induced activation of caspase 3 and chromatin condensation. Although total levels of cell killing were similar, there was a switch from apoptotic to necrotic cell death in MDR cells. This could be explained by decreased glutathione and GPx in MDR cells. MDR cells also contained very low levels of GST and were resistant to etoposide-induced apoptosis. Hyperthermia caused a modest d apoptosis. Hyperthermia caused a modest increase in etoposide-induced apoptosis in HeLa and HeLaMRP cells, which required appropriate heat-drug scheduling. Conclusions: Hyperthermia could be useful in eliminating MDR cells that overexpress MRP1

  18. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Florian Rothweiler

    2010-12-01

    Full Text Available The human immunodeficiency virus (HIV protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC transporters P-glycoprotein (P-gp, multidrug resistance-associated protein 1 (MRP1, and breast cancer resistance protein 1 (BCRP1 in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors.

  19. Adding vitamin E-TPGS to the formulation of Genexol-PM: specially mixed micelles improve drug-loading ability and cytotoxicity against multidrug-resistant tumors significantly.

    Science.gov (United States)

    Fan, Zhuoyang; Chen, Cheng; Pang, Xiaoying; Yu, Zhou; Qi, Yang; Chen, Xinyi; Liang, Huihui; Fang, Xiaoling; Sha, Xianyi

    2015-01-01

    Genexol-PM, produced by Samyang Company (Korea) is an excellent preparation of paclitaxel (PTX) for clinical cancer treatment. However, it cannot resolve the issue of multidrug resistance (MDR)-a significant problem in the administration of PTX to cancer patients. To increase the efficacy of Genexol-PM against MDR tumors, a mixed micelle capable of serving as a vehicle for PTX was developed, and two substances were chosen as carrier materials: 1) Polyethylene glycol-polylactic acid (PEG-PLA), the original vehicle of Genexol-PM. 2) Vitamin E-TPGS, an inhibitor of P-glycoprotein (P-gp). P-gp has been proven to be the main cause of MDR. In vitro evaluation indicated that the mixed micelle was an ideal PTX delivery system for the treatment of MDR tumors; the mixed micelle also showed a significantly better drug-loading coefficient than Genexol-PM. PMID:25831130

  20. Adding Vitamin E-TPGS to the Formulation of Genexol-PM: Specially Mixed Micelles Improve Drug-Loading Ability and Cytotoxicity against Multidrug-Resistant Tumors Significantly

    Science.gov (United States)

    Fan, Zhuoyang; Chen, Cheng; Pang, Xiaoying; Yu, Zhou; Qi, Yang; Chen, Xinyi; Liang, Huihui; Fang, Xiaoling; Sha, Xianyi

    2015-01-01

    Genexol-PM, produced by Samyang Company (Korea) is an excellent preparation of paclitaxel (PTX) for clinical cancer treatment. However, it cannot resolve the issue of multidrug resistance (MDR)—a significant problem in the administration of PTX to cancer patients. To increase the efficacy of Genexol-PM against MDR tumors, a mixed micelle capable of serving as a vehicle for PTX was developed, and two substances were chosen as carrier materials: 1) Polyethylene glycol–polylactic acid (PEG-PLA), the original vehicle of Genexol-PM. 2) Vitamin E-TPGS, an inhibitor of P-glycoprotein (P-gp). P-gp has been proven to be the main cause of MDR. In vitro evaluation indicated that the mixed micelle was an ideal PTX delivery system for the treatment of MDR tumors; the mixed micelle also showed a significantly better drug-loading coefficient than Genexol-PM. PMID:25831130

  1. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    OpenAIRE

    More, Arun P.; Nagdawane, Ramkrishna P.; Gangurde, Aniket K.

    2013-01-01

    Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR) has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence...

  2. Development of PET and SPECT radiopharmaceuticals to study multi-drug resistance (MDR)

    International Nuclear Information System (INIS)

    Full text: Cellular resistance or Multidrug Resistance (MDR) to cytotoxic agents is the major cause of treatment failure in many human cancers. P-glycoprotein (Pgp), a Mr 17,0000 transmembrane protein and Multi Resistance Protein (MRP) are two proteins that are over expressed and confer resistance to a large number of chemotherapeutic agents by enhancing their extracellular transport. P-glycoprotein is expressed at a relative high level in treated and untreated human malignant tumours, including renal, colonic, adrenal, hepatocellular carcinoma and a considerable percentage of breast carcinomas. 99mTc-Sestamibi, a lipophilic cationic complex is a transport substrate for Pgp. In clinical studies of human neoplasms it was found that tumour uptake and clearance of this tracer correlate with Pgp expression and may be used for the phenotypic assessment of MDR. However, new tracers with better substrate specificity for Pgp and other drug transporters would greatly assist in optimising chemotherapeutic treatment and improving patient management by predicting tumour response to therapy and to assist in the development of antagonists, which may reverse or halt MDR. The aim of this project is therefore to develop PET and SPECT radiopharmaceuticals with improved affinity and selectivity for Pgp and MRP for the clinical evaluation of MDR in cancer patients. To optimise cellular transport characteristics, a number of chemical families that have been found to be substratmilies that have been found to be substrates of Pgp and other drug efflux pumps, will be investigated. In the first instance, a series of drugs based on the flavonol natural product, Quercetin will be developed, screened for MDR and radiolabelled with PET and SPECT isotopes. Quercetin and related flavonol derivatives have been selected for this project because of their moderate to good affinity for Pgp. With the assistance of molecular modeling and in vitro studies, structural modification will be undertaken to improve the specificity and affinity for PgP. This generic structure also offers the flexibility to prepare a wide range of molecules that are readily suitable for halogenation with either Iodine-123 or F-18 for radiopharmaceutical development. Finally these phenolic type of molecules based on Quercetin are relatively less toxic than equivalent drugs. In this proposal an extensive research program is required to develop specific drugs for the different efflux pumps present in the body, which represent multi drug resistance. A successful outcome is critically dependent on the initial synthesis of a large number of compounds for screening. The combined effort of the three institutions will boost resources significantly to a critical level required to competitively produce successful outcomes in the project. Optimisation studies on derivatives of these flavonols will be made in parallel with the assistance of in vitro studies by measuring the binding of compounds to the ATP sites of Pgp. An extensive in vitro screening program has been established in Paris, prior to radiolabelling and in vivo evaluation. Structural optimisation and attachment of radionuclides to promising molecular targets will be explored using molecular modelling. Initially computational chemistry using Sybyl will be undertaken to develop a pharmacophore and to assist with the incorporation of the radionuclide in the appropriate position. In vivo evaluation will be undertaken in specific animal models both at the University of Tours in France as well as at the Sydney Cancer Centre in Australia. PET functional imaging studies may be undertaken on successful candidates at the SHFJ in Orsay, France whilst SPECT imaging will be undertaken in both Tours and in Sydney. In addition to intellectual property and potential commercial product(s), specific PET or SPECT radiopharmaceuticals can provide valuable information on the assessment of MDR in cancer patients through functional, non-invasive, imaging and therefore make significant contributions to the understanding of MDR. Scientific and clinical resea

  3. Emr, an Escherichia coli locus for multidrug resistance.

    OpenAIRE

    Lomovskaya, O.; Lewis, K.

    1992-01-01

    An Escherichia coli chromosomal DNA fragment cloned on a multicopy plasmid conferred resistance to carbonylcyanide m-chlorophenylhydrazone, nalidixic acid, and a number of other toxic compounds. The sequence of the cloned emr locus located at minute 57.5 of the chromosome revealed two open reading frames, emrA and emrB. emrB encodes a highly hydrophobic 56.2-kDa peptide, with 14 potential alpha-helices to span the inner membrane. The peptide is homologous to QacA, a multidrug-resistant pump f...

  4. Tuberculosis Multidrogoresistente / Multidrug-resistant tuberculosis

    Scientific Electronic Library Online (English)

    German A, Acevedo; Agustín, Vega; Wellman, Ribón.

    2013-12-01

    Full Text Available La tuberculosis es una enfermedad infecciosa causada por el Mycobacterium tuberculosis. En el año 2010 se registraron 8.8 millones de casos incidentes en el mundo y en los últimos años han aparecido poblaciones bacterianas de micobacterias con resistencia a los fármacos de primera línea. Se ha defin [...] ido la presencia de resistencia a rifampicina e isoniacida como multidrogoresistencia, estimándose una incidencia mundial aproximada de 3.6%. Esta revisión de tema se centrará en la situación de la tuberculosis multidrogoresistente en el mundo, incluyendo un análisis regional de la casuística Colombiana. Se comentarán los principales mecanismos de resistencia del microorganismo, los genes implicados en la misma y los factores de riesgo asociados a la generación de resistencia en algunas comunidades. Abstract in english Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. In 2010, there were 8.8 million incident cases in the world, and, in recent years, populations of mycobacteria with resistance to first-line drugs have emerged. The resistance to rifampin and isoniazid has been defined as mu [...] ltidrugresistant tuberculosis (TB MDR). TB MDR has an incidence of approximately 3.6% in the world. This review will focus on the current stage TB MDR in the world, including a regional analysis of Colombian cases. It will discuss the mechanism of resistance of the microorganism, genes involved, and the risk factors associated with the generation of resistance in some communities

  5. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2-mediated efflux of taxol and saquinavir.

    Science.gov (United States)

    Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis

    2009-12-01

    The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of human immunodeficiency virus-1 (HIV-1) protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-glycoprotein (P-gp) and multidrug resistance protein 2 (MRP2), are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing Madin-Darby canine kidney cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair) and zafirlukast (Accolate), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 microM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [(3)H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 min post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419

  6. Diversity and evolution of the small multidrug resistance protein family

    Directory of Open Access Journals (Sweden)

    Turner Raymond J

    2009-06-01

    Full Text Available Abstract Background Members of the small multidrug resistance (SMR protein family are integral membrane proteins characterized by four ?-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger ?-helical transporters such as the major facilitator superfamily (MFS and drug/metabolite transporter (DMT superfamily. To explore their evolutionary association with larger multidrug transporters, an extensive bioinformatics analysis of SMR sequences (> 300 Bacteria taxa was performed to expand upon previous evolutionary studies of the SMR protein family and its origins. Results A thorough annotation of unidentified/putative SMR sequences was performed placing sequences into each of the three SMR protein subclass designations, namely small multidrug proteins (SMP, suppressor of groEL mutations (SUG, and paired small multidrug resistance (PSMR using protein alignments and phylogenetic analysis. Examination of SMR subclass distribution within Bacteria and Archaea taxa identified specific Bacterial classes that uniquely encode for particular SMR subclass members. The extent of selective pressure acting upon each SMR subclass was determined by calculating the rate of synonymous to non-synonymous nucleotide substitutions using Syn-SCAN analysis. SUG and SMP subclasses are maintained under moderate selection pressure in comparison to integron and plasmid encoded SMR homologues. Conversely, PSMR sequences are maintained under lower levels of selection pressure, where one of the two PSMR pairs diverges in sequence more rapidly than the other. SMR genomic loci surveys identified potential SMR efflux substrates based on its gene association to putative operons that encode for genes regulating amino acid biogenesis and QAC-like metabolites. SMR subclass protein transmembrane domain alignments to Bacterial/Archaeal transporters (BAT, DMT, and MFS sequences supports SMR participation in multidrug transport evolution by identifying common TM domains. Conclusion Based on this study, PSMR sequences originated recently within both SUG and SMP clades through gene duplication events and it appears that SMR members may be evolving towards specific metabolite transport.

  7. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance

    Science.gov (United States)

    Lieberman, Tami D.; Kishony, Roy

    2014-01-01

    Alternating antibiotic therapy, in which pairs of drugs are cycled during treatment, has been suggested as a means to inhibit the evolution of de novo resistance while avoiding the toxicity associated with more traditional combination therapy. However, it remains unclear under which conditions and by what means such alternating treatments impede the evolution of resistance. Here, we tracked multistep evolution of resistance in replicate populations of Staphylococcus aureus during 22 d of continuously increasing single-, mixed-, and alternating-drug treatment. In all three tested drug pairs, the alternating treatment reduced the overall rate of resistance by slowing the acquisition of resistance to one of the two component drugs, sometimes as effectively as mixed treatment. This slower rate of evolution is reflected in the genome-wide mutational profiles; under alternating treatments, bacteria acquire mutations in different genes than under corresponding single-drug treatments. To test whether this observed constraint on adaptive paths reflects trade-offs in which resistance to one drug is accompanied by sensitivity to a second drug, we profiled many single-step mutants for cross-resistance. Indeed, the average cross-resistance of single-step mutants can help predict whether or not evolution was slower in alternating drugs. Together, these results show that despite the complex evolutionary landscape of multidrug resistance, alternating-drug therapy can slow evolution by constraining the mutational paths toward resistance. PMID:25246554

  8. pH-sensitive docetaxel-loaded D-?-tocopheryl polyethylene glycol succinate-poly(?-amino ester) copolymer nanoparticles for overcoming multidrug resistance.

    Science.gov (United States)

    Zhao, Shuang; Tan, Songwei; Guo, Yuanyuan; Huang, Jing; Chu, Min; Liu, Hudan; Zhang, Zhiping

    2013-08-12

    Multidrug resistance (MDR) is one of the major obstacles to successful chemotherapy. Overexpression of drug efflux transporters such as P-glycoprotein (P-gp) is an important factor responsible for MDR. Herein, a novel copolymer, D-?-tocopheryl polyethylene glycol 1000-block-poly(?-amino ester) (TPGS-b-PBAE, TP), was synthesized for overcoming multidrug resistance by the synergistic effect of the pH-sensitive behavior of PBAE and P-gp inhibiting activity of TPGS. Docetaxel (DTX) was chosen as the model drug. The resulting DTX-loaded nanoparticles were stable at pH 7.4, while they dissociated in a weakly acidic environment (pH 5.5) and released the incorporated DTX quickly. The DTX-loaded TP nanoparticles increased the cell cytotoxicity against both drug-sensitive human ovarian A2780 and drug-resistant A2780/T cells. The IC(50) of DTX-loaded TP against A2780/T cells was 100-fold lower than that of commercial DTX. This was associated with enhanced DTX-induced apoptosis and cell arrest in the G2/M phase. Furthermore, P-gp inhibition assays, including enhancement of the fluorescence intensity of rhodamine 123 and reduction of the intracellular ATP levels, confirmed the P-gp inhibition nature of the TP copolymer. The use of the TP copolymer is a new approach to improve the therapeutic effect of anticancer drugs in MDR tumors. PMID:23815156

  9. Multidrug-Resistant Tuberculosis in Europe, 2010–2011

    Science.gov (United States)

    Günther, Gunar; van Leth, Frank; Alexandru, Sofia; Altet, Neus; Avsar, Korkut; Bang, Didi; Barbuta, Raisa; Bothamley, Graham; Ciobanu, Ana; Crudu, Valeriu; Davilovits, Manfred; Dedicoat, Martin; Duarte, Raquel; Gualano, Gina; Kunst, Heinke; de Lange, Wiel; Leimane, Vaira; Magis-Escurra, Cecile; McLaughlin, Anne-Marie; Muylle, Inge; Polcová, Veronika; Pontali, Emanuele; Popa, Christina; Rumetshofer, Rudolf; Skrahina, Alena; Solodovnikova, Varvara; Spinu, Victor; Tiberi, Simon; Viiklepp, Piret

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients with non–MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010–2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were resistant to pyrazinamide, 51.1% were resistant to ?1 second-line drug, 26.6% were resistant to second-line injectable drugs, 17.6% were resistant to fluoroquinolones, and 6.8% were extensively drug resistant. Previous treatment for TB was the strongest risk factor for MDR TB. High levels of primary transmission and advanced resistance to second-line drugs characterize MDR TB cases in Europe. PMID:25693485

  10. Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression

    International Nuclear Information System (INIS)

    1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1, the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response

  11. Intracellular pH and the control of multidrug resistance

    OpenAIRE

    1994-01-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma ce...

  12. Characterization of a multidrug resistant C. difficile meat isolate.

    Science.gov (United States)

    Mooyottu, Shankumar; Flock, Genevieve; Kollanoor-Johny, Anup; Upadhyaya, Indu; Jayarao, Bhushan; Venkitanarayanan, Kumar

    2015-01-01

    Clostridium difficile is a pathogen of significant public health concern causing a life-threatening, toxin-mediated enteric disease in humans. The incidence and severity of the disease associated with C. difficile have increased in the US with the emergence of hypervirulent strains and community associated outbreaks. The detection of genotypically similar and identical C. difficile strains implicated from human infections in foods and food animals indicates the potential role of food as a source of community associated C. difficile disease. One hundred samples each of ground beef, pork and chicken obtained from geographically distant grocery stores in Connecticut were tested for C. difficile. Positive isolates were characterized by ribotyping, antibiotic susceptibility, toxin production and whole genome sequencing. Of the 300 meat samples, only two pork samples tested positive for C. difficile indicating a very low prevalence of C. difficile in meat. The isolates were non toxigenic; however, genome characterization revealed the presence of several antibiotic resistance genes and mobile elements that can potentially contribute to generation of multidrug resistant toxigenic C. difficile by horizontal gene transfer. Further studies are warranted to investigate potential food-borne transmission of the meat isolates and development of multi-drug resistance in these strains. PMID:25440554

  13. Peritoneal tuberculosis due to multidrug-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Esposito, Susanna; Bosis, Samantha; Canazza, Lorena; Tenconi, Rossana; Torricelli, Maurizio; Principi, Nicola

    2013-04-01

    The emergence of drug-resistant Mycobacterium tuberculosis has been widely reported throughout the world, but there are very few data regarding children. We describe the case of a 14-year-old Peruvian adolescent who had been living in Italy since the age of 8 years and was diagnosed as having peritoneal tuberculosis (TB). While she was receiving first-line anti-TB therapy, she developed pyrazinamide-associated thrombocytopenia and cultures revealed a multidrug-resistant strain of Mycobacterium tuberculosis. Pyrazinamide, rifampicin and isoniazid were replaced by moxifloxacin, which was continued for 9 months together with ethambutol. The patient recovered without experiencing any drug-related adverse event or the recurrence of TB in the following year. In conclusion, this case illustrates some of the problems that can arise when multidrug-resistant TB has to be treated in children and adolescents, and also highlights the fact that further studies are needed to clarify which drugs should be used and for how long. PMID:23679177

  14. Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin a and verapamil on multidrug resistance in vitro and in vivo

    International Nuclear Information System (INIS)

    A non-immunosuppressive cyclosporin, SDZ PSC 833 (PSC833), shows a reversal effect on multidrug resistance (MDR) by functional modulation of MDR1 gene product, P-glycoprotein. The objective of the present study was to compare the reversal efficacy of three multidrug resistance modulators, PSC833, cyclosporin A (CsA) and verapamil (Vp). PSC833 has approximately 3-10-fold greater potency than CsA and Vp with respect to the restoring effect on reduced accumulation of doxorubicin (ADM) and vincristine (VCR) in ADM-resistant K562 myelogenous leukemia cells (K562/ADM) in vitro and also on the sensitivity of K562/ADM to ADM and VCR in in vitro growth inhibition. The in vivo efficacy of a combination of modifiers (PSC833 and CsA: 50 mg/kg, Vp 100 mg/kg administered p.o. 4 h before the administration of anticancer drugs) with anticancer drugs (ADM 2.5 mg/kg i.p., Q4D days 1, 5 and 9, VCR 0.05 mg/kg i.p., QD days 1-5) was tested in ADM-resistant P388-bearing mice. PSC833 significantly enhanced the increase in life span by more than 80%, whereas CsA and Vp enhanced by less than 50%. This reversal potency, which exceeded that of CsA and Vp, was confirmed by therapeutic experiments using colon adenocarcinoma 26-bearing mice. These results demonstrated that PSC833 has significant potency to reverse MDR in vitro and in vivo, suggesting that PSC833 is a good candidate for reversing multidrug resistance in clinical situations. (orig.)

  15. Regorafenib is transported by the organic anion transporter 1B1 and the multidrug resistance protein 2.

    Science.gov (United States)

    Ohya, Hiroki; Shibayama, Yoshihiko; Ogura, Jiro; Narumi, Katsuya; Kobayashi, Masaki; Iseki, Ken

    2015-01-01

    Regorafenib is a small molecule inhibitor of tyrosine kinases, and has been shown to improve the outcomes of patients with advanced colorectal cancer and advanced gastrointestinal stromal tumors. The transport profiles of regorafenib by various transporters were evaluated. HEK293/organic anion transporting polypeptide 1B1 (OATP1B1) cells exhibited increased drug sensitivity to regorafenib. Regorafenib inhibited the uptake of 3H-estrone sulfate by HEK293/OATP1B1 cells in a dose-dependent manner, but did not affect its elimination by P-glycoproteins. The concentration of regorafenib was significantly lower in LLC-PK1/multidrug resistance protein 2 (MRP2) cells than in LLC-PK1 cells treated with the MRP2 inhibitor, MK571. MK571 abolished the inhibitory effects of regorafenib on intracellular accumulation in LLC-PK1/MRP2 cells. The uptake of regorafenib was significantly higher in HEK293/OATP1B1 cells than in OATP1B1-mock cells. Transport kinetics values were estimated to be Km=15.9?µM and Vmax=1.24?nmol/mg/min. No significant difference was observed in regorafenib concentrations between HEK293/OATP1B3 and OATP1B3-mock cells. These results indicated that regorafenib is a substrate for MRP2 and OATP1B1, and also suggest that the substrate preference of regorafenib may implicate the pharmacokinetic profiles of regorafenib. PMID:25739790

  16. Draft Genome of the Multidrug-Resistant Acinetobacter baumannii Strain A155 Clinical Isolate

    Science.gov (United States)

    Arivett, Brock A.; Fiester, Steven E.; Ream, David C.; Centrón, Daniela; Ramírez, Maria S.; Tolmasky, Marcelo E.

    2015-01-01

    Acinetobacter baumannii is a bacterial pathogen with serious implications on human health, due to increasing reports of multidrug-resistant strains isolated from patients. Total DNA from the multidrug-resistant A. baumannii strain A155 clinical isolate was sequenced to greater than 65× coverage, providing high-quality contig assemblies. PMID:25814610

  17. (Patho)physiological function of the Multidrug Resistance protein MRP1

    OpenAIRE

    Renes, Jan Willem

    2000-01-01

    Overexpression of the multidrug resistance protein MRP1 confer multidrug resistance (MDR) to cancer cells. The contents of this thesis describe the involvement of MRP1 in MDR and its importance as transporter for physiological phase II detoxification conjugates. ... Zie: Chapter 8

  18. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  19. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  20. Effect of multidrug resistance gene-1(mdr1) overexpression on in-vitro uptake of 99mTc-sestaMIBI in murine L1210 leukemia cells

    International Nuclear Information System (INIS)

    To determine whether 99mTc-MIBI is recognized by the multidrug resistant P-glycoprotein (Pgp), we have measured quantitatively 99mTc-MIBI uptake in cancer cells. The effects of various Pgp reversing agents on cellular 99mTc-MIBI uptake were also investigated in the presence of multidrug resistance gene-1 (mdr 1 gene) overexpression. We measured percentage uptake of 99mTc-MIBI at different incubation temperatures both in mdr1 positive and negative cells. The effects of verapamil, cyclosporin, and dipyridamole on cellular uptake of 99mTc-MIBI were also evaluated with or without overexpression of mdr1 gene in cultured murine leukemia L1210 cells. The mdr1 gene expressing cell lines were effectively induced in in vitro with continuous application of low-dose adriamycin or vincristine. Cellular uptake of 99mTc-MIBI was higher in mdr1 negative L1210 cells than those of mdr1 positive cells, and higher when incubated in 37 .deg. C than 4 .deg. C. In the presence of verapamil, cyclosporin or dipyridamole, 99mTc-MIBI uptake was increased upto 604% in mdr1 positive cells. Cellular uptake of 99mTc-MIBI is lower in leukemia cells over-expressing mdr1 gene, and MDR-reversing agents increase cellular uptake. These results suggest the 99mTc-MIBI can be used for characterizing Pgp expression and developing MDR-reversing agents in vitro

  1. The assembly motif of a bacterial small multidrug resistance protein.

    Science.gov (United States)

    Poulsen, Bradley E; Rath, Arianna; Deber, Charles M

    2009-04-10

    Multidrug transporters such as the small multidrug resistance (SMR) family of bacterial integral membrane proteins are capable of conferring clinically significant resistance to a variety of common therapeutics. As antiporter proteins of approximately 100 amino acids, SMRs must self-assemble into homo-oligomeric structures for efflux of drug molecules. Oligomerization centered at transmembrane helix four (TM4) has been implicated in SMR assembly, but the full complement of residues required to mediate its self-interaction remains to be characterized. Here, we use Hsmr, the 110-residue SMR family member of the archaebacterium Halobacterium salinarum, to determine the TM4 residue motif required to mediate drug resistance and SMR self-association. Twelve single point mutants that scan the central portion of the TM4 helix (residues 85-104) were constructed and were tested for their ability to confer resistance to the cytotoxic compound ethidium bromide. Six residues were found to be individually essential for drug resistance activity (Gly(90), Leu(91), Leu(93), Ile(94), Gly(97), and Val(98)), defining a minimum activity motif of (90)GLXLIXXGV(98) within TM4. When the propensity of these mutants to dimerize on SDS-PAGE was examined, replacements of all but Ile resulted in approximately 2-fold reduction of dimerization versus the wild-type antiporter. Our work defines a minimum activity motif of (90)GLXLIXXGV(98) within TM4 and suggests that this sequence mediates TM4-based SMR dimerization along a single helix surface, stabilized by a small residue heptad repeat sequence. These TM4-TM4 interactions likely constitute the highest affinity locus for disruption of SMR function by directly targeting its self-assembly mechanism. PMID:19224913

  2. Expression of multidrug resistance proteins in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Li, Weiquan; Song, Maomin

    2014-11-01

    Chemotherapy is commonly used for the treatment of breast cancer. However, the resistance to chemotherapeutic agents, often mediated by multidrug resistance (MDR) mechanisms, is a common occurrence. The present study examined the expression of several MDR-related proteins (MRPs) in invasive ductal carcinoma (IDC) of the breast, and assessed their association with clinicopathological variables and their prognostic significance. In addition, immunohistochemistry was used to measure the expression of MRP, p-glycoprotein (P-gp), topoisomerase 2? (Topo2?), thymidylate synthase (TS) and glutathione-S-transferase ? (GST-?) in 156 resected IDCs of the breast. Pearson's ?(2) test and Spearman's correlation coefficient were used to analyze the association between MDR protein expression and several clinicopathological variables. The association between each of the five MDR proteins was also examined. Furthermore, Kaplan-Meier analysis and Cox regression modeling were used to assess overall survival. The expression of MRP, P-gp, Topo2?, TS and GST-? was detected in 20.5% (32/156), 25.0% (39/156), 84.0% (131/156), 41.7% (65/156) and 41.0% (64/156) of cases examined, respectively. No correlation was identified between MRP and Topo-2? and the clinicopathological variables examined. By contrast, P-gp (?(2)=20.226; P<0.0001) and GST-? (?(2)=35.032; P<0.0001) were found to positively correlate with tumor grade. In addition, staining for TS was associated with axillary lymph node metastasis (?(2)=42.281; P<0.0001). The expression levels of P-gp and GST-? were found to be significantly correlated (r= 0.319; P<0.0001). Furthermore, GST-? expression was elevated in estrogen receptor-negative breast cancer (?(2)=17.407; P<0.0001). Tumor histological grade, in addition to TS and GST-? expression, were significant predictors of a poor survival outcome. TS and GST-? are consequently useful prognostic biomarkers in IDC, therefore, when establishing a personalized chemotherapeutic plan, the expression of MDR proteins must be considered. PMID:25295098

  3. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    International Nuclear Information System (INIS)

    Highlights: ? The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. ? Apoptosis is inhibited by P-glycoprotein expression. ? Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using 3H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  4. Characterization and Identification of Multidrug Resistant Bacteria from Some Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Seham Abdel-Shafi

    2013-01-01

    Full Text Available The isolation of multidrug resistant bacteria from Egyptian patients showed a great interest to study such phenomenon. Hence, simple methods were followed herein to isolate and characterize the antibiotic resistant variants by the common phenotypic, morphological and biochemical characters. Out of 500 clinical bacterial cultures, 50 only were multidrug resistant bacteria with a value of drug resistance ability of about 10%. About 46% of multidrug resistant bacterial cultures tested were isolated from urine samples. The percentage values of both resistance and susceptibility of the 50 multidrug resistant bacterial isolates to 14 types of antibiotics were calculated. Based on their cultural, morphological and biochemical characteristics, the 50 multidrug resistant bacterial isolates were identified and categorized into eight groups. The identified bacterial species were arranged in a descending order according to their frequency percentage viz. Escherichia coli>Staphylococcus aureus> Pseudomonas aeruginosa> Klebsiella pneumoniae>Streptococcus pyogenes> Proteus vulgaris>Streptococcus pneumoniae> Staphylococcus saprophyticus. The relationship between pathogenic cases, symptoms and the identified multidrug bacterial pathogens was studied. A simple key was designed for easy differentiation and classification of the 50 multidrug resistant bacterial organisms. It was based on easily determinable characteristics which were used for rapid assignment of bacteria into genera and species.

  5. In vivo reversibility of multidrug resistance by the MDR-modulator dexniguldipine (niguldipine derivative B859-35) and by verapamil.

    Science.gov (United States)

    Dietel, M; Boss, H; Reymann, A; Pest, S; Seidel, A

    1996-01-01

    The newly synthesized dihydropyridine derivative B859-35 was previously shown in vitro to be highly effective in reversing multidrug resistance (MDR) of P-glycoprotein positive tumor cell lines, such as the adriamycin (ADR) resistant erythroleukemia F4-6RADR cells. In the current study B859-35 was investigated for its efficiency in reversing MDR in an in vivo tumor model for preclinical testing of MDR-modulators. F4-6RADR cells were injected into the right flank of nude mice while the parent cells were injected into the left flank. The animals were treated i.p. with ADR (9.0 mg/kg body weight) combined with B859-35 (5, 10, or 25 mg/kg) or, for comparison and validation, with verapamil (VRP) (75 mg/kg). The effects of ADR and the MDR-modulator combination were evaluated by histological morphometry of the tumors. While ADR alone was shown to be ineffective in resistant cells, the combinations of ADR + B859-35 as well as of ADR + VRP were highly active in reducing the number of viable cells in the resistant tumor nodule by 67 +/- 9% or by 53 +/- 11% of controls. This model provides evidence that even in vivo, MDR modulators can be effective in reversing drug resistance. In addition, it presents a potentially useful and rapid preclinical system for in vivo studies on the modification of drug resistance. PMID:9414385

  6. Multidrug-resistant tuberculosis: epidemiology, risk factors and case finding.

    Science.gov (United States)

    Caminero, J A

    2010-04-01

    Although the multidrug-resistant tuberculosis (MDR-TB) epidemic is a very recent problem, many studies have attempted to understand it. We now have good estimates of the current burden (approximately 500 000 MDR-TB cases worldwide), and following the introduction of potential MDR-TB control strategies projections of these figures are being estimated. The projected trends in tuberculosis (TB) and MDR-TB incidence vary. Risk factors for resistance can be divided into two categories: 1) those facilitating the selection of resistance in the community and 2) the specific conditions that appear to increase some patients' vulnerability to resistance. The epidemiological situation varies greatly across countries, principally due to poor treatment practices and poor implementation of control programmes in the past-and even today, to a lesser degree-and recent data have suggested that national TB programmes that use existing drugs efficiently can postpone and even reverse the MDR-TB epidemic. Other factors that have also contributed to this epidemic situation are analysed in this article. The recognition of factors leading to the epidemic in some regions and the identification of populations at risk will assist in focusing case-finding efforts. From an individual perspective, treatment failures with first-line rifampicin-containing regimens and contacts of MDR-TB cases have the highest rates of resistance. Patients previously treated for TB and the other risk factors analysed in this article should be prioritised in case finding. PMID:20202293

  7. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  8. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A re

    Directory of Open Access Journals (Sweden)

    Hossam M. Abdallah

    2015-01-01

    Full Text Available Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. P-glycoprotein (P-gp is a member of the ATP-dependent membrane transport proteins; it is known to pump substrates out of cells in ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the cytotoxicity of a broad spectrum of antitumor drugs. Accordingly, P-gp inhibitors/blockers are potential enhancer for the cellular bioavailability of several clinically important anticancer drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins. Besides several chemically synthesized P-gp inhibitors/blockers, some naturally occurring compounds and plant extracts were reported for their modulation of multidrug resistance; however, this review will focus only on major classes of naturally occurring inhibitors viz., flavonoids, coumarins, terpenoids, alkaloids and saponins.

  9. The radiological spectrum of pulmonary multidrug-resistant tuberculosis: in HIV-Negative patients

    International Nuclear Information System (INIS)

    Background: Multidrug-resistant tuberculosis is a major worldwide health problem. In countries where tuberculosis is of moderate to high prevalence, the issue of Multidrug-resistant tuberculosis carries significant importance. Multidrug-resistant tuberculosis, similar to drug-sensitive tuberculosis, is contagious. Meanwhile its treatment is not only more difficult but also more expensive with lower success rates. Regarding clinical findings, there is no significant difference between Multidrug-resistant tuberculosis and drug-sensitive tuberculosis. Therefore determination of characteristic radiological findings in cases of Multidrug-resistant tuberculosis might be of help in early detection, and hence appropriate management of this disease condition. Objective: To explain the radiological spectrum of pulmonary Multidrug-resistant tuberculosis. Patients and methods: We retrospectively evaluated the radiographic images of 35 patients with clinically-and microbiologically- proven Multidrug-resistant tuberculosis admitted to our tertiary-care tuberculosis unit over a period of 13 months. The latest chest x-ray of all patients and the conventional chest CT scan without contrast of 15 patients were reviewed by three expert radiologists who rendered consensus opinion. Results: Of the 35 patients with imaging studies, 23 (66%) were male and 12 (34%) were female. The mean±SD age of participants was 38.2±17.3 (range: 16-20) years. 33 patients were known as secondary and only tients were known as secondary and only 2 had primary Multidrug-resistant tuberculosis. Chest radiography revealed cavitary lesion in 80% pulmonary infiltration in 89% and nodules in 80% of the cases. Pleurisy was the rarest finding observed in only 5 (14%) patients. All of 15 chest CT scans revealed cavitation, 93% of which were bilateral and multiple. Pleural involvement was seen in 93% of patients. Conclusion: Presence of multiple cavities, especially in both lungs, nodular and infiltrative lesions, and pleural effusion are main features of multidrug-resistant tuberculosis as compared to drug-sensitive tuberculosis

  10. Safety and effectiveness of home intravenous antibiotic therapy for multidrug-resistant bacterial infections.

    Science.gov (United States)

    Mujal, A; Sola, J; Hernandez, M; Villarino, M-A; Machado, M-L; Baylina, M; Tajan, J; Oristrell, J

    2015-06-01

    Home intravenous antibiotic therapy is an alternative to hospital admission for moderately severe infections. However, few studies have analyzed its safety and effectiveness in the treatment of infections caused by multidrug-resistant bacteria. The purpose of this study is to analyze the safety and effectiveness of home intravenous antibiotic therapy in multidrug-resistant bacterial infections. We analyzed prospectively all patients admitted to our service who underwent home intravenous antibiotic therapy during the period 2008-2012. All the treatments were administered by caretakers or self-administered by patients, through elastomeric infusion devices. Effectiveness was evaluated by analyzing the readmission rate for poor infection control. Safety was evaluated by analyzing adverse events, catheter-related complications, and readmissions not related to poor infection control. There were 433 admissions (in 355 patients) for home intravenous antibiotic therapy during the study period. There were 226 (52.2 %) admissions due to multidrug-resistant bacterial infections and 207 (47.8 %) due to non-multidrug-resistant infections. Hospital readmissions in patients with multidrug-resistant infections were uncommon. Multidrug-resistant enterococcal infections, healthcare-associated infections, and carbapenem therapy were independent variables associated with increased readmissions due to poor infection control. Readmissions not related to poor infection control, adverse events, and catheter-related complications were similar in multidrug-resistant compared to non-multidrug-resistant bacterial infections. Home intravenous therapy, administered by patients or their caretakers using elastomeric infusion pumps, was safe and effective for the treatment of most multidrug-resistant bacterial infections. PMID:25655757

  11. Effect of NlpE Overproduction on Multidrug Resistance in Escherichia coli?

    OpenAIRE

    Nishino, Kunihiko; Yamasaki, Seiji; Hayashi-nishino, Mitsuko; Yamaguchi, Akihito

    2010-01-01

    NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli.

  12. Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia coli?

    OpenAIRE

    Ruiz, Cristian; Levy, Stuart B.

    2010-01-01

    Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, trans...

  13. Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex

    OpenAIRE

    Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.; Unadkat, Jashvant D.

    2014-01-01

    Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane p...

  14. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  15. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis.

    Science.gov (United States)

    Kempker, Russell R; Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J; Blumberg, Henry M

    2015-06-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  16. Prevalence of Multidrug Resistant Mycobacterium tuberculosis by Mycobacteria growth

    Directory of Open Access Journals (Sweden)

    Livani S

    2012-01-01

    Full Text Available Background and objectives: Identification and monitoring ofmultidrugresistant Mycobacterium tuberculosis strains (MDR ishighlighted by the high risk of their spreading in different areas.Prevalence of these strains was evaluated in Golestan province innortheast of Iran.Material and Methods: Drug susceptibility testing to Isoniazid andrifampin was carried out for 148 clinical samples that had grown inMycobacteria growth indicator tube (MGIT system, according to themanufacturer's instructions (Becton-Dickinson, USA. The associationof drug resistance frequency with demographic characteristics andgrowth time were investigated. The appropriate statistical tests, X2 andstudent Ttest were performed for comparison of these variants. A pvalue>0.05 was considered significant in all cases.Results: The turnaround time required for growth of Mycobacteriumtuberculosis in MGIT system was between 2 to 55 days (mean16.3±10.4 days. Of all samples studied, 17.6% and 3.4% wereresistant to Isoniazid and rifampin, respectively, and 3.4% (5 sampleswere MDR (CI 95%; 1- 6%. The turnaround time required fordetermining MDR cases was 9.6 days. No statistically significantassociation was found between the resistance to the drugs and none ofthe factors including sex, age, type of clinical sample, and positivity ofthe smear.Conclusion: The prevalence of MDR in the studied region wasdetermined to be 3.4% which is similar to the country-wideevaluations. The turnaround time for Mycobacterium growth and antidrug susceptibility result can be shortened by MGIT method.Key words: Mycobacterium tuberculosis, Mycobacterium GrowthIndicator Tube, Multidrug Resistant

  17. Management of multidrug-resistant tuberculosis: an update.

    Science.gov (United States)

    Monedero, Ignacio; Caminero, José A

    2010-04-01

    Multidrug-resistant tuberculosis (MDR-TB) is threatening control of TB in many parts of the world. As a result of limited treatment options, patients have a poor prognosis and low chances of cure. This situation can be exacerbated by HIV epidemics. In some cases, the risk exists of a real shift from susceptible to resistant strains. Despite its relevance, currently there are more contradictions and confusion surrounding MDR-TB than hard evidence. No randomized controlled trials have been performed and published evidence is limited. Rather than just the selection of expensive drugs, MDR-TB management requires well-structured programmes with a comprehensive approach, which involve the actions of a wide range of participants. Even with current investments in research and development, new drugs and vaccines will take many years to be applied in low and middle income countries. The most successful results will depend on the optimization of existing tools. The majority of the patients, even those with extensive patterns of bacilli resistance, have a possibility of cure if current clinical knowledge and effective logistics are applied. This paper is a critical review of current best practice regarding the diagnosis and treatment of MDR-TB. PMID:20388724

  18. Technetium-99m-hexakis-2-methoxyisobutylisonitrile scintigraphy and multidrug resistance-related protein expression in human primary lung cancer

    International Nuclear Information System (INIS)

    The occurrence of multidrug resistance (MDR) is a major cause of resistance to chemotherapeutic agents in patients with lung cancer, in part owing to the overexpression of MDR-related proteins. Technetium-99m-hexakis-2-methoxyisobutylisonitrile (99mTc-MIBI) has been shown to be a substrate for some MDR-related proteins. The aim of this study is to evaluate the role of 99mTc-MIBI scintigraphy for functional imaging of MDR-related protein phenotypes. To determine the correlation between 99mTc-MIBI scintigraphy and the expression level of P-glycoprotein (Pgp), multidrug-resistance protein (MRP), and glutathione-S-transferase Pi (GST?), 26 patients (17 men and 9 women, median age 57.5 years) with primary lung cancer were investigated. Following intravenous administration of 925 MBq 99mTc-MIBI, single-photon emission computed tomography (SPECT) and computed tomography (CT) were performed at 15 min and 2 h. On the basis of the fused images, tumor to background (T/B) ratio of both early and delayed images, and washout rate (WR%) of 99mTc-MIBI were calculated. The immunohistochemical staining of Pgp, MRP, and GST? was performed, and the expression level was semiquantitated using a pathoimage analysis system. The imaging results were compared with the status of Pgp, MRP, and GST? expression. The WR% of 99mTc-MIBI showed a significant positive correlation with Pgp expression (r=0.560, P=0.003), as no correlatiion (r=0.560, P=0.003), as no correlation was observed between WR% and MRP or GST? (r=0.354, P=0.076; r=0.324, P=0.106). Neither early T/B nor delayed T/B correlated with the expression level of Pgp, MRP, and GST?. WR%, Pgp, and GST? expression showed significant differences between squamous cell carcinoma (group A) and adenocarcinoma (group B). There was no significant difference among Pgp, MRP, and GST? expression levels in any cases (P>0.05). Our data confirmed that 99mTc-MIBI scintigraphy is useful for determining the MDR caused by Pgp in patients with primary lung cancer. (author)

  19. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  20. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors

    Science.gov (United States)

    Poongavanam, Vasanthanathan; Haider, Norbert; Ecker, Gerhard F.

    2012-01-01

    P-Glycoprotein (P-gp, ABCB1) plays a significant role in determining the ADMET properties of drugs and drug candidates. Substrates of P-gp are not only subject to multidrug resistance (MDR) in tumor therapy, they are also associated with poor pharmacokinetic profiles. In contrast, inhibitors of P-gp have been advocated as modulators of MDR. However, due to the polyspecificity of P-gp, knowledge on the molecular basis of ligand–transporter interaction is still poor, which renders the prediction of whether a compound is a P-gp substrate/non-substrate or an inhibitor/non-inhibitor quite challenging. In the present investigation, we used a set of fingerprints representing the presence/absence of various functional groups for machine learning based classification of a set of 484 substrates/non-substrates and a set of 1935 inhibitors/non-inhibitors. Best models were obtained using a combination of a wrapper subset evaluator (WSE) with random forest (RF), kappa nearest neighbor (kNN) and support vector machine (SVM), showing accuracies >70%. Best P-gp substrate models were further validated with three sets of external P-gp substrate sources, which include Drug Bank (n = 134), TP Search (n = 90) and a set compiled from literature (n = 76). Association rule analysis explores the various structural feature requirements for P-gp substrates and inhibitors. PMID:22595422

  1. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  2. Modulation of multidrug resistance by flavonoids. Inhibitors of glutathione conjugation and MRP-mediated transport

    OpenAIRE

    Zanden, J. J.

    2005-01-01

    In this thesis, the use of flavonoids for inhibition of two important players in the glutathione related biotransformation system involved in multidrug resistance was investigated using several in vitro model systems. The enzymes of interest included the phase II glutathione S-transferase enzyme GSTP1-1, able to detoxify anticancer agents through conjugation with glutathione and the two multidrug resistance proteins MRP1 and MRP2 involved in glutathione mediated cellular efflux of, amongst ot...

  3. Time to Culture Conversion and Regimen Composition in Multidrug-Resistant Tuberculosis Treatment

    OpenAIRE

    Tierney, Dylan B.; Franke, Molly F.; Becerra, Mercedes C.; Alca?ntara Viru?, Fe?lix A.; Bonilla, Ce?sar A.; Sa?nchez, Epifanio; Guerra, Dalia; Mun?oz, Maribel; Llaro, Karim; Palacios, Eda; Mestanza, Lorena; Hurtado, Roci?o M.; Furin, Jennifer J.; Shin, Sonya; Mitnick, Carole D.

    2014-01-01

    Sputum cultures are an important tool in monitoring the response to tuberculosis treatment, especially in multidrug-resistant tuberculosis. There has, however, been little study of the effect of treatment regimen composition on culture conversion. Well-designed clinical trials of new anti-tuberculosis drugs require this information to establish optimized background regimens for comparison. We conducted a retrospective cohort study to assess whether the use of an aggressive multidrug-resistant...

  4. Risk factors for nosocomial bloodstream infection caused by multidrug resistant gram-negative bacilli in pediatrics

    OpenAIRE

    Mariana V. Arnoni; Eitan N. Berezin; Marinês D.V. Martino

    2007-01-01

    The aim of this study was to identify the risk factors for nosocomial bloodstream infections by multidrug resistant Gram-negative bacilli. From November 2001 to December 2003, in the Pediatric Department of the Santa Casa de São Paulo, a retrospective case-control study was developed concerning patients who had nosocomial bloodstream infection caused by Gram-negative bacilli. Patients with multidrug resistant infections were designated as case patients, and control patients were those with a...

  5. Short, highly effective and inexpensive standardized treatment of multidrug-resistant tuberculosis

    OpenAIRE

    Van Deun, A.; Maug, A. K.; M.A.Salim; P. K. Das; Sarker, M. R.; Daru, P.; Rieder, H L

    2010-01-01

    RATIONALE: Based on expert opinion, the global guidelines for management of multidrug-resistant tuberculosis impose lengthy and often poorly tolerated treatments. OBJECTIVES: This observational study evaluates the effectiveness of standardized regimens for patients with proven multidrug-resistant tuberculosis previously untreated with second-line drugs in low-income countries. METHODS: Consenting patients were sequentially assigned to one of six standardized treatment regimens. Subsequent coh...

  6. Polymeric nanoassemblies entrapping curcumin overcome multidrug resistance in ovarian cancer.

    Science.gov (United States)

    Gou, Qiheng; Liu, Lei; Wang, Chunting; Wu, Qinjie; Sun, Lu; Yang, Xi; Xie, Yuxin; Li, Ping; Gong, Changyang

    2015-02-01

    The increasing emergence of multidrug-resistant (MDR) cells presents a challenge to effective cancer therapy. Curcumin (CUR) has multifunctional anticancer properties, but its clinical use has been limited by poor solubility. We developed biodegradable polymeric micelles entrapping CUR in order to improve its antitumor activity and to explore whether it could treat MDR cells. This delivery system produced small micelles with a high encapsulation efficiency, good stability, and slow release of CUR. CUR micelles showed cytotoxic effects in wild-type drug-sensitive A2780s and in paclitaxel-resistant A2780t ovarian adenocarcinoma cells. The concentration of free CUR that reduced cell viability by 50% (IC50) was 1.5 fold and 1.2 fold higher than that of CUR micelles in A2780s and A2780t cells, respectively. Cellular uptake studies indicated that delivery by micelles improved CUR uptake into both cell lines. Cell cycle analysis suggested that CUR micelles induced apoptosis and enhanced G2/M arrest. Overall, CUR micelles may provide a novel strategy to improve the clinical management of MDR ovarian cancer. PMID:25543980

  7. ‘Old’ antibiotics for emerging multidrug-resistant bacteria

    Science.gov (United States)

    Bergen, Phillip J.; Landersdorfer, Cornelia B.; Lee, Hee Ji; Li, Jian; Nation, Roger L.

    2014-01-01

    Purpose of review Increased emergence of bacterial resistance and the decline in newly developed antibiotics have necessitated the reintroduction of previously abandoned antimicrobial agents active against multidrug-resistant bacteria. Having never been subjected to contemporary drug development procedures, these ‘old’ antibiotics require redevelopment in order to optimize therapy. This review focuses on colistin as an exemplar of a successful redevelopment process and briefly discusses two other old antibiotics, fusidic acid and fosfomycin. Recent findings Redevelopment of colistin led to an improved understanding of its chemistry, pharmacokinetics and pharmacodynamics, enabling important steps towards optimizing its clinical use in different patient populations. A scientifically based dosing algorithm was developed for critically ill patients, including those with renal impairment. As nephrotoxicity is a dose-limiting adverse event of colistin, rational combination therapy with other antibiotics needs to be investigated. Summary The example of colistin demonstrated that state-of-the-art analytical, microbiological and pharmacokinetic/pharmacodynamic methods can facilitate optimized use of ‘old’ antibiotics in the clinic. Similar methods are now being applied to fosfomycin and fusidic acid in order to optimize therapy. To improve and preserve the usefulness of these antibiotics rational approaches for redevelopment need to be followed. PMID:23041772

  8. Common errors in multidrug-resistant tuberculosis management.

    Science.gov (United States)

    Monedero, Ignacio; Caminero, Jose A

    2014-02-01

    Multidrug-resistant tuberculosis (MDR-TB), defined as being resistant to at least rifampicin and isoniazid, has an increasing burden and threatens TB control. Diagnosis is limited and usually delayed while treatment is long lasting, toxic and poorly effective. MDR-TB management in scarce-resource settings is demanding however it is feasible and extremely necessary. In these settings, cure rates do not usually exceed 60-70% and MDR-TB management is novel for many TB programs. In this challenging scenario, both clinical and programmatic errors are likely to occur. The majority of these errors may be prevented or alleviated with appropriate and timely training in addition to uninterrupted procurement of high-quality drugs, updated national guidelines and laws and an overall improvement in management capacities. While new tools for diagnosis and shorter and less toxic treatment are not available in developing countries, MDR-TB management will remain complex in scarce resource settings. Focusing special attention on the common errors in diagnosis, regimen design and especially treatment delivery may benefit patients and programs with current outdated tools. The present article is a compilation of typical errors repeatedly observed by the authors in a wide range of countries during technical assistant missions and trainings. PMID:24329041

  9. Multidrug-resistant tuberculosis management in resource-limited settings.

    Science.gov (United States)

    Nathanson, Eva; Lambregts-van Weezenbeek, Catharina; Rich, Michael L; Gupta, Rajesh; Bayona, Jaime; Blöndal, Kai; Caminero, José A; Cegielski, J Peter; Danilovits, Manfred; Espinal, Marcos A; Hollo, Vahur; Jaramillo, Ernesto; Leimane, Vaira; Mitnick, Carole D; Mukherjee, Joia S; Nunn, Paul; Pasechnikov, Alexander; Tupasi, Thelma; Wells, Charles; Raviglione, Mario C

    2006-09-01

    Evidence of successful management of multidrug-resistant tuberculosis (MDRTB) is mainly generated from referral hospitals in high-income countries. We evaluate the management of MDRTB in 5 resource-limited countries: Estonia, Latvia, Peru, the Philippines, and the Russian Federation. All projects were approved by the Green Light Committee for access to quality-assured second-line drugs provided at reduced price for MDRTB management. Of 1047 MDRTB patients evaluated, 119 (11%) were new, and 928 (89%) had received treatment previously. More than 50% of previously treated patients had received both first- and second-line drugs, and 65% of all patients had infections that were resistant to both first- and second-line drugs. Treatment was successful in 70% of all patients, but success rate was higher among new (77%) than among previously treated patients (69%). In resource-limited settings, treatment of MDRTB provided through, or in collaboration with, national TB programs can yield results similar to those from wealthier settings. PMID:17073088

  10. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    Science.gov (United States)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted in increased cell association with these cancer cells. The 2C5-modified immunoliposomes, along with unmodified liposomes co-loaded with tariquidar and paclitaxel were tested for their antitumor effects in vivo. Significant tumor growth inhibition occurred with combination therapy in resistant as well as sensitive cell lines. However, immunoliposomes failed to increase antitumor effect in vivo as spontaneous accumulation of liposomes at added dose may have saturated tumor accumulation. We were also interested in evaluating physiological factors responsible for the MDR. Spheroids grown in vitro provided platform to demonstrate many characteristics of tumor tissues such as cell-cell interaction, a hypoxic core, low pH environment at core and a relevant genetic profile. In this study, spheroids were utilized to evaluate paclitaxel cytotoxity and to evaluate effects of 2C5 modification on cellular uptake. Lack of cytotoxicity was observed in spheroids treated with paclitaxel alone as well as in combination with tariquidar. Likely explanations could be the presence of cells in diverse cell cycle stages and limited penetration. Also, increased uptake was observed in spheroids when treated with 2C5-modified Rh-labeled liposomes compared to UPC10-modified Rh-labeled liposomes. Such results have clearly demonstrated the importance of using this novel research model in cancer research.

  11. Yakult: a role in combating multi-drug resistant Pseudomonas aeruginosa?

    Science.gov (United States)

    Thomson, C H; Hassan, I; Dunn, K

    2012-11-01

    Presence of extremely drug resistant metallo-beta-lactamase (MBL VIM) Pseudomonas aeruginosa in a patient presenting with 54% deep-dermal and full-thickness flame burns to her neck, chest, upper abdomen and upper limbs, appeared to coincide with wound breakdown and non-healing. This organism was also seen to colonise the patient's gastrointestinal tract, which was thought to act as a reservoir for re-infection of her wounds. Oral treatment with a probiotic drink (Yakult yoghurt) was commenced in order to alter gut flora. Two weeks after this regimen began, P. aeruginosa grown from wound swabs was seen to change from multi-drug resistant to multi-drug sensitive strains. This change persisted through to patient discharge home from hospital. The temporal relationship seen between commencement of once-daily probiotic and change of the organism from multi-drug resistant to multi-drug sensitive suggests that this may have been an effective intervention. PMID:23413495

  12. P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-n-methyluronamide in human leukemia cells.

    Science.gov (United States)

    Mlejnek, Petr; Dolezel, Petr; Kosztyu, Petr

    2012-02-01

    We studied effects of 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) on apoptosis induction in the K562/Dox cell line, which overexpressed P-glycoprotein (P-gp, ABCB1, MDR1). We found that the K562/Dox cell line was significantly more resistant to Cl-IB-MECA than the maternal cell line K562, which did not express P-gp. Although both cell lines expressed the A3 adenosine receptor (A3AR), cytotoxic effects of Cl-IB-MECA were not prevented by its selective antagonist MRS1523 (3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate). Analysis of cell extracts revealed that the intracellular level of Cl-IB-MECA was significantly lower in the K562/Dox cell line than in the maternal cell line K562. The downregulation of P-gp expression using shRNA targeting ABCB1 gene led to increased intracellular level of Cl-IB-MECA and restored cell sensitivity to this drug. Similarly, valspodar (PSC-833), a specific inhibitor of P-gp, restored sensitivity of the K562/Dox cell line to Cl-IB-MECA with concomitant increase of intracellular level of Cl-IB-MECA in the resistant cell line, while it affected cytotoxicity of Cl-IB-MECA in the sensitive cell line only marginally. An enzyme based assay provided evidence for interaction of P-gp with Cl-IB-MECA. We further observed that cytotoxic effects of Cl-IB-MECA could be augmented by activation of extrinsic cell death pathway by Apo-2L (TRAIL) but not FasL or TNF-?. Our results revealed that Cl-IB-MECA induced an increase in expression of TRAIL receptors in K562 cells, which could sensitize cells to apoptosis induction via an extrinsic cell death pathway. Importantly, these effects were inversely related to P-gp expression. In addition, MRS1523 did not affect Cl-IB-MECA induced expression of TRAIL receptors. PMID:21520073

  13. Function-Altering SNPs in the Human Multidrug Transporter Gene ABCB1 Identified Using a Saccharomyces-Based Assay

    OpenAIRE

    Jeong, Hotcherl; Herskowitz, Ira; Kroetz, Deanna L.; Rine, Jasper

    2007-01-01

    The human ABCB1 (MDR1)-encoded multidrug transporter P-glycoprotein (P-gp) plays a major role in disposition and efficacy of a broad range of drugs including anticancer agents. ABCB1 polymorphisms could therefore determine interindividual variability in resistance to these drugs. To test this hypothesis we developed a Saccharomyces-based assay for evaluating the functional significance of ABCB1 polymorphisms. The P-gp reference and nine variants carrying amino-acid–altering single nucleotid...

  14. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21?-Methylmelianodiol in Lung Cancer Cells

    Science.gov (United States)

    Aldonza, Mark Borris Docdoc; Hong, Ji-Young; Bae, Song Yi; Song, Jayoung; Kim, Won Kyung; Oh, Jedo; Shin, Yoonho; Lee, Seung Ho; Lee, Sang Kook

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide and remains the most prevalent. Interplay between PI3K/AMPK/AKT and MAPK pathways is a crucial effector in lung cancer growth and progression. These signals transduction protein kinases serve as good therapeutic targets for non-small cell lung cancer (NSCLC) which comprises up to 90% of lung cancers. Here, we described whether 21?-Methylmelianodiol (21?-MMD), an active triterpenoid derivative of Poncirus trifoliate, can display anticancer properties by regulating these signals and modulate the occurrence of multidrug resistance in NSCLC cells. We found that 21?-MMD inhibited the growth and colony formation of lung cancer cells without affecting the normal lung cell phenotype. 21?-MMD also abrogated the metastatic activity of lung cancer cells through the inhibition of cell migration and invasion, and induced G0/G1 cell cycle arrest with increased intracellular ROS generation and loss of mitochondrial membrane integrity. 21?-MMD regulated the expressions of PI3K/AKT/AMPK and MAPK signaling which drove us to further evaluate its activity on multidrug resistance (MDR) in lung cancer cells by specifying on P-glycoprotein (P-gp)/MDR1-association. Employing the established paclitaxel-resistant A549 cells (A549-PacR), we further found that 21?-MMD induced a MDR reversal activity through the inhibition of P-gp/MDR1 expressions, function, and transcription with regained paclitaxel sensitivity which might dependently correlate to the regulation of PI3K/mTOR signaling pathway. Taken together, these findings demonstrate, for the first time, the mechanistic evaluation in vitro of 21?-MMD displaying growth-inhibiting potential with influence on MDR reversal in human lung cancer cells. PMID:26098947

  15. Overview of P-glycoprotein inhibitors: a rational outlook

    Scientific Electronic Library Online (English)

    Kale Mohana Raghava, Srivalli; P. K., Lakshmi.

    2012-09-01

    Full Text Available Glicoproteína-p (P-gp), uma glicoproteína de transmembrana permeável, é um membro da superfamília (ABC) de cassete de gene de ligação de ATP que funciona especificamente como um carreador mediado pelo transportador de efluxo ativo primário. É amplamente distribuído por todo o corpo e apresenta uma g [...] ama diversificada de substratos. Diversos agentes terapêuticos vitais são substratos para P-gp e sua biodisponibilidade é reduzida ou a resistência é induzida devido ao efluxo de proteínas. Portanto, os inibidores da P-gp foram explorados para a superação da resistência a múltiplas drogas e problemas de biodisponibilidade deficiente dos substratos terapêuticos da P-gp. A sensibilidade das moléculas da droga à P-gp e vice-versa, pode ser estabelecida por vários modelos experimentais in silico, in vitro e in vivo. Desde a descoberta da P-gp, diversas pesquisas identificaram várias estruturas químicas como inibidores da P-gp. O objetivo deste presente estudo foi o de enfatizar a descoberta e desenvolvimento de inibidores mais novos, inertes, atóxicos e mais eficazes, visando especificamente os da P-gp, como aqueles entre os extratos vegetais, excipientes e formulações farmacêuticas, e outras moléculas racionais de droga. As aplicações do conhecimento de biologia celular e molecular, bancos de dados estruturais in silico, estudos de modelagem molecular e análises da relação quantitativa estrutura-atividade (QSAR) no desenvolvimento de novos inibidores racionais da P-gp também foram mencionados. Abstract in english P-glycoprotein (P-gp), a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC) super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vi [...] tal therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR) analyses in the development of novel rational P-gp inhibitors have also been mentioned.

  16. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    International Nuclear Information System (INIS)

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [3H]azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the [3H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter exrecombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart

  17. Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma.

    Science.gov (United States)

    Alisi, Anna; Cho, William C; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed. PMID:24351843

  18. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma

    Directory of Open Access Journals (Sweden)

    Anna Alisi

    2013-12-01

    Full Text Available Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR. Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed.

  19. Mutagenesis of SugE, a small multidrug resistance protein.

    Science.gov (United States)

    Son, Mike S; Del Castilho, Colin; Duncalf, Karen A; Carney, Dominic; Weiner, Joel H; Turner, Raymond J

    2003-12-26

    The small multidrug resistance protein family has two subclasses. In this study we used a mutation approach to see what is necessary to convert a SUG subgroup member into a quaternary ammonium compound (QAC) transporter. We chose four key residues (H24, M39, I43, and A44) conserved within SUGs but conserved differently within the QAC transporters. Altogether, seven mutants were generated in Citrobacter freundii SugE. Surprisingly, the mutated SugE demonstrated an increased sensitivity to representative QACs. Additionally, ethidium uptake is found to be more prominent in the hypersensitive mutants. We conducted orientation studies using topology reporter gene fusions which indicated that SugE and the QAC transporter EmrE both have their N- and C-termini in the cytoplasm as predicted. The results imply that SugE can be converted to a QAC transporter with only a single mutation. However, because hypersensitivity was observed, the SugE mutant proteins are behaving as importers rather than as exporters. PMID:14651958

  20. Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona

    Directory of Open Access Journals (Sweden)

    Bowers Jolene R

    2012-01-01

    Full Text Available Abstract Background Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E and erm(B genes and post-vaccine clonal expansion of strains that carry them. Results Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E/erm(B-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E-positive, and 9% erm(B-positive strains. Conclusions The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.

  1. Genetic Diversity of Multidrug-Resistant Mycobacterium tuberculosis Isolates and Identification of 11 Novel rpoB Alleles in Taiwan

    OpenAIRE

    Jou, Ruwen; Chen, Huang-Yau; Chiang, Chen-Yuan; YU, MING-CHIH; Su, Ih-Jen

    2005-01-01

    Of 162 multidrug-resistant Mycobacterium tuberculosis isolates from Taiwan, 60.5% were found to belong to the Beijing family on the basis of spoligotyping results. IS6110 restriction fragment length polymorphism fingerprinting showed genetic diversity among the multidrug-resistant isolates. Furthermore, 90.1% of the multidrug-resistant isolates had mutations in the rpoB gene, and 11 novel alleles were recognized.

  2. Emergence of fluoroquinolones-resistant strains of Salmonella typhi: Watch on multidrug-resistant isolates

    Directory of Open Access Journals (Sweden)

    Subhash C Arya

    2010-05-01

    Full Text Available Subhash C Arya, Nirmala Agarwal, Shekhar Agarwal, Dolly WadhwaSant Parmanand Hospital, Delhi, IndiaEmergence of multidrug-resistant Salmonella typhi has been responsible for clinical challenges for clinicians. Recently, frequent isolation and dissemination of fluoroquinolones-resistant strains of S. enterica in Surabaya, Indonesia was in the news. Subsequently, Yangai and colleagues1 recommended regular communications between laboratory professionals and clinicians. Collaboration between laboratory personnel and clinicians would be essential to offer a rational empiric antibiotic recipe while awaiting antibiotic susceptibility test results (AST for any patient.

  3. Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens.

    Science.gov (United States)

    Deslouches, Berthony; Steckbeck, Jonathan D; Craigo, Jodi K; Doi, Yohei; Burns, Jane L; Montelaro, Ronald C

    2015-02-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. PMID:25421473

  4. Treatment of multidrug-resistant tuberculosis: evidence and controversies.

    Science.gov (United States)

    Caminero, J A

    2006-08-01

    In the last decade, multidrug-resistant tuberculosis (MDR-TB, defined as resistance to at least isoniazid and rifampicin) has become an epidemiological issue of first priority at the global level. Case management needs to be simplified and standardised, as in many countries MDR-TB cases cannot receive individualised attention from specialist physicians. However, before any decision can be made on standardisation, a careful analysis must first be made of the evidence and controversies behind the various published recommendations. Unfortunately, the controversies outweigh the evidence. The difficulties lie not only in the absence of controlled trials to validate specific recommendations, but also in the very different and even contradictory results found in the literature. It is therefore essential to analyse these discrepancies before developing rational, uniform recommendations. The analysis should encompass the most essential and controversial issues regarding the management of MDR-TB patients: 1) confirmation of diagnosis in a suspected MDR-TB patient, and determination of the value of drug susceptibility testing; 2) the number of anti-tuberculosis drugs required to treat MDR-TB; 3) the most rational use of effective drugs against tuberculosis; 4) the advisable length of parenteral drug administration or of the initial phase of treatment; 5) the contribution of surgery to the management of MDR-TB patients; and 6) the optimal regimen for treating MDR-TB: standardised vs. individualised regimens. The evidence and controversies regarding each of the above questions are analysed with the aim of facilitating decision making in the treatment of these complex patients. PMID:16898365

  5. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain.

    Science.gov (United States)

    Eldholm, Vegard; Monteserin, Johana; Rieux, Adrien; Lopez, Beatriz; Sobkowiak, Benjamin; Ritacco, Viviana; Balloux, Francois

    2015-01-01

    The rise of drug-resistant strains is a major challenge to containing the tuberculosis (TB) pandemic. Yet, little is known about the extent of resistance in early years of chemotherapy and when transmission of resistant strains on a larger scale became a major public health issue. Here we reconstruct the timeline of the acquisition of antimicrobial resistance during a major ongoing outbreak of multidrug-resistant TB in Argentina. We estimate that the progenitor of the outbreak strain acquired resistance to isoniazid, streptomycin and rifampicin by around 1973, indicating continuous circulation of a multidrug-resistant TB strain for four decades. By around 1979 the strain had acquired additional resistance to three more drugs. Our results indicate that Mycobacterium tuberculosis (Mtb) with extensive resistance profiles circulated 15 years before the outbreak was detected, and about one decade before the earliest documented transmission of Mtb strains with such extensive resistance profiles globally. PMID:25960343

  6. Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa.

    OpenAIRE

    BIANCO, N.; Neshat, S; Poole, K

    1997-01-01

    An intragenic probe derived from the multidrug resistance gene oprM hybridized with genomic DNA from all 20 serotypes of Pseudomonas aeruginosa and from all 34 environmental and clinical isolates tested, indicating that the MexA-MexB-OprM multidrug efflux system is highly conserved in this organism. The oprM probe also hybridized with genomic DNA from Pseudomonas aureofaciens, Pseudomonas chlororaphis, Pseudomonas syringae, Burkholderia pseudomallei, and Pseudomonas putida, suggesting that ef...

  7. Measurement of P-Glycoprotein expression in human neuroblastoma xenografts using in vitro quantitative autoradiography

    International Nuclear Information System (INIS)

    P-glycoprotein (P-gp) has a role in multidrug resistance (MDR) encountered in human cancers. In this study, we used the colchicine-resistant cell line BE(2)-C/CHCb(0.2), a strain of neuroblastoma cell line BE(2)-C, as a model to measure variations of P-gp expression in cells grown in vitro and in vivo. Cells were cultured in the medium supplemented with colchicine. At the beginning of the study the drug was withdrawn and, after 22 days, added back to the culture medium. Cells were harvested at various time points and xenografted in nude mice. P-gp content in cells was measured by self-competitive binding assay and in tumors, by quantitative autoradiography (QAR). Both assays were carried out using 125I-labeled monoclonal antibody MRK16, reactive with P-gp. Concentration of P-gp in cells varied from a maximum of 1,361 pmol/g in the presence of colchicine to a minimum of 374 pmol/g in the absence of colchicine in the culture medium. P-gp concentration in the tumors ranged from 929 to 188 pmol/g, which correlated with P-gp content in the cells at the time of their injection in the mice. QAR is an accurate and reliable method to quantify P-gp expression in tumors. Changes in colchicine concentration in the ambient medium of BE(2)-C/CHCb(0.2) cells growing in vitro resulted in a change in phenotype of P-gp expression, which was stable under conditions of in vivo growth over approximately 9 cell divisions in nude mice xenografts. Therefore, P-gp content in xenogrografts. Therefore, P-gp content in xenografts depends only on the level of resistance of the cells at the time of their injection in the mice

  8. Multidrug resistance 1 gene polymorphisms may determine Crohn's disease behavior in patients from Rio de Janeiro

    Scientific Electronic Library Online (English)

    Ana Teresa P., Carvalho; Renata S.B., Fróes; Barbara C., Esberard; Juliana C.V.C., Santos; Davy C. M., Rapozo; Ana B., Grinman; Tatiana A., Simão; Pedro, Nicolau Neto; Ronir R., Luiz; Antonio José V., Carneiro; Heitor S.P. de, Souza; Luis Felipe, Ribeiro-Pinto.

    Full Text Available OBJECTIVES: Conflicting data from studies on the potential role of multidrug resistance 1 gene polymorphisms in inflammatory bowel disease may result from the analysis of genetically and geographically distinct populations. Here, we investigated whether multidrug resistance 1 gene polymorphisms are [...] associated with inflammatory bowel diseases in patients from Rio de Janeiro. METHODS: We analyzed 123 Crohn's disease patients and 83 ulcerative colitis patients to determine the presence of the multidrug resistance 1 gene polymorphisms C1236T, G2677T and C3435T. In particular, the genotype frequencies of Crohn's disease and ulcerative colitis patients were analyzed. Genotype-phenotype associations with major clinical characteristics were established, and estimated risks were calculated for the mutations. RESULTS: No significant difference was observed in the genotype frequencies of the multidrug resistance 1 G2677T/A and C3435T polymorphisms between Crohn's disease and ulcerative colitis patients. In contrast, the C1236T polymorphism was significantly more common in Crohn's disease than in ulcerative colitis (p?=?0.047). A significant association was also found between the multidrug resistance 1 C3435T polymorphism and the stricturing form of Crohn's disease (OR: 4.13; p?=?0.009), whereas no association was found with penetrating behavior (OR: 0.33; p?=?0.094). In Crohn's disease, a positive association was also found between the C3435T polymorphism and corticosteroid resistance/refractoriness (OR: 4.14; p?=?0.010). However, no significant association was found between multidrug resistance 1 gene polymorphisms and UC subphenotypic categories. CONCLUSION: The multidrug resistance 1 gene polymorphism C3435T is associated with the stricturing phenotype and an inappropriate response to therapy in Crohn's disease. This association with Crohn's disease may support additional pathogenic roles for the multidrug resistance 1 gene in regulating gut-microbiota interactions and in mediating fibrosis. Understanding the effects of several drugs associated with multidrug resistance 1 gene variants may aid in the selection of customized therapeutic regimens.

  9. Shornephine A: structure, chemical stability, and P-glycoprotein inhibitory properties of a rare diketomorpholine from an Australian marine-derived Aspergillus sp.

    Science.gov (United States)

    Khalil, Zeinab G; Huang, Xiao-cong; Raju, Ritesh; Piggott, Andrew M; Capon, Robert J

    2014-09-19

    Chemical analysis of an Australian marine sediment-derived Aspergillus sp. (CMB-M081F) yielded the new diketomorpholine (DKM) shornephine A (1) together with two known and one new diketopiperazine (DKP), 15b-?-hydroxy-5-N-acetyladreemin (2), 5-N-acetyladreemin (3), and 15b-?-methoxy-5-N-acetyladreemin (4), respectively. Structure elucidation of 1-4 was achieved by detailed spectroscopic analysis, supported by chemical degradation and derivatization, and biosynthetic considerations. The DKM (1) underwent a facile (auto) acid-mediated methanolysis to yield seco-shornephine A methyl ester (1a). Our mechanistic explanation of this transformation prompted us to demonstrate that the acid-labile and solvolytically unstable DKM scaffold can be stabilized by N-alkylation. Furthermore, we demonstrate that at 20 ?M shornephine A (1) is a noncytotoxic inhibitor of P-glycoprotein-mediated drug efflux in multidrug-resistant human colon cancer cells. PMID:25158286

  10. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells

    Directory of Open Access Journals (Sweden)

    Baoan Chen

    2008-06-01

    Full Text Available Baoan Chen1,5, Qian Sun1,5, Xuemei Wang2, Feng Gao1, Yongyuan Dai1, Yan Yin1, Jiahua Ding1, Chong Gao1, Jian Cheng1, Jingyuan Li2, Xinchen Sun1, Ningna Chen1, Wenlin Xu3, Huiling Shen3, Delong Liu41Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China; 2State Key Lab of Bioelectronics(Chien-Shiung Wu Laboratory, Southeast University, Nanjing 210096, China; 3Department of Hematology, The First People’s Hospital of Zhenjiang, Zhenjiang, China; 4Westchester Medical Center, New York Medical College, NY, USA; 5These authors have contributed equally to this work.Abstract: Drug resistance is a primary hindrance for efficiency of chemotherapy. To investigate whether Fe3O4-magnetic nanoparticles (Fe3O4-MNPs loaded with adriamycin (ADM and tetrandrine (Tet would play a synergetic reverse role in multidrug resistant cell, we prepared the drug-loaded nanoparticles by mechanical absorption polymerization to act with K562 and one of its resistant cell line K562/A02. The survival of cells which were cultured with these conjugates for 48 h was observed by MTT assay. Using cells under the same condition described before, we took use of fluorescence microscope to measure fluorescence intensity of intracellular ADM at an excitation wavelength of 488 nm. P-glycoprotein (P-gp was analyzed with flow cytometer. The expression of mdr1 mRNA was measured by RT-PCR. The results showed that the growth inhibition efficacy of both the two cells increased with augmenting concentrations of Fe3O4-MNPs which were loaded with drugs. No linear correlation was found between fluorescence intensity of intracellular adriamycin and augmenting concentration of Fe3O4-MNPs. Tet could downregulate the level of mdr-1 gene and decrease the expression of P-gp. Furthermore, Tet polymerized with Fe3O4-MNPs reinforced this downregulation, causing a 100-fold more decrease in mdr1 mRNA level, but did not reduce total P-gp content. Our results suggest that Fe3O4-MNPs loaded with ADM or Tet can enhance the effective accumulation of the drugs in K562/A02. We propose that Fe3O4-MNPs loaded with ADM and Tet probably have synergetic effect on reversal in multidrug resistance.Keywords: magnetic nanoparticles, tetrandrine, adriamycin, multidrug resistance reversal, leukemia K562/A02

  11. MarA-Like Regulator of Multidrug Resistance in Yersinia pestis

    OpenAIRE

    Udani, Rupa A.; Levy, Stuart B.

    2006-01-01

    MarA47Yp from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47Yp gene was overexpressed. The findings suggest that marA47Yp is a marA ortholog in Y. ...

  12. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  13. Genome Sequence of a Dominant, Multidrug-Resistant Acinetobacter baumannii Strain, TCDC-AB0715?

    OpenAIRE

    Chen, Chun-chen; Lin, Yu-chi; Sheng, Wang-huei; Chen, Yee-chun; Chang, Shan-chwen; Hsia, Ko-chiang; Liao, Mei-hui; Li, Shu-ying

    2011-01-01

    Acinetobacter baumannii has emerged as a significant nosocomial pathogen worldwide. The increasing trend of carbapenem and fluoroquinolone resistance in A. baumannii severely limits the usage of therapeutic antimicrobial agents. Here we report the genome sequence of a multidrug-resistant A. baumannii strain, TCDC-AB0715, harboring both blaOXA-23 and blaOXA-66.

  14. In vivo uptake of carbon-14-colchicine for identification of tumor multidrug resistance

    International Nuclear Information System (INIS)

    A major limitation in the treatment of cancer with natural product chemotherapeutic agents is the development of multidrug resistance (MDR). Multidrug resistance is attributed to enhanced expression of the multidrug resistance gene MDR1. Colchicine (CHC) is known to be one of the MDR drugs. The authors have previously demonstrated that it is possible to distinguish multidrug resistant tumors from the multidrug-sensitive tumors in vivo on the basis of tritium (3H) uptake following injection of 3H-CHC. The present studies were carried out in xenografted animals using 14C-CHC which may be more indicative of 11C-labeled CHC distribution with regard to circulating metabolites, since metabolic processes following injection of (ring C, methoxy-11C)-CHC may produce significant amounts of circulating 1l-carbon fragments (i.e., methanol and/or formaldehyde). Experiments were carried out at a dose of 2 mg/kg. Activity concentration per injected dose was approximately twice as great in sensitive as in resistant tumors (p 14C-CHC. About 75% of total activity was CHC in the sensitive tumors. The findings are further confirmed by the quantitative autoradiographic evaluation of resistant and sensitive tumors. These studies confirm our previous observations that it is possible to noninvasively distinguish multidrug-resistant tumors from sensitive tumors in vivo based umors from sensitive tumors in vivo based on uptake of an injected MDR drug using a14C-labeled CHC at the same position and of comparable specific activity to a 11C-CHC tracer used for PET imaging. 16 refs., 5 figs., 2 tabs

  15. Effects of P-glycoprotein and its inhibitors on apoptosis in K562 cells.

    Science.gov (United States)

    Zu, Yaqiong; Yang, Zhiyong; Tang, Songshan; Han, Ying; Ma, Jun

    2014-01-01

    P-glycoprotein (P-gp) is a major factor in multidrug resistance (MDR) which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+) and K562/S cells (P-gp-) were subjected to doxorubicin (Dox), serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833), verapamil (Ver) and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3) activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related. PMID:25157469

  16. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp? were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  17. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    Energy Technology Data Exchange (ETDEWEB)

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M. (National Institutes of Health, Bethesda, MD (USA))

    1990-03-06

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by ({sup 3}H)azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the ({sup 3}H)azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart.

  18. Multidrug Resistant Salmonella typhi in Asymptomatic Typhoid Carriers among Food Handlers in Namakkal District, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Senthilkumar B

    2005-01-01

    Full Text Available Purpose: to screen Salmonella typhi in asymptomatic typhoid carriers and to find out drug resistance and ability of the strains to transmit drug resistance to other bacteria. Methods: Cultural characters, biochemical tests, antibiotic sensitivity test (disc diffusion, agarose gel electrophoresis, and conjugation protocols were done. Thirty five stool samples were collected from the suspected food handlers for the study. Results: Among 35 samples, (17.14% yielded a positive result. Out of these 4 (20.0% were women and 2 (13.33% were men. The isolates were tested with a number of conventional antibiotics viz, amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, co-trimaxazole, rifampicin, gentamicin, nalidixic acid, ofloxacin and tetracycline. Five isolates were having the multidrug resistant character. Four (66.66% multidrug resistant isolates were found to have plasmids, while one (16.66% multidrug resistant isolate had no plasmid and the chromosome encoded the resistance. Only one strain (16.66% showed single antibiotic resistance in the study and had no plasmid DNA. The molecular weights of the plasmids were determined and found to be 120 kb.The mechanism of spreading of drug resistance through conjugation process was analyzed. In the conjugation studies, the isolates having R+ factor showed the transfer of drug resistance through conjugation, which was determined by the development of antibiotic resistance in the recipients. Conclusion: This study shows that drug resistant strains are able to transfer genes encoding drug resistance.

  19. Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Sandberg-Schaal, Anne

    2014-01-01

    Infections with multidrug-resistant pathogens are an increasing concern for public health. Recently, subtypes of peptide-peptoid hybrids were demonstrated to display potent activity against multidrug-resistant Gram-negative bacteria. Here, structural variation of these antibacterial peptidomimetics was investigated as a tool for optimizing cell selectivity. A protocol based on dimeric building blocks allowed for efficient synthesis of an array of peptide-peptoid oligomers representing length variation as well as different backbone designs displaying chiral or achiral peptoid residues. Lack of ?-chirality in the side chains of the peptoid residues proved to be correlated to reduced cytotoxicity. Furthermore, optimization of the length of these peptidomimetics with an alternating cationic-hydrophobic design was a powerful tool to enhance the selectivity against Gram-negative pathogens over benign mammalian cells. Thus, lead compounds with a high selectivity toward killing of clinically important multidrug-resistant E. coli were identified.

  20. Tailoring cytotoxicity of antimicrobial peptidomimetics with high activity against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Sandberg-Schaal, Anne

    2014-01-01

    Infections with multidrug-resistant pathogens are an increasing concern for public health. Recently, subtypes of peptide-peptoid hybrids were demonstrated to display potent activity against multidrug-resistant Gram-negative bacteria. Here, structural variation of these antibacterial peptidomimetics was investigated as a tool for optimizing cell selectivity. A protocol based on dimeric building blocks allowed for efficient synthesis of an array of peptide-peptoid oligomers representing length variation as well as different backbone designs displaying chiral or achiral peptoid residues. Lack of ?-chirality in the side chains of the peptoid residues proved to be correlated to reduced cytotoxicity. Furthermore, optimization of the length of these peptidomimetics with an alternating cationic-hydrophobic design was a powerful tool to enhance the selectivity against Gram-negative pathogens over benign mammalian cells. Thus, lead compounds with a high selectivity toward killing of clinically important multidrug-resistant E. coli were identified.

  1. Does a multi-drug resistant Escherichia coli facilitate dissemination of resistance to Salmonella in dairy calves?

    Science.gov (United States)

    Previous research conducted by our laboratory investigated the incidence of multi-drug resistant (MDR) Salmonella in dairy cattle and reported that individual cattle, and most often calves, can shed multiple Salmonella serotypes that vary in the degree of antibiotic resistance. More recently, we di...

  2. The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Agerstjerne, Lene

    2009-01-01

    Background: Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(MDR1/ABCB1) gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter). P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC). We have previously found an association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this MDR1 polymorphism was associated with risk ofcolorectal adenoma (CA) and CRC in the Norwegian population. Methods: Using a case-control design, the association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR) and 95 confidence interval (95% CI) were estimated by binary logistic regression. Results: No association was found between the MDR1 polymorphism (G-rs3789243-A) and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI) of 0.97 (0.72-1.29) for developing adenomas, and 0.70 (0.41-1.21) for colorectal cancer, respectively, compared to homozygous wild type carriers. Conclusion: The MDR1 intron 3 (G-rs3789243-A) polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this MDR1 polymorphism does not seem to play an important role in colorectal carcinogenesis in this population.

  3. The multidrug resistance 1 (MDR1 gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    Directory of Open Access Journals (Sweden)

    Hamfjord Julian

    2009-02-01

    Full Text Available Abstract Background Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(MDR1/ABCB1 gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter. P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC. We have previously found an association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this MDR1 polymorphism was associated with risk of colorectal adenoma (CA and CRC in the Norwegian population. Methods Using a case-control design, the association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR and 95 confidence interval (95% CI were estimated by binary logistic regression. Results No association was found between the MDR1 polymorphism (G-rs3789243-A and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI of 0.97 (0.72–1.29 for developing adenomas, and 0.70 (0.41–1.21 for colorectal cancer, respectively, compared to homozygous wild type carriers. Conclusion The MDR1 intron 3 (G-rs3789243-A polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this MDR1 polymorphism does not seem to play an important role in colorectal carcinogenesis in this population.

  4. Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital

    Directory of Open Access Journals (Sweden)

    Pratap Siddharth

    2010-07-01

    Full Text Available Abstract Background Multidrug resistant Acinetobacter baumannii, (MRAB is an important cause of hospital acquired infection. The purpose of this study is to determine the risk factors for MRAB in a city hospital patient population. Methods This study is a retrospective review of a city hospital epidemiology data base and includes 247 isolates of Acinetobacter baumannii (AB from 164 patients. Multidrug resistant Acinetobacter baumannii was defined as resistance to more than three classes of antibiotics. Using the non-MRAB isolates as the control group, the risk factors for the acquisition of MRAB were determined. Results Of the 247 AB isolates 72% (177 were multidrug resistant. Fifty-eight percent (143/247 of isolates were highly resistant (resistant to imipenem, amikacin, and ampicillin-sulbactam. Of the 37 patients who died with Acinetobacter colonization/infection, 32 (86% patients had the organism recovered from the respiratory tract. The factors which were found to be significantly associated (p ? 0.05 with multidrug resistance include the recovery of AB from multiple sites, mechanical ventilation, previous antibiotic exposure, and the presence of neurologic impairment. Multidrug resistant Acinetobacter was associated with significant mortality when compared with sensitive strains (p ? 0.01. When surgical patients (N = 75 were considered separately, mechanical ventilation and multiple isolates remained the factors significantly associated with the development of multidrug resistant Acinetobacter. Among surgical patients 46/75 (61% grew a multidrug resistant strain of AB and 37/75 (40% were resistant to all commonly used antibiotics including aminoglycosides, cephalosporins, carbepenems, extended spectrum penicillins, and quinolones. Thirty-five percent of the surgical patients had AB cultured from multiple sites and 57% of the Acinetobacter isolates were associated with a co-infecting organism, usually a Staphylococcus or Pseudomonas. As in medical patients, the isolation of Acinetobacter from multiple sites and the need for mechanical ventilation were significantly associated with the development of MRAB. Conclusions The factors significantly associated with MRAB in both the general patient population and surgical patients were mechanical ventilation and the recovery of Acinetobacter from multiple anatomic sites. Previous antibiotic use and neurologic impairment were significant factors in medical patients. Colonization or infection with MRAB is associated with increased mortality.

  5. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Irish Cattle Farms?†

    OpenAIRE

    Karczmarczyk, Maria; Walsh, Ciara; Slowey, Rosemarie; Leonard, Nola; Fanning, Se?amus

    2011-01-01

    This study describes the genotypic characteristics of a collection of 100 multidrug-resistant (MDR) Escherichia coli strains recovered from cattle and the farm environment in Ireland in 2007. The most prevalent antimicrobial resistance identified was to streptomycin (100%), followed by tetracycline (99%), sulfonamides (98%), ampicillin (82%), and neomycin (62%). Resistance was mediated predominantly by strA-strB (92%), tetA (67%), sul2 (90%), blaTEM (79%), and aphA1 (63%) gene markers, respec...

  6. Household Risk Factors for Colonization with Multidrug-Resistant Staphylococcus aureus Isolates

    Science.gov (United States)

    Davis, Meghan F.; Peterson, Amy E.; Julian, Kathleen G.; Greene, Wallace H.; Price, Lance B.; Nelson, Kenrad; Whitener, Cynthia J.; Silbergeld, Ellen K.

    2013-01-01

    Antimicrobial resistance, particularly in pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), limits treatment options and increases healthcare costs. To understand patient risk factors, including household and animal contact, potentially associated with colonization with multidrug-resistant MRSA isolates, we performed a prospective study of case patients colonized with MRSA on admission to a rural tertiary care hospital. Patients were interviewed and antimicrobial resistance patterns were tested among isolates from admitted patients colonized with MRSA in 2009–10. Prevalence of resistance was compared by case-patient risk factors and length-of-stay outcome among 88 MRSA case patients. Results were compared to NHANES 2003–04. Overall prevalence of multidrug resistance (non-susceptibility to ?four antimicrobial classes) in MRSA nasal isolates was high (73%) and was associated with a 1.5-day increase in subsequent length of stay (p?=?0.008). History of hospitalization within the past six months, but not antimicrobial use in the same time period, was associated with resistance patterns. Within a subset of working-age case patients without recent history of hospitalization, animal contact was potentially associated with multidrug resistance. History of hospitalization, older age, and small household size were associated with multidrug resistance in NHANES data. In conclusion, recent hospitalization of case patients was predictive of antimicrobial resistance in MRSA isolates, but novel risk factors associated with the household may be emerging in CA-MRSA case patients. Understanding drivers of antimicrobial resistance in MRSA isolates is important to hospital infection control efforts, relevant to patient outcomes and to indicators of the economic burden of antimicrobial resistance. PMID:23359808

  7. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals.

    LENUS (Irish Health Repository)

    Khan, A S

    2012-10-01

    Multidrug-resistant Enterobacteriaceae (MDE) are a major public health threat due to international spread and few options for treatment. Furthermore, unlike meticillin-resistant Staphylococcus aureus (MRSA), MDE encompass several genera and multiple resistance mechanisms, including extended-spectrum beta-lactamases and carbapenemases, which complicate detection in the routine diagnostic laboratory. Current measures to contain spread in many hospitals are somewhat ad hoc as there are no formal national or international guidelines.

  8. Prevalence of multidrug resistant pathogens in children with urinary tract infection: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Srinivasan S, Madhusudhan NS

    2014-11-01

    Full Text Available Urinary tract infection (UTI is one of the commonest medical problems in children. It can distress the child and may cause kidney damage. Prompt diagnosis and effective treatment can prevent complications in the child. But treatment of UTI in children has now become a challenge due to the emergence of multidrug resistant bacteria. Aims & Objectives: To know the bacteriological profile and susceptibility pattern of urinary tract infections in children and to know the prevalence of multidrug resistant uropathogens. Materials & Methods: A retrospective analysis was done on all paediatric urine samples for a period of one year. A total of 1581 samples were included in the study. Antimicrobial susceptibility testing was done on samples showing significant growth by Kirby-Bauer disc diffusion method. Statistical analysis: Prevalence and pattern were analyzed using proportions and percentages. Results: E.coli was the most predominant organism (56% causing UTI in children followed by Klebsiella sp (17%. Fifty three percent of gram negative organisms isolated from children were found to be multidrug resistant. Majority of E. coli isolates were found to be highly resistant to Ampicillin (91% and Cotrimoxazole (82% and highly sensitive to Imipenem (99% and Amikacin (93%. Conclusion: Paediatric UTI was common in children less than 5 years of age. Gram negative bacteria (E. coli and Klebsiella sp were more common than gram positive bacteria. Our study revealed that multidrug resistance was higher in E.coli.

  9. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function.

    Science.gov (United States)

    Patanasethanont, Denpong; Nagai, Junya; Yumoto, Ryoko; Murakami, Teruo; Sutthanut, Khaetthareeya; Sripanidkulchai, Bung-Orn; Yenjai, Chavi; Takano, Mikihisa

    2007-01-01

    The purpose of this study was to examine the effects of extracts and flavone derivatives from the rhizome of Kaempferia parviflora on P-glycoprotein (P-gp)-mediated transport in LLC-GA5-COL150, a transfectant cell line of a porcine kidney epithelial cell line LLC-PK1 with human MDR1 cDNA. Ethanol extract obtained from Kaempferia parviflora rhizome significantly increased the accumulation of rhodamine 123 and daunorubicin, P-gp substrates, in LLC-GA5-COL150 cells, but not in LLC-PK1 cells. The aqueous extract also increased the accumulation in LLC-GA5-COL150 cells with lower potency than the ethanol extract. The effects of flavone derivatives isolated from the rhizome of Kaempferia parviflora on P-gp function were examined. Among six flavones tested, 3,5,7,3',4'-pentamethoxyflavone most potently increased the accumulation of rhodamine 123 and daunorubicin in LLC-GA5-COL150 cells in a concentration-dependent manner. In addition, 5,7-dimethoxyflavone to lesser degree increased rhodamine 123 accumulation in LLC-GA5-COL150 cells. In contrast, the other four flavone derivatives had no significant effect on the accumulation of rhodamine 123 in LLC-GA5-COL150 cells in a concentration range tested. These results indicate that extracts and flavone derivatives from the rhizome of Kaempferia parviflora can inhibit P-gp function, which may be useful for overcoming P-gp-mediated multidrug resistance and improving the oral bioavailability of anticancer agents. PMID:17031860

  10. Ligand and structure-based classification models for Prediction of P-glycoprotein inhibitors

    DEFF Research Database (Denmark)

    Klepsch, Freya; Poongavanam, Vasanthanathan

    2014-01-01

    The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great interest in the field of drug discovery and development. So far in-silico P-gp inhibitor prediction was dominated by ligand-based approaches, due to the lack of high-quality structural information about P-gp. The present study aims at comparing the P-gp inhibitor/non-inhibitor classification performance obtained by docking into a homology model of P-gp, to supervised machine learning methods, such as Kappa nearest neighbor, support vector machine (SVM), random forest and binary QSAR, by using a large, structurally diverse data set. In addition, the applicability domain of the models was assessed using an algorithm based on Euclidean distance. Results show that random forest and SVM performed best for classification of P-gp inhibitors and non-inhibitors, correctly predicting 73/75 % of the external test set compounds. Classification based on the docking experiments using the scoring function ChemScore resulted in the correct prediction of 61 % of the external test set. This demonstrates that ligand-based models currently remain the methods of choice for accurately predicting P-gp inhibitors. However, structure-based classification offers information about possible drug/protein interactions, which helps in understanding the molecular basis of ligand-transporter interaction and could therefore also support lead optimization.

  11. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disstance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  12. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions

    Directory of Open Access Journals (Sweden)

    Shityakov S

    2014-03-01

    Full Text Available Sergey Shityakov, Carola FörsterDepartment of Anesthesia and Critical Care, University of Würzburg, Würzburg, GermanyAbstract: P-glycoprotein (P-gp is an ATP (adenosine triphosphate-binding cassette transporter that causes multidrug resistance of various chemotherapeutic substances by active efflux from mammalian cells. P-gp plays a pivotal role in limiting drug absorption and distribution in different organs, including the intestines and brain. Thus, the prediction of P-gp–drug interactions is of vital importance in assessing drug pharmacokinetic and pharmacodynamic properties. To find the strongest P-gp blockers, we performed an in silico structure-based screening of P-gp inhibitor library (1,300 molecules by the gradient optimization method, using polynomial empirical scoring (POLSCORE functions. We report a strong correlation (r2=0.80, F=16.27, n=6, P<0.0157 of inhibition constants (Kiexp or pKiexp; experimental Ki or negative decimal logarithm of Kiexp converted from experimental IC50 (half maximal inhibitory concentration values with POLSCORE-predicted constants (KiPOLSCORE or pKiPOLSCORE, using a linear regression fitting technique. The hydrophobic interactions between P-gp and selected drug substances were detected as the main forces responsible for the inhibition effect. The results showed that this scoring technique might be useful in the virtual screening and filtering of databases of drug-like compounds at the early stage of drug development processes.Keywords: ATP-binding cassette transporter, P-gp inhibitors, multidrug resistance, molecular docking, POLSCORE

  13. 2'[(18)F]-fluoroethylrhodamine B is a promising radiotracer to measure P-glycoprotein function.

    Science.gov (United States)

    Trencsényi, György; Kertész, István; Krasznai, Zoárd T; Máté, Gábor; Szalóki, Gábor; Szabó Judit, P; Kárpáti, Levente; Krasznai, Zoltán; Márián, Teréz; Goda, Katalin

    2015-07-10

    In vivo detection of the emergence of P-glycoprotein (Pgp) mediated multidrug resistance in tumors could be beneficial for patients treated with anticancer drugs. PET technique in combination with appropriate radiotracers could be the most convenient method for detection of Pgp function. Rhodamine derivatives are validated fluorescent probes for measurement of mitochondrial membrane potential and also Pgp function. The aim of this study was to investigate whether 2'[(18)F]-fluoroethylrhodamine B ((18)FRB) a halogenated rhodamine derivative previously synthesized for PET assessment of myocardial perfusion preserved its Pgp substrate character. ATPase assay as well as accumulation experiments carried out using Pgp(+) and Pgp(-) human gynecologic (A2780/A2780(AD) and KB-3-1/KB-V1) and a mouse fibroblast cell pairs (NIH 3T3 and NIH 3T3 MDR1) were applied to study the interaction of (18)FRB with Pgp. ATPase assay proved that (18)FRB is a high affinity substrate of Pgp. Pgp(-) cells accumulated the (18)FRB rapidly in accordance with its lipophilic character. Dissipation of the mitochondrial proton gradient by a proton ionophore CCCP decreased the accumulation of rhodamine 123 (R123) and (18)FRB into Pgp(-) cells. Pgp(+) cells exhibited very low R123 and (18)FRB accumulation (around 1-8% of the Pgp(-) cell lines) which was not sensitive to the mitochondrial proton gradient; rather it was increased by the Pgp inhibitor cyclosporine A (CsA). Based on the above data we conclude that (18)FRB is a high affinity Pgp substrate and consequently a potential PET tracer to detect multidrug resistant tumors as well as the function of physiological barriers expressing Pgp. PMID:25857708

  14. Response to ICRF-159 in cell lines resistant to cleavable complex-forming topoisomerase II inhibitors.

    OpenAIRE

    Davies, S. L.; Bergh, J., van den; Harris, A.L.; Hickson, I.D.

    1997-01-01

    We have studied the relationship between expression of genes implicated in mediating resistance to cleavable complex-forming topoisomerase II (topo II) inhibitors and cellular sensitivity to ICRF-159, a 'catalytic' inhibitor of topo II. Overexpression of the membrane transporters, P-glycoprotein and multidrug resistance-related protein (MRP), or down-regulation of topo IIalpha and/or -beta, did not confer ICRF-159 resistance. Indeed, marked topo IIalpha down-regulation appeared to be associat...

  15. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal rate constant for the initial taurine uptake was reduced by 45% (high-affinity system) and 49% (low affinity system) in the resistant subline whereas the affinity of the transporters to taurine was unchanged. By immunoblotting we identified 3 TauT protein bands in the 50-70 kDa region. A visible reduction in the intensity of the band with the lowest molecular weight was observed in resistant cells. Quantitative RT-PCR indicated a significant reduction in the amount of taurine transporter mRNA in the resistant cells. Drug resistance in DNR Ehrlich cells is associated with overexpression of the mdr1 gene product P-glycoprotein (P-gp). Using 5 progressively DNR resistant Ehrlich cell sublines with different P-gp expression pattern no correlation between taurine uptake and P-gp expression was found. Taurine uptake in MDR1 transfected NIH/3T3 mouse fibroblasts was in contrast to the findings in Ehrlich cells increased compared to the parental fibroblasts. It is concluded that the reduced taurine uptake in resistant Ehrlich cells reflects a down regulation of the taurine transporter at the mRNA and protein level and it is most probably not related to P-gp overexpression.

  16. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Herzog T

    2010-11-01

    Full Text Available Abstract The management of severe intra-abdominal infections remains a major challenge facing surgeons and intensive care physicians, because of its association with high morbidity and mortality. Surgical management and intensive care medicine have constantly improved, but in the recent years a rapidly continuing emergence of resistant pathogens led to treatment failure secondary to infections with multi-drug resistant bacteria. In secondary peritonitis the rate of resistant germs at the initial operation is already 30%. The lack of effective antibiotics against these pathogens resulted in the development of new broad-spectrum compounds and antibiotics directed against resistant germs. But so far no "super-drug" with efficacy against all resistant bacteria exists. Even more, soon after their approval, reports on resistance against these novel drugs have been reported, or the drugs were withdrawn from the market due to severe side effects. Since pharmaceutical companies reduced their investigations on antibiotic research, only few new antimicrobial derivates are available. In abdominal surgery you may be in fear that in the future more and more patients with tertiary peritonitis secondary to multi-drug resistant species are seen with an increase of mortality after secondary peritonitis. This article reviews the current treatment modalities for complicated intra-abdominal infections with special reference to the antibiotic treatment of complicated intra-abdominal infections with multi-drug resistant species.

  17. The equilibrium and kinetic drug binding properties of the mouse P-gp1a and P-gp1b P-glycoproteins are similar.

    Science.gov (United States)

    Taylor, J C; Ferry, D R; Higgins, C F; Callaghan, R

    1999-11-01

    The gene encoding the multidrug resistance P-glycoprotein (P-gp) is duplicated in rodent species and the functional basis for this remains unresolved. Despite a high sequence similarity, the mouse P-gp1a and P-gp1b isoforms show distinct patterns of tissue distribution which suggest a specific role of the P-gp1b isoform in steroid transport. In the present study possible biochemical differences between the isoforms were directly investigated at the level of drug interaction. There was no detectable difference in the affinity or binding capacity of the two isoforms towards [3H]vinblastine at equilibrium. Similarly, the rate at which [3H]vinblastine associates with P-gp was indistinguishable between the two isoforms. Some modest differences were observed in the relative abilities of the multidrug-resistant (MDR) reversing agents CP100-356, nicardipine and verapamil to displace equilibrium [3H]vinblastine binding to P-gp1a and P-gp1b. The steroid hormone progesterone displayed a low affinity (Ki = 1.2 +/- 0.2 microM for P-gp1a and 3.5 +/- 0.5 microM for P-gp1b), suggesting an unlikely role as a physiological substrate. Thus the mouse isoforms do not appear to exhibit functional differences at the level of initial substrate interaction with protein. PMID:10555746

  18. Increased Risk for Multidrug-Resistant Tuberculosis in Migratory Workers, Armenia

    Science.gov (United States)

    Crape, Byron; Grigoryan, Ruzanna; Martirosyan, Hripsime; Petrosyan, Varduhi

    2015-01-01

    To understand use of tuberculosis (TB) services for migrant workers, we conducted a cross-sectional census of 95 migrant workers with TB from Armenia by using medical record reviews and face-to-face interviews. Prolonged time between diagnosis and treatment, treatment interruption, and treatment defaults caused by migrant work might increase the risk for multidrug-resistant TB. PMID:25695488

  19. Increased risk for multidrug-resistant tuberculosis in migratory workers, Armenia.

    Science.gov (United States)

    Truzyan, Nune; Crape, Byron; Grigoryan, Ruzanna; Martirosyan, Hripsime; Petrosyan, Varduhi

    2015-03-01

    To understand use of tuberculosis (TB) services for migrant workers, we conducted a cross-sectional census of 95 migrant workers with TB from Armenia by using medical record reviews and face-to-face interviews. Prolonged time between diagnosis and treatment, treatment interruption, and treatment defaults caused by migrant work might increase the risk for multidrug-resistant TB. PMID:25695488

  20. Capreomycin-induced optic neuritis in a case of multidrug resistant pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Magazine Rahul

    2010-01-01

    Full Text Available A patient of multidrug-resistant pulmonary tuberculosis was prescribed an anti-tubercular regimen containing capreomycin. Patient developed optic neuritis 3 months after starting treatment. Investigations did not reveal any specific cause for this ocular condition and on discontinuing capreomycin his vision recovered. We conclude that capreomycin is the cause of reversible optic neuritis in our case.

  1. Study on tumor cells' multidrug resistance and its reversion by Chinese herbs

    Directory of Open Access Journals (Sweden)

    CHEN Xin-Yi

    2003-09-01

    Full Text Available ABSTRACT: Multidrug resistance (MDR is an important biological behavior of tumor cells in chemotherapy. And it is also one of the major causes of clinical chemotherapy failure. According to the literature at home and abroad, and combining with the results of anthors' investigations, this paper mainly discusses the mechanism of tumor cells' MDR and its reversion by Chinese herbs.

  2. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species.

    Science.gov (United States)

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-05-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine beta-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of beta-lactams, quinolones, and chloramphenicol. PMID:19258278

  3. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species? †

    OpenAIRE

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine ?-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of ?-lactams, quinolones, and chloramphenicol.

  4. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species? †

    Science.gov (United States)

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine ?-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of ?-lactams, quinolones, and chloramphenicol. PMID:19258278

  5. First Whole-Genome Sequence of a Clinical Isolate of Multidrug-Resistant Mycobacterium bovis BCG

    OpenAIRE

    Renvoisé, A.; S. Pang; Bernard, C.; Brossier, F; Veziris, N.; Capton, E.; Jarlier, V.; Sougakoff, W.

    2014-01-01

    The attenuated BCG strain of Mycobacterium bovis is widely used as a vaccine against tuberculosis. However, in rare cases, it can be pathogenic to humans. Here, we report the first draft of a whole-genome sequence of a multidrug-resistant clinical isolate of M. bovis BCG.

  6. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Science.gov (United States)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  7. Pacemaker Lead Endocarditis Due to Multidrug-Resistant Corynebacterium striatum Detected with Sonication of the Device ?

    OpenAIRE

    Oliva, Alessandra; Belvisi, Valeria; IANNETTA, MARCO; Andreoni, Carolina; Mascellino, Maria T.; Lichtner, Miriam; Vullo, Vincenzo; Mastroianni, Claudio M

    2010-01-01

    Corynebacterium striatum is a commensal of human skin and has been recently recognized as an emerging pathogen. A case of nosocomial pacemaker lead endocarditis due to a multidrug-resistant C. striatum strain is described, highlighting the role of sonication as a diagnostic tool in cardiac device infections.

  8. High risk and rapid appearance of multidrug resistance during tuberculosis treatment in Moldova

    OpenAIRE

    Jenkins, Helen E.; Crudu, Valeriu; Soltan, Viorel; Ciobanu, Ana; Domente, Liliana; Cohen, Ted

    2014-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is a serious problem in the former Soviet Union and may appear during TB treatment. We aimed to estimate the prevalence of, timing of and factors associated with MDR-TB diagnosis during TB treatment in Moldova, which was part of the former Soviet Union.

  9. Multidrug resistant Acinetobacter baumannii reaches a new frontier: prosthetic hip joint infection.

    Science.gov (United States)

    Hischebeth, G T R; Wimmer, M D; Molitor, E; Seifert, H; Gravius, S; Bekeredjian-Ding, I

    2015-02-01

    Acinetobacter baumannii is an emerging nosocomial pathogen primarily in countries with a high prevalence of multidrug resistance. Here we report the detection of a bla OXA23 carbapenemase-producing A. baumannii strain in a German patient with prosthetic hip joint infection following several hip joint surgeries but no history of foreign travel. PMID:25037735

  10. PolyHPMA conjugates with inhibitors of ABC transporter overcoming multidrug resistance in cancer treatment.

    Czech Academy of Sciences Publication Activity Database

    Šubr, Vladimír; Kabešová, Martina; Sivák, Ladislav; Ulbrich, Karel; Ková?, Marek; ?íhová, Blanka

    Tsukuba : Tsukuba Bioengineering Initiative, 2013. s. 53. [International Conference on Biomaterials Science in Tsukuba /2./ - ICBS 2013. 19.03.2013-22.03.2013, Tsukuba] R&D Projects: GA ?R GAP301/12/1254 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : multidrug resistance * drug delivery systems * ABC transporter inhibitors Subject RIV: CD - Macromolecular Chemistry; FD - Oncology ; Hematology (MBU-M)

  11. Multidrug-Resistant Hepatitis B Virus Strain in a Chronic Turkish Patient

    Directory of Open Access Journals (Sweden)

    Murat Sayan

    2010-04-01

    Full Text Available Hepatitis B virus (HBV strains, resistant to at least two anti-HBV agents from different subclasses of nucleos(tide analogues (NUCs without a cross-resistance profile, are defined as multidrug-resistant. However, there are limited in vivo data for resistance to multiple NUCs. In this study, we report the case of the emergence of a multidrug-resistant HBV strain in a Turkish patient receiving sequential therapy. Polymerase gene mutations of HBV were detected using direct sequencing, line probe assay and clonal analysis. Twelve months after the start of lamivudine (LAM therapy, virological breakthrough occurred (4.2E+07 IU/ml and the rtM204V variant was detected in the patient’s sera: adefovir (ADV was added to the therapy. ADV therapy was continued as monotherapy for 11 months, until the occurrence of clinical breakthrough i.e. alanine aminotransferase (ALT 60 IU/L, and emergence of drug resistance to ADV (rtN236T. At that time, switch therapy was resumed with ADV + entecavir (ETV in combination for 5 months. In the 18th month of the ETV monotherapy, direct sequencing showed reduced susceptibility to ETV (rtL180M+rtM204V. Currently, ETV + tenofovir (TDF are being used as antiviral treatment and the HBV DNA load has decreased substantially (<1.0E+02 IU/ml. In conclusion, we have detected an HBV strain with multidrug-resistance, which had a very fast course of development. Patients with a multidrug-resistant profile should be more frequently followed up both by direct sequencing and line probe assay, for the detection of possible novel HBV variants and low level mutants present in the viral population, in case of the sudden emergence of drug resistance.

  12. Multidrug resistant bacteria in companion animals: impact on animal health and zoonotic aspects

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro

    The role of companion animals as a source of antibiotic resistant bacteria has historically been given little emphasis when compared with that of food animals. However, various resistant bacteria may cause serious treatment problems in companion animal medicine. Some of the most important multidrug-resistant bacteria include methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These bacteria will be described with focus on their prevalence across Europe, their impact on animal health, treatment options and potential zoonotic impact.

  13. Evaluation of Tigecycline Susceptibility by E-Test® in Multidrug-Resistant Acinetobacter baumannii Isolates

    Directory of Open Access Journals (Sweden)

    ?rfan ?encan

    2009-08-01

    Full Text Available Objective: Emergence of multidrug resistance among Acinetobacter spp. complicates treatment of serious infections due to these organisms. Tigecycline is a member of a new class of antimicrobials, the glycylcyclines. Methods: In this study, we evaluated the in vitro activity of tigecycline in 121 multidrug resistant (MDR A. baumannii isolates by E-test® (AB Biodisk, Sweden. Results: Among these isolates, 96 (79% were susceptible to tigecycline, 19 (16% showed intermediate susceptibility and 6 (5% were resistant. MIC50 and MIC90 were 1.5 and 4 µg/ml, respectively. Seventy four per cent of carbapenem resistant isolates were found to be susceptible to tigecycline. Conclusion: In conclusion, tigecycline may prove useful in treating infections due to MDR Acinetobacter species.

  14. Interaction of hydrophobic components in female urine before and after childbirth with P-glycoprotein in vitro.

    Science.gov (United States)

    Yokooji, T; Kameda, Y; Utsumi, M; Mori, N; Murakami, T

    2014-06-01

    The first urine in the morning (total 15 samples) and whole day urine (total 4 days, 17 samples) were collected from a young healthy woman during the pregnancy and lactation period, to examine the possible interactions of urine components (methanol extracts) with P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs). The interaction was evaluated by measuring the intracellular accumulation of rhodamine123, a P-gp substrate, in LLC-GA5-COL150 cells, or calcein, an MRP substrate, in Caco-2 cells in the absence and presence of urine components. Four first urine samples out of 12 collected before childbirth and one sample out of three collected after childbirth suppressed P-gp function significantly. The effect of pregnancy and lactation on P-gp inhibitory potencies of urine components was not observed. The whole day urine samples showed a clear circadian rhythm, in which three first urine samples in the morning out of four showed greater P-gp inhibitory potencies than other daytime samples. Interaction of urine components with MRPs was not detected. In conclusion, the concentration of endogenous P-gp inhibitor(s) was higher in the first urine in the morning, showing a clear circadian rhythm. Normal pregnancy and lactation appeared not to significantly affect the P-gp inhibitory potencies of urine components. PMID:24974576

  15. Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant: results from the North American Urinary Tract Infection Collaborative Alliance-Quinolone Resistance study.

    Science.gov (United States)

    Karlowsky, James A; Hoban, Daryl J; Decorby, Melanie R; Laing, Nancy M; Zhanel, George G

    2006-06-01

    Ciprofloxacin-resistant Escherichia coli isolates (n = 1,858) from outpatient midstream urine specimens at 40 North American clinical laboratories in 2004 to 2005 were frequently resistant to ampicillin (79.8% of isolates) and trimethoprim-sulfamethoxazole (66.5%); concurrent resistance to cefdinir (9.0%) or nitrofurantoin (4.0%) was less common. Only 10.8% of isolates were resistant to ciprofloxacin alone. Fluoroquinolone-resistant isolates of E. coli from urine were frequently multidrug resistant. PMID:16723598

  16. Investigation of Ligand Binding to the Multidrug Resistance Protein EmrE by Isothermal Titration Calorimetry

    OpenAIRE

    Sikora, Curtis W.; Turner, Raymond J.

    2004-01-01

    Escherichia coli multidrug resistance protein E (EmrE) is an integral membrane protein spanning the inner membrane of Escherichia coli that is responsible for this organism's resistance to a variety of lipophilic cations such as quaternary ammonium compounds (QACs) and interchelating dyes. EmrE is a 12-kDa protein of four transmembrane helices considered to be functional as a multimer. It is an efflux transporter that can bind and transport cytoplasmic QACs into the periplasm using the energy...

  17. Epitope mapping of monoclonal antibodies specific for the 190-kDa multidrug resistance protein (MRP).

    OpenAIRE

    Hipfner, D. R.; Gao, M.; Scheffer, G.; Scheper, R. J.; Deeley, R. G.; Cole, S. P.

    1998-01-01

    Inherent or acquired resistance to multiple natural product drugs in human tumour cells is often associated with increased expression of multidrug resistance protein (MRP), a 190-kDa integral membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. Both clinical and experimental investigations of MRP have been facilitated by several monoclonal antibodies (MAbs) generated against intracellular epitopes of the molecule. Recently, however, several new AB...

  18. Cloning and characterization of the rat multidrug resistance-associated protein 1

    OpenAIRE

    Yang, Ziping; Li, Cheryl S. W.; Shen, Danny D.; Ho, Rodney J. Y.

    2002-01-01

    Multidrug resistance-associated protein 1 (MRP1) was originally shown to confer resistance of human tumor cells to a broad range of natural product anticancer drugs. MRP1 has also been shown to mediate efflux transport of glutathione and glucuronide conjugates of drugs and endogenous substrates. An ortholog of MRP1 in the mouse has been cloned and characterized. Significant functional differences between murine and human MRP1 have been noted. Since drug disposition and pharmacology studies of...

  19. Pyrazinamide May Improve Fluoroquinolone-Based Treatment of Multidrug-Resistant Tuberculosis

    OpenAIRE

    Chang, Kwok-chiu; Leung, Chi-chiu; Yew, Wing-wai; Leung, Eric Chung-ching; Leung, Wai-man; Tam, Cheuk-ming; Zhang, Ying

    2012-01-01

    The role of pyrazinamide in the current treatment of multidrug-resistant (MDR) tuberculosis (TB) is uncertain. From a territory-wide registry of MDR-TB cases diagnosed between 1995 and 2009, we assembled a cohort of 194 patients with MDR pulmonary TB given fluoroquinolone-containing regimens. Stratified by pyrazinamide use and susceptibility, there were 83 users with pyrazinamide-susceptible MDR-TB (subgroup A), 24 users with pyrazinamide-resistant MDR-TB (subgroup B), 40 nonusers with pyrazi...

  20. Inhibition of Bacterial Multidrug Resistance by Celecoxib, a Cyclooxygenase-2 Inhibitor?

    OpenAIRE

    Kalle, Arunasree M.; Rizvi, Arshad

    2010-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs ins...

  1. In Vivo Imaging of Multidrug Resistance Using a Third Generation MDR1 Inhibitor

    OpenAIRE

    Sprachman, Melissa M.; Laughney, Ashley M; Kohler, Rainer H; Weissleder, Ralph

    2014-01-01

    Cellular up-regulation of multidrug resistance protein 1 (MDR1) is a common cause for resistance to chemotherapy; development of third generation MDR1 inhibitors—several of which contain a common 6,7-dimethoxy-2-phenethyl-1,2,3,4- tetrahydroisoquinoline substructure—are underway. Efficacy of these agents has been difficult to ascertain, partly due to a lack of pharmacokinetic reporters for quantifying inhibitor localization and transport dynamics. Some of the recent third generation inhibitor...

  2. Transmission Dynamics of a Multidrug-Resistant Salmonella Typhimurium Outbreak in a Dairy Farm

    OpenAIRE

    Lanzas, Cristina; Warnick, Lorin D.; James, Karen L.; Wright, Emily M.; Wiedmann, Martin; Gro?hn, Yrjo T.

    2010-01-01

    Cattle are recognized as an important source of foodborne Salmonella causing human illness, particularly for antimicrobial-resistant strains. The transmission dynamics of multidrug-resistant (MDR) Salmonella after the onset of a clinical outbreak in a dairy farm has been rarely monitored. The early transmission of a pathogen influences the outbreak size and persistence of the pathogen at the farm level and, therefore, how long the herd represents a risk for Salmonella zoonotic transmission. T...

  3. Chemotherapeutic Activities of Carthami Flos and Its Reversal Effect on Multidrug Resistance in Cancer Cells

    OpenAIRE

    Wu, Jimmy Yiu-cheong; Yu, Zhi-ling; Fong, Wang-fun; Shi, Yi-qian

    2013-01-01

    Multidrug-resistance (MDR) represents a major cause of failure in cancer chemotherapy. The need for a reduction in MDR by natural-product-based drugs of low toxicity led to the current investigation of applying medicinal herbs in future cancer adjuvant therapy. Carthami Flos (CF), the dried flower of safflower (Carthamus tinctorius L.), is one of the most popular traditional Chinese medicinal herbs used to alleviate pain, increase circulation, and reduce blood-stasis syndrome. The drug resist...

  4. The multidrug-resistant tuberculosis challenge to public health efforts to control tuberculosis.

    OpenAIRE

    Villarino, M E; Geiter, L J; Simone, P M

    1992-01-01

    After years of steady decline, there has been an unprecedented resurgence of tuberculosis (TB) in the United States and outbreaks of multidrug-resistant tuberculosis (MDR-TB). The authors assess the nature, epidemiology, and implications of MDR-TB; provide suggestions for preventing drug resistance among patients with drug-susceptible TB; and offer recommendations for managing patients with MDR-TB. They outline the National Action Plan to Combat MDR-TB. Close collaboration among medical pract...

  5. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-08-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  6. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump.

    OpenAIRE

    Zaman, G. J. R.; Flens, M. J.; Leusden, M. R.; Haas, M.; Mu?lder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.; Borst, P.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an expression vector containing MRP cDNA. MRP-overexpressing SW-1573 cells are resistant to doxorubicin, daunorubicin, vincristine, VP-16, colchicine, and rhodamine 123, but not to 4'-(9-acridinylamino)me...

  7. First Report of an OXA-48-Producing Multidrug-Resistant Proteus mirabilis Strain from Gaza, Palestine.

    Science.gov (United States)

    Chen, Liang; Al Laham, Nahed; Chavda, Kalyan D; Mediavilla, Jose R; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2015-07-01

    We report the first multidrug-resistant Proteus mirabilis strain producing the carbapenemase OXA-48 (Pm-OXA-48) isolated at Al-Shifa hospital in Gaza, Palestine. Draft genome sequencing of Pm-OXA-48 identified 16 antimicrobial resistance genes, encoding resistance to ?-lactams, aminoglycosides, fluoroquinolones, phenicols, streptothricin, tetracycline, and trimethoprim-sulfamethoxazole. Complete sequencing of the blaOXA-48-harboring plasmid revealed that it is a 72 kb long IncL/M plasmid, harboring carbapenemase gene blaOXA-48, extended spectrum ?-lactamase gene blaCTX-M-14, and aminoglycoside resistance genes strA, strB, and aph(3')-VIb. PMID:25896692

  8. Multidrug resistance (MDR) in brain tumors; its clinical importance

    International Nuclear Information System (INIS)

    MDR is one of the important factors affecting chemotherapy in high grade brain malignancies. Especially it affects commonly used agents such as vincristine, VP16, VM26, and cisplatin. MDR1 gene encoded P-glycoprotein (Pgp) prevents intratumoral retention of such drugs by expelling them at the plasma membrance of brain tumor cells. Therefore, the objective of this study was to evaluate MDR in various brain tumors including metastatic tumors including metastatic tumors by dual isotope SPECT, Northern blotting or immunohistochemical staining (IHCS) using JSB-1 monoclonal antibody against MDR1 gene encoded Pgp. Twenty one patients with various brain tumors of primary, secondary, and recurrent tumors were included from 2 institutions. Whenever possible, surgical specimen from these patients were obtained to study MDR. SPET was performed with a tripple head system (Trionix, Twinsburg, Ohio or MultiSPECT 3, Siemens). Three millicuries of 201Tl chloride and 20 mCi of 99mTc-sestamibi were adminstered and SPET was performed in about 15 min. Nineteen percent of patients had MIBI (-) and Tl (+) suggesting MDR (+). MIBI tumor uptake was higher in recurrence (6.67 +/- 1.3) than the stable original tumors (3.12 +/-0.77) (For 201Tl, 3.65 +/-2.2 Vs 1.5 +/-0.41). Three recurrent gliomas biopsied showed positive blotting and these patients failed several courses of chemotherapy. Six patients with various tumors such as oligodendroglioma, meningioma, recuuch as oligodendroglioma, meningioma, recurrent G-M (2), and astrocytoma (2) were studied by IHCS, Weakly positive MDR was seen in one recurrent G-M and an astrocytoma case. Positive MDR was seen in the other recurrent G-M and a meningioma. In conclusion, MDR in brain tumors is detected successfully by dual isotope SPECT studies in a limited number of patients. MDR in benign brain tumors has no clinical significance since they are cured by surgical removal. However, we believe its presence in metastatic and high grade especially recurrent tumors is an essential information prior to the innitiation of chemotherapy

  9. Additional drug resistance of multidrug-resistant tuberculosis in patients in 9 countries.

    Science.gov (United States)

    Kurbatova, Ekaterina V; Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y; Volchenkov, Grigory V; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V; Cegielski, J Peter

    2015-06-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5-6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2-4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  10. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  11. Imaging recognition of inhibition of multidrug resistance in human breast cancer xenografts using 99mTc-labeled sestamibi and tetrofosmin

    International Nuclear Information System (INIS)

    Background: 99mTc-sestamibi (MIBI) and 99mTc-tetrofosmin (TF) are avid transport substrates recognized by the multidrug resistance (MDR) P-glycoprotein (Pgp). This study was designed to compare the properties of MIBI and TF in assessing the inhibition of Pgp by PSC833 in severe combined immunodeficient mice bearing MCF7 human breast tumors using SPECT imaging. Methods: Animals with drug-sensitive (MCF/WT) and drug-resistant (MCF7/AdrR) tumors were treated by PSC833 and by carrier vehicle 1 h before imaging, respectively. Dynamic images were acquired for 30 min after intravenous injection of MIBI/TF using a SPECT system, FastSPECT. The biodistribution of MIBI and TF was determined at the end of the imaging session. Results: MCF7/WT in the absence and presence of PSC833 could be visualized by MIBI and TF imaging within 5 min and remained detectable for 30 min postinjection. MCF7/AdrR could be visualized only 2-5 min without PSC833 treatment but could be detected for 30 min with PSC833, very similar to MCF7/WT. MCF7/AdrR without PSC833 showed significantly greater radioactive washout than MCF7/WT and MCF7/AdrR with PSC833 treatment. PSC833 increased the accumulation (%ID/g) in MCF7/AdrR 3.0-fold (1.62±0.15 vs. 0.55±0.05, P<.05) for TF and 1.9-fold (1.21±0.04 vs. 0.64±0.05, P<.05) for MIBI but did not affect MCF7/WT. Conclusions: The feasibility of MIBI and TF for assessment of MDR expression and inhibition was demonstrated in mice through FastSPas demonstrated in mice through FastSPECT imaging. The results indicate that TF may be at least comparable with MIBI in recognizing Pgp expression and modulation

  12. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the mycobacteria growth indicator tube (MGIT) system

    Scientific Electronic Library Online (English)

    M.A.S., Telles; A., Bori; A.B.R., Amorim; A.F., Cruz; M.I.T., Pini; D.N., Sato.

    1127-11-01

    Full Text Available The emergence of multidrug-resistant strains of Mycobacterium tuberculosis has increased the need for rapid drug susceptibility tests, which are needed for adequate patient treatment. The objective of the present study was to evaluate the mycobacteria growth indicator tube (MGIT) system to detect mu [...] ltidrug-resistant M. tuberculosis strains. The MGIT system was compared with two standard methods (proportion and resistance ratio methods). One hundred clinical M. tuberculosis isolates [25 susceptible to isoniazid (INH) and rifampicin (RIF), 20 resistant to INH, 30 resistant to INH-RIF, and 25 resistant to INH-RIF and other drugs] obtained in the State of São Paulo were tested for INH and RIF susceptibility. Full agreement among the tests was found for all sensitive and all INH-resistant strains. For RIF-resistant strains results among the tests agreed for 53 (96.4%) of 55 isolates. Results were obtained within 6 days (range, 5 to 8 days), 28 days and 12 days when using MGIT, the proportion method and the resistance ratio methods, respectively. The MGIT system presented an overall agreement of 96% when compared with two standard methods. These data show that the MGIT system is rapid, sensitive and efficient for the early detection of multidrug-resistant M. tuberculosis.

  13. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression

    OpenAIRE

    Nakanishi, Takeo; Ross, Douglas D.

    2012-01-01

    Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells. BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary tract, as well as through the blood-brain, placental, and possibly blood-testis barriers. B...

  14. Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations

    OpenAIRE

    Mutsaers, Henricus A. M.; Den Heuvel, Lambertus P.; Ringens, Lauke H. J.; Dankers, Anita C. A.; Russel, Frans G. M.; Wetzels, Jack F. M.; Hoenderop, Joost G.; Masereeuw, Rosalinde

    2011-01-01

    During chronic kidney disease (CKD), there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concent...

  15. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement

    OpenAIRE

    Lange, Christoph; Abubakar, Ibrahim; Alffenaar, Jan-willem C.; Bothamley, Graham; Caminero, Jose A.; Carvalho, Anna Cristina C.; Chang, Kwok-chiu; Codecasa, Luigi; Correia, Ana; Crudu, Valeriu; Davies, Peter; Dedicoat, Martin; Drobniewski, Francis; Duarte, Raquel; Ehlers, Cordula

    2014-01-01

    The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) substantially challenges TB control, especially in the European Region of the World Health Organization, where the highest prevalence of MDR/XDR cases is reported. The current management of patients with MDR/XDR-TB is extremely complex for medical, social and public health systems. The treatment with currently available anti-TB therapies to achieve relapse-free cure is long and undermined by a hi...

  16. Decreased Hepatic Breast Cancer Resistance Protein Expression and Function in Multidrug Resistance-Associated Protein 2-Deficient (TR?) Rats

    OpenAIRE

    Yue, Wei; Lee, Jin Kyung; Abe, Koji; Sugiyama, Yuichi; Brouwer, Kim L. R.

    2011-01-01

    Multidrug resistance-associated protein (Mrp) 2-deficient (TR?) Wistar rats have been used to elucidate the role of Mrp2 in drug disposition. Decreased breast cancer resistance protein (Bcrp) levels were reported in sandwich-cultured hepatocytes (SCH) from TR? rats compared with those from wild-type (WT) rats. This study was designed to characterize hepatic Bcrp expression and function in TR? rats, using nitrofurantoin and pitavastatin as substrates. Bcrp was knocked down by RNA interfe...

  17. Fluoroquinolone-Resistant Urinary Isolates of Escherichia coli from Outpatients Are Frequently Multidrug Resistant: Results from the North American Urinary Tract Infection Collaborative Alliance-Quinolone Resistance Study

    OpenAIRE

    Karlowsky, James A.; Hoban, Daryl J.; DeCorby, Melanie R.; Laing, Nancy M.; Zhanel, George G.

    2006-01-01

    Ciprofloxacin-resistant Escherichia coli isolates (n = 1,858) from outpatient midstream urine specimens at 40 North American clinical laboratories in 2004 to 2005 were frequently resistant to ampicillin (79.8% of isolates) and trimethoprim-sulfamethoxazole (66.5%); concurrent resistance to cefdinir (9.0%) or nitrofurantoin (4.0%) was less common. Only 10.8% of isolates were resistant to ciprofloxacin alone. Fluoroquinolone-resistant isolates of E. coli from urine were frequently multidrug res...

  18. Global Financing and Long-Term Technical Assistance for Multidrug-Resistant Tuberculosis: Scaling Up Access to Treatment

    OpenAIRE

    Hwang, Thomas J.; Keshavjee, Salmaan

    2014-01-01

    Thomas Hwang and Salmaan Keshavjee argue that a market-based strategy combined with long-term in-country technical assistance should be used to scale-up access to the treatment of multi-drug resistant tuberculosis

  19. Antimicrobial resistance and integron profiles in multidrug-resistant Escherichia coli isolates from pigs.

    Science.gov (United States)

    Lee, Minyoung; Shin, Eunju; Lee, Yeonhee

    2014-12-01

    From July 2006 to June 2008, a total of 3876 Escherichia coli strains were collected from 1014 porcine intestinal contents to investigate antimicrobial resistance and related gene patterns. Average resistance rates of porcine E. coli isolates were 93.2% for tetracycline, 65.3% for ampicillin, 60.4% for chloramphenicol, 57.7% for streptomycin, 35.8% for nalidixic acid, 23.6% for gentamicin, 10.8% for ciprofloxacin, 10.0% for norfloxacin, 4.5% for cephalothin, 1.0% for cefoxitin, and 0.4% for cefazolin. The number of isolates resistant to more than 3 different classes of antimicrobials was 2537. Among these, 92 isolates were resistant to 5 or more classes of antimicrobials, and 69 isolates among 92 multidrug-resistant (MDR) isolates were integrase positive. Among 69 integrase-positive MDR isolates, only class I integron was detected in 19 isolates (20.7%). The class-1-integron-positive isolates had different sizes and gene contents (i.e., 1.0?kb containing aadA1 and 1.5?kb containing aadA1-dfrA1 and aadA1-aadB), and showed 15 distinct types by pulsed-field gel electrophoresis (PFGE) analysis, with 80% cut-off band pattern similarity. PFGE typing of four groups of isolates with identical antimicrobial resistance gene profiles showed two heterogeneous groups, while one group had very similar PFGE patterns; the fourth group was not typeable due to DNA degradation. In conjugation experiments, class I integron-harboring isolates transferred resistance to ampicillin, norfloxacin, gentamicin, and chloramphenicol to the recipient strain. This study showed that antimicrobial resistance rates and corresponding genes in porcine E. coli isolates are different from those in human isolates described by previous studies, and that transfer of antimicrobial-resistant genes from animal to human occurred. These data can be used as a baseline to evaluate the effect of antimicrobial use after implementation of the animal antimicrobial ban for prophylactic and growth promotion except for therapeutic use in 2012 in Korea. PMID:25303163

  20. Inducible phenotypic multidrug resistance in the fungus Mucor racemosus.

    OpenAIRE

    Leathers, T D; Sypherd, P S

    1985-01-01

    The dimorphic fungus Mucor racemosus exhibited a single-step, inducible resistance to cycloheximide, trichodermin, and amphotericin B. Cells adapted to inhibitory levels of the antibiotics after 12 to 40 h. The adaptation involved all the cells in the population and was not the result of the selection of resistant mutants. Adaptation to one drug provided cross resistance to other, dissimilar drugs. Resistance was lost within several generations of growth in the absence of the inhibitors.

  1. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi.

    Science.gov (United States)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar; Haque, Abdul; De Zorzi, Rita; Mirza, Osman; Walz, Thomas; Rahman, Moazur

    2015-05-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials. PMID:25724589

  2. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges.

    Science.gov (United States)

    Günther, Gunar

    2014-06-01

    Multidrug-resistant and extensively drug-resistant tuberculosis are recent global health issues, which makes tuberculosis - after the success of short course treatment during the second half of the last century - a major health challenge. Globalisation, health inequalities, competing economic interests and political instability contribute substantially to the spread of drug-resistant strains, which are associated with high rates of morbidity and mortality. Issues such as increasing transmission of drug-resistant strains, poor diagnostic coverage and a lengthy, toxic treatment need to be overcome by innovative approaches to tuberculosis control, prevention, diagnostics and treatment. This review addresses recent developments and future concepts. PMID:24889573

  3. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis.

    Science.gov (United States)

    Caminero, José A; Sotgiu, Giovanni; Zumla, Alimuddin; Migliori, Giovanni Battista

    2010-09-01

    Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are generally thought to have high mortality rates. However, many cases can be treated with the right combination and rational use of available antituberculosis drugs. This Review describes the evidence available for each drug and discusses the basis for recommendations for the treatment of patients with MDR and XDR tuberculosis. The recommended regimen is the combination of at least four drugs to which the Mycobacterium tuberculosis isolate is likely to be susceptible. Drugs are chosen with a stepwise selection process through five groups on the basis of efficacy, safety, and cost. Among the first group (the oral first-line drugs) high-dose isoniazid, pyrazinamide, and ethambutol are thought of as an adjunct for the treatment of MDR and XDR tuberculosis. The second group is the fluoroquinolones, of which the first choice is high-dose levofloxacin. The third group are the injectable drugs, which should be used in the following order: capreomycin, kanamycin, then amikacin. The fourth group are called the second-line drugs and should be used in the following order: thioamides, cycloserine, then aminosalicylic acid. The fifth group includes drugs that are not very effective or for which there are sparse clinical data. Drugs in group five should be used in the following order: clofazimine, amoxicillin with clavulanate, linezolid, carbapenems, thioacetazone, then clarithromycin. PMID:20797644

  4. Assessment of Golgi Apparatus versus Plasma Membrane-Localized Multi-Drug Resistance-Associated Protein 1

    OpenAIRE

    Kaufmann, Allyn M.; Toro-ramos, Alana J.; Krise, Jeffrey P.

    2008-01-01

    Traditionally, proteins belonging to the ATP-binding cassette superfamily have been thought to function exclusively at the plasma membrane (PM) of cells. We have previously shown multidrug resistance-associated protein 1 (MRP1) to reside on the Golgi apparatus of the multidrug resistant (MDR) human leukemic cell line HL-60 (HL-60/ADR); however, neither the prevalence of this abnormal localization nor the functionality of the transporter at the Golgi has been thoroughly addressed. To assess th...

  5. Mass incarceration can explain population increases in TB and multidrug-resistant TB in European and central Asian countries

    OpenAIRE

    Stuckler, David; Basu, Sanjay; Mckee, Martin; King, Lawrence

    2008-01-01

    Several microlevel studies have pinpointed prisons as an important site for tuberculosis (TB) and multidrug-resistant TB in European and central Asian countries. To date, no comparative analyses have examined whether rises in incarceration rates can account for puzzling differences in TB trends among overall populations. Using longitudinal TB and cross-sectional multidrug-resistant TB data for 26 eastern European and central Asian countries, we examined whether and to what degree increases in...

  6. Establishment of a human hepatoma multidrug resistant cell line in vitro

    OpenAIRE

    Yuan Zhou, Xian-Long Ling, Shi-Wei Li, Xin-Qiang Li, Bin Yan

    2010-01-01

    AIM: To establish a multidrug-resistant hepatoma cell line (SK-Hep-1), and to investigate its biological characteristics.METHODS: A highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma, also known as malignant hepatoma was incubated with a high concentration of cisplatin (CDDP) to establish a CDDP-resistant cell subline (SK-Hep-1/CDDP). The 50% inhibitory dose (IC50) values and the resistance indexes [(IC50 SK-Hep-1/CDDP)/(IC50 SK-Hep-1)] for other chemotherapeutic agents and ...

  7. Identification and Characterization of Multidrug-Resistant Salmonella enterica Serotype Albert Isolates in the United States.

    Science.gov (United States)

    Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M

    2015-05-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. PMID:25733501

  8. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli : a comparative study of different backbones

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-MØller, Niels

    2012-01-01

    Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed, and one obvious approach involves antimicrobial peptides and mimics hereof. The impact of a- and ß-peptoid as well as ß(3)-amino acid modifications on the activity profile against ß-lactamase-producing Escherichia coli was assessed by testing an array comprising different types of cationic peptidomimetics obtained by a general monomer-based solid-phase synthesis protocol. Most of the peptidomimetics possessed high to moderate activity toward multidrug-resistant E. coli as opposed to the corresponding inactive peptides. Nevertheless, differences in hemolytic activities indicate that a careful choice of backbone design constitutes a significant parameter in the search for effective cationic antimicrobial peptidomimetics targeting specific bacteria.

  9. Multidrug resistance protein 1 (MRP1, ABCC1), a "multitasking" ATP-binding cassette (ABC) transporter.

    Science.gov (United States)

    Cole, Susan P C

    2014-11-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases. PMID:25281745

  10. Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line.

    Science.gov (United States)

    Ménez, Cécile; Mselli-Lakhal, Laïla; Foucaud-Vignault, Magali; Balaguer, Patrick; Alvinerie, Michel; Lespine, Anne

    2012-01-15

    Ivermectin is widely used in human and veterinary medicine for the control of helminth infections. Ivermectin is known to interact with P-glycoprotein (P-gp/MDR1), being a good substrate and a potent inhibitor, however, the influence of ivermectin on the expression of the transporter has not been investigated. Expression of P-glycoprotein was investigated in cultured mouse hepatocytes acutely exposed to ivermectin. The two P-glycoprotein murine isoforms, Mdr1a and Mdr1b, mRNA levels were assessed by real-time RT-PCR. Ivermectin induced a clear time- and concentration-dependent up-regulation of Mdr1a and Mdr1b mRNA levels (as early as a 12-h exposure and up to 2.5-fold at 10?M). Moreover, ivermectin-treated cells displayed enhanced cellular efflux of the P-glycoprotein substrate calcein that was inhibited by the P-glycoprotein blocker valspodar, providing evidence that the ivermectin-induced P-glycoprotein was functional. The mechanisms underlying these effects were investigated. Ivermectin-mediated Mdr1 mRNA induction was independent of the two nuclear receptors CAR and PXR, which are known to be involved in drug transporters regulation. Moreover, by using reporter cell lines that detects specific ligand-activated transcription factors, we showed that ivermectin did not displayed CAR, PXR or AhR ligand activities. However, studies with actinomycin D revealed that the half-life of Mdr1a and Mdr1b mRNA were significantly prolonged by two-fold in ivermectin-treated cells suggesting a post-transcriptional mode of ivermectin regulation. This study demonstrates for the first time that ivermectin induces P-glycoprotein overexpression through post-transcriptional mRNA stabilization, thus offering insight into the mechanism of reduced therapeutic efficacy and development of ivermectin-resistant parasites. PMID:22024132

  11. Assessment of Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Burn Isolates in Tehran

    Directory of Open Access Journals (Sweden)

    Fereshteh Eftekhar

    2013-04-01

    Full Text Available Background: Pseudomonas aeruginosais an opportunistic pathogen which causes severe, acute and chronic nosocomial infections. These infections are difficult to eradicate since the organisms are usually multidrug-resistant. Carbapenems are considered as the most effective drugs against these isolates. However, recent emergence of carbapenem-resistant P. aeruginosa has become a major healthcare problem..Objectives: The present study was conducted to determine the antibiotic susceptibility of P. aeruginosa burn isolates to 13 antibiotics including imipemen and meropenem..Materials and Methods: One hundred and thirty three P. aeruginosa burn isolates were collected from Shahid Motahari Burn Hospital between July and December 2011. The majority of the isolates were from wounds (88.7%, followed by 5.26% from blood, 4.15% from subclavian catheters and 1.5% from urine. The antibiotic susceptibility profiles were studied by the agar disc diffusion..Results: The results showed 99.2% resistance to carbenicillin, 98.4% to ticarcillin, 96.2% to ciprofloxacin, 95.4% to co-trimoxazole, 94.7% to imipenem and meropenem, 93.9% to piperacillin, 93.2% to azetronam, 92.4% to tobramycin, 91.7% to cefepime, 89.4% to amikacin and ceftazidime, and finally 87.2% to piperacillin-tazobactam. Overall, 100% of the isolates showed multidrug-resistance (resistance to ? 3 classes of antibiotics including theimipenem- resistant isolates..Conclusions: The high rate of multidrug-resistance is alarming and it is crucial to screen for carbapenem resistance prior to - antibiotic therapy.

  12. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

    OpenAIRE

    Doublier Sophie; Belisario Dimas C; Polimeni Manuela; Annaratone Laura; Riganti Chiara; Allia Elena; Ghigo Dario; Bosia Amalia; Sapino Anna

    2012-01-01

    Abstract Background Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologica...

  13. Toxicity mechanisms of onion (Allium cepa) extracts and compounds in multidrug resistant erythroleukemic cell line

    OpenAIRE

    Votto, Ana P. S.; Domingues, Beatriz S.; Souza, Michele M.; Da Silva Ju?nior, Flavio M. R.; Caldas, Sergiane S.; Filgueira, Daza M. V. B.; Clementin, Rosilene M.; Primel, Ednei G.; Vallochi, Adriana L.; Furlong, Eliana B.; Trindade, Gilma S.

    2010-01-01

    Onion (Allium cepa) is being studied as a potential anticancer agent, but little is known regarding its effect in multidrug resistance (MDR) cells. In this work, the cytotoxicity of crude onion extract (OE) and fractioned extract (aqueous, methanolic and ethyl acetate), as well as some onion compounds (quercetin and propyl disulfide) were evaluated in Lucena MDR human erythroleukemic and its K562 parental cell line. The capacity of OE to induce apoptosis and/or necrosis in these cells, the po...

  14. Polymer inhibitors of ABC transporter overcoming multidrug resistance: synthesis, characterization and in vitro evaluation.

    Czech Academy of Sciences Publication Activity Database

    Šubr, Vladimír; Koziolová, Eva; Sivák, Ladislav; ?íhová, Blanka; Ková?, Marek; Ulbrich, Karel

    Suzhou : Soochow University Biomedical Polymers Laboratory, 2014 - (Feijen, J.). s. 230 ISBN 978-7-5672-1072-1. [Symposium on Innovative Polymers for Controlled Delivery /3./. 16.09.2014-19.09.2014, Suzhou] R&D Projects: GA ?R GAP301/12/1254 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : HPMA * copolymers * multidrug resistance Subject RIV: CD - Macromolecular Chemistry; FD - Oncology ; Hematology (MBU-M)

  15. Evaluation of Aromatic Plants and Compounds Used to Fight Multidrug Resistant Infections

    OpenAIRE

    Ramar Perumal Samy; Jayapal Manikandan; Mohammed Al Qahtani

    2013-01-01

    Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100??g of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity against Burkholderia pseudomallei (strain TES and KHW) and Staphylo...

  16. De-Differentiation Confers Multidrug Resistance Via Noncanonical PERK-Nrf2 Signaling

    OpenAIRE

    Del Vecchio, Catherine A.; Feng, Yuxiong; Sokol, Ethan S.; Tillman, Erik J.; Sanduja, Sandhya; Reinhardt, Ferenc; Gupta, Piyush B.

    2014-01-01

    Malignant carcinomas that recur following therapy are typically de-differentiated and multidrug resistant (MDR). De-differentiated cancer cells acquire MDR by up-regulating reactive oxygen species (ROS)–scavenging enzymes and drug efflux pumps, but how these genes are up-regulated in response to de-differentiation is not known. Here, we examine this question by using global transcriptional profiling to identify ROS-induced genes that are already up-regulated in de-differentiated cells, even...

  17. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    OpenAIRE

    Morales Eva; Cots Francesc; Sala Maria; Comas Mercè; Belvis Francesc; Riu Marta; Salvadó Margarita; Grau Santiago; Horcajada Juan P; Montero Maria; Castells Xavier

    2012-01-01

    Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were...

  18. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    OpenAIRE

    Arax Hovhannesyan; Elizabeth Breeze

    2012-01-01

    OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute ...

  19. Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria

    OpenAIRE

    Lubelski, Jacek,; Konings, Wil N.; Driessen, Arnold J. M.

    2007-01-01

    Summary: Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacte...

  20. Overcoming multidrug resistance by polymer inhibitors of ABC transporter MDR1.

    Czech Academy of Sciences Publication Activity Database

    Cuchalová, Lucie; Šubr, Vladimír; Koziolová, Eva; Janoušková, Olga; Hv?zdová, Zuzana; Eckschlager, T.; Etrych, Tomáš; Ulbrich, Karel

    Vancouver : Keystone Symposia, 2015. 78 /J1-1035/. [Integrating Metabolism and Tumor Biology, PI 3-Kinase Signaling Pathways in Disease. 13.01.2015-18.01.2015, Vancouver] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA ?R(CZ) GAP301/12/1254 Institutional support: RVO:61389013 Keywords : multidrug resistance * drug delivery Subject RIV: CD - Macromolecular Chemistry

  1. Experimental Study on the Mechanism of Reversal of Leukemia Multidrug Resistance by Proteasome Inhibitor Bortezomib

    Directory of Open Access Journals (Sweden)

    Ying-chun LI

    2010-08-01

    Full Text Available OBJECTIVE In this study, we applied multidrug resistant leukemia cell line expressing mdr1-mRNA to observe changes in mdr1-mRNA, the P-gp, cell cycle and apoptosis before and after bortezomib was used, in order to explore the mechanism of reversal of leukemia multidrug resistance by the proteasome inhibitor bortezomib.METHODS Flow cytometry (FCM was used to detect the intracellular drug concentration, expression of P-gp, cell apoptosis and cell cycle status of K562/DNR cells before and afer treatment with different concentrations of bortezomib. Fluorescence quantitative PCR was applied to detect the mdr1-mRNA expression in K562/DNR and K562/S cells. RESULTS Bortezomib could increase the intracellular DNR content in K562/DNR cells, but showed no effect in K562/S cells. 5-100 nmol/L bortezomib could significantly reduce the P-gp/mdr1-mRNA expression in K562/DNR cells in vitro, and showed a dose-dependent effect. There was a statistically significant difference (P < 0.05 between different concentration groups and the control group. P-gp/mdr1-mRNA expression was negatively correlated with cell apoptosis (r = -0.912 and P < 0.01. After treatment with different concentrations of bortezomib for 24 h, K562/DNR cells in G2 + M phases were significantly increased, while cells in G0 + G1 phases and S phase were significantlydecreased, accompanied by an increased apoptotic rate.CONCLUSION Bortezomib can induce G0 + G1 phase to G2 + M phase, and thereby enhance the chemosensitivity of leukemia, and may also reverse the multidrug resistance in leukemia mediated by P-gp overexpression encoded by mdr1 gene. This confirms that bortezomib can reverse leukemia multidrug resistance at the levels of nucleic acid and protein molecules.

  2. Multidrug-Resistant Salmonella enterica Serotype Typhi, Gulf of Guinea Region, Africa.

    Science.gov (United States)

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine; Weill, François-Xavier

    2015-04-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307

  3. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    OpenAIRE

    Morales Eva; Cots Francesc; Sala Maria; Comas Mercè; Belvis Francesc; Riu Marta; Salvadó Margarita; Grau Santiago; Horcajada Juan P; Montero Maria; Castells Xavier

    2012-01-01

    Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were...

  4. Factors influencing survival in patients with multidrug-resistant Acinetobacter baumannii infection

    OpenAIRE

    Mariana Lima Prata-Rocha; Paulo Pinto Gontijo-Filho; Geraldo Batista de Melo

    2012-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii (Acb) is a rapidly emerging pathogen in healthcare settings. The aim of this study was to evaluate the predictors of poor outcome in patients with MDR Acb. This is the first report documenting factors influencing survival in patients with MDR Acb in this tertiary hospital. This study is a prospective of the hospital epidemiology database. A total of 73 patients with 84 Acb isolates were obtained between August 2009 and October 2010 in this hos...

  5. The Frequency and Clinical Relevance of Multidrug Resistance Protein Expression in Patients with Lymphoma

    Directory of Open Access Journals (Sweden)

    Eren Gündüz

    2012-06-01

    Full Text Available OBJECTIVE: Multidrug resistance is a cause of treatment failure in patients with malignant lymphoma; however, the frequency and clinical relevance of multidrug resistance protein expression are unclear. The present study aimed to investigate expression of the most common multidrug resistance proteins in a group of lymphoma patients. METHODS: The study included 44 previously untreated lymphoma patients (non-Hodgkin's lymphoma [n = 21], non-malignant lymphadenopathy [n = 13], and Hodgkin's lymphoma [n = 10]. MDR1, MRP, and LRP expression was assessed via quantitative PCR of lymph node biopsy specimens. RESULTS: In the non-Hodgkin's lymphoma group MDR1 was positive in 23.8% (5/21 of the patients, MRP was positive in 57.14% (12/21, and LRP was positive in 90.47% (19/21. In the non-malignant lymphadenopathy group, MDR1 was positive in 46.15% (6/13 of the patients, MRP was positive in 84.61% (11/13, and LRP was positive in 100% (13/13. In the Hodgkin's lymphoma group MDR1 was positive in 50% (5/10 of the patients, MRP was positive in 50% (5/10, and LRP was positive in 80% (8/10. MDR1, MRP, and LRP expression did not differ between the 3 groups. Furthermore, MDR1, MRP, and LRP expression wasn't associated with tumor stage, response to first-line therapy, the erythrocyte sedimentation rate, or C reactive protein, beta 2 microglobulin, serum lactate dehydrogenase, and albumin levels. Additionally, survival time in the MDR1- and MRP-positive, and MDR1- and MRP-negative patients did not differ (comparison of LRP was not possible due to the small number of LRP-negative patients. CONCLUSION: According to the present findings, future studies should investigate alternative pathways of multidrug resistance in order to arrive at a better understanding of treatment failure in lymphoma patients.

  6. Clonal multidrug-resistant Corynebacterium striatum within a nosocomial environment, Rio de Janeiro, Brazil

    OpenAIRE

    Paulo Victor Pereira Baio; Higor Franceschi Mota; Avila Freitas, Andre?a D.; Débora Leandro Rama Gomes; Juliana Nunes Ramos; Lincoln Oliveira Sant'Anna; Mônica Cristina Souza; Thereza Cristina Ferreira Camello; Raphael Hirata Junior; Verônica Viana Vieira; Ana Luíza Mattos-Guaraldi

    2013-01-01

    Corynebacterium striatum is a potentially pathogenic microorganism with the ability to produce outbreaks of nosocomial infections. Here, we document a nosocomial outbreak caused by multidrug-resistant (MDR) C. striatum in Rio de Janeiro, Brazil. C. striatum identification was confirmed by 16S rRNA and rpoB gene sequencing. Fifteen C. striatum strains were isolated from adults (half of whom were 50 years of age and older). C. striatum was mostly isolated in pure culture from tracheal aspirates...

  7. Clinically relevant multidrug resistant Salmonella enterica in swine and meat handlers at the abattoir

    OpenAIRE

    Eduarda Gomes-Neves; Fátima Gärtner

    2014-01-01

    The presence of multidrug resistant (MDR) Salmonella serotypes in slaughtered swine,carcasses, meat and meat handlers is scarcely evaluated. Recently we demonstrated thatdiverse Salmonella serotypes are frequently present in swine, pork meat and carcasses, andmeat handlers at Portuguese abattoirs. Here we have characterized their antibioticresistance phenotypes and genotypes, helping elucidate the flow of MDR Salmonella in thefood chain. Testing 60 Salmonella isolates from different serotypes...

  8. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?

    DEFF Research Database (Denmark)

    Hartmeyer, G N; Sóki, J

    2012-01-01

    We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before.

  9. The Radiological Spectrum of Pulmonary Multidrug-Resistant Tuberculosis in HIV-Negative Patients

    OpenAIRE

    Ehsanpour, A.; Masjedi, M. R.; "S. Zahirifard; M. V. Amiri; M Bakhshayesh Karam; S. M. Mirsaeidi

    2003-01-01

    Background: Multidrug-resistant tuberculosis (MDR-TB) is a major worldwide health problem. In countries where TB is of moderate to high prevalence, the issue of MDR-TB carries significant importance. MDR-TB, similar to drug-sensitive TB, is contagious. Meanwhile its treatment is not only more difficult but also more expensive with lower success rates. Regarding clinical findings, there is no significant difference between MDR-TB and drug-sensitive TB. Therefore determination of characteristic...

  10. Modulation of Substrate Efflux in Bacterial Small Multidrug Resistance Proteins by Mutations at the Dimer Interface ?

    OpenAIRE

    Poulsen, Bradley E.; Cunningham, Fiona; Lee, Kate K. Y.; Deber, Charles M.

    2011-01-01

    Bacteria evade the effects of cytotoxic compounds through the efflux activity of membrane-bound transporters such as the small multidrug resistance (SMR) proteins. Consisting typically of ca. 110 residues with four transmembrane (TM) ?-helices, crystallographic studies have shown that TM helix 1 (TM1) through TM helix 3 (TM3) of each monomer create a substrate binding “pocket” within the membrane bilayer, while a TM4-TM4 interaction accounts for the primary dimer formation. Previous work...

  11. Modulation of Mitochondrial Permeability Transition Pore Affects Multidrug Resistance in Human Hepatocellular Carcinoma Cells

    OpenAIRE

    Xianlong Ling, Yuan Zhou, Shi-Wei Li, Bin Yan, Lei Wen

    2010-01-01

    Multidrug resistance (MDR) is a critical problem in the chemotherapy of cancers. Human hepatocellular carcinoma (HCC) responds poorly to chemotherapy owing to its potent MDR. Chemotherapeutic drugs primarily act by inducing apoptosis of cancer cells, and defects in apoptosis may result in MDR. Mitochondrial permeability transition (mPT) is implicated as an important event in the control of cell death or survival and mPT represents a target for the development of cytotoxic drugs. This study ai...

  12. Canine multi-drug resistance-1 mutation prevalence: A South African perspective

    Scientific Electronic Library Online (English)

    Lérica, le Roux-Pullen; Henriëtte, van der Zwan.

    2014-01-01

    Full Text Available The multi-drug resistance (mdr-1) gene mutation is a phenomenon well known to current veterinary practitioners. The mutation causes a predisposition for, amongst other phenomena, macrocyclic lactone-induced neurotoxicosis in affected canines, a condition that can be fatal. Various herding dog breeds [...] can be heterozygous or homozygous for the mutation, and prevalence differs only slightly in dog populations between geographical regions. This report provides prevalence data of the canine mdr-1 mutation in 306 South African dogs.

  13. Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis

    OpenAIRE

    Carroll, Matthew W.; Jeon, Doosoo; Mountz, James M.; Lee, Jong Doo; Jeong, Yeon Joo; Zia, Nadeem; Lee, Myungsun; Lee, Jongseok; Via, Laura E.; Lee, Soyoung; Eum, Seok-yong; Lee, Sung-joong; Goldfeder, Lisa C.; Cai, Ying; Jin, Boyoung

    2013-01-01

    Pulmonary lesions from active tuberculosis patients are thought to contain persistent, nonreplicating bacilli that arise from hypoxic stress. Metronidazole, approved for anaerobic infections, has antituberculosis activity against anoxic bacilli in vitro and in some animal models and may target persistent, nonreplicating bacilli. In this double-blind, placebo-controlled trial, pulmonary multidrug-resistant tuberculosis subjects were randomly assigned to receive metronidazole (500 mg thrice dai...

  14. Pharmacokinetic interaction between epirubicin and the multidrug resistance reverting agent D-verapamil.

    OpenAIRE

    Scheithauer, W.; Schenk, T; Czejka, M.

    1993-01-01

    The potential for a pharmacokinetic interaction between epirubicin and the second-generation multidrug resistance modulating agent D-verapamil (DVPM) has been investigated in six patients with advanced colorectal cancer. Our results indicate that a significant interaction takes place. Enhanced distribution of epirubicin from the serum and altered disposition might, in fact, explain the increased level of myelotoxicity in this pilot as well as in other clinical phase II studies involving DVPM.

  15. Left-Sided Endocarditis Associated with Multi-Drug Resistance Acinetobacter Lwoffii

    Directory of Open Access Journals (Sweden)

    Naghmeh Moshtaghi

    2009-09-01

    Full Text Available Acinetobacter lwoffii, an important nosocomial pathogen, is a gram-negative aerobic bacillus that is a component of the normal flora on the skin, oropharynx, and perineum of about 20-25% of healthy individuals. We herein present a case of a 66-year-old man with combined mitral and aortic valve endocarditis associated with multi-drug resistance acinetobacter lowffii bacteremia.

  16. Nosocomial Outbreak Caused by Multidrug-Resistant Pseudomonas aeruginosa Producing IMP-13 Metallo-?-Lactamase

    OpenAIRE

    Pagani, Laura; Colinon, Ce?line; Migliavacca, Roberta; Labonia, Maria; Docquier, Jean-denis; Nucleo, Elisabetta; Spalla, Melissa; Li Bergoli, Michele; Rossolini, Gian Maria

    2005-01-01

    An outbreak of Pseudomonas aeruginosa showing a multidrug-resistant (MDR) phenotype (including carbapenems, ceftazidime, cefepime, gentamicin, tobramycin, and fluoroquinolones) was observed, during a 5-month period, in a general intensive care unit of a large tertiary care and clinical research hospital in southern Italy. The outbreak involved 15 patients, with a total of 87 isolates, mostly from lower respiratory tract specimens. Analysis of isolates involved in the outbreak revealed product...

  17. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella

    Directory of Open Access Journals (Sweden)

    Leena Bajracharya

    2015-01-01

    Full Text Available A healthy lady of 42 years underwent deep anterior lamellar keratoplasty for granular dystrophy. The very next day, it was complicated by development of infectious keratitis. The organism was identified as multidrug resistant Klebsiella pneumoniae. Donor corneal button may be implicated in the transmission of infection in an otherwise uneventful surgery and follow-up. Nosocomial infections are usually severe, rapidly progressive and difficult to treat. Finally, the lady had to undergo therapeutic penetrating keratoplasty for complete resolution of infection.

  18. Results of a standardised regimen for multidrug-resistant tuberculosis in Bangladesh

    OpenAIRE

    Van Deun, A.; Salim, A. H.; Das, P.K.; Bastian, I; Portaels, F.

    2004-01-01

    SETTING: Individualised regimens based on drug susceptibility test results, generally used to treat multidrug-resistant tuberculosis (MDR-TB), require often unavailable expertise and resources. OBJECTIVE: To evaluate a standardised regimen based on the susceptibility profiles of locally prevalent MDR-TB strains. DESIGN: The activities of a successful DOTS programme in Bangladesh were complemented by offering treatment with a standardised 21-month regimen to patients with laboratory-confirmed ...

  19. Plasma Drug Activity in Patients on Treatment for Multidrug-Resistant Tuberculosis

    OpenAIRE

    Mpagama, Stellah G.; Ndusilo, Norah; Stroup, Suzanne; Kumburu, Happiness; Peloquin, Charles A.; Gratz, Jean; Houpt, Eric R.; Kibiki, Gibson S.; Heysell, Scott K.

    2014-01-01

    Little is known about plasma drug concentrations relative to quantitative susceptibility in patients with multidrug-resistant tuberculosis (MDR-TB). We previously described a TB drug activity (TDA) assay that determines the ratio of the time to detection of plasma-cocultured Mycobacterium tuberculosis versus control growth in a Bactec MGIT system. Here, we assess the activity of individual drugs in a typical MDR-TB regimen using the TDA assay. We also examined the relationship of the TDA to t...

  20. Zoledronic Acid Restores Doxorubicin Chemosensitivity and Immunogenic Cell Death in Multidrug-Resistant Human Cancer Cells

    OpenAIRE

    Riganti, Chiara; Castella, Barbara; Kopecka, Joanna; Campia, Ivana; Coscia, Marta; Pescarmona, Gianpiero; Bosia, Amalia; Ghigo, Dario; Massaia, Massimo

    2013-01-01

    Durable tumor cell eradication by chemotherapy is challenged by the development of multidrug-resistance (MDR) and the failure to induce immunogenic cell death. The aim of this work was to investigate whether MDR and immunogenic cell death share a common biochemical pathway eventually amenable to therapeutic intervention. We found that mevalonate pathway activity, Ras and RhoA protein isoprenylation, Ras- and RhoA-downstream signalling pathway activities, Hypoxia Inducible Factor-1alpha activa...

  1. Meayamycin Inhibits pre-mRNA Splicing and Exhibits Picomolar Activity Against Multidrug Resistant Cells

    OpenAIRE

    Albert, Brian J.; McPherson, Peter A.; O'Brien, Kristine; Czaicki, Nancy L; Destefino, Vincent; Osman, Sami; Li, Miaosheng; Day, Billy W; Grabowski, Paula J; Moore, Melissa J; Vogt, Andreas; Koide, Kazunori

    2009-01-01

    FR901464 is a potent antitumor natural product that binds to the SF3b complex and inhibits pre-mRNA splicing. Its analogue, meayamycin, is two orders of magnitude more potent as an antiproliferative agent against human breast cancer MCF-7 cells. Here, we report the picomolar antiproliferative activity of meayamycin against various cancer cell lines and multidrug resistant cells. Time-dependence studies implied that meayamycin may form a covalent bond with its target protein(s). Meayamycin inh...

  2. Multidrug Resistance in Bacteria: A Serious Patient Safety Challenge for India

    OpenAIRE

    Mathur, Purva; Singh, Sarman

    2013-01-01

    Patient safety is an important issue affecting the delivery of health care in developed, transitional and developing countries. With the advancements in patient care, hitherto unknown issues relating to patient safety are emerging. An important problem endangering patient safety is infections acquired in the health care facilities. Health care associated infections (HCAIs) are no longer a local or regional problem. With the dissemination of multi-drug resistant bacteria across the globe, the ...

  3. Synergistic effect of ginsenoside Rg3 with verapamil on the modulation of multidrug resistance in human acute myeloid leukemia cells

    OpenAIRE

    Kim, Sung Su; SEONG, SIN; KIM, SUNG YOUNG

    2014-01-01

    The pharmacological modulatory effects of 20(S)-ginsenoside Rg3 (20S-Rg3) on multidrug resistant cancer cells are reported in the present study. The effects of 20(S)-Rg3 on the modulation of doxorubicin (DOX) and vincristine (VCR) resistance were examined in the HL60 multidrug resistant subline of human acute myeloid leukemia cells. Results demonstrated that 20S-Rg3 is as effective as verapamil (Vp) for modulating the high degree primary DOX resistance and low degree VCR cross-resistance expr...

  4. Effect of magnetic nanoparticles of Fe3O4 and 5-bromotetrandrine on reversal of multidrug resistance in K562/A02 leukemic cells

    Directory of Open Access Journals (Sweden)

    Jian Cheng

    2009-09-01

    Full Text Available Jian Cheng1*, Weiwei Wu1*, Bao-an Chen1, Feng Gao1, Wenlin Xu2, Chong Gao1, Jiahua Ding1, Yunyu Sun1, Huihui Song1, Wen Bao1, Xinchen Sun3, Cuirong Xu1, Wenji Chen1, Ningna Chen1, Lijie Liu4, Guohua Xia1, Xiaomao Li5, Xuemei Wang61Department of Hematology, 3Department of Oncology, The Afiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The First People’s Hospital of Zhengjiang, Zhenjiang, People’s Republic of China; 4Institution of Physiology, 6State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, Germany; *These authors have contributed equally to this workAbstract: This study aims to evaluate the multidrug resistance (MDR reversal activity by magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 and 5-bromotetrandrine (BrTet MDR cell line K562/A02 solitarily or symphysially. The proliferation of K562 and K562/A02 cells and the cytotoxicity on peripheral blood mononuclear cells (PMBCs were evaluated by MTT assay. Cellular accumulation of daunorubicin (DNR was analyzed by flow cytometry. Real-time polymerase chain reaction and Western blotting analyses were performed to examine the mRNA and protein levels of mdr1, respectively. The results showed that the combination of MNPs-Fe3O4 and BrTet with effective concentrations significantly increased cytotoxicity against MDR cell line K562/A02. Both BrTet and MNPs-Fe3O4 increased the intracellular DNR accumulation in the K562/A02 cell line, and downregulated the level of mdr1 gene and expression of P-glycoprotein. Furthermore, the combination did not have significant cytotoxicity in PMBCs. We propose that MNPs-Fe3O4 conjugated with DNR and BrTet probably have synergetic effects on MDR reversal.Keywords: magnetic nanoparticles of Fe3O4, 5-bromotetrandrine, multidrug resistance K562/A02

  5. Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo

    Directory of Open Access Journals (Sweden)

    Bao-an Chen

    2009-09-01

    Full Text Available Bao-an Chen1, Bin-bin Lai1, Jian Cheng1, Guo-hua Xia1, Feng Gao1, Wen-lin Xu2, Jia-hua Ding1, Chong Gao1, Xin-chen Sun3, Cui-rong Xu1, Wen-ji Chen1, Ning-na Chen1, Li-jie Liu4, Xiao-mao Li5, Xue-mei Wang61Department of Hematology, 3Department of Oncology, the Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, the Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 4Institution of Physiology, 6State Key Lab of Bioelectronics (Chien-shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of China; 5Department of Physics, University of Saarland, Saarbruechen, GermanyAbstract: Multidrug resistance (MDR is a major obstacle to cancer chemotherapy. We evaluated the effect of daunorubicin (DNR-loaded magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4 on K562-n/VCR cells in vivo. K562-n and its MDR counterpart K562-n/VCR cell were inoculated into nude mice subcutaneously. The mice were randomly divided into four groups: group A received normal saline, group B received DNR, group C received MNPs-Fe3O4, and group D received DNR-loaded MNPs-Fe3O4. For K562-n/VCR tumor, the weight was markedly lower in group D than that in groups A, B, and C. The transcriptions of Mdr-1 and Bcl-2 gene were significantly lower in group D than those in groups A, B, and C. The expression of Bcl-2 was lower in group D than those in groups A, B, and C, but there was no difference in the expression of P-glycoprotein. The transcriptions and expressions of Bax and caspase-3 in group D were increased significantly when compared with groups A, B, and C. In conclusion, DNR-loaded MNPs-Fe3O4 can overcome MDR in vivo.Keywords: multidrug-resistance reversal, leukemia, magnetic nanoparticles of Fe3O4, in vivo

  6. Investigating the frequency of multi-drug resistant strains of escherichia coli isolated from urinary tract infection in children

    Directory of Open Access Journals (Sweden)

    Mojtaba Anvarinejad

    2012-02-01

    Full Text Available Introduction:A current concern in the medical community is the rise in multi-drug resistant (MDR organisms and their respective problems for children in developing countries. Children infected with such organisms need more care, hospitalization and expensive drugs for their therapy. So, an attempt was made to evaluate the multidrug resistant strains of Escherichia coli isolated from urinary tract infection in children from Jahrom to recognize the factors involved and control the use of antimicrobials in this area to select best strategies.Material and Methods:This cross-sectional descriptive study was performed on 90 E. coli strains isolated from the children aged from 1 month to 14 years, with urinary tract infection. The resistance patterns of the isolates to different antibiotics were determined by disk diffusion method.Results:In this study, the prevalence of the isolates demonstrating a multi-drug resistant phenotype was high. Seventy seven percent of the isolates were resistant to three or more antibiotics. The predominant pattern among these strains (14.4% included resistance to ampicillin, co-trimoxazole and tetracycline which repeated among 13 strains.Conclusion:With due attention to the results and high rate of multi-drug resistance, regular monitoring of antimicrobial drug resistance in different areas is necessary to prevent the unsuitable consumption of the drugs leading to multi-drug resistance.

  7. Transgenic Mice that Express the Human Multidrug-Resistance Gene in Bone Marrow Enable a Rapid Identification of Agents that Reverse Drug Resistance

    Science.gov (United States)

    Mickisch, Gerald H.; Merlino, Glenn T.; Galski, Hanan; Gottesman, Michael M.; Pastan, Ira

    1991-01-01

    The development of preclinical models for the rapid testing of agents that circumvent multidrug resistance in cancer is a high priority of research on drug resistance. A common form of multidrug resistance in human cancer results from expression of the MDR1 gene, which encodes a M_r 170,000 glycoprotein that functions as a plasma membrane energy-dependent multidrug efflux pump. We have engineered transgenic mice that express this multidrug transporter in their bone marrow and demonstrated that these animals are resistant to leukopenia by a panel of anticancer drugs including anthracyclines, vinca alkaloids, etoposide, taxol, and actinomycin D. Differential leukocyte counts indicate that both neutrophils and lymphocytes are protected. Drugs such as cisplatin, methotrexate, and 5-fluorouracil, which are not handled by the multidrug transporter, produce bone marrow suppression in both normal and transgenic mice. The resistance conferred by the MDR1 gene can be circumvented in a dose-dependent manner by simultaneous administration of agents previously shown to be inhibitors of the multidrug transporter in vitro, including verapamil isomers, quinidine, and quinine. Verapamil and quinine, both at levels suitable for human trials that produced only partial sensitization of the MDR1-transgenic mice, were fully sensitizing when used in combination. We conclude that MDR1-transgenic mice provide a rapid and reliable system to determine the bioactivity of agents that reverse multidrug resistance in animals.

  8. Microbiological evaluation of the efficacy of two new biodetergents on multidrug-resistant nosocomial pathogens

    Directory of Open Access Journals (Sweden)

    Negrone Mario

    2009-12-01

    Full Text Available Abstract Background In the last few years, several outbreaks of nosocomial infections caused by multidrug-resistant pathogenic agents have been observed, and various biocides products were developed in order to control this phenomenon. We investigated the efficacy of two natural biodetergents composed of plants and kelps extracts, BATT1 and BATT2, against multidrug-resistant strains. Methods In-vitro antibacterial efficacy of BATT1 and BATT2 against nosocomial multidrug-resistant isolates was assessed using a suspension-inhibition test, with and without bovine serum albumin (BSA. The test was also carried out on glass surfaces with and without BSA. Results In vitro tests with both biocidal disinfectants at 25% concentration demonstrated an overall drop in bacterial, mould and yeast counts after 10 min of contact with or without organic substances. For Pseudomonas aeruginosa, it was necessary to use undiluted disinfectants with and without an organic substance. The same results were obtained in tests carried out on glass surfaces for all strains. Conclusions The natural products BATT1 and BATT2 behave like good biocides even in presence of organic substances. The use of both disinfectants may be beneficial for reducing hospital-acquired pathogens that are not susceptible to disinfectants. However, it has to be stressed that all these experiments were carried out in vitro and they still require validation from use in clinical practice.

  9. In Vitro Antibacterial Properties of Aqueous Garlic Extract (AEG Against Multidrug-Resistant Enterococci

    Directory of Open Access Journals (Sweden)

    Mohammad Bokaeian

    2013-06-01

    Full Text Available Background: As relatively avirulent enteric bacteria, enterococci usually cause infections in immune-compromised patients. The antimicrobial treatment, however, is quite challenging, since enterococci are intrinsically resistant to many antibiotics. Objective of the present study was to examine the antibacterial activity of aqueous garlic extract on isolates of enterococci.Materials and Methods: In this descriptive research, a total of 120 enterococcus isolates including 70 multidrug-resistant isolates causing different infections were collected from three hospitals in Zahedan. The susceptibility of isolates to different antibiotics was measured by agar diffusion test and antibacterial activity of garlic extract was measured using disc-diffusion and microbroth dilution methods.Results: Among 120 enterococcus samples, 95 (79.2% and 25 (20.8% isolates were E. faecalis and E. faecium respectively. The highest resistance was observed in erythromycin (95.8% and the lowest resistance (6.7% in chloramphenicol, while 88.3% and 65.8% of the isolates were resistant to tetracycline and ampicillin respectively. Moreover, 58% of the isolates were Multi-Drug Resistant (MDR and showed resistance to at least three antibiotics. Antibacterial activity of AGE was characterized by inhibition zones of 16.8±1.8 mm and Minimum Inhibitory Concentration (MIC ranged from 4 to 32 mg/ml. Conclusion: The present study suggests that AGE has a significant anti-enterococcal effect and therefore, supports the use of garlic as an herbal remedy in Zahedan.

  10. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    Science.gov (United States)

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC?0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance. PMID:23537749

  11. P-glycoprotein restricts the penetration of oseltamivir across the blood-brain barrier.

    Science.gov (United States)

    Ose, Atsushi; Kusuhara, Hiroyuki; Yamatsugu, Kenzo; Kanai, Motomu; Shibasaki, Masakatsu; Fujita, Takuya; Yamamoto, Akira; Sugiyama, Yuichi

    2008-02-01

    Oseltamivir is an ethyl ester prodrug of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), the anti-influenza drug. Abnormal behavior has been suspected to be associated with oseltamivir medication in Japan. The purpose of the present study is to examine the involvement of transporters in the brain distribution of oseltamivir and its active form Ro 64-0802 across the blood-brain barrier (BBB). The brain-to-plasma concentration ratio (K(p,brain)) of oseltamivir after i.v. infusion of oseltamivir in FVB mice was increased by pretreatment with N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), a dual inhibitor for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), whereas that of Ro 64-0802 was only slightly increased. Furthermore, the distribution volume of Ro 64-0802 following i.v. administration of Ro 64-0802 in the brain was similar to the capillary volume, suggesting its minimal distribution. The K(p,brain) value of oseltamivir in multidrug-resistant (Mdr) 1a/1b P-gp knockout mice was 5.5-fold higher than that in wild-type mice and comparable with that obtained by pretreatment with GF120918, whereas it was unchanged in Bcrp knockout mice. The K(p,brain) value of oseltamivir was significantly higher in newborn rats, which is in good agreement with the ontogenetic expression profile of P-gp. Intracellular accumulation of oseltamivir was lower in human and mouse P-gp-expressing cells, which was reversed by P-gp inhibitor valspodar (PSC833). These results suggest that P-gp limits the brain uptake of oseltamivir at the BBB and that Ro 64-0802 itself barely crosses the BBB. However, it may be possible that Ro 64-0802 is formed in the brain from the oseltamivir, considering the presence of carboxylesterase in the brain endothelial cells. PMID:18039806

  12. Immunomodulatory Protein from Ganoderma microsporum Induces Pro-Death Autophagy through Akt-mTOR-p70S6K Pathway Inhibition in Multidrug Resistant Lung Cancer Cells.

    Science.gov (United States)

    Chiu, Ling-Yen; Hu, Ming-E; Yang, Tsung-Ying; Hsin, I-Lun; Ko, Jiunn-Liang; Tsai, Kan-Jen; Sheu, Gwo-Tarng

    2015-01-01

    Chemoresistance in cancer therapy is an unfavorable prognostic factor in non-small cell lung cancer (NSCLC). Elevation of intracellular calcium level in multidrug resistant (MDR) sublines leads to sensitization of MDR sublines to cell death. We demonstrated that a fungal protein from Ganoderma microsporum, GMI, elevates the intracellular calcium level and reduces the growth of MDR subline via autophagy and apoptosis, regardless of p-glycoprotein (P-gp) overexpression, in mice xenograft tumors. In addition, we examined the roles of autophagy in the death of MDR A549 lung cancer sublines by GMI, thapsigargin (TG) and tunicamycin (TM) in vitro. Cytotoxicity of TG was inhibited by overexpressed P-gp. However, TM-induced death of MDR sublines was independent of P-gp level. Combinations of TG and TM with either docetaxel or vincristine showed no additional cytotoxic effects on MDR sublines. TG- and TM-mediated apoptosis of MDR sublines was demonstrated on Annexin-V assay and Western blot and repressed by pan-caspase inhibitor (Z-VAD-FMK). Treatment of MDR sublines with TG and TM also augmented autophagy with accumulation of LC3-II proteins, breakdown of p62 and formation of acidic vesicular organelles (AVOs). Inhibition of ATG5 by shRNA silencing significantly reduced autophagy and cell death but not apoptosis following TG or TM treatment. GMI treatment inhibited the phosphorylation of Akt/S473 and p70S6K/T389. Interestingly, the phosphorylation of ERK was not associated with GMI-induced autophagy. We conclude that autophagy plays a pro-death role in acquired MDR and upregulation of autophagy by GMI via Akt/mTOR inhibition provides a potential strategy for overcoming MDR in the treatment of lung cancers. PMID:25946033

  13. Immunomodulatory Protein from Ganoderma microsporum Induces Pro-Death Autophagy through Akt-mTOR-p70S6K Pathway Inhibition in Multidrug Resistant Lung Cancer Cells

    Science.gov (United States)

    Chiu, Ling-Yen; Hu, Ming-E; Yang, Tsung-Ying; Hsin, I-Lun; Ko, Jiunn-Liang; Tsai, Kan-Jen; Sheu, Gwo-Tarng

    2015-01-01

    Chemoresistance in cancer therapy is an unfavorable prognostic factor in non-small cell lung cancer (NSCLC). Elevation of intracellular calcium level in multidrug resistant (MDR) sublines leads to sensitization of MDR sublines to cell death. We demonstrated that a fungal protein from Ganoderma microsporum, GMI, elevates the intracellular calcium level and reduces the growth of MDR subline via autophagy and apoptosis, regardless of p-glycoprotein (P-gp) overexpression, in mice xenograft tumors. In addition, we examined the roles of autophagy in the death of MDR A549 lung cancer sublines by GMI, thapsigargin (TG) and tunicamycin (TM) in vitro. Cytotoxicity of TG was inhibited by overexpressed P-gp. However, TM-induced death of MDR sublines was independent of P-gp level. Combinations of TG and TM with either docetaxel or vincristine showed no additional cytotoxic effects on MDR sublines. TG- and TM-mediated apoptosis of MDR sublines was demonstrated on Annexin-V assay and Western blot and repressed by pan-caspase inhibitor (Z-VAD-FMK). Treatment of MDR sublines with TG and TM also augmented autophagy with accumulation of LC3-II proteins, breakdown of p62 and formation of acidic vesicular organelles (AVOs). Inhibition of ATG5 by shRNA silencing significantly reduced autophagy and cell death but not apoptosis following TG or TM treatment. GMI treatment inhibited the phosphorylation of Akt/S473 and p70S6K/T389. Interestingly, the phosphorylation of ERK was not associated with GMI-induced autophagy. We conclude that autophagy plays a pro-death role in acquired MDR and upregulation of autophagy by GMI via Akt/mTOR inhibition provides a potential strategy for overcoming MDR in the treatment of lung cancers. PMID:25946033

  14. Multidrug Resistance-Associated Protein 1 (MRP1 mediated vincristine resistance: effects of N-acetylcysteine and Buthionine Sulfoximine

    Directory of Open Access Journals (Sweden)

    Savas Burhan

    2005-07-01

    Full Text Available Abstract Background Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1 decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH is likely to have a role for the resistance to occur. N-acetylcysteine (NAC is a pro-glutathione drug. DL-Buthionine (S,R-sulfoximine (BSO is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293 and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293 cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST and glutathione peroxidase (GPx levels were measured in the cell extracts obtained from both cells incubated with different drugs. Results N-acetylcysteine increased the resistance of both cells against vincristine and BSO decreased NAC-enhanced MRP1-mediated vincristine resistance, indicating that induction of MRP1-mediated vincristine resistance depends on GSH. Vincristine decreased cellular GSH concentration and increased GPx activity. Glutathione S-Transferase activity was decreased by NAC. Conclusion Our results demonstrate that NAC and BSO have opposite effects in MRP1 mediated vincristine resistance and BSO seems a promising chemotherapy improving agent in MRP1 overexpressing tumor cells.

  15. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan

    Directory of Open Access Journals (Sweden)

    Fukumoto Yukio

    2009-11-01

    Full Text Available Abstract Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9% showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, ?-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.

  16. Human Multidrug Resistance Protein 7 (ABCC10) is a Resistance Factor for Nucleoside Analogs and Epothilone B

    OpenAIRE

    Hopper-borge, Elizabeth; Xu, Xiu; Shen, Tong; Shi, Zhi; Chen, Zhe-sheng; Kruh, Gary D.

    2009-01-01

    Multidrug Resistance Protein 7 (MRP7, ABCC10) is an ATP-binding cassette transporter that is able to transport amphipathic anions and confer resistance to docetaxel and to a lesser extent vincristine and paclitaxel (Hopper-Borge et al., Cancer Res 14: 4927, 2004). While some detail on the resistance profile of MRP7 is known, the activities of the pump have not been completely determined. Here it is shown by the analysis of MRP7-transfected HEK293 cells that in addition to natural product agen...

  17. Establishment and characterization of gemcitabine-resistant human cholangiocarcinoma cell lines with multidrug resistance and enhanced invasiveness.

    Science.gov (United States)

    Wattanawongdon, Wareeporn; Hahnvajanawong, Chariya; Namwat, Nisana; Kanchanawat, Sirimas; Boonmars, Thidarut; Jearanaikoon, Patcharee; Leelayuwat, Chanwit; Techasen, Anchalee; Seubwai, Wunchana

    2015-07-01

    To establish and characterize the gemcitabine-resistant cholangiocarcinoma (CCA) cell lines, CCA KKU?M139 and KKU?M214 cell lines were exposed stepwisely to increasing gemcitabine (GEM). The resultant drug-resistant cell lines, KKU?M139/GEM and KKU?M214/GEM, retained the resistant phenotype in drug-free medium at least for 2 months. Sulforhodamine B assay demonstrated that KKU?M139/GEM and KKU?M214/GEM were 25.88- and 62.31-fold more resistant to gemcitabine than their parental cells. Both gemcitabine-resistant cell lines were cross-resistant to 5-fluorouracil (5-FU), doxorubicin and paclitaxel indicating their multidrug-resistant nature. Using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and western blot analyses, gemcitabine-resistant cells showed upregulation of RRM1 and downregulation of hENT1 and dCK. In relation to multidrug resistance, these cell lines showed upregulation of multidrug resistance protein 1 (MRP1) leading to an increase of drug efflux. Using cell adhesion and Boyden chamber transwell assays, these cell lines also showed higher cell adhesion, migration and invasion capabilities via the activations of protein kinase C (PKC), focal adhesion kinase (FAK), extracellular signal-regulated kinase-1/2 (ERK1/2) and nuclear factor-?B (NF-?B). Higher activity of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA) was also observed by a gelatin zymography assay and a casein-plasminogen zymography assay. Flow cytometry analysis indicated the G2/M arrest regulated by downregulation of cyclin B1 and cyclin-dependent kinase 1 (Cdk1) resulted in an extended population doubling time. Using Annexin V/propidium iodide staining, evasion of apoptosis via an intrinsic pathway was observed in both cell lines in association with upregulation of Bcl-2 and downregulation of Bax. Interestingly, Fas was additionally downregulated in KKU?M214/GEM supporting the view of its higher GEM resistant characteristics. These findings indicate that long-term exposure of CCA cell lines to gemcitabine induce not only multidrug resistance but also enhance their invasiveness. PMID:25998688

  18. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Directory of Open Access Journals (Sweden)

    Sandra Basic-Kinda

    2012-07-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  19. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice

    Directory of Open Access Journals (Sweden)

    Vinodkumar C

    2008-07-01

    Full Text Available Drug resistance is the major cause of increase in morbidity and mortality in neonates. One thousand six hundred forty-seven suspected septicemic neonates were subjected for microbiological analysis over a period of 5 years. Forty-two P. aeruginosa were isolated and the antibiogram revealed that 28 P. aeruginosa were resistant to almost all the common drugs used (multidrug-resistant. The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. As a result, a novel and most effective approaches for treating infection caused by multidrug-resistant bacteria are urgently required. In this context, one intriguing approach is to use bacteriophages (viruses that kill bacteria in the treatment of infection caused by drug-resistant bacteria. In the present study, the utility of lytic bacteriophages to rescue septicemic mice with multidrug-resistant (MDR P. aeruginosa infection was evaluated. MDR P. aeruginosa was used to induce septicemia in mice by intraperitoneal (i.p. injection of 10 7 CFU. The resulting bacteremia was fatal within 48 hrs. The phage strain used in this study had lytic activity against a wide range of clinical isolates of MDR P. aeruginosa. A single i.p. injection of 3 x 10 9 PFU of the phage strain, administered 45 min after the bacterial challenge, was sufficient to rescue 100% of the animals. Even when treatment was delayed to the point where all animals were moribund, approximately 50% of them were rescued by a single injection of this phage preparation. The ability of this phage to rescue septicemic mice was demonstrated to be due to the functional capabilities of the phage and not to a nonspecific immune effect. The rescue of septicemic mice could be affected only by phage strains able to grow in vitro on the bacterial host used to infect the animals and when such strains are heat-inactivated, they lose their ability to rescue the infected mice. Multidrug-resistant bacteria have opened a second window for phage therapy. It would seem timely to begin to look afresh at this approach. A scientific methodology can make phage therapy as a stand-alone therapy for infections that are fully resistant to antibiotics.

  20. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance.

    Science.gov (United States)

    Moreno-Gamez, Stefany; Hill, Alison L; Rosenbloom, Daniel I S; Petrov, Dmitri A; Nowak, Martin A; Pennings, Pleuni S

    2015-06-01

    Infections with rapidly evolving pathogens are often treated using combinations of drugs with different mechanisms of action. One of the major goal of combination therapy is to reduce the risk of drug resistance emerging during a patient's treatment. Although this strategy generally has significant benefits over monotherapy, it may also select for multidrug-resistant strains, particularly during long-term treatment for chronic infections. Infections with these strains present an important clinical and public health problem. Complicating this issue, for many antimicrobial treatment regimes, individual drugs have imperfect penetration throughout the body, so there may be regions where only one drug reaches an effective concentration. Here we propose that mismatched drug coverage can greatly speed up the evolution of multidrug resistance by allowing mutations to accumulate in a stepwise fashion. We develop a mathematical model of within-host pathogen evolution under spatially heterogeneous drug coverage and demonstrate that even very small single-drug compartments lead to dramatically higher resistance risk. We find that it is often better to use drug combinations with matched penetration profiles, although there may be a trade-off between preventing eventual treatment failure due to resistance in this way and temporarily reducing pathogen levels systemically. Our results show that drugs with the most extensive distribution are likely to be the most vulnerable to resistance. We conclude that optimal combination treatments should be designed to prevent this spatial effective monotherapy. These results are widely applicable to diverse microbial infections including viruses, bacteria, and parasites. PMID:26038564

  1. Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance.

    Science.gov (United States)

    Ellegaard, Anne-Marie; Groth-Pedersen, Line; Oorschot, Viola; Klumperman, Judith; Kirkegaard, Thomas; Nylandsted, Jesper; Jäättelä, Marja

    2013-10-01

    Defective apoptosis signaling and multidrug resistance are major barriers for successful cancer treatment. To identify drugs capable of targeting treatment-resistant cancer cells, we screened small-molecule kinase inhibitor libraries for compounds that decrease the viability of apoptosis-resistant human MCF7-Bcl-2 breast cancer cells. SU11652, a multitargeting receptor tyrosine kinase inhibitor, emerged as the most potent compound in the screen. In addition to MCF7-Bcl-2 cells, it effectively killed HeLa cervix carcinoma, U-2-OS osteosarcoma, Du145 prostate carcinoma, and WEHI-S fibrosarcoma cells at low micromolar concentration. SU11652 accumulated rapidly in lysosomes and disturbed their pH regulation and ultrastructure, eventually leading to the leakage of lysosomal proteases into the cytosol. Lysosomal destabilization was preceded by an early inhibition of acid sphingomyelinase, a lysosomal lipase that promotes lysosomal membrane stability. Accordingly, Hsp70, which supports cancer cell survival by increasing lysosomal acid sphingomyelinase activity, conferred partial protection against SU11652-induced cytotoxicity. Remarkably, SU11652 killed multidrug-resistant Du145 prostate cancer cells as effectively as the drug-sensitive parental cells, and subtoxic concentrations of SU11652 effectively inhibited multidrug-resistant phenotype in Du145 prostate cancer cells. Notably, sunitinib, a structurally almost identical and widely used antiangiogenic cancer drug, exhibited similar lysosome-dependent cytotoxic activity, albeit with significantly lower efficacy. The significantly stronger lysosome-targeting activity of SU11652 suggests that it may display better efficacy in cancer treatment than sunitinib, encouraging further evaluation of its anticancer activity in vivo. Furthermore, our data provide a rationale for novel approaches to target drug-resistant cancers by combining classic chemotherapy with sunitinib or SU11652. PMID:23920274

  2. Role of Mitochondrial Translocation of Telomerase in Hepatocellular Carcinoma Cells with Multidrug Resistance

    OpenAIRE

    Xianlong Ling, Lei Wen

    2012-01-01

    Multidrug resistance (MDR) is a major obstacle of cancer chemotherapy. This study aimed to investigate the role of mitochondrial translocation of telomerase (hTERT) in MDR of human hepatocellular carcinoma (HCC) cells. In this study, three HCC cell lines (SK-Hep1/CDDP1 cells, SK-Hep1/CDDP2 cells and SK-Hep1/CDDP3 cells) with differential resistance index (RI) to cisplatin (CDDP) were induced by pulse treatment of SK-Hep1 (human hepatocellular cell line) with CDDP in vitro. The RI of SK-Hep1/C...

  3. Interaction of Oxazaphosphorines with Multidrug Resistance-Associated Protein 4 (MRP4)

    OpenAIRE

    Zhang, Jing; Ng, Ka-yun; Ho, Paul C.

    2010-01-01

    Multidrug resistance-associated protein 4 (MRP4) is an organic anion efflux pump capable of transporting nucleoside, nucleotide analogs, and cyclic nucleotide. MRP4 could have an influence on the resistance and transport of the two oxazaphosphorines, cyclophosphamide (CP) and ifosfamide (IF). V/HepG2 (HepG2, hepatoma cells stably transfected with an empty vehicle plasmid) and MRP4/HepG2 (HepG2 cells stably expressing MRP4) were exposed to CP and IF in the absence or presence of various MRP4 i...

  4. Reversal of MRP7 (ABCC10)-Mediated Multidrug Resistance by Tariquidar

    OpenAIRE

    Sun, Yue-li; Chen, Jun-jiang; Kumar, Priyank; Chen, Kang; Sodani, Kamlesh; Patel, Atish; Chen, Yang-lu; Chen, Si-dong; Jiang, Wen-qi; Chen, Zhe-sheng

    2013-01-01

    Multidrug resistance protein 7 (MRP7, ABCC10) is a recently discovered member of the ATP-binding cassette (ABC) family which are capable of conferring resistance to a variety of anticancer drugs, including taxanes and nucleoside analogs, in vivo. MRP7 is highly expressed in non-small cell lung cancer cells, and Mrp7-KO mice are highly sensitive to paclitaxel, making MRP7 an attractive chemotherapeutic target of non-small cell lung cancer. However, only a few inhibitors of MRP7 are currently i...

  5. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    Science.gov (United States)

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs. PMID:25487796

  6. Transmembrane transporters ABCC – structure, function and role in multidrug resistance of cancer cells

    Directory of Open Access Journals (Sweden)

    Sylwia D?bska

    2011-08-01

    Full Text Available Resistance to cytotoxic drugs is a significant problem of systemic treatment of cancers. Apart from drug inactivation, changes in target enzymes and proteins, increased DNA repair and suppression of apoptosis, an important mechanism of resistance is an active drug efflux from cancer cells. Drug efflux across the cell membrane is caused by transport proteins such as ABC proteins (ATP-binding cassette. This review focuses on the ABCC protein subfamily, whose members are responsible for multidrug cross-resistance of cancer cells to cytotoxic agents. The authors discuss the structure of ABCC proteins, their physiological function and diseases provoked by mutations of respective genes, their expression in many different malignancies and its connection with resistance to anticancer drugs, as well as methods of reversion of such resistance.

  7. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum ?-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases ? imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-?-lactamase ? and highlights the importance of control of antibiotic use. PMID:25737092

  8. The prevention and management of infections due to multidrug resistant organisms in haematology patients.

    Science.gov (United States)

    Trubiano, Jason A; Worth, Leon J; Thursky, Karin A; Slavin, Monica A

    2015-02-01

    Infections due to resistant and multidrug resistant (MDR) organisms in haematology patients and haematopoietic stem cell transplant recipients are an increasingly complex problem of global concern. We outline the burden of illness and epidemiology of resistant organisms such as gram-negative pathogens, vancomycin-resistant Enterococcus faecium (VRE), and Clostridium difficile in haematology cohorts. Intervention strategies aimed at reducing the impact of these organisms are reviewed: infection prevention programmes, screening and fluoroquinolone prophylaxis. The role of newer therapies (e.g. linezolid, daptomycin and tigecycline) for treatment of resistant and MDR organisms in haematology populations is evaluated, in addition to the mobilization of older agents (e.g. colistin, pristinamycin and fosfomycin) and the potential benefit of combination regimens. PMID:24341410

  9. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance.

    Science.gov (United States)

    Tian, Gan; Zheng, Xiaopeng; Zhang, Xiao; Yin, Wenyan; Yu, Jie; Wang, Dongliang; Zhang, Zhiping; Yang, Xiangliang; Gu, Zhanjun; Zhao, Yuliang

    2015-02-01

    Multi-drug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively investigated for overcoming MDR in cancer therapy because of its ability to inhibit P-glycoprotein (P-gp). In this work, TPGS was for the first time used as a new surface modifier to functionalize NaYbF4:Er upconversion nanoparticles (UNCPs) and endowed the as-prepared products (TPGS-UCNPs) with excellent water-solubility, P-gp inhibition capability and imaging-guided drug delivery property. After the chemotherapeutic drug (doxorubicin, DOX) loading, the as-formed composites (TPGS-UCNPs-DOX) exhibited potent killing ability for DOX-resistant MCF-7 cells. Flow-cytometric assessment and Western blot assay showed that the TPGS-UCNPs could potently decrease the P-gp expression and facilitate the intracellular drug accumulation, thus achieving MDR reversal. Moreover, considering that UCNPs process efficient upconversion emission and Yb element contained in UCNPs has strong X-ray attenuation ability, the as-obtained composite could also serve as a dual-modal probe for upconversion luminescence (UCL) imaging and X-ray computed tomography (CT) imaging, making them promising for imaging-guided cancer therapy. PMID:25433607

  10. The value of Tc-99m tetrofosmin scintimammography in the assessment of P-glycoprotein in patients with breast cancer.

    Science.gov (United States)

    Silov, Güler; Erdo?an, Zeynep; Özdal, Ay?egül; Tutu?, Ahmet; Tekin, Yücel; Karaman, Hatice; Turhal, Özgül

    2013-01-01

    P-glycoprotein (Pgp) overexpression has been shown to be correlated with resistance to chemotherapy in patients with malignant breast tumors. The aim of our study was to investigate the role of technetium-99m-tetrofosmin (99mTc-TF) as a functional imaging agent reflecting Pgp expression in these tumors. We prospectively studied 28 patients (26 females, 2 males; mean age, 53.07±9.88 years; range, 38 to 70 years) with breast cancer to ascertain the relationship between the degree of accumulation (lesion/nonlesion=L/NL) and percentage washout (WO%) rate of 99mTc-TF and expression of Pgp in tumor tissues. All patients received 555-740 MBq of 99mTc-TF intravenously at the arm controlateral to the suffering breast. Planar images were obtained 10 and 120 min post injection from prone lateral and anterior views with an acquisition time of 5 min. Visual and semiquantitative measurements were performed. The L/NL ratios and WO% rates were calculated semiquantitatively. Immunohistochemical studies were performed on paraffin sections using a monoclonal antibody, JSB-1. The L/NL ratios and WO% rates were related with the level of Pgp determined immunohistochemically. Our results showed an inverse correlation between the L/NL ratios of 99mTc-TF and the density of Pgp expression in tumor tissues, whereas there was no appreciable correlation between the tumor WO% rates of 99mTc-TF and the level of Pgp expression (P=0.275). The values for the L/NL ratios were significantly lower for those tumors expressing Pgp at high levels than those with intermediate or no Pgp expression (P<0.002 and P<0.04). In conclusion, although our results warrant further studies, our data strongly suggest that 99mTc-TF imaging is useful to noninvasively determine the presence of multidrug resistance in patients with breast cancer. PMID:24137583

  11. Primary breast cancer imaging with technetium-99m sestamibi and its relation with P-glycoprotein overexpression

    International Nuclear Information System (INIS)

    The aim of this preliminary study was to evaluate retrospectively sestamibi scintigraphy in relation to the presence of the 170-kDa P-glycoprotein (Pgp), which represents an expression of multidrug resistance in patients with primary breast cancer. Fifteen women (age range 37-76 years) were referred for technetium-99m sestamibi scintigraphy because of suspicious breast lesions detected by mammography and ultrasonography, and subsequently assessed by fine-needle aspiration. Scintigraphy was performed 30 min following the injection of 500 MBq 99mTc-sestamibi. Three planar anterior and oblique images were obtained with the patient in the supine position. Excised tumours were assessed for cytosolic CA 15.3, oestrogen (OR) and progesterone (PR) receptors and c-erb B2 neu oncogene. Pathology revealed that only 13 of the 15 patients had malignant tumours. The two benign tumours were sestamibi-negative and Pgp-positive. Sestamibi scintigraphy was positive in 10 of the 13 malignant lesions (including nine of ten infiltrating ductal carcinomas). Two of the three lesions with false-negative scintigraphy were Pgp-negative; in one of these cases histology revealed an invasive lobular carcinoma and in the other, mucinous adenocarcinoma. The third false-negative lesion was a Pgp-positive infiltrating ductal carcinoma which was c-erb B2 neu-negative but CA 15.3-, OR-and PR-positive. This preliminary study confirms that the resistance to chemotherapy which may occur in patice to chemotherapy which may occur in patients with primary breast cancer can be a cause of negative sestamibi scintigraphy. (orig.)

  12. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-06-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5-17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  13. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups.

    Science.gov (United States)

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique; Brisse, Sylvain

    2014-11-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126

  14. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Scientific Electronic Library Online (English)

    Noman, Siddiqi; Md., Shamim; NK, Jain; Ashok, Rattan; Amol, Amin; VM, Katoch; SK, Sharma; Seyed E, Hasnain.

    1998-09-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The dr [...] ug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s) by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s) that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR) in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  15. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Siddiqi Noman

    1998-01-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  16. Scintigraphic imaging of P-glycoprotein expression with a radiolabelled antibody

    International Nuclear Information System (INIS)

    P-glycoprotein (P-gp) is a membrane efflux pump protein that is involved in multidrug resistance (MDR). Tumour cells with high P-gp expression show poor response to cancer treatment with several chemotherapeutics. In vivo targeting and visualisation of P-gp expression would allow MDR to be evaluated non-invasively prior to treatment. The aim of this study was to investigate the feasibility of visualising P-gp expression in tumours using a monoclonal anti-P-gp antibody, 15D3. Nude BALB/c mice with subcutaneously growing human uterine sarcoma cell tumours with either high (MES-SA/D x 5 1977) or low (MES-SA 1976) P-gp expression were used. When tumours were 0.2-0.4 g, mice received 131I-15D3 or 111In-DTPA-15D3 monoclonal anti-P-gp antibody intravenously. Images were acquired up to 3 days p.i. and radioactivity concentration in various tissues was determined after euthanisation of the animals. The images demonstrated that radioactivity accumulated to a higher concentration in high P-gp expressing tumours than in the low P-gp expressing MES-SA 1976 tumour. Furthermore, visualisation of the P-gp expressing tumours was superior with 111In-DTPA-15D3 than with 131I-15D3. After injection of 111In-DTPA-15D3, the high P-gp expressing MES-SA/D x 5 1977 tumours were clearly visualised at 3 days p.i. The biodistribution data indicated that radioactivity concentration in the high P-gp expressing tumours was higher than in the tumressing tumours was higher than in the tumours with low P-gp expression (20.78±1.42 %ID/g for MES-SA/Dx5 1977 tumours and 8.39±3.78 %ID/g for MES-SA 1976 tumours for 111In-DTPA-15D3). The 111In-labelled monoclonal anti-P-gp antibody clearly visualised P-gp expression in a human uterine sarcoma tumour in nude mice. (orig.)

  17. Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells.

    Science.gov (United States)

    Sampson, Kathleen E; Brinker, Amanda; Pratt, Jennifer; Venkatraman, Neetu; Xiao, Yongling; Blasberg, Jim; Steiner, Toni; Bourner, Maureen; Thompson, David C

    2015-02-01

    Membrane transporters P-glycoprotein [P-gp; multidrug resistance 1 (MDR1)], multidrug resistance-associated protein (MRP) 2, and breast cancer resistance protein (BCRP) affect drug absorption and disposition and can also mediate drug-drug interactions leading to safety/toxicity concerns in the clinic. Challenges arise with interpreting cell-based transporter assays when substrates or inhibitors affect more than one actively expressed transporter and when endogenous or residual transporter activity remains following overexpression or knockdown of a given transporter. The objective of this study was to selectively knock out three drug efflux transporter genes (MDR1, MRP2, and BCRP), both individually as well as in combination, in a subclone of Caco-2 cells (C2BBe1) using zinc finger nuclease technology. The wild-type parent and knockout cell lines were tested for transporter function in Transwell bidirectional assays using probe substrates at 5 or 10 ?M for 2 hours at 37°C. P-gp substrates digoxin and erythromycin, BCRP substrates estrone 3-sulfate and nitrofurantoin, and MRP2 substrate 5-(and-6)-carboxy-2',7'-dichlorofluorescein each showed a loss of asymmetric transport in the MDR1, BCRP, and MRP2 knockout cell lines, respectively. Furthermore, transporter interactions were deduced for cimetidine, ranitidine, fexofenadine, and colchicine. Compared with the knockout cell lines, standard transporter inhibitors showed substrate-specific variation in reducing the efflux ratios of the test compounds. These data confirm the generation of a panel of stable Caco-2 cell lines with single or double knockout of human efflux transporter genes and a complete loss of specific transport activity. These cell lines may prove useful in clarifying complex drug-transporter interactions without some of the limitations of current chemical or genetic knockdown approaches. PMID:25388687

  18. Role of Mitochondrial Translocation of Telomerase in Hepatocellular Carcinoma Cells with Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Xianlong Ling, Lei Wen, Yuan Zhou

    2012-01-01

    Full Text Available Multidrug resistance (MDR is a major obstacle of cancer chemotherapy. This study aimed to investigate the role of mitochondrial translocation of telomerase (hTERT in MDR of human hepatocellular carcinoma (HCC cells. In this study, three HCC cell lines (SK-Hep1/CDDP1 cells, SK-Hep1/CDDP2 cells and SK-Hep1/CDDP3 cells with differential resistance index (RI to cisplatin (CDDP were induced by pulse treatment of SK-Hep1 (human hepatocellular cell line with CDDP in vitro. The RI of SK-Hep1/CDDP1 cells, SK-Hep1/CDDP2 cells and SK-Hep1/CDDP3 cells was 5.14, 8.66, and 14.25, respectively, and all the cell lines showed cross-resistance to Doxorubicin (DOX and 5-Fuorouracil (5-FU. The apoptosis rates in drug-resistant cells were significantly reduced. Cell cycle analysis revealed the ratio of drug-resistant cells in G2/M and S phases increased, while that in G1 phase decreased. Immunofluorescence staining and Western blot assay demonstrated, with the gradual elevation in RI, increasing hTERT translocated from the nuclei to the mitochondria, while real-time PCR indicated the shortening of telomere length in drug-resistant cells under the chemotherapeutic stress and the reduction of damaged mtDNA with the increase in RI. Furthermore, JC-1 staining also indicated the reduction of mitochondrial membrane potential in drug-resistant cells. The mitochondrial translocation of hTERT increases in multidrug-resistant cells and exerts protective effect on mitochondrial function. Drug-resistant tumor cells escape from apoptosis through hTERT-mediated mitochondrial protection. Mitochondrial translocation of hTERT may serve as an underlying mechanism of MDR.

  19. Role of mitochondrial translocation of telomerase in hepatocellular carcinoma cells with multidrug resistance.

    Science.gov (United States)

    Ling, Xianlong; Wen, Lei; Zhou, Yuan

    2012-01-01

    Multidrug resistance (MDR) is a major obstacle of cancer chemotherapy. This study aimed to investigate the role of mitochondrial translocation of telomerase (hTERT) in MDR of human hepatocellular carcinoma (HCC) cells. In this study, three HCC cell lines (SK-Hep1/CDDP1 cells, SK-Hep1/CDDP2 cells and SK-Hep1/CDDP3 cells) with differential resistance index (RI) to cisplatin (CDDP) were induced by pulse treatment of SK-Hep1 (human hepatocellular cell line) with CDDP in vitro. The RI of SK-Hep1/CDDP1 cells, SK-Hep1/CDDP2 cells and SK-Hep1/CDDP3 cells was 5.14, 8.66, and 14.25, respectively, and all the cell lines showed cross-resistance to Doxorubicin (DOX) and 5-Fuorouracil (5-FU). The apoptosis rates in drug-resistant cells were significantly reduced. Cell cycle analysis revealed the ratio of drug-resistant cells in G2/M and S phases increased, while that in G1 phase decreased. Immunofluorescence staining and Western blot assay demonstrated, with the gradual elevation in RI, increasing hTERT translocated from the nuclei to the mitochondria, while real-time PCR indicated the shortening of telomere length in drug-resistant cells under the chemotherapeutic stress and the reduction of damaged mtDNA with the increase in RI. Furthermore, JC-1 staining also indicated the reduction of mitochondrial membrane potential in drug-resistant cells. The mitochondrial translocation of hTERT increases in multidrug-resistant cells and exerts protective effect on mitochondrial function. Drug-resistant tumor cells escape from apoptosis through hTERT-mediated mitochondrial protection. Mitochondrial translocation of hTERT may serve as an underlying mechanism of MDR. PMID:22991493

  20. High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    Baral Pankaj

    2012-01-01

    Full Text Available Abstract Background Urinary Tract Infection (UTI is one of the most common infectious diseases and people of all age-groups and geographical locations are affected. The impact of disease is even worst in low-resource developing countries due to unaware of the UTIs caused by multidrug-resistant (MDR pathogens and the possibility of transfer of MDR traits between them. The present study aimed to determine the prevalence of MDR bacterial isolates from UTI patients, the antibiotic resistance pattern and the conjugational transfer of multidrug resistance phenotypes in Escherichia coli (E. coli. Results Two hundred and nineteen bacterial isolates were recovered from 710 urine samples at Kathmandu Model hospital during the study period. All samples and isolates were investigated by standard laboratory procedures. Among the significant bacterial growth (30.8%, 219 isolates, 41.1% isolates were MDR. The most prevailing organism, E. coli (81.3%, 178 isolates was 38.2% MDR, whereas second most common organism, Citrobacter spp. (5%, 11 isolates was found 72.7% MDR. Extended-spectrum ?-lactamase (ESBL production was detected in 55.2% of a subset of MDR E. coli isolates. Among the 29 MDR E. coli isolates, plasmids of size ranging 2-51 kb were obtained with different 15 profiles. The most common plasmid of size 32 kb was detected in all of the plasmid-harbored E. coli strains. The majority of E. coli isolates investigated for the multidrug resistance transfer were able to transfer plasmid-mediated MDR phenotypes along with ESBL pattern with a frequency ranging from 0.3 × 10-7 to 1.5 × 10-7 to an E. coli HB101 recipient strain by conjugation. Most of the donor and recipient strain showed high levels of minimum inhibitory concentration (MIC values for commonly-used antibiotics. Conclusions The high prevalence of multidrug resistance in bacterial uropathogens was observed. Particularly, resistance patterns were alarmingly higher for amoxycillin, co-trimoxazole, flouroquinolones and third-generation cephalosporins, which necessitate the re-evaluation of first and second line therapies for UTI. In addition, conjugational co-transfer of MDR phenotypes with ESBL-positive phenotypes was observed in MDR E. coli.

  1. Multidrug-resistant Staphylococcus hominis subsp. novobiosepticus causing septicemia in patients with malignancy.

    Science.gov (United States)

    Roy, Priyamvada; Ahmed, Nishat Hussain; Biswal, Indu; Grover, Rajesh Kumar

    2014-01-01

    A new subspecies of Staphylococcus hominis described by Kloos et al. in 1998 and named S. hominis subsp. novobiosepticus (SHN) has been implicated in nosocomial outbreaks. Multidrug resistance, including resistance to novobiocin and oxacillin, is a particularly important feature of SHN. In our institute, we encountered 13 cases of S. hominis subsp. hominis in cancer patients with septicemia, of which seven were methicillin resistant. The isolates were identified by VITEK ® 2 compact automated system, using GP REF 21342 identification card and antimicrobial susceptibility testing card P-628. The biochemical reactions and antibiotic susceptibility pattern of the seven methicillin-resistant isolates were re-analyzed and patient details were re-checked to finally identify them as SHN. The increasing number of cases reporting isolation of SHN from biological specimens point to potential virulence and clinical importance of this bacterium. PMID:24943764

  2. Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation.

    Science.gov (United States)

    Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Seung-Whan; Kim, Su-Nam; Park, Jong-Dae; Rhee, Dong-Kwon

    2008-02-01

    Multidrug resistance (MDR) is a major problem in cancer chemotherapy. It was previously reported that a red ginseng saponin, 20(S)-ginsenoside Rg3 could modulate MDR in vitro and extend the survival of mice implanted with ADR-resistant murine leukemia P388 cells. This study examined the cytotoxicity of Rg3 on normal and transformed cells, along with its effect on the membrane fluidity. The cytotoxicity study revealed that 120 microM of Rg3 was cytotoxic against a multidrug-resistant human fibroblast carcinoma cell line, KB V20C, but not against normal WI 38 cells in vitro. Flow cytometric analysis using rhodamine 123 as the artificial substrate showed that Rg3 promoted the accumulation of rhodamine 123 in ADR-resistant murine leukemia P388 cells in vivo. Fluorescence polarization studies using the hydrophilic fluorescent probe, DPH, and hydrophobic probe, TMA-DPH, showed that 20 microM Rg3 induced a significant increase in fluorescence anisotropy in KB V20C cells but not in the parental KB cells. These results clearly show that Rg3 decreases the membrane fluidity thereby blocking drug efflux. PMID:18365686

  3. Prevalence of multidrug resistance Campylobacter jejuni and Campylobacter coli in chickens slaughtered in selected markets, Malaysia.

    Science.gov (United States)

    Mansouri-najand, L; Saleha, A A; Wai, Soe Soe

    2012-06-01

    The objectives of this study were to determine the occurrence of Campylobacter spp. in live chickens sold at wet markets in Selangor, Malaysia and the multidrug resistance (MDR) profiles of the isolates. Cloacal swabs were taken from the chickens before slaughter and their caecal mucosae were swabbed after slaughter. Of the 90 chickens examined, 68 (75.6%) were positive for Campylobacter. Campylobacter were recovered from caecal swabs (53/90) and cloacal swabs (34/90) and Campylobacter coli (46 isolates) were identified slightly more than Campylobacter jejuni (41 isolates), but these differences were not significant (perythromycin (51.4%), enrofloxacin (42.4%) and gentamicin (24.4%). Multidrug resistance (resistant to four or more antibiotics) was detected in 35.3% isolates. Campylobacter jejuni showed nine resistance profiles and the most common was to gentamicin-eryhtromycin-enrofloxacin-cephalothin-tetracycline (32.4%) combination while C. coli showed six profiles, with cephalothin-tetracycline (32.2%) combination being most common. PMID:22735845

  4. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance.

    Science.gov (United States)

    Jia, Lejiao; Li, Zhenyu; Shen, Jingyi; Zheng, Dandan; Tian, Xiaona; Guo, Hejian; Chang, Ping

    2015-07-15

    The objective of the study is to fabricate multifunctional mesoporous silica nanoparticles for achieving co-delivery of conventional antitumor drug paclitaxel (PTX) and the multidrug resistance reversal agent tetrandrine (TET) expecting to overcome multidrug resistance of MCF-7/ADR cells. The nanoparticles were facile to prepare by self-assemble in situ drug loading approach. Namely, PTX and TET were solubilized in the cetyltrimethylammonium bromide (CTAB) micelles and simultaneously silica resources hydrolyze and condense to form nanoparticles. The obtained nanoparticles, denoted as PTX/TET-CTAB@MSN, exhibited pH-responsive release property with more easily released in the weak acidic environment. Studies on cellular uptake of nanoparticles demonstrated TET could markedly increase intracellular accumulation of nanoparticles. Furthermore, the PTX/TET-CTAB@MSN suppressed tumor cells growth more efficiently than only delivery of PTX (PTX-CTAB@MSN) or the free PTX. Moreover, the nanoparticle loading drugs with a PTX/TET molar ratio of 4.4:1 completely reversed the resistance of MCF-7/ADR cells to PTX and the resistance reversion index was 72.3. Mechanism research showed that both TET and CTAB could arrest MCF-7/ADR cells at G1 phase; and besides PTX arrested cells at G2 phase. This nanocarrier might have important potential in clinical implications for co-delivery of multiple drugs to overcome MDR. PMID:25956050

  5. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  6. Control of multidrug resistant bacteria in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Jaggi Namita

    2012-06-01

    Full Text Available Abstract Background The objective of this study was to assess the impact of antimicrobial stewardship programs on the multidrug resistance patterns of bacterial isolates. The study comprised an initial retrospective analysis of multidrug resistance in bacterial isolates for one year (July 2007-June 2008 followed by prospective evaluation of the impact of Antimicrobial Stewardship programs on resistance for two years and nine months (July 2008-March 2011. Setting A 300-bed tertiary care private hospital in Gurgaon, Haryana (India Findings Methods Study Design • July 2007 to June 2008: Resistance patterns of bacterial isolates were studied. • July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital. • July 2008 to June 2010: Assessment of the impact of the Phase I intervention programme. • July 2010 to March 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Statistical correlation of the Defined daily dose (DDD for prescribed drugs with the antimicrobial resistance of Gram negatives. Results Phase I intervention programme (July 2008 resulted in a decrease of 4.47% in ESBLs (E.coli and Klebsiella and a significant decrease of 40.8% in carbapenem-resistant Pseudomonas. Phase II intervention (July 2010 brought a significant reduction (24.7% in carbapenem-resistant Pseudomonas. However, the resistance in the other Gram negatives (E.coli, Klebsiella, and Acinetobacter rose and then stabilized. A positive correlation was observed in Pseudomonas and Acinetobacter with carbapenems and cefoperazone-sulbactam. Piperacillin-tazobactam showed a positive correlation with Acinetobacter only. E.coli and Klebsiella showed positive correlation with cefoparazone-sulbactam and piperacillin-tazobactam. Conclusion An antimicrobial stewardship programme with sustained and multifaceted efforts is essential to promote the judicious use of antibiotics.

  7. Management of multidrug-resistant tuberculosis and patients in retreatment.

    Science.gov (United States)

    Caminero, J A

    2005-05-01

    Retreatment of tuberculosis involves the management of entities as diverse as relapse, failure, treatment after default, and poor patient adherence to the previous treatment. The emergence of conditions for selection of resistance (failure and partial abandonment) is a matter of great concern. The development of a retreatment regimen for tuberculosis requires consideration of certain basic premises. The importance of a comprehensive and directed history of drugs taken in the past, and the limited reliability of susceptibility tests to many of these drugs, should be kept in mind. Taking this into account, and possessing a thorough knowledge of all anti-tuberculosis medications, it is possible to cure almost all patients with an appropriate retreatment regimen including a minimum of three or four drugs not previously used. Nonetheless, the treatment of these patients is so complex that it should only be carried out by experienced staff. Concern about treating tuberculosis patients with drug resistance varies greatly depending on the available resources. High-income countries should provide individual treatment regimens adapted to each patient; however, in other settings, restricted resources could justify the implementation of standardised therapeutic guidelines with second-line drugs in order to facilitate management and reduce costs. PMID:15863653

  8. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Directory of Open Access Journals (Sweden)

    Anna Maria Bianucci

    2012-06-01

    Full Text Available P-glycoprotein (P-gp is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  9. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells

    Directory of Open Access Journals (Sweden)

    Bao-an Chen

    2010-06-01

    Full Text Available Bao-an Chen1, Pei-pei Mao1, Jian Cheng1, Feng Gao1, Guo-hua Xia1, Wen-lin Xu2, Hui-lin Shen2, Jia-hua Ding1, Chong Gao1, Qian Sun1, Wen-ji Chen1, Ning-na Chen1, Li-jie Liu3, Xiao-mao Li4, Xue-mei Wang51Department of Hematology, The Affiliated Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, People’s Republic of China; 3Institution of Physiology, Southeast University, Nanjing, People’s Republic of China; 4Department of Physics, University of Saarland, Saarbruecken, Germany; 5State Key Lab of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of ChinaAbstract: In many instances, multidrug resistance (MDR is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp, a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe3O4 nanoparticle [MNP (Fe3O4] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of “classical” MDR by short hairpin RNA (shRNA aiming directly at the target sequence (3491–3509, 1539–1557, and 3103–3121 nucleotide of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1–1, PGY1–2, and PGY1–3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe3O4 for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM. PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1–2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe3O4 or PGY1–2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe3O4 and PGY1–2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe3O4 and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia. Keywords: K562/A02 cell line, multidrug resistance, magnetic nanoparticle of Fe3O4, recombinant plasmid vector PGY1–2

  10. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes

    OpenAIRE

    Martins, A.; Spengler, G.; Martins, M.; Rodrigues, L.(CERN, Geneva, Switzerland); Viveiros, M.; Davin-Regli, A.; Chevalier, J.; Couto, I; Pagès, J.M.; Amaral, L.

    2010-01-01

    Abstract Enterobacter aerogenes predominates among Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum ?-lactamases. Although this mechanism of resistance to ?-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Among these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestin...

  11. QacA Multidrug Efflux Pump from Staphylococcus aureus: Comparative Analysis of Resistance to Diamidines, Biguanidines, and Guanylhydrazones

    OpenAIRE

    Mitchell, Bernadette A.; Brown, Melissa H.; Skurray, Ronald A.

    1998-01-01

    The staphylococcal multidrug efflux pump QacA mediates resistance to a broad spectrum of monovalent and divalent antimicrobial cations. Resistance toward various classes of these compounds identified features of the substrate that may be important for interaction with QacA. Analysis of combinations of two substrates suggested that the same mechanism is used for the extrusion of different classes of compounds.

  12. Escherichia coli Sequence Type 131 (ST131) Subclone H30 as an Emergent Multidrug-Resistant Pathogen Among US Veterans

    OpenAIRE

    Colpan, Aylin; Johnston, Brian; Porter, Stephen; Clabots, Connie; Anway, Ruth; Thao, Lao; Kuskowski, Michael A.; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Johnson, James R; Allen, Bradley L.; Baracco, Gio J.; Bedimo, Roger; Bessesen, Mary; Bonomo, Robert A

    2013-01-01

    Among US veterans in 2011, Escherichia coli ST131, primarily its H30 subclone, accounted for most antimicrobial-resistant E. coli clinical isolates and was the dominant E. coli strain overall. Possible contributors included multidrug resistance, extensive virulence gene content, and ongoing transmission.

  13. Random Amplified Polymorphic DNA (RAPD) Typing of Multidrug Resistant Enterococcus faecium Urinary Isolates from a Tertiary Care Centre, Northern India

    OpenAIRE

    Banerjee, Tuhina

    2013-01-01

    Background: Enterococci, though they are a part of commensal flora, are becoming increasingly important as nosocomial pathogens, due to their inherited and acquired resistances to several antimicrobial agents. In this context, Enterococcus faecium (E.faecium) requires a special mention due to its characteristic of Multidrug Resistance (MDR) and its ability to disseminate.

  14. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank MØller

    2006-01-01

    Of the 798 clinical Salmonella isolates collected from multiple hospitals in Taiwan, resistance to ampicillin (48.5%), chloramphenicol (55.3%), streptomycin (59.0%), sulfamethoxazole (68.0%), and tetracycline (67.8%) was high, whereas resistance to all 5 antimicrobials (ACSSuT R-type) comprised 327 (41%) and was highly prevalent in Salmonella enterica serotype Typhimurium (72.7%, 176/242) the most common serotype. Additional resistance to trimethoprim was present in 155 (19.4% overall) of the ACSSuT R-type isolates from several serotypes. Reduced susceptibility to fluoroquinolone (FQ) (ciprofloxacin MIC > 0.125-1 mu g/mL and nalidixic acid-resistant) was detected in 223 (27.9%) isolates including 117 (14.7% overall) that were also ACSSuT-resistant. Full resistance to FQ was detected in Salmonella Choleraesuis (35.5%, 6/17) and Salmonella Schwarzengrund (16.7%, 10/60); both serotypes were also multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc. All rights reserved.

  15. Casein Kinase 2? Regulates Multidrug Resistance-Associated Protein 1 Function via Phosphorylation of Thr249

    OpenAIRE

    Stolarczyk, Elzbieta I.; Reiling, Cassandra J.; Pickin, Kerry A.; Coppage, Ryan; Knecht, Marc R.; Paumi, Christian M.

    2012-01-01

    We have shown previously that the function of Ycf1p, yeast ortholog of multidrug resistance-associated protein 1 (MRP1), is regulated by yeast casein kinase 2? (Cka1p) via phosphorylation at Ser251. In this study, we explored whether casein kinase 2? (CK2?), the human homolog of Cka1p, regulates MRP1 by phosphorylation at the semiconserved site Thr249. Knockdown of CK2? in MCF7-derived cells expressing MRP1 [MRP1 CK2?(?)] resulted in increased doxorubicin sensitivity. MRP1-dependent tr...

  16. The political and ethical challenge of multi-drug resistant tuberculosis.

    Science.gov (United States)

    Degeling, Chris; Mayes, Christopher; Lipworth, Wendy; Kerridge, Ian; Upshur, Ross

    2015-03-01

    This article critically examines current responses to multi-drug resistant tuberculosis (MDR-TB) and argues that bioethics needs to be willing to engage in a more radical critique of the problem than is currently offered. In particular, we need to focus not simply on market-driven models of innovation and anti-microbial solutions to emergent and re-emergent infections such as TB. The global community also needs to address poverty and the structural factors that entrench inequalities-thus moving beyond the orthodox medical/public health frame of reference. PMID:25630591

  17. Comparative Sequence Analysis of a Multidrug-Resistant Plasmid from Aeromonas hydrophila

    OpenAIRE

    Del Castillo, Carmelo S.; Hikima, Jun-ichi; Jang, Ho-bin; Nho, Seong-won; Jung, Tae-sung; Wongtavatchai, Janenuj; Kondo, Hidehiro; Hirono, Ikuo; Takeyama, Haruko; Aoki, Takashi

    2013-01-01

    Aeromonas hydrophila is a pathogenic bacterium that has been implicated in fish, animal, and human disease. Recently, a multidrug resistance (MDR) plasmid, pR148, was isolated from A. hydrophila obtained from a tilapia (Oreochromis niloticus) farm in Thailand. pR148 is a 165,906-bp circular plasmid containing 147 coding regions showing highest similarity to pNDM-1_Dok1, an MDR plasmid isolated from a human pathogen. pR148 was also very similar to other IncA/C plasmids isolated from humans, an...

  18. Epidemiology and genetic diversity of multidrug-resistant tuberculosis in East Africa

    OpenAIRE

    Kidenya, Benson R.; Webster, Lauren E.; Behan, Sehan; Kabangila, Rodrick; Peck, Robert N.; Mshana, Stephen E.; Ocheretina, Oksana; Fitzgerald, Daniel W.

    2013-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is an emerging problem in many parts of the world, and levels of MDR-TB among new TB patients are increasing in sub-Saharan Africa. We reviewed the prevalence and molecular epidemiology of MDR-TB in East Africa, including Burundi, Kenya, Rwanda, Tanzania, and Uganda. In 16 epidemiologic surveys, the prevalence of MDR among new cases ranges from 0.4% in Tanzania to 4.4% in Uganda, and among recurrent cases ranges from 3.9% in Tanzania to 17.7% in Ugand...

  19. High prevalence of primary multidrug resistant tuberculosis in persons with no known risk factors

    OpenAIRE

    Otero, L.; Krapp, F.; Tomatis, C.; Zamudio, C.; Matthys, F.; Gotuzzo, E.; Stuyft, P.; Seas, C.

    2011-01-01

    INTRODUCTION: In high multidrug resistant (MDR) tuberculosis (TB) prevalence areas, drug susceptibility testing (DST) at diagnosis is recommended for patients with risk factors for MDR. However, this approach might miss a substantial proportion of MDR-TB in the general population. We studied primary MDR in patients considered to be at low risk of MDR-TB in Lima, Peru. METHODS: We enrolled new sputum smear-positive TB patients who did not report any MDR-TB risk factor: known exposure to a TB p...

  20. Hospital control and multidrug-resistant pulmonary tuberculosis in female patients, Lima, Peru.

    OpenAIRE

    Willingham, F. F.; Schmitz, T. L.; Contreras, M.; Kalangi, S. E.; Vivar, A. M.; Caviedes, L.; Schiantarelli, E.; Neumann, P. M.; Bern, C.; Gilman, R. H.

    2001-01-01

    We examined the prevalence of tuberculosis (TB), rate of multidrug-resistant (MDR) TB, and characteristics of TB on a female general medicine ward in Peru. Of 250 patients, 40 (16%) were positive by sputum culture and 27 (11%) by smear, and 8 (3%) had MDRTB. Thirteen (33%) of 40 culture-positive patients had not been suspected of having TB on admission. Six (46%) of 13 patients whose TB was unsuspected on admission had MDRTB, compared with 2 (7%) of 27 suspected cases (p = 0.009). Five (63%) ...

  1. Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant Plasmodium falciparum malaria.

    OpenAIRE

    Vugt, Mv; Wilairatana, P.; Gemperli, B.; Gathmann, I.; Phaipun, L.; Brockman, A.; Luxemburger, C.; White, Nj; Nosten, F.; Looareesuwan, S.

    1999-01-01

    The new oral fixed combination artemether-lumefantrine (CGP 56697) has proved to be an effective and well-tolerated treatment of multi-drug resistant Plasmodium falciparum malaria, although cure rates using the four-dose regimen have been lower than with the currently recommended alternative of artesunate-mefloquine. Two six-dose schedules (total adult dose = 480 mg of artemether and 2,880 mg of lumefantrine) were therefore compared with the previously used four-dose regimen (320 mg of arteme...

  2. Mice lacking multidrug resistance protein 1a show altered dopaminergic responses to methylenedioxymethamphetamine (MDMA) in striatum

    OpenAIRE

    Scheidweiler, Karl B.; Ladenheim, Bruce; Cadet, Jean Lud; Huestis, Marilyn A.

    2009-01-01

    Multidrug resistance protein 1a (MDR1a) potentiated methylenedioxymethamphetamine (MDMA)-induced decreases of dopamine (DA) and dopamine transport protein in mouse brain one week after MDMA administration. In the present study, we examined if mdr1a wild-type (mdr1a +/+) and knock-out (mdr1a ?/?) mice differentially handle the acute effects of MDMA on the nigrostriatal DA system 0–24 h following a single drug injection. 3-way ANOVA revealed significant 2-way interactions of strain X time...

  3. Multi-drug resistant tuberculosis in Chuuk State Federated States of Micronesia, 2008-2009.

    Science.gov (United States)

    Fred, D; Desai, M; Song, R; Bamrah, S; Pavlin, B I; Heetderks, A; Ekiek, M J

    2010-04-01

    Multi-drug resistant tuberculosis (MDR TB) is a growing public health concern, particularly for the Pacific, where rates of tuberculosis infection are extremely high. In May 2008, a cluster of patients with MDR TB were identified in Chuuk State, Federated States of Micronesia. A multi-agency investigation led to the eventual discovery of 21 cases, and over 100 latent TB infections. Incomplete implementation of Directly Observed Therapy (DOT) and contact investigation were major contributors to the outbreak. The problem of MDR TB in Chuuk was controlled only after a concerted effort on the part of multiple agencies coupled with the highest level of political commitment. PMID:20968244

  4. Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats

    International Nuclear Information System (INIS)

    At present, P-glycoprotein (P-gp) function can be studied using positron emission tomography (PET) together with a labelled P-gp substrate such as (R)-[11C]verapamil. Such a tracer is, however, less suitable for investigating P-gp (over)expression. Laniquidar is a third-generation P-gp inhibitor, which has been used in clinic trials for modulating multidrug resistance transporters. The purpose of the present study was to develop the radiosynthesis of [11C]laniquidar and to assess its suitability as a tracer of P-gp expression. The radiosynthesis of [11C]laniquidar was performed by methylation of the carboxylic acid precursor with [11C]CH3I. The product was purified by HPLC and reformulated over a tC18 Seppak, yielding a sterile solution of [11C]laniquidar in saline. For evaluating [11C]laniquidar, rats were injected with 20 MBq [11C]laniquidar via a tail vein and sacrificed at 5, 15, 30 and 60 min after injection. Several tissues and distinct brain regions were dissected and counted for radioactivity. In addition, uptake of [11C]laniquidar in rats pretreated with cyclosporine A and valspodar (PSC 833) was determined at 30 min after injection. Finally, the metabolic profile of [11C]laniquidar in plasma was determined. [11C]Laniquidar could be synthesized in moderate yields with high specific activity. Uptake in brain was low, but significaty. Uptake in brain was low, but significantly increased after administration of cyclosporine A. Valspodar did not have any effect on cerebral uptake of [11C]laniquidar. In vivo rate of metabolism was relatively low. Further kinetic studies are needed to investigate the antagonistic behaviour of [11C]laniquidar at tracer level.

  5. Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats.

    Science.gov (United States)

    Luurtsema, Gert; Schuit, Robert C; Klok, Rob P; Verbeek, Joost; Leysen, Josée E; Lammertsma, Adriaan A; Windhorst, Albert D

    2009-08-01

    At present, P-glycoprotein (P-gp) function can be studied using positron emission tomography (PET) together with a labelled P-gp substrate such as R-[11C]verapamil. Such a tracer is, however, less suitable for investigating P-gp (over)expression. Laniquidar is a third-generation P-gp inhibitor, which has been used in clinic trials for modulating multidrug resistance transporters. The purpose of the present study was to develop the radiosynthesis of [11C]laniquidar and to assess its suitability as a tracer of P-gp expression. The radiosynthesis of [11C]laniquidar was performed by methylation of the carboxylic acid precursor with [11C]CH3I. The product was purified by HPLC and reformulated over a tC18 Seppak, yielding a sterile solution of [11C]laniquidar in saline. For evaluating [11C]laniquidar, rats were injected with 20 MBq [11C]laniquidar via a tail vein and sacrificed at 5, 15, 30 and 60 min after injection. Several tissues and distinct brain regions were dissected and counted for radioactivity. In addition, uptake of [11C]laniquidar in rats pretreated with cyclosporine A and valspodar (PSC 833) was determined at 30 min after injection. Finally, the metabolic profile of [11C]laniquidar in plasma was determined. [11C]Laniquidar could be synthesized in moderate yields with high specific activity. Uptake in brain was low, but significantly increased after administration of cyclosporine A. Valspodar did not have any effect on cerebral uptake of [11C]laniquidar. In vivo rate of metabolism was relatively low. Further kinetic studies are needed to investigate the antagonistic behaviour of [11C]laniquidar at tracer level. PMID:19647170

  6. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers

    Directory of Open Access Journals (Sweden)

    Brisebois Ronald

    2007-08-01

    Full Text Available Abstract Background Military members, injured in Afghanistan or Iraq, have returned home with multi-drug resistant Acinetobacter baumannii infections. The source of these infections is unknown. Methods Retrospective study of all Canadian soldiers who were injured in Afghanistan and who required mechanical ventilation from January 1 2006 to September 1 2006. Patients who developed A. baumannii ventilator associated pneumonia (VAP were identified. All A. baumannii isolates were retrieved for study patients and compared with A. baumannii isolates from environmental sources from the Kandahar military hospital using pulsed-field gel electrophoresis (PFGE. Results During the study period, six Canadian Forces (CF soldiers were injured in Afghanistan, required mechanical ventilation and were repatriated to Canadian hospitals. Four of these patients developed A. baumannii VAP. A. baumannii was also isolated from one environmental source in Kandahar – a ventilator air intake filter. Patient isolates were genetically indistinguishable from each other and from the isolates cultured from the ventilator filter. These isolates were resistant to numerous classes of antimicrobials including the carbapenems. Conclusion These results suggest that the source of A. baumannii infection for these four patients was an environmental source in the military field hospital in Kandahar. A causal linkage, however, was not established with the ventilator. This study suggests that infection control efforts and further research should be focused on the military field hospital environment to prevent further multi-drug resistant A. baumannii infections in injured soldiers.

  7. In vitro activity of antimicrobial combinations against multidrug-resistant Pseudomonas aeruginosa

    Scientific Electronic Library Online (English)

    Denissani Aparecida Ferrari dos Santos, Lima; Margarida Maria Passeri do, Nascimento; Lucia Helena, Vitali; Roberto, Martinez.

    2013-06-01

    Full Text Available Introduction Pseudomonas aeruginosa isolates related to nosocomial infections are often resistant to multiple antibacterial agents. In this study, antimicrobial combinations were evaluated to detect in vitro synergy against clinical isolates of P. aeruginosa. Methods Four clinical P. aeruginosa i [...] solates were selected at random among other isolates from inpatients treated at the public University hospital in Ribeirão Preto, SP, Brazil. Two isolates were susceptible to imipenem (IPM-S) and several other antimicrobials, while the other two isolates were imipenem and multidrug resistant (IPM-R). The checkerboard method was used to assess the interactions between antimicrobials. Results Combinations of imipenem or other anti-Pseudomonas drugs with complementary antibiotics, such as aminoglycosides, fosfomycin and rifampin, reached synergy rates of 20.8%, 50%, 62.5% and 50% for the two IPM-S and two IPM-R Pseudomonas isolates, respectively. Imipenem, piperacillin-tazobactam and ceftazidime yielded a greater synergy rate than cefepime or ciprofloxacin. Synergist combinations were more commonly observed when the complementary drug was tobramycin (65%) or fosfomycin (57%). Conclusions Some antibacterial combinations led to significant reductions of the minimum inhibitory concentrations of both drugs, suggesting that they could be clinically applied to control infections caused by multidrug-resistant P. aeruginosa.

  8. Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms

    Directory of Open Access Journals (Sweden)

    Tétault Nathalie

    2012-11-01

    Full Text Available Abstract Background The antimicrobial effects of a coating of molybdenum trioxide (MoO3 has been recently described. The metalloacid material produces oxonium ions (H3O+, which creates an acidic pH that is an effective, non specific antimicrobial. We determined the in vitro antimicrobial activity of molybdenum trioxide metalloacid-coated surfaces. Methods Metalloacid-coated and non-coated (control surfaces were contaminated by exposing them for 15 minutes to microbial suspensions containing 105 cfu/mL. Eleven microorganisms responsible for nosocomial infections were tested: two Staphylococcus aureus strains (the hetero-vancomycin intermediate MRSA Mu50 strain and a ST80-PVL-producing MRSA strain; a vancomycin-resistant vanA Enterococcus faecium strain; three extended-spectrum beta-lactamase-producing Enterobacteriaceae strains; a MBL-producing Pseudomonas aeruginosa strain; a multidrug-resistant Acinetobacter baumannii strain; a toxin-producing Clostridium difficile strain; and two fungi (Candida albicans and Aspergillus fumigatus. The assay tested the ability of the coated surfaces to kill microorganisms. Results Against all non-sporulating microorganisms tested, metalloacid-coated surfaces exhibited significant antimicrobial activity relative to that of the control surfaces within two to six hours after contact with the microorganisms (p? Conclusions We suggest that, facing the continuing shedding of microorganisms in the vicinity of colonized or infected patients, the continuous biocidal effect of hydroxonium oxides against multidrug-resistant microorganisms may help limit environmental contamination between consecutive cleaning procedures.

  9. Antimicrobial activity of different Lactobacillus species against multi-drug resistant clinical isolates of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    MR Fazeli

    2011-05-01

    Full Text Available Background: Lactobacilli are the well known friendly bacteria for their probiotic activities against pathogens. The inhibitory activity of different strains of lactobacilli either obtained as commercial products or isolated from human feces was investigated against the clinical isolates of Pseudomonas aeruginosa. The isolates were selected as the most resistant strains when challenged with anti-pseudomonal antibiotics already in clinical practice."nMaterials and Methods: Both the plate spot test as well as the agar cup method were used for screening of Lactobacillus strains against Pseudomonas aeruginosa."nResults: A Lactobacillus acidophilus strain isolated from feces of an Iranian child showed a strong anti-pseudomonal activity (90 percent after 72h incubation against the multi-drug resistant clinical isolates while a Lactobacillus reuteri strain isolated from a commercial oral product resulted in relatively weak response and a Lactobacillus acidophilus strain isolated from a commercial vaginal product did not show any inhibitory activity. In a kinetic study the lactobacillus sensitive Pseudomonas aeruginosa showed a significant bacteriostatic activity in vitro in the presence of lactobacillus supernatants."nConclusion: Some lactobacilli exhibit significant inhibitory activity against the multidrug resistant clinical isolates of Pseudomonas aeruginosa.

  10. Factors influencing survival in patients with multidrug-resistant Acinetobacter baumannii infection

    Scientific Electronic Library Online (English)

    Mariana Lima, Prata-Rocha; Paulo Pinto, Gontijo-Filho; Geraldo Batista de, Melo.

    2012-06-01

    Full Text Available Multidrug-resistant (MDR) Acinetobacter baumannii (Acb) is a rapidly emerging pathogen in healthcare settings. The aim of this study was to evaluate the predictors of poor outcome in patients with MDR Acb. This is the first report documenting factors influencing survival in patients with MDR Acb in [...] this tertiary hospital. This study is a prospective of the hospital epidemiology database. A total of 73 patients with 84 Acb isolates were obtained between August 2009 and October 2010 in this hospital. In the present study, the 30-day mortality rate was 39.7%. Of 84 Acb isolates, 50 (59%) were MDR, nine (11%) were pan-resistant, and 25 (30%) were non-MDR. The non-MDR isolates were used as the control group. The factors significantly associated with multidrug resistance included previous surgeries, presence of comorbidity (renal disease), use of more than two devices, parenteral nutrition, and inappropriate antimicrobial therapy. Significant predictors of 30-day mortality in the univariate analysis included pneumonia, diabetes mellitus, renal disease, use of more than two devices, and inappropriate antimicrobial therapy administered within two days of the onset of infection. The factors associated with mortality in patients with MDR Acb infection in this study were: age > 60 years, pneumonia, diabetes mellitus, renal disease, use of more than two invasive procedures, and inappropriate antimicrobial therapy. Vigilance is needed to prevent outbreaks of this opportunistic and deadly pathogen.

  11. Factors influencing survival in patients with multidrug-resistant Acinetobacter baumannii infection

    Directory of Open Access Journals (Sweden)

    Mariana Lima Prata-Rocha

    2012-06-01

    Full Text Available Multidrug-resistant (MDR Acinetobacter baumannii (Acb is a rapidly emerging pathogen in healthcare settings. The aim of this study was to evaluate the predictors of poor outcome in patients with MDR Acb. This is the first report documenting factors influencing survival in patients with MDR Acb in this tertiary hospital. This study is a prospective of the hospital epidemiology database. A total of 73 patients with 84 Acb isolates were obtained between August 2009 and October 2010 in this hospital. In the present study, the 30-day mortality rate was 39.7%. Of 84 Acb isolates, 50 (59% were MDR, nine (11% were pan-resistant, and 25 (30% were non-MDR. The non-MDR isolates were used as the control group. The factors significantly associated with multidrug resistance included previous surgeries, presence of comorbidity (renal disease, use of more than two devices, parenteral nutrition, and inappropriate antimicrobial therapy. Significant predictors of 30-day mortality in the univariate analysis included pneumonia, diabetes mellitus, renal disease, use of more than two devices, and inappropriate antimicrobial therapy administered within two days of the onset of infection. The factors associated with mortality in patients with MDR Acb infection in this study were: age > 60 years, pneumonia, diabetes mellitus, renal disease, use of more than two invasive procedures, and inappropriate antimicrobial therapy. Vigilance is needed to prevent outbreaks of this opportunistic and deadly pathogen.

  12. Comparison of (99m)tc-tetrofosmin and (99m)tc-sestamibi uptake in glioma cell lines: the role of p-glycoprotein expression.

    Science.gov (United States)

    Alexiou, George A; Xourgia, Xanthi; Vartholomatos, Evrysthenis; Tsiouris, Spyridon; Kalef-Ezra, John A; Fotopoulos, Andreas D; Kyritsis, Athanasios P

    2014-01-01

    (99m)Tc-Tetrofosmin ((99m)Tc-TF) and (99m)Tc-Sestamibi ((99m)Tc-MIBI) are SPECT tracers that have been used for brain tumor imaging. Tumor's multidrug resistance phenotype, namely, P-glycoprotein (p-gp), and the multidrug resistance related proteins (MRPs) expression have been suggested to influence both tracers' uptake. In the present study we set out to compare (99m)Tc-TF and (99m)Tc-MIBI uptake in high-grade glioma cell lines and to investigate the influence of gliomas p-gp expression on both tracers' uptake. We used four glioma cell lines (U251MG, A172, U87MG, and T98G). The expression of p-gp protein was evaluated by flow cytometry. Twenty ?Ci (7.4·10(5)?Bq) of (99m)Tc-TF and (99m)Tc-MIBI were used. The radioactivity in the cellular lysate was measured with a dose calibrator. P-gp was significantly expressed only in the U251MG cell line (P < 0.001). In all gliomas cell lines (U251MG, U87MG, A172, and T98G) the (99m)Tc-TF uptake was significantly higher than (99m)Tc-sestamibi. The U251MG cell line, in which significant p-gp expression was documented, exhibited the strongest uptake difference. (99m)Tc-TF uptake was higher than (99m)Tc-MIBI in all studied high-grade glioma cell lines. Thus, (99m)Tc-TF may be superior to (99m)Tc-MIBI for glioma imaging in vivo. PMID:25436147

  13. Comparison of 99mTc-Tetrofosmin and 99mTc-Sestamibi Uptake in Glioma Cell Lines: The Role of P-Glycoprotein Expression

    Science.gov (United States)

    Alexiou, George A.; Xourgia, Xanthi; Vartholomatos, Evrysthenis; Kalef-Ezra, John A.; Fotopoulos, Andreas D.; Kyritsis, Athanasios P.

    2014-01-01

    99mTc-Tetrofosmin (99mTc-TF) and 99mTc-Sestamibi (99mTc-MIBI) are SPECT tracers that have been used for brain tumor imaging. Tumor's multidrug resistance phenotype, namely, P-glycoprotein (p-gp), and the multidrug resistance related proteins (MRPs) expression have been suggested to influence both tracers' uptake. In the present study we set out to compare 99mTc-TF and 99mTc-MIBI uptake in high-grade glioma cell lines and to investigate the influence of gliomas p-gp expression on both tracers' uptake. We used four glioma cell lines (U251MG, A172, U87MG, and T98G). The expression of p-gp protein was evaluated by flow cytometry. Twenty ?Ci (7.4·105?Bq) of 99mTc-TF and 99mTc-MIBI were used. The radioactivity in the cellular lysate was measured with a dose calibrator. P-gp was significantly expressed only in the U251MG cell line (P < 0.001). In all gliomas cell lines (U251MG, U87MG, A172, and T98G) the 99mTc-TF uptake was significantly higher than 99mTc-sestamibi. The U251MG cell line, in which significant p-gp expression was documented, exhibited the strongest uptake difference. 99mTc-TF uptake was higher than 99mTc-MIBI in all studied high-grade glioma cell lines. Thus, 99mTc-TF may be superior to 99mTc-MIBI for glioma imaging in vivo. PMID:25436147

  14. Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 68Ga-labelled PET tracer

    International Nuclear Information System (INIS)

    In vitro it has been shown that the functional activity of P-glycoprotein (Pgp), an important drug transporter responsible for multidrug resistance, can be strongly increased by extracellular acidosis. Here mitogen-activated protein kinases (MAPK) (p38, ERK1/2) seem to play an important role for signal transduction. However, it is unclear whether these effects are also relevant in vivo. With the newly developed PET tracer Schiff base-based 68Ga-MFL6.MZ the functional Pgp activity was visualized under acidic conditions and during inhibition of MAPKs non-invasively by means of microPET in rat tumours. Tumours were acidified either by inspiratory hypoxia (8% O2) or by injection of lactic acid. Inhibitors of the MAPK were injected intratumourally. With increasing tumour volume the tumour pH changed from 7.0 to 6.7 and simultaneously the Pgp activity increased almost linearly. When the tumour was acidified by direct lactic acid injection the PET tracer uptake was reduced by 20% indicating a higher transport rate out of the cells. Changing the inspiratory O2 fraction to 8% dynamically led to a reduction of extracellular pH and in parallel to a decrease of tracer concentration. While inhibition of the p38 pathway reduced the Pgp transport rate, inhibition of ERK1/2 had practically no impact. An acidic extracellular environment significantly stimulates the Pgp activity. The p38 MAPK pathway plays an important role for Pgp regulation in vivo, wportant role for Pgp regulation in vivo, whereas ERK1/2 is of minor importance. From these results new strategies for overcoming multidrug resistance (e.g. reducing tumour acidosis, inhibition of p38) may be developed. (orig.)

  15. International spread of multidrug-resistant Salmonella Schwarzengrund in food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank MØller; Hendriksen, Rene S.

    2007-01-01

    We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products to persons in Denmark and the United States.

  16. [On the importance of multidrug-resistant strains of pathogenic microorganisms in ophthalmic practice].

    Science.gov (United States)

    Galeeva, G Z; Samoylov, A N; Rascheskov, A Yu

    2015-01-01

    This is a review of epidemiological, microbiological and ophthalmological publications on the importance of multidrug-resistant bacterial strains in medical, particularly ophthalmological, care. Current state of pharmaceutical market and wide variety of generics confuses doctor's (including ophthalmologist's) sense of decision-making on the optimum antibiotic for the treatment of purulent inflammation. Indiscriminate use of antibiotics contributes to multiple drug resistance in bacteria. The world returns to the pre-antibiotic era, in which there was no treatment for severe infectious and inflammatory diseases. The most dangerous multiresistant strains known to medical science and their role in etiology of inflammatory eye diseases are listed in the article. Since neonatal conjunctivitis and postoperative endophthalmitis are the most common ocular inflammatory diseases caused by nosocomial multiresistant bacteria, their etiological classification is also described. Emergence of antibiotic resistance to most frequently used ophthalmic agents and prevention strategies are discussed. PMID:26080593

  17. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii.

    Science.gov (United States)

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin; Choi, Chul Hee; Han, Kyudong

    2015-05-15

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  18. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Zhejiang, China.

    Science.gov (United States)

    Xia, Qiang; Zhao, Li-Li; Li, Feng; Fan, Yu-Mei; Chen, Yuan-Yuan; Wu, Bei-Bei; Liu, Zheng-Wei; Pan, Ai-Zhen; Zhu, Min

    2015-03-01

    To explore the phenotypic and genotypic characterization of pyrazinamide (PZA) resistance among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Zhejiang province, a total of 274 MDR-TB isolates were collected. Drug susceptibility testing and spoligotyping were performed on all clinical isolates. In addition, the mutated features of PZA-resistant loci, including pncA and rpsA, were also analyzed by DNA sequencing. Our results showed that the prevalence of PZA resistance among MDR-TB strains in Zhejiang province was 43.07% and that PZA resistance was associated with concomitant resistance to streptomycin. The majority of PZA-resistant MDR-TB isolates belonged to the Beijing family. Mutations within pncA, not rpsA, constituted the primary mechanism of PZA resistance. Among 118 PZA-resistant isolates, 53 different mutations were observed in pncA, and most of them were point mutations. Compared with the phenotypic data, DNA sequencing of pncA has sensitivity and specificity of 77.97% and 96.79%, respectively. Analysis of pncA provided a robust tool for rapid detection of PZA drug resistance. PMID:25583712

  19. Comparative in vitro activities of beta-lactam-tobramycin combinations against Pseudomonas aeruginosa and multidrug-resistant gram-negative enteric bacilli.

    OpenAIRE

    Fass, R. J.

    1982-01-01

    Piperacillin was more consistently active than tobramycin, carbenicillin, moxalactam, or ceftriaxone against strains of Pseudomonas aeruginosa isolated from blood cultures and against multidrug-resistant strains. Moxalactam and ceftriaxone were more consistently active than tobramycin, carbenicillin, or piperacillin against multidrug-resistant Enterobacteriaceae. Synergy between beta-lactam antibiotics and tobramycin was frequently observed against strains of P. aeruginosa isolated from blood...

  20. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis isolates from China.

    Science.gov (United States)

    Zhao, Li-Li; Chen, Yan; Liu, Hai-Can; Xia, Qiang; Wu, Xiao-Cui; Sun, Qing; Zhao, Xiu-Qin; Li, Gui-Lian; Liu, Zhi-Guang; Wan, Kang-Lin

    2014-01-01

    To investigate the molecular characterization of multidrug-resistant tuberculosis (MDR-TB) isolates from China and the association of specific mutations conferring drug resistance with strains of different genotypes, we performed spoligotyping and sequenced nine loci (katG, inhA, the oxyR-ahpC intergenic region, rpoB, tlyA, eis, rrs, gyrA, and gyrB) for 128 MDR-TB isolates. Our results showed that 108 isolates (84.4%) were Beijing family strains, 64 (59.3%) of which were identified as modern Beijing strains. Compared with the phenotypic data, the sensitivity and specificity of DNA sequencing were 89.1% and 100.0%, respectively, for isoniazid (INH) resistance, 93.8% and 100.0% for rifampin (RIF) resistance, 60.0% and 99.4% for capreomycin (CAP) resistance, 84.6% and 99.4% for kanamycin (KAN) resistance, and 90.0% and 100.0% for ofloxacin (OFX) resistance. The most prevalent mutations among the MDR-TB isolates were katG315, inhA15, rpoB531, -526, and -516, rrs1401, eis-10, and gyrA94, -90, and -91. Furthermore, there was no association between specific resistance-conferring mutations and the strain genotype. These findings will be helpful for the establishment of rapid molecular diagnostic methods to be implemented in China. PMID:24419342

  1. Multifunctional Nanoparticles Based on a Single-Molecule Modification for the Treatment of Drug-Resistant Cancer

    OpenAIRE

    Wang, Dun; Tang, Jingling; Wang, Yongjun; Ramishetti, Srinivas; Fu, Qiang; Racette, Kelly; Liu, Feng

    2013-01-01

    Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively explored for the treatment of MDR in cancer because of its ability to inhibit P-glycoprotein. Here, we have established multifunctional nanoparticles (MFNPs) using a single-molecule modification of TPGS, which can deliver a hydrophobic drug, paclitaxel (PTX), and a hydrophilic drug, fluorouracil (5-FU), and overcome MDR in cancer. Our data in...

  2. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005-2010.

    Science.gov (United States)

    Smith, Sarah E; Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O; Shemyakin, Igor G; Kurbatova, Ekaterina; Cegielski, J Peter

    2015-06-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005-2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  3. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Scientific Electronic Library Online (English)

    Ahmet Yilmaz, Coban; Meltem, Uzun.

    2013-12-01

    Full Text Available Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resist [...] ance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.

  4. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Scientific Electronic Library Online (English)

    Wanzhong, Yin; Ping, Wang; Xin, Wang; Wenzhi, Song; Xiangyan, Cui; Hong, Yu; Wei, Zhu.

    2013-06-12

    Full Text Available Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, [...] by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (?45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P

  5. ROLE OF MOBILE GENETIC ELEMENTS (PLASMID, CLASS1 INTEGRON AND SXT ELEMENT) IN DISSEMINATION OF MULTIDRUG RESISTANT NON CHOLERA VIBRIOS

    OpenAIRE

    Anjana Sharma, Chandan R. Bora

    2012-01-01

    The multidrug resistance (MDR) profile and its correlation with plasmid encoded mobile genetic elements were investigated in non cholera Vibrio strains isolated f r om f r e s h w a t e r r i v e r N a rma d a . T h e susceptibility/resistance of 415 Vibrio strains against fourteen antimicrobial agents were tested using disc diffusion method. The isolate showed higher resistance to cotrimoxazole, streptomycin, chloramphenicol, tetracycline, trimethoprim and norfloxacin. Plasmid profiling of 1...

  6. Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Letícia Dias de Melo Carrasco

    2015-03-01

    Full Text Available The growing challenge of antimicrobial resistance to antibiotics requires novel synthetic drugs or new formulations for old drugs. Here, cationic nanostructured particles (NPs self-assembled from cationic bilayer fragments and polyelectrolytes are tested against four multidrug-resistant (MDR strains of clinical importance. The non-hemolytic poly(diallyldimethylammonium chloride (PDDA polymer as the outer NP layer shows a remarkable activity against these organisms. The mechanism of cell death involves bacterial membrane lysis as determined from the leakage of inner phosphorylated compounds and possibly disassembly of the NP with the appearance of multilayered fibers made of the NP components and the biopolymers withdrawn from the cell wall. The NPs display broad-spectrum activity against MDR microorganisms, including Gram-negative and Gram-positive bacteria and yeast.

  7. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field.

    Science.gov (United States)

    Golberg, Alexander; Broelsch, G Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R; Austen, William G; Sheridan, Robert L; Yarmush, Martin L

    2014-06-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol. PMID:25089285

  8. Using a Label Free Quantitative Proteomics Approach to Identify Changes in Protein Abundance in Multidrug-Resistant Mycobacterium tuberculosis.

    Science.gov (United S