WorldWideScience

Sample records for maize grain yield

  1. DISTRIBUITION AND POPULATION OF PLANTS AND MAIZE GRAIN YIELD

    DURVAL DOURADO NETO

    2003-12-01

    Full Text Available With the purpose of evaluating the effect of plant population (30,000; 60,000 and 90,000 plants ha-1, under two width rows (0.40 and 0.80 m, on the grain yield of three maize genotypes with open (AG 1051, semi-erect (AG 7575 and erect (DKB 911 leaf architecture, a field experiment was carried out in Piracicaba, São Paulo, Brazil between November 20th, 2000 and April 10th, 2001. According to the results: a in high population (90,000 plants ha-1, the reduction of width row (from 0.80 m to 0.40 m increases grain yield on the open-leaf-architecture genotype, and b, until 60,000 plants ha-1, regardless of genotype, the grain yield is crescent with an increase in plant population. With the plant population increasing from 60,000 to 90,000 plants ha-1, the grain yield: a increases in the erect-leaf-architecture genotype, b stabilizes on the semi-erect-leaf-architecture genotype, c stabilizes under reduced spacing (0.40 m, and decreases under spacing of 0.80 m in the open-leaf-architecture genotype.

  2. Agronomic Characters, Yield Components and Grain Yield Evaluation of 11 New Hybrid Maize Prospective Genotypes

    Budi Setyawan

    2016-08-01

    Full Text Available Maize (Zea mays L. is the second important commodity after rice in Indonesia. As of  2015, more than 3 million tons of maize grain still need to be imported. It is caused by productivity of maize which remains low due to the lowness proportion of hybrid maize seed. In addition to a single cross, threeway cross seed is still necessary as alternatives for farmers rather than open pollinated cultivar ones. The purpose of this study was to evaluate grain yield of 11 prospective genotypes utilizing BISI 18 and Sukmaraga as control cultivars. Randomized block design (RBD with three replications was adopted. The study was carried out in the dry season 2015. The result of this study showed that at 95% confidence level (a=0.05, prospective genotype SSUSX48274 performed significantly better than BISI 18 and Sukmaraga, while others yielded significantly better than Sukmaraga, but equal to BISI 18. All new prospective genotypes could be included in the  multilocation trial in order to release superior varieties.

  3. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  4. Weed Competition and its Effects on Pwani Hybrid 1 Maize Grain Yields in Coastal Kenya

    Weed competition is a serious constraint to maize production in coastal Kenya. A trial to asses the effects of weed competition on performance of maize was planted at Regional Research Centre-Mtwapa and Msabaha Research Sub-centre-Malindi in 1992. Pwani hybrid 1 maize was used in the trials. Weeding was done at weekly intervals from germination up to the sixth week in an additive weed removal system and plots maintained weed free afterwards. A weedy and a weed free plot were used as checks. Data on plant counts plant heights, weed biomass, weed identification and maize grain yield at 15 % MC were all recorded. There was a significant difference between weed and weedy free plots for grain yield, plant height and weed biomass for both sites. A 53% maize grain yield reduction due to weed competition was recorded. A 3% grain yield reduction equivalent to 1.03 bags for every week's delay in weeding after the first to weeks was realised for both sites. There was a corresponding grain yield loss as delay in weeding increased

  5. Inheritance of Grain Yield in a Half-Diallel Maize Population

    ÜNAY, Aydın; BASAL, Hüseyin; KONAK, Cahit

    2004-01-01

    Inheritance of grain yield, heterosis and combining ability were investigated in maize populations obtained from half-diallel crossing among 9 inbred parental lines. General and specific combining ability effects were significantly different among parental lines. The grain yield was under the dominance gene effect. The parents W 552 and DNB were considered suitable according to their yield capacities and general combining ability effects. The midparent heterosis values ranged from 46.10% (H.9...

  6. Genetic Diversity and Correlation for Grain Yield and Quality Traits in Local Maize (Zea mays L.)

    Sali ALIU; Imer RUSINOVCI; FETAHU, Shukri; Rozman, Ludvik

    2012-01-01

    The aim of the study was to estimate the genetic diversity and correlation analysis among yield and quality traits in 20 local maize populations. The study of variation included the quantity of grain yield, and quality traits such as protein, oil and starch content in grain. Results showed that there were significant differences among the populations. The mean grain yield of all populations was 79.33 g plant-1 and the highest in �GBK-7� (105.13 g plant-1). Protein and oil contents ranged betw...

  7. Grain Yield and Quality of Semiflint Maize Hybrids at Two Sowing Dates

    Damir Fabijanac

    2006-06-01

    Full Text Available Hybrid selection has an important infl uence on specifi c end-use of maize (Zea mays L. grain. Field experiments were conducted to evaluate the grain yield and quality of four recently released (1999-2002 maize hybrids compared to a check hybrid Bc 462 released in 1982. All hybrids were of semifl int type, that belong to the various maturity groups (FAO 200-400. Hybrids were grown over two years at the optimum (around 1 May and delayed (about two weeks later sowing dates. Grain yields were signifi cantly higher in the growing season of 2004 averaging 7247 kg ha-1 compared to 6114 kg ha-1 in 2003. Larger grain yields in 2004 were primarily associated with the heavier 1000-kernel weights. Grain protein and oil contents did not vary across two years and averaged 112 and 43.4 g kg-1, respectively. Hybrids signifi cantly diff ered in grain yield, yield components and grain quality traits. A new, longer-maturity hybrid Zlatko produced the largest grain yields, which were by 22 % higher than those of the lowest yielding Tvrtko 303, a shorter-season hybrid. Sowing date did not aff ect grain yield and protein content in any of the tested hybrids, but all hybrids tended to have slightly, yet signifi cantly lower oil content with delayed sowing date. A full-season check hybrid Bc 462 had signifi cantly higher grain protein and oil content than all recently released hybrids, which did not diff er among themselves for those quality traits. However, Bc 462 produced signifi cantly smaller protein, oil and starch yield per hectare than Zlatko because of lower grain yields for the former. Positive correlation existed between grain protein and oil content among tested hybrids, whereas these quality traits negatively correlated with grain yield and starch content. Th us, end-users that require high grain quality maize may need to provide incentives to growers to off set the negative correlation of grain yield with protein and oil content.

  8. Grain Yield and Quality of Semiflint Maize Hybrids at Two Sowing Dates

    Darko Grbeša

    2006-10-01

    Full Text Available Hybrid selection has an important infl uence on specifi c end-use of maize (Zea mays L. grain. Field experiments were conducted to evaluate the grain yield and quality of four recently released (1999-2002 maize hybrids compared to a check hybrid Bc 462 released in 1982. All hybrids were of semifl int type, that belong to the various maturity groups (FAO 200-400. Hybrids were grown over two years at the optimum (around 1 May and delayed (about two weeks later sowing dates. Grain yields were signifi cantly higher in the growing season of 2004 averaging 7247 kg ha-1 compared to 6114 kg ha-1 in 2003. Larger grain yields in 2004 were primarily associated with the heavier 1000-kernel weights. Grain protein and oil contents did not vary across two years and averaged 112 and 43.4 g kg-1, respectively. Hybrids signifi cantly diff ered in grain yield, yield components and grain quality traits. A new, longer-maturity hybrid Zlatko produced the largest grain yields, which were by 22 % higher than those of the lowest yielding Tvrtko 303, a shorter-season hybrid. Sowing date did not aff ect grain yield and protein content in any of the tested hybrids, but all hybrids tended to have slightly, yet signifi cantly lower oil content with delayed sowing date. A full-season check hybrid Bc 462 had signifi cantly higher grain protein and oil content than all recently released hybrids, which did not diff er among themselves for those quality traits. However, Bc 462 produced signifi cantly smaller protein, oil and starch yield per hectare than Zlatko because of lower grain yields for the former. Positive correlation existed between grain protein and oil content among tested hybrids, whereas these quality traits negatively correlated with grain yield and starch content. Th us, end-users that require high grain quality maize may need to provide incentives to growers to off set the negative correlation of grain yield with protein and oil content.

  9. Influence of row spacing reduction on maize grain yield in regions with a short summer

    Sangoi Luís; Ender Márcio; Guidolin Altamir Frederico; Almeida Milton Luiz de; Heberle Pedro Canísio

    2001-01-01

    The interest in reducing maize row spacing in the short growing season regions of Brazil is increasing due to potential advantages such as higher radiation use efficiency. This experiment was conducted to evaluate the effect of row spacing reduction on grain yield of different maize cultivars planted at different dates. The trial was conducted in Lages, in the State of Santa Catarina, Brazil, during 1996/97 and 1997/98 growing seasons, in a split-split plot design. Early (October 1st) and nor...

  10. Sowing date effects on grain yield components for different maize genotypes

    Shoot dry weight of maize (Zea mays L.) depends on the amount of photosynthetically active radiation intercepted by the crop (IPAR). The present work was conducted to analyze the variation in shoot dry weight production and its partitioning to reproductive sinks when seasonal changes of temperature and solar radiation occur during the growing cycle of the crop. Four commercial hybrids were grown at 8 plants m-2 on four sowing dates (20 Aug., 20 Sept., 20 Oct., and 20 Nov.) at Rojas (34 degrees 08'S, 60 degrees 59' W), Argentina, on a silty clay loam soil (Typic Argiudoll) during 1990-1991 and 1991-1992, with no water or nutrient restrictions. Shoot dry weight at physiological maturity was associated with the amount of IPAR, with radiation use efficiency before silking (4.14 g MJ-1) higher than after silking (2.45 g MJ-1). Grain yield was correlated with shoot dry weight at physiological maturity, resulting in a stable (0.46 +/- 0.02) harvest index. Shoot dry weight at silking showed a significant relationship with final grain number (r2 = 0.52, n = 32) as well as with grain yield (r2 = 0.55, n = 32). Ear dry weight at silking was associated with grain yield particularly for prolific hybrids (r2 = 0.64, n = 16). Provided postsilking conditions do not limit assimilate supply to the grains, shoot dry weight at silking could be considered a good grain yield predictor. In temperate regions, maize potential productivity seems to be more limited by the amount of solar radiation available around silking (determinant of grain set) than during grain filling (determinant of grain weight). Early and intermediate sowings tend to best utilize solar radiation for grain production

  11. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-watered Conditions

    Jill E.Cairns; Ciro Sanchez; Mateo Vargas; Raziel Ordo(n)ez; Jose Luis Araus

    2012-01-01

    To increase maize (Zea mays L.) yields in drought-prone environments and offset predicted maize yield losses under future climates,the development of improved breeding pipelines using a multi-disciplinary approach is essential.Elucidating key growth processes will provide opportunities to improve drought breeding progress through the identification of key phenotypic traits,ideotypes,and donors.In this study,we tested a large set of tropical and subtropical maize inbreds and single cross hybrids under reproductive stage drought stress and well-watered conditions.Patterns of biomass production,senescence,and plant water status were measured throughout the crop cycle.Under drought stress,early biomass production prior to anthesis was important for inbred yield,while delayed senescence was important for hybrid yield.Under well-watered conditions,the ability to maintain a high biomass throughout the growing cycle was crucial for inbred yield,while a stay-green pattern was important for hybrid yield.While new quantitative phenotyping tools such as spectral reflectance (Normalized Difference Vegetation Index,NDVI) allowed for the characterization of growth and senescence patterns as well as yield,qualitative measurements of canopy senescence were also found to be associated with grain yield.

  12. Influence of tillage practices and poultry manure on grain physical properties and yield attributes of spring maize (zea mays l.)

    Grains are the economical part of maize that demand proper management practices to achieve the crop potential. This study explored the influence of different tillage practices and poultry manure levels on the grain length, breadth, area, grains weight per cob and grain yield per m 2 of spring planted maize. The experiment was set up using Randomized Complete Block Design (RCBD) with split plot arrangement having four tillage practices as main plot treatments; zero tillage, minimum tillage, conventional tillage and deep tillage. Sub plot treatments were three poultry manure levels; control (no poultry manure), poultry manure at the rate 5 Mg ha/sup -1/and poultry manure at the rate 10 Mg ha/sup -1/. Data indicated that the deep tillage practice significantly improved (p>0.05) the length, breath and area of maize grains over the other tillage practices in both years of study. Significantly higher grain yield was produced in deep tillage practice as compared to conventional, minimum and zero tillage practices. Increasing order of poultry manure dose treatments produced the bold and healthy seeds over the control treatment. A positive correlation between grain yield per m/sup 2/ vs physical properties of maize grain and grains weight per cob was recorded. The study concludes that the productive effect of integrated use of poultry manure and chemical fertilizers application on the maize grain yield. (author)

  13. The plus-hybrid effect on the grain yield of two ZP maize hybrids

    Božinović Sofija

    2010-01-01

    Full Text Available The combined effect of cytoplasmic male sterility and xenia on maize hybrid traits is referred to as the plus-hybrid effect. Two studied ZP hybrids differently responded to this effect for grain yield. All plus-hybrid combinations of the firstly observed hybrid had a higher yield than their fertile counterparts, but not significantly, while only one combination of the second hybrid positively responded, also without statistical significance. It seems that the observed effect mostly depended on the genotype of the female component.

  14. The Effects of Weeding Regimes and Maize Planting Density on Quantity of Management and Grain Yields

    The effect of four weeding regimes: weed free, herbicide use, two times hand cultivation at week three and eight after emergency and any two planting densities: Low planting density of 10 plants per m2, high planting density of 21 plants per m2 were evaluated on maize H511. A 4x2 factorial blocked design was used. Thinning done at 112 DAP interaction effect was not significant; weeding regime was significant while planting density was highly significant. Herbicide use regime had highest mean dry matter yield of thinnings of 13.82 t/ha. High planting density showed the highest mean dry matter yield of thinning of 15.2 t/ha while low planting density showed the lowest of 8.7 t/ha. The treatment interaction on stover dry matter was not significant, while planting density and weeding regimes were significant. Two times hand cultivation gave the highest stover dry matter forage yield of 19.4 t/ha while weedy regime gave the least yield of 10.2t/ha. Low planting density which gave 11.1 t/ha. Hand cultivation-2 times had the highest grain dry matter yield of 5.03t/ha, while weedy regime had the least of 1.93t/ha. Low planting density had the highest grain dry matter yield of 4.9t/ha, while high planting density had the least yield of 2.4t/ha

  15. Effect of Seed Distribution and Population on Maize (Zea mays L. Grain Yield

    Bee Khim Chim

    2014-01-01

    Full Text Available Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI, intercepted photosynthetically active radiation (IPAR, grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1 (range: 0.33 to 2.46 Mg ha−1 when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.

  16. Genetic Diversity and Correlation for Grain Yield and Quality Traits in Local Maize (Zea mays L.

    Sali ALIU

    2012-08-01

    Full Text Available The aim of the study was to estimate the genetic diversity and correlation analysis among yield and quality traits in 20 local maize populations. The study of variation included the quantity of grain yield, and quality traits such as protein, oil and starch content in grain. Results showed that there were significant differences among the populations. The mean grain yield of all populations was 79.33 g plant-1 and the highest in �GBK-7� (105.13 g plant-1. Protein and oil contents ranged between 11.02 to 13.02% and 2.56 to 5.57%, respectively and starch content varied from 68.58 to 70.92%. First two canonical discriminant functions were significant and the relevance of the first two discriminant functions justifying 95.80% variability among populations. There were also big differences regarding phenotypic correlations. Study suggests that the quality traits are phenotypically and genotypically highly variable and therefore very useful for breeding program.

  17. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  18. Effects of Intercropping forage Legumes and Maize Grain and Forage Yield in the Upper Midland Zone 1 and 4 (UM1 and 4) of Kenya

    Intercropping forage legumes and cereal crops could assist smallholder farmers to increase the quantity and quality of livestock feeds per unit land particularly during dry season. Two studies were carried out in the upper midland zone (UM1) at Kisii (UM4) at Kitale to asses the effects of intercropping forage legumes and maize on maize grain yield and quantity of livestock feeds. In the first study, five annual/biannual legumes comprising of three- grain type and two herbaceous forage legumes were intercropped with maize at Kisii and Kitale. The second study involved three perennial forage legumes. Results of two cropping seasons at Kitale and three seasons in Kisii are reported.. Intercropping of grain type legume with maize had no significant effects on maize grain yield and stover DM yield at both sites.However, the herbaceous forage legumes (Dolichos lablab cv. Rongai and Macuma pururiens) significantly reduced maize grain yield compared to maize top dressed with 60 kg N ha-1 although maize stover and legume DM yields were not significantly affected. Total forage yields (maize stover + legume herbage) were significantly increased in forage legume intercrops (P -1. The results demonstrate that increased quantity and quality of dairy cattle feed may be achieved by intercropping forage legumes and maize although it may cause some reduction in maize yield. Practical implications of this technology in terms of economic evaluation are discussed significantly reduced maize grain yield. Decreases in maize green yield were associated with legume herbage yields above 3 t ha-1. The results demonstrate that increased quantity and quality of dairy cattle feed may be achieved by intercropping forage legumes and maize although it may cause reduction in maize yield. Practical implications of this technology in terms of economic evaluation are discussed

  19. Identification of QTL for maize grain yield and kernel-related traits.

    Yang, Cong; Zhang, Lei; Jia, Aimin; Rong, Tingzhao

    2016-06-01

    Grain yield (GY) is one of the most important and complex quantitative traits in maize (Zea mays L.) breeding practice. Quantitative trait loci (QTLs) for GY and three kernel-related traits were detected in a set of recombinant inbred lines (RILs). One hundred and seven simple sequence repeats (SSRs) and 168 insertion/deletion polymorphism markers (Indels) were used to genotype RILs. Eight QTLs were found to be associated with four yield-related traits: GY, 100-kernel weight (HKW), 10-kernel length (KL), and 10-kernel length width (KW). Each QTL explained between 5.96 (qKL2-1) and 13.05 (qKL1-1) per cent of the phenotypic variance. Notably, one common QTL, located at the marker interval between bnlg1893 and chr2- 236477 (chromosomal bin 2.09) simultaneously controlled GY and HKW; another common QTL, at bin 2.03 was simultaneously responsible for HKW and KW. Of the QTLs identified, only one pair of significant epistatic interaction involved in chromosomal region at bin 2.03 was detected for HKW; no significant QTL × environment interactions were observed. These results provide the common QTLs and for marker-assisted breeding. PMID:27350665

  20. Identification of QTL for maize grain yield and kernel-related traits

    CONG YANG; LEI ZHANG; AIMIN JIA; TINGZHAO RONG

    2016-06-01

    Grain yield (GY) is one of the most important and complex quantitative traits in maize (Zea maysL.) breeding practice.Quantitative trait loci (QTLs) for GY and three kernel-related traits were detected in a set of recombinant inbred lines (RILs).One hundred and seven simple sequence repeats (SSRs) and 168 insertion/deletion polymorphism markers (Indels) were usedto genotype RILs. Eight QTLs were found to be associated with four yield-related traits: GY, 100-kernel weight (HKW),10-kernel length (KL), and 10-kernel length width (KW). Each QTL explained between 5.96 (qKL2-1) and 13.05 (qKL1-1)per cent of the phenotypic variance. Notably, one common QTL, located at the marker interval betweenbnlg1893andchr2-236477(chromosomal bin 2.09) simultaneously controlled GY and HKW; another common QTL, at bin 2.03 was simulta-neously responsible for HKW and KW. Of the QTLs identified, only one pair of significant epistatic interaction involved inchromosomal region at bin 2.03 was detected for HKW; no significant QTL ×environment interactions were observed. Theseresults provide the common QTLs and for marker-assisted breeding

  1. Effects of shading on spike differentiation and grain yield formation of summer maize in the field

    Cui, Haiyan; Camberato, James J.; Jin, Libin; Zhang, Jiwang

    2015-09-01

    A field experiment was conducted to study the effects of shading on tassel and ear development and yield formation of three summer maize hybrids Zhenjie 2 (ZJ2), Denghai 605 (DH605), and Zhengdan 958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking stage (R1) to physiological maturity stage (R6) (treatment S1), from the sixth extended leaf stage (V6) to R1 (treatment S2) and from seeding to R6 (treatment S3). Shading had no significant effect on the time from seeding to shoot emergence (VE); however, subsequent growth and development were delayed with shading beyond this point. The differentiation time of both tassel and ear delayed, and female spike (tassel) floret differentiation, sexual organ formation time, and anthesis-silking interval (ASI) were lengthened. After shading, the total number of floret, silk, and fertilization floret reduced significantly; the number of abortive seeds increased, and the total setting percentage among different treatments showed that CK>S2>S1>S3; and the total setting percentages in S1, S2, and S3 of ZD958 were 44, 72, and 15 % respectively. The total floret number of tassel primordium differentiation, fertility rate, and seed setting rate of florets in S3 treatment was the minimum; kernels per ear decreased seriously and single ear setting percentage was only 16 %; although floret degeneration number of S2 during ear differentiation stages increased and floret fertility rate reduced than that of CK, fertilization flower seed production increased and abortive seed decreased after canceling shading. Aborted kernel of S1 increased and kernel dry weight reduced, resulting in a significant decrease of kernel number per ear and kernel weight, and the grain abortive rate of 40-62 %. In conclusion, shading changed the growth and development process and caused infertility of tassel and ear; tassel branches decreased

  2. Multivariate Analysis of Grain Yield and Its Attributing Traits in Different Maize Hybrids Grown under Heat and Drought Stress.

    Ali, Fawad; Kanwal, Naila; Ahsan, Muhammmad; Ali, Qurban; Bibi, Irshad; Niazi, Nabeel Khan

    2015-01-01

    This study was carried out to evaluate F1 single cross-maize hybrids in four crop growing seasons (2010-2012). Morphological traits and physiological parameters of twelve maize hybrids were evaluated (i) to construct seed yield equation and (ii) to determine grain yield attributing traits of well-performing maize genotype using a previously unexplored method of two-way hierarchical clustering. In seed yield predicting equation photosynthetic rate contributed the highest variation (46%). Principal component analysis data showed that investigated traits contributed up to 90.55% variation in dependent structure. From factor analysis, we found that factor 1 contributed 49.6% variation (P stomata conductance, substomata CO2 absorption rate, and photosynthetic rate). The results of two-way hierarchical clustering demonstrated that Cluster III had outperforming genotype H12 (Sultan × Soneri) along with its most closely related traits (photosynthetic rate, stomata conductance, substomata CO2 absorption rate, chlorophyll contents, leaf area, and fresh stem weight). Our data shows that H12 (Sultan × Soneri) possessed the highest grain yield per plant under environmentally stress conditions, which are most likely to exist in arid and semiarid climatic conditions, such as in Pakistan. PMID:26798554

  3. Multivariate Analysis of Grain Yield and Its Attributing Traits in Different Maize Hybrids Grown under Heat and Drought Stress

    Fawad Ali

    2015-01-01

    Full Text Available This study was carried out to evaluate F1 single cross-maize hybrids in four crop growing seasons (2010–2012. Morphological traits and physiological parameters of twelve maize hybrids were evaluated (i to construct seed yield equation and (ii to determine grain yield attributing traits of well-performing maize genotype using a previously unexplored method of two-way hierarchical clustering. In seed yield predicting equation photosynthetic rate contributed the highest variation (46%. Principal component analysis data showed that investigated traits contributed up to 90.55% variation in dependent structure. From factor analysis, we found that factor 1 contributed 49.6% variation (P<0.05 with primary important traits (i.e., number of leaves per plant, plant height, stem diameter, fresh leaves weight, leaf area, stomata conductance, substomata CO2 absorption rate, and photosynthetic rate. The results of two-way hierarchical clustering demonstrated that Cluster III had outperforming genotype H12 (Sultan × Soneri along with its most closely related traits (photosynthetic rate, stomata conductance, substomata CO2 absorption rate, chlorophyll contents, leaf area, and fresh stem weight. Our data shows that H12 (Sultan × Soneri possessed the highest grain yield per plant under environmentally stress conditions, which are most likely to exist in arid and semiarid climatic conditions, such as in Pakistan.

  4. Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups

    Dragan Djurovic

    2014-12-01

    Full Text Available An objective evaluation of maize hybrids in intensive cropping systems requires identification not only of yield components and other agronomically important traits but also of stability parameters. Grain yield and its components were assessed in 11 maize hybrids with different lengths of growing season (FAO 300-700 maturity groups using analysis of variance and regression analysis at three different locations in Western Serbia. The test hybrids and locations showed significant differences in grain yield, grain moisture content at maturity, 1,000-kernel weight and ear length. A significant interaction was observed between all traits and the environment. The hybrids with higher mean values of the traits, regardless of maturity group, generally exhibited sensitivity i.e. adaptation to more favourable environmental conditions as compared to those having lower mean values. Regression coefficient (bi values for grain yield mostly suggested no significant differences relative to the mean. The medium-season hybrid gave high yields and less favourable values of stability parameters at most locations and in most years, as compared to mediumlate hybrids. As compared to medium-early hybrids, medium-late hybrids (FAO 600 and 700 mostly exhibited unfavourable values of stability parameters i.e. a specific response and better adaptation to favourable environmental conditions, and gave higher average yields. Apart from producing lower average yields, FAO 300 and 400 hybrids showed higher yield stability as compared to the other hybrids tested. Medium-late hybrids had higher yields and showed a better response to favourable environmental conditions compared to early-maturing hybrids. Therefore, they can be recommended for intensive cultural practices and low-stress environments. Due to their more favourable stability parameter values, medium-early hybrids can be recommended for low-intensity cultural practices and stressful environments.

  5. Effect of Microelements and Selenium on Superoxide Dismutase Enzyme, Malondialdehyde Activity and Grain Yield Maize (Zea mays L.

    Masoud MASHHADIAKBAR BUJAR

    2011-11-01

    Full Text Available This study was carried out to investigate effects of microelements under water deficit stress at different growth stages on antioxidant enzyme alteration, chemical biomarker and grain yield of maize in the years 2007 and 2008. The experiment was conducted in a split plot factorial based on a randomized complete block design with four replications. There were three factors, water deficit stress at different stages of growth as main plot and combinations of selenium (with and without using and microelements (with and without using as sub plots. The result indicated that the activity of superoxide dismutase and malondialdehyde content under water deficit stress increased, but grain yield was reduced. The highest grain yield was obtained from optimum irrigation, while in the case of with water deficit stress at V8 stage it was non significant. Selenium spray increased activity of superoxide dismutase enzyme, malondialdehyde content of leaves in V8, R2 and R4 stages and also grain yield. Application of microelements increased the leaves superoxide dismutase enzyme activity and malondialdehyde content. Selenium and microelements spray under water deficit stress conditions during vegetative growth and dough stage increased grain yield in comparison to not spraying elements under water stress conditions. The present results also showed that by using selenium and microelements under water stress can obtain acceptable yield compared to not using these elements.

  6. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    Lovince Asimwe; Abiliza Kimambo; Germana Laswai; Louis Mtenga; Martin Weisbjerg; Jorgen Madsen; John Safari

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary treatments namely hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and maize meal with molasses (MMMO). Ad ...

  7. Impacts of irrigation and genotype on yield, protein, starch and oil contents in grain of maize inbred lines

    Josipovic Marko

    2014-01-01

    Full Text Available Four inbred lines of maize (Os 438-95 = C1, Os 30-8 = C2, Os 6 = C3 and Os 1-44 =C4 were grown for 4-year period (2006-2009 in the stationary field experiment on Osijek eutric cambisol. Impact of irrigation, nitrogen fertilization and genotype were tested. Soil moisture was maintained by two irrigation rates from 60-100% and 80-100% of the field water capacity. Two steps of N (0, 100 and 200 kg N ha-1 were applied, while P and K fertilization was equal (500 kg/ha NPK 0:30:20. Eight maize genotypes (four inbred lines and four hybrids were grown on each basic plot of fertilization. The experiment was duplicated for maize - soybean rotation. The experiment was set by split-split plot method according to randomized block design in three replicates. The basic plot areas were 617.2 m2 (irrigation, 313.6 m2 (fertilization and 39.2 m2 (genotype. Selection of N non-fertilized treatment and four inbred lines were made for this study with aim of testing year (A irrigation (B and genotype (C effects under natural N-soil conditions. Average grain yield in level 1809 kg ha-1without N fertilization is indication of very high fertility of the soil. Differences of yield among the years were from 823 (2007 to 2450 (2006 kg ha-1. Excessive drought and high air-temperature stress is responsible for the low maize yield in 2007. Irrigation considerable affected on maize yields (4-year averages: 1500, 1809 and 2118 kg ha-1, for B1, B2 and B3, respectively. Differences of the 4-year average yields among the genotypes were from 1259 (C3 to 2765 (C1 kg ha-1. Differences of yield among the genotypes in the different years were also considerable because the lowest yield was for 71% (A1, 23% (A2, 63% (A3 and 40% (A4 lower in comparison to the highest yield. The genotype effects under different water supplies were less influencing factor because the high-yielding C1 had for 128%, 129% and 106% the higher yield compared to the low-yielding C3, for B1, B2 and B3, respectively

  8. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL.

    Schrag, T A; Melchinger, A E; Sørensen, A P; Frisch, M

    2006-10-01

    Prediction methods to identify single-cross hybrids with superior yield performance have the potential to greatly improve the efficiency of commercial maize (Zea mays L.) hybrid breeding programs. Our objectives were to (1) identify marker loci associated with quantitative trait loci for hybrid performance or specific combining ability (SCA) in maize, (2) compare hybrid performance prediction by genotypic value estimates with that based on general combining ability (GCA) estimates, and (3) investigate a newly proposed combination of the GCA model with SCA predictions from genotypic value estimates. A total of 270 hybrids was evaluated for grain yield and grain dry matter content in four Dent x Flint factorial mating experiments, their parental inbred lines were genotyped with 20 AFLP primer-enzyme combinations. Markers associated significantly with hybrid performance and SCA were identified, genotypic values and SCA effects were estimated, and four hybrid performance prediction approaches were evaluated. For grain yield, between 38 and 98 significant markers were identified for hybrid performance and between zero and five for SCA. Estimates of prediction efficiency (R (2)) ranged from 0.46 to 0.86 for grain yield and from 0.59 to 0.96 for grain dry matter content. Models enhancing the GCA approach with SCA estimates resulted in the highest prediction efficiency if the SCA to GCA ratio was high. We conclude that it is advantageous for prediction of single-cross hybrids to enhance a GCA-based model with SCA effects estimated from molecular marker data, if SCA variances are of similar or larger importance as GCA variances. PMID:16896712

  9. Effect of presowing gamma irradiation of seeds on the growth, development and yield of maize grain and green mass

    The experiment was carried out during the 1982-1983 period with maize hybrids Px-20, Kn-611 and H-708 irradiated with 500, 1000, 1500, 2000 and 3000 R. Gamma irradiation of the seeds had no unidirectional effect on the germinative power, laboratory and field germinating ability, volume of the root system (up to day 20 after germination), height of plants and cobbing, structural elements of the cobs and plants. Presowing seed germination with the three hybrids did not increase the grain yield neither that of the green mass and the dry matter. Under 500 R irradiation of the H-708 hybrid a reliable difference in the green mass yield was obtained only in 1982. 2 tabs., 8 refs

  10. Changes in Grain Yield of Rice and Emission of Greenhouse Gases from Paddy Fields after Application of Organic Fertilizers Made from Maize Straw

    MA Yi-hu; GU Dao-jian; LIU Li-jun; WANG Zhi-qin; ZHANG Hao; YANG Jian-chang

    2014-01-01

    A field experiment was conducted at the farm of Yangzhou University, Yangzhou, China, to study the effects of organic fertilizers made from maize straw on rice grain yield and the emission of greenhouse gases. Four organic fertilizer treatments were as follows:maize straw (MS), compost made from maize straw (MC), methane-generating maize residue (MR), and black carbon made from maize straw (BC). These organic fertilizers were applied separately to paddy fields before rice transplanting. No organic fertilizer was applied to the control (CK). The effects of each organic fertilizer on rice grain yield and emission of greenhouse gases were investigated under two conditions, namely, no nitrogen (N) application (0N) and site-specific N management (SSNM). Rice grain yields were significantly higher in the MS, MC and MR treatments than those in CK under either 0N or SSNM. The MS treatment resulted in the highest grain yield and agronomic N use efficiency. However, no significant difference was observed for these parameters between the BC treatment and CK. The changes in the emissions of methane (CH4), carbon dioxide (CO2), or nitrous oxide (N2O) from the fields were similar among all organic fertilizer treatments during the entire rice growing season. The application of each organic fertilizer significantly increased the emission of each greenhouse gas (except N2O emission in the BC treatment) and global warming potential (GWP). Emissions of all the greenhouse gases and GWP increased under the same organic fertilizer treatment in the presence of N fertilizer, whereas GWP per unit grain yield decreased. The results indicate that the application of organic fertilizer (MS, MC or MR) could increase grain yield, but also could enhance the emissions of greenhouse gases from paddy fields. High grain yield and environmental efficiency could be achieved by applying SSNM with MR.

  11. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield

    Maria Anita Gonçalves da Silva

    2011-08-01

    Full Text Available The study was carried out for two years in maize in succession to the wheat using no tillage system in a distroferric Red Latosol (Hapludox. Methods of management nitrogen fertilizer (120 kg ha-1 with ammonium sulphate were studied; the fertilizer was applied in maize sowing or in maize topdressing, and N with previous application in wheat sowing. In addition, leaf chlorophyll reading was used as an indicator for the need for topdressed nitrogen fertilizer. Nitrogen supply index (NSI was shown to be effective at predicting need for topdressed nitrogen fertilizer for maize. The application of N improved the yield of the maize independent of the management system. The flowering stage was carried out at the appropriate time in order to estimate the nitrogen nutrition state and yield of maize using the relative chlorophyll level (RIC.

  12. [Effects of controlled-release fertilizers on summer maize grain yield, field ammonia volatilization, and fertilizer nitrogen use efficiency].

    Zhao, Bin; Dong, Shu-Ting; Wang, Kong-Jun; Zhang, Ji-Wang; Liu, Peng

    2009-11-01

    A field experiment with colophony-coated fertilizer (CRF) and sulfur-coated fertilizer (SCF) showed that under the same application rates of N, P and K, applying CRF and SCF increased the summer maize grain yield by 13.15% and 14.15%, respectively, compared to the application of common compound fertilizer CCF. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively; and when the applied amount of CRF and SCF was decreased by 50%, the yield had less difference with that under CCF application. The field ammonia volatilization rate in treatments CRF and SCF increased slowly, with a peak appeared 7 days later than that in treatment CCF, and the total amount of ammonia volatilization in treatments CRF and SCF was ranged from 0.78 kg N x hm(-2) to 4.43 kg N x hm(-2), with a decrement of 51.34%-91.34% compared to that in treatment CCF. The fertilizer nitrogen use efficiency and agronomic nitrogen use efficiency of CRF and SCF were also significantly higher than those of CCF. PMID:20136000

  13. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  14. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield.

    Schrag, Tobias A; Maurer, Hans Peter; Melchinger, Albrecht E; Piepho, Hans-Peter; Peleman, Johan; Frisch, Matthias

    2007-05-01

    Marker-based prediction of hybrid performance facilitates the identification of untested single-cross hybrids with superior yield performance. Our objectives were to (1) determine the haplotype block structure of experimental germplasm from a hybrid maize breeding program, (2) develop models for hybrid performance prediction based on haplotype blocks, and (3) compare hybrid performance prediction based on haplotype blocks with other approaches, based on single AFLP markers or general combining ability (GCA), under a validation scenario relevant for practical breeding. In total, 270 hybrids were evaluated for grain yield in four Dent x Flint factorial mating experiments. Their parental inbred lines were genotyped with 20 AFLP primer-enzyme combinations. Adjacent marker loci were combined into haplotype blocks. Hybrid performance was predicted on basis of single marker loci and haplotype blocks. Prediction based on variable haplotype block length resulted in an improved prediction of hybrid performance compared with the use of single AFLP markers. Estimates of prediction efficiency (R(2)) ranged from 0.305 to 0.889 for marker-based prediction and from 0.465 to 0.898 for GCA-based prediction. For inter-group hybrids with predominance of general over specific combining ability, the hybrid prediction from GCA effects was efficient in identifying promising hybrids. Considering the advantage of haplotype block approaches over single marker approaches for the prediction of inter-group hybrids, we see a high potential to substantially improve the efficiency of hybrid breeding programs. PMID:17323040

  15. Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China

    BAI Jin-shun; CAO Wei-dong; XIONG Jing; ZENG Nao-hua; GAO Song-juan; Shimizu Katsuyoshi

    2015-01-01

    The development of more efifcient management systems is crucial to achieving high grain yields with high nitrogen use efifciency (NUE). February Orchid-spring maize rotation system is a newly established planting system with the beneifts of ground cover and potential wind erosion in northern China. A ifeld experiment was conducted to evaluate the effects of integrated application of February Orchid as green manure with reduction of chemical fertilizers (INTEGRATED) on spring maize yield, N uptake, ammonium volatilization, and soil residual mineral N in northern China. Compared to farmers’ traditional fertilization (CON), integrated application of February Orchid as green manure with 30% reduction of nitrogen fertilizers (INTEGRATED) increased maize grain yield and biomass by 9.9 and 10.2%, respectively. The 0–100 cm soil residual Nmin at harvest was decreased by 58.5% and thus nitrogen use efifciency was increased signiifcantly by 26.7%. The nitrogen balance calculation further demonstrated that the INTEGRATED approach performed better than CON with lower apparent nitrogen loss (decreased by 48.9%) which evidenced by the ammonium volatilization of top-dressing fertilizer was decreased by 31.1%, the Nmin movement to the deeper soil layers was reduced, and the apparent nitrogen leaching loss nearly equal to 0 under the INTEGRATED treatment. Therefore, in northern China, integrated application of green manure and chemical fertilizers is an efifcient management approach for improving maize yields and NUE simultaneously.

  16. The Effect of Rainfall Characteristics and Tillage on Sheet Erosion and Maize Grain Yield in Semiarid Conditions and Granitic Sandy Soils of Zimbabwe

    Adelaide Munodawafa

    2012-01-01

    In semiarid regions, rainfall is one of the primary factors affecting soil erosion and crop production under rain-fed agriculture. The study sought to quantify the effect of rainfall characteristics on sheet erosion and maize grain yield under different tillage systems. It was carried out under semiarid conditions and infertile sandy soils of Zimbabwe. Rainfall amount and intensity were recorded every 24 hours, while sheet erosion was measured from four tillage systems (Conventional Tillage (...

  17. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield.

    Obata, Toshihiro; Witt, Sandra; Lisec, Jan; Palacios-Rojas, Natalia; Florez-Sarasa, Igor; Yousfi, Salima; Araus, Jose Luis; Cairns, Jill E; Fernie, Alisdair R

    2015-12-01

    The development of abiotic stress-resistant cultivars is of premium importance for the agriculture of developing countries. Further progress in maize (Zea mays) performance under stresses is expected by combining marker-assisted breeding with metabolite markers. In order to dissect metabolic responses and to identify promising metabolite marker candidates, metabolite profiles of maize leaves were analyzed and compared with grain yield in field trials. Plants were grown under well-watered conditions (control) or exposed to drought, heat, and both stresses simultaneously. Trials were conducted in 2010 and 2011 using 10 tropical hybrids selected to exhibit diverse abiotic stress tolerance. Drought stress evoked the accumulation of many amino acids, including isoleucine, valine, threonine, and 4-aminobutanoate, which has been commonly reported in both field and greenhouse experiments in many plant species. Two photorespiratory amino acids, glycine and serine, and myoinositol also accumulated under drought. The combination of drought and heat evoked relatively few specific responses, and most of the metabolic changes were predictable from the sum of the responses to individual stresses. Statistical analysis revealed significant correlation between levels of glycine and myoinositol and grain yield under drought. Levels of myoinositol in control conditions were also related to grain yield under drought. Furthermore, multiple linear regression models very well explained the variation of grain yield via the combination of several metabolites. These results indicate the importance of photorespiration and raffinose family oligosaccharide metabolism in grain yield under drought and suggest single or multiple metabolites as potential metabolic markers for the breeding of abiotic stress-tolerant maize. PMID:26424159

  18. Effect of coated urea and non-coated urea on grain yield, N uptake and N distribution in different parts of maize

    In order to regulate nitrogen metabolism with nitrogen application rate and to increase nitrogen use efficiency, an isotopic method was used to compare grain yield, biomass and nitrogen use efficiency of coated urea (CU) to those of non-coated urea (U) at the N application rates of 0, 100, 150 and 225 kg/hm2. Results showed that CU significantly increased maize N uptake from 15N fertilizer and aboveground biomass. The nitrogen use efficiency (15NUE) of CU was 13.3-21.4% greater than that of U. There was a significant different of fertilizer 15N uptake between CU and U in maize parts. And N uptake of CU treatment followed the order of seed > leaves > straws > cob > husk, while N uptake of U treatment was in the order of seed > straws > leaves > cob > husk. The N uptake of maize parts by both CU and U followed the same order when non-isotopic method was applied. No significant variations were observed among treatments in N uptake, Nitrogen Harvest Index and grain yield. The reason maybe that low soil temperatures (< 10 ℃) from the fourth week of October to next April reduced N uptake of winter wheat, therefore, residual NO3-N in cultivated soil layer was high after harvest. Thus, maize N uptake was more dependent on the shoot growth potential than fertilizer amount and types under high amount of available nitrogen. (authors)

  19. Assessment of strip tillage systems for maize production in semi-arid Ethiopia: effects on grain yield and water balance

    M. Temesgen

    2007-07-01

    Full Text Available The traditional tillage implement, the Maresha plow, and the tillage systems that require repeated and cross plowing have caused poor rainfall partitioning, land degradation and hence low water productivity in Ethiopia. Conservation tillage could alleviate these problems. However, no-till can not be feasible for smallholder farmers in semi-arid regions of Ethiopia because of difficulties in maintaining soil cover due to low rainfall and communal grazing and because of high costs of herbicides. Strip tillage systems may offer a solution. This study was initiated to test strip tillage systems using implements that were modified forms of the Maresha plow, and to evaluate the impacts of the new tillage systems on water balance and grain yields of maize (Zea mays XX. Experiments were conducted in two dry semi arid areas called Melkawoba and Wulinchity, in the central Rift Valley of Ethiopia during 2003–2005. Strip tillage systems that involved cultivating planting lines at a spacing of 0.75 m using the Maresha plow followed by subsoiling along the same lines (STS and without subsoiling (ST were compared with the traditional tillage system of 3 to 4 times plowing with the Maresha plow (CONV. Soil moisture was monitored to a depth of 1.8 m using Time Domain Reflectometer while surface runoff was measured using rectangular trough installed at the bottom of each plot. STS resulted in the least surface runoff (Qs=17 mm-season−1, the highest transpiration (T=196 mm-season−1, the highest grain yields (Y=2130 kg-ha−1 and the highest water productivity using total evaporation (WPET=0.67 kg-m−3 followed by ST (Qs=25 mm-season−1, T=178 mm-season−1, Y=1840 kg-ha−1, WPET=0.60 kg-m−3 and CONV (Qs=40 mm-season−1,T=158 mm

  20. Individual and combined (Plus-hybrid effect of cytoplasmic male sterility and xenia on maize grain yield

    Sofija Bozinovic

    2015-06-01

    Full Text Available Plus-hybrid effect refere to a combined effect of cytoplasmic male sterility (CMS and xenia in maize (Zea mays L. It could be used in commercial production by growing a mixture of 80% CMS hybrid and 20% of another fertile hybrid. The aim of this research was to examine individual and combined CMS and xenia effects on two hybrids widely grown in Serbia. Sterile and fertile versions of ZP 1 and ZP 2 hybrids (three-way; Iodent x Lancaster dents were used as females, while ZP 1, ZP 2, ZP 3, ZP 4, and ZP 5 (three-way or single cross; Iodent (BSSS x Lancaster dents were used as pollinators. All of them belong to medium maturity group. The trial was set up at one location in Serbia (Zemun Polje in 2009, 2010, and 2011. Molecular analysis of the five genotypes was done using simple sequence repeat (SSR primers. Plus-hybrid effect on grain yield ranged from -6.2% to 6.2%; on thousand kernel weight from -1.7% to 5.2%; on number of kernels per area from -1.0% to 8.0%. The poor response could be due to a use of three-way instead of single cross hybrids in S type of sterility. Modified Rogers' distance between hybrids was in the range 0.211 to 0.378 and was not relevant for the effect, which depended mostly on the sterile hybrid genotype and the fertile hybrid pollinator ability. This approach should be more suitable for female hybrids with slightly poorer performance, already being produced on a sterile base.

  1. Correlation and path analysis of grain yield and morphological traits in test-cross populations of maize

    One of the goals of this paper was to determine correlation between grain yield, like the most important agronomic trait, and traits of the plant and ear that are influencing on the grain yield, in two test-cross populations, which are formed by crossing progenies of NSU1 population after 17 cycles of phenotypic recurrent selection and two testers, 568/II NS and B73. At 568/II NS test crosses, grain yield had the highest value of genotypic coefficient of correlations with kernel row number. In second studied population the highest value of coefficient of correlations also was found between grain yield and kernel row number, but that relation was negative. Path coefficient analysis provides more information among variables than do correlation coefficients. Because of that goal of this study also was founding the direct and indirect effects of morphological traits on grain yield. Desirable, high significant influence on grain yield, in path coefficient analysis, was found for ear height, in both studied populations. Plant height, in both test cross populations, kernel row number and oil content, at B73 test crosses, has high significant undesirable effect on grain yield. (author)

  2. Effect of winter maize-based intercropping systems on maize yield, associated weeds and economic efficiency

    Akhilesh Mishra

    2014-02-01

    Full Text Available A field experiment was conducted during winter seasons of 2003-04 and 2004-05 at Kanpur, India to study the effect of winter maize (Zea mays L. based intercropping systems on maize yield, associated weeds and economics under irrigated condition of central Uttar Pradesh. Thirteen maize-based cropping systems such as maize sole, potato (Solanum tuberosum L. sole, mustard [Brassica juncea (L. Czernj. & Cosson] sole, toria (Brassica campestris var. toria sole, pea (Pisum sativum L. sole, linseed (Linum usitatissimum L. sole, wheat (Triticum aestivum L. mend. Fiori and Paol. sole, maize + potato (1:1,maize + mustard (1:1, maize + toria (1:2, maize + pea (1:2, maize + linseed (1:2 and maize + toria (1:2, were tested in randomized block design with three replications. Maize + potato system recorded higher yield attributes and grain yield of maize followed by maize + pea than sole stand of maize. potato was showed most compatible intercrop planted with winter maize as it gave higher maize-equivalent yield, land-equivalent ratio, productivity, monetary returns and lowered weed population, weed dry-biomass and highest weed-control efficiency under irrigated conditions of central Uttar Pradesh. Pea was the next best intercrop with winter maize.

  3. Economic effectiveness of irradiation with gamma rays on maize grains

    Gamma irradiation of maize grains before sowing increses the yield and improves the quality of agricultural produce. The positive results consist in the net income from silage maize from 45 to 85 per ha and from the grain maize from 85 to 109,9 per ha; the level of raw protein from the silage maize with 11,30% and from the grain maize with 6 to 12%; the level of feed units from the silage maize with 5 to 13% and from grain maize with 6 to 12%. Such direct effect in the same time is a stimulating one and raises the effectiveness of the animal production due to the better feeding of animals

  4. Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture.

    Avat Shekoofa

    Full Text Available Prediction is an attempt to accurately forecast the outcome of a specific situation while using input information obtained from a set of variables that potentially describe the situation. They can be used to project physiological and agronomic processes; regarding this fact, agronomic traits such as yield can be affected by a large number of variables. In this study, we analyzed a large number of physiological and agronomic traits by screening, clustering, and decision tree models to select the most relevant factors for the prospect of accurately increasing maize grain yield. Decision tree models (with nearly the same performance evaluation were the most useful tools in understanding the underlying relationships in physiological and agronomic features for selecting the most important and relevant traits (sowing date-location, kernel number per ear, maximum water content, kernel weight, and season duration corresponding to the maize grain yield. In particular, decision tree generated by C&RT algorithm was the best model for yield prediction based on physiological and agronomical traits which can be extensively employed in future breeding programs. No significant differences in the decision tree models were found when feature selection filtering on data were used, but positive feature selection effect observed in clustering models. Finally, the results showed that the proposed model techniques are useful tools for crop physiologists to search through large datasets seeking patterns for the physiological and agronomic factors, and may assist the selection of the most important traits for the individual site and field. In particular, decision tree models are method of choice with the capability of illustrating different pathways of yield increase in breeding programs, governed by their hierarchy structure of feature ranking as well as pattern discovery via various combinations of features.

  5. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield

    Maria Anita Gonçalves da Silva; Antonio Saraiva Muniz; Anny Rosi Mannigel; Simone Maria Altoé Porto; Marlene Estevão Marchetti; Antonio Nolla; Ivan Grannemann

    2011-01-01

    The study was carried out for two years in maize in succession to the wheat using no tillage system in a distroferric Red Latosol (Hapludox). Methods of management nitrogen fertilizer (120 kg ha-1) with ammonium sulphate were studied; the fertilizer was applied in maize sowing or in maize topdressing, and N with previous application in wheat sowing. In addition, leaf chlorophyll reading was used as an indicator for the need for topdressed nitrogen fertilizer. Nitrogen supply index (NSI) was s...

  6. Soil water extraction, water use, and grain yield by drought tolerant maize on the Texas High Plains

    Anticipated water shortages pose a challenge to the sustainability of maize (Zea mays L.) production on the Texas High Plains. Adoption of drought tolerant (DT) hybrids is a critical management strategy for maize production under water limited conditions. However, limited information is available co...

  7. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    Asimwe, L.; Kimambo, A E; Laswai, G;

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary......) and Warner Bratzler shear force (WBSF) values were determined on M. longissimus thoracis et lumborum aged for 3, 6, 9 and 12 days. Steers fed on HFMO diet had higher (P < 0.05) nutrient intake (86.39 MJ/d energy; 867 g/d CP), weight gain (919 g/d) and half carcass weight (75.8 kg) than those fed other...

  8. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang–Huai–Hai Valley

    Zhiqiang; Tao; Congfeng; Li; Jingjing; Li; Zaisong; Ding; Jie; Xu; Xuefang; Sun; Peilu; Zhou; Ming; Zhao

    2015-01-01

    A two-year field experiment(2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption,and water use efficiency(WUE) of spring maize(Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha-1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield,soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50% chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50% chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  9. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  10. 重金属胁迫后效对玉米产量的影响%Later Effects of Various Heavy Metal Stress on Maize Grain Yields in Wheat-Maize Rotation Systems

    聂胜委; 黄绍敏; 张水清; 张巧萍; 郭斗斗

    2013-01-01

    以不添加重金属的土壤为对照(CK),5种重金属分别以2种梯度添加量1(Cd1、Pb1、Cr1、Hg1、As1);2( Cd2、Pb2、Cr2、Hg2、As2)添加到土壤中,研究在大田条件下经过小麦1季或小麦-玉米-小麦3季作物种植后,重金属胁迫后效对玉米产量的影响。结果表明,5种重金属处理的玉米穗轴质量、生物产量与CK持平或高于CK,其中Hg2、Cd2、Hg1、As2处理玉米穗轴质量显著高于CK;玉米穗轴质量、单穗籽粒质量、经济系数在同一重金属不同质量浓度间均表现为:高质量浓度>低质量浓度;经过小麦1季种植后,重金属( Cr1除外)处理玉米籽粒产量高于CK,其中Cd1、Pb1、Hg1处理玉米籽粒产量较高,分别达到了8276.7,8059.9,7879.5 kg/hm2,而且Cd1、Pb1处理显著高于CK (6675.5 kg/hm2)。%In this article,five heavy metals were added into the soil with gradient addition amount (Cd1,Pb1, Cr1,Hg1,As1;Cd2,Pb2,Cr2,Hg2,As2),and the later effects of five heavy metals (Cd,Pb,As,Hg,Cr) stress on maize grain yields after wheat planted one season and wheat-maize-wheat planted three seasons ,were analyzed .The results showed that weight of corncobs and biomass under five heavy mentals stress treatments were not lower than that of CK treatment;and weight of corncobs under Hg2,Cd2,Hg1,As2 treatments were significantly higher than that of CK treatment .For the same heavy metal ,weight of axis,weight of grain yield per plant ,economical coefficient values were all higher in higher dose than lower dose .After wheat planted one season , maize grain yields under heavy mental stress treatments ( except Cr1 treatment ) were higher compared with that under CK treatment ,maize grain yields were higher under Cd1 (8 276.7 kg/ha),Pb1 (8 059.9 kg/ha),and Hg1 (7 879.5 kg/ha) treat-ments,especially under Cd1,Pb1 stress,significantly higher than CK (6 675.5 kg/ha) treatment.

  11. Effect of Spatial Arrangement on Growth and Yield of Cowpea in a Cowpea-maize Intercrop

    Ocaya, CP.

    2001-01-01

    Full Text Available Cowpea growth and yield performance when intercropped with maize was studied for 3 consecutive seasons under three spatial arrangements, i. e., maize planted at 90 x 30, 100 x 27, and 120 x 22.5 cm, with 2 rows of cowpea between the maize rows. Growth and yield of cowpea was improved significantly by widening maize intra-row distances as compared to the 90 x 30 cm spacing. Hence, intercropped cowpea needs to be sown where maize rows are wide apart, but the maize rows should not be too wide as this would lower the grain yield of maize.

  12. Effects of the Alternatively Interspaced Furrow Irrigation on Maize Root Distribution and Grain Yield, and Its Water-saving Benefits

    LIANG Zong-suo; KANG Shao-zhong; SHAO Min-gan; DENG Xi-ping; PAN Yin-ghua

    2001-01-01

    A test of three types of irrigation was carried out in the oasis area of the arid region in Minqin County for the study of the effects of the controllable alternatively root-partitioned irrigation (CARI) on corn ( Zea mays L. ) growth, root distribution, and the water-saving benefits. The research results showed that the alternatively interspaced furrow irrigation (AIFI) could significantly increase the water use efficiency of irrigation. The water use efficiency of the FI was 2.6 - 2.7kg/m3 and that of the AIFI reached more than 4.0kg/m3. The total water use efficiency of the AIFI reached more 2.98 kg/m3. Although the kernel yields of the AIFI remained to be more than 8000kg/ha in the two years, the irrigated water amounts declined from 3250m3/ha to 1575m3/ha. Thus the AIFI could save irrigation water by more than 33.3%, but did not severely reduce the corn yields. The wetting-drying alternation of the AIFI could stimulate the root growth, increase the root density and enhance the balanced root distribution; the dryness of partial root zone formed by the AIFI stimulated the roots to form the root signals to regulate the stomata openness, reduce the evaporation through the clearances among the plants, raise the evaporation efficiency and save the irrigation water.

  13. Influence of Seed Size on Yield, Yield Components and Quality of Three Maize Genotypes

    Aman Ullah Chaudhry; M. Ikram Ullah

    2001-01-01

    A field experiment was conducted to determine the effect of seed size on maize (Zea mays L.) performance. Among three genotypes under study the seed size categories and their interaction showed non significant effect on yield, yield components, photo biomass production and quality of maize under Faisalabad agro-meteorological conditions. All the parameters including germination, number of plants per plot, plant height, number of cobs per plant, number of rows per cob, number of grains p...

  14. Climate Change and Maize Yield in Iowa

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10–20% by the end of the 21st century. PMID:27219116

  15. Economic efficiency of the maize grain

    Ana Mariana Dincu

    2014-11-01

    Full Text Available In this work, was calculated and the level of profitability for several levels of production for grain maize cultivation. We chose corn because it is one of the most important forage crops, we could say even the largest, occupying third place among cultivated plants worldwide. Along with wheat and barley, the food is the biggest part of the population in the world, directly or converted to animal products. Maize can be used in animal feed in various forms. The most used is corn grain, which is characterized by a very high nutritional value, this product is properly regarded as a feed concentrate. Culture of maize have been designed two levels of production: 4000 kg / ha and 6000 kg / ha.

  16. Yields and Yield Components of Maize (Zea Mays L. and Soybean (Glycine Max as Affected by Different Tillage Methods

    Kvaternjak Ivka

    2015-12-01

    Full Text Available At the experiment station of the Krizevci College of Agriculture, yield and yield components of maize (Zea mays L. and soybean (Glycine max grown in rotation under five different methods of tillage were investigated. The aim of this study was to determine the effect of different tillage methods on yield and yield components of maize and soybean. The results and the determined number of plants per hectare of maize and soybean show that more favorable conditions for germination are in variants where ploughing performed in the autumn (variants C, D and E. During a four-year study, the minimum number of plants per hectare of maize and soybean was found in variant A. The dry season in panicle stage of maize in 2006 has lowered yields compared to 2008, and the drought in 2007 during the seed-filling period reduced the yield and the 1000 kernel weight of soybean compared with 2009 in all variants of tillage methods. The highest grain yield of maize was recorded in variant B. During 2006, with the unfavorable weather conditions, the lowest grain yield of maize was recorded in variant E with intensive tillage treatment. The highest yield of soybean was recorded in variant E, but there were no statistically significant differences compared to variants with the reduction of additional tillage interventions (variant B, C and D. With respect to maize grain and soybean seed yield, variant A was the lowest. Considering the achieved yields of maize grain, there is a possibility of reducing additional tillage interventions, whilst for achieving higher yield of soybean seed intensive tillage is recommended.

  17. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.

    Boćanski Jan

    2010-01-01

    Full Text Available Utilization of heterosis requires the study of combining abilities of potential parents. In view of this, the objective of this paper was to study combining abilities and determine the mode of inheritance and gene effects for the main agronomic character, grain yield, and its components, kernel row number and kernel number per row. Six inbred lines were used in the study, three of which originated in the U.S., while the other three were developed at the Institute of Field and Vegetable Crops in Novi Sad. Kernel row number was inherited by superdominance, partial dominance, complete dominance and intermediacy. The mode of inheritance of kernel number per row and grain yield was superdominance. Additive gene action had the greatest influence on the expression of kernel row number, while the other two traits were influenced the most by nonadditive gene.

  18. Effect of Nitrogen and Potassium Nutrition on Carbon and Nitrogen Metabolism at Late Growing Stage and Grain Yield Formation in Spring Maize

    2000-01-01

    Study on the relationship between grain yield formation and metabolism of carbon and nitrogen as influenced by N and K nutrition level during maturation was carried out through field experiments and biochemistry analyses. The results confirmed that it was necessary to maintain a higher photosynthetic capacity of leaves and abundant N supplies for root at late growing stages. The soluble protein content, RuBPC and PEPC activities in leaves, harvest index(HI) and harvest index of nitrogen (HIN)increased obviously with appropriate N and K application rate, which accelerated C and N translocation from vegetative parts to grain, enhanced photosynthetic capacity of leaves and abundant(but not excessive)N supply for root during late growing period.

  19. Tillage, Residue, Fertilizer and Weed Management on Phenology and Yield of Spring Maize in Terai, Nepal

    Saugat Dahal

    2014-09-01

    Full Text Available With the aim of developing crop management technologies that reduce the yield gap of maize (Zea mays L. in Nepal, a study was carried-out to determine whether the grain yield of maize could be manipulated through tillage, residue, and nutrient and weed management practices. The effect of tillage (conventional and no tillage, residue (residue retained and residue removed, fertilizer (recommended doses of fertilizer and farmers’ doses of fertilizer and weed management practices (herbicide use and manual weeding on phenology and grain yield of maize were investigated under maize-rice cropping system in Rampur, Nepal during 2013. The experimental results revealed that no tillage had significant effect on grain yield (6.64 Mg ha-1 and phenological parameters like days to silking, physiological maturity and seed fill duration. Similarly, residue retained treatment had significant effect on grain yield (7.02 Mg ha-1 and phenological parameters. Research dose of fertilizer had significant effect on phenological parameters and grain yield (8.42 Mg ha-1. However, weed management factor did not influence significantly on grain yield and phenological parameters. The grain yield increased in no tillage by 23.19% over conventional tillage, residue retained by 39.84% over residue removed, recommended doses of fertilizer by 132.60% over farmer dose of fertilizer. Thus, no tillage, residue retention, recommended doses of fertilizer and use of herbicide for weed management can be alternative technologies for sustainable higher grain yield.

  20. A genome scan for quantitative trait loci affecting grain yield and its components of maize both in single-and two-locus levels

    YAN Jianbing; TANG Hua; HUANG Yiqin; ZHENG Yonglian; SUBHASH Chander; LI Jiansheng

    2006-01-01

    By adding thirty-one markers in the previous linkage map, a new genetic linkage map containing 205 markers was constructed, spanning a total of 2305.4 cM with an average interval of 11.2 cM. The genotypic errors in the whole genome were detected by the statistical method and removed manually. The precision of the linkage map was improved significantly. Main and epistatic QTL were detected by R/qtl, and main QTL were confirmed and refined by multiple interval mapping (MIM). Finally, MIM detected seven QTL for rows number, and five QTL for each grain yield, kernels per row and 100-kernel weight. The contribution to genetic variations of QTL varied from 35.3% for grain yield to 61.5% for rows number. Only kernels per row exhibited significant epistatic interactions between QTL. Twenty-four epistatic QTL were detected which distributed on almost all the ten chromosomes. About two-third epistatic QTL were observed between main QTL and another locus, which had no significant effects. These results indicate rather clearly that there are a number of QTL affecting trait expressions, not directly but indirectly through interactions with other loci. Thus, epistatic QTL effects may play a crucial role, if not more important than main QTL effects, in the genetic variation for the measured traits in present study.

  1. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  2. Green ear yield and grain yield of maize cultivars in competition with weeds Rendimentos de espigas verdes e de grãos de cultivares de milho em competição com plantas daninhas

    P.S.L. Silva

    2010-01-01

    Full Text Available The reduction in herbicide use is one of the greatest interests for modern agriculture and several alternatives are being investigated with this objective, including the adoption of cultivars that suppress weeds. The objective of this study was to verify if maize cultivars develop differently, in competition with weeds, to produce green ears and grain. Randomized complete block design was used, with split-plots and five replications. Cultivars DKB 390, DKB 466, DKB 350, AG 7000, AG 7575 and Master, were evaluated in the plots, without weeding and two weedings (at 22 and 41 days after sowing in sub plots. Twenty-one species were identified in the experimental area, the most frequent being Gramineae (Poaceae, Euphorbiaceae, Leguminosae (Fabaceae and Convolvulaceae species. There was no difference in the dry biomass above-ground part of the weeds in the plots of the evaluated cultivars. The cultivars behaved similarly in treatments with or without hoeing, except for plant height and ear height evaluations. Without hoeing, plant height increased in cultivar DKB 390, while plant height and ear height decreased in cultivar AG 7575. In the other cultivars, these traits did not change under weed control. The presence of weeds decreased the values of all traits employed to assess green corn yield, with the exception of the total number of green ears and grain yield.A redução do uso de herbicidas é um dos maiores interesses da agricultura moderna e várias alternativas estão sendo investigadas com esse objetivo, dentre elas a adoção de cultivares que suprimam as plantas daninhas. O objetivo do trabalho foi verificar se cultivares de milho, em competição com plantas daninhas, apresentam comportamento diferente para produzir espigas verdes e grãos. Utilizou-se o delineamento de blocos completos casualizados, com parcelas subdivididas, e cinco repetições. As cultivares DKB 390, DKB 466, DKB 350, AG 7000, AG 7575 e Master, semeadas nas parcelas

  3. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland

    Czembor, Elżbieta; Stępień, Łukasz; Waśkiewicz, Agnieszka

    2015-01-01

    Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON), zearalenone (ZON) and fumon...

  4. Identification of QTL-s for drought tolerance in maize, II: Yield and yield components

    Nikolić Ana

    2013-01-01

    Full Text Available Grain yield is the primary trait of interest in maize breeding programs. Worldwide, drought is the most pervasive limitation to the achievement of yield potential in maize. Drought tolerance of maize has been considerably improved through conventional breeding. Traditional breeding methods have numerous limitations, so development of new molecular genetics techniques could help in elucidation of genetic basis of drought tolerance .In order to map QTLs underlying yield and yield components under drought 116 F3 families of DTP79xB73 cross were evaluated in the field trials. Phenotypic correlations calculated using Pearson’s coefficients were high and significant. QTL detection was performed using composite interval mapping option in WinQTL Cartographer v 2.5. Over all nine traits 45 QTLs were detected: five for grain yield per plant and 40 for eight yield components. These QTLs were distributed on all chromosomes except on chromosome 9. Percent of phenotypic variability determined for the identified QTLs for all the traits was in the range from 27.46 to 95.85%. Different types of gene action were found for the QTLs identified for analyzed traits. [Projekat Ministarstva nauke Republike Srbije, br. TR31068

  5. Biochar mitigation of allelopathy induced yield loss in continuous maize

    Continuous maize yields are limited by the release of phytotoxic compounds as the previous year’s maize residue decomposes. We tested the hypothesis that soil biochar applications could help mitigate maize autotoxicity and the associated yield depression. Eighteen small field plots (23.7 m2) were es...

  6. Crop management systems and maize grain yield under narrow row spacing Sistemas de manejo e produtividade de grãos de milho sob espaçamento entrelinhas reduzido

    Mércio Luiz Strieder

    2008-01-01

    Full Text Available Reduction in row spacing provides a more uniform distribution among plants that can increase grain yield. The benefits of narrow row spacing can depend on the plant architecture and on the kind of crop management system. The objective of this study was to assess the effects of narrow row spacing on the grain yield of maize hybrids growing under different management systems. Six experiments were carried out in Eldorado do Sul, State of Rio Grande do Sul, Brazil, during the 2003/04 and 2004/05 growing seasons. Each experiment corresponded to a crop management system. Treatments consisted of two row spacings (0.8 and 0.4 m, two hybrids (Penta and Flash and two plant densities, which varied with the crop management system and growing season. Besides plant density, the crop management systems differed in the quantities of fertilizers applied at sowing, side-dress and use of irrigation. A complete randomized block design was used in each experiment, in a 2 × 2 × 2 treatment factorial scheme with four replications. The increases in grain yield with narrow row spacing were small, ranging from zero to 14%. They depended on the growing season and were manifested only with yields higher than 10 t ha-1, regardless of the hybrid. The number of grains per area was the component that best explained the response of grain to narrow row spacing, regardless of plant density, hybrid and crop management system. Narrow row spacing is a worth management strategy to enhance maize grain yield when high input cropping systems are used.A redução do espaçamento entrelinhas melhora a distribuição entre plantas na área e pode incrementar a produtividade de grãos. Os benefícios da redução do espaçamento entrelinhas podem depender da arquitetura de planta e do sistema de manejo empregado. A pesquisa objetivou avaliar os efeitos da redução do espaçamento entrelinhas na produtividade de grãos de híbridos de milho cultivados em diferentes sistemas de manejo

  7. Tillage, Residue, Fertilizer and Weed Management on Phenology and Yield of Spring Maize in Terai, Nepal

    Saugat Dahal; Tika Bahadur Karki; Lal Prasad Amgain; Birendra Kumar Bhattachan

    2014-01-01

    With the aim of developing crop management technologies that reduce the yield gap of maize (Zea mays L.) in Nepal, a study was carried-out to determine whether the grain yield of maize could be manipulated through tillage, residue, and nutrient and weed management practices. The effect of tillage (conventional and no tillage), residue (residue retained and residue removed), fertilizer (recommended doses of fertilizer and farmers’ doses of fertilizer) and weed management practices (herbicide u...

  8. Maize growth and yield in Peshawar under changing climate

    Global climate change is consequence of accumulating greenhouse gases (Carbon) at lower atmosphere which might affects crops growth and yield. Maize is an important summer cereals, grown on considerable area in Pakistan every year. We, therefore, study the delay sowing response with changing climate on maize. Field experiment was conducted at Agronomy Research Farm, Agricultural University Peshawar, Pakistan in a randomized complete block design. Sowing was done from June 8 to July 24, 2010 with ten days intervals. Mazie (cv. Azam) was planted in rows at 0.75 m distance in NS orientations. Crop was raised under the uniform recommended cultural practices. Data regarding days to emergence, tasseling and maturity showed a consecutive decrease when so wing was delayed form June 08 onwards. However, the crop life cycle (i.e. vegetative and reproductive durations) initially remained uniform but expanded for late sowing dates (July). Delay sowing showed an increase in the leaf area index with an abrupt decline for the late sown crop. Nonetheless, plant stand at harvest remained static during the growth for all sowing dates. A stable to moderate reduction was noticed in ear length (cm) when sowings was delayed from Jun 08 onwards. Grain rows cob/-1 did not influence by the delay sowing in the season. Moreover, delay sowing did not show any significant (P<0.05) change for the grain number. However, thousand grains weight was initially remained stable but declined (P<0.05) by delay in sowing. Biological yield, dry matter and grains yield (g m/sup -2/) revealed almost a similar decreasing trend when sowing was delayed. Dry matter to grain yield relationship was linear (r/sup 2/ = 0.95) and revealed a mean loss of 1.65 g m/sup 2/ when sowing delayed from June 08 to July 24 in the season. Radiation use efficiency (RUE), the growth function, was also declined by the delay in sowing. We inferred that losses in leaf area indices, ear length and grain weights were basis of the

  9. Fungal Diversity of Maize (Zea Mays L. Grains

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  10. Tillage and NPK Effect on growth and yield of spring maize in islamabad, pakistan

    Tillage is a very important crop production practice which affect crop performance. An experiment was conducted during the spring crop season 2009 to compare the effect of three different tillage regimes i.e. deep, conventional and zero and four fertilizer levels viz., control 100-50-50, 150-75-75 and 200-100-100 NPK kg ha. The randomized complete block design was used with three replications. There was significant differences in maize emergence percentage, plant height, grains cob, 1000-grain weight and grain yield due to tillage practices and various fertilizer levels, between tillage practices. However, the NPK at the rate 200-100-100 kg ha and deep tillage produced the highest emergence percentage, plant height, grains per cob, 1000-grain weight and grain yield followed by other fertilizer levels and conventional tillage. The zero tillage plots produced the low emergence percentage, plant height, grains cob, 1000-grain weight and grain yield. Therefore, considering the environ-mental conditions, the deep tillage with recommended dose of NPK performed best and provided more vegetative growth and grain yield in maize. However, poor-resource farmers can use the medium level of NPK at the rate 150-75-75 kg ha for getting an economical and successful maize crop. (author)

  11. High-yield maize with large net energy yield and small global warming intensity.

    Grassini, Patricio; Cassman, Kenneth G

    2012-01-24

    Addressing concerns about future food supply and climate change requires management practices that maximize productivity per unit of arable land while reducing negative environmental impact. On-farm data were evaluated to assess energy balance and greenhouse gas (GHG) emissions of irrigated maize in Nebraska that received large nitrogen (N) fertilizer (183 kg of N · ha(-1)) and irrigation water inputs (272 mm or 2,720 m(3) ha(-1)). Although energy inputs (30 GJ · ha(-1)) were larger than those reported for US maize systems in previous studies, irrigated maize in central Nebraska achieved higher grain and net energy yields (13.2 Mg · ha(-1) and 159 GJ · ha(-1), respectively) and lower GHG-emission intensity (231 kg of CO(2)e · Mg(-1) of grain). Greater input-use efficiencies, especially for N fertilizer, were responsible for better performance of these irrigated systems, compared with much lower-yielding, mostly rainfed maize systems in previous studies. Large variation in energy inputs and GHG emissions across irrigated fields in the present study resulted from differences in applied irrigation water amount and imbalances between applied N inputs and crop N demand, indicating potential to further improve environmental performance through better management of these inputs. Observed variation in N-use efficiency, at any level of applied N inputs, suggests that an N-balance approach may be more appropriate for estimating soil N(2)O emissions than the Intergovernmental Panel on Climate Change approach based on a fixed proportion of applied N. Negative correlation between GHG-emission intensity and net energy yield supports the proposition that achieving high yields, large positive energy balance, and low GHG emissions in intensive cropping systems are not conflicting goals. PMID:22232684

  12. Impact of contour hedgerows on maize yields in the Philippines

    Shively, Gerald E.

    1998-01-01

    Metadata only record This paper investigates the impact of contour hedgerows on maize yields. The author applies and agricultural production function to assess data from upland Philippine maize farms and hedgerows of double rows of the nitrogen-fixing species Desmodium rensonii and Flemengia macrophylla. Although the findings show a positive long term impact on maize yields, the short term impact of hedgerows is negative; they reduce land available for cultivation and decrease productivity...

  13. Efficiency of mineral fertilizers and mucuna on the improvement of the yield of maize in zimbabwe

    In Zimbabwe farmers use sub-optimal amounts of fertilizers due to cash limitations and poor access to fertilizer markets, hence the need to integrate legumes like mucuna (Mucuna pruriens) into their cropping systems. In this study, the effect of P and N along with different mucuna management options was investigated on the yield and yield components of maize. The experimental design was a split - split- plot with two P rates (0 and 40 kg P ha/sup -1/) applied to a preceding mucuna crop, four mucuna management options 1) fallow (F), 2) mucuna ploughed in at flowering (MF), 3) all mucuna above ground biomass removed at maturity and only roots were ploughed in (MAR) and 4) mucuna pods removed and the residues ploughed in (MPR 3 and four N treatments (N0 = 0, N1 =40, N2 = 80 and N3 = 120 kg N ha/sup -1/ respectively) applied to a subsequent maize crop. The various crop parameters like grain yield, cob length, number of grains per cob, cob diameter, 1000 dry grain weight, stalk weight and harvest index of maize were determined. Phosphorous application improved mean maize grain yield from 2.29 t ha/sup -1/ to 2.34 t ha/sup -1/. The MF and N3 treatment combination resulted in the highest maize grain yield. The MF and MPR and N0 treatment combinations resulted in similar grain yields when compared with F and MAR management options and N3. Other parameters followed similar trends. The MF and MPR management options could, therefore, save 80 and 120 kg N ha/sup -1/for smallholder farmers without sacrificing yield. (author)

  14. The Effect of Liming and Fertilization on Yields of Maize and Winter Wheat

    Ivica Kisić

    2004-09-01

    Full Text Available Effect of different rates of hydrated lime and zeolite tuffs, as lime materials, mineral and organic fertilizers upon the yield of maize and winter wheat grain was studied in an exact field trial set up on Eutric Gleysol, near Karlovac, Central Croatia. The following crops were cultivated during the study period: 1999 and 2001 – maize, 1999/00 and 2001/02 – winter wheat. In the first investigation year, the highest yield of maize grain of 9.78 t ha-1 was achieved with the combination of the higher mineral fertilizer rate and the higher rate of farmyard manure. In the following year, the highest yield of winter wheat grain of 5.85 t ha-1 was achieved with the combination of the higher mineral fertilizer rate and the higher rate of hydrated lime. In the third and fourth investigation years, the highest yields of maize grain (10.05 t ha-1 and wheat (5.48 t ha-1 were recorded for the combination of the higher rates of mineral fertilizers and hydrated lime. The foregoing allows the conclusion that mineral and organic fertilization combined with hydrated lime is the optimal solution for increasing the yields of test crops.

  15. Effects of climate change on yield potential of wheat and maize crops in the European Union

    Wolf, J. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands); Van Diepen, C.A. [DLO the Winand Staring Centre, Wageningen (Netherlands)

    1995-12-31

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined. Subsequent analyses were made using climate change scenarios with and without the direct effects of increased atmospheric CO{sub 2}. The impact of crop management in a changed climate was also assessed. The various climate change scenarios used appear to yield considerably different changes in yield, both for each location and for the EU as a whole. 4 figs., 2 tabs., 6 refs.

  16. Effect of gamma irradiation on the grain yield of Nigerian Zea mays and Arachis hypogaea

    As a follow-up to our earlier investigation on the effect of gamma radiation on the germination and growth of certain Nigerian agricultural crops, the present study sought to determine the effect of gamma radiation on the grain yield of Zea mays (maize) and Arachis hypogaea (groundnut). The seeds were planted after irradiation without the application of fertiliser. The results show that for maize, grain yield for irradiated samples is increased to levels above the unirradiated yield at doses up to about 250 Gy with the optimum yield occurring at 150 Gy. The corresponding increase for groundnut is observed at doses up to about 930 Gy with optimum yield at a dose of 300 Gy. Inhibition in yield was observed to set in at a dose greater than 250 Gy for maize and 930 Gy for groundnut. The actual relationship between mean yield of these crops and gamma radiation dose was obtained using sixth-degree polynomial equations. (note)

  17. Selection on uniformity and yield stability in maize

    Živanović Tomislav

    2004-01-01

    Full Text Available Historically speaking, both the introduction of double-cross hybrids and use of single crosses have caused the increase in grain yield and significantly improved agricultural practice. Nowadays, the uniformity of crops is regarded as an advantage of modern agriculture, since the uniformity of products is crucial in global market. Thus, uniformity of crop maturation provides both planning and efficient mechanized harvest. F1 single-cross hybrids of maize, which is an allogamous species, not only exploit heterosis, but also impose homogeneity. Basically, the uniformity of hybrids has been regarded as their crucial advantage. There are two aspects of hybrid maize uniformity: (i genetic homogeneity and (ii genetic stability. Genetic homogeneity refers to presence of identical genotypes, whereas genetic stability refers to phenotypic uniformity (homeostasis in different environments. At present, yield performance of inbreds has not advanced as rapidly as performance of hybrids, especially in stressful environments. Focusing on inbred productivity combined with stability may be more appropriate strategy in the future. Poor farmers are not able to employ superior genotypes because they require considerable financial investment and farmers survive not due to high yield in good seasons, but due to enduring extreme ones. Breeding process may create genotypes in favorable seasons when genetic variance is maximal and environmental influence is minimal, which should be followed by breeding for different environments. The aim of such breeding are, most probably, genotypes intended for a specific set of conditions which, in fact, represents a convergence of two strategies of plant breeding. One should probably bear in mind the strategy of both yield improvement and survival of farmers in extreme conditions without decreasing yield of best genotypes, especially those adapted only to favorable conditions. Solution to this problem should be: financial (best

  18. Effects of low doses of gamma rays on yield, yield components, and other characters of two maize varieties

    The study was conducted during the fall of 1991 and 1992 at Al-Latyfia Experimental Station to determine the effect of low doses of gamma rays on yield, yield components, and other characters of two maize varieties. Five doses were used in addition to control. A factorial experiment with randomized complete block design in three replications was used in the study. Results revealed that there was significant difference between varieties in plant and ear height in 1992. However, differences between varieties were also significantly affected by most yield component characters. Low doses significantly affected plant height, weight of 500 kernels in 1991, and kernel row number in 1992. Grain yield was affected significantly in 1991 and 1992 by low doses. Results showed that 2.0 krad was the most useful low dose to increase grain yield, whereas there was no significant effect between varieties in grain yield. 7 refs., 6 tabs

  19. Eficiência da irrigação em rendimento de grãos e matéria seca de milho Irrigation efficiency for grain and dry matter yields of maize crop

    João Ito Bergonci

    2001-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência da irrigação e o efeito do déficit hídrico sobre o rendimento de grãos e o acúmulo de matéria seca da parte aérea de uma cultura de milho. O experimento foi conduzido na Universidade Federal do Rio Grande do Sul, em Eldorado do Sul, RS, durante quatro anos agrícolas, de 1993/94 a 1996/97. Utilizando um delineamento experimental em faixas com aspersores em linha, foram aplicados cinco níveis de irrigação, da capacidade de campo à ausência de irrigação. Os rendimentos de grãos foram crescentes com aumentos no nível de irrigação até 80% da dose necessária para a capacidade de campo; a máxima eficiência da irrigação foi obtida entre 60 e 80% e esteve associada a déficits hídricos durante o período crítico da cultura, alcançando 40 kg ha-1 mm-1. Por outro lado, a maior eficiência da irrigação para produção de matéria seca da parte aérea foi obtida com déficits hídricos prolongados durante o período de crescimento exponencial da cultura. Reduções no rendimento de grãos, causadas por déficit hídrico, estiveram relacionadas com a redução do número de grãos por espiga e por metro quadrado, já que o peso médio de grãos não foi afetado.The objective of this work was to evaluate the efficiency of irrigation, as well as the effect of water deficits, upon the grain yield and on the aerial biomass production by a maize crop. A field experiment was carried out at the Universidade Federal do Rio Grande do Sul, in Eldorado do Sul, Brazil, during four crop seasons, from 1993/94 to 1996/97. Using a line source sprinkler design, the crop was submitted to five levels of irrigation, ranging from field capacity to rainfed conditions. Increasing grain yields were observed as the water supply increased up to 80% of the level necessary for field capacity; the highest efficiency of irrigation was promoted between 60 and 80% levels and it was obtained when the water

  20. Incidência de podridões do colmo, grãos ardidos e rendimento de grãos em híbridos de milho submetidos ao aumento na densidade de plantas Incidence of stalk rot, rot grains and grain yield of maize hybrids submitted to the increase in plant density

    Ricardo Trezzi Casa

    2007-12-01

    Full Text Available A adequada combinação entre a escolha da densidade de plantas e do híbrido é um dos fatores que contribuem para o aumento da produtividade do milho. O objetivo deste trabalho foi avaliar o efeito do incremento na densidade de plantas sobre a incidência de podridões do colmo, de grãos ardidos e o rendimento de grãos de dois híbridos de milho contrastantes quanto a tolerância ao adensamento. O experimento foi conduzido em Lages, SC, nas safras agrícolas 2002/03 e 2003/04, em área de semeadura direta e monocultura, sob sucessão de cobertura morta constituída de aveia preta+ervilhaca. Estudou-se a combinação de dois fatores: híbrido e densidades, utilizando-se o delineamento experimental de blocos casualizados com parcela sub-dividida. Na parcela principal avaliaram os híbridos: Speed (simples, tolerante ao adensamento e AG 303 (duplo, intolerante ao adensamento. Nas sub-parcelas testaram-se cinco densidades de plantas: 25, 50, 75, 100 e 125 mil plantas ha-1. O aumento da densidade de plantas, proporcionou incremento linear na incidência das podridões do colmo e grãos ardidos para os dois híbridos e duas safras avaliadas. O fungo Colletotrichum graminicola foi o mais detectado em colmos doentes, seguido do Fusarium graminearum, F. verticillioides e Stenocarpella sp. Nos grãos ardidos, os fungos predominantes foram F. verticillioides, F. graminearum e Penicillium spp. O híbrido AG 303 demonstrou menor resposta no rendimento do que o híbrido Speed com o aumento da população de plantas. Não foi observada associação direta entre o maior rendimento de grãos do híbrido simples em estandes adensados e a menor incidência de doenças de colmo e de grãos ardidos.The combination between plant density and hybrid choice is an important factor to enhance maize grain yield. The objective of this work was to evaluate the increasing of plant density on the incidence of stalk rot, rot grains and grain yield of two maize hybrids with

  1. Effect of planting methods on growth, phenology and yield of maize varieties

    Field experiment was conducted at KPK Agricultural University, Peshawar, Pakistan to find out the effect of planting methods on the yield and yield components of maize varieties. Analysis of the data revealed that planting methods had a significant effect on days to tasseling, days to silking, plant height, number of plants ha/sup -1/ at harvest, thousand grain weight, grain yield, biological yield, fresh weed biomass m/sup -2/ and non-significant effect on days to emergence, emergence m-2, number of cobs plant/sup -1/, grains ear/sup -1/, harvest index and dry weed biomass m/sup -2/. Similarly, the effect of varieties was also significant on all parameters except fresh and dry weed biomass m/sup -2/. Maximum emergence m/sup -2/, days to tasseling, days to silking, plant height, number of plants ha/sup -1/at harvest, grains ear/sup -1/, thousand grain weight, grain yield and biological yield were recorded in ridge planting method. Similarly, Jalal sown on ridges took maximum days to emergence, emergence m/sup -2/, plant height, number of cobs plant /sup -1/, grains ear/sup -1/, thousand grain weight, grain yield, biological yield, fresh weed biomass and dry weed biomass. (author)

  2. Yield responses of maize as influenced by supplemental foliar applied phosphorus under drought stress

    Zahoor Ahmad

    2015-12-01

    Full Text Available Drought is one of the most serious problems posing a grave threat to cereals production including maize. A field study was conducted to evaluate the effect of foliar applied phosphorus @ 8 kg ha-1 at 8th leaf stage on yield and yield components of four maize hybrids i.e two drought tolerant (6525, 32B33 and two drought sensitive (Hycorn and 31P41 under normal and water stress conditions. RCBD with factorial arrangement were employed to lay out the experiment with a net plot size of 4.75 m x 5 m with three replication at research area of Agronomy, Department of Agronomy, University of Agriculture Faisalabad, Pakistan. The foliar applied phosphorus @ 8 kg ha-1 at 8th leaf stage of maize significantly affect the yield and yield parameters in both drought tolerant and sensitive hybrids. The water stress decreased the 1000-grain weight (21.2%, grain yield (21.3% and biological yield (22.4% as compared to normal irrigation. The both drought tolerant hybrids of maize (6525 and 32B33 performed better than drought sensitive hybrids (Hycorn and 31P41 under normal and water stress conditions.

  3. Occurrence of Fusarium species in maize grains for silage

    Krnjaja V.; Lević J.; Stanković S.; Bijelić Z.; Mandić V.; Stojanović Lj.

    2011-01-01

    Grain samples of two maize hybrids, medium early (ZP434) and late maturity (ZP704), collected during harvest in 2008 were investigated for contamination by fungi. Grains were plated on agar media and grown fungi were identified by morphological macroscopic and microscopic characteristics on potato-dextrose agar (PDA) and synthetic nutrient agar (SNA). Species of the genus Fusarium were the most common in both hybrids, and their presence amounted to 33.89% (...

  4. A genetic base of utilisation of maize grain as a valuable renewable raw material for bioethanol production

    Semenčenko Valentina

    2015-01-01

    Full Text Available Maize (Zea mays L. is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. Many studies have shown that the kernel composition and starch structure of maize are highly influenced by genetic background of the maize. Maize grain consists of approximately 70% of starch, which makes it a very suitable feedstock for the bioethanol production. This study was conducted with aim to understand how different genetic background affects bioethanol yield and other fermentation properties of the selected maize genotypes in the process of maize grain- based bioethanol production. Twenty seven maize hybrids, including genotypes of standard chemical composition as well as specialty maize hybrids such as popping, waxy, white kernel and red kernel hybrids, developed at the Maize Research Institute, Zemun Polje, were investigated in this study. The lowest bioethanol yield of 7.25% w/w obtained for hybrid ZP 611k after 48 h of fermentation and the highest by genotype ZP 434 (8.96% w/w. A very significant positive correlation was determined between kernel starch content and the bioethanol yield after 48h of fermentation, as well as volumetric productivity (48h (r=0.67. Between bioethanol yield after 48h of fermentation and soft endosperm content in kernel of the investigated ZP maize hybrids a very significant positive correlation was assessed (r=0.66. Higher overall bioethanol yields have been obtained from genotypes containing higher starch and lower protein and lipid contents. [Projekat Ministarstva nauke Republike Srbije, br. TR 31068

  5. Maize yield response to water supply and fertilizer input in a semi-arid environment of Northeast China.

    Yin, Guanghua; Gu, Jian; Zhang, Fasheng; Hao, Liang; Cong, Peifei; Liu, Zuoxin

    2014-01-01

    Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg · ha(-1)) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m(3) · ha(-1), 304.9 kg · ha(-1) and 133.2 kg · ha(-1) respectively that leads to a possible economic profit (EP) of 10548.4 CNY · ha(-1) (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY · ha(-1)), the optimum application rates of I, N and P are 682.4 m(3) · ha(-1), 241.0 kg · ha(-1) and 111.7 kg · ha(-1) respectively that produces a potential grain yield of 10289.5 kg · ha(-1). PMID:24465896

  6. Sensitivity of CERES-Maize yield simulation to the selected weather data

    Sensitivity analysis of selected weather data runs after successful parametrization and validation of the CERES-Maize simulation model. Estimation of the potential yield has been carried out during the long term experiment (1980-1997) as well as the estimation of influence of meteorological parameters on the simulation results for the water-limited yield. 10 % under and over stimulation of global radiation and precipitation as well as increasing and decreasing temperature by 1 deg C on simulated potential and water-limited yield have been done. In most of the years, air temperature underestimation resulted in a higher simulated grain yield and overstimulation shown a lower yield for water limited level. Overestimation of precipitation during wet days in growing period of the maize leads to an increase of amount of water available for the plant and to increase the yield. Underestimation of global radiation by 10 % resulted in a decline in simulated grain yield from -8.8 to -9.9 %. The overestimation caused increase of the yield from 7.8 to 10 %. Overestimation by 10 % resulted in a slight underestimation of the yield in low yielding years and underestimation of global radiation by 10 % in overestimation of the yield. The effect was opposite in high yielding years

  7. Response of Grain Weight of Maize to Variety, Organic Manure and Inorganic Fertilizer in Asaba Area of Delta State

    Enujeke E. C.

    2013-05-01

    Full Text Available This study was carried out in the Teaching and Research Farm of Delta State University, Asaba Campus from March 2008 to June 2010 to evaluate the response of grain weight of maize to variety, organic manure and inorganic fertilizer. The experiment was carried out in a Randomized Complete Block Design (RCBD replicated three times in a factional layout. Four different rates of poultry manure, cattle dung and NPK 20:10:10 fertilizer were applied to three maize varieties sown at 75cm x 15cm and evaluated for the grain weight. The results obtained indicated that hybrid variety which produced yield of 2.1 tha-1 in 2008 and 2.3 tha-1 in 2009 was superior. The results of interaction showed that variety, manure type and rates of application were significantly (p<0.05 different in 2008 and 2009. Based on the findings of the study, it is recommended that (i Hybrid maize variety, 9022-13, which was outstanding in grain weight be grown in the study area. Alternatively, farmers who prefer open-pollinated varieties could grow BR9922-DMRSF2 or Agbor local variety for farmers who prefer local varieties in maize production. (ii Farmers who prefer mineral fertilizers for increased grain weight of maize should apply 450kgha-1 of NPK 20:10:10. (iii Farmers who practice organic agriculture in Asaba agro-ecological zone should apply 30tha-1 of poultry manure to enhance maize yield.

  8. Effect of tillage system on soil properties and yield of Oba 98 maize variety in Zaria

    A. Namakka

    2014-07-01

    Full Text Available Nigeria loses significant amount of soil, organic matter and plant nutrients to the continuous tilling of soil for various crop production. This leads to declining and stagnation of crop yields. Three year field trials were conducted during 2006, 2007 and 2008 wet seasons at the experimental farm of Institute for Agricultural Research of Ahmadu Bello University, Zaria (Lat. 11° 11' N: Long 7° 38' E: 686 m above sea level to investigate the effect of tillage system on soil chemical properties, physical properties and grain yield of Oba 98 maize variety. The treatments consisted of six tillage systems laid out in Complete Randomize Block Design and replicated five times. The parameters measured included soil chemical properties such as ions concentrations and Cation Exchange Capacity, soil textural class, soil bulk density and grain yield of the maize under test. The results obtained indicated that GPx (Glyphosate followed by Primextra Gold and PPx (Paraquat followed by Primextra Gold tillage systems enhanced soil nutrients with higher Cation Exchange Capacity, highest cations and anions concentrations due to organic matter accumulation in the soil, improved soil structure that resulted to better grain yield of maize. The two types of tillage systems will therefore help in reducing the effect of soil degradation through frequent tilling and also improved soil aggregate and fertility as a result of organic matter accumulation on the soil surface.

  9. Variation of physiological growth indices, biomass and dry matter yield in some maize hybrids

    SHUKRI FETAHU

    2014-06-01

    Full Text Available In order to determine variation of physiological growth indices, biomass and dry matter yield, for six maize hybrids (MH, it was set up a field trial on randomized complete block design (RCDB, with three replications, with 6 MH: BC38W, BC408, ZP434, NSSC444, ESP500 and LUCE, during the years 2010 and 2011 (Y, at Experimental Farm (EF, Faculty of Agriculture and Veterinary in Prishtina, located in geographical position: N 42º 38'97" and E 21º 08'45" and 570 MASL. Growth rate, biomass and dry matter of maize performance are depending from specific characteristics: maize hybrids (MH, environmental condition (EC and cropping system (CS. Information on silage maize yield can help silage growers and users, to choose hybrids that best fit their needs. The physiological growth indices, biomass and dry matter yield, were conducted according to the formula: (MH-6 x Y-2 x P4 x R3 =144 combinations. Hybrid selection for a specific location, suitable for the agro-ecological condition is one of the essential principles for improving yield for silage or grain, without increasing of cost of maize production. Means results for evaluated maize hybrids and parameters were: Absolute growth rate (AGRµ=5.43, crop growth rate (CGRµ=30.98, total plant biomass (TPBµ=585.39 g plant-1 and total dry matter (TDMµ=22.52 ton ha-1.The aim of this study was to determine physiological growth indices, biomass and dry matter yield, in suitable agro-ecological conditions of Kosovo. The obtained results were with wide range variability and high significant differences between hybrids and years on the level P, lower than 0.01.

  10. Mulch Induced Eco-physiological Growth and Yield of Maize

    Awal, M. A.; M.A.H. Khan

    2000-01-01

    Mulching effects of sawdust, ash, rice straw and water hyacinth on growth, dry matter partitioning, earliness, yield attributes and yield of maize were studied. All mulches except sawdust significantly influenced the SLA, CGR, NAR and DM partitioning, but with no apparent effect on RGR. Water hyacinth and rice straw mulches hastened the tasseling, silking and maturity time by 6, 8 and 8 days respectively and produced double the amount of biological and economic yield as compared to the contro...

  11. Dynamics of incidence and frequency of populations of Fusarium species on stored maize grain

    Krnjaja V.; Lević J.; Tomić Z.; Nešić Z.; Stojanović Lj.; Trenkovski S.

    2007-01-01

    Production and providing of high quality maize grain are of primary importance for livestock production since maize is the main component of livestock feed. Contamination with fungi not only diminishes the quality of grain, but some fungi species can produce highly toxic compounds known as mycotoxins. Considering that maize is economically the most important grown plant in Serbia, content and intensity of frequency of these pathogen fungi species are investigated in maize stored in the storag...

  12. Response of Maize (Zea mays L. Grown for Grain After the Application of Sewage Sludge

    Grażyna SZYMAŃSKA

    2016-02-01

    Full Text Available The aim of this study was to assess the effects of the agricultural use of sewage sludge in corn for grain, in the year of application and follow up effect after one and two years after its application. The study was conducted on the variety PR39G12 on the field after the 5-year monoculture corn. Sewage sludge was used in accordance with the Directive of Minister of Environment allowing application of 10 t dry mater per ha-1 once every five years. Fertilization with sludge of maize grown for grain did not cause differences in the growth and development of plants, compared to mineral fertilized objects, as well as did not exceed the limit value for heavy metals content in above-ground plant parts. Maize grown using sewage sludge yielded higher than the objects fertilized with mineral, especially in conditions of extreme drought, which occurred in 2006. Beneficial effect of sewage sludge was maintained in the next two years after application and stabilized the grain yield of maize.

  13. Have Biotech Seeds Increased Maize Yields?

    Xu, Zheng; David A. Hennessy; Moschini, GianCarlo

    2010-01-01

    Corn yield is determined by soils, weather, seed used and other technology choices. Global population and per capita income growth trends as well as demand from the energy sector have placed great stress on cropland use. Global cropland acres and/or yield per acre will need to increase. Whether new seed technologies have enhanced corn yield is a controversial issue. We study U.S. county corn yields 1964-2008, controlling for location effects, fertilization technologies and weather. We find ev...

  14. The variation of phytic and inorganic phosphorus in leaves and grain in maize populations

    Dragićević Vesna

    2010-01-01

    Full Text Available The phytate function in plants is still not completely understood: it is the primary storage P form in seeds that is utilized during germination and early seedling development. Approaches to resolve problem of the bad nutritive quality of grain phytate include engineering of crops with reduced levels of seed phytic acid. The objective of this study was to investigate genetic variability and correlation of phytic (Pphy and inorganic phosphorus (Pi and soluble proteins among 28 maize populations, consisted into three groups: low-, intermediate- and high-phytic populations, with the aim to determine the potential of enhancing the P profile of maize plants and high grain yield through selection. The highest genetic variability of Pi and Pphy content in leaves was expressed in group with intermediate Pphy content in grain. Meanwhile, leaves of low-phytic populations were characterized with low Pphy, too (averagely 18% and high content of soluble proteins (averagely 15% in relation to high- and intermediate-phytic populations. Additionally, the lowest genetic variability of protein content was also noticeable in leaves of low-phytic populations. Positive correlation between Pi and protein content was observed in leaves of low- and high-phytic populations. The negative correlation between Pphy and Pi was detected in maize grain, but correlation was significant only in intermediate-phytic group. The highest, but not significant, average yield was observed in group of low-phytic populations, as well as its relative high genetic variability. That indicates that development of high yielding genotypes with lower phytate in grain is reasonable, and could be potentially useful in enhancing the sustainability and decreasing of environmental impact in agricultural production.

  15. Proteomic identification of genes associated with maize grain-filling rate.

    Jin, Xining; Fu, Zhiyuan; Ding, Dong; Li, Weihua; Liu, Zonghua; Tang, Jihua

    2013-01-01

    Grain filling during the linear phase contributes most of the dry matter accumulated in the maize kernel, which in turn determines the final grain yield. Endosperms and embryos of three elite maize hybrids (Zhengdan 958, Nongda 108, and Pioneer 335) were sampled 17, 22, 25, and 28 days after pollination, during the linear phase of grain filling, for proteomic analysis to explore the regulatory factors critical for grain filling rate. In total, 39 and 43 protein spots that showed more than 2-fold changes in abundance at Psampling stages in the endosperm and embryo were analyzed by protein mass spectrometry. The changing patterns in expression index of these proteins in the endosperm were evenly distributed, whereas up-regulation patterns predominated (74%) in the embryo. Functional analysis revealed that metabolism was the largest category, represented by nine proteins in the endosperm and 12 proteins in the embryo, of the proteins that significantly changed in abundance. Glycolysis, a critical process both for glucose conversion into pyruvate and for release of free energy and reducing power, and proteins related to redox homeostasis were emphasized in the endosperm. Additionally, lipid, nitrogen, and inositol metabolism related to fatty acid biosynthesis and late embryogenesis abundant proteins were emphasized in the embryo. One protein related to cellular redox equilibrium, which showed a more than 50-fold change in abundance and was co-localized with a quantitative trait locus for grain yield on chromosome 1, was further investigated by transcriptional profile implying consistent expression pattern with protein accumulation. The present results provide a first step towards elucidation of the gene network responsible for regulation of grain filling in maize. PMID:23527170

  16. Proteomic identification of genes associated with maize grain-filling rate.

    Xining Jin

    Full Text Available Grain filling during the linear phase contributes most of the dry matter accumulated in the maize kernel, which in turn determines the final grain yield. Endosperms and embryos of three elite maize hybrids (Zhengdan 958, Nongda 108, and Pioneer 335 were sampled 17, 22, 25, and 28 days after pollination, during the linear phase of grain filling, for proteomic analysis to explore the regulatory factors critical for grain filling rate. In total, 39 and 43 protein spots that showed more than 2-fold changes in abundance at P<0.01 between any two sampling stages in the endosperm and embryo were analyzed by protein mass spectrometry. The changing patterns in expression index of these proteins in the endosperm were evenly distributed, whereas up-regulation patterns predominated (74% in the embryo. Functional analysis revealed that metabolism was the largest category, represented by nine proteins in the endosperm and 12 proteins in the embryo, of the proteins that significantly changed in abundance. Glycolysis, a critical process both for glucose conversion into pyruvate and for release of free energy and reducing power, and proteins related to redox homeostasis were emphasized in the endosperm. Additionally, lipid, nitrogen, and inositol metabolism related to fatty acid biosynthesis and late embryogenesis abundant proteins were emphasized in the embryo. One protein related to cellular redox equilibrium, which showed a more than 50-fold change in abundance and was co-localized with a quantitative trait locus for grain yield on chromosome 1, was further investigated by transcriptional profile implying consistent expression pattern with protein accumulation. The present results provide a first step towards elucidation of the gene network responsible for regulation of grain filling in maize.

  17. Residues of pirimiphos-methyl in stored maize grains

    14C-pirimiphos-methyl (specific activity 16.36 mCi/mmol (1 Ci = 37 GBq)) was applied to maize grains at a concentration of 5 mg/kg using the procedures described in the FAO/IAEA Model Protocol, Annex I, these Proceedings. After treatment, the maize was stored at ambient temperature (20-35 deg. C) in jute sacks lined with polythene. The surface (water soluble) and methanol extractable residues were investigated over a period of 8 months. There was a gradual increase in the methanol extractable residues and a corresponding decrease in the surface residues over the storage period. At the end of this time, the total extractable residue was 56% of the applied dose. For technical reasons no data were available for the residues bound within the grain tissues. Four types of local diet were prepared from the treated maize, these being: akple, roasted akple, kenkey and banku; some reduction in the extractable residues was observed as a result of the cooking process. (author)

  18. Ammonia volatilization and yield components after application of polymer-coated urea to maize

    Eduardo Zavaschi

    2014-08-01

    Full Text Available A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N, in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

  19. Water deficit effects on maize yields modeled under current and greenhouse climates

    The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall

  20. 连续施氮对冬小麦-夏玉米轮作体系产量和氮素吸收与利用的影响%Effects of Continuous Nitrogen Application on Grain Yield and Nitrogen Uptake and Utilization in Winter Wheat-Summer Maize Rotation System

    司贤宗; 王宜伦; 韩燕来; 刘蒙蒙; 谭金芳

    2013-01-01

    [目的]为冬小麦-夏玉米轮作体系高产、稳产,合理施用氮肥提供依据.[方法]研究了连续施氮对冬小麦-夏玉米产量、经济效益、氮肥吸收利用效率和土壤无机氮的影响.[结果]施氮使冬小麦-夏玉米轮作体系显著增产,2个轮作周期分别增产17.76%~30.32%、22.24%~46.63%;施氮量660.0 kg/hm2在2个轮作周期的产量均最高,分别为23 391.19和23 444.35 kg/hm2,经济效益和产投比较佳,氮肥利用率分别为22.2%和30.7%,农学效率分别为8.3 kg/kg和11.3kg/kg.施氮量540.0和660.0 kg/hm2的氮肥利用率和农学效率均无显著差异.2个轮作周期后,施氮量540.0 kg/hm2的0~40 cm土壤无机氮积累量与试验前基本平衡.[结论]该试验条件下,综合产量、效益、氮肥效率及土壤无机氮平衡考虑,高产冬小麦-夏玉米轮作体系适宜施氮量为625.3~660.0 kg/hm2.%This study aimed to achieve high yield and stable yield of winter wheat-summer maize rotation system and provide basis for rational application of nitrogen fertilizer.[Method] Effects of continuous nitrogen application on grain yield,economic profit,nitrogen uptake and utilization efficiency,and soil inorganic nitrogen accumulation in winter wheat-summer maize rotation system were investigated.[Result] Nitrogen application could significantly increase the yield of the winter wheatsummer maize rotation system,which increased by 17.76%-30.32% and 22.24%-46.63% in two rotation cycles,respectively.The yield of the winter wheat-summer maize rotation system was the maximum in two rotation cycles with nitrogen application amount of 660.0 kg/hm2,which reached respectively 23 391.19 and 23 444.35kg/hm2,the yield and economic benefit were the highest,the nitrogen fertilizer use efficiency was 22.2% and 30.7%,the agronomic efficiency was 8.3 and 11.3 kg/kg.However,the nitrogen fertilizer use efficiency and agronomic efficiency between nitrogen application amount of

  1. Effect of integrated plant nutrition and irrigation scheduling on yield and yield components of maize (zea mays l.)

    Effect of three irrigation schedules (4-6 irrigations) and seven integrated plant nutrition levels (control, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + Farm yard manure at the rate 15 t ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/ -K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha-1 and 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 15 t ha/sup -1/) on grain yield and its components in maize were studied during 2009 and 2010. Plant height, number of cobs plant-1, number of grain rows cob-1, number of grains cob-1, 1000-grain weight, grain weight cob-1, grain yield, stover yield and biological yield were significantly affected by irrigation schedules and integrated plant nutrition levels during both years. The crop applied with six irrigations and fertilized by integrated application of chemical fertilizers (250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/) and farmyard manure (15 t ha/sup -1/) produced the highest grain yield of 8.47 t ha/sup -1/ and 8.22 t ha/sup -1/ during 2009 and 2010, respectively. (author)

  2. Yields and Yield Components of Maize (Zea Mays L.) and Soybean (Glycine Max) as Affected by Different Tillage Methods

    Kvaternjak Ivka; Kisić Ivica; Birkás Marta; Špoljar Andrija; Marenčić Dejan

    2015-01-01

    At the experiment station of the Krizevci College of Agriculture, yield and yield components of maize (Zea mays L.) and soybean (Glycine max) grown in rotation under five different methods of tillage were investigated. The aim of this study was to determine the effect of different tillage methods on yield and yield components of maize and soybean. The results and the determined number of plants per hectare of maize and soybean show that more favorable conditions for germination are in variant...

  3. Grain filling parameters and yield components in wheat

    Brdar Milka

    2006-01-01

    Full Text Available Grain yield of wheat (Triticum aestivum L. is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the final grain dry weight, rate and duration of grain filling were important parameters in differentiating among cultivars grain filling curves. The yield was positively correlated with number of grains/m2, grain weight and grain filling rate, and negatively correlated with grain filling duration. Correlation between grain weight and rate of grain filling was positive. Grain filling duration was negatively correlated with grain filling rate and number of grains/m2. The highest yield on three year average had medium late Mironovska 808, by the highest grain weight and grain filling rate and optimal number of grains/2 and grain filling duration.

  4. Foliar copper uptake by maize plants: effects on growth and yield

    Rogério Hidalgo Barbosa

    2013-09-01

    Full Text Available A slight increase in the levels of a certain nutrient can cause a significant increase in crop yield or can cause phytotoxicity symptoms. Thus, the aim of this study was to evaluate the effect of foliar application of copper (Cu on the growth and yield of DG-501 maize. The experiment was carried out between December 2009 and April 2010 in conventional tillage. When plants were with six to eight leaves, Cu (0, 100, 200, 300, 400, 500 and 600g ha-1 was applied to the leaves. Treatments were arranged in randomized complete block with five replications. When 50% of the plants were in flowering, it was evaluated the plant height, culm diameter, height of the first ear insertion, leaf area, and chlorophyll content. At harvest, it was evaluated diameter and length of the ear, yield and thousand grain weight. There was a linear reduction in the plant height and in the height of the first ear insertion with increasing Cu doses. On the other hand, chlorophyll content, leaf area, diameter and length of ear, thousand grain weight and yield increased at doses up to 100g ha-1 Cu, however, decreased at higher doses. Therefore, foliar Cu application at doses higher than 100g ha-1 has toxic effect in maize plants with losses in growth and yield.

  5. Amendment of Tephrosia Improved Fallows with Inorganic Fertilizers Improves Soil Chemical Properties, N Uptake, and Maize Yield in Malawi

    Maggie G. Munthali

    2014-01-01

    Full Text Available Maize production in Malawi is limited mainly by low soil N and P. Improved fallows of N-fixing legumes such as Tephrosia and Sesbania offer options for improving soil fertility particularly N supply. The interactions of Tephrosia fallows and inorganic fertilizers on soil properties, N uptake, and maize yields were evaluated at Chitedze Research Station in Malawi. The results indicated that the level of organic matter and pH increased in all the treatments except for the control. Total N remained almost unchanged while available P decreased in all plots amended with T. vogelii but increased in T. candida plots where inorganic P was applied. Exchangeable K increased in all the plots irrespective of the type of amendment. The interaction of N and P fertilizers with T. vogelii fallows significantly increased the grain yield. The treatment that received 45 kg N ha−1 and 20 kg P ha−1 produced significantly higher grain yields (6.8 t ha−1 than all the other treatments except where 68 kg N ha−1 and 30 kg P ha−1 were applied which gave 6.5 t ha−1 of maize grain. T. candida fallows alone or in combination with N and P fertilizers did not significantly affect grain yield. However, T. candida fallows alone can raise maize grain yield by 300% over the no-input control. Based on these results we conclude that high quality residues such as T. candida and T. vogelii can be used as sources of nutrients to improve crop yields and soil fertility in N-limited soils. However, inorganic P fertilizer is needed due to the low soil available P levels.

  6. Grain filling parameters and yield components in wheat

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  7. Effects of saline stress on growth and crop yield of different maize (Zea mays) genotypes

    E. M. Gurbanov; Molazem, D.

    2009-01-01

    Effects of saline stress ( NaCl ) on yield and vegetative characteristics of eight maize cultivars were studied. The cultivars K3615/1, S.C704, B73, S.C302, Waxy, K3546/6, K3653/2, and Zaqatala were cultivated in two plots of the Astara region: one was with normal soil and the other – with salty one. Salinization reduced the plant height, ear length, ear diameter, number of plant leaves, stem diameter, number of rows in an ear, number of grains in a row, and dry plant mass in all cultivars. M...

  8. Field Studies on the Relationship between Fusarium verticillioides and Maize (Zea mays L.: Effect of Biocontrol Agents on Fungal Infection and Toxin Content of Grains at Harvest

    Paola Pereira

    2011-01-01

    Full Text Available Maize (Zea mays L. is a staple food for the majority of the world's population. Fusarium verticillioides (Sacc. Nirenberg (Teleomorph: Gibberella moniliformis Wineland; synonym: F. moniliformis is both a saprophyte and a parasite of maize and can also be found as an endophyte. The presence of this fungus in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effects. The present work investigated biocontrol activity of Bacillus amyloliquefaciens and Microbacterium oleovorans against F. verticillioides infection and fumonisin B1 production in field-grown maize during four consecutive growing seasons. Treatment with B. amyloliquefaciens consistently reduced F. verticillioides inoculum and fumonisin content of harvested grains. F. verticillioides count and fumonisin levels correlated negatively with rainfall regimes; however, none of these parameters showed significant correlation with yields. Treatment with these biocontrol agents may improve phytosanitary quality of the grains and reduce toxicological risk in the maize agroecosystem.

  9. The effect of increasing doses of meat and bone meal (MBM applied every second year on maize grown for grain

    Anna Nogalska

    2013-12-01

    Full Text Available Recently, due to the detection of cases of Bovine Spongiform Encephalopathy (BSE in cattle, it has become necessary to use animal meals differently. The EU Council Decision of 4 December 2000 forbade use of processed animal protein to make feeds for cattle, swine, and poultry. Meat and bone meal (MBM is rich in macro- and microelements as well as in organic substance, and hence it can be a viable alternative to mineral fertilizers containing N and P. The objective of this study was to determine the effect of increasing doses of MBM applied every second year as an organic fertilizer on maize (Tea mays L. grown for grain. A two-factorial field experiment with a randomized block design was carried out in 20102011, in north-eastern Poland. Experimental factor I was MBM dose (2.0, 3.0, 4.0, and 5.0 Mg ha-1 applied every second year, and experimental factor II was the year of the study (two consecutive years. Increasing MBM doses applied every second year increased maize grain yield and improved grain plumpness, in comparison with mineral fertilization. The highest yield-forming effect was observed when MBM was applied at 3 Mg ha-1. Macronutrient uptake by maize plants and macronutrient concentrations in maize grain were affected by the year of the study rather than MBM dose. The results of a 2-yr experiment indicate that MBM is a valuable source of N and P for maize grown for grain, and that it is equally or more effective when compared with mineral fertilizers.

  10. Mycotoxins in small grains and maize: old problems, new challenges.

    Miller, J David

    2008-02-01

    This paper reviews the challenges relating to chronic contamination of small grains and maize with deoxynivalenol and related compounds, fumonisin and the use of ensiled cereals in cool dairy areas. Uncertainties in the tolerable daily intakes for deoxynivalenol and fumonisin are discussed as they have the potential to affect current regulatory limits. In addition, climate change is resulting in more extreme rainfall and drought events which favour formation of deoxynivalenol and fumonisin, respectively. The development and refinement of models for predicting mycotoxin accumulation from weather data will become an essential tool for managing these events. Such models are also important for providing timely food aid to developing countries, which experience increased occurrence of acute toxicities, especially in children. Chronic contamination of silage in some areas with some Penicillium toxins deserves more attention in terms of their economic effects and possible implications for the purity of milk. PMID:18286412

  11. The effects of cytoplasmic male sterility and xenia on the chemical composition of maize grain

    Vančetović Jelena

    2009-01-01

    Full Text Available Sterile hybrids often outyield their fertile counterparts, especially if pollinated by a genetically unrelated pollinator. The combined effect of cms and xenia is referred to as the Plus-hybrid effect. The objective of this study was to determine the individual, as well as, combining effect of cms and xenia on the maize grain chemical composition. The percent of oil, protein and starch in the grain was also observed. Two sterile hybrids, their fertile counterparts and five fertile pollinator-hybrids were selected for the studies. The three-replicate trial set up according to the split-plot experimental design was performed at Zemun Polje in 2008. The obtained results show that the effects of cms on the oil percent was not significant in the studied hybrid ZP 341, while it increased at the significance level of P = 0.1 in the second observed hybrid ZP 360. The effect of this factor on the protein and starch percent was also significant (P = 0.01 in some hybrid combinations. Xenia effects on all three chemical parameters were significant (P = 0.01 in some hybrid combinations. The gained results indicate that the identification of a good combination of two hybrids, in which one would be a sterile female component, and the other a pollinator, would end up not only in the increased yield, but also in the improved maize grain quality.

  12. Effect of Planting Methods and Plant Density on Yield and Yield Component of Fodder Maize

    Mohammad Mashreghi

    2014-01-01

    Full Text Available The purpose of this research is Effect of planting methods and plant density, on yield and yield component of fodder maize. Salinity is a major abiotic factor that limits agricultural crop production. More than 8 million hectare of world fields involved saline soils. Effect of different planting methods and plant density on yield and yield components of fodder maize studied during 2011 growth season. KSC704 variety of fodder maize planted in rural district of Abravan at south east of Mashhad. Main plots belonged to three levels of planting method (Furrow planting, ridge planting and double rows of planting on ridge. Sub plots belonged to three levels of plant density (90,000; 110,000 and 130,000 plant/ha. A split plot experiment conducted base on randomized complete design with three replications. Results showed that different planting methods had significant effect on fodder yield, ear weight, quality index and leaf area index of plants. Furrow planting with 130,000 plant density, produced the highest fodder yield by mean of 56.33 t/ha.

  13. Sistemas de coberturas de solo no inverno e seus efeitos sobre o rendimento de grãos do milho em sucessão Soil covering systems in the winter and its effects on maize grain yield grown in succession

    Adriano Alves da Silva

    2007-08-01

    milho também aumenta quando em sucessão à ervilhaca.The black oats use (Avena strigosa as species of soil covering in the winter, cause immobilization of the nitrogen (N, that reduces the plant development and grain yield of maize cultivated in succession. Thus, the black oat intercropped systems with leguminous as common vetch (Vicia sativa and brassicas as oilseed radish (Raphanus sativus is aimed at increasing nitrogen (N disponibility in the system and the permanence timing of its residues in the soil. Two experiments were carried out in the growth seasons of 2001/2002 and 2002/2003, in Rio Grande do Sul, Brazil. The first one was aimed at evaluating the effect of three winter species of soil covering, grown as a single culture and as intercropped crops on maize grain yield, with and without nitrogen side-dressed. The second one was aimed at determining the most adequate seed ratio of oilseed radish and black oat in intercropped systems, as soil covering crops in the winter preceding maize, under different nitrogen levels side-dressed. In Experiment I, treatments were composed by N application of 180kg ha-1, a control without N side-dressed and seven winter soil covering systems. In the Experiment II, treatments consisted of two levels of N side-dressing application in maize, a control without N side-dressed, and of three seed ratio of oilseed radish and black oat, as single and as intercropped crops and a control without crop in the winter. In all intercropped systems, independently of seed ratio used, the oilseed radish was mostly responsible for the yield of dry mass of the systems. The intercropped systems of common vetch or oilseed radish with black oat minimize the negative effect of oat on maize grain yield cultivated in succession in systems with low N availability and, even with high N supply, maize grain yield also increases when grown after common vetch.

  14. Quantitative trait loci for yield and morphological traits in maize under drought stress

    Nikolić Ana

    2011-01-01

    Full Text Available Drought is one of the most important factors contributing to crop yield loss. In order to develop maize varieties with drought tolerance, it is necessary to explore the genetic basis. Mapping quantitative trait loci (QTL that control the yield and associate agronomic traits is one way of understanding drought genetics. QTLs associated with grain yield (GY, leaf width (LW3, LW4 plant height (PH, ear height (EH, leaf number (NL, tassel branch number (TBN and tassel length (TL were studied with composite interval mapping. A total of 43 QTLs were detected, distributed on all chromosomes, except chromosome 9. Phenotypic variability determined for the identified QTLs for all the traits was in the range from 20.99 to 87.24%. Mapping analysis identified genomic regions associated with two traits in a manner that was consistent with phenotypic correlation among traits, supporting either pleiotropy or tight linkage among QTLs.

  15. Study on Fluctuation of Grain Yield in China’s Major Grain Producing Areas

    2011-01-01

    By using the statistical data of grain yield in China’s major grain producing areas from 1949 to 2008,and fluctuation theory,the historical process and main cause of fluctuation of grain yield in China’s major grain producing areas are analyzed.The results of research show that the grain yield in China’s major grain producing areas grows in unstable fluctuation,with high-frequency fluctuation cycle and regular length;the amplitude of fluctuation,on the whole,is moderate,with not strong stability;the fluctuation of grain yield has correspondence,reflecting the N-shape developmental trend of grain production at present;the fluctuation of grain yield has gradient characteristics;in the process of comparison of grain yield,the average growth rate annually of grain yield in China’s major grain producing areas is higher than that of the national average,but the relative fluctuation coefficient is also higher than that of the national average.From five aspects,namely natural disaster,agricultural policy,production input,grain price and grain circulation,the cause of fluctuation of grain yield in China’s major grain producing areas is analyzed,and measures of preventing and arresting super-long fluctuation of grain yield are put forward.Firstly,stick to strict farmland protection system,and strive to promote farmland quality;secondly,strengthen infrastructure construction of grain production and beef up the ability of preventing natural disaster;thirdly,quicken the pace of agricultural technology and establish robust technology supporting system;fourthly,lay stress on innovation of agricultural organization system and provide implementation path and vehicle for application of agricultural technology measures;fifthly,perfect disaster precaution system and grain market system,and strengthen the ability of preventing risk of grain production.

  16. Genotype by environment interaction and yield stability analysis of quality protein maize genotypes in Terai Region of Nepal

    Jiban Shrestha

    2013-06-01

    Full Text Available Grain yield stability for the new maize genotypes is an important target in maize breeding programs. The main objective of this study was to identify stable high yielding quality protein maize (QPM genotypes under various locations and years in terai region of Nepal. Six quality protein maize genotypes along with Poshilo Makai-1 (Standard Check and Farmer’s Variety (Local Check were tested at three different locations namely Ayodhyapuri-2, Devendrapur, Madi, Chitwan; Rajahar-8, Bartandi, Rajahar, Nawalparasi; Mangalpur-2, Rampur, Chitwan during 2011 and 2012 spring and winter seasons under rainfed condition. The experiment was conducted using Randomized Complete Block Design with two replications in farmer’s fields. There was considerable variation among genotypes and environments for grain yield. The analysis of variance showed that mean squares of environments (E was highly significant and genotypes (G and genotype x environment interaction (GEI were non significant. The genotypes S03TLYQ- AB02 and RampurS03FQ02 respectively produced the higher mean grain yield 5422±564 kg/ha and 5274±603 kg/ha across the locations. Joint regression analysis showed that RampurS03FQ02 and S03TLYQ-AB02 with regression coefficient 1.10 and 1.22 respectively are the most stable genotypes over the tested environments. The coefficient of determination (R2 for genotypes Rampur S03FQ02 and S03TLYQ-AB02 were as high as 0.954, confirming their high predictability to stability. Further confirmation from GGE biplot analysis showed that maize genotype S03TLYQ-AB02 followed by Rampur S03FQ02 were more stable and adaptive genotypes across the tested environments. Thus these genotypes could be recommended to farmers for general cultivation.

  17. Effect of Controlled-release Urea Combined with Common Urea on the Grain Yields of Summer Maize and Distribution of Soil Ammonium and Nitrate Content%控释掺混肥对夏玉米产量及土壤硝态氮和铵态氮分布的影响

    李伟; 李絮花; 唐慎欣; 李海燕; 刘旭凤; 彭强

    2011-01-01

    通过田间试验研究释放期60 d的水基包膜尿素与普通尿素常规施肥用量下不同比例配合追施对夏玉米产量、肥料利用率、氮肥农学利用率、氮肥偏生产力、氮素收获指数、氮素积累量及0-60 cm土壤硝铵态氦含量动态分布的影响.结果表明:各控释掺混处理对夏玉米的产量、肥料利用率、氮肥农学利用率、氮肥偏生产力及氮素收获指数较常规施肥都有不同程度的提高,以控氮比50%处理最佳,产量和氮肥利用率分别比对照的提高9.43%和24.69%,达到显著水平;各控释掺混处理0-60 cm土壤都保持较高的硝态氮含量,至后期较常规施肥的略高,满足了玉米的生长.玉米各时期土壤铵态氮含量大致以高控氮比处理的含量高,差异不明显,但显著高于常规施肥处理的.控氮比50%处理更适合本区域玉米生产.%Field experiment were carried out on grain yield of summer maize to determine the effect of different proportions of water-base controlled-release coated urea of 60 d release duration combined with conventional urea as topdressing on nitrogen utilization, nitrogen agronomic efficiency, nitrogen partial productivity, nitrogen harvest index and nitrogen accumulation. Dynamic distribution of nitrate content in soil was also studied. The findings indicated that the treatment of controlled-release urea combined with conventional urea (CRUCU)was remarkably higher than the ones used urea alone in various degree in maize yield, fertilizer utilization, nitrogen agronomic efficiency, productivity and nitrogen partial nitrogen harvest index, and the treatment used 50% controlled-release coated urea was superior to other ones. Its yield was increased by 9. 43% than the treatment used urea alone, while nitrogen utilization was 24. 69%. Both differences reached significant level. The nitrate nitrogen content of treatment of CRUCU was sufficient in 0 - 60 cm depth in soil layer throughout the later growth

  18. Study of Yield Combining Ability and Genetic Relationship Among Exotic Tropical, Subtropical Maize (Zea mays L.) Inbreds and Temperate Maize Inbreds in China

    FAN Xing-ming; TAN Jing; YANG Jun-yun; LIU Feng; HUANG Bi-hua; HUANG Yun-xiao

    2002-01-01

    Information on the genetic relationship between tropical maize (Zea mays L), germplasm and temperate maize germplasm is of great value to maize breeding. The objective of this study was to determine the combining ability and genetic relationship of 25 inbreds extracted from five tropical maize populations and a land race, with four temperate maize inbreds (Huangzaosi, Mo17, B73 and Dan 340). The 25 tropical inbreds were crossed with the four temperate inbreds and evaluated. Lines from Suwan1 and POP28 had high general combining ability (GCA) for grain yield. The lines from POP32 (ETO) had the highest special combining ability (SCA) with B73; the average SCA value of the 5 lines was 879 kg/ha. The lines from Suwan1had the second-highest SCA (584 kg/ha) with Huangzaosi. The lines from Suwan1 had the greatest relative heterosis (20%) with B73, followed by the lines from POP32 (ETO) with B73 (19%). Five heterotic patterns have been identified from this study: Suwan1 × Reid, ETO × Reid, POP28 × Reid, POP28 × Ludahonggu, and Suwan1 × Lancaster.

  19. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage

    Xiaohuan eMu

    2016-05-01

    Full Text Available Nitrogen (N plays a vital role in photosynthesis and crop productivity. Maize plants may be able to increase physiological N utilization efficiency (NUtE under low-N stress by increasing photosynthetic rate (Pn per unit leaf N, that is, photosynthetic N-use efficiency (PNUE. In this study, we analyzed the relationship between PNUE and N allocation in maize ear-leaves during the grain-filling stage under low N (no N application and high N (180 kg N ha−1 in a 2-year field experiment. Under low N, grain yield decreased while NUtE increased. Low-N treatment reduced the specific N content of ear leaves by 38% without significant influencing Pn, thereby increasing PNUE by 54%. Under low-N stress, maize plants tended to invest relatively more N into bioenergetics to sustain electron transport. In contrast, N allocated to chlorophyll and light-harvesting proteins was reduced to control excess electron production. Soluble proteins were reduced to shrink the N storage reservoir. We conclude that optimization of N allocation within leaves is a key adaptive mechanism to maximize Pn and crop productivity when N is limited during the grain-filling stage in maize under low-N conditions.

  20. Maize Yield Response to Fertilizer and Profitability of Fertilizer Use Among Small-Scale Maize Producers in Zambia

    Xu, Zhiying; Govereh, Jones; Black, J. Roy; Jayne, Thomas S.

    2006-01-01

    Multi-year nationwide survey data is used to estimate maize yield response functions and determine profitability of fertilizer use by small-scale farmers in Zambia. There has been a dearth of empirical studies on economics of fertilization in the context of Sub-Saharan Africa. In this paper we identify major methodological issues arising from using survey data and estimate maize yield response functions for small-scale rural households that have various management practices and soil condition...

  1. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland.

    Elżbieta Czembor

    Full Text Available Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON, zearalenone (ZON and fumonisin B1 (FB1. Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated. Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950-2000 for annual temperature range were negative in contrast to the coldest quarter temperatures.

  2. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland.

    Czembor, Elżbieta; Stępień, Łukasz; Waśkiewicz, Agnieszka

    2015-01-01

    Maize is one of the most important crops and Poland is the fifth largest producing country in Europe. Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi. The present study was performed to identify the prevailing Fusarium species and the environmental factors affecting their frequencies and the contamination of grain with the main mycotoxins deoxynivalenol (DON), zearalenone (ZON) and fumonisin B1 (FB1). Thirty kernel samples were collected in three locations in 2011 and in seven locations in 2012 from three hybrids. On average, 25.24% kernels were colonized by Fusarium spp. (424 strains were isolated). Fusarium verticillioides and F. temperatum were the most prevalent species, F. subglutinans, F. proliferatum and F. graminearum were in minor abundance. In total, 272 isolates of F. verticillioides and 81 isolates of F. temperatum were identified. Fusarium temperatum frequency ranged from 1.70% to 28.57% and differences between locations were significant. Fumonisin B1 was found in all tested samples. DON was found in 66.67% and ZON in 43.33% of samples. Rainfall amount positively affected F. temperatum and F. subglutinans frequency in opposite to mean temperatures in July. On the other hand, relationships between frequency of these species and historical data from 1950-2000 for annual temperature range were negative in contrast to the coldest quarter temperatures. PMID:26225823

  3. Effect of different mulching materials on maize growth and yield in conservation agriculture systems of sub-humid Zimbabwe

    W. Mupangwa

    2016-06-01

    Full Text Available The introduction of conservation agriculture (CA for smallholders increased the competition for crop residues between crop and livestock enterprises of the mixed smallholder farming system. Smallholders practicing CA have resorted to using grass and leaf litter in addition to available crop residues. The effect of these different mulching materials on maize (Zea mays L. growth and yield is not well documented in smallholder CA systems of southern Africa. A two-year experiment was run in 2012/13 and 2013/14 seasons to evaluate the effect of maize residues, grass (Hyparrhenia filipendula (L. Stapf. and leaf litter that farmers are currently using and residues from leguminous species, sunhemp (Crotolaria juncea L. and Tephrosia (Tephrosia vogelii ((Hook f. on maize nitrogen (N uptake, growth and yield. Significant differences in soil water content across treatments were only observed during March in 2012/13 season. Maize residues retained more soil water and Tephrosia had the lowest soil water content when seasonal rainfall pattern was erratic. Grass and Tephrosia treatments had the lowest chlorophyll content. Conventional ploughing, maize residues and leaf litter had similar chlorophyll content which was significantly higher than grass and Tephrosia treatments. At a site with higher initial soil fertility conventional ploughing treatment out yielded the other treatments by 727–1265 kg ha−1. With more degraded sandy soil conventional practice had 119–430 kg ha−1 more maize grain than the CA treatments. With adequate fertilization, the mulching materials have a similar effect on maize growth in basins and direct seeding. Further studies on different application rates of mulching materials and mineral N fertilizer, and nutrient release patterns of these residues are critical in order to better understand soil fertility management under smallholder CA systems.

  4. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China. PMID:25329376

  5. Heterosis expression in crosses between maize populations: ear yield

    Silva Ricardo Machado da

    2003-01-01

    Full Text Available The phenomenon of heterosis has been exploited extensively in maize (Zea mays L. breeding. The objective of this study was to evaluate the genetic potential of ten maize populations for ear yield following the diallel mating scheme. Six parental populations were obtained through phenotypic selection of open-pollinated ears in Rio Verde, GO, Brazil, (GO populations and four parental populations were synthesized in Piracicaba, SP, Brazil (GN populations: GO-D (DENTADO, GO- F (FLINT, GO-A (AMARELO, GO-B (BRANCO, GO-L (LONGO, GO-G (GROSSO, GN-01, GN-02, GN-03 and GN-04. Experiments were carried out in three environments: Anhembi (SP and Rio Verde (GO in 1998/99 (normal season crop and Piracicaba (SP in 1999 (off-season crop. All experiments were in completely randomized blocks with six replications. Analysis of variance grouped over environments showed high significance for heterosis and its components, although mid-parent heterosis and average heterosis were of low expression. The interaction treatments x environments was not significant. Total mid-parent heterosis effects ranged from de -4.3% to 17.3% with an average heterosis of 3.37%. Population with the highest yield (7.4 t ha-1 and with the highest effect of population (v i = 0.746 was GN-03, while the highest yielding cross was GO-B x GN-03 with 7,567 t ha-1. The highest specific heterosis effect (s ii' = 0.547 was observed in the cross GO-B x GN-03.

  6. Computing wheat nitrogen requirements from grain yield and protein maps

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  7. Computing wheat nitrogen requirements from grain yield and protein maps

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  8. Grain-filling duration and grain yield relationships in wheat mutants

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  9. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.

    Yu Tian

    2014-01-01

    Full Text Available A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.. Results indicated that the seeds primed by gibberellins (GA, NaCl, and polyethylene glycol (PEG reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P<0.05. The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM, or PEG (15% significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  10. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method. PMID:25093210

  11. Effect of plant population and nitrogen levels and methods of application on ear characters and yield of maize

    Field experiments were conducted at Agricultural Research Farm, NWFP Agricultural University, Peshawar, Pakistan during summer 2006 and 2007 in randomized complete block design with split plot arrangements having three replications. Four plant populations (4.5, 6, 7.5 and 9 plants m/sup -2/), three nitrogen levels (80, 120 and 160 kg ha/sup -1/) and three nitrogen application methods (full dose at emergence, half each at emergence and knee height, one third each at emergence, knee height and pre-tasseling stages) were included in the experiments. Plant populations (PP) were kept in the main plot, while combinations of nitrogen levels (N) and nitrogen application methods were kept in the sub-plots. Maize variety Azam was sown with the help of a planter in a plot size of 3 x 3 m/sup 2/ with row to row distance of 75 cm. Grain and biological yields increased with increase in PP from 4.5 plants m/sup -2/ to 7.5 plants m/sup -2/ but further increase in PP did not significantly enhance grain and biological yields of maize. Likewise, increase in N level significantly improved grain and biological yields of maize up to 120 kg ha/sup-1/. Similarly, N application in three splits performed better than sole or two splits in terms of biological yield production in maize. HI consistently increased with increase in PP from 4.5 plants m/sup -/2 to 9 plants m/sup -/2. Ear characters were not affected by PP except grain weight which was higher at PP of 7.5 plants m/sup -2/. In similar fashion, N level significantly affected only grains row/sup -1/ and grain ear/sup -1/. Both grains row-1 and grain ear/sup -1/ increased with increase in N level from 80 to 160 kg ha/sup -1/ but the N level of 120 and 160 kg ha/sup -1/ were statistically at par with each other. It is concluded that higher yield and better ear characters were obtained at PP of 7.5 plant m-2 with N application at the rate of 20 kg ha/sup -1/. (author)

  12. Yield and quality of silage of maize hybrids

    Karoline Guedes Araújo

    2012-06-01

    Full Text Available The objective of this research was to identify the potential of maize hybrids for the production of silage. Hybrids 1671B, 2B433, 20A78, SHS4070, BX1280 and DKB390 were tested in a randomized block design with three replications. The hybrids yields were evaluated (average plant height, height of ear insertion, number of broken and lodged plants/ha, leaf:stem and ear:plant ratio and production of of DM, CP and TDN/ha. There was no difference between hybrids for the variables studied, except for the height of ear insertion. With respect to chemical characteristics, N-NH3/NT organic acids, and pH, there was also no difference between cultivars and hybrid silages are rated as of very good quality.

  13. Rendimento de grãos e margem bruta de cultivares de milho com variabilidade genética contrastante em diferentes sistemas de manejo Grain yield and gross income of maize cultivars with contrasting genetic variability at different management systems

    Luís Sangoi

    2006-06-01

    investir em práticas culturais que otimizem a performance agronômica e o potencial produtivo da cultivar.The optimization of maize production systems in southern Brazil depends on the adequate combination between genotype traits and the type of management system. This work was carried out aiming at evaluating the grain yield and gross income of maize cultivars with contrasting genetic variability at different management levels. The experiment was conducted in Lages, SC, using randomized block design with split-plots. Four production systems, equivalent to low (S1, medium (S2, high (S3 and very high (S4 management levels were tested in the main plots. The single-cross hybrid Pioneer 32R21, the double cross hybrid Traktor, and the open-pollinated variety BRS Planalto were assessed in the split-plots. The management systems differed in relation to the quantity and timing of fertilizer application, plant density, row spacing, and water irrigation. The trials were sown in 11/20/2002 and 10/22/2003, under the no-till soil tillage system. Regardless cultivar, maize grain yield and gross income increased with the enhancement in management level, ranging from 1,781 (S1 to 13,848 (S4kg ha-1 and from 206,00 (S1 to 2,937,00 (S4R$ ha-1, depending on the cultivar and growing season. The larger genetic variability of the cultivar BRS Planalto did not improve its grain yield when compared to the hybrids in S1. The hybrids were more productive and profitable than the open pollinated variety in S2. The use of a single-cross hybrid promoted the greatest grain yield and gross income in S3 and S4, showing that it is possible to match maximum technical and economic efficiency with a high yield plateau, as long as there is financial condition to invest in cultural practices that optimize maize agronomic performance and genetic potential to explore them.

  14. Significant yield increases from control of leaf diseases in maize - an overlooked problem?!

    Jørgensen, Lise Nistrup

    2012-01-01

    The area of maize has increased in several European countries in recent years. In Denmark, the area has increased from 10,000 ha in 1980 to 185,000 ha in 2011. Initially only silage maize was cultivated in Denmark, but in more recent years the area of grain maize has also increased. Farms growing....... Two major diseases have been identified: Eyespot (Kabatiella zeae) and Northern leaf blotch (Exserohilum turcicum). Other diseases, including Southern maize leaf blight or maydis leaf blight, caused by Bipolaris maydis, and Northern corn leaf spot, caused by Bipolaris zeicola, may potentially play a...

  15. Growth and yield performance of maize (zea mays L.) as affected by planting methods and NPK levels

    Two year research was conducted to find out the best combination of sowing geometry and levels of N, P and K fertilizers for maize hybrid 32-W-86. Four N-P-K levels viz., 0-0-0, 200-100-100, 250-125-125 and 300-150-150 kg ha-1 were tested in combination with 3 planting geometries viz., flat sowing in 75 cm spaced rows, ridge sowing on 75 cm spaced ridges and bed sowing (120 cm wide beds separated by 30 cm furrows) in randomized complete block design with factorial arrangement. During both years, treatment with 250-125-125 kg ha/sup -1/ NPK and 75 cm apart ridge sowing was found to be superior as it showed significantly higher grain yield (10.02 to 10.54 t ha/sup -1/), number of cobs per plant (1.80 to 1.87), number of grains per cob (359.33 to 378.67), 1000-grain weight (306.46 to 320.62 g), biological yield (24.01 to 24.36 t ha/sup -1/) and harvest index (41.76 to 43.51 %). Contrastingly, 0-0-0 NPK kg ha/sup -1/ fertilizer treatment in combination with all 3 planting geometries remained at lowest position with respect to grain yield. Grain yield showed significant positive relationship with number of cobs per plant, number of grains per cob, 1000-grain weight, biological yield and harvest index of maize. (author)

  16. Sequential Path Model for Grain Yield in Soybean

    Mohammad SEDGHI

    2010-09-01

    Full Text Available This study was performed to determine some physiological traits that affect soybean,s grain yield via sequential path analysis. In a factorial experiment, two cultivars (Harcor and Williams were sown under four levels of nitrogen and two levels of weed management at the research station of Tabriz University, Iran, during 2004 and 2005. Grain yield, some yield components and physiological traits were measured. Correlation coefficient analysis showed that grain yield had significant positive and negative association with measured traits. A sequential path analysis was done in order to evaluate associations among grain yield and related traits by ordering the various variables in first, second and third order paths on the basis of their maximum direct effects and minimal collinearity. Two first-order variables, namely number of pods per plant and pre-flowering net photosynthesis revealed highest direct effect on total grain yield and explained 49, 44 and 47 % of the variation in grain yield based on 2004, 2005, and combined datasets, respectively. Four traits i.e. post-flowering net photosynthesis, plant height, leaf area index and intercepted radiation at the bottom layer of canopy were found to fit as second-order variables. Pre- and post-flowering chlorophyll content, main root length and intercepted radiation at the middle layer of canopy were placed at the third-order path. From the results concluded that, number of pods per plant and pre-flowering net photosynthesis are the best selection criteria in soybean for grain yield.

  17. IMPACT OF OZONE ON GRAIN SORGHUM YIELD

    Grain sorghum(sorghum vulgare Pers.) is an important animal feed crop, and it is sometimes planted as a substitute for field corn. Although sorghum is grown in areas of the central and southern U.S. where potentially damaging concentrations of 03 exist, no data are available rega...

  18. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Xinpeng Xu

    Full Text Available Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L. were collected in four maize agro-ecological regions of China, and the optimal management (OPT, farmers' practice (FP, a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N, phosphorus (P, and potassium (K were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  19. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  20. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  1. Genome-wide association study and pathway level analysis of tocochromanol levels in maize grain

    Tocopherols and tocotrienols, collectively known as tocochromanols, are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Given that individual tocochromanols differ in their degree of vitamin E activity, variation for tocochromanol composition and content in grain from among divers...

  2. [Effect of the prolamins in maize (Zea mays L.) grain on tortilla texture].

    Sánchez, F C; Salinas, M Y; Vázquez, C M G; Velázquez, C G A; Aguilar, G N

    2007-09-01

    The prolamins (zeins) are the main storage proteins in the maize grain. There are limited investigations related to their participation on tortilla texture. For determining their effect, normal (6) and Quality Protein Maize (QPM) (6) genotypes were used. The chemical variables comprised prolamins, amylose and starch in whole grain and endosperm. Viscosity of the raw endosperm flour was determined as well as the tortilla texture, expressed in terms of tension force and elongation. Prolamin content in the normal maizes was 64 % higher than that in the QPMs. It was not observed any relationship between prolamin content and flour viscosity. The prolamin content was not related with tortilla hardness, measured as the tension force to rupture the tortilla, but a negative correlation was observed with tortilla elongation. The tortillas with the best texture characteristics were from H-161 nomal maize and H-143 QPM maize, both genotypes showed the smallest grain in its respective gruop. According to the results obtained in the present work, a high prolamin content in maize grain could be affecting tortilla elongation. PMID:18271409

  3. Airtight storage of moist wheat grain improves bioethanol yields

    Piens Kathleen

    2009-08-01

    Full Text Available Abstract Background Drying is currently the most frequently used conservation method for cereal grain, which in temperate climates consumes a major part of process energy. Airtight storage of moist feed grain using the biocontrol yeast Pichia anomala as biopreservation agent can substantially reduce the process energy for grain storage. In this study we tested the potential of moist stored grain for bioethanol production. Results The ethanol yield from moist wheat was enhanced by 14% compared with the control obtained from traditionally (dry stored grain. This enhancement was observed independently of whether or not P. anomala was added to the storage system, indicating that P. anomala does not impair ethanol fermentation. Starch and sugar analyses showed that during pre-treatment the starch of moist grain was better degraded by amylase treatment than that of the dry grain. Additional pre-treatment with cellulose and hemicellulose-degrading enzymes did not further increase the total ethanol yield. Sugar analysis after this pre-treatment showed an increased release of sugars not fermentable by Saccharomyces cerevisiae. Conclusion The ethanol yield from wheat grain is increased by airtight storage of moist grain, which in addition can save substantial amounts of energy used for drying the grain. This provides a new opportunity to increase the sustainability of bioethanol production.

  4. Effect of Nitrogen Management on Yield and Water Use Efficiency of Rainfed Wheat and Maize in Northwest China

    DANG Ting-Hui; CAI Gui-Xin; GUO Sheng-Li; HAO Ming-De; L.K.HENG

    2006-01-01

    A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to 2002. The local cropping sequence of wheat, wheat-beans, maize, and wheat over the 4-year period was adopted. A micro-plot study using 15N-labelled fertilizer was carried out to determine the fate of applied N fertilizer in the first year. When N fertilizer was applied wheat (years 1, 2 and 4) and maize (year 3) grain yield increased significantly (P < 0.05) (> 30%), with no significant yield differences in normal rainfall years (Years 1, 2 and 3) for N application at the commonly application rate and at 2/3 of this rate. Grain yield of wheat varied greatly between years, mainly due to variation in annual rainfall.Results of 15N studies on wheat showed that plants recovered 36.6%-38.4% of the N applied, the N remained in soil (0-40cm) ranged from 29.2% to 33.6%, and unaccounted-for N was 29.5%-34.2%. The following crop (wheat) recovered 2.1%-2.8% of the residual N from N applied to the previous wheat crop with recovery generally decreasing in the subsequent three crops (beans, maize and wheat).

  5. Yield performance of the European Union Maize Landrace Core Collection under multiple corn borer infestations

    Malvar Pintos, Rosa Ana; Butrón Gómez, Ana María; Álvarez Rodríguez, Ángel; Padilla Alonso, Guillermo; Cartea González, María Elena; Revilla Temiño, Pedro; Ordás Pérez, Amando

    2007-01-01

    In Europe, corn borer attack is the main biotic stressor for the maize (Zea mays L.) crop. European corn borer (Ostrinia nubilalis Hbn.) is the most important maize pest in central and north Europe, while pink stem borer (Sesamia nonagrioides Lef.) is predominant in warmer areas of southern Europe. The objective of this study was the evaluation of the European Maize Union Landrace Core Collection (EUMLCC) for yield under infestation with European corn borer (O. nubilalis) and pink stem borer ...

  6. Farmers' agronomic and social evaluation of productivity yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop

    Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Cobbinah, J.; Sakyi-Dawson, O.; Giller, K.E.

    2008-01-01

    Cowpea-maize rotations form an important component of the farming systems of smallholder farmers in the forest/savannah transitional agro-ecological zone of Ghana. We evaluated five cowpea varieties for grain yield, N-2-fixation, biomass production, and contribution to productivity of subsequent mai

  7. THE EFFECTS OF CLIMATIC VARIABLES AND CROP AREA ON MAIZE YIELD AND VARIABILITY IN GHANA

    Henry De-Graft Acquah

    2012-10-01

    Full Text Available Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional form was employed. The results show that average maize yield is positively related to crop area and negatively related to rainfall and temperature. Furthermore, increase in crop area and temperature will enlarge maize yield variability while rainfall increase will decrease the variability in maize yield.

  8. Variability of pathogenicity of Fusarium spp. originating from maize and wheat grains

    Sonja Tančić; Slavica Stanković; Jelena Lević

    2009-01-01

    Differences in the pathogenicity of 93 isolates of seven species belonging to the genus Fusarium (F. graminearum, F. verticillioides, F. proliferatum, F. subglutinans, F. sporotrichioides, F. semitectum and F. equiseti), originating from maize kernels (61) and wheat grains (32), were examined based on the germination percentage of inoculated seeds. The studied species demonstrated inter- and intraspecies variability regarding the effects on maize seed germination. On the average, the greatest...

  9. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization

    Vergara-Díaz, Omar; Zaman-Allah, Mainassara A.; Masuka, Benhildah; Hornero, Alberto; Zarco-Tejada, Pablo; Prasanna, Boddupalli M.; Cairns, Jill E.; Araus, José L.

    2016-01-01

    Maize crop production is constrained worldwide by nitrogen (N) availability and particularly in poor tropical and subtropical soils. The development of affordable high-throughput crop monitoring and phenotyping techniques is key to improving maize cultivation under low-N fertilization. In this study several vegetation indices (VIs) derived from Red-Green-Blue (RGB) digital images at the leaf and canopy levels are proposed as low-cost tools for plant breeding and fertilization management. They were compared with the performance of the normalized difference vegetation index (NDVI) measured at ground level and from an aerial platform, as well as with leaf chlorophyll content (LCC) and other leaf composition and structural parameters at flowering stage. A set of 10 hybrids grown under five different nitrogen regimes and adequate water conditions were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N concentration across N fertilization levels were strongly predicted by most of these RGB indices (with R2~ 0.7), outperforming the prediction power of the NDVI and LCC. RGB indices also outperformed the NDVI when assessing genotypic differences in grain yield and leaf N concentration within a given level of N fertilization. The best predictor of leaf N concentration across the five N regimes was LCC but its performance within N treatments was inefficient. The leaf traits evaluated also seemed inefficient as phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping techniques may significantly contribute to the progress of plant breeding and the appropriate management of fertilization. PMID:27242867

  10. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization.

    Vergara-Díaz, Omar; Zaman-Allah, Mainassara A; Masuka, Benhildah; Hornero, Alberto; Zarco-Tejada, Pablo; Prasanna, Boddupalli M; Cairns, Jill E; Araus, José L

    2016-01-01

    Maize crop production is constrained worldwide by nitrogen (N) availability and particularly in poor tropical and subtropical soils. The development of affordable high-throughput crop monitoring and phenotyping techniques is key to improving maize cultivation under low-N fertilization. In this study several vegetation indices (VIs) derived from Red-Green-Blue (RGB) digital images at the leaf and canopy levels are proposed as low-cost tools for plant breeding and fertilization management. They were compared with the performance of the normalized difference vegetation index (NDVI) measured at ground level and from an aerial platform, as well as with leaf chlorophyll content (LCC) and other leaf composition and structural parameters at flowering stage. A set of 10 hybrids grown under five different nitrogen regimes and adequate water conditions were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N concentration across N fertilization levels were strongly predicted by most of these RGB indices (with R (2)~ 0.7), outperforming the prediction power of the NDVI and LCC. RGB indices also outperformed the NDVI when assessing genotypic differences in grain yield and leaf N concentration within a given level of N fertilization. The best predictor of leaf N concentration across the five N regimes was LCC but its performance within N treatments was inefficient. The leaf traits evaluated also seemed inefficient as phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping techniques may significantly contribute to the progress of plant breeding and the appropriate management of fertilization. PMID:27242867

  11. An assessment of nutritional quality of hybryd maize grain based on chemical composition

    Stevanović Milan; Mladenović-Drinić Snežana; Dragičević Vesna; Camdžija Zoran; Filipović Milomir; Veličković Nevena; Stanković Goran

    2012-01-01

    The aim of this study was to investigate chemical composition of grain of 20 maize hybrids, from different maturity groups, to define their nutritional quality from the point of main grain constituents: starch, total proteins, soluble proteins, oil, phytate, inorganic phosphorus, and soluble phenolics, as well as mass of 1.000 grains. A set of 20 ZP hybrids, FAO 400-800, were grown in a randomized complete block design (RCBD) at Zemun Polje (Serbia), during...

  12. Micronutrient and functional compounds biofortification of maize grains.

    Messias, Rafael da Silva; Galli, Vanessa; Silva, Sérgio Delmar Dos Anjos E; Schirmer, Manoel Artigas; Rombaldi, César Valmor

    2015-01-01

    Maize, in addition to being the main staple food in many countries, is used in the production of hundreds of products. It is rich in compounds with potential benefits to health, such as carotenoids, phenolic compounds, vitamin E, and minerals that act as cofactors for antioxidant enzymes. Many of these compounds have been neglected thus far in the scientific literature. Nevertheless, deficiencies in the precursors of vitamin A and some minerals, such as iron and zinc, in maize, in association with the great genetic variability in its cultivars and our genomic, transcriptomic, and metabolomic knowledge of this species make targeted biofortification strategies for maize promising. This review discusses the potential of the main microconstituents found in maize with a focus on studies aimed at biofortification. PMID:24915397

  13. Simulating of Top-Cross system for enhancement of antioxidants in maize grain

    Jelena Vancetovic; Sladjana Zilic; Sofija Bozinovic; Dragana Ignjatovic-Micic

    2014-01-01

    Blue maize (Zea mays L.) is grown for its high content of antioxidants. Conversion of yellow and white to blue maize is time consuming because several genes affect blue color. After each backcross selfing is needed for color to be expressed. In order to overcome the problem of time and effort needed for conversion to blue kernel color, we have set a pilot experiment simulating a Top-cross system for increasing antioxidants in maize grain. The idea is to alternately sow six rows of sterile sta...

  14. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  15. Association of Duration and Rate of Grain Filling with Grain Yield in Temperate Japonica Rice (Oryza sativa L.)

    Grain filling is a crucial factor that determines grain yield in crops since it is the final process directly associated with crops' yield performance. Grain filling process can be characterized by the interaction of rate and duration of grain filling. This study was conducted, using 16 temperate japonica rice genotypes, with aims to (1) seek variations in grain filling duration and rate on area basis, (2) compare the contribution of grain filling duration and rate to grain yield, and (3) examine the influence of temperature and solar radiation for effective grain filling on grain yield in relation to grain filling duration and rate

  16. Improving yield and nitrogen nutrition of maize (zea mays, L) through azotobacterization and sulphur fertilization

    The experiment was conducted in plastic pots each, containing 20 kg soil to study the effect of sulphur (20, 40, 60 kg S/ha) and azotobacter inoculation alone and in combination on the yield and nutrition of maize (cv. Azam). A basal dose of nitrogen (N), phosphorus (P/sub 2/O/sub 3/) and potash (K/sub 2/O) at 40, 80, 40 kg/ha was applied to each pot. The results revealed that increasing rates of sulphur application significantly improved the total biomass yield by 31.4 to 34.0 percent and total biomass N yield of maize by 61.0 to 65.0 percent as compared to control receiving no sulphur or azotobacter. The effect of sulphur application in improving the total biomass and biomass N yield of maize was statistically at par with that of azotobacter inoculation alone. Application to sulphur at all the applied levels along with azotobacter inoculation further improved significantly the total biomass yield by 66.0 to 70.0 percent and total biomass N yield by 99.0 to 104.0 percent as compared to control receiving no sulphur or azotobacter. Azotobacterization of maize in the presence of sulphur fertilization further improved significantly the total biomass yield by 24.1 to 29.0 percent and total biomass N yield of maize by 13.0 to 17.0 percent as compared to control receiving azotobacter alone. Inoculation of maize with azotobacter alone or in combination with sulphur markedly stimulated the azotobacter population in the root rhizospheric soil as compared to non-rhizospheric (free) soil sulphur alone had no effect in stimulating the azotobacter population in the rhizospheric soil as compared to non-rhizospheric (free) soil of maize plant. Azotobacterization of maize alone or in the presence of sulphur fertilization significantly improved the maize height. (author)

  17. Comparative effectiveness of different Rhizobium sp. for improving growth and yield of maize (Zea mays L.

    Ijaz Mehboob, Zahir Ahmad Zahir, Muhammad Arshad, Muhammad Khalid

    2012-05-01

    Full Text Available During the last couple of decades, it has been demonstrated that rhizobia can associate with roots of non-legumes also without forming true nodules, and can promote their growth by using one or more of the direct or indirect mechanisms of actions. This work examines the growth and yield responses of maize to inoculation with different species of rhizobia, isolated from the root nodules of chickpea (Cicer arietinum L., lentil (Lens culinaris M. and mung bean (Vigna radiata L. in pots and fields. Twenty isolates of rhizobia were isolated from root nodules each of mung bean, lentil and chickpea and were screened under axenic conditions. On the basis of their promising performance under axenic conditions, nine most efficient isolates (three from each legume host were selected, characterized and further evaluated for their growth promoting activities by conducting pot and field experiments. Results of pot experiment revealed that maximum increase in grain yield, 1000 grain weight, N, P and K uptake (up to 47.89, 54.52, 73.46, 84.66 and 59.19% by CRI28, respectively, over un-inoculated control was produced by the isolate of Mesorhizobium ciceri. Whereas, maximum improvement in rest of the parameters was caused by the isolates of Rhizobium phaseoli (i.e. fresh biomass, straw yield and root length up to 36.30% by A18, 25.46% by S6 and 81.89% by A18, respectively over un-inoculated control. Rhizobium leguminosarum isolates came out to be the least effective among the species tested. Similarly, all the selected isolates improved the growth and yield attributing parameters in fields as well but with varying capacity compared with un-inoculated control. The selected isolates of Mesorhizobium ciceri and Rhizobium phaseoli again remained superior compared to the isolates of Rhizobium leguminosarum under field conditions. The results of this study imply that rhizobium species had potential to promote growth and yield of maize but this technology should be

  18. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index

    Kuri, Farai; Murwira, Amon; Murwira, Karin S.; Masocha, Mhosisi

    2014-12-01

    Maize is a key crop contributing to food security in Southern Africa yet accurate estimates of maize yield prior to harvesting are scarce. Timely and accurate estimates of maize production are essential for ensuring food security by enabling actionable mitigation strategies and policies for prevention of food shortages. In this study, we regressed the number of dry dekads derived from VCI against official ground-based maize yield estimates to generate simple linear regression models for predicting maize yield throughout Zimbabwe over four seasons (2009-10, 2010-11, 2011-12, and 2012-13). The VCI was computed using Normalized Difference Vegetation Index (NDVI) time series dataset from the SPOT VEGETATION sensor for the period 1998-2013. A significant negative linear relationship between number of dry dekads and maize yield was observed in each season. The variation in yield explained by the models ranged from 75% to 90%. The models were evaluated with official ground-based yield data that was not used to generate the models. There is a close match between the predicted yield and the official yield statistics with an error of 33%. The observed consistency in the negative relationship between number of dry dekads and ground-based estimates of maize yield as well as the high explanatory power of the regression models suggest that VCI-derived dry dekads could be used to predict maize yield before the end of the season thereby making it possible to plan strategies for dealing with food deficits or surpluses on time.

  19. Soil physical characteristics and yield of wheat and maize as affected by mulching materials and sowing methods

    Syed Shahid Hussain Shah, Anwar-Ul-Hassan, Abdul Ghafoor

    2013-05-01

    Full Text Available Soil physical degradation due to agriculture activity is a pressing issue in Pakistan causing reduction in crop yields. The study was conducted to assess the effects of two sowing methods and two mulching materials on soil physical characteristics and yields of wheat and maize during 2008-10 at Faisalabad, Pakistan. Results showed that Bed sowing method along with wheat straw mulch increased Leaf Area Index of wheat by 5 to 16%, and of maize by 4 to 14% compared with other treatments. This treatment also produced maximum 1000-grain weight (50.5 g of wheat and maize (439.2g as compared to flat sowing method where no mulch was applied. The highest grain yields of wheat (5017 kg ha-1 and maize (10.6 Mg ha-1 were recorded in Bed sowing + wheat straw mulch plots. Bed sowing alone decreased bulk density by 4% at 0-15 cm soil depth and 13.7% less soil penetration resistance (788.2 kPa was noted. About 23.0% higher soil organic carbon contents (4.2 g kg-1 at 0-15 cm soil depth, 39.1% higher field saturated hydraulic conductivity (24.3 mm hr-1 and 14.2% higher infiltration rate (58.5 mm hr-1 were recorded compared to flood irrigated flat sowing. Furrow irrigated raised bed technique was found to be environment friendly in combination with farm manure compared to wheat straw having enhanced soil organic carbon contents.

  20. Effect of Irrigation to Winter Wheat on the Radiation Use Efficiency and Yield of Summer Maize in a Double Cropping System

    Li Quanqi

    2012-01-01

    Full Text Available In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS, the photosynthetic active radiation (PAR capture ratio, grain yield, and the radiation use efficiency (RUE of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, P<0.05 increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops.

  1. Effect of wheat gluten proteins on bioethanol yield from grain

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  2. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  3. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  4. Impact of tembotrione and flufenacet plus isoxaflutole application timings, rates, and adjuvant type on weeds and yield of maize

    Robert Idziak

    2014-04-01

    Full Text Available Due to the steadily increasing cost of weed control in corn (Zea mays L. and possible negative impact of chemicals on environment the demand for less and more efficient herbicide use is rising. Field studies were carried out in 2010 and 2011 in the Middle-West Poland in order to assessment the effective weed control. Treatments included herbicides tembotrione and flufenacet + isoxaflutole at recommended (88.0 and 36.0 + 7.5 g ha-1 and reduced rates (44 and 22 g ha-1; 19.2 + 4.0 or 9.6 + 2.0 g ha-1 with addition of methylated seed oil (MSO and ammonium nitrate (AMN adjuvants. Tembotrione was applied once at the stage of 3-5 maize leaves and flufenacet + isoxaflutole once at pre-emergence of maize. Mixtures of these herbicides were applied sequentially post-emergence, at 16-20-d intervals, after successive weed emergence. Results indicate that herbicide applied at reduced rates with adjuvants provided satisfactory weed control in maize. Application of reduced rates of tembotrione (44 and 22 g ha-1 and especially mixture of tembotrione with flufenacet + isoxaflutole and MSO + AMN adjuvants applied twice provided similar grain yield of maize as from treatments where tembotrione or flufenacet + isoxaflutole herbicides were applied only once at recommended rates (9.5, 9.7, and 10.0 t ha-1, respectively.

  5. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    means PM can increase the yield potential of spring maize in water limited condition. From the result the field experiment, the grain yield under PM ranged from 6556 to 12615 kg/ha, being 803 to 3616 kg/hm-2 higher than no mulching (CK); and the WUE under plastic mulch ranged from 18.3 to 33.5 kghm-2mm-1, significantly higher than the CK in most of the experiment years (17.5-23.6 kghm-2mm-1). The ET for PM was higher than that of the CK (significance in 2009 and 2011), while it also increased the root biomass in soil, over consumed soil water and improved soil structure increased rainfall infiltration in fallow period. The result shows that the stored water by PM was 12 to 56 mm higher than the CK in the seven experiment years. So after seven years of cultivation, no significant difference was observed between treatments for the soil water storage in 0-6 m soil profile, which means that plastic film mulch can not only increase maize yield, but also is sustainable in the respect of soil water.

  6. Temporal rainfall patterns with water partitioning impacts on maize yield in a freeze-thaw zone

    Hao, Fanghua; Chen, Siyang; Ouyang, Wei; Shan, Yushu; Qi, Shasha

    2013-04-01

    SummaryUnderstanding all components of the water balance, especially temporal rainfall patterns, is essential to optimize water use in rain-fed agriculture area. The effect of temporal rainfall patterns on water balance, evapotranspiration (ET), and crop growth was evaluated by considering root water extraction of plants in a rain-fed maize field. Soil water contents at depths of 15, 30, 60, and 90 cm were measured daily in 2-year growth seasons. A soil water balance approach was applied to estimate changes in daily soil water storage. For the detailed water partitioning of the water balance and root water extraction, the soil-water-atmosphere-plant (SWAP) model with water and crop modules was applied. Results suggested that the main depths of root water uptake occurred in the top 60 cm soil layer. Crop transpiration (T) can reach a level above 40% of the total water consumption during all growth stages, and its reduction was mainly due to the dry condition of soil. The crop yield in 2010 was 1125 kg ha-1 higher than that in 2011, although the rainfall amount in that year was 132 mm less than the rainfall amount in 2011. The water use efficiency (WUE) was also higher in 2010. Therefore, the influence of temporal rainfall patterns was clearly more important than rainfall amounts (water partitioning into evaporation (E), T, and soil water content). Growing season T/ET can be a potential parameter for maize productivity. The field can be irrigated at pivotal growth stages under dry conditions to obtain the optimal effect in improving WUE and increasing grain yield. The SWAP model was a useful tool to analyze water partitioning in the freeze-thaw zone.

  7. Genetics of resistance to stored grain weevil (Sitophilus oryzae L. in maize

    Rajkumar Zunjare

    2015-12-01

    Full Text Available Stored grain weevil (Sitophilus oryzae has emerged as important storage grain pest of maize, causing substantial economic losses. Owing to high costs and environmental hazards of pesticides, host plant resistance holds promise for effective control of weevils. In the present study, a set of experimental maize hybrids generated using line × tester mating design were evaluated against S. oryzae. Significant variation for grain weight loss (GWL (6.0–49.1%, number of insect progeny emerged (NIP (17.8–203.3, grain hardness (GH (263.1–495.4 N, and pericarp thickness (PT (60.3–161.0 μm was observed. Strong positive association was observed between GWL and NIP. GH and PT did not show any correlation with GWL and NIP. Additive and non-additive gene actions were important for both GWL and NIP. Promising inbreds and experimental crosses identified can be effectively utilized in the resistance breeding programme. In majority of promising crosses having desirable SCA effects, one of the parents had desirable GCA effects, indicating that selection of inbred parents based on per se performance for generating resistant crosses may be possible. The commercial hybrid checks were highly susceptible compared to experimental hybrids. The inbreds and experimental hybrids identified hold promise in developing weevil resistant maize cultivars offering sustainable solution to management of weevils in maize.

  8. Improving sustainable intensification of cereal-grain legume cropping systems in the savannahs of West Africa: Quantifying residual effects of legumes on maize, enhancing P mobilization by legumes and studying long-term Soil Organic Matter (SOM) dynamics

    Improved cereal-grain-legume systems, allowing farmers to use their land productively on a continuous basis, are being rapidly developed and adopted by small-scale farmers in the West African Moist Savannah. This paper summarizes work on several issues related to the improvement of productivity and sustainability of these intensified systems. A first study looked at the sustainability of several legume-maize cropping systems in a 5-year field trial at Sekou, Benin. Fairly low maize yields were found in continuous maize cropping systems (maize/maize), poor response to N fertilizer beyond 45 kg N ha-1, and no evidence that P and K were limiting crop yield. Over the last 5 years of the trial, maize/Mucuna relay cropping gave consistently a 2000 kg ha-1 yield increase relative to maize/maize cropping, and most of this yield gain was preserved even when Mucuna residues were removed from the plots when planting the next year's maize crop. Some yield gain, although far less than with maize/Mucuna, was observed in the maize/pigeon pea system. The maize/cowpea system offered no maize yield gain over maize/maize cropping. In a second study, enhanced isotopic methods to determine the plant available P allowed us to test the hypothesis that certain legume accessions can mobilize sparingly-available P. In one out of the 3 West-African Moist Savannah soils studied, we found that cowpea could access sparingly soluble soil P that is unavailable to maize. This mobilization of P was only observed when P deficiency occurred. These results confirm the P efficiency of some legume genotypes, which may lead to benefits of improved P availability by the incorporation of legumes in rotation systems. A third study, involving a 16-year continuous-cropping field experiment in Ibadan, Nigeria, provided information on long-term changes in soil organic matter carbon (SOC) contents in savannah soils with sandy top soil. In the control treatments with continuous maize and cowpea cropping without

  9. PHENOTYPIC GRAIN YIELD STABILITY OF SEVERAL SOYBEAN OSCULTIVARS

    Aleksandra Sudarić

    2003-12-01

    Full Text Available Objective of this study was to evaluate the level and stability of grain yield as well as adaptability level of several domestic soybean cultivars. The trials were conducted on three locations in the region of the eastern Croatia (Osijek, Brijest, Donji Miholjac in the period from 1998-2002 and involved 14 soybean cultivars. Tested cultivars were created in soybean breeding programme at the Agricultural Institute Osijek. They belong to maturity groups 0, 0-I and I according to vegetation period length. Two parameters are used in the analysis of yield stability and cultivar adaptability: portion of variance of genotype x environment interaction of each genotype to total variance of genotype x environment interaction (S2 GxE and regression coefficient (bi. Obtained results indicated significant differences in level and stability of grain yield as well as level of cultivar adaptability. Six of the 14 tested cultivars: Ika, Podravka 95, Smiljana, Kuna, Anica and Tisa had high and stable grain yield and wide-general adaptability. Other tested cultivars had unstable grain yield and narrow (specific adaptability.

  10. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt [Zea mays L.

    Understanding the changes underlying past breeding progress may help to focus research efforts and accelerate future genetic gains. The major abiotic stress affecting maize production on a worldwide basis is drought. We addressed the improvements in drought tolerance over a 50-year period of hybrid breeding by evaluating, under targeted stress conditions, a set of 18 Pioneer-brand hybrids that had been released during the 1953-2001 period. Stress treatments were designed as overlapping windows of water deficit covering the pre-flowering to late grain filling development stages. Data were collected on grain yield, yield components and anthesis-silking interval (ASI) and were analyzed using a linear mixed model approach. Genetic gain was measured as the slope of the regression of the trait on the year of hybrid release. Significant, positive genetic gains of varying magnitude were observed for grain yield in all windows of stress evaluated. The largest genetic gains for grain yield were observed under conditions of full irrigation and severe flowering stress. ASI and barrenness, especially under stress at flowering, were significantly reduced by selection. Though flowering remains the most susceptible stage to drought in maize, selection has reduced its negative effects and susceptibility during early grain filling is now of similar importance in many modern hybrids. Yield under drought at flowering has more than kept pace with the increase in yield potential because of the emphasis breeders have placed on improved floral synchrony

  11. Effects of Controlled and Slow Release Fertilizers on the N Utilization and Grain Yield in Summer Maize Under Different Plant Densities%不同种植密度下缓/控释肥施肥量对夏玉米氮利用和籽粒产量影响

    姜雯; 张倩; 张洪生

    2013-01-01

    In order to determine the effects of controlled and slow release fertilizers on the N utilization and grain yield in summer maize under different plant densities, medium and high rates of controlled and slow release fertilizer (i.e. 750 kg/hm2, 975 kg/hm2) were applied under medium and high plant densities (6.75×104, 8.25 × 104 plant/hm2), summer maize cultivar‘Zhengdan 958’was used for this study. The treatment of 750 kg/hm2 controlled and slow release fertilizer level under medium plant density (6.75×104 plant/hm2) was as control. The effect of controlled and slow release fertilizer on the N concentration in either individual plant organ or total plant was insignificant. However, the increase supply of controlled and slow release obviously deceased the plant bare rate by 20.0% compared with the medium supply of controlled and slow release fertilizer, especially under high plant density (decrease by 27.0%), and the average ear weight increased by 12.4%. Although the effect of controlled and slow release fertilizer on grain yield was insignificant, the average yield of high supply of controlled and slow release fertilizer under high plant density was increased by 15.0%, 19.4%compared with control, and medium supply of controlled and slow release fertilizer under the same plant density, and the economic efficiency was also increased by 12.3%compared with control. It is thus concluded that high supply of controlled and slow release fertilizer (975 kg/hm2) under the high plant density (8.25 × 104 plant/hm2) could further increase the grain yield and economic efficiency.%为了探明缓释肥施肥量对夏玉米氮积累利用和籽粒产量的影响,以夏玉米品种‘郑单958’为材料,在不同种植密度水平(6.75×104株/hm2、8.25×104株/hm2)下,以当地传统施肥量(750 kg/hm2)为对照,增加缓释肥施肥量(975 kg/hm2)进行比较研究。结果表明:缓/控释肥施肥量对夏玉米各器官及全株氮含量、氮利

  12. Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy).

    Perego, Alessia; Sanna, Mattia; Giussani, Andrea; Chiodini, Marcello Ermido; Fumagalli, Mattia; Pilu, Salvatore Roberto; Bindi, Marco; Moriondo, Marco; Acutis, Marco

    2014-11-15

    The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, peffect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration. PMID:24913890

  13. Climate Change, Risk and Grain Yields in China

    Rainer Holst; Xiaohua Yu; Carola Grn

    2013-01-01

    Adopting Just and Pope (1978, 1979) style yield functions, this paper proposes a method to analyze the impacts of regional climate change on grain production in China. We find that changes in climate will affect grain production in North and South China differently. Specifically, it emerges that a 1°C increase in annual average temperature could reduce national grain output by 1.45%(1.74%reduction in North China and 1.19%reduction in South China), while an increase in total annual precipitation of around 100 mm could increase national grain output by 1.31%(3.0%increase in North China and 0.59%reduction in South China).

  14. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  15. Effect of Shading During Grain Filling on the Physicochemical Properties of Fresh Waxy Maize

    LU Da-lei; SUN Xu-li; WANG Xin; YAN Fa-bao; LU Wei-ping

    2013-01-01

    Grain physicochemical properties determine the table quality of fresh waxy maize. Two waxy maize varieties, Suyunuo 5 (shading tolerant) and FHN003 (shading sensitive), were used to estimate the effect of shading (plants received 30%less radiation than control) during grain filling (from 0 d to 23 d after pollination) on physicochemical properties of fresh waxy maize grain. Shading decreased the grain fresh weight of Suyunuo 5 and FHN003 by 8.4 and 19.1%, respectively. Shading increased the grain water content of FHN003, whereas that of Suyunuo 5 was not affected. In both varieties for shading treatment, soluble sugar, starch and protein contents were decreased, whereas zein content was increased. The changes in globulin, albumin and glutenin contents under shading were variety dependent. In both varieties, shading decreasedλmax, iodine binding capacity and the percentage of large starch granules (diameter>17μm) but increased crystallinity. The results of rapid visco analysis showed that the viscosity characteristics (except for pasting temperature) of both varieties were decreased by shading;however, FHN003 was more severely affected than Suyunuo 5. Under shading,ΔHret and%R were decreased in both varieties, whereas the changes in ΔHgel and transition temperatures were variety dependent. Hardness, cohesiveness and chewiness were decreased in both varieties. Significant differences in physicochemical characteristics were observed between the two varieties.

  16. Impact of spatial-temporal variations of climatic variables onsummer maize yield in North China Plain

    Wu, D.; Yu, Q.; Wang, E; Hengsdijk, H.

    2008-01-01

    Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Itsgrowth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961to 2000. The model was calibrated and validated using data from field experiments conducted duringthe perio...

  17. LONG-TERM SELECTION EXPERIMENTS OR TRANSGENICS FOR COMPOSITION TRAITS OF MAIZE GRAIN?

    D. Šimić

    2008-09-01

    Full Text Available There has been a long-term interest in developing maize strains that have improved grain composition. This interest has been recently intensified as a result of increased demands on value-added food/feed production, but also because of burgeoning biofuel production. The most important grain composition traits in maize are starch, oil and protein concentrations, but mineral composition is turning into attractive research area because of newly established biofortification programs. Enhancing iron and zinc concentrations in maize grain through breeding (biofortification has great potential to alleviate mineral deficiency that afflicts more than one-third of world’s population. As part of a biofortification project in maize at the Agricultural institute Osijek, two temperate maize elite dent inbred lines having significantly different mineral concentrations were crossed in order to commence genetic studies. There are two important questions when quantitative traits such as grain concentrations are to be improved by breeding. Firstly, what is selection response of composition traits and secondly, how many genes are involved. Initial attempts to answer these questions used the methods of quantitative genetics. Both realized and expected progressive selection responses for all composition traits provided evidence that these traits are controlled by many genes. Estimates of effective number of genetic factors controlling starch, oil and protein ranged from 10 to 178 with oil having fewer factors than starch and protein. Mapping experiments revealed several significant quantitative trait loci (QTL supporting quantitative genetic estimates. In our experiment, we estimated eight effective genes for iron concentration. The number for zinc concentration is not conclusive because of violating some assumptions of the method leading to systematic underestimation of the true number of loci. Big phenotypic changes for mineral composition traits, therefore

  18. Combining abilities for maize stem antibiosis, yield loss and yield under infestation and no infestation with pink stem borer

    Butrón Gómez, Ana María; Malvar Pintos, Rosa Ana; Velasco Pazos, Pablo; Vales, M I; Ordás Pérez, Amando

    1999-01-01

    The pink stem borer (Sesamia nonagrioides Lef.) is the main pest of maize (Zea mays L.) in northwestern Spain. Little is known about combining ability for antibiosis and tolerance to this pest. Therefore, the objectives of this work were to estimate general combining ability (GCA), specific combining ability (SCA), and reciprocal effects for stem damage traits, yield, and yield loss by a complete diallel of 10 inbreds and to determine the most useful trait for evaluating the level of defense ...

  19. Is the nutritional value of grains in broiler chickens' diets affected by environmental factors of soybean (Glycine max) growing and the variety of maize (Zea maize) in Benin?

    Houndonougbo, Mankpondji Frederic; Chwalibog, Andrzej; Chrysostome, C.A.A.M.

    2009-01-01

    A six-week experiment was carried out in Benin to evaluate under tropical conditions the variation in nutritional value of soybean and maize grains due to, respectively, environmental factors and the plant variety. Two soybean grains of the same variety (Jupiter) but grown in two agro-ecological ......A six-week experiment was carried out in Benin to evaluate under tropical conditions the variation in nutritional value of soybean and maize grains due to, respectively, environmental factors and the plant variety. Two soybean grains of the same variety (Jupiter) but grown in two agro...... by soybean grains to supply mainly the dietary energy did not show an adverse effect of the diet on these variables. However, the variety of maize affected significantly the feed cost and the economic feed efficiency at starter phase. It can be concluded that under the particular conditions...... of this experiment, the environmental factors did not change significantly the nutritional value of soybean grains in chickens' diets. The grain of local variety of white maize were suitable at all ages, whereas the grains of DMR-ESRW were more economic in grower than starter broiler chickens feeding....

  20. Production potential and yield gaps of summer maize in the Beijing-Tianjin-Hebei Region

    WANG Tao; LU Changhe; YU Bohua

    2011-01-01

    Crop potential productivity is a key index of scientifically appraising crop production and land population-supporting capacity.This study firstly simulated the potential and waterlimited yield of summer maize in the Beijing-Tianjin-Hebei (BTH) region using WOFOST model with meteorological data of 40 years,and then analyzed yield gaps between the actual and potential yield based on statistical data at county level.The potential and water-limited yield of summer maize in the BTH region is 6854-8789 kg/hm2 and 6434-8741 kg/hm2,and the weighted average for whole region is 7861 kg/hm2 and 7185 kg/hm2,respectively.The simulated yields gradually decrease from northeast to southwest with changes in climatic conditions particularly temperature and precipitation.Annual variation of potential yield is higher in the central and southern parts than the northeastern part.Compared to potential yield,the water-limited yield has higher coefficient of variation (CV),because of precipitation effects.The actual yield of summer maize was 2537-8730 kg/hm2,regionally averaged at 5582 kg/hm2,about 70% of the potential yield,implying that the region has room to increase the yield by improving crop management and irrigation systems.

  1. Trends of Yield and Soil Fertility in a Long-Term Wheat-Maize System

    YANG Xue-yun; SUN Ben-hua; ZHANG Shu-lan

    2014-01-01

    The sustainability of the wheat-maize rotation is important to China’s food security. Intensive cropping without recycling crop residues or other organic inputs results in the loss of soil organic matter (SOM) and nutrients, and is assumed to be non-sustainable. We evaluated the effects of nine different treatments on yields, nitrogen use efifciency, P and K balances, and soil fertility in a wheat-maize rotation system (1991-2010) on silt clay loam in Shaanxi, China. The treatments involved the application ofrecommended dose of nitrogen (N), nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorus and potassium (PK), combined NPK, wheat or maize straw (S) with NPK (SNPK), or dairy manure (M) with NPK (M1NPK and M2NPK), along with an un-treated control treatment (CK). The mean yields of wheat and maize ranged from 992 and 2 235 kg ha-1 under CK to 5962 and 6894 kg ha-1 under M2NPK treatment, respectively. Treatments in which either N or P was omitted (N, NK and PK) gave signiifcantly lower crop yields than those in which both were applied. The crop yields obtained under NP, NPK and SNPK treatments were statistically identical, as were those obtained under SNPK and MNPK. However, M2NPK gave a signiifcant higher wheat yield than NP, and MNPK gave signiifcant higher maize yield than both NP and NPK. Wheat yields increased signiifcantly (by 86 to 155 kg ha-1 yr-1) in treatments where NP was applied, but maize yields did not. In general, the nitrogen use efifciency of wheat was the highest under the NP and NPK treatments; for maize, it was the highest under MNPK treatment. The P balance was highly positive under MNPK treatment, increasing by 136 to 213 kg ha-1 annually. While the K balance was negative in most treatments, ranging from 31 to 217 kg ha-1 yr-1, levels of soil available K remained unchanged or increased over the 20 yr. SOM levels increased signiifcantly in all treatments. Overall, the results indicated that combinations of organic manure and

  2. Simulating of Top-Cross system for enhancement of antioxidants in maize grain

    Jelena Vancetovic

    2014-04-01

    Full Text Available Blue maize (Zea mays L. is grown for its high content of antioxidants. Conversion of yellow and white to blue maize is time consuming because several genes affect blue color. After each backcross selfing is needed for color to be expressed. In order to overcome the problem of time and effort needed for conversion to blue kernel color, we have set a pilot experiment simulating a Top-cross system for increasing antioxidants in maize grain. The idea is to alternately sow six rows of sterile standard quality hybrid and two rows of blue maize in commercial production. Five commercial ZP hybrids were crossed with a blue pop-corn population. Xenia effect caused by cross-pollination produced blue grain on all hybrids in the same year. Chemical analyses of the grains of five selfed original hybrids, five cross-pollinated hybrids and selfed blue popcorn pollinator were performed. Cross-fertilization with blue popcorn had different impact on antioxidant capacity and phytonutrients, increasing them significantly in some but not all cross-pollinated hybrids. Popcorn blue pollinator had higher values for all the analyzed traits than either selfed or cross-pollinated hybrids. Selfed vs. pollinated hybrids showed significant difference for total antioxidant capacity (p<0.1, total phenolics and total yellow pigments (p<0.01, with the increase of total phenolics and decrease of total yellow pigments in pollinated ones. Total flavonoids showed a little non-significant decrease in pollinated hybrids, while total anthocyanins were not detected in selfed yellow hybrids. Blue maize obtained this way has shown good potential for growing high quality phytonutrient genotypes.

  3. Grain and tortilla quality in landraces and improved maize grown in the highlands of Mexico.

    Vázquez-Carrillo, Gricelda; García-Lara, Silverio; Salinas-Moreno, Yolanda; Bergvinson, David J; Palacios-Rojas, Natalia

    2011-06-01

    The maize produced in the highlands of Mexico (>2,400 masl) is generally not accepted by the flour and masa and tortilla industry. The objective of this work was to evaluate the grain quality and tortilla properties of maize landraces commonly grown in the highlands of Mexico and compare them with improved germplasm (hybrids). Germplasm analysis included 11 landraces, 32 white hybrids, and six yellow hybrids. Grain quality was analyzed for a range of physical and chemical factors, as well as for alkaline cooking quality. Landrace grains tended to be heterogeneous in terms of size, hardness and color. All landraces had soft-intermediate grains with an average flotation index (FI) of 61%. In contrast, hybrid grains were homogenous in size and color, and harder than landrace grains, with a FI of 38%. Protein, free sugars, oil and phenolic content in landraces were higher than in the hybrids. Significant correlations were found between phenolic content and tortilla color (r= -0.60; ptortilla industry, while all the hybrids evaluated fulfilled the requirements of this industry. PMID:21611770

  4. The impact of climate change on grain maize production over Europe - adaptation with different irrigation strategies

    Ceglar, A.; Srivastava, A. K.; Chukaliev, O.; Duveiller, G.; Niemeyer, S.

    2013-12-01

    The spatial distribution of water deficit and maize yield deficit across Europe has been compared between current and expected climatic conditions in the near future (time window 2030). Maize yields and water requirements were simulated using the WOFOST (World Food Studies) crop growth model. In our study, the priority has been given to future projections of the A1B emission scenario produced within the ENSEMBLE project: HadRM3 RCM nested within the HADCM3 GCM (HADLEY) and HIRHAM5 RCM nested within ECHAM5 GCM (ECHAM). The two realizations can be considered as warm (HADLEY) and cold (ECHAM5) according to simulated temperature in the near future and therefore represent the extremes in air temperature change within those analyzed in ENSEMBLES project, allowing us to evaluate the largest range of uncertainty in weather inputs to the impact model. In addition, we also explored the advantages of different irrigation strategies for the target crop to offset climate change impacts. In wake of limited amount of water availability for agriculture purposes, we explored effectiveness of three different irrigation strategies on maize yield over Europe, namely full, deficit and supplemental irrigation. The results of our study indicate that the maize yield under rainfed conditions is expected to decrease over the Southern Europe as well as regions around the Black Sea during the 2030s under both climate model realizations. Water deficit is expected to increase especially in the Mediterranean, whereas slightly less in parts of Central and Western Europe. However, adaptation strategies followed in this study negate the detrimental effect of climate change and result in an increased maize yield. Three irrigation strategies have been simulated differing in timing of water application and in the total volume of water supplied during the growing season. The results show that yields, achieved using deficit and full irrigation strategies, are not significantly different. Hence, at least

  5. The change of genetic and phenotypic variability of yield components after recurrent selection of maize

    Deletić Nebojša

    2009-01-01

    Full Text Available This paper deals with 31 SSD lines from ZP-Syn-1 C0 and 37 from ZP-Syn-1 C3 maize populations. After line selection and seed multiplication in the first year of the study, the trials were set during two years in Kruševac and Zemun Polje, in RCB design with three replications. Additive and phenotypic variances of yield components were calculated, as well as the estimation of genetic variability narrowing by multivariate cluster analysis. The differences in additive and phenotypic variances between the cycles were significant for ear length only and highly significant for grain row number per ear and for percent of root and stalk lodged plants. It means, a significant narrowing of additive and phenotypic variance occurred only for those three traits, and the other traits did not change their variability by selection in a significant manner. However, according to cluster analysis, distances among genotypes and groups in the zero selection cycle were approximately double than in the third one, but group definition was better in the third selection cycle. It can suggest indirectly to a total variability narrowing after three cycles of recurrent selection.

  6. Long-Term Effects of Manure and Inorganic Fertilizers on Yield and Soil Fertility for a Winter Wheat-Maize System in Jiangsu, China

    JIANG Dong; H. HENGSDIJK; DAI Ting-Bo; W. de BOER; JING Qi; CAO Wei-Xing

    2006-01-01

    Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the effect of inorganic and organic nutrient sources on yield and yield trends of both winter wheat and maize, 2) monitor the changes in soil organic matter content under continuous wheat-maize cropping with different soil fertility management schemes, and 3) identify reasons for yield trends observed in Xuzhou City, Jiangsu Province, over a 20-year period. There were eight treatments applied to both wheat and maize seasons: a control treatment (C); three inorganic fertilizers, that is, nitrogen (N), nitrogen and phosphorus (NP), and nitrogen, phosphorus and potassium (NPK); and addition of farmyard manure (FYM) to these four treatments, that is,M, MN, MNP, and MNPK. At the end of the experiment the MN, MNP, and MNPK treatments had the highest yields,about 7 t wheat ha-1 and 7.5 t maize ha-1, with each about i t ha-1 more than the NPK treatments. Over 20 years with FYM soil organic matter increased by 80% compared to only 10% with NPK, which explained yield increases. However,from an environmental and agronomic perspective, manure application was not a superior strategy to NPK fertilizers.If manure was to be applied, though, it would be best applied to the wheat crop, which showed a better response than maize.

  7. Fungi Isolated from Maize (Zea mays L.) Grains and Production of Associated Enzyme Activities

    Camila Agnes Lumi Abe; Carla Bertechini Faria; Fausto Fernandes de Castro; Sandra Regina de Souza; Fabiane Cristina dos Santos; Cleiltan Novais da Silva; Dauri José Tessmann; Ione Parra Barbosa-Tessmann

    2015-01-01

    Filamentous fungi produce a great variety of enzymes, and research on their biotechnological potential has recently intensified. The objective of this work was to identify, at the species level, using DNA barcoding, 46 fungal isolates obtained from maize grains with rot symptoms. We also analyzed the production of extracellular amylases, cellulases, proteases and lipases of 33 of those fungal isolates. The enzymatic activities were evaluated by the formation of a clear halo or a white precip...

  8. Heritability studies for grain yield and yield components in F3 segregating generation of spring wheat

    Heritability estimates provide information about the extent of which a particular genetic character to be transmitted to the successive generations. Heritability studies were conducted in four F3 segregating populations originated through cross combinations of 6 wheat varieties/advanced lines i.e., Sarsabz, Soghat-90, Marvi-2000, SI-91195, SD-1200/14 and IB-25/99 at the Nuclear Institute of Agriculture, Tando Jam during 2004-05. Genetic variance, environmental variance, heritability percentage in broad sense and genetic advance were estimated for different grain yield and yield contributing traits. The highest heritability (83.09%) associated with genetic advance (55.39) for grain yield was observed in cross combination of Marvi-2000 x Soghat-90 followed by Marvi-2000 x SI-91195 (80.0%; GA: 39.9), revealed good parental combination for effective selection for high yielding plants in segregating population. (author)

  9. Methylation of DNA of maize and wheat grains during fumigation with methyl bromide

    The possibility that methylation of DNA occurs during fumigation of foodstuffs with methyl bromide was investigated in two grains, maize and wheat, using 14C-labeled fumigant. 7-Methylguanine and 1-methyladenine were identified as major products along with lesser amounts of 3-methylcytosine and 3-methyladenine. 3-Methylguanine was probably also formed in minor amounts. Although less than 1% of the bound radioactivity was associated with the DNA isolated, the results indicated that 0.5-1% of the guanine residues in the DNA of these grains was methylated during treatment with 48 mg/L methylbromide for 72 h

  10. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest.

    Lobell, David B; Roberts, Michael J; Schlenker, Wolfram; Braun, Noah; Little, Bertis B; Rejesus, Roderick M; Hammer, Graeme L

    2014-05-01

    A key question for climate change adaptation is whether existing cropping systems can become less sensitive to climate variations. We use a field-level data set on maize and soybean yields in the central United States for 1995 through 2012 to examine changes in drought sensitivity. Although yields have increased in absolute value under all levels of stress for both crops, the sensitivity of maize yields to drought stress associated with high vapor pressure deficits has increased. The greater sensitivity has occurred despite cultivar improvements and increased carbon dioxide and reflects the agronomic trend toward higher sowing densities. The results suggest that agronomic changes tend to translate improved drought tolerance of plants to higher average yields but not to decreasing drought sensitivity of yields at the field scale. PMID:24786079

  11. Determination of Variability Between Grain Yield and Yield Components of Durum Wheat Varieties (Triticum durum Desf. in Thrace Region

    T. Kahraman

    2008-05-01

    Full Text Available Variability of grain yield and some yield components of 17 durum wheat varieties with native and exotic originated was investigated. This research was performed under rainfed conditions in three different environments (Tekirdağ, Lüleburgaz and Edirne during two growing years (2001-2002 and 2002-2003. Significant differences among cultivars, locations and production years were determined. The highest variations among characters were found in grain weight/spike, grains/spike, spike length and grain yield. In the first experimental year, there was a high positive significant correlation between grain yield and grain weight/spike, test weight and 1000 grain weight. In the second experimental year, grain yield showed positive and significant correlations with 1000 grain weight, test weight and stem length. The biggest differences among investigated cultivar of durum wheat were found in stem length, grains/spike and 1000 grain weight. Grain yield of examined cultivars depended mainly on 1000 grain weight, test weight, grain weight/spike and agroecological conditions during the growing period. However, location, production year and genotypes were the most important determinant of potential yield of cultivars. Ç 1252, Fuatbey 2000, Epidur, Kızıltan95, Aydın 93 and Altın 97 were found more suitable cultivars that the others for durum wheat production in Thrace Region.

  12. Response on yield and nutritive value of two commercial maize hybrids as a consequence of a water irrigation reduction

    Antonio Gallo

    2014-08-01

    Full Text Available The present study investigated in a practical farm condition the response of two commercial maize hybrids (maturity class FAO rating 700 grown for silage production on chemical composition and digestibility of whole maize plant as consequence of a severe water irrigation reduction. Based on different irrigation applications, water restricted (WR and fully irrigated (FI plots received 50 and 200 mm of irrigation water, respectively. A split-plot factorial arrangement in a randomised complete block design with two main plots (WR and FI and two sub-plots (hybrid A and B with 12 replications/ treatment was performed. Studied parameters were dry matter (DM yield, harvest index (HI, chemical composition, rumen in situ DM and neutral detergent fibre disappearance (DMD and NDFD, respectively, indigestible NDF (iNDF, 7h in vitro starch degradability (7hIVSD and net energy (NE for lactation content. Total DM and grain yields, HI and chemical composition differed (P<0.05 between FI and WR crops and only slight differences were recorded between hybrids. When compared to FI plants, WR had lower starch and higher fibre contents (P<0.05. Higher DMD (59.2 vs 56.4% DM and NDFD (61.0 vs 58.4% NDFOM were measured for FI with respect to WR crops, whereas iNDF was about 36% higher (P<0.05 in WR than FI. Lastly, WR plants had a lower NE content than FI plants (P<0.05. Our research showed that a drastic reduction in water irrigation negatively affected whole plant yield, chemical composition and nutrient availability of forage maize.

  13. SPEIPM-based research on drought impact on maize yield in North China Plain

    MING Bo; GUO Yin-qiao; TAO Hong-bin; LIU Guang-zhou; LI Shao-kun; WANG Pu

    2015-01-01

    The calculation method of potential evapotranspiration (PET) was improved by adopting a more reliable PET estimate based on the Penman-Monteith equation into the standardized precipitation evapotranspiration index (SPEI) in this study (SPEIPM). This improvement increased the applicability of SPEI in North China Plain (NCP). The historic meteorological data during 1962–2011 were used to calculate SPEIPM. The detrended yields of maize from Hebei, Henan, Shandong, Beijing, and Tianjin provinces/cities of NCP were obtained by linear sliding average method. Then regression analysis was made to study the relationships between detrended yields and SPEI values. Different time scales were applied, and thus SPEIPM was mentioned as SPEIPMk-j (k=time scale, 1, 2, 3, 4,…, 24 mon;j=month, 1, 2, 3,..., 12), among which SPEIPM3-8 relfected the water condition from June to August, a period of heavy precipitation and vigorous growth of maize in NCP. SPEIPM3-8 was highly correlated with detrended yield in this region, which can effectively evaluate the effect of drought on maize yield. Additional y, this relationship becomes more signiifcant in recent 20 yr. The regression model based on the SPEI series explained 64.8%of the variability of the annual detrended yield in Beijing, 45.2%in Henan, 58.6%in Shandong, and 54.6%in Hebei. Moreover, when SPEIPM3-8 is in the range of–0.6 to 1.1,–0.9 to 0.8 and–0.8 to 2.3, the detrended yield increases in Shandong, Henan and Beijing. The yield increasing range was during normal water condition in Shandong and Henan, where precipitation was abundant. It indicated that the ifeld management matched wel with local water condition and thus al owed stable and high yield. Maize yield increase in these two provinces in the future can be realized by further improving water use efifciency and enhancing the stress resistance as wel as yield stability. In Hebei and Beijing, the precipitation is less and thus the normal water condition cannot meet

  14. SEWAGE SLUDGE EFFECTS ON POTATO, WINTER WHEAT AND MAIZE YIELD CULTIVATED IN ROTATION, AND SOIL PROPERTY MODIFICATION

    Gh. Lixandru

    2005-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of sewage sludge as phosphorus and nitrogen amendment for cambic chernozem soils in comparison with inorganic fertilizers (NH4NO3 and KCl. The experiment reported here were conducted during 10 years in two rotation: 1 potato – winter wheat – maize, and 2 maize – potato – winter wheat. Sewage sludge rates applied in potato was 65, 130 and 195 t/ha respectively, and in maize 30, 60 and 90 t/ha, sewage sludge rates applied alone or in combination with N and K as mineral fertilizers. The results led to the following conclusions: 1 The air-dried sewage sludge from plot Iaşi contained about 200 kg organic matter, 6 kg N, 8 kg P, 2 kg K, 30 kg Ca and 10 kg soluble salts in 1000 kg. The heavy metals content was under the maximum limits allowable, excepting Zn which was found between 4140 and 5378 ppm Zn. 2 At potato crops resulted in an yield increase of 100 kg tubers for one ton sewage sludge in case of rate of 65 t/ha, at higher rates the yield increase being lower. Annual rainfall had a significant influence on yield increase. 3 The nitrogen utilization from sewage sludge was of 8.5 % at a rate of 65 t/ha and 2.5 % at a rate of 195 t/ha. From 100 kg N as mineral fertilizer, potato used 30 % and produced 60 kg tubers/1 kg N applied in soil. The yield increase at 1 kg N from sewage sludge was of 17 kg tubers at a rate of 65 t/ha. Therefore, the nitrogen efficiency from mineral fertilizer was about three times higher compared to N from sewage sludge. 4 Applied in maize crop, resulted an yield increase of 23.2 kg grains for 1 ton sewage sludge at a rate of 30 t/ha and only 13.2 kg/1 t at a rates 90 t/ha. By comparing to manure, the yield increased was lower. The nitrogen utilization from sewage sludge by maize was of 11 % at 3o t/ha and 6.6 % at 90 t/ha. From mineral fertilizer, maize used 25.9 % of 100 kg N/ha. 5 Residual effect of sewage sludge in second year in wheat crop was of 7

  15. Growth and yield of maize and cassava cultivars as affected by mycorrhizal inoculation and alley cropping regime

    Salami Olusola Abiodun

    2006-01-01

    Full Text Available Effect of myeorrhizal inoculation and two pruning regimes in experimental alley cropping treatments on the leaf biomass and nutrient yield of sole and mixed Gliricidica septum (a Modulating plant ami Senna siamea (a non-nodulating plant were investigated both in the greenhouse and in the field. The impact of the mixtures of these legumes as hedgerows on maize and one cultivar of cassava was also studied on the Held. Gliricidia sepiuni prunnings were found to have high nutrient yields, notably 358.4 kg ha-1 of N and 14.7 kg ha-1 of P as well as fast decomposition and nutrient release. In both Giricidia and Senna. there was similar leaf dry matter values in sole and mixed inoculated or non-inoculated trees for either of the pruning regime and for most of the pruning harvests, although significant differences occurred between inoculated and non-inoculated mixed or sole trees. There was no difference between the total leaf dry matter of the two- and three-month pruning regimes in G. sepium. However, in contrast to G. sepium, the total leaf dry matter of the two-month pruning regime of iS'. sianica was lower than its three-month pruning regime, except for sole non-inoculated trees. Generally, inoculation and mixing of trees in the same hedgerows significantly increased the total N and P yield in G. sepium and S. siantea with greater values in the former than the latter. In G. sephium and except for mixed inoculated trees, while total N yield in the leaf was higher in three-monthly primed than two-monthly pruned trees, the converse was the case for P. For S. siamea the total N and P yield were higher in three-monthly than two-monthly pruned trees. Myeorrhizal inoculations consistently increased the yield of the cassava root tuber and maize grain over their non-inoculated counterparts.

  16. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments.

    Bennett, Dion; Reynolds, Matthew; Mullan, Daniel; Izanloo, Ali; Kuchel, Haydn; Langridge, Peter; Schnurbusch, Thorsten

    2012-11-01

    A large proportion of the worlds' wheat growing regions suffers water and/or heat stress at some stage during the crop growth cycle. With few exceptions, there has been no utilisation of managed environments to screen mapping populations under repeatable abiotic stress conditions, such as the facilities developed by the International Wheat and Maize Improvement Centre (CIMMYT). Through careful management of irrigation and sowing date over three consecutive seasons, repeatable heat, drought and high yield potential conditions were imposed on the RAC875/Kukri doubled haploid population to identify genetic loci for grain yield, yield components and key morpho-physiological traits under these conditions. Two of the detected quantitative trait loci (QTL) were located on chromosome 3B and had a large effect on canopy temperature and grain yield, accounting for up to 22 % of the variance for these traits. The locus on chromosome arm 3BL was detected under all three treatments but had its largest effect under the heat stress conditions, with the RAC875 allele increasing grain yield by 131 kg ha(-1) (or phenotypically, 7 % of treatment average). Only two of the eight yield QTL detected in the current study (including linkage groups 3A, 3D, 4D 5B and 7A) were previously detected in the RAC875/Kukri doubled haploid population; and there were also different yield components driving grain yield. A number of discussion points are raised to understand differences between the Mexican and southern Australian production environments and explain the lack of correlation between the datasets. The two key QTL detected on chromosome 3B in the present study are candidates for further genetic dissection and development of molecular markers. PMID:22772727

  17. [Predicting the impact of climate change in the next 40 years on the yield of maize in China].

    Ma, Yu-ping; Sun, Lin-li; E, You-hao; Wu, Wei

    2015-01-01

    Climate change will significantly affect agricultural production in China. The combination of the integral regression model and the latest climate projection may well assess the impact of future climate change on crop yield. In this paper, the correlation model of maize yield and meteorological factors was firstly established for different provinces in China by using the integral regression method, then the impact of climate change in the next 40 years on China's maize production was evaluated combined the latest climate prediction with the reason be ing analyzed. The results showed that if the current speeds of maize variety improvement and science and technology development were constant, maize yield in China would be mainly in an increasing trend of reduction with time in the next 40 years in a range generally within 5%. Under A2 climate change scenario, the region with the most reduction of maize yield would be the Northeast except during 2021-2030, and the reduction would be generally in the range of 2.3%-4.2%. Maize yield reduction would be also high in the Northwest, Southwest and middle and lower reaches of Yangtze River after 2031. Under B2 scenario, the reduction of 5.3% in the Northeast in 2031-2040 would be the greatest across all regions. Other regions with considerable maize yield reduction would be mainly in the Northwest and the Southwest. Reduction in maize yield in North China would be small, generally within 2%, under any scenarios, and that in South China would be almost unchanged. The reduction of maize yield in most regions would be greater under A2 scenario than under B2 scenario except for the period of 2021-2030. The effect of the ten day precipitation on maize yield in northern China would be almost positive. However, the effect of ten day average temperature on yield of maize in all regions would be generally negative. The main reason of maize yield reduction was temperature increase in most provinces but precipitation decrease in a few

  18. Ammonia volatilization and yield components after application of polymer-coated urea to maize

    Eduardo Zavaschi; Letícia de Abreu Faria; Godofredo Cesar Vitti; Carlos Antonio da Costa Nascimento; Thiago Augusto de Moura; Diego Wyllyam do Vale; Fernanda Latanze Mendes; Marcos Yassuo Kamogawa

    2014-01-01

    A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea trea...

  19. Variability of Pathogenicity of Fusarium spp. Originating from Maize and Wheat Grains

    Sonja Tančić

    2009-01-01

    Full Text Available Differences in the pathogenicity of 93 isolates of seven species belonging to the genus Fusarium (F. graminearum, F. verticillioides, F. proliferatum, F. subglutinans, F. sporotrichioides, F. semitectum and F. equiseti, originating from maize kernels (61 and wheat grains (32, were examined based on the germination percentage of inoculated seeds. The studied species demonstrated inter- and intraspecies variability regarding the effects on maize seed germination. On the average, the greatest germination reduction was found in seeds inoculated with the spore suspensions of F. sporotrichioides and F. graminearum. A similar reduction was detected in seeds inoculated with F. proliferatum and F. subglutinans. The effect of F. subglutinans on seed germination reduction was higher compared to the two latter species, while the effects of F. semitectum and F. equiseti were smallest. The majority of isolates were of moderate pathogenicity, while the lowest number of isolates was either very pathogenic (7 or apathogenic (10. Pathogenicity of the isolates originating from wheat grains was generally lower than the pathogenicity of isolates originating from maize kernels, with the exception of F. sporotrichioides.

  20. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves.

    Intani, Kiatkamjon; Latif, Sajid; Kabir, A K M Rafayatul; Müller, Joachim

    2016-10-01

    In this study, biochar was produced from maize residues (cobs, husks, leaves) in a lab-scale pyrolysis reactor without using a purging gas. The physicochemical properties of biomass and biochar were analysed. Box-Behnken design was used to optimise operational conditions for biochar yields. Multivariate correlations of biochar yields were established using reduced quadratic models with R(2)=0.9949, 0.9801 and 0.9876 for cobs, husks and leaves, respectively. Biochar yields were negatively correlated with the temperature, which was significantly influenced by the exothermic reactions during the pyrolysis of maize residues. The heating rate was found to have the least effect on biochar yields. Under optimal conditions, the maximum biochar yields from cobs, husks and leaves were 33.42, 30.69 and 37.91%, respectively. The highest biochar yield from maize leaves was obtained at a temperature of 300°C, a heating rate of 15°C/min and a holding time of 30min. PMID:27395002

  1. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. PMID:26590867

  2. Fermented high moisture maize grain as supplement to alfalfa haylage is superior over unfermented dry maize grain in diet dry matter digestibility

    Marina Vranić

    2011-09-01

    Full Text Available The objectives of the experiment were to examine whether high moisture maize grain (HMM is superior to low moisture maize grain (LMM as supplement to alfalfa haylage (Medicago sativa L. (AH. The effects of HMM and LMM supplementation to AH were studied on feed intake, water intake and dry matter (DM digestibility in wether sheep. Alfalfa was harvested at the beginning of flowering and ensiled into round bales wrapped with plastic. The average DM and crude protein (CP concentration of AH was 534.7 g kg-1 fresh sample and 141 g kg-1 DM, respectively. The average DM content (g kg-1 fresh sample of HMM and LMM were 795.9 and 915.1 g kg-1 fresh sample, respectively, while the average CP concentration (g kg-1 DM were 116.8 and 106.0, respectively. The study consisted of five feeding treatments incorporating AH only and AH supplemented with 5 or 10 g HMM or LMM d-1 kg-1 wether body weight. The inclusion of HMM (5 or 10 g kg-1 body weight d-1 into AH based ration resulted in higher diet DM digestibility (P<0.05 in comparison with LMM inclusion (5 or 10 g kg-1 body weight d-1. Higher daily fresh matter intake (FMI (P<0.05, dry matter intake (DMI (P<0.05 and water intake (P<0.05 was achieved with LMM inclusion in comparison with HMM inclusion. The conclusion was that HMM is superior over LMM as supplement to AH in terms of DM digestibility, while LMM has advantages over HMM in the intake characteristics measured.

  3. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  4. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change. PMID:26111197

  5. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  6. Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China

    Yin, Xiaogang; Jabloun, Mohamed; Olesen, Jørgen Eivind;

    2016-01-01

    Drought risk is considered to be among the main limiting factors for maize (Zea mays L.) production in the Northeast Farming Region of China (NFR). Maize yield data from 44 stations over the period 1961–2010 were combined with data from weather stations to evaluate the effects of climatic factors...

  7. Response of Maize (Zea mays L.) Grown for Grain After the Application of Sewage Sludge

    Grażyna SZYMAŃSKA; SULEWSKA, Hanna; ŚMIATACZ, Karolina

    2016-01-01

    The aim of this study was to assess the effects of the agricultural use of sewage sludge in corn for grain, in the year of application and follow up effect after one and two years after its application. The study was conducted on the variety PR39G12 on the field after the 5-year monoculture corn. Sewage sludge was used in accordance with the Directive of Minister of Environment allowing application of 10 t dry mater per ha-1 once every five years. Fertilization with sludge of maize grown for ...

  8. Relationship between grain yield and quality in rice germplasms grown across different growing areas

    Xu, Quan; Chen, Wenfu; Xu, Zhengjin

    2015-01-01

    Rice grain yield and quality are two major foci of rice breeding. In this study, Chinese regional rice test data provide us the unique opportunity to analyze the relationship between yield and quality in rice, because China has an unusually wide range of rice cultivars. We analyzed the relationships between grain yield, yield components, and grain quality of 300 rice germplasms. Japonica was superior in both yield and quality compared with indica. A high setting rate improved the head rice ra...

  9. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009

    Xiao, Dengpan; Tao, Fulu

    2016-07-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize ( Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  10. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981-2009

    Xiao, Dengpan; Tao, Fulu

    2015-11-01

    The impact of climate change on crop yield is compounded by cultivar shifts and agronomic management practices. To determine the relative contributions of climate change, cultivar shift, and management practice to changes in maize (Zea mays L.) yield in the past three decades, detailed field data for 1981-2009 from four representative experimental stations in North China Plain (NCP) were analyzed via model simulation. The four representative experimental stations are geographically and climatologically different, represent the typical cropping system in the study area, and have more complete weather/crop records for the period of 1981-2009. The results showed that while the shift from traditional to modern cultivar increased yield by 23.9-40.3 %, new fertilizer management increased yield by 3.3-8.6 %. However, the trends in climate variables for 1981-2009 reduced maize yield by 15-30 % in the study area. Among the main climate variables, solar radiation had the largest effect on maize yield, followed by temperature and then precipitation. While a significant decline in solar radiation in 1981-2009 (maybe due to air pollution) reduced yield by 12-24 %, a significant increase in temperature reduced yield by 3-9 %. In contrast, a non-significant increase in precipitation during the maize growth period increased yield by 0.9-3 % at three of the four investigated stations. However, a decline in precipitation reduced yield by 3 % in the remaining station. The study revealed that although the shift from traditional to modern cultivars and agronomic management practices contributed most to the increase in maize yield, the negative impact of climate change was large enough to offset 46-67 % of the trend in the observed yields in the past three decades in NCP. The reduction in solar radiation, especially in the most critical period of maize growth, limited the process of photosynthesis and thereby further reduced maize yield.

  11. Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts.

    Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B

    2014-09-01

    Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy. PMID:24851925

  12. In-Season Root-Zone Nitrogen Management Strategies for Improving Nitrogen Use Efficiency in High-Yielding Maize Production in China

    MENG Qing-Feng; CHEN Xin-Ping; ZHANG Fu-Suo; CAO Ming-Hui; CUI Zhen-Ling; BAI Jin-Shun; YUE Shan-Chao; CHEN Su-Yi; T.M(U)LLER

    2012-01-01

    Many recently developed N management strategies have been extremely successful in improving N use efficiency.However,attempts to further increase grain yields have had limited success.Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.).According to the in-season root-zone N management,the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NH4+-N and NO3--N) in the root zone from N target values.Other treatments included a control without N fertilization,70% of ONR,130% of ONR,and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials.Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007,grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake.In 2008,N target values were adjusted to match crop uptake,and N fertilization rates were reduced from 450 kg N ha- 1 for RNR to 225 to 265 kg N ha-1 for ONR.High maize yields were maintained at 12.6 to 13.5 Mg ha-1,which were twice the yield from typical farmers'practice.As a result,apparent N recovery increased from 29% to 66%,and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment.In conclusion,the in-season root-zone N management approach was able to achieve high yields,high NUE and low N losses.

  13. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat.

    Rebetzke, G J; Bonnett, D G; Reynolds, M P

    2016-04-01

    Genotypic variation in ear morphology is linked to differences in photosynthetic potential to influence grain yield in winter cereals. Awns contribute to photosynthesis, particularly under water-limited conditions when canopy assimilation is restricted. We assessed performance of up to 45 backcross-derived, awned-awnletted NILs representing four diverse genetic backgrounds in 25 irrigated or rainfed, and droughted environments in Australia and Mexico. Mean environment grain yields were wide-ranging (1.38-7.93 t ha(-1)) with vegetative and maturity biomass, plant height, anthesis date, spike number, and harvest index all similar (P >0.05) for awned and awnletted NILs. Overall, grain yields of awned-awnletted sister-NILs were equivalent, irrespective of yield potential and genetic background. Awnletted wheats produced significantly more grains per unit area (+4%) and per spike (+5%) reflecting more fertile spikelets and grains in tertiary florets. Increases in grain number were compensated for by significant reductions in grain size (-5%) and increased frequency (+0.8%) of small, shrivelled grains ('screenings') to reduce seed-lot quality of awnletted NILs. Post-anthesis canopies of awnletted NILs were marginally warmer over all environments (+0.27 °C) but were not different and were sometimes cooler than awned NILs at cooler air temperatures. Awns develop early and represented up to 40% of total spikelet biomass prior to ear emergence. We hypothesize that the allocation of assimilate to large and rapidly developing awns decreases spikelet number and floret fertility to reduce grain number, particularly in distal florets. Individual grain size is increased to reduce screenings and to increase test weight and milling quality, particularly in droughted environments. Despite the average reduction in grain size, awnless lines could be identified that combined higher grain yield with larger grain size, increased grain protein concentration, and reduced screenings. PMID

  14. Improving Spring Maize Yield Estimation at Field Scale by Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a New Method with Fast Algorithms

    Zhiqiang Cheng

    2016-04-01

    Full Text Available Field crop yield prediction is crucial to grain storage, agricultural field management, and national agricultural decision-making. Currently, crop models are widely used for crop yield prediction. However, they are hampered by the uncertainty or similarity of input parameters when extrapolated to field scale. Data assimilation methods that combine crop models and remote sensing are the most effective methods for field yield estimation. In this study, the World Food Studies (WOFOST model is used to simulate the growing process of spring maize. Common assimilation methods face some difficulties due to the scarce, constant, or similar nature of the input parameters. For example, yield spatial heterogeneity simulation, coexistence of common assimilation methods and the nutrient module, and time cost are relatively important limiting factors. To address the yield simulation problems at field scale, a simple yet effective method with fast algorithms is presented for assimilating the time-series HJ-1 A/B data into the WOFOST model in order to improve the spring maize yield simulation. First, the WOFOST model is calibrated and validated to obtain the precise mean yield. Second, the time-series leaf area index (LAI is calculated from the HJ data using an empirical regression model. Third, some fast algorithms are developed to complete assimilation. Finally, several experiments are conducted in a large farmland (Hongxing to evaluate the yield simulation results. In general, the results indicate that the proposed method reliably improves spring maize yield estimation in terms of spatial heterogeneity simulation ability and prediction accuracy without affecting the simulation efficiency.

  15. Deficit hídrico e produtividade na cultura do milho Water deficit and yield in maize crop

    Homero Bergamaschi

    2006-02-01

    Full Text Available O objetivo deste trabalho foi avaliar o impacto do deficit hídrico, no rendimento de grãos de milho, e a eficácia da irrigação em todo ciclo e, especificamente, no florescimento. Os dados foram obtidos em dez anos de experimentação, durante os quais doses variáveis de irrigação foram aplicadas por um sistema de aspersão, localizado no centro da área experimental. Foram calculados balanços hídricos, tendo como variáveis a água precipitada (chuva e irrigação e a evapotranspiração máxima do milho. Foram ajustados modelos de regressão para 27 condições hídricas, relacionando-se rendimento de grãos com deficit hídrico e razão evapotranspiração real sobre evapotranspiração máxima (ETr/ETm. A maior redução na produção ocorre em conseqüência do deficit hídrico na polinização, formação do zigoto e desenvolvimento inicial do grão, numa relação quadrática. Nesse período, a razão ETr/ETm explica quase 80% das variações na produção de grãos, que se estabiliza acima de uma razão de 0,7. A irrigação aumenta e estabiliza a produção do milho; doses de rega de aproximadamente 60% daquela necessária para elevar a umidade do solo à capacidade de campo aumentam a eficiência de uso da irrigação.The objective of this work was to evaluate the impact of water deficit on maize grain yield, as well as the irrigation effectiveness, considering all the crop cycle and, specifically, the flowering period. Data were collected during ten years in several experiments, in which variable doses of irrigation were applied by an aspersion system located in the center of the experimental area. Water balances were calculated, and the precipitated water (rainfall and irrigation and the maximum evapotranspiration of the maize were considered as inputs. Models of regression for 27 water conditions were adjusted, relating grain yield to water deficit and actual evapotranspiration to maximum evapotranspiration ratio (ETr

  16. An evaluation of water-yield relations in maize (Zea mays L.) in Turkey.

    Mengü, Gülay Pamuk; Ozgürel, Mustafa

    2008-02-15

    The objective of this study was to compare the responses of maize (Zea mays L.) to deficit irrigation. A field experiment was conducted during the 1999 and 2000 growing seasons in western Turkey. Irrigation treatments were tested with 100, 70, 50, 30 and 0% replenishment of water depleted at 120 cm soil profile from 100% replenishment treatment at ten days intervals. The irrigation amount ranged between 0 and 323.20 mm in the first year and 0-466.61 mm in the second year of the experiment. Seasonal crop water use values were between 142.19 and 481.91 mm in 1999 and 136.25-599.45 mm in 2000. Average maximum and minimum yields were 10639-10383 kg ha(-1) for full irrigated treatment (I100) and 3750-2136 kg ha(-1) for non-irrigated treatment (I0) in 1999 and 2000, respectively. Water deficit significantly affected maize yield. In both years, yield increased linearly with irrigation applied but the relationship varied from one year to the other. Water Use Efficiency (WUE) ranged from 1.49 to 2.71 kg m(-3), while Irrigation Water Use Efficiency (IWUE) varied from 1.44 to 2.55 kg m(-3) in both years. The yield response factor (ky) relating relative yield decrease to relative evapotranspiration deficit was found to be 0.99 for the data of the two experiments combined. Also, dry matter yields (DM) and leaf area index (LAI) were markedly affected by the irrigation treatments. The finding of this work showed that well-irrigated treatment should be used for maize grown in semi arid regions under no water scarcity. PMID:18817120

  17. Optimizing nitrogen and harvest time to maximize the maize fodder yield in punjab, pakistan

    Appropriate nutrient management and harvesting date are the main and quickest means for increasing maize production. A field experiment with three nitrogen fertilization rates (N = 50; N = 100; N = 150 (kg ha/sup 1/) and three harvest dates (H/sub 1/ = 50, H/sub 2/ = 60 and H/sub 3/ = 70 DAS) was carried out at the Agronomic Research Area, University of Agriculture, Faisalabad to predict the response of maize (Zea mays L.) fodder yield and its quality attributes to optimal nitrogen input rates and harvest dates. The results showed that increase in nitrogen fertilizer input resulted in significant (P 0.05) increase in yield and quality traits. Yield attributes as plant height (179.40 cm), stem diameter (3.59 cm), leaf area plant (3755 cm/sup 2/ ), dry matter (33.44%), dry matter yield (17.68 t ha ) and green fodder yield (71.32 t ha ) were significantly increased with nitrogen input of 150 kg N ha . Among nitrogen input rates, 150 kg N ha level was also responsible for highest crude fat (3.09%), crude protein (11.48%) and crude fiber (34.21%) except ash contents (10.17%) compared to other nitrogen treatments. Twenty days delayed for harvest proved to be best for increasing growth and quality characters of maize plants. The interaction between nitrogen rates and harvest dates was found to be highly significant except for plant height, dry matter percentage and crude protein. Nitrogen input of 150 kg N ha/sup -1/ with 70 DAS harvest date (N/sub 3/ at H/sub 3/) significantly improved the stem diameter (5.11 cm), leaf area plant (4108 cm ), dry matter yield (21.35 t ha ), green fodder yield (83.87 t ha ) and crude fiber (37.21%) while crude fat (2.47%) and ash (9.17%) contents were decreased. In conclusion, on the basis of growth and quality parameters, the nitrogen application at 150 kg N ha and harvesting time (70 DAS) was the suitable option to attain highest maize fodder yield. (author)

  18. Yield and combining ability of maize cultivars under different ecogeographic conditions

    Adilson Deitos; Emmanuel Arnhold; Freddy Mora; Glauco Vieira Miranda

    2006-01-01

    The objective of this study was to evaluate the yield and combining ability of maize cultivars (AG4051, AL30,AL25, D270, D170, and AG1051) in contrasting environments. The trials were conducted in the growing season 2002/2003,in Viçosa, Capinópolis and Florestal, state of Minas Gerais. The effects of hybrids were significant by the F test, as well astreatments x environments, hybrid combinations x environments, and controls x environments. This indicates the possibilityof increasing the yield...

  19. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  20. Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models

    Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.

    2015-12-01

    The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.

  1. Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L. stover

    de Leon Natalia

    2009-03-01

    Full Text Available Abstract Background Improvement of biofeedstock quality for cellulosic ethanol production will be facilitated by inexpensive and rapid methods of evaluation, such as those already employed in the field of ruminant nutrition. Our objective was to evaluate whether forage quality and compositional measurements could be used to estimate ethanol yield of maize stover as measured by a simplified pretreatment and simultaneous saccharification and fermentation assay. Twelve maize varieties selected to be diverse for stover digestibility and composition were evaluated. Results Variation in ethanol yield was driven by glucan convertibility rather than by glucan content. Convertibility was highly correlated with ruminal digestibility and lignin content. There was no relationship between structural carbohydrate content (glucan and neutral detergent fiber and ethanol yield. However, when these variables were included in multiple regression equations including convertibility or neutral detergent fiber digestibility, their partial regression coefficients were significant and positive. A regression model including both neutral detergent fiber and its ruminal digestibility explained 95% of the variation in ethanol yield. Conclusion Forage quality and composition measurements may be used to predict cellulosic ethanol yield to guide biofeedstock improvement through agronomic research and plant breeding.

  2. Effect of Different Fertilization Practices on Yield of a Wheat-Maize Rotation and Soil Fertility

    2002-01-01

    A 15-year field experiment was carried out in Henan Province, China, to study the effects of different fertilization practices on yield of a wheat-maize rotation. Fertilizers tested contained N alone (N), N plus P (NP) or plus P and K (NPK), all with or without manure (M). Different long-term fertilization practices affected the yields under the rotation system of wheat and maize differently and the effects on yields was in a general trend of MNPK>MNP>MN>NPK>NP>M>N>the control. The average contribution rate of soil fertility to the highest yield was 37.9%, and the rest 62.1% came from fertilizer applications. The yield effects of the chemical fertilizers were in the order of N>P>K and were increased by application of manure.Balanced fertilization with multielement chemical fertilizers and manure can be effective in maintaining growth in agricultural production. Combined application of chemical fertilizer and organic manure also increased the content of soil organic matter.

  3. Effect of Maize Hybrid Maturity and Grain Hardness on Fumonisin and Zearalenone Contamination

    Massimo Blandino

    2008-06-01

    Full Text Available The level of resistance in commercial hybrids for Fusarium ear rot is still not in general adequate to prevent unacceptable toxin concentrations in field. The purpose of this experiment was to verify the behaviour of commercial dent maize hybrids for fumonisin and zearalenone contamination and to identify the variety traits that influence the production of these toxins. Field experiments were carried out in 2000, 2001 and 2002 to evaluate the effect of maize hybrid maturity and endosperm hardness on European Corn Borer (ECB incidence, fungal ear rot incidence and severity and on fumonisin B1 and zearalenone contents. Nineteen yellow soft commercial hybrids, from the 500, 600 and 700 FAO maturity groups, were compared in 4 sites in NW Italy. Hybrid were grouped in 3 endosperm hardness categories (hard, intermediate, soft in function of Hard/Soft (H/S endosperm ratio. No effect due to endosperm hardness or hybrid maturity on the ECB infestation or fungal ear rot incidence and severity was observed. Grain hardness significant influenced fumonisin B1 content: hard endosperm hybrids showed 50% lower contamination than soft hybrids. The presence of fumonisin B1 in the grain of different maturity hybrids only resulted to be significantly different in 2001 experiment, with a mean concentration 2 times higher in the later hybrids (FAO rating 700 compared to the medium and medium-late hybrids. The zearalenone content never resulted to be significantly different in function of the endosperm hardness, while, late maturing hybrids, in which grain moisture content decreases slowly below 30%, are more susceptible to zearalenone contamination. This research has highlighted the presence of variety traits that can influence mycotoxin contamination. An accurate choice of hybrid, considering the territorial and cultivation context, could contribute to achieve products, that contain mycotoxins, which do not exceed the maximum international and UE regulation levels.

  4. Effect of Maize Hybrid Maturity and Grain Hardness on Fumonisin and Zearalenone Contamination

    Amedeo Reyneri

    2011-02-01

    Full Text Available The level of resistance in commercial hybrids for Fusarium ear rot is still not in general adequate to prevent unacceptable toxin concentrations in field. The purpose of this experiment was to verify the behaviour of commercial dent maize hybrids for fumonisin and zearalenone contamination and to identify the variety traits that influence the production of these toxins. Field experiments were carried out in 2000, 2001 and 2002 to evaluate the effect of maize hybrid maturity and endosperm hardness on European Corn Borer (ECB incidence, fungal ear rot incidence and severity and on fumonisin B1 and zearalenone contents. Nineteen yellow soft commercial hybrids, from the 500, 600 and 700 FAO maturity groups, were compared in 4 sites in NW Italy. Hybrid were grouped in 3 endosperm hardness categories (hard, intermediate, soft in function of Hard/Soft (H/S endosperm ratio. No effect due to endosperm hardness or hybrid maturity on the ECB infestation or fungal ear rot incidence and severity was observed. Grain hardness significant influenced fumonisin B1 content: hard endosperm hybrids showed 50% lower contamination than soft hybrids. The presence of fumonisin B1 in the grain of different maturity hybrids only resulted to be significantly different in 2001 experiment, with a mean concentration 2 times higher in the later hybrids (FAO rating 700 compared to the medium and medium-late hybrids. The zearalenone content never resulted to be significantly different in function of the endosperm hardness, while, late maturing hybrids, in which grain moisture content decreases slowly below 30%, are more susceptible to zearalenone contamination. This research has highlighted the presence of variety traits that can influence mycotoxin contamination. An accurate choice of hybrid, considering the territorial and cultivation context, could contribute to achieve products, that contain mycotoxins, which do not exceed the maximum international and UE regulation levels.

  5. Trends and Variability of Rice, Maize, and Wheat Yields in South Asian Countries: A Challenge for Food Security

    Mahadeb Prasad Poudel

    2012-12-01

    Full Text Available During the last six decades, the yield and production of rice, maize, and wheat grew remarkably in South Asian region. As these cereals are staple foods, the growth and fluctuation of yields greatly impacts on food security. This study aims to examine the growth patterns and variability of rice, wheat, and maize yields in South Asian countries namely Bangladesh, India, Nepal, Pakistan, and Sri Lanka. Utilizing the yield data during 1961-2010, we applied the linear and quadratic regressions for yield trends and variability analyses. Quadratic model was fitted well in all data sets except wheat yield in Pakistan. A clear indication of slowing growth rates was observed for wheat yield in Bangladesh and India, as well as a significant increase in maize yield variability was realized in Bangladesh, India, Pakistan, and Sri Lank. The factors influencing for slowing yield growth rates are considered as comparative disadvantage of wheat to Boro rice in case of Bangladesh, whereas depletion of soil nutrient contents in the rice-wheat production areas and negative impact of climate change in India. The slowing yield growths exerted a challenge for food security in Bangladesh and India. Thus, policy implementations are urgent to improve the wheat yield growth and maize yield stabilization in the concerning countries.

  6. Studies on Maximum Yield of Wheat and Other Small Grains in Controlled Environments

    Salisbury, F. B.; Albrechtsen, R. S.; Campbell, W. F.; Dewey, W. G.

    1982-01-01

    Maximum yield of wheat and perhaps other small grains under controlled environmental conditions; cultivars, photosynthesis, nutrient levels, and humidity and plant water potential; promoting grain maturation; cross gradient chamber design; and single celled clonal multiplication of wheat plants are outlined.

  7. Inheritance of culm height and grain yield in durum wheat

    Results from a study of GA sensitive and GA insensitive durum wheat mutants and cultivars in relation with their culm height and 1000 grain weight are presented. With increasing culm height, the GA response also increased. A positive correlation between plant height and GA response was found. Crosses were made between durum wheats and the F1 and F2 progenies were analysed. A different inheritance in F1 and segregation in F2 was obtained in crosses of a semi-dwarf, GA insensitive [1] line with GA sensitive (S) lines differing in height, medium (93.2cm) and tall (133.5cm). In a reciprocal cross, semi-dwarf - I with medium - S, the semi-dwarf type was dominant in F1, suggesting that their semi-dwarfing genes were not allelic. When the semi-dwarf - I and tall - S were crossed an intermediate inheritance in F1 was observed. In the F2 generation from crosses semi-dwarf - I with medium - S with semi-dwarf - I, a phenotypic dihybred segregation 9:3:3:1 was observed. In crosses semi-dwarf - I with tall - S different variation curves were obtained. Semi-dwarfs with high productivity were observed in F2, a fact indicating that lodging resistant lines with high yields could be selected. (author)

  8. Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation

    Results of several field experiments on deficit irrigation programmes in Turkey are discussed. Deficit irrigation of sugar beet with water stress imposed (i e.,irrigation omitted)during ripening,stage saved nearly 22 % water, yet with no significant yield decrease. An experiment, conducted in Turkey Region, the European part of Turkey,and aimed at studying water production functions of sunflower(i e,yield vs water consumption), revealed that water stress imposed at either head forming or seed filling stags influence yield the least , and 40 % savings of irrigation water supply , compared with traditional practices in the region, can be achieved without significant yield reduction. Water stress imposed at vegetative and flowering stages of maize hindered the yield most significantly. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A four year field experiments aiming at developing deficit irrigation strategies for soybean showed that soybean was at the most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. Results of experiments on cotton showed that irrigations omitted during yield formation stage did not significantly hinder the yield. Similarly wheat give good yield response if irrigated at booting,heading and milking stages, depending on w heather conditions. In areas where rainfall at planting is limited, supplementary irrigation during this period can ensure good establishment of wheat crop. 1 tab; 9 figs; 59 refs (Author)

  9. Effects of Short Exposures to Spinosad-Treated Wheat or Maize on Four Stored-Grain Insects

    The effect of short exposures to spinosad-treated wheat and maize was evaluated against adults of four stored-product insects: the lesser grain borer, Rhyzopertha dominica (F.), the rice weevil, Sitophilus oryzae (L.), the red flour beetle, Tribolium castaneum (Herbst), and the psocid Lepinotus reti...

  10. Soil strength and maize yield after topsoil removal and application of nutrient amendments on a gravelly Alfisol toposequence

    Vast areas of degraded soils exist in southwestern Nigeria due to topsoil removal by soil erosion and gravel/stone mining operators. The restoration of such soils has become imperative to sustain food production in most rural communities. Therefore, a factorial field experiment was designed in 2003 and 2004 with the factors being slope positions (upper and lower slopes), topsoil removal (0, 15 and 25 cm depths) and nutrient amendments (0, 10 t ha-1 poultry manure and 60:30:30 N: P2O5: K2O as NPK + urea). This was complemented with a laboratory study to determine the effects of soil water, gravel concentration and gravel size on soil strength. Maize was planted. Soil strength was measured with a self-recoding penetrometer at soil depth interval of 2.5 cm up to 50 cm depth. Soil bulk density, water content, maize root and shoot biomass and grain yield were measured. In the laboratory, soil strength decreased from 483-314 kPa as water content increased from 0.05-0.62 cm3 cm-3 while it increased from 294-469 kPa as gravel concentration increased from 100-500 g kg-1. Soil strength was affected more by water content and gravel concentration than gravel size. Under various moist conditions in the field, soil strength increased with soil depth from 1177-5000 kPa at the upper slope and from 526-5000 kPa at the lower slope. Thus, the lower slope had significantly lower soil strength than the upper slope. Soil strength increased with increasing soil depth removal and was significantly reduced by poultry manure. For the 2 years of study, high grain yields were sustained with poultry manure/no topsoil removal (1784-3571 kg ha-1) and NPK + urea/no topsoil removal (2371-2600 kPa) at the lower slope. However, soil at the upper slope was more resistant to degradation as 16-67% loss in yield was observed compared to 65-75% for lower slope when no nutrients were applied. Nonetheless, both the upper and lower slope positions were productive with the application of poultry manure

  11. Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice

    Prashant Vikram; B P Mallikarjuna Swamy; Shalabh Dixit; Jennylyn Trinidad; Ma Teresa Sta Cruz; Maturan, Paul C.; Modesto Amante; Arvind Kumar

    2016-01-01

    Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pl...

  12. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a "gene-to-phenotype" modeling approach.

    Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L

    2009-12-01

    Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance. PMID:19786622

  13. Yield response of cotton, maize, soybean, sugarbeet, sunflower and wheat to deficit irrigation

    Results of several field experiments on deficit irrigation programs in Turkey are discussed. Deficit irrigation of surgarbeet with water stress imposed (i.e. irrigation omitted) during ripening stage saved nearly 22% water, yet with not significant yield decrease. An experiment, conducted in Trakya Region the European part of Turkey, and aimed at studying water production functions of sunflower (i.e. yield versus water consumption) revealed that water stress imposed at either head forming or seed filling stages influences yield the least with 40% savings of irrigation water supply compared with traditional practices in the region. Water stress imposed at vegetative and flowering stages of maize hindered the yield most significantly. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A four year field experiment aiming at developing deficit irrigation strategies for soybean showed that soybean was most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. Results of experiments on cotton showed that irrigations omitted during flowering and yield formation stage did not significantly hinder the yield. Similarly, wheat gives good yield response depending on weather conditions if irrigated at booting, heading and milking stages. In areas where rainfall at planting is limited, supplementary irrigation during this period can ensure good establishment of a wheat crop. (author). 58 refs, 9 figs, 1 tab

  14. Genetic variability for carotenoid content of grains in a composite maize population

    Volmir Kist

    2014-12-01

    Full Text Available Local maize (Zea mays L. varieties are cultivated by small-scale farmers in western Santa Catarina (SC State, in southern Brazil. These small areas frequently present many problems related to biotic and non-biotic stresses, which have limited the economic output and income of the farmers. Production from local varieties for human consumption would be an alternative way of improving income and stimulating on farm conservation. The genetic variability of the total carotenoid content (TCC of kernels in a local maize population was evaluated for their economic exploitation potential as biofortified food. Two independent samples of 96 half-sib families (HSF plus four checks were evaluated in two groups of experiments in western SC and each one was carried out in two environments. They were set out in a 10 × 10 partially balanced lattice with three replications per location; plots consisted of one row, 5.0 m long with 1.0 m between rows. TCC ranged from 11 to 23 µg g-1, averaging ≈16 µg g-1 in the pooled analysis over the two sets. The local composite population exhibited genetic variability in order to increase the TCC of grains in the second cycle of selection by the convergent-divergent scheme.

  15. Fungi Isolated from Maize (Zea mays L.) Grains and Production of Associated Enzyme Activities.

    Abe, Camila Agnes Lumi; Faria, Carla Bertechini; de Castro, Fausto Fernandes; de Souza, Sandra Regina; dos Santos, Fabiane Cristina; da Silva, Cleiltan Novais; Tessmann, Dauri José; Barbosa-Tessmann, Ione Parra

    2015-01-01

    Filamentous fungi produce a great variety of enzymes, and research on their biotechnological potential has recently intensified. The objective of this work was to identify, at the species level, using DNA barcoding, 46 fungal isolates obtained from maize grains with rot symptoms. We also analyzed the production of extracellular amylases, cellulases, proteases and lipases of 33 of those fungal isolates. The enzymatic activities were evaluated by the formation of a clear halo or a white precipitate around the colonies in defined substrate media. The found fungi belong to the genera Talaromyces, Stenocarpella, Penicillium, Phlebiopsis, Cladosporium, Hyphopichia, Epicoccum, Trichoderma, Aspergillus, Irpex, Fusarium, Microdochium, Mucor and Sarocladium. In the genus Fusarium, the species Fusarium verticillioides was predominant and this genus presented the highest diversity, followed by the genera Aspergillus. The best genera for lipase production were Cladosporium and Penicillium; while Cladosporium, Aspergillus and Penicillium were best for cellulase activity; Hyphopichia, Aspergillus and Irpex for amylase activity; and Cladosporium and Sarocladium for proteases activity. In conclusion, a collection of fungi from maize seeds presenting rotten symptoms were obtained, among which exist important producers of hydrolases. PMID:26198227

  16. Fungi Isolated from Maize (Zea mays L. Grains and Production of Associated Enzyme Activities

    Camila Agnes Lumi Abe

    2015-07-01

    Full Text Available Filamentous fungi produce a great variety of enzymes, and research on their biotechnological potential has recently intensified. The objective of this work was to identify, at the species level, using DNA barcoding, 46 fungal isolates obtained from maize grains with rot symptoms. We also analyzed the production of extracellular amylases, cellulases, proteases and lipases of 33 of those fungal isolates. The enzymatic activities were evaluated by the formation of a clear halo or a white precipitate around the colonies in defined substrate media. The found fungi belong to the genera Talaromyces, Stenocarpella, Penicillium, Phlebiopsis, Cladosporium, Hyphopichia, Epicoccum, Trichoderma, Aspergillus, Irpex, Fusarium, Microdochium, Mucor and Sarocladium. In the genus Fusarium, the species Fusarium verticillioides was predominant and this genus presented the highest diversity, followed by the genera Aspergillus. The best genera for lipase production were Cladosporium and Penicillium; while Cladosporium, Aspergillus and Penicillium were best for cellulase activity; Hyphopichia, Aspergillus and Irpex for amylase activity; and Cladosporium and Sarocladium for proteases activity. In conclusion, a collection of fungi from maize seeds presenting rotten symptoms were obtained, among which exist important producers of hydrolases.

  17. Economic Yield and Profitability of Maize/Melon Intercrop as Influenced by Inorganic Fertilizer Application in Humid Forest Ultisol

    Kolawole E. LAW-OGBOMO

    2011-11-01

    Full Text Available The trial assessed the viability and profitability of maize and melon production under sole and mixed cropping system on a forest Ultisol. This was conducted as an on-farm trial at Evboneka, Edo State, Nigeria in April 2008 and 2009. The trial involved three cropping patterns (sole maize, sole melon and maize/melon mixture and four levels of NPK fertilizer (0, 200, 400 and 600 kg ha-1 in a 3 � 4 factorial arrangement in randomized complete block design with three replications. The results revealed that economic yield of maize and melon increased as the fertilizer rate increase. The sole crops had higher yield than in their mixed stands in the entire fertilizer rate. However, land equivalent ratio (LER values of the mixed crop stands were higher than in their respective sole cropping. The LER was highest (1.47 in maize/melon mixed stands treated with 400 kg NPK ha-1. The production cost and economic return followed the same trend as they increased with an increase in fertilizer rate. The sole melon crop had the lowest production cost ($ 316.50-588.51 and economic return ($ 873-1,305 in the entire fertilizer rate compared to the sole maize and maize/melon mixed crop in that order. The net farm income does not follow a definite trend among the three cropping patterns, but the maize/melon intercrop value ($ 748.11-997.52 was the highest. The optimum yield was produced from maize/melon mixed stands treated with 200 kg ha-1. This treatment also gave the highest benefit-cost ratio of 2.19, in addition to ensuring better crop diversity in the rainforest ultisol.

  18. STABILITY AND ADAPTABILITY OF SEVERAL SOYBEAN OS-CULTIVARS IN THE GRAIN YIELD

    Aleksandra Sudarić

    2001-06-01

    Full Text Available The main objective of this study was to evaluate the level and stability of grain yield and adaptability of several domestic soybean cultivars. Trials were conducted on the experimental field of the Agricultural Institute Osijek during five years (1996-2000 and involved 14 soybean cultivars: Kaja, Una, Iva, Ilova, Lika, Drina, Tisa, Vuka, Nada, Podravka 95, Kuna, Ika, Anica, Kruna. All tested cultivars were created in soybean breeding programme at the Agricultural Institute Osijek. Data for grain yield were subjected to analysis of variance followed by LSD test. Stability of grain yield for each cultivar was estimated by three parameters: regression coefficient (bi, ecovalence (Wi and portion of genotype x environment variance due to the contribution of each genotype to total variance of genotype x environment interaction (S2GxY. Correlations between grain yield and stability parameters as well as among stability parameters were calculated. The summarised results indicate significant variation in level and stability of grain yield and adaptability of cultivars. Among 14 tested cultivars, six cultivars: Ika, Podravka 95, Anica, Kuna, Tisa and Drina had high and stable grain yield and wide-general adaptability. Correlation between grain yield and stability parameters has indicated that simultaneous selection on high and stable grain yield is possible. Very high significant positive correlation between parameters Wiand S2GxY indicate using of smaller number of parameters for stability estimation of grain yield without reduction of the estimation accuracy.

  19. STABILITY AND ADAPTABILITY OF SEVERAL SOYBEAN OS-CULTIVARS IN THE GRAIN YIELD

    Aleksandra Sudarić

    2001-06-01

    Full Text Available The main objective of this study was to evaluate the level and stability of grain yield and adaptability of several domestic soybean cultivars. Trials were conducted on the experimental field of the Agricultural Institute Osijek during five years (1996-2000 and involved 14 soybean cultivars: Kaja, Una, Iva, Ilova, Lika, Drina, Tisa, Vuka, Nada, Podravka 95, Kuna, Ika, Anica, Kruna. All tested cultivars were created in soybean breeding programme at the Agricultural Institute Osijek. Data for grain yield were subjected to analysis of variance followed by LSD test. Stability of grain yield for each cultivar was estimated by three parameters: regression coefficient (bi, ecovalence (Wi and portion of genotype x environment variance due to the contribution of each genotype to total variance of genotype x environment interaction (S2GxY. Correlations between grain yield and stability parameters as well as among stability parameters were calculated. The summarised results indicate significant variation in level and stability of grain yield and adaptability of cultivars. Among 14 tested cultivars, six cultivars: Ika, Podravka 95, Anica, Kuna, Tisa and Drina had high and stable grain yield and wide-general adaptability. Correlation between grain yield and stability parameters has indicated that simultaneous selection on high and stable grain yield is possible. Very high significant positive correlation between parameters Wi and S2GxYindicate using of smaller number of parameters for stability estimation of grain yield without reduction of the estimation accuracy.

  20. GROWTH AND MASS SPECTROMETRY PROFILE OF ALTERNARIA ALTERNATA PIGMENT GROWN IN MAIZE GRAIN EXTRACT

    Sagarika Devi

    2014-10-01

    Full Text Available Alternaria species are common saprophytes found in a variety of habitats as ubiquitous agents of decay. Alternaria spp. produces about sixty different secondary metabolites. In the present investigation, growth and production of pigment from Alternaria alternata was studied in maize grain extract at pH 4-9. The reddish brown pigment was extracted, estimated and partially purified by fractionation. Through mass spectrometry, major constituents of pigment from Alternaria alternata such as Tenuazoic acid (m/z 198, Stemphyperylenol (m/z 253, Alterperylenol (m/z 351, Alternariol (m/z 259.200, Altenuene (m/z 292, Alternarienoic acid (m/z 279.35 and Alternariol 5 methyl ether (m/z 273.20 were identified. The bio-prospecting of these secondary metabolites in industrial applications is also discussed.

  1. Attempts to combine high yield and increased grain protein in wheat

    The best mutant obtained in our programme (TW-1) has given grain yields ranging from 80 to 92% of the parent cultivar Kalyan Sona and has consistently shown an increase in grain protein content of about two percentage points. A hybridization programme was therefore initiated to obtain selections with yield potential equal or better than that of Kalyan Sona and with increased grain protein content. Transgressive segregation for plant height, spike length and days to flowering was observed in the F2 generation of a cross between the parent Kalyan Sona and the high-protein mutant. Selections in the F2 generation were made on the basis of grain yield components and grain protein per cent and have been studied up to the F4. Most of the selections in F4 were between the two parents for both grain yield and grain protein content. (author)

  2. Response of promiscuous soybean to rhizobial inoculation and fertilization treatments and their effects on subsequent maize yields in degraded 'Terre de Barre' in Benin

    Poor adoption of green manures and agroforestry systems for the sustainable intensification of agricultural production in the moist savannah of West Africa, and the low contribution of the traditional grain legumes such as groundnuts, cowpea and common bean have prompted the search for alternative socio-economic solutions for the smallholders such as the development the N2 fixation of promiscuous soybean to increase food production and improve soil fertility status, in particular in the degraded lands. Twenty one and fifteen farmers' fields were selected in 2001 and 2002 respectively and again in 2002 and 2003 for the trials. Each farmer's field represented one replication. The 15N isotope dilution method was used to assess symbiotic N2 fixation of the IITA promiscuous soybean variety TGX 1448 2E and its response to inoculation and fertilization. In both years 2001 and 2002, the application of 20 kg N did not affect nodulation, biomass production and N accumulation of soybean uninoculated in 2001, or inoculated in 2002. However, inoculation produced the highest nodule number and nodule weight in 2002. The highest values of biomass production and N accumulation were found with soybean that received poultry manure in 2001 and 100 kg N ha-1 as urea in 2002. The highest biomass and N accumulation in 2001 was 1600 kg ha-1 and 41 kg N ha-1 with soybean amended with poultry manure. Shoot N production in 2002 averaged only 25 kg N ha-1, while the average N accumulation in soybean seed was 64 kg N ha-1. The best percentage of N derived from atmosphere (54%) amounting only 13 kg N ha-1 was obtained with soybean fertilized with 20 kg N ha-1 and inoculated treatment. These values are too low indicating that soybean cultivated in the study area is far from satisfying its N requirements through N fixation. The N balance calculated on the basis of the amount of N fixed removed in the grain is negative (-48 kg N ha-1). In the season 2002, it was observed that maize yields in the

  3. Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield

    Mourtzinis, Spyridon; Ortiz, Brenda V.; Damianidis, Damianos

    2016-07-01

    Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33–43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between ‑25 and ‑2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha‑1year‑1 (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971–2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.

  4. Effects of different organic materials on forage yield and quality of silage maize (Zea mays L.)

    NAZLI, Recep İrfan; KUŞVURAN, Alpaslan; İNAL, İlker; DEMİRBAŞ, Ahmet; TANSI, Veyis

    2014-01-01

    This study was conducted at the experimental area of the Field Crops Department of Çukurova University (37°01'N, 35°18'E) in the 2010 and 2011 growing seasons to determine the effects of sole or combined applications of 3 organic materials (poultry litter, cattle manure, and leonardite) with supplemental inorganic fertilizer on the forage yield and quality of silage maize. The field trial was arranged in a complete randomized block design with 3 replications. Poultry litter (PL) and...

  5. Variation of physiological growth indices, biomass and dry matter yield in some maize hybrids

    SHUKRI FETAHU; SLI ALIU; IMER RUSINOVCI; FETAH ELEZI; KEMAJL BISLIMI; AVNI BEHLULU; QENDRIM SHABANI

    2014-01-01

    In order to determine variation of physiological growth indices, biomass and dry matter yield, for six maize hybrids (MH), it was set up a field trial on randomized complete block design (RCDB), with three replications, with 6 MH: BC38W, BC408, ZP434, NSSC444, ESP500 and LUCE, during the years 2010 and 2011 (Y), at Experimental Farm (EF), Faculty of Agriculture and Veterinary in Prishtina, located in geographical position: N 42º 38'97" and E 21º 08'45" and 570 MASL. Growth rate, biomass and d...

  6. Low dose gamma radiation on maize seed and its effect on plant growth and yield

    Seed or plant treatment with ionizing radiations, at certain doses can promote an increase and/or germination acceleration, greater plant development, an agricultural production increase, etc. Radiation doses used to obtain these stimuli do not provoke alteration on the genetic patrimony, because generally the dose level is very low. Low doses of gamma radiation have been reported to induce useful effects in rice, wheat, corn, tomato, radish, etc. which resulted in improved germination and higher yields. The present work is aimed to examine the effects of 60Co gamma radiation on maize seeds, on its development and crop production

  7. Toasting of cereal grains: effects on in vitro rumen gas production and VFA yield

    Seerp Tamminga

    2010-01-01

    Full Text Available The fermentation properties of the following feeds: pelleted barley (PB, toasted and pelleted barley (TPB, pelleted maize (PM and toasted and pelleted maize (TPM were studied using an in vitro gas production (GP technique. Each feed sample (0.5g was incubated (3 replications, with rumen fluid collected from 3 grazing lactating dairy cows. The kinetics of GP were automatically recorded for 72h. The amounts of DM disappeared (DMd and the volatile fatty acid yields (VFA were measured. On barley, compared to simple pelleting, toasting significantly (P<0.05 reduced DMd (87.5 vs. 86.2%, the asymptotic GP (A, 388 vs. 367ml/g DMd and slightly increased the time of maximum GP rate (TRmax, 2.89 vs. 3.15h. On maize toasting did not affect DMd and A, but significantly reduced T1/2 (9.71 vs. 8.57; P<0.05 and TRmax (5.04 vs. 4.49, P<0.05. Toasting significantly reduced the VFA yields both of barley and maize. These results, in agreement with previous in sacco and in vivo observations, suggest that toasting might reduce the amount of potential fermentable substrate of barley, whereas it might increase the rate of fermentation of maize.

  8. The Effect of Three Common Grain Drills on Dryland Wheat Yield

    A Heidari

    2013-02-01

    Full Text Available A three-year field experiment (2004-2007 was conducted on a silty clay loam soil at Tajarak Research Station of Hamedan to determine proper grain drill for wheat in Hamedan dryland areas. In this study, three grain drills including: Hamedani Barzegar; Sahalan Kesht; and Kesht Gostar with wheat seed broadcasting and disking were used. The experiment was a randomized complete block design with four replications. In laboratory, the precision of metering device and the amount of seed damage by metering mechanism were measured. At the end of growth season (harvesting time, crop yield and the associated parameters (spike per m2, number of grain per spike, wheat kernel were determined. Results showed that planting methods did not affect wheat grain yield significantly. However, wheat grain yield was significantly higher for Kesht Gostar grain drill than the other two machines in two drier years. Mean wheat grain yield was 1224 kg ha–1. Mean wheat grain yield was the greatest (1275 kg ha-1 for Kesht Gostar and the least (1174 Kg ha-1 for Hamedani Barzegar grain drill. Mean straw yield was not affected by planting methods. Mean wheat straw yield was the greatest (2349 kg ha-1 for Hamedani Barzegar grain drill, and the least (2009 Kg ha-1 for the combination of seed broadcasting and disking. The amounts of rainfall during growing season strongly influenced wheat grain and straw yields. Mean wheat grain yield was 1572 Kg ha-1 and 1026 Kg ha-1 in wet year and dry years, respectively. This study showed that a wide range of grain drills is adaptable for dryland wheat cropping system for the semiarid Hamedan areas.

  9. A Projection of Maize-Yield Potential in the Southwestern United States

    Kim, S. H.; Kim, J.; Walko, R. L.; Myoung, B.; Stack, D.; Kafatos, M.

    2014-12-01

    As human population is projected to increase by 35% by 2050, agricultural production requires substantial growth compared to the current yield levels. In the coming decades, evaluating yield potential (Yp), the yield of a crop cultivar when grown without limitation of water and nutrients with effectively controlled pest and diseases change and solely determined by climate variables, is crucial to assess food security under climate change scenarios as it is directly connected to amount of exploitable yield. In this study, Yp is estimated and projected using regional climate models (RCM) and a process-based crop model over the Southwestern United States. High-resolution (8km grid spacing at the inner domain) climate variables are obtained using dynamical downscaling with two RCMs (WRF and OLAM) driven by boundary conditions from a GCM (GFDL-ESM2M) in the 5th phase of Coupled Model Intercomparison Project (CMIP5) archives. 20 years of the high-resolution and bias-corrected climate data from the two RCM runs (historical (1981-2000) and future (2031-2050)) are employed on the process-based crop model, Agricultural Production Systems sIMulator (ASPIM) to assess the climate change impact on maize Yp. The potential maize yield in the future period under the RCP8.5 greenhouse gas concentrations pathways shows that the yields are significantly changed when compared to the historical period. In the generally rising temperature regime, the projected Yp shows strong geospatial variations according to the regional climate characteristics in the high-resolution RCM projections.

  10. Factors controlling regional grain yield in China over the last 20 years

    Wang, Xiaobin; Cai, Dianxiong; Grant, Cynthia; Hoogmoed, Willem B.; Oenema, Oene

    2015-01-01

    Food production is highly dependent on regional yields of crops. Regional differences in grain yields could be due to fertilizer management and climate variability. Here, we analyze trends of grain yields in North China, Northeast China, East China, and Central and Southwest China from 1992 to 2012, using the Chinese statistical yearbooks. We estimate the major factors influencing yield by regression analysis. Results show that fertilizer indices were 40 % for Northeast China, 36 % for East C...