WorldWideScience

Sample records for main transport mechanism

  1. Filtration as the main transport mechanism of protein exchange between plasma and the peritoneal cavity in hepatic cirrhosis

    Henriksen, J H; Lassen, N A; Parving, H H; Winkler, K

    1980-01-01

    plasma protein flux averaged 0.4% of the intravascular protein mass per hour. The results point to filtration (convective flux) as the main transport mechanism responsible for protein passage into the peritoneal cavity as well as for the protein passage (lymphatic drainage) back into the plasma. Pressure...

  2. Nature and main kinds of psychopathological mechanisms

    Panagiotis Oulis

    2010-12-01

    Full Text Available The paper deals with two central issues in the philosophy of neuroscience and psychiatry, namely those of the nature and the major kinds and types of psychopathological mechanisms. Contrary to a widespread view, I argue that mechanisms are not kinds of systems but kinds of processes unfolding in systems or between systems. More precisely, I argue that psychopathological mechanisms are sets of actions and interactions between brain-systems or circuits as well as between the latter and other systems in one's body and external environment, both physical and social, involved in human psychopathology. According to the kinds of properties of the interacting systems or their component-parts, psychopathological mechanisms may be physical, chemical, biological, psychological, social, or, typically, mixed ones. Furthermore, I focus on two main kinds of psychopathological mechanisms involved in the causation of mental disorders, namely the pathogenetic and pathophysiological ones, stressing the importance of their careful distinction for the integrative understanding of otherwise disparate and apparently incommensurable psychiatric research findings. I illustrate my analysis with an example drawn from contemporary research on the mechanisms of acute psychosis. Finally, I stress the relevance of psychopathological mechanisms to a more scientifi cally-grounded classifi cation of mental disorders.

  3. Tape transport mechanism

    A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer

  4. Mechanisms of multidrug transporters

    Bolhuis, Henk; Veen, Hendrik W. van; Poolman, Bert; Driessen, Arnold J.M.; Konings, Wil N.

    1997-01-01

    Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidr

  5. Main Vacuum Technical Issues of Evacuated Tube Transportation

    Zhang, Y. P.; Li, S. S.; Wang, M. X.

    In the future, Evacuated Tube Transportation (ETT) would be built and faster than jets. ETT tube with diameter 2∼4m and length over 1000 km will be the largest scale vacuum equipment on earth. This paper listed some main vacuum technical issues to be solved in ETT as follow. How to build ultra-large-scale vacuum chamber like ETT tube with low cost and high reliability? How to pump gas out off the ETT tube in short time? How to release heat or reduce temperature in the vacuum tube? Hot to avoid vacuum electricity discharge? How to manufacture vehicles with airproof shells and equip the life support system? How to detect leakage and find leakage position efficiently and fast as possible? Some relative solutions and suggestions are put up.

  6. Membranes, mechanics, and intracellular transport

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  7. THE MAIN COMPETITIVE ADVANTAGES AT THE RAILWAY TRANSPORT

    Ustenko, M.

    2009-01-01

    The article considers the problem of developing the competitive advantages at the railway transport. Practical recommendations concerning the formation of the competitive advantages at the railway transport are work out.

  8. Radioactive materials' transportation main routes in Brazil. Radiation protection aspects about radioactive materials transportation

    The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)

  9. MAIN DIRECTIONS OF EFFICIENCY IMPROVEMENT OF TRANSPORT INTERCHANGES FUNCTIONING

    V. Naumov

    2015-07-01

    Full Text Available The article deals with the areas of study concerning transport interchanges. It has been determined that the most perspective directions for the future research is synchronization of the schedule that allous reducing the wating time, preventing the public transport congestion at bus stops and stations, and by doing this to ensure their sustainable development.

  10. Forces at the Main Mechanism of a Railbound Forging Manipulator

    Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu

    2015-01-01

    Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we determine the driving forces of the main mechanism from such manipulator. Forces diagram shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the ton...

  11. Summary on main policies, funding mechanisms, actors and trends

    Kressler, Florian; Weiss, Lucas; Åkerman, Jonas;

    This document summarizes the output of WP 3 on policies, funding mechanisms, actors and trends relating the four thematic groups. Each thematic group examines one goal of the White Paper on Transport, published by the European Commission in 2011. The purpose of this document is to provide input f...... further work carried out in the project, especially the road-mapping exercises and the strategic outlook carried out in WP 6. The inputs for this document include information from a literature review and direct consultation with stakeholders....

  12. Mechanisms of transport in radiative improved mode

    Improvement of confinement by a deliberate seeding of impurities line neon and argon has been found in many devices. Most intensively this phenomenon was studied in the limiter tokamak TEXTOR, where it was called radiative improved (RI) mode, and in the divertor machine DII-D. Recent experiments on TFTR, JT-60 and JET have demonstrated that by an optimization of seeding procedure a positive effect of impurities can be achieved in reactor scale devices. Extensive theoretical and modelling activities were performed during past years in order to understand the mechanisms of confinement improvement in RI-mode. Characteristics of drift instabilities namely the ion temperature gradient (ITG) and dissipate trapped electron (DTE) modes, which provide the main contribution to the anomalous transport in tokamaks, have been analyzed by the code for Gyro-Kinetic Stability. The behavior of non-linear turbulent eddies and vortices was studied in 'particle in cell' simulations. Fluid approximation has been applied to asses the effect of impurities on anomalous transport. All these studies predict a reduction of turbulence originated from the most dangerous ITG modes. Computations by a transport code with models for anomalous transport coefficients due to drift micro-instabilities reproduce many peculiarities of RI-plasmas. (author)

  13. Transport mechanism of a glutamate transporter homologue GltPh

    Ji, Yurui; Postis, Vincent L.G.; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  14. Main academic institutions conducting research in the public transport area

    Peterson, B.E. [Lund Inst. of Tech. (Sweden). Dept. of Traffic Planning and Engineering

    1997-12-01

    The international exchange of knowledge is becoming increasingly important for all activities. Within Europe, the need for simple reviews of institutions within one and the same subject area has become more tangible since the European Union started its public transport research program. The survey has been carried out in two stages. First a questionnaire was sent to those institutions, public transport authorities, public transport associations and individuals within the subject area that were known to the Department. In this questionnaire we asked for the names and addresses of institutions at colleges and universities where significant research on public transport is carried out. In a second stage, a list was compiled of the 48 institutions that were named in the results of the first questionnaire. This list was sent to these institutions with the request for a brief presentation of their research within the public transport sector and information on any institution they felt were missing in the list. We found further interesting institutions on the Internet. The final list contains more than 60 institutions outside the Nordic area. Within the Nordic countries we have exclusively followed our own address list of institutions with long-term research work within the subject area

  15. Kinematics at the Main Mechanism of a Railbound Forging Manipulator

    Florian Ion Tiberiu Petrescu

    2015-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Heavy payload forging manipulators are mainly characterized by large load output and large capacitive load input. The relationship between outputs and inputs will greatly influence the control and the reliability. Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we analyze the general kinematics of the main mechanism from a such manipulator. Kinematic scheme shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the tong and buffering. The lifting mechanism consists of several parts including linkages, hydraulic drives and motion pairs. The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed. An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed. These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators.

  16. Current controversies in determining the main mechanisms of atrial fibrillation.

    Schotten, U; Dobrev, D; Platonov, P G; Kottkamp, H; Hindricks, G

    2016-05-01

    Despite considerable basic research into the mechanisms of atrial fibrillation (AF), not much progress has been made in the prognosis of patients with AF. With the exception of anticoagulant therapy, current treatments for AF still do not improve major cardiovascular outcomes. This may be due partly to the diverse aetiology of AF with increasingly more factors found to contribute to the arrhythmia. In addition, a strong increase has been seen in the technological complexity of the methods used to quantify the main pathophysiological alterations underlying the initiation and progression of AF. Because of the lack of standardization of the technological approaches currently used, the perception of basic mechanisms of AF varies widely in the scientific community. Areas of debate include the role of Ca(2+) -handling alterations associated with AF, the contribution and noninvasive assessment of the degree of atrial fibrosis, and the best techniques to identify electrophysiological drivers of AF. In this review, we will summarize the state of the art of these controversial topics and describe the diverse approaches to investigating and the scientific opinions on leading AF mechanisms. Finally, we will highlight the need for transparency in scientific reporting and standardization of terminology, assumptions, algorithms and experimental conditions used for the development of better AF therapies. PMID:26991914

  17. Mechanisms for DNA Charge Transport

    Genereux, Joseph C.; Barton, Jacqueline K.

    2010-01-01

    DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to...

  18. Mechanical forces and lymphatic transport.

    Breslin, Jerome W

    2014-11-01

    This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  19. Mechanical Forces and Lymphatic Transport

    Breslin, Jerome W.

    2014-01-01

    This review examines current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including: evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. Improved understanding of the physiological mechanisms by lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  20. Feline hepatic biotransformation and transport mechanisms

    van Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats

  1. Main Directions and Mechanisms of Industrial Policy of Russia

    Irina M. Podmolodina

    2015-06-01

    Full Text Available Under difficult economic conditions for Russian business, characterized by difficulties of Russian companies’ access to foreign modern technologies and long-term financial resources, there is a need for elaborated industrial policy which facilitates the development of national industry and provision of economic security of the country. With current sanctions, the Russian enterprises faced the problems of impossibility of getting foreign equipment under the previously signed contracts, re-orientation of orders for the similar domestic production, and attraction of financial resources from internal sources. Solution to these problems lies in the plane of development of “new” industrial policy. The purpose of the article is to determine main directions and mechanisms for realization of measures of industrial policy which facilitates the development of domestic industrial production, implementation of achievements of scientific and technological progress into industrial processes, and import substitution of science intensive products. Realization of industrial policy of Russia supposes the formation of special conditions. These are favorable economic and socio-infrastructural conditions, attractive entrepreneurial regime, high level of training of personnel for various industries, and informational support of government structures. Activation of innovational activity requires mechanisms that ensure the improvement of conditions for fair competition and increase of motivation of companies for innovations; regulation of product markets (service markets and sectorial regulation for distribution of leading technologies; development of the system of technical regulation, which includes harmonization of legislative basis of Russia and the EU countries in this sphere; simplification of a procedure of entry of new products into the market; simplification and quickening of the procedures of certification, including as to the international quality

  2. Angular momentum transport efficiency in post-main sequence low-mass stars

    Spada, F; Arlt, R; Deheuvels, S

    2016-01-01

    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotati...

  3. Triggering mechanisms for transport barriers

    The radial shear ωExB of the ExB flow is evaluated with the Monte Carlo orbit following code ASCOT at the onset of the L-H transition and internal transport barriers (ITB) in JET, TFTR, ASDEX Upgrade, TEXTOR, and FT-2 tokamaks. Systematically, a large shear (sufficient for turbulence suppression) is found for local parameters close to the experimental threshold conditions at the barrier location. For L-H transition in JET and ASDEX Upgrade, the large shear is obtained by increasing the edge ion temperature. For TEXTOR, the radial electric field and the electrode current bifurcate at a threshold electrode voltage. In a JET database study, toroidal rotation is found to be dominant in triggering the JET ITB, and an empirical s-ωExB fit is found for the transition threshold. For TFTR and FT-2, in which toroidal rotation does not play a role, ASCOT predicts a significant ωExB shear for the ITB conditions. The ripple-induced transport is not found to be important here. (author)

  4. Mechanical Forces and Lymphatic Transport

    Breslin, Jerome W.

    2014-01-01

    This review examines current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pre...

  5. LOGISTIC APPROACH IN CREATING AN EFFECTIVE MECHANISM OF PASSENGER TRANSPORTATION MANAGEMENT BY RAILWAY TRANSPORT

    V. I. Kopytko

    2009-09-01

    Full Text Available The logical concept of passenger transportation management on the railway transport is considered. This concept provides the creation of logical centers, which must combine the market mechanism with the government regulation. It is motivated that the efficient work condition of logical centers is a determination of main factors, due to which it is possible to realize the classification of passenger traffic that will allow forecasting the behavior of a logistic structure at the passenger market.

  6. Seesaw mechanism in turbulence and turbulent transport

    Full text: Theory of nonlocal transport has been developed, based upon the statistical theory of plasma turbulence. Essence is that fluctuations (with long radial correlation length) can be excited by nonlinear processes, although they are linearly stable. Experiments have reported the non-diffusive mechanisms in rapid response of transport between distant radii. Simulations have demonstrated that transport barrier can be established while increasing linear growth rate of local instabilities. These await application of theory of nonlocal transport. Example of such nonlinearly-driven, meso-scale fluctuations is the zonal flow (ZF). ZFs grow extracting energy from microscopic fluctuations so as to reduce the turbulence and turbulent transport. Because the radial correlation length of ZF is longer than those for microscopic fluctuations, which are inducing turbulent transport, ZF, which is driven fluctuations at one radius, can suppress fluctuations at distant radii. Thus, the fluctuations exchange energy over the distance that is much longer than autocorrelation length of microscopic fluctuations. This mechanism induces new nonlocal interactions in turbulent transport. That is, strong fluctuations at particular radius can suppress fluctuations at different radius, via induction of ZFs. Stronger fluctuations suppress weaker fluctuations. This is called the seesaw mechanism via ZFs. Owing to this mechanism, the turbulence transport is not determined by local parameters alone, but by parameters at far distance. The transient response is much faster than the process governed by diffusive processes. [This work is partly supported by the Grant-in-Aid for Specially-Promoted Research (16002005), the Grant-in-Aid for Scientific Research (19360418) and collaboration programme of NIFS.] (author)

  7. Molecular Mechanism of Biological Proton Transport

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  8. Cache-Conscious Index Mechanism for Main-Memory Databases

    2006-01-01

    Recent studies have addressed that the cache behavior is important in the design of main memory index structures. Cache-conscious indices such as the CSB+-tree are shown to outperform conventional main memory indices such as the AVL-tree and the T-tree. This paper proposes a cache-conscious version of the T-tree, CST-tree, defined according to the cache-conscious definition. To separate the keys within a node into two parts, the CST-tree can gain higher cache hit ratio.

  9. Invasive home mechanical ventilation, mainly focused on neuromuscular disorders

    Börger, Sandra

    2010-01-01

    Full Text Available Introduction and background: Invasive home mechanical ventilation is used for patients with chronic respiratory insufficiency. This elaborate and technology-dependent ventilation is carried out via an artificial airway (tracheal cannula to the trachea. Exact numbers about the incidence of home mechanical ventilation are not available. Patients with neuromuscular diseases represent a large portion of it. Research questions: Specific research questions are formulated and answered concerning the dimensions of medicine/nursing, economics, social, ethical and legal aspects. Beyond the technical aspect of the invasive home, mechanical ventilation, medical questions also deal with the patient’s symptoms and clinical signs as well as the frequency of complications. Economic questions pertain to the composition of costs and the differences to other ways of homecare concerning costs and quality of care. Questions regarding social aspects consider the health-related quality of life of patients and caregivers. Additionally, the ethical aspects connected to the decision of home mechanical ventilation are viewed. Finally, legal aspects of financing invasive home mechanical ventilation are discussed. Methods: Based on a systematic literature search in 2008 in a total of 31 relevant databases current literature is viewed and selected by means of fixed criteria. Randomized controlled studies, systematic reviews and HTA reports (health technology assessment, clinical studies with patient numbers above ten, health-economic evaluations, primary studies with particular cost analyses and quality-of-life studies related to the research questions are included in the analysis. Results and discussion: Invasive mechanical ventilation may improve symptoms of hypoventilation, as the analysis of the literature shows. An increase in life expectancy is likely, but for ethical reasons it is not confirmed by premium-quality studies. Complications (e. g. pneumonia are rare

  10. [Horizontal transport of nitrate in main soil groups of Huang-Huai-Hai Plain].

    Chen, Xiaomin; Deng, Jiancai; Zhang, Jiabao; Zhu, Anning; Pan, Youyu

    2002-09-01

    The horizontal transport of nitrate in main soil groups (yellow fluvo-aquic soils and aeolian sandy soil) in Huang-Huai-Hai Plain was studied. The results were as follows: the horizontal transport velocity of nitrate decreased with the distance of the tracer source in power function. Due to different soil property in soil profile, the curves of horizontal transport of nitrate were difference. The horizontal transport velocity of nitrate was controlled by the concentration gradient and soil water potential gradient in 20 cm of horizontal soil column. It was stable after 20 cm, which was controlled by soil matric potential. The horizontal transport velocity of nitrate was in a sharp positive relation with the soil moisture content and changed with exponential function. The concentration of nitrate in horizontal transport decreased with the unsaturated soil water diffusivity increased and changed with logarithmic function. PMID:12533936

  11. Feline hepatic biotransformation and transport mechanisms

    Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats in veterinary practice, following the increasing popularity of cats in The Netherlands. Drug intolerance, toxic side effects or a lack of efficacy have been observed when treating feline patients w...

  12. Polaronic charge transport mechanism in DNA

    Hennig, Dirk; Archilla, Juan F. R.

    2006-01-01

    For the detailed understanding of the conduction mechanism in DNA we use models based on the concept of polaron and breather solutions. We describe how charge transport relies on the coupling of the charge carrying unit to the vibrational modes of DNA allowing for the formation of polaron-like localised states. The mobility of these localised states is discussed particularly in the presence of parametrical and structural disorder inherent to biomolecules. It is demonstrated tha...

  13. Application of main crane lock mechanism in the turbine building of nuclear power plant

    In order to avoid potential impact on safety of nuclear island side, anti-tornado lock mechanism are designed on the girder of turbine building main crane. Based on the experience of Haiyang NPP Phase I, this paper illustrates the installation plan for main crane lock mechanism of turbine building, calculation course, main characteristics and safety consideration, etc. (authors)

  14. Dynamic analysis of the mechanical systems vibrating transversally in transportation

    A. Buchacz

    2007-01-01

    Full Text Available Purpose: Purpose of this paper is analysis and modelling of mechanical systems in transportation. Thecontemporary technical problems are lashed with high work demands such as high speeds of mechanisms, usinglower density materials, high precision of work, etc. The main objective of this thesis was the dynamical analysiswith taking into consideration the interaction between main motion and local vibrations during the model isloaded by transverse forces.Design/methodology/approach: Equations of motion were derived by classical methods, the Lagrangeequations with generalized coordinates and generalized velocities assumed as orthogonal projections ofindividual coordinates and velocities of the beam and manipulators to axes of the global inertial frame.Findings: Presented mathematical model of the transversally vibrating systems in planar transportation can beput to use to derivation of the dynamical flexibility of these systems, moreover those equations are the startingpoint to the analysis of complex systems. In particular we can use those equations to derivation of the substitutedynamical flexibility of multibody systems.Research limitations/implications: There were considered mechanical systems vibrating transversally in termsof plane motion. Next problem of dynamical analysis is the analysis of systems in non-planar transportation andsystems loaded by longitudinal forces.Practical implications: Results of this thesis can be put to use into all machines and mechanisms running intransportation such as wind power plants, high speed turbines, rotors, manipulators and in aerodynamics issues,etc. Some results ought to be modified and adopted to appropriate models.Originality/value: High requirements applying to parameters of work of machines and mechanisms are causedthe new research and new ways of modelling and analyzing those systems. One of these ways are presented inthis thesis. There was defined the transportation effect for models vibrating

  15. Mechanical systems vibrating longitudinally with the transportation effect

    S. Żółkiewski

    2007-03-01

    Full Text Available Purpose: High work speeds of mechanisms, using materials with high flexibility, high precision of work, etc. are the cause of searching of the new ways of modelling. One of these ways is presented in this thesis. The main purpose of this thesis is the dynamical analysis with taking into consideration the interaction between main motion and local vibrations during the model is loaded by longitudinal forces.Design/methodology/approach: Derived equations of motion were made by classical methods, with generalized coordinates and generalized velocities assumed as orthogonal projections of individual coordinates and velocities of the rod and manipulators to axes of the global inertial frame.Findings: Mathematical model of the longitudinally vibrating systems in terms of plane motion can be put to use to derivation of the dynamical flexibility of these systems, and also those equations are the starting point to the analysis of complex systems, especially we can use those equations to derivation of the substitute dynamical flexibility of n-linked systems in transportation.Research limitations/implications: In the thesis were considered mechanical systems vibrating longitudinally in terms of rotation. Next problem of dynamical analysis is the analysis of systems in non-planar transportation and systems loaded by transversal forces.Practical implications: Results of this thesis can be put to use into machines and mechanisms in transportation such as: wind power plant, high speed turbines, rotors, manipulators and in aerodynamics issues, etc.Originality/value: Up to now there were analyzed beams and rods in a separate way, first main motion of the system and after that the local vibrations. The new approach of modelling were presented by authors of this thesis, a new modelling took into consideration the interaction between those two displacement. There was defined the transportation effect for models vibrating longitudinally in this thesis.

  16. Evaporation as the transport mechanism of metals in arid regions

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  17. Administrative mechanics of research fuel transportation

    This presentation contains the discussion on the multitude of administrative mechanics that have to be meshed for the successful completion of a shipment of spent fuel, HEU or LEU in the research reactors fuel cycle. The costs associated with transportation may be the equivalent of 'a black hole', so an overview of cost factors is given. At the end one could find that this black hole factor in the budget is actually a bargain. The first step is the quotation phase. The cost variables in the quotation contain the cost of packaging i.e. containers; the complete routing of the packages and the materials. Factors that are of outmost importance are the routing restrictions and regulations, physical security regulations. All of this effort is just to provide a valid quotation not to accomplish the goal of completing a shipment. Public relations cannot be omitted either

  18. As if Kyoto mattered: The clean development mechanism and transportation

    Transportation is a major source of greenhouse gas (GHG) emissions and the most rapidly growing anthropogenic source. In the future, the developing world will account for the largest share of transport GHG increases. Four basic components drive transportation energy consumption and GHG emissions: activities (A), mode share (S), fuel intensity (I) and fuel choice (F) (ASIF). Currently, the Kyoto Protocol's clean development mechanism (CDM) serves as the main international market-based tool designed to reduce GHG emissions from the developing world. Theoretically, the CDM has the dual purpose of helping developing countries achieve 'sustainable development' goals and industrialized countries meet their Kyoto emissions reduction commitments. This paper reviews overall CDM activities and transportation CDM activities to date and then presents findings from three case studies of transportation CDM possibilities examined with the ASIF framework in Santiago de Chile. The analysis suggests that bus technology switch (I) provides a fairly good project fit for the CDM, while options aimed at inducing mode share (S) to bicycle, or modifying travel demand via land use changes (ASI) face considerable challenges. The implications of the findings for the CDM and the 'post-Kyoto' world are discussed

  19. Studies on lipid transport mechanism in the fish

    In mammals, absorbed micelles are resynthesized in the epithelial cells of the intestine and transported as chylomicrons through the lymphatic route, then as various lipoproteins in the circulatory system. It is rather difficult to draw conclusions about the dynamic processes involved in the absorption and transport of lipids, since there are few studies on these processes in fish. From the cannulated tube of a carp, 0.8 ml of blood was collected at various intervals after feeding. The disc electrophoresis pattern of carp blood plasma shows three main lipoprotein bands when prestained with acetylated Suden black B: Band 1 (albumin lipid complex), Band 2 (near alpha2-lipoprotein) and Band 3 (near beta- and pre-beta-lipoproteins of human plasma). Incorporation of palmitic acid into plasma lipid classes in starved fish was markedly characterized by the initial appearance within 1/2-3 hr of FFA associated mainly with Band 1 followed by gradual increase in TG and PL later. Under normal conditions, high levels of FFA appeared; however, TG associated with Band 3 and 1 appeared distinctly only after 6-12 hr. In the case of tripalmitin feeding, FFA appeared first, the incorporation being moderate but constant, followed by TG (after 3 hr) as the major lipid constituent associated first with Band 3 which seemed to be converted to Band 1 after 6 hr. It can be pointed out from these results that the mammalian lipid transport mechanism is not applicable to fish; instead, Band 1 associated mainly with FFA plays an important role in fish lipid transport. (auth.)

  20. A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus.

    Takanashi, Kojiro; Sasaki, Takayuki; Kan, Tomohiro; Saida, Yuka; Sugiyama, Akifumi; Yamamoto, Yoko; Yazaki, Kazufumi

    2016-07-01

    Legume plants can establish symbiosis with soil bacteria called rhizobia to obtain nitrogen as a nutrient directly from atmospheric N2 via symbiotic nitrogen fixation. Legumes and rhizobia form nodules, symbiotic organs in which fixed-nitrogen and photosynthetic products are exchanged between rhizobia and plant cells. The photosynthetic products supplied to rhizobia are thought to be dicarboxylates but little is known about the movement of dicarboxylates in the nodules. In terms of dicarboxylate transporters, an aluminum-activated malate transporter (ALMT) family is a strong candidate responsible for the membrane transport of carboxylates in nodules. Among the seven ALMT genes in the Lotus japonicus genome, only one, LjALMT4, shows a high expression in the nodules. LjALMT4 showed transport activity in a Xenopus oocyte system, with LjALMT4 mediating the efflux of dicarboxylates including malate, succinate, and fumarate, but not tricarboxylates such as citrate. LjALMT4 also mediated the influx of several inorganic anions. Organ-specific gene expression analysis showed LjALMT4 mRNA mainly in the parenchyma cells of nodule vascular bundles. These results suggest that LjALMT4 may not be involved in the direct supply of dicarboxylates to rhizobia in infected cells but is responsible for supplying malate as well as several anions necessary for symbiotic nitrogen fixation, via nodule vasculatures. PMID:27183039

  1. Chemical and mechanical control of corrosion product transport

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  2. Plant pleiotropic drug resistance transporters:Transport mechanism, gene expression, and function

    Mohammed Nuruzzaman; Ru Zhang; Hong-Zhe Cao; Zhi-Yong Luo

    2014-01-01

    Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.

  3. Analysis of main roof breaking form and its mechanism during first weighting in longwall face

    HUANG Qing-xiang

    2001-01-01

    By field observation and simulating test in shallow seam logwall mining, the asymmetry breaking of main roof is discovered during the first weighting. Based on simulating model test and theoretical analysis, the mechanism of main roof first breaking is revealed, and the asymmetry breaking parameter is determined at all.

  4. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-11-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.

  5. FUZZY COMPREHENSIVE EVALUATION OF CONTAINER TRANSPORTATION MODES ALONG THE CHANGJIANG RIVER MAIN LINE AND ITS DELTA AREA

    ZHANG Shi-yu; XIAO Han-liang

    2003-01-01

    The Changjiang River (Yangtze) is one of the fastest growth areas of container transportation in Chi-na. Rail, road and water transportation have competed against each other for container transportation in the Chang-jiang River main line and its delta area. It is of significance to assess these different transportation modes scientifi-cally in order to organize container transportation efficiently in this area and make decision for integral plan and construction of transportation system in this area. This paper outlines application of fuzzy comprehensive evaluation to appraise different modes of typical direction of containers. Twelve assessment indexes were decided. Membership functions were formulated. Evaluation results indicated that road transportation was optimal mode in the Changjiang River delta area, however water transportation was the primary way in the Changjiang River main line.

  6. Damage and deterioration mechanism and curing technique of concrete structure in main coal cleaning plants

    LV Heng-lin; ZHAO Cheng-ming; SONG Lei; MA Ying; XU Chun-hua

    2009-01-01

    Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Da-tun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the spe-cial natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.

  7. Polar auxin transport: models and mechanisms

    Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.

    2013-01-01

    Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her

  8. Treatment of main heat transport system of Embalse Nuclear Power Plant with hydrazine at 150 deg C

    Ion exchange resins entrance to the main heat transport system of Embalse Nuclear Power Plant in April 1988 produced an increase of crud transport in the media, an increase of D2 evolution and mild steel corrosion rates. The removal of aggressive species from steady zones and a soft passivation of surfaces using hydrazine at moderate temperature, was recommended. The aim of this treatment was a partial dissolution of superficial defective oxides followed by the build up of a protective, homogeneous and adherent layer, to reduce generalized corrosion rate to historical values. The technique consisted of successive additions of the reagent solution to complete the prefixed amount, keeping a constant temperature of 150-152 deg C during 26 hours with continuous filtration through 1um mechanical filter, followed by a period at 180 deg C. Reagent addition was limited by ammonia concentration increase due to decomposition of hydrazine. Crud evolution was according to start up operation. Latter chemical control of the media consumes a 1000 litres resin bed. The results of this very soft treatment compatible with the start up operation of the plant, are very promising from the point of view that transported crud, deuterium concentration and corrosion rates decreased to the normal values before the mentioned event. (Author)

  9. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  10. Jaumann transport in relativistic continuum mechanics

    The Jaumann derivative of a tensor field in relativity is defined by a formal generalization of a stress rate in viscoelasticity. A tensor field is said to be Jaumann transported if its Jaumann derivative vanishes. It is found that the gravitational potentials are Jaumann transported identically. The concept of a ''complete rotation tensor'' has been introduced to study the Jaumann derivative with respect to a null vector field. This provides a characterization of the integrability of a hypersurface orthogonal congruence. A perfect fluid collapsing by neutrino emission and undergoing Jaumann transport with respect to the neutrino flow is found to be compatible with that of a catastrophic collapse. The circumstances leading to the existence of ''ghost neutrinos'' are cited. The degeneracy of the Kerr-Newmann black hole into the Reissner-Nordstrom black hole is expressed in terms of the Jaumann propagation. (author)

  11. Jaumann transport in relativistic continuum mechanics

    Radhakrishna, L.; Katkar, L. N.; Date, T. H.

    1981-10-01

    We define the Jaumann derivative of a tensor field in relativity by a formal generalization of a stress rate in viscoelasticity. A tensor field is said to be Jaumann transported iff its Jaumann derivative vanishes. It is found that the gravitational potentials are Jaumann transported identically. The concept of a “complete rotation tensor” has been introduced to study the Jaumann derivative with respect to a null vector field. This provides a characterization of the integrability of a hypersurface orthogonal congruence. A perfect fluid collapsing by neutrino emission and undergoing Jaumann transport with respect to the neutrino flow is found to be compatible with that of a catastrophic collapse. The circumstances leading to the existence of “ghost neutrinos” are cited. The degeneracy of the Kerr-Newman black hole into the Reissner-Nordstrom black hole is expressed in terms of the Jaumann propagation.

  12. Membrane transport mechanism 3D structure and beyond

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  13. Grain transport mechanics in shallow overland flow

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  14. Grain transport mechanics in shallow flow

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  15. Statistical Mechanics of Collective Transport by Ants

    Pinkoviezky, Itai; Gelblum, Aviram; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    Collective decisions and cooperation within groups are essential for the survival of many species. Conflicts within the group must be suppressed but conformism may render the system unresponsive to new information. Collective transport by ants is therefore an ideal model system to study how animal groups optimize these opposing requirements. We combine experiments and theory to characterize the collective transport. The ants are modeled as binary Ising spins, representing the two roles ants can perform during transport. It turns out that the ants poise themselves collectively near a critical point where the response to a newly attached ant is maximized. We identify the size as being proportional to an inverse effective temperature and thus the system can exhibit a mesoscopic transition between order and disorder by manipulating the size. Constraining the cargo with a string makes the system behave as a strongly non-linear pendulum. Theoretically we predict that a Hopf bifurcation occurs at a critical size followed by a global bifurcation where full swings emerge. Remarkably, these theoretical predictions were verified experimentally.

  16. Secondary metabolites in plants: transport and self-tolerance mechanisms.

    Shitan, Nobukazu

    2016-07-01

    Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future. PMID:26940949

  17. Quantum-mechanical wavepacket transport in quantum cascade laser structures

    Lee, S. -C.; Banit, F.; Woerner, M.; Wacker, A.

    2005-01-01

    We present a viewpoint of the transport process in quantum cascade laser structures in which spatial transport of charge through the structure is a property of coherent quantum-mechanical wavefunctions. In contrast, scattering processes redistribute particles in energy and momentum but do not directly cause spatial motion of charge.

  18. Mechanism of isotonic water transport in glands.

    Ussing, H H; Eskesen, K

    1989-07-01

    Since water and electrolytes pass cell membranes via separate channels, there can be no interactions in the membranes, and osmotic interactions between water and solutes can be expressed as the product of solute flux, frictional coefficient of solute, and length of pathway. It becomes clear that isotonic transport via a cell is impossible. In glands, where cation-selective junctions impede anion flux between the cells, isotonic water transport is only possible if sodium, after having passed the junction, is reabsorbed in the acinus and returned to the serosal side. Thus it can be recycled via the cation-selective junction and exert its drag on water more than once. This hypothesis was tested on frog skin glands. Skins were mounted in flux chambers with identical Ringer solutions on both sides. Na channels of the principal cells were closed with amiloride in the outside solution, and secretion stimulated with noradrenaline in the inside solution. Influx and efflux of Na, K and Br (used as tracer for Cl) were measured on paired half-skins during the constant-secretion phase. Flux ratios for both Na and K were higher than expected for electrodiffusion, indicating outgoing solvent drag. Flux ratios for K were much higher than those for Na. This is an agreement with the concept that Na is reabsorbed in the acinus and K is not. Two independent expressions for the degree of sodium recycling are developed. Under all experimental conditions these expressions give values for the recycling which are in good agreement. PMID:2473601

  19. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH3COO) and lithium triflate (LiCF3SO3) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF3SO3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH3COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF3SO3 dissociated more readily than LiCH3COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF3SO3-30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH3COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  20. THE MECHANISM OF FINANCIAL AND ECONOMIC SECURITY MANAGEMENT OF AN ENERPRISE AND ITS MAIN COMPONENTS

    Orlyk, O. V.

    2015-01-01

    The article describes the essence of the financial and economic security and its place in the system of economic security of the enterprise. The mechanism of financial and economic security is investigated, the structure and content of its main components are defined, their overall performance is given. It has been substantiated that the tasks and functions of financial and economic security are implemented in compliance with certain principles and application of some methods of financial and...

  1. Adaptive camouflage in the VIS and IR spectral range: main principles and mechanisms

    Schwarz, Alexander

    2015-10-01

    This paper presents a survey of main applicable technical principles and mechanisms for adaptive camouflage in the visible (VIS) and infrared (IR) spectral ranges. All principles are described by their operation method and technical data such as the active spectral range, the degree and speed of adaptation, weight, power consumption, robustness, usability, lifetime, technology readiness level (TRL) etc.. The paper allows to compare the different principles and to assess them with regard to an application to an adaptive camouflage system.

  2. Molecular mechanisms of water transport in the eye

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the......The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and...... endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...

  3. Mechanisms and regulation of renal magnesium transport.

    Houillier, Pascal

    2014-01-01

    Magnesium's most important role is in the release of chemical energy. Although most magnesium is stored outside of the extracellular fluid compartment, the regulated value is blood magnesium concentration. Cellular magnesium and bone magnesium do not play a major role in the defense of blood magnesium concentration; the major role is played by the kidney, where the renal tubule matches the urinary magnesium excretion and the net entry of magnesium into the extracellular fluid. In the kidney, magnesium is reabsorbed in the proximal tubule, the thick ascending limb of the loop of Henle, and the distal convoluted tubule. Magnesium absorption is mainly paracellular in the proximal tubule and in the thick ascending limb of the loop of Henle, whereas it is transcellular in the distal convoluted tubule. Several hormones and extracellular magnesium itself alter the distal tubular handling of magnesium, but the hormone(s) regulating extracellular magnesium concentration remains unknown. PMID:24512082

  4. The main problems in the mechanical engineering sector and some possible directions of their solution

    Strizhakova, E.

    2016-04-01

    The article shows the problems of the sector of mechanical engineering in the industrial system in Russia. The author's method of estimating the relative level of risk and the method of determining the de-industrialization degree of the sector based on the aggregated level of adaptability are given. According to them we have analysed the key indicators, such as basic, developed and advanced technologies, and investments in an old or new technology of industrial sectors. The main directions of the impact of industrial policy allowing a change in the current situation in mechanical engineering are given. The results can be applied in practice in formation of directions and actual control actions to improve the overall efficiency of mechanical engineering industry.

  5. The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1

    Crystal structures of a membrane protein transporter in three different conformational states provide insights into the transport mechanism. Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties in obtaining the crystal structure of a single transporter in different conformational states, relatively little structural information is known to explain how this process occurs. Here, the structure of the sodium-benzylhydantoin transporter, Mhp1, from Microbacterium liquefaciens, has been determined in three conformational states; from this a mechanism is proposed for switching from the outward-facing open conformation through an occluded structure to the inward-facing open state

  6. Mechanical Behaviour of the Short Models of LHC Main Dipole Magnets

    Andreyev, N I; Casarejos, E; Kurtyka, T; Rathjen, C; Perini, D; Siegel, N; Tommasini, D; Vanenkov, I

    1998-01-01

    A series of single and twin aperture 1 metre magnet models has been built and tested in the framework of the R&D program of main superconducting dipole magnets for the Large Hadron Collider project. The se models, designed for a nominal field of 8.3 T at 1.8 K, have been constructed to test the performance of SC coils and to optimise various design options for the full length 15 metre long dipoles. T he models have been extensively equipped with a specially developed mechanical instrumentation, enabling both the control of main assembly parameters - like coil azimuthal and axial pre-load, stress i n the outer shrinking cylinder - and also the monitoring of magnet behaviour during cooling and energising, under the action of electromagnetic forces. The instrumentation used, mainly based on strain gauge transducers, is described and the results of mechanical measurements obtained during power tests of the models are discussed and compared with the design predictions based on Finite Element calc ulations.

  7. Main mechanisms of material properties degradation under reactor pressure vessel operating conditions

    In the process of NPP equipment operation materials are subjected to a prolonged influence of loads, associated with the variation of inner pressure and temperature under various conditions. Each equipment element damage is associated with some material fracture mechanism. For NPP equipment the mechanisms of irreversible damage accumulation are related with: irradiation embrittlement, thermal and strain aging, fatigue damages from mechanical and thermal loading, stress corrosion and fatigue corrosion, creep and thermal relaxation stresses, erosion and weak, thermal shock. The basic tasks of specialists working in the sphere of the provision of reliability and service life of nuclear power equipment are not only the determination of the main mechanisms of damages and reasons of their appearance, but also the study of methods which would permit to control these properties completely. By giving some examples of Russian NPP equipment with VVER-440 and VVER-1000 reactors the paper presents most typical degradation mechanisms of equipment material properties, including weldments, in the process of operation and methods to recover by using various technological means. (author)

  8. Comparison and analysis of the main technological factors of influencing mechanical properties of scrimber and PSL

    2001-01-01

    The main mechanical properties of scrimber and Parallel Strand Lumber (PSL) were researched through technological test. Experimental materials of scrimber are small log of Aspen, Dahurian larch and Birch. Experimental materials of PSL come from fishtail veneer strips at plywood plant of Aspen and Birch. In the laboratory conditions low quality small log and wood residues can yield scrimber and PSL with high strength. After the technological conditions of scrimber were compared with that of PSL, the main factors of influencing their properties were separately pointed out and the reasons influencing properties have been analyzed in this paper. The results showed that the hot-pressing pressure is an important technological factor for scrimber. The ratio of veneer-strand length to thickness is a key technological factor for PSL.

  9. Fluid flow and particle transport in mechanically ventilated airways. Part II: particle transport.

    Alzahrany, Mohammed; Van Rhein, Timothy; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    The flow mechanisms that play a role on aerosol deposition were identified and presented in a companion paper (Timothy et al. in Med Biol Eng Comput. doi: 10.1007/s11517-015-1407-3 , 2015). In the current paper, the effects of invasive conventional mechanical ventilation waveforms and endotracheal tube (ETT) on the aerosol transport were investigated. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by jet caused by the ETT. The orientation of the ETT toward right bronchus resulted in a substantial deposition inside right lung compared to left lung. The deposition inside right lung was ~12-fold higher than left lung for all considered cases, except for the case of using pressure-controlled sinusoidal waveform where a reduction of this ratio by ~50 % was found. The total deposition during pressure constant, volume ramp, and ascending ramp waveforms was similar and ~1.44 times higher than deposition fraction when using pressure sinusoidal waveform. Varying respiratory waveform demonstrated a significant role on the deposition enhancement factors and give evidence of drug aerosol concentrations in key deposition sites, which may be significant for drugs with negative side effects in high concentrations. These observations are thought to be important for ventilation treatment strategy. PMID:26541600

  10. MAIN SUBJECTS OF INTERACTION IN THE PARTNERSHIP MARKETING SYSTEM OF MOTOR TRANSPORT ENTERPRISE

    Fedotova, I.

    2010-01-01

    A model of partnership at a motor-transport enterprise, which provides four types of partnership, has been considered. The general partnership marketing system of a motor-transport enterprise with major groups of interaction subjects has been suggested. The managing subsystem is presented in the form of structural-and-functional, information-and-behavioral and self-development subsystems. An integrated relationship process with all possible interaction subjects has been suggested as a managed...

  11. Transport mechanisms in nanopores and nanochannels: can we mimic nature?

    Mario Tagliazucchi

    2015-04-01

    Full Text Available The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental and theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.

  12. [Genotypes and Main Effectors of Toxoplasma gondii and Their Pathogenic Mechanisms].

    Shen, Ji-long; Wang, Lin

    2015-12-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite that infects a wide range of warm blooded animals, including human, and has complex life cycle and pathogenic mechanisms. Although T. gondii is the only species recognized in the Toxoplasma genus, research on population genetic structure has shown its geographic genetic diversity. So far 232 genotypes have been identified by multilocus polymerase chain reaction-restriction fragment length polymorphism or microsatellite genotyping from both animals and human. T. gondii strains in North America typically possess types 2, 3 and 12 (found mainly in wild animals) clonal lineages, while types 2, 3, and 1 are common in Europe, and types 2 and 3 are common in Africa. These findings suggest a strongly clonal population structure in these regions. However, strains in South America are genetically more diverse, predominated by types Br I , Br II, Br III, and Br IV. Recent research has shown that the Chinese 1 (ToxoDB#9) genotype is dominantly circulating in the mainland of China, and shares the polymorphic ROP16I/III with types 1 and 3, and GRA15II with type 2. In this review, we summarized geographically the genotypes, host immune responses, and the pathogenic mechanisms of T. gondii strains, to provide basis for further research on genotype/effector-related pathogenic mechanism as well as biological and epidemiological studies of T. gondii. PMID:27089772

  13. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Hassan Ali

    2016-05-01

    Full Text Available We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  14. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Ali, Hassan; Khan, Usman; Rafiq, M. A.; Falak, Attia; Narain, Adeela; Jing, Tang; Xu, Xiulai

    2016-05-01

    We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  15. Mass transport mechanism in porous fuel cell electrodes

    Jonsson, I.; Lindholm, I.

    1969-01-01

    Results of experiments on hydrogen-oxygen fuel cells show that higher current densities are obtained with cell anodes having a 100 micron thin active layer of porous nickel containing silver electrocatalyst. Increase in current density is attributed to a convective mass transport mechanism.

  16. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear. Results Using a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the...

  17. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    At present, the mechanism for anomalous energy transport in low-β toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E x B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs

  18. Evaporation as the transport mechanism of metals in arid regions

    Lima, A.T.; Safar, Z.; Loch, J.P.G.

    2014-01-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evapora

  19. Early metabolic effects and mechanism of ammonium transport in yeast

    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H2O2 for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased [H+]ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity

  20. ELECTRO-THERMAL AND MECHANICAL VALIDATION EXPERIMENT ON THE LHC MAIN BUSBAR SPLICE CONSOLIDATION

    Willering, GP; Bourcey, N; Bottura, L; Charrondiere, M; Cerqueira Bastos, M; Deferne, G; Dib, G; Giloux, Chr; Grand-Clement, L; Heck, S; Hudson, G; Kudryavtsev, D; Perret, P; Pozzobon, M; Prin, H; Scheuerlein, Chr; Rijllart, A; Triquet, S; Verweij, AP

    2012-01-01

    To eliminate the risk of thermal runaways in LHC interconnections a consolidation by placing shunts on the main bus bar interconnections is proposed by the Task Force Splices Consolidation. To validate the design two special SSS magnet spares are placed on a test bench in SM-18 to measure the interconnection in between with conditions as close as possible to the LHC conditions. Two dipole interconnections are instrumented and prepared with worst-case-conditions to study the thermo-electric stability limits. Two quadrupole interconnections are instrumented and prepared for studying the effect of current cycling on the mechanical stability of the consolidation design. All 4 shunted interconnections showed very stable behaviour, well beyond the LHC design current cycle.

  1. Increased coordination in public transport – which mechanisms are available?

    Sørensen, Claus Hedegaard; Longva, Frode

    2011-01-01

    After several years of New Public Management reforms within public transport, coordination seems to receive increased attention. With examples of actual as well as suggested changes taken from Denmark, Sweden and the UK the aim of the article is to analyse and classify the mechanisms utilized and...... mechanism has its strengths and failures. The article also debates to what extent the mechanisms conflict with three core characteristics of New Public Management: Unbundling of the public sector into corporatized units; more contract-based competitive provision; and greater emphasis on output controls....

  2. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes.

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-05-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis. PMID:25690737

  3. The mechanical cost of transport of fast running animals.

    Fuentes, Mauricio A

    2014-03-21

    Regarding running animals, algebraic expressions for the horizontal (ωx) and vertical (ωy) components of the mechanical cost of transport are deduced for a ground force pattern based on the Spring-mass model. Defining μ˜ as the maximum ground forces ratio μ˜=max(Fx)/max(Fy), the analysis shows that the mechanical cost of transport ωx+ωy for fast running animals is approximately proportional to μ˜, and to the relative contact length, and positively correlated to the limb take-off angle and the collision angle. The vertical cost ωy is shown to approximate to zero for fast running animals. Sustained top running speeds are predicted to require the largest possible values of μ˜ and therefore relatively large horizontal propulsive forces, as well as a minimum possible ground contact time. The equations also show that animals running relatively slow would tend to prefer certain interval of values for parameter μ˜, which would minimize both their mechanical cost of transport and their metabolic cost of transport. Very large animals are suspected to be less capable of developing large values of μ˜, which possibly renders them incapable of developing great speeds. PMID:24333209

  4. Structure and mechanism of ATP-dependent phospholipid transporters

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien;

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit...

  5. Far SOL transport and main wall plasma interaction in DIII-D

    Far scrape-off layer (SOL) and near-wall plasma parameters in DIII-D depend strongly on the discharge parameters and confinement regime. In L-mode discharges cross-field transport increases with the average discharge density and flattens far SOL profiles, thus increasing plasma-wall contact. In H-mode between edge localized modes (ELMs), plasma-wall contact is generally weaker than in L-mode. During ELMs plasma fluxes to the wall increase to, or above the L-mode levels. Depending on the discharge conditions ELMs are responsible for 30-90% of the ion flux to the outboard chamber wall. Cross-field fluxes in far SOL are dominated by large amplitude intermittent transport events that may propagate all the way to the outer wall and cause sputtering. A Divertor Material Evaluation System (DiMES) probe containing samples of several ITER-relevant materials including carbon, beryllium and tungsten was exposed to a series of upper single null (USN) discharges as a proxy to measure the first wall erosion. (author)

  6. Use of probabilistic design methods for NASA applications. [to be used in design phase of Space Transportation Main Engine

    Safie, Fayssal M.

    1992-01-01

    This paper presents a reliability evaluation process designed to improve the reliability of advanced launch systems. The work performed includes the development of a reliability prediction methodology to be used in the design phase of the Space Transportation Main Engine (STME). This includes prediction techniques which use historical data bases as well as deterministic and probabilistic engineering models for predicting design reliability. In summary, this paper describes a probabilistic design approach for the next-generation liquid rocket engine, the STME.

  7. Co-current air-water flow in downward sloping pipes: Transport of capacity reducing gas pockets in wastewater mains

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes and wastewater pressure mains in particular are subject to air pocket formation in downward-sloping reaches, such as inverted siphons or terrain slopes. Air pocket accumulation causes energy losses a...

  8. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2014-06-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

  9. Electrochemical reactivity and proton transport mechanisms in nanostructured ceria

    Ding, J.; Strelcov, E.; Kalinin, S. V.; Bassiri-Gharb, N.

    2016-08-01

    Electrochemical reactivity and ionic transport at the nanoscale are essential in many energy applications. In this study, time-resolved Kelvin probe force microscopy (tr-KPFM) is utilized for surface potential mapping of nanostructured ceria, in both space and time domains. The fundamental mechanisms of proton injection and transport are studied as a function of environmental conditions and the presence or absence of triple phase boundaries. Finite element modeling is used to extract physical parameters from the experimental data, allowing not only quantification of the observed processes, but also decoupling of their contributions to the measured signal. The constructed phase diagrams of the parameters demonstrate a thermally activated proton injection reaction at the triple phase boundary, and two transport processes that are responsible for the low-temperature proton conductivity of nanostructured ceria.

  10. Electrochemical reactivity and proton transport mechanisms in nanostructured ceria.

    Ding, J; Strelcov, E; Kalinin, S V; Bassiri-Gharb, N

    2016-08-26

    Electrochemical reactivity and ionic transport at the nanoscale are essential in many energy applications. In this study, time-resolved Kelvin probe force microscopy (tr-KPFM) is utilized for surface potential mapping of nanostructured ceria, in both space and time domains. The fundamental mechanisms of proton injection and transport are studied as a function of environmental conditions and the presence or absence of triple phase boundaries. Finite element modeling is used to extract physical parameters from the experimental data, allowing not only quantification of the observed processes, but also decoupling of their contributions to the measured signal. The constructed phase diagrams of the parameters demonstrate a thermally activated proton injection reaction at the triple phase boundary, and two transport processes that are responsible for the low-temperature proton conductivity of nanostructured ceria. PMID:27407076

  11. Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics

    Klages, Rainer

    2007-01-01

    A valuable introduction for newcomers as well as an important reference and source of inspiration for established researchers, this book provides an up-to-date summary of central topics in the field of nonequilibrium statistical mechanics and dynamical systems theory. Understanding macroscopic properties of matter starting from microscopic chaos in the equations of motion of single atoms or molecules is a key problem in nonequilibrium statistical mechanics. Of particular interest both for theory and applications are transport processes such as diffusion, reaction, conduction and viscosity. Recent advances towards a deterministic theory of nonequilibrium statistical physics are summarized: Both Hamiltonian dynamical systems under nonequilibrium boundary conditions and non-Hamiltonian modelings of nonequilibrium steady states by using thermal reservoirs are considered. The surprising new results include transport coefficients that are fractal functions of control parameters, fundamental relations between transp...

  12. Accumulation and transport mechanisms of arsenic in rice

    Islam, Md. Rafiqul; Kamiya, Takehiro; Uraguchi, Shimpei; Fujiwara, Toru

    2009-01-01

    Both species of arsenic (As), arsenate and arsenite are highly toxic to plants. Arsenic contamination is a major problem in Southeast Asia particularly in Bangladesh and West Bengal. In these countries, As-contaminated groundwater is widely used for irrigating rice in dry season that results in elevated As accumulation in soils and in rice grain and straw. So it is important for understanding the accumulation and transport mechanisms of arsenic in rice. We monitored increased arsenic content ...

  13. Nonlinear charge transport mechanism in periodic and disordered DNA

    Hennig, Dirk; Archilla, Juan F. R.; J Agarwal

    2003-01-01

    We study a model for polaron-like charge transport mechanism along DNA molecules with emphasis on the impact of parametrical and structural disorder. Our model Hamiltonian takes into account the coupling of the charge carrier to two different kind of modes representing fluctuating twist motions of the base pairs and H-bond distortions within the double helix structure of $\\lambda-$DNA. Localized stationary states are constructed with the help of a nonlinear map approach for a periodic double ...

  14. The main achievements in the past 24 years and the prospects of mechanism research in China

    ZOU Hui-jun; ZHANG Long; ZHANG Qing

    2006-01-01

    Since 1982,the symposiums on mechanism in China has been held fifteen times.In the past 24 years,Chinese mechanism has experienced a phenomenal development.Generally,fundamental research on traditional mechanisms is enhanced;mechanism and creative design of products are closely combined;modern mechanism with advanced and new technology is opened up;and mechanism is promoted to modernization.These are manifested in the following aspects:theory research on analysis and synthesis of traditional mechanism is deeply developed;computer-aided design on mechanisms is realized vigorously;conceptual design of mechanism system and mechanical products is energetically pushed;research on robot mechanisms and its industrial application is deeply developed;research on analysis and synthesis of controllable mechanisms and compliant mechanisms are energetically carried out;research on the dynamics of mechanisms and machines is vigorously developed;and reformation of teaching contents and system of mechanism is energetically carded out.Through the above-mentioned aspects of theory research and practical application,the theoretical and academic levels of Chinese mechanism can be considered at the advanced international level.However,there are not many original and breakthrough research achievements of fundamental research in China.In the meantime,there is a larger gap in the aspect of practical application of mechanism in the country compared with advanced countries in the world.

  15. Cross-field plasma transport and main-chamber recycling in diverted plasmas on Alcator C-Mod

    Cross-field particle transport increases sharply with distance into the SOL and plays a dominant role in the 'main-chamber recycling' regime in Alcator C-Mod, a regime in which most of the plasma particle efflux recycles on the main-chamber walls rather than flows into the divertor volume. This observation has potentially important implications for a reactor: contrary to the ideal picture of divertor operation, a tightly baffled divertor may not offer control of the neutral density in the main-chamber such that charge exchange heat losses and sputtering of the main-chamber walls can be reduced. The conditions that give rise to the main-chamber recycling regime can be understood by considering the plasma-neutral particle balance: when the flux surface averaged neutral density exceeds a critical value, flows to the divertor can no longer compete with the ionization source and particle fluxes must increase with distance into the SOL. This critical neutral density condition can be recast into a critical cross-field plasma flux condition: particle fluxes must increase with distance into the SOL when the plasma flux crossing a given flux surface exceeds a critical value. Thus, the existence of the main-chamber recycling regime is intrinsically tied to the level of anomalous cross-field particle transport. Direct measurement of the effective cross-field particle diffusivities Deff in a number of ohmic L mode discharges indicates that Deff near the separatrix strongly increases as plasma collisionality increases. Convected heat fluxes correspondingly increase, implying that there exists a critical plasma density (or perhaps collisionality) beyond which no steady state plasma can be maintained, even in the absence of radiation. (author)

  16. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in' t Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  17. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  18. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. PMID:25887939

  19. Design and manufacture of JOYO MK-III heat transport system. Main Intermediate heat exchanger

    The MK-III project to improve the irradiation capability of the experimental fast reactor JOYO have been in underway. The MK-III project has three major purposes such as increasing high neutron flux, improvement of plant availability factor and upgrading in irradiation techniques. The increase of fast neutron flux and the enlargement of that field increase the reactor thermal rate from 100 MWt to 140 MWt. The main components in the cooling system such as intermediate heat exchangers (IHXs) and dump heat exchangers (DHXs) were replaced in MK-III modification in order to increase heat removal capability. These components replacement has been safely carried out from October 30, 2000 to September 21, 2001. The new IHX that has 70 MWt rated heat exchange rate was installed to the location where old one was installed, so the mew IHX was designed with almost same geometry as old one. The design was carefully reviewed on structural integrity, shielding performance, thermal hydraulics, pressure loss, flow induced vibration and component design criterion and earthquake-proof class. A newly developed stainless steel named 316FR was adopted as a major structure material of the new IHX. The 316FR was developed for usage of sodium cooled fast reactor and has improved creep rupture and creep fatigue strength, In the design the following problems to be solved were cleared, These problems arise from defect of old IHX, increase of temperature difference between outlet and inlet and increase of sodium flow rate. (1) Reduction of ineffective flow to increase the heat transfer efficiency. (2) Suppression of CP (Corrosion Products) adhesion. (3) To prevent falling down of sodium free surface accompanied by increase of sodium flow. (4) Mitigation of thermal transient. This report describes the specific characteristic in the design and manufacturing, design data and principle of the design for the new IHX. The design was proved on above mentioned problem (3) by measurement of sodium free

  20. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    Kyla A. Stigter

    2015-12-01

    Full Text Available Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P, are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi, the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.

  1. HYDROLOGICAL AND SEDIMENT TRANSPORT SIMULATION TO ASSESS THE IMPACT OF DAM CONSTRUCTION IN THE MEKONG RIVER MAIN CHANNEL

    Satoshi Kameyama

    2013-01-01

    Full Text Available The downstream impact of dams is a complex problem in watershed management. In the upper Mekong River watershed and its main channel, dam construction projects were started in the 1950s to meet increasing demands for energy and food production. Dams called the Mekong Cascade were completed on the Mekong River in China, the Manwan Dam in 1996 and the Dachaoshan Dam in 2003. We evaluated the impact of the Manwan Dam and its related watershed development on seasonal water discharge and suspended sediment transportation using hydrological simulations of target years 1991 (before dam construction and 2002 (after dam completion. Our study area was the main channel of the Mekong River in northern Thailand extending about 100 km downstream from the intersection of Myanmar, Thailand and Laos. We used the MIKE SHE and MIKE11 (Enterprise models to calculate seasonal changes of water discharge and sediment transport at five points 15-35-km apart in this interval. Sediment load was calculated from a regression equation between sediment load and water discharge, using suspended sediment concentrations in monthly river water samples taken between November 2007 and November 2008. Finally we estimated annual sediment load along the study reach using from both of simulated annual hydrograph and the regression equation. Our simulations showed that after construction of the dam, there was a moderate decrease in peak discharge volume and during the rainy season in August and September and a corresponding increase in the subsequent months. Accordingly, sediment transportation budgets were increased in months after the rainy season. The suspended sediment transportation in Chiang Sean was increased from 21.13 to 27.90 (M ton/year in our model condition.

  2. Mechanism of electrochemical charge transport in individual transition metal complexes.

    Albrecht, Tim; Guckian, Adrian; Kuznetsov, Alexander M; Vos, Johannes G; Ulstrup, Jens

    2006-12-27

    We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (Vbias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels. PMID:17177467

  3. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  4. Size related transport mechanisms in hybrid metal-polymer nanowires

    Gence, L.; Faniel, S.; Vlad, A.; Dutu, C.; Melinte, S.; Bayot, V. [DICE Lab., Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Callegari, V.; Demoustier-Champagne, S. [POLY Lab., Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2008-06-15

    Electrical transport data for hybrid metal-polypyrrole nanowires of various diameters are presented and analyzed. Measurements were performed on both multiple nanowires - embedded within polycarbonate templates - and single nanowires down to low temperature T=4 K. All samples exhibit symmetrical and linear current-voltage (I-V) characteristics at room temperature. Below 77 K, all samples with diameters above 40 nm present nonlinear I-V characteristics and a zero-current plateau at 4 K. The three-dimensional Mott variable-range-hopping model provides a complete framework for the understanding of their behavior. In contrast, the transport mechanism changes for the 40 nm nanowire samples which exhibit a power-law T -dependence of the resistance, indicative of the critical regime of disorder-induced metal-insulator transitions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Mechanical transport in two-dimensional networks of fractures

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  6. Configuration evaluation and criteria plan. Volume 2: Evaluation criteria plan (update). Space Transportation Main Engine (STME) configuration study

    Bair, E. K.

    1987-01-01

    Candidate main engine configurations which enhance vehicle performance, operation and cost are identified. These candidate configurations are evaluated and the configurations which provide significant advantages over existing systems are selected for consideration for the next generation of launch vehicles. The unbiased selection of the Space Transportation Main Engine (STME) configuration requires that the candidate engines be evaluated against a predetermined set of criteria which must be properly weighted to emphasize critical requirements defined prior to the actual evaluation. During a prior study of the STME a Gas Generator Cycle engine was selected for conceptual design, with emphasis on reusability, reliability and low cost while achieving good performance. In this study emphasis is on expendable application of the STME while maintaining low cost and high reliability.

  7. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    Guh, Ying-Jey; Lin, Chia-Hao; Hwang, Pung-Pung

    2015-01-01

    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and...

  8. THE ORGANIZATIONAL-ECONOMIC MECHANISM OF DEVELOPMENT OF RAILWAY TRANSPORT ENTERPRISES

    Plugina, J.

    2011-01-01

    The article highlighted the organizational-economic mechanism of development of railway transport enterprises, its components (organizational and economic mechanisms) and are defined and their essence is opened.

  9. Phloem transport: a review of mechanisms and controls.

    De Schepper, Veerle; De Swaef, Tom; Bauweraerts, Ingvar; Steppe, Kathy

    2013-11-01

    It is generally believed that an osmotically generated pressure gradient drives the phloem mass flow. So far, this widely accepted Münch theory has required remarkably few adaptations, but the debate on alternative and additional hypotheses is still ongoing. Recently, a possible shortcoming of the Münch theory has been pointed out, suggesting that the Münch pressure flow is more suitable for herbs than for trees. Estimation of the phloem resistance indicates that a point might be reached in long sieve tubes where the pressure required to drive the Münch flow cannot be generated. Therefore, the relay hypothesis regained belief as it implies that the sieve tubes are shorter then the plant's axial axis. In the source phloem, three different loading strategies exist which probably result from evolutionary advantages. Passive diffusion seems to be the most primitive one, whereas active loading strategies substantially increase the growth potential. Along the transport phloem, a leakage-retrieval mechanism is observed. Appreciable amounts of carbohydrates are lost from the sieve tubes to feed the lateral sinks, while a part of these lost carbohydrates is subsequently reloaded into the sieve tubes. This mechanism is probably involved to buffer short-term irregularities in phloem turgor and gradient. In the long term, the mechanism controls the replenishment and remobilization of lateral stem storage tissues. As phloem of higher plants has multiple functions in plant development, reproduction, signalling, and growth, the fundamental understanding of the mechanisms behind phloem transport should be elucidated to increase our ability to influence plant growth and development. PMID:24106290

  10. Electron transport properties of single molecular junctions under mechanical modulations

    Electron transport behaviors of single molecular junctions are very sensitive to the atomic scale molecule-metal electrode contact interfaces, which have been difficult to control. We used a modified scanning probe microscope-break junction technique (SPM-BJT) to control the dynamics of the contacts and simultaneously monitor both the conductance and force. First, by fitting the measured data into a modified multiple tunneling barrier model, the static contact resistances, corresponding to the different contact conformations of single alkanedithiol and alkanediamine molecular junctions, were identified. Second, the changes of contact decay constant were measured under mechanical extensions of the molecular junctions, which helped to classify the different single molecular conductance sets into specific microscopic conformations of the molecule-electrode contacts. Third, by monitoring the changes of force and contact decay constant with the mechanical extensions, the changes of conductance were found to be caused by the changes of contact bond length and by the atomic reorganizations near the contact bond. This study provides a new insight into the understanding of the influences of contact conformations, especially the effect of changes of dynamic contact conformation on electron transport through single molecular junctions. (paper)

  11. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-07-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.

  12. The Bear Brook Watershed in Maine (BBWM) at 25: manipulation, monitoring, mechanism, and modeling

    Norton, S. A.; Fernandez, I. J.; Navrátil, Tomáš; Simon, K. S.; Jain, S.

    Northport : University of Maine, 2012 - (Fernandez, I.; Norton, S.; Wilson, T.). s. 177-177 ISBN 978-0-87723-108-0. [BIOGEOMON : international symposium on ecosystem behavior /7./. 15.07.2012-20.07.2012, Northport] Institutional support: RVO:67985831 Keywords : geochemistry * monitoring * modeling Subject RIV: DD - Geochemistry

  13. Mechanical forces impair alveolar ion transport processes : A putative mechanism contributing to the formation of pulmonary edema

    Fronius, Martin

    2012-01-01

    The aim of this chapter is to highlight the importance of transepithelial ion transport processes for lung function in general and to focus on the impact of mechanical forces on pulmonary ion transport in particular. Linking mechanical forces with pulmonary ion transport derives from the fact that the lung is a dynamic organ as well as from several studies providing evidence that the amount of mechanical forces as used during artificial ventilation correlates with mortality rates in patients...

  14. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells

    Anna Jarosz

    2016-01-01

    Full Text Available Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.

  15. High-Performance Concurrency Control Mechanisms for Main-Memory Databases

    Larson, Per-Åke; Diaconu, Cristian; Freedman, Craig; Patel, Jignesh M; Zwilling, Mike

    2012-01-01

    A database system optimized for in-memory storage can support much higher transaction rates than current systems. However, standard concurrency control methods used today do not scale to the high transaction rates achievable by such systems. In this paper we introduce two efficient concurrency control methods specifically designed for main-memory databases. Both use multiversioning to isolate read-only transactions from updates but differ in how atomicity is ensured: one is optimistic and one is pessimistic. To avoid expensive context switching, transactions never block during normal processing but they may have to wait before commit to ensure correct serialization ordering. We also implemented a main-memory optimized version of single-version locking. Experimental results show that while single-version locking works well when transactions are short and contention is low performance degrades under more demanding conditions. The multiversion schemes have higher overhead but are much less sensitive to hotspots ...

  16. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  17. High-Performance Concurrency Control Mechanisms for Main-Memory Databases

    Larson, Per-Åke; Blanas, Spyros; Diaconu, Cristian; Freedman, Craig; Patel, Jignesh M.; Zwilling, Mike

    2011-01-01

    A database system optimized for in-memory storage can support much higher transaction rates than current systems. However, standard concurrency control methods used today do not scale to the high transaction rates achievable by such systems. In this paper we introduce two efficient concurrency control methods specifically designed for main-memory databases. Both use multiversioning to isolate read-only transactions from updates but differ in how atomicity is ensured: one is optimistic and one...

  18. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  19. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  20. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  1. Mechanisms of calcium transport in small intestine. Final report

    The vitamin D hormone, 1,25-dihydroxyvitamin D3, was demonstrated to be the prime hormonal agent regulating intestinal absorption of divalent cations. Production of the vitamin D hormone is, in turn, regulated by parathyroid hormone, low dietary calcium, low plasma phosphorus, and is suppressed by 1,25-dihydroxyvitamin D3, by high plasma phosphorus, high plasma calcium, and the absence of parathyroid hormone. A variety of analogs of the vitamin D hormone were prepared. In addition, the preparation of radiolabeled vitamin D hormone was accomplished using chemical synthesis, and this highly radioactive substance was found to localize in the nuclei of the intestinal villus cells that promote intestinal absorption of calcium. A receptor for the vitamin D hormone was also located, and the general mechanism of response to the vitamin D hormone included the binding to a receptor molecule, transfer to the nucleus, transcription of specific genes followed by translation to transport proteins. Methods were developed for the discovery of the appropriate gene products that play a role in calcium transport

  2. New molecular mechanisms of inter-organelle lipid transport.

    Drin, Guillaume; von Filseck, Joachim Moser; Čopič, Alenka

    2016-04-15

    Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated. PMID:27068959

  3. The pyrolytic mechanism of the main components in woody biomass and their interactions

    Shen, D. K.

    2011-01-01

    The global demand of the volume of woody biomass (such as wood, logging residue, sawdust and so on) is huge and increased annually, due to its new application for the energy/fuel production during recent years. Pyrolysis is termed as a promising thermo-chemical technology to convert woody biomass to liquid, gas and solid fuels/chemicals. The better understanding of the pyrolysis mechanism of woody biomass is demanding considering the thermal performance of individual components (hemicellul...

  4. Main aspects of organizational and economic mechanism formation to provide competitiveness of a maritime commercial port

    Чимшир, Валентин Иванович; Чимшир, Анна Владимировна

    2014-01-01

    The problem of forming organizational and economic mechanism, aimed at increasing the maritime port competitiveness in conditions of maritime freight market redistribution is considered in the paper.To achieve this goal, research directions, such as evaluation of the port strengths and weaknesses, production base estimation, cargo base evaluation, port development priorities, market research, port external environment dynamics are determined.The system of measures, aimed at improving the port...

  5. [Dynamic hyperinflation -- the main mechanism of decreased exercise tolerance in patients with COPD].

    Gologanu, Daniela

    2013-01-01

    Decreased exercise tolerance in patients with COPD is the result of involvement in variable proportion of three mechanisms: ventilatory limitation, muscle dysfunction and cardio-vascular involvement (inadequate intake of oxygen at tissue level). Ventilatory limitation is caused by the combination of increased demand and decreased ventilatory capacity Increased ventilatory demand is the result of exercise worsening of ventilation-perfusion imbalance, and decreased ventilatory capacity is the result of decreased elastic recoil and dynamic obstruction. The consequence is the expiratory flowlimitation, leading to inefficientexpiratory muscle activity and dynamic hyperinflation. Dynamic hyperinflation is a result of structural abnormalities in COPD producing mechanical disorders that limit ventilation. Dynamic hyperinflation has some beneficial effects by facilitating maximal exhalation. Negative effects ofhyperinflation are: (1) decreased tidal volume ability to grow properly at exercise, which causes mechanical ventilatorlimitation; (2) decreased functional capacity of inspiratory musles (by increasing elastic load with respiratory muscle fatigue and increase work ofbreathing); (3) exercise hypoxemia and carbon dioxide retention; (4) impairmentof cardiac function during exercise by decreasing venous return and cardiac output. Evaluation of pulmonary hyperinflation is a useful tool for better characterizing the effects of disease and for monitoring the response of therapeutic interventions on exercise tolerance of patients with COPD. PMID:23894791

  6. Tunnelling effect enhanced by lattice screening as main cold fusion mechanism: An brief theoretical overview

    In this paper are illustrated the main features of tunneling traveling between two deuterons within a lattice. Considering the screening effect due lattice electrons we compare the d-d fusion rate evaluated from different authors assuming different screening efficiency and different d-d potentials. Then, we propose a effective potential which describe very well the attractive contribute due to plasmon exchange between two deuterons and by means of it we will compute the d-d fusion rates for different energy values. Finally the good agreement between theoretical and experimental results proves the reality of cold fusion phenomena and the reliability of our model

  7. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  8. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production

  9. Fluka and thermo-mechanical studies for the CLIC main dump

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  10. CLUB FORMATION MECHANISM FOR TRANSPORT-COMMUNITY CREDIT CARDS

    Ding, Yue; Kobayashi, Kiyoshi; Nishida, Junji; Yoshida, Mamoru

    In this paper, the roles of transport-community cards jointly issued by a public transport firm and retails are investigated as a means to vitalize an obsolescence shopping center located in a middle of a city. When both the price of goods supplied by the retails and the transport fares affect the consumers' behavior, there exist pecuniary externality between the behaviors of the retails and transport firms. The introduction of a transport-community cards system enables to integrate a basket of goods and transport service into a single commodity; thus, the pecuniary externality can be internalized by price coordination. In addition, the paper clarifies theoretically that the transport firm initiatively decides the price of the transportation service and the retails transfer their incomes to the transport firm so that they are induced to jointly issue the transport-community cards.

  11. Sensitivity of the Static Earthquake Triggering Mechanism to Elastic Heterogeneity and Main Event Slip

    Maharramov, Musa

    2013-01-01

    This paper has evolved out of our previous work on static stress transfer, where we used the full-space elastostatic Green's tensor to compute the Coulomb stress transfer impact of the Landers earthquake on the Hector Mine event. In this work, we use the elastostatic Green's tensor for an arbitrary layered Earth model with free-surface boundary conditions to study the impact of elastic heterogeneity as well as source-fault slip and geometry on the stress transfer mechanism. Slip distribution and fault geometry of the source have a significant impact on the stress transfer, especially in case of spatially extended triggered events. Maximization of the Coulomb stress transfer function for known aftershocks provides a mechanism for inverting for the source event slip. Heterogeneity of the elastic earth parameters is shown to have a sizeable, but lower-magnitude, impact on the static stress transfer in 3D. The analysis is applied to Landers/Hector Mine and 100 small "aftershocks" of the Landers event. A computati...

  12. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. PMID:27176760

  13. Ethanol as a fuel for road transportation. Main report; Contribution to IEA Implementing Agreement on Advanced Motor Fuels

    Larsen, Ulrik; Johansen, T.; Schramm, J.

    2009-05-15

    Bioethanol as a motor fuel in the transportation sector, mainly for road transportation, has been subject to many studies and much discussion. Furthermore, the topic involves not only the application and engine technical aspects, but also the understanding of the entire life cycle of the fuel, well-to-wheels, including economical, environmental, and social aspects. It is not, however, the aim of this report to assess every single one of these aspects. The present report aims to address the technical potential and problems as well as the central issues related to the general application of bioethanol as an energy carrier in the near future. In discussions of the advantages and drawbacks of ethanol, the type of application is important. Generalization is not possible, because ethanol can be used in many forms. Furthermore, a wide range of ethanol/gasoline blends has not yet been investigated sufficiently. The most favorable type of application is determined by infrastructural factors, especially vehicle fleet configuration. From a technical point of view, optimal usage involves a high degree of water content in the ethanol, and this excludes low-percentage-ethanol fuels. The benefits seem strongly related to the amount of ethanol in a given blend, that is, the more the better. Both engine efficiencies and emissions improve with more ethanol in the fuel. Wet ethanol constitutes an even cleaner fuel in both the production and application phases. In summary, ethanol application has many possibilities, but with each type of application comes a set of challenges. Nevertheless, technical solutions for each challenge are available. (ln)

  14. Atlantic surfclam connectivity within the Middle Atlantic Bight: Mechanisms underlying variation in larval transport and settlement

    Zhang, Xinzhong; Munroe, Daphne; Haidvogel, Dale; Powell, Eric N.

    2016-05-01

    Larval transport and settlement have been shown in various studies to be essential in determining population abundance and connectivity for benthic invertebrates. This transport is influenced by both the physical environment and biological behavior. The Atlantic surfclam, Spisula solidissima, is a commercially important benthic invertebrate fishery species along the U.S northeastern coast. In this study, a physical circulation model is coupled to a surfclam larval model to investigate the dynamics of larval transport and settlement within the Middle Atlantic Bight (MAB) shelf in 2006. The main physical mechanisms causing variability in larval transport and settlement are also examined. Model results show that surfclam larvae released from July to early October experience relatively larger settlement rates, due to higher average temperatures experienced by larvae. Larval along-shore transport exhibits a mean down-coast pattern following the coastal current from the northeast to the southwest, with most high-frequency (period of 2-10 days) variations caused by fluctuations in the along-shore surface wind stress, and with seasonal variations speculated to be driven mainly by changes in the across-shelf density gradient. Larval across-shelf movement is highly correlated with the along-shore surface wind stress mediated by coastal upwelling and downwelling episodes, but the correlation is further dependent on the vertical distribution of the larvae, particularly their position relative to the thermocline. Most surfclam larvae released from the Middle Atlantic shelf stay below the thermocline and experience a net onshore transport during the summer-stratified season when upwelling-favorable wind forcing dominates. A proposed critical value of water temperature at the thermocline successfully regulates the observed patterns of vertical distribution of surfclam larvae and their across-shelf movement off the New Jersey and South Virginia shelves; that is, when the water

  15. Structurally novel steroidal spirooxindole by241 potently inhibits tumor growth mainly through ROS-mediated mechanisms.

    Shi, Xiao-Jing; Yu, Bin; Wang, Jun-Wei; Qi, Ping-Ping; Tang, Kai; Huang, Xin; Liu, Hong-Min

    2016-01-01

    Cancer cells always have increased ROS levels, thus making them more vulnerable to persistent endogenous oxidative stress. The biochemical difference between cancer and normal cells could be exploited to achieve selective cancer cell killing by exogenous ROS-producing agents. Herein we described a structurally novel steroidal spirooxindole by241 and its anticancer efficacy. By241 exhibited potent inhibition against human cancer cells and less toxic to normal cells. By241 concentration-dependently induced apoptosis of MGC-803 and EC9706 cells, accompanied with the mitochondrial dysfunction and increased ROS levels. NAC can completely restore the decreased cell viability of MGC-803 cells caused by by241, suggesting ROS-mediated mechanisms. The expression levels of proteins involved in the mitochondrion-related pathways were detected, showing increased expression of proapoptotic proteins and decreased expression of anti-apoptotic proteins, and activation of caspases-9/-3, but without activating caspase-8 expression. Pretreatment with Z-VAD-FMK partially rescued by241-induced apoptosis of MGC-803 cells. Additionally, by241 inhibited mTOR, activated p53 and its downstream proteins, cleaved MDM2 and PI3K/AKT as well as NF-κB signaling pathway. In vivo experiments showed that by241 did not have significant acute oral toxicity and exerted good anticancer efficacy against MGC-803 bearing mice models. Therefore, by241 may serve as a lead for further development for cancer therapy. PMID:27527552

  16. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.

    2016-05-01

    The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.

  17. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations.

    Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q

    2016-01-01

    The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. PMID:27175859

  18. ORGANIZATIONAL-ECONOMIC MECHANISM OF PROVIDING OF COMPETITIVENESS OF ENTERPRISES OF RAILWAY TRANSPORT

    Kalinichenko, O.

    2011-01-01

    The organizational-economic mechanism of providing of competitiveness of enterprises of railway transport is formed. Constituents and factors of forming of competition potential of enterprises of railway transport are considered.

  19. Configuration evaluation and criteria plan. Volume 2: Evaluation critera plan (preliminary). Space Transportation Main Engine (STME) configuration study

    Bair, E. K.

    1986-01-01

    The unbiased selection of the Space Transportation Main Engine (STME) configuration requires that the candidate engines be evaluated against a predetermined set of criteria which must be properly weighted to emphasize critical requirements defined prior to the actual evaluation. The evaluation and selection process involves the following functions: (1) determining if a configuration can satisfy basic STME requirements (yes/no); (2) defining the evaluation criteria; (3) selecting the criteria relative importance or weighting; (4) determining the weighting sensitivities; and (5) establishing a baseline for engine evaluation. The criteria weighting and sensitivities are cost related and are based on mission models and vehicle requirements. The evaluation process is used as a coarse screen to determine the candidate engines for the parametric studies and as a fine screen to determine concept(s) for conceptual design. The criteria used for the coarse and fine screen evaluation process is shown. The coarse screen process involves verifying that the candidate engines can meet the yes/no screening requirements and a semi-subjective quantitative evaluation. The fine screen engines have to meet all of the yes/no screening gates and are then subjected to a detailed evaluation or assessment using the quantitative cost evaluation processes. The option exists for re-cycling a concept through the quantitative portion of the screening and allows for some degree of optimization. The basic vehicle is a two stage LOX/HC, LOX/LH2 parallel burn vehicle capable of placing 150,000 lbs in low Earth orbit (LEO).

  20. Qinshan CANDU 6 main heat transport system high accuracy performance tracking in support of regional overpower protection

    This paper deals with the Qinshan CANDU 6 main Heat Transport System (HTS) high accuracy performance tracking/adjustment up to about 7 years of operation in support of Regional Overpower Protection (ROP). Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermalhydraulic analytic models. Analytic predictions, in association with an optimized parameter tracking and adjustment methodology, confirm continued safe reactor operation. This paper demonstrates that Qinshan CANDU Unit 1, as compared to other CANDU 6 nuclear reactors of earlier design, continues to exhibit significantly improved performance with much reduced plant aging effects. This paper further demonstrates the high accuracy of the advanced performance tracking and adjustment methodology and applies it to Qinshan CANDU Unit 1, ensuring and demonstrating the continued excellent performance of the reference analytic models. The analytic methodology as well as the advanced performance tracking and analysis methodology can also beneficially be applied to both new and refurbished CANDU type nuclear reactors. (author)

  1. Accident investigation practices in Europe--main responses from a recent study of accidents in industry and transport

    Europe has during recent years been shocked by disasters from natural events and technical breakdowns. The consequences have been comprehensive, measured by lost lives, injuries, and material and environmental damage. ESReDA wanted in 2000 - by setting up a special expert group on accident investigation - to clarify the state of art of accident investigation practices and to map the use of thoroughly accident investigation in order to learn lessons from past disasters and prevent new ones. The scope was to cover three sectors in the society: transport, production processes and storage of hazardous materials, and energy production. The main method used was a questionnaire, which was sent in 2001 to about 150 organisations. About 50 replies were analysed. The replies showed great variations but also similarities, among others in definition of accident and incident, the objectives of the investigation team, criteria used to start an investigation, the status of the investigation organisation, the flow of information, the composition of the investigation team, and the use of internal or international procedures or rules. Several methods (in total 14 different methods were mentioned) were used for carrying out accident /incident investigations. Most of the respondents were willing to co-operate in one or another way with ESReDA. Although there are important biases in the material, the results from questionnaire are important inputs to the future work of ESReDA Expert group in this field. 3 safety approaches have been identified

  2. Transport mechanism of 11C-labeled L- and D-methionine in human-derived tumor cells

    Introduction: S-methyl-11C-labeled L- and D-methionine (11C-L- and D-MET) are useful as radiotracers for tumor imaging. However, it is not known whether the transport mechanism of 11C-D-MET is the same as that for 11C-L-MET, which is transported by the amino acid transport system L. In this study, we investigated the transport mechanism of 11C-L- and D-MET by analyzing the expression of transport system genes in human-derived tumor cells. Methods: The expression of transport system genes in human-derived tumor cells was quantitatively analyzed. The mechanism of MET transport in these cells was investigated by incubating the cells with [S-methyl-3H]-L-MET (3H-L-MET) or [S-methyl-3H]-D-MET (3H-D-MET) and the effect of 2-amino-2- norbornane-carboxylic acid, a system L transport inhibitor, or α-(methylamino)isobutyric acid, a system A transport inhibitor, on their transport was measured. The transport and metabolic stability of [S-methyl-14C]-L-MET (14C-L-MET) and 3H-D-MET was also analyzed using bearing mice with H441 or PC14 tumor cells. Results: 3H-D-MET was mainly transported by both systems L and alanine–serine–cysteine (ASC), while system L was involved in 3H-L-MET transport. There was a high correlation between both 3H-L-MET and 3H-D-MET uptake and the expression of amino acid transport system genes. In the in vivo study, H441-cell accumulation of 3H-D-MET was higher than that of 14C-L-MET. Hepatic and renal accumulation of 3H-D-MET was lower than that of 14C-L-MET. Conclusion: The transport mechanism of 3H-D-MET was different from that of 3H-L-MET. Since 3H-D-MET has high metabolic stability, its accumulation reflects the transporter function of system L and ASC.

  3. Comparative study of chemo-electro-mechanical transport models for an electrically stimulated hydrogel

    The main objective of this work is to introduce a new expression for the hydrogel’s hydration for use within the Poisson Nernst–Planck chemo electro mechanical (PNP CEM) transport models. This new contribution to the models support large deformation by considering the higher order terms in the Green–Lagrangian strain tensor. A detailed discussion of the CEM transport models using Poisson Nernst–Planck (PNP) and Poisson logarithmic Nernst–Planck (PLNP) equations for chemically and electrically stimulated hydrogels will be presented. The assumptions made to simplify both CEM transport models for electric field application in the order of 0.833 kV m−1 and a highly diluted electrolyte solution (97% is water) will be explained. This PNP CEM model has been verified accurately against experimental and numerical results. In addition, different definitions for normalizing the parameters are used to derive the dimensionless forms of both the PNP and PLNP CEM. Four models, PNP CEM, PLNP CEM, dimensionless PNP CEM and dimensionless PNLP CEM transport models were employed on an axially symmetric cylindrical hydrogel problem with an aspect ratio (diameter to thickness) of 175:3. The displacement and osmotic pressure obtained for the four models are compared against the variation of the number of elements for finite element analysis, simulation duration and solution rate when using the direct numerical solver. (papers)

  4. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-01-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use....

  5. Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts.

    Chao, A C; Dix, J A; Sellers, M C; Verkman, A S

    1989-12-01

    The methodology has been developed to measure Cl activity and transport in cultured cells grown on a monolayer using the entrapped Cl-sensitive fluorophore 6-methoxy-N-[3-sulfopropyl] quinolinium (SPQ). The method was applied to a renal epithelial cell line, LLC-PKI, and a nonepithelial cell line, Swiss 3T3 fibroblasts. SPQ was nontoxic to cells when present for greater than h in the culture media. To load with SPQ (5 mM), cells were made transiently permeable by exposure to hypotonic buffer (150 mOsm, 4 min). Intracellular fluorescence was monitored continuously by epifluorescence microscopy using low illumination intensity at 360 +/- 5 nm excitation wavelength and photomultiplier detection at greater than 410 nm. Over 60 min at 37 degrees C, there was no photobleaching and less than 10% leakage of SPQ out of cells; intracellular SPQ fluorescence was uniform. SPQ fluorescence was calibrated against intracellular [Cl] using high K solutions containing the ionophores nigericin and tributyltin. The Stern-Volmer constant (Kq) for quenching of intracellular SPQ by Cl was 13 M-1 for fibroblasts and LLC-PKl cells. In the absence of Cl, SPQ lifetime was 26 ns in aqueous solution and 3.7 +/- 0.6 ns in cells, showing that the lower Kq in cells than in free solution (Kq = 118 M-1) was due to SPQ quenching by intracellular anions. To examine Cl transport mechanisms, the time course of intracellular [Cl] was measured in response to rapid Cl addition and removal in the presence of ion or pH gradients. In fibroblasts, three distinct Cl transporting systems were identified: a stilbeneinhibitable Cl/HCO3 exchanger, a furosemide-sensitive Na/K/2Cl cotransporter, and a Ca-regulated Cl conductance. These results establish a direct optical method to measure intracellular [Cl] continuously in cultured cells. PMID:2482083

  6. Mechanical transport and porous media equivalence in anisotropic fracture networks

    The objective of this work is to investigate the directional characteristics of hydraulic effective porosity in an effort to understand porous medium equivalence for continuous and discontinuous fracture systems. Continuous systems contain infinitely long fractures. Discontinuous systems consist of fractures with finite lengths. The distribution of apertures (heterogeneity) has a major influence on the degree of porous medium equivalence for distributed continuous and discontinuous systems. When the aperture distribution is narrow, the hydraulic effective porosity is slightly less than the total porosity for continuous systems, and greater than the rock effective porosity for discontinuous systems. However, when heterogeneity is significant, the hydraulic effective porosity is directionally dependent and greater than total porosity for both systems. Non-porous medium behavior ws found to differ for distributed continuous systems and for continuous systems with parallel sets. For the latter systems, hydraulic effective porosity abruptly decreases below total porosity in those particular directions where the hydraulic gradient and the orientation of a fracture set are orthogonal. The results for the continuous systems with parallel sets also demonstrate that a system that behaves like a continuum for fluid flux may not behave like a continuum for mechanical transport. 3 references, 13 figures

  7. Mechanical manipulations on electronic transport of graphene nanoribbons

    We study the effects of uniaxial strains on the transport properties of graphene nanoribbons (GNRs) connected with two metallic leads in heterojunctions, using the transfer matrix method. Two typical GNRs with zigzag and armchair boundaries are considered and the tension is applied either parallel or perpendicular to the ribbon axis. It turns out that the electron–hole symmetry is missing in the gate voltage dependence of the conductance data of the armchair GNRs, while it persists in the zigzag ribbons under any strains. For an armchair GNR with a vertical tension applied, a sharp drop of conductance is found near the critical value of the strain inducing a quantum phase transition, which allows one to determine the critical strain accurately via measuring the conductance. In the zigzag ribbon, there exists a range of gate voltage around zero, where the conductance is insensitive to the small horizontal strains. The band structures and low-energy properties are calculated to elucidate the mechanism on the strain effects in GNRs. We expect that our results can be useful in developing graphene-based strain sensors. (paper)

  8. Evaluation of hydrazine as an additive to provide reducing condition in the main heat transport system of AHWR

    Hydrogen is known to be injected in boiling water reactors to mitigate stress corrosion cracking (SCC) due to the oxidizing environment prevailing in the reactor coolant system. Further this technique has been modified by addition of noble metals such as Pt, Ir so that the required ECP can be achieved by injecting a lower concentration of hydrogen. All the boiling water reactors are pot type reactors. Unlike BWRs, the Advanced Heavy Water Reactor (AHWR) is a boiling tube type reactor. Here, boiling takes place in the tube and the coolant exits the core with 18 % steam. The steam containing water exits the core through tail pipes connected to each fuel channel. The material of construction of most of the AHWR main coolant system components is stainless steel. Hence, the possibility of stress corrosion cracking of stainless steel components can not be ruled out if oxidizing chemistry conditions prevail in the coolant. Addition of hydrogen and hydrogen with noble metal may not be effective in controlling the radiolytic generation of oxygen/hydrogen peroxide under the two phase conditions prevailing in the fuel channels (tubes) of the core. Hence, the feasibility of using hydrazine to provide reducing condition to the main heat transport system of AHWR was studied. Computation on the generation of oxidizing species (O2 and H2O2) and their distribution in steam and water phase were made. The difference in the distribution behavior of hydrogen and hydrazine under AHWR condition is explained in the paper. Analytical methods have been standardized to study the distribution of hydrazine, ammonia, oxygen and hydrogen peroxide and tested by carrying out radiolysis of water containing hydrazine etc. Experiments were also carried out in the High Temperature and High Pressure (HTHP) system at WSCD to study the thermal stability of hydrazine and to evaluate its effect on the redox potential and corrosion potential of stainless steel under the simulated AHWR temperature conditions

  9. Center for low-gravity fluid mechanics and transport phenomena

    Kassoy, D. R.; Sani, R. L.

    1991-01-01

    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  10. Modeling of Yield Estimation for The Main Crops in Iran Based on Mechanization Index (hp ha-1

    K Abbasi

    2016-04-01

    Full Text Available Agricultural mechanization is a method for transiting from traditional agriculture towards industrial and sustainable one. Due to the limitation of natural resources and increasing population we need to have economical production of agricultural crops. For reaching this destination; agricultural mechanization has a remarkable role. So it is necessary to have an extensive view for mechanization, because with the help of mechanization the agricultural inputs such as seeds, fertilizer and even water and soil can effectively be managed for an economical and sustainable production. This study has been carried out in many provinces of Iran. The data of agricultural tractors and cereal combine harvesters were firstly gathered by means of questionnaire. The tractors were categorized in four power levels of less than 45, 45 to 80, 80 to 110, and more than 110 hp. In addition, it was also carried out for cereal combine harvesters; it was in three power levels, i.e. between 100 to 110, 110 to 155 and 155 to 210 horse-power in 3 ages, i.e. less than 13, between 13 to 20, and more than 20 years. Information regarding to cultivation areas, production volume, and yield of main crops gathered from statistics of Ministry of Jihad-e-Agriculture. Then agriculture mechanization level index (hp ha-1 in each province was calculated. Four main crops including irrigated and rain-fed wheat and irrigated and rain-fed barley, which met the required criteria to be used in the model, were statistically analyzed. Correlation analysis was carried out in order to get an effective model between yield of the four main crops in Iran and agriculture mechanization level index. Pearson correlation index showed that there is a direct and significant correlation between these variables. Subsequently, outliers were identified in order to get a model with necessary efficiency to predict the yield through mechanization level index, by scatter diagram and estimating regression lines in 1

  11. Interannual forcing mechanisms of California Current transports II: Mesoscale eddies

    Davis, Andrew; Di Lorenzo, Emanuele

    2015-02-01

    Mesoscale eddies exert dominant control of cross-shelf exchanges, yet the forcing dynamics underlying their interannual and decadal variability remain uncertain. Using an ensemble of high-resolution ocean model hindcasts of the central and eastern North Pacific from 1950 to 2010 we diagnose the forcing mechanisms of low-frequency eddy variability in the California Current System (CCS). We quantify eddy activity by developing eddy counts based on closed contours of the Okubo-Weiss parameter and find that the spatial and temporal features of model-derived counts largely reproduce the short AVISO observational record. Comparison of model ensemble members allows us to separate the intrinsic and deterministic fractions of eddy variability in the northern CCS (34.5-50°N) and in the southern CCS (28.5-34.5°N). In the North, a large fraction of low-frequency eddy variability (30% anticyclones, 20% cyclones) is deterministic and shared with satellite observations. We develop a diagnostic model based on indices of the large-scale barotropic and baroclinic states of the CCS which recovers this deterministic variance. This model also strongly correlates with local atmospheric forcing. In contrast to the North, Southern CCS eddy counts exhibit very little deterministic variance, and eddy formation closely resembles a red-noise process. This new understanding of the external forcings of eddy variability allows us to better estimate how climate variability and change impact mesoscale transports in the California Current. The skill of our diagnostic model and its close association with local wind stress curl indicate that local atmospheric forcing is the dominant driver of eddy activity on interannual and decadal time scales north of pt. conception (~33°N).

  12. Electron injection and transport mechanism in organic devices based on electron transport materials

    Khan, M A; Xu Wei; Khizar-ul-Haq; Zhang Xiaowen; Bai Yu; Jiang, X Y; Zhang, Z L; Zhu, W Q [Department of Materials Science, Shanghai University, Jiading 201800 (China)

    2008-11-21

    Electron injection and transport in organic devices based on electron transport (ET) materials, such as 4,7- diphyenyl-1,10-phenanthroline (Bathophenanthroline BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) and bipyridyl oxadiazole compound 1,3-bis [2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene (Bpy-OXD), have been reported. The devices are composed of ITO/ET materials (BPhen, BCP Bpy-OXD)/cathodes, where cathodes = Au, Al and Ca. Current-voltage characteristics of each ET material are performed as a function of cathodes. We have found that Ca and Al exhibit quite different J-V characteristics compared with the gold (Au) cathode. The current is more than one order of magnitude higher for the Al cathode and more than three orders of magnitude higher for Ca compared with that of the Au cathode at {approx}8 V for all ET materials. This is because of the relatively low energy barrier at the organic/metal interface for Ca and Al cathodes. Electron-only devices with the Au cathode show that the electron transfer limitation is located at the organic/cathode interface and the Fowler-Nordheim mechanism is qualitatively consistent with experimental data at high voltages. With Ca and Al cathodes, electron conduction is preponderant and is bulk limited. A power law dependence J {approx} V{sup m} with m > 2 is consistent with the model of trap-charge limited conduction. The total electron trap density is estimated to be {approx}5 x 10{sup 18} cm{sup -3}. The critical voltage (V{sub c}) is found to be {approx}45 V and is almost independent of the materials.

  13. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was setup to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation. - Highlights: ► Significant enrichment of particle-bound PAHs during rainfall-runoff events. ► Organic matters as the direct carrier of PAHs in runoff from contaminated soil. ► The traditional enrichment theory is not fully valid for PAHs. - The traditional enrichment theory is not fully valid for PAHs, and soil organic matters have a significant impact on the transport of PAHs during rainfall-runoff events.

  14. Numerical investigation of transport mechanism in four-body problem using Lagrangian coherent structure

    Qi, Rui; Huang, Biao

    2016-01-01

    Transport mechanism is critical for understanding natural phenomena in the solar system and is beneficial to space mission design. In this study, transport mechanism in the bicircular four-body problem is numerically explored by using Lagrangian coherent structure (LCS), a tool widely used for identifying transport barriers in fluid flow. First, equations of motion of the bicircular problem are derived and five topology configurations of forbidden region are presented. Then, definition and computational method of LCS are introduced. Finally, properties of LCS which are useful for revealing transport mechanism in the four-body problem are numerically investigated.

  15. CO2-ECBM related coupled physical and mechanical transport processes

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  16. Structural mechanics research and development for main components of Chinese 300 MWe PWR NPPs: from design to life management

    Qinshan Nuclear Power Plant (Unit I), is a 300 MWe prototype PWR independently developed by Chinese own efforts, from design, manufacture, construction, installation, commissioning, to operation, inspection, maintenance, ageing management and lifetime assessment. Shanghai Nuclear Engineering Research and Design Institute (SNERDI) has taken up with and involved in deeply the R and D to tackle problems of this type of reactor since very beginning in early 1970s. Structural mechanics is one of the important aspects to ensure the safety and reliability for NPP components. This paper makes a summary on role of structural mechanics for component safety and reliability assessment in different stages of design, commissioning, operation, as well as lifetime assessment on this type PWR NPPs, including Qinshan-I and Chashma-I, a sister plant in Pakistan designed by SNERDI. The main contents of the paper cover design by analysis for key components of NSSS; mechanical problems relating to safety analysis; special problems relating to pressure retaining components, such as fracture mechanics, sealing analysis and its test verifications, etc.; experimental research on flow-induced vibration; seismic qualification for components; component failure diagnosis and root cause analysis; vibration qualification and diagnosis technique; component online monitoring technique; development of defect assessment; methodology of aging management and lifetime assessment for key components of NPPs, etc. (authors)

  17. Insights into the mechanisms of sterol transport between organelles.

    Mesmin, Bruno; Antonny, Bruno; Drin, Guillaume

    2013-09-01

    In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions. PMID:23283302

  18. Catch bond mechanism in Dynein motor driven collective transport

    Nair, Anil; Mitra, Mithun K; Muhuri, Sudipto; Chaudhuri, Abhishek

    2016-01-01

    Recent experiments have demonstrated that dynein motor exhibits catch bonding behaviour, in which the unbinding rate of a single dynein decreases with increasing force, for a certain range of force. Motivated by these experiments, we propose a model for catch bonding in dynein using a threshold force bond deformation (TFBD) model wherein catch bonding sets in beyond a critical applied load force. We study the effect of catch bonding on unidirectional transport properties of cellular cargo carried by multiple dynein motors within the framework of this model. We find catch bonding can result in dramatic changes in the transport properties, which are in sharp contrast to kinesin driven unidirectional transport, where catch bonding is absent. We predict that, under certain conditions, the average velocity of the cellular cargo can actually increase as applied load is increased. We characterize the transport properties in terms of a velocity profile phase plot in the parameter space of the catch bond strength and ...

  19. FEATURES FOR TRANSPORT AND AIR MECHANICAL SYSTEMS OF DANGEROUS GOODS

    Eugen Dumitru BUSA

    2012-05-01

    Full Text Available Transport of dangerous goods are regulated activities, they take place under the direction and control of the authorities and specialized bodies in an institutional framework determined by national and international law. Of economic, transport infrastructure is the crucial element without which both production and trade would become meaningless, it is an essential element of a civilization, is also a necessary accessory of other economic activities.

  20. The molecular mechanism of ion-dependent gating in secondary transporters.

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  1. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  2. Intracellular loop 5 is important for the transport mechanism and molecular pharmacology of the human serotonin transporter

    Said, Saida; Neubauer, Henrik Amtoft; Müller, Heidi Kaastrup;

    2015-01-01

    The serotonin transporter (SERT) belongs to a family of transport proteins called the neurotransmitter:sodium symporters. The specialized members of this family transport different neurotransmitters across the cell membrane, thereby regulating signaling between neurons. Most of these transporters...... are important drug targets in treating i.e. affective disorders such as depression and anxiety, and for drugs of abuse such as ecstasy and cocaine. The normal function of the SERT relies on large conformational changes and its inhibition by antidepressants represents a conformational lock....... Understanding the molecular mechanism of inhibition and which structural elements are involved in inhibitor binding and conformational changes of the transporter will provide clues for the development of improved drugs for the treatment of depression. Guided by our previous studies, we combined different...

  3. Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A.

    Quek, Debra Q Y; Nguyen, Long N; Fan, Hao; Silver, David L

    2016-04-29

    Major facilitator superfamily domain containing 2A (MFSD2A) was recently characterized as a sodium-dependent lysophosphatidylcholine transporter expressed at the blood-brain barrier endothelium. It is the primary route for importation of docosohexaenoic acid and other long-chain fatty acids into fetal and adult brain and is essential for mouse and human brain growth and function. Remarkably, MFSD2A is the first identified major facilitator superfamily member that uniquely transports lipids, implying that MFSD2A harbors unique structural features and transport mechanism. Here, we present three three-dimensional structural models of human MFSD2A derived by homology modeling using MelB- and LacY-based crystal structures and refined by biochemical analysis. All models revealed 12 transmembrane helices and connecting loops and represented the partially outward-open, outward-partially occluded, and inward-open states of the transport cycle. In addition to a conserved sodium-binding site, three unique structural features were identified as follows: a phosphate headgroup binding site, a hydrophobic cleft to accommodate a hydrophobic hydrocarbon tail, and three sets of ionic locks that stabilize the outward-open conformation. Ligand docking studies and biochemical assays identified Lys-436 as a key residue for transport. It is seen forming a salt bridge with the negative charge on the phosphate headgroup. Importantly, MFSD2A transported structurally related acylcarnitines but not a lysolipid without a negative charge, demonstrating the necessity of a negatively charged headgroup interaction with Lys-436 for transport. These findings support a novel transport mechanism by which lysophosphatidylcholines are "flipped" within the transporter cavity by pivoting about Lys-436 leading to net transport from the outer to the inner leaflet of the plasma membrane. PMID:26945070

  4. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    Appert-Rolland, Cecile; Santen, Ludger

    2015-01-01

    Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the origi...

  5. Origin of traps and charge transport mechanism in hafnia

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Cheng, C. H. [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan (China); Chin, A., E-mail: albert-achin@hotmail.com [National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-12-01

    In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.

  6. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations

  7. A multiclass vehicular dynamic traffic flow model for main roads and dedicated lanes/roads of multimodal transport network

    Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr [TECHNOLOGICAL RESEARCH INSTITUTE SYSTEMX (France); Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr [UPE/IFSTTAR-COSYS-GRETTIA (France)

    2015-03-10

    We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap scheme is introduced to numerically approximate the model’s flow equations.

  8. Multidrug transport by ATP binding cassette transporters : a proposed two-cylinder engine mechanism

    van Veen, HW; Higgins, CF; Konings, WN

    2001-01-01

    The elevated expression of ATP binding cassette (ABC) multidrug transporters in multidrug-resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. This review summarizes current insi

  9. Price Analysis of Railway Freight Transport under Marketing Mechanism

    Shi, Ying; Fang, Xiaoping; Chen, Zhiya

    Regarding the problems in the reform of the railway tariff system and the pricing of the transport, by means of assaying the influence of the price elasticity on the artifice used for price, this article proposed multiple regressive model which analyzed price elasticity quantitatively. This model conclude multi-factors which influences on the price elasticity, such as the averagely railway freight charge, the averagely freight haulage of proximate supersede transportation mode, the GDP per capita in the point of origin, and a series of dummy variable which can reflect the features of some productive and consume demesne. It can calculate the price elasticity of different classes in different domains, and predict the freight traffic volume on different rate levels. It can calculate confidence-level, and evaluate the relevance of each parameter to get rid of irrelevant or little relevant variables. It supplied a good theoretical basis for directing the pricing of transport enterprises in market economic conditions, which is suitable for railway freight, passenger traffic and other transportation manner as well. SPSS (Statistical Package for the Social Science) software was used to calculate and analysis the example. This article realized the calculation by HYFX system(Ministry of Railways fund).

  10. Co-current air-water flow in downward sloping pipes: Transport of capacity reducing gas pockets in wastewater mains

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes an

  11. A continuum mechanics-based musculo-mechanical model for esophageal transport

    Kou, Wenjun; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A

    2016-01-01

    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structures, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points for Lagrangian-Eulerian interaction equations based on a previous work. In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. For the material model, we extend our previous fiber-based model to a continuum-based model. We first study a case in which a three-dimensional short tube is dilated. Results match very well with those from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation a...

  12. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

    Davis, Bruce A; Nagarajan, Anu; Forrest, Lucy R; Singh, Satinder K

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  13. Mechanisms Underlying Methamphetamine-Induced Dopamine Transporter Complex Formation

    Hadlock, Gregory C.; Baucum, Anthony J.; King, Jill L.; Horner, Kristen A.; Cook, Glen A.; Gibb, James W.; Wilkins, Diana G; Hanson, Glen R.; Fleckenstein, Annette E.

    2009-01-01

    Repeated, high-dose methamphetamine (METH) administrations cause persistent dopaminergic deficits in rodents, nonhuman primates, and humans. In rats, this treatment also causes the formation of high-molecular mass (greater than approximately 120 kDa) dopamine transporter (DAT)-associated complexes, the loss of DAT monomer immunoreactivity, and a decrease in DAT function, as assessed in striatal synaptosomes prepared 24 h after METH treatment. The present study extends ...

  14. On the mechanism of gas transport in rigid polymer membranes

    Hensema, E.R.; Mulder, M.H.V.; Smolders, C.A.

    1993-01-01

    Conventional polymers are compared as gas separation membrane materials with tailormade polymers. The increased permeability of the latter are due to their higher free volume available for gas transport. The increased free volume is associated with the rigidity polymer backbone. Free volume is obtained by subtracting the occupied volume, calculated using group contributions from the polymer specific volume. Wide Angle X-ray techniques are used to obtain average d-spacings that are interpreted...

  15. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    Davis, Bruce A.; Anu Nagarajan; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site a...

  16. Molecular mechanism of regulation of iron transport across placenta

    Hanif, R.

    2012-01-01

    During the third trimester of pregnancy, iron transport from mother to the foetus against a concentration gradient determines the iron endowment in foetal and neonatal life. Hfe functions as an upstream regulator of liver hepcidin which has been demonstrated to be a negative regulator of intestinal absorption of dietary iron and macrophage efflux of recycled iron. Hepcidin has also been proposed to be a negative regulator of iron efflux from the placenta, however it is not k...

  17. The Physiological Mechanism of Postphloem Sugar Transport in Citrus Fruit

    CHEN Jun-wei; ZHANG Shang-long; ZHANG Liang-cheng; Ruan Yong-ling; XIE Ming; TAO Jun

    2003-01-01

    The dynamics of translocation and partitioning of 14C-phothsynthates, the concentration of sucrose in fruit tissues and the effects of the membrane carrier- and ATPase-specific inhibitors on 14C-sucrose uptake by juice sacs of the satsuma mandarin (Citrus unshiu Marc. cv. Miyagawa wase) fruit were examined at the stage of fruit enlargement and fruit full ripe. Kinetic data of 14C-photosynthate translocation indicated that the rate of photosynthate transport into juice sacs decreased with fruit maturation and sugar accumulation. Along the photosynthate translocation path, i.e. from vascular bundles to segment epidermis then to juice sacs, a descending sugar gradient was observed. With fruit maturation and sugar accumulation in juice sacs, the 14C photosynthate gradient increased, whereas the static sucrose concentration gradient decreased with fruit maturation and sugar accumulation. The higher gradient of specific 14C radioactivity was considered to favor diffusion and sugar transport into juice sacs at the later stage of fruit development. The rate of uptake 14C-sucrose by juice sacs of satsuma mandarin fruit was markedly reduced by PCMBS, EB, DNP and NO-3 treatment. The above results suggested the participation of a carrier-mediated, energy-dependent sugar active transport process in juice sacs of satsuma mandarin fruit.

  18. Lipid transport function is the main target of oral oleoylethanolamide to reduce adiposity in high-fat-fed mice

    Thabuis, Clémentine; Destaillats, Frédéric; Lambert, Didier; Muccioli, Giulio; Maillot, Matthieu; Harach, Touafiq; Tissot-Favre, Delphine; Martin, Jean-Charles

    2011-01-01

    We evaluated the biological basis of reduced fat gain by oleoylethanolamide (OEA) in high-fat-fed mice and sought to determine how degradation of OEA affected its efficiency by comparing its effects to those of KDS-5104, a nonhydrolyzable lipid OEA analog. Mice were given OEA or KDS-5104 by the oral route (100 mg/kg body weight). Sixty-eight variables per mouse, describing six biological processes (lipid transport, lipogenesis, energy intake, energy expenditure, endocannabinoid signaling, and...

  19. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events

    Luo, X.; Zheng, Y.

    2012-12-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was set up to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation.To further explore the effect of different soil organic matters on the enrichment behavior, Organic petrology analysis can be applied. Schematic diagram of the experimental setup

  20. Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.

    Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199

  1. An ambiguous interface – on the transport mechanism of the ABC transport complex TAP

    Großmann, Nina

    2012-01-01

    The adaptive immune system protects against daily infections and malignant transformation. In this, the translocation of antigenic peptides by the transporter associated with antigen processing (TAP) into the ER lumen is an essential step in the antigen presentation by MHC I molecules. The heterodimeric ATP-binding cassette transporter (ABC) TAP consist of the two halftransporters TAP1 and TAP2. Each monomer contains an N-terminal transmembrane domain (TMD) and a conserved C-terminal nucleoti...

  2. Sediment transport mechanisms through the sustainable vegetated flow networks

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Understanding the pollution treatment efficiency of a sustainable urban drainage (SuDS) asset or network requires the influx, transport, detention and discharge of the pollutant within the system. To date event specific monitoring of sediment (primarily total suspended solids) concentrations in the inflow and discharge from SuDS have been monitored. Long term analysis of where the sediment is transported to and the residency time of this pollutant within the SuDS asset or network have not been unraveled due to the difficulty in monitoring specific sediment particulate movement. Using REO tracing methodology, sediment particulate movement has become possible. In tracing sediment movement from an urban surface the internal residency and transportation of this sediment has illustrated SuDS asset differences in multi-event detention. Of key importance is the finding that sediment remains within the SuDS asset for extended periods of time, but that the location sediment detention changes. Thus, over multiple rainfall-runoff events sediment is seen to move through the SuDS assets and network proving the assumption that detained sediment is permanent and stationary to be inaccurate. Furthermore, mass balance analysis of SuDS sediment indicates that there is notable re-suspension and ongoing release of sediment from the SuDS over time and cumulative rainfall-runoff events. Continued monitoring of sediment deposition and concentration in suspension illustrates that sediment detention within SuDS decreases over time/multiple events, without stabilizing within a 12 month period. Repeated experiments show a consistent pattern of detention and release for the three SuDS networks monitored in Scotland. Through consideration of both rainfall and flow factors the drivers of sediment transport within the monitored SuDS have been identified. Within the limitation of this field study the key drivers to SuDS sediment detention efficiency (or transport of sediment through the system

  3. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1

    Simmons, KJ; Jackson, SM; Brueckner, F.; Patching, SG; Beckstein, O.; Ivanova, E.; Geng, T.; Weyand, S; Drew, D.; Lanigan, J; Sharples, DJ; Sansom, MS; Iwata, S; Fishwick, CW; Johnson, AP

    2014-01-01

    The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-direct...

  4. THE BASIS OF MECHANISM INTRODUCTION THE STATE-PRIVATE COLLABORATION ON THE RAILWAY TRANSPORT

    Volohov, V.; Markova, I

    2010-01-01

    The point of further development the commercial relationships on the railway transport was investigated in this article and we propose to examine the possibility of using this state-private mechanism in the railway branch.

  5. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    Rappoldt, C; Pieters, GJJM; Adema, EB; Baaijens, GJ; Grootjans, AP; van Duijn, CJ; Pieters, Gert-Jan J.M.; Adema, Erwin B.; Baaijens, Gerrit J.; Grootjans, Ab P.; Duijn, Cornelis J. van; Jury, William A.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surfa

  6. Computerized simulation of the mechanical behavior of wood-filled shock absorbers of radioactive materials transport casks

    In Germany the mechanical component inspection of transport containers for radioactive materials is performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung) under consideration of national and international standards and guidelines. Experimental and calculative (analytical and numerical) techniques combined with material and/or component testing are the basis of assessment concepts according the state of the art. The authors describe the experiences of BAM concerning assessment and description of the mechanical behavior of shock absorbing components, including modeling strategies, material models, drop tests and experiment-calculation comparison. Energy absorbing components are used to reduce the impact forces at the container in case of a transport accident. In Germany wood filled thin-walled constructions are used. The deformation behavior of the wood is a main part of the calculative simulation procedures in comparison with experimental tests.

  7. Angler awareness of aquatic nuisance species and potential transport mechanisms

    Gates, K.K.; Guy, C.S.; Zale, A.V.; Horton, T.B.

    2009-01-01

    The role anglers play in transporting aquatic nuisance species (ANS) is important in managing infestations and preventing introductions. The objectives of this study were to: (1) quantify angler movement patterns in southwestern Montana, ANS awareness and equipment cleaning practices; and (2) quantify the amount of soil transported on boots and waders. Mean distance travelled by residents from their home to the survey site was 115 km (??17, 95% CI). Mean distance travelled by non-residents was 1738 km (??74). Fifty-one percent of residents and 49% of non-residents reported occasionally, rarely or never cleaning their boots and waders between uses. Mean weight of soil carried on one boot leg was 8.39 g (??1.50). Movement and equipment cleaning practices of anglers in southwestern Montana suggest that future control of ANS dispersal may require restricting the use of felt-soled wading boots, requiring river-specific wading equipment or providing cleaning stations and requiring their use. ?? 2009 Blackwell Publishing Ltd.

  8. Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter

    Nabokina, Svetlana M.; Ramos, Mel Brendan; Said, Hamid M.

    2016-01-01

    Microbiota of the large intestine synthesizes considerable amount of vitamin B1 (thiamine) in the form of thiamine pyrophosphate (TPP). We have recently demonstrated the existence of an efficient and specific carrier-mediated uptake process for TPP in human colonocytes, identified the TPP transporter (TPPT) involved (product of the SLC44A4 gene), and shown that expression of TPPT along the gastrointestinal (GI) tract is restricted to the colon. Our aim in this study was to determine the molecular basis of the colon-specific expression of TPPT focusing on a possible epigenetic mechanism. Our results showed that the CpG island predicted in the SLC44A4 promoter is non-methylated in the human colonic epithelial NCM460 cells, but is hyper-methylated in the human duodenal epithelial HuTu80 cells (as well as in the human retinal pigment epithelial ARPE19 cells). In the mouse (where TPPT expression in the GI tract is also restricted to the colon), the CpG island predicted in the Slc44a4 promoter is non-methylated in both the jejunum and colon, thus arguing against possible contribution of DNA methylation in the colon-specific expression of TPPT. A role for histone modifications in the tissue-specific pattern of Slc44a4 expression, however, was suggested by the findings that in mouse colon, histone H3 in the 5’-regulatory region of Slc44a4 is tri-methylated at lysine 4 and acetylated at lysine 9, whereas the tri-methylation at lysine 27 modification was negligible. In contrast, in the mouse jejunum, histone H3 is hyper-trimethylated at lysine 27 (repressor mark). Similarly, possible involvement of miRNA(s) in the tissue-specific expression of TPPT was also suggested by the findings that the 3’-UTR of SLC44A4 is targeted by specific miRNAs/RNA binding proteins in non-colonic, but not in colonic, epithelial cells. These studies show, for the first time, epigenetic mechanisms (histone modifications) play a role in determining the tissue-specific pattern of expression of

  9. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition

    Wu, Xiaojiang; Zhang, Zhongxiao; Chen, Yushuang; Zhou, Tuo; Fan, Junjie; Piao, Guilin; Kobayashi, Nobusuke; Mori, Shigekatsu; Itaya, Yoshinori,

    2010-11-15

    The main mineral melting behavior and mineral reaction mechanism at molecular level of Chinese blended coal ash under gasification condition (30% H{sub 2}, 66% CO, 4% CO{sub 2}) from 1073 K to 1573 K were studied through the ASTM test, X-ray diffraction (XRD), ternary phase diagram system and quantum chemistry calculation with ab-initio calculations. The results show that with increasing blending mass fraction of low ash fusion temperature (AFT) ash (ash B), the location of blended ash in ternary systems is transferred from the mullite region to the anorthite region, as the dominant crystal mineral of blended ash at around DT (XRD analysis) is also transferred from mullite to anorthite. The calcium-bearing minerals, such as anhydrite, calcite etc., can react with mullite and the precursors of mullite (metakaolinite etc.), which is one of the main refractory minerals in high AFT ash (ash A), and is converted into low-melting minerals (anorthite, gehlenite, and fayalite etc.) in the temperature range between 1273 K and 1403 K. The reaction between mullite and CaO to form anorthite plays a significant role in decreasing AFTs of blended coal ash A/B. It is because the chemical activity of the highest occupied molecular orbits (HOMO) in mullite cluster is stronger than that of the lowest unoccupied molecular orbits (LUMO) in mullite cluster, the Ca{sup 2+} as electron acceptor can easily enter into the crystal lattice of mullite mainly through O (7) and O (12) and cause the rupture of bonds Al (1)-O (13) (in the [AlO{sub 6}]{sup 9-}-octahedron) and Al (8)-O (13) (in the [AlO{sub 4}]{sup 5-}-tetrahedron), which are weaker than any other bonds in crystal lattice of mullite. Finally, the entrance of Ca{sup 2+} can force mullite to transform to anorthite by the effect of Ca{sup 2+}, and the entered Ca{sup 2+} is located in the center of [SiO{sub 4}]{sup 4-}-tetrahedron ring in the anorthite crystal lattice. Taking the [SiO{sub 4}]{sup 4{sup -}}-tetrahedron, which is

  10. Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein

    Chen, Jianbo; Grunwald, David; Sardo, Luca;

    2014-01-01

    Full-length HIV-1 RNA plays a central role in viral replication by serving as the mRNA for essential viral proteins and as the genome packaged into infectious virions. Proper RNA trafficking is required for the functions of RNA and its encoded proteins; however, the mechanism by which HIV-1 RNA...

  11. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    Alvarino, T., E-mail: teresa.alvarino@usc.es; Suarez, S., E-mail: Sonia.suarez@usc.es; Lema, J.M., E-mail: juan.lema@usc.es; Omil, F., E-mail: francisco.omil@usc.es

    2014-08-15

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, v{sub up}, biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion.

  12. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, vup, biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion

  13. Mechanisms of Transport of Copper, Cadmium and Chromium in Soils

    Biggar, J. W.; Tanji, K. K.; D. R. Nielsen; Miller, R.J.

    1981-01-01

    The copper in the saturation extract of dried Davis sewage sludge was mainly in a complexed form. A Cu2+ specific ion electrode was used to determine the extent of complexation. Absorption experiments showed that the Kd value of 90 cc g-1. Paper electrophoresis was used to define the complexes according to their mobility in an electric field. Six fractions of positive, negative and neutral charge were isolated. The fraction of Cu in the sludge which was water soluble was found to increase sig...

  14. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  15. Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices

    In 1804, Theodore von Grotthuss proposed a mechanism for proton (H+) transport between water molecules that involves the exchange of a covalent bond between H and O with a hydrogen bond. This mechanism also supports the transport of OH− as a proton hole and is essential in explaining proton transport in intramembrane proton channels. Inspired by the Grotthuss mechanism and its similarity to electron and hole transport in semiconductors, we have developed semiconductor type devices that are able to control and monitor a current of H+ as well as OH− in hydrated biopolymers. In this topical review, we revisit these devices that include protonic diodes, complementary, transistors, memories and transducers as well as a phenomenological description of their behavior that is analogous to electronic semiconductor devices. (topical review)

  16. Mechanism of unassisted ion transport across membrane bilayers

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  17. From Mechanical Motion to Brownian Motion, Thermodynamics and Particle Transport Theory

    Bringuier, E.

    2008-01-01

    The motion of a particle in a medium is dealt with either as a problem of mechanics or as a transport process in non-equilibrium statistical physics. The two kinds of approach are often unrelated as they are taught in different textbooks. The aim of this paper is to highlight the link between the mechanical and statistical treatments of particle…

  18. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  19. Oxygen transport mechanisms in REAlO3 scintillators

    The performance of oxide scintillators often suffers from phenomena related to the existence of point defects. Thus, if deleterious defects are removed, it follows that scintillator performance will improve. In the case of REAlO3 perovskites, the oxygen vacancy has been identified as the predominant electron trap site. Previous empirical efforts to minimize the concentration of this particular defect through aliovalent doping have been successful. Here we discuss the results of atomic scale simulations that provide important detail regarding the mechanism by which the oxygen vacancy concentration is reduced. Specifically, we describe the complex mobility of oxygen vacancies and interstitials, which governs the recombination of these defects. The results of these simulations will aid in the synthesis of optimized scintillation materials. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Use of microsamples for mechanic properties and microstructure control of basic metal in main circulation pipeline of the South-Ukrainian NPP after 100 thousand hours of operation

    Results of mechanical property control studies of basic metal in main circulation pipeline of the South-Ukrainian NPP are exposed. Non-destructive methodic of microsample cutting was developed. Prospects of its use are discussed

  1. Mechanism of arsenate inhibition of the glucose active transport system in Neurospora crassa

    The mechanism of arsenate inhibition of the glucose active transport system in wild-type cells of Neurospora crassa has been examined. Arsenate treatment results in approximately 65% inhibition of the glucose active transport system with only a small depression of cellular ATP levels. The transport system is not inhibited in cells treated with sodium arsenate in the presence of sodium azide. The transport inhibition is suppressed when orthophosphate is present during arsenate treatment, but is not reversed by orthophosphate when added after the arsenate treatment. The transport inhibition is completely reversed by treatment of the cells with mercaptoethanol. Gel chromatography of sonicates of intact cells which had been treated with [74As]arsenate reveals three radioactive peaks, one with the elution volume of arsenate, one with the elution volume of arsenite, and in high molecular-weight radioactive fraction. Treatment of the high molecular-weight radioactive fraction with mercaptoethanol results in the production of radioactive arsenite. In view of these findings, it is proposed that arsenate inhibition of the glucose active transport system in Neurospora involves transport of arsenate into the cells, probably via the orthophosphate transport system, reduction of the transported arsenate to arsenite, and interaction of arsenite with some component of the glucose active transport system, presumably via covalent binding with vicinal thiol groups. 15 references, 4 figures, 2 tables

  2. RISK ANALYSIS STUDY OF NOx, and SOx FROM TRANSPORTATION (CASE STUDY: MAIN STREETS OF D.I. JOGJAKARTA

    Mochamad Arief Budihardjo

    2012-02-01

    Full Text Available The air pollution problems have been progressively set attention to the world especially industrialcountries recently. These problems not only give affect at health like emphysema, bronchitis, and otherinhalation disease but also make plants and properties destruction causes very big loss. This research isconcerned with the risk level which is accepted by people who reside in roadside because most of airpollutants come from transportation facilities such as motor vehicle. The limitation of the research is airpollutants exposure such like NOx, and SOx which enter the body through respiration. This risk analysisresearch is broken down into four step as follow; hazard identification showing NO2, and SO2concentration in 15 sampling locations where the highest value of NO2 is 56,5 μg / m3 and SO2 is 28,87μg/m3. According to DIY Governor Regulation No. 153 Year 2002 about the value of ambient air qualitystandard, quality standard of NO2 is 400 μg / m3, and SO2 is 900 μg / m3. It can be concluded thatconcentration of NO2 and SO2 in 2005 within all sampling locations is still under of quality standard. Thestep of exposure assessment involves the exposed population including pedicab worker, park worker, andcloister merchant. From calculation, the intake range of NO2 enters the body is 0,0025-0,0075 mg/kg.dayand SO2 is 0,0008-0,0038 mg/kg.day. Third step is dose-response assessment to find out what will be facedby people if exposure of pollutants occurs in a certain dose. The last step is risk characterization, theresult of research is that risk value / Hazard Index (HI less than 1 that still acceptable. It can besummarized that the ambient air quality of Jogjakarta especially NO2 and SO2 gas do not too adverse tohealth.

  3. Analysis of physical mechanisms underlying density-dependent transport in porous media

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Furthermore, density effects play a role in many other groundwater applications, such as salt water intrusion. Density gradients mainly affect the flow field and mass transport in two ways: by fluid volum...

  4. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  5. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  6. Origin and Transport Mechanism of Iodine-129 to the Japan Sea

    Suzuki, T.; Kabuto, S.; Amano, H.; Togawa, O.

    2007-05-01

    Iodine-129 is a long-lived radioisotope with a half life of 1.57 ? 107 years and produced naturally (129Inatural) by cosmic ray-induced spallation of xenon and spontaneous fission of uranium. Anthropogenic 129I has two main sources of releases into the environment during the last 60 years: one is nuclear weapons testing (129INWT) and the other is nuclear fuel reprocessing plants (129INFRP). Because of its long half life, anthropogenic 129I has a potential using as a tracer of the migration behavior of iodine for the last several decades. In this presentation, we discuss not only the origin but also the transport mechanism of 129I to the Japan Sea. Seawater samples were collected at the Toyama Bay and a region off Sekine in or near the Japan Sea. The concentrations of 129I in these samples were determined by accelerator mass spectrometry. The observed concentrations exceed the amounts expected from 129Inatural and 129INWT. The total fraction of 129Inatural and 129INWT is only a few percent. The majority of the concentration must come primarily from nuclear fuel reprocessing plants in Europe. This result indicates a rapid distribution of 129I through atmospheric transport on a global scale. A depth profile of 129I in a seawater column at the Toyama Bay shows that the 129I maximum is in a mixed layer and decrease with depth. The inventory of 129I in the Toyama Bay is four times higher than the Gulf of Mexico which has almost the same depth as the Toyama Bay. This higher inventory probably reflects: 1) the seawater rapid sinking in the Japan Sea, 2) the difference of sampling locations associated with a distance from 129I released points and latitudinal distribution and 3) the differences of sampling dates before which integrated emissions from nuclear fuel reprocessing plants differed.

  7. Mechanisms of the hyperkalaemia caused by nafamostat mesilate: effects of its two metabolites on Na+ and K+ transport properties in the rabbit cortical collecting duct.

    Muto, S.; Imai, M; Y. Asano

    1994-01-01

    1. The present experiments were undertaken to determine the mechanism(s) of hyperkalaemia caused by nafamostat mesilate (NM), a serine-protease inhibitor. 2. We investigated the effects of luminal addition of two metabolites of NM, p-guanidinobenzoic acid (PGBA) and 6-amidino-2-naphthol (AN), on Na+ and K+ transport properties of the collecting duct (CD) cell in the isolated perfused cortical collecting duct (CCD) from rabbit kidneys, because these metabolites, but not NM, were mainly excrete...

  8. Mechanism of methylmercury transport and transfer to the tissues of the rainbow trout (Salmo gairdneri)

    Hemoglobin (Hb) is the main methylmercury (Me Hg) transport protein in trout blood, binding 90 percent of whole blood MeHg as determined by gel filtration chromatography following an intragastric dose of Me 203HgCl. In vitro MeHg is taken up rapidly by red blood cells (RBC) with 84 percent of the Hg (5 ppM as MeHg) added to whole blood being accumulated by the RBCs in 3 minutes. The binding of MeHg within the RBC is freely reversible in vitro as demonstrated by the efflux of Hg from RBCs suspended in protein solutions. Trout hemolysate, containing 55 mg/ml HBB: removed 36 percent of the Hg from the RBCs in a 12 hour incubation period. The MeHg bond within the RBC is also reversible in vivo. Gel filtration chromatography of liver soluble proteins showed identical elution profiles for MeHg administered as the free salt or bound in RBCs. The number of reactive sulfhydryl (-SH) groups per molecule of Hb was found to be 4 by amperometric titration with MeHgCl. The reactive -SH concentration in the RBC was calculated to be at least 20 mM. A mechanism for the efflux of MeHg from the RBC is proposed involving the dissociation of MeHg from Hb initiated by -SH groups outside the RBC and migration of MeHg across the membrane as MeHgCl. (U.S.)

  9. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    Collins, Shamara [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Vatavu, Sergiu, E-mail: svatavu@usm.md [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Evani, Vamsi; Khan, Md; Bakhshi, Sara; Palekis, Vasilios [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Rotaru, Corneliu [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Ferekides, Chris [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States)

    2015-05-01

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios.

  10. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios

  11. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear

    Arwa Kurabi; Kwang K. Pak; Marlen Bernhardt; Andrew Baird; Ryan, Allen F.

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of ...

  12. Effects of intravenous furosemide on mucociliary transport and rheological properties of patients under mechanical ventilation

    Kondo, Cláudia Seiko; Macchionne, Mariângela; Nakagawa, Naomi Kondo; Carvalho, Carlos Roberto Ribeiro; King, Malcolm; Saldiva, Paulo Hilário Nascimento; Lorenzi-Filho, Geraldo

    2001-01-01

    The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distr...

  13. On the Driving Mechanism of the Annual Cycle of the Florida Current Transport

    Czeschel, Lars; Eden, Carsten; Greatbatch, Richard John

    2012-01-01

    The mechanisms involved in setting the annual cycle of the Florida Current transport are revisited using an adjoint model approach. Adjoint sensitivities of the Florida Current transport to wind stress reproduce a realistic seasonal cycle with an amplitude of ~1.2 Sv (1 Sv ≡ 106 m3 s−1). The annual cycle is predominantly determined by wind stress forcing and related coastal upwelling (downwelling) north of the Florida Strait along the shelf off the North American coast. Fast barotropic waves ...

  14. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  15. Changes of the main parameters of the primary heat transport system of the Embalse NPP after the replacement of the divider plates of the steam generators

    Divider plates of the four steam generators were repaired at Embalse NPP during the outage of 2002. This task led to a reduction of heavy water by-pass from the hot to the cold side. As a consequence of this, some Primary Heat Transport System (PHTS) parameters were affected. The main results of this work are the following: a) Bulk PHTS flow did not change significantly; b) Inlet Header temperature dropped 2,8 C degrees at full power; c) Quality at Outlet Header is now practically negligible. (author)

  16. Towards a new generation of flow and transport models for the Aespoe Hard Rock Laboratory. Main results from the project Aespoe models 2005

    Svensson, Urban (ed.) (Computer-aided Fluid Engineering AB (CFE AB), SE-602 10 Norrkoeping (Sweden)); Vidstrand, Patrik (Bergab AB, Goeteborg (Sweden)); Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Wallin, Bill (Geokema, Lidingoe (Sweden))

    2008-05-15

    This report constitutes the outcome of a project called 'Aespoe models 2005'. The main objective of the project has been to provide a first step towards a new generation of numerical models of flow and transport, for the Aespoe HRL. In order to achieve this goal, work has been carried out along three parallel lines; discussion of basic concepts, compilation and analysis of data and model applications. A number of sub tasks are reported as appendices in the report. In fact, these appendices represent the main achievements of the project: an analysis of fracture properties, compilation of isotope and chemical data, dispersion and mixing in fractured rocks and model results. The conclusion of the project is that significant contributions to a new generation of Aespoe models have been obtained. It has further been demonstrated that working numerical simulations are up and running. Recommendations are provided for the continued work

  17. Towards a new generation of flow and transport models for the Aespoe Hard Rock Laboratory. Main results from the project Aespoe models 2005

    This report constitutes the outcome of a project called 'Aespoe models 2005'. The main objective of the project has been to provide a first step towards a new generation of numerical models of flow and transport, for the Aespoe HRL. In order to achieve this goal, work has been carried out along three parallel lines; discussion of basic concepts, compilation and analysis of data and model applications. A number of sub tasks are reported as appendices in the report. In fact, these appendices represent the main achievements of the project: an analysis of fracture properties, compilation of isotope and chemical data, dispersion and mixing in fractured rocks and model results. The conclusion of the project is that significant contributions to a new generation of Aespoe models have been obtained. It has further been demonstrated that working numerical simulations are up and running. Recommendations are provided for the continued work

  18. Sequential mechanism of electron transport in the resonant tunneling diode with thick barriers

    A frequency-dependent impedance analysis (0.1-50 GHz) of an InGaAs/InAlAs-based resonant tunneling diode with a 5-nm-wide well and 5-nm-thick barriers showed that the transport mechanism in such a diode is mostly sequential, rather than coherent, which is consistent with estimates. The possibility of determining the coherent and sequential mechanism fractions in the electron transport through the resonant tunneling diode by its frequency dependence on the impedance is discussed

  19. Experimental Study on Influence of Mechanical Vibration during Transport of Transport/Storage Cask for Spent Nuclear Fuel on Containment Performance of Metal Gasket during Storage in Japan

    Transport casks of spent nuclear fuel will receive mechanical vibration during transport. It is known that the containment performance of metal gaskets is influenced by large external load or displacement. Quantitative influence of such vibration during transport on the containment performance of the metal gasket has not been known, but is crucial information particularly if the cask is stored as it is after the transport

  20. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  1. Mechanism of coupling drug transport reactions located in two different membranes

    Helen I. Zgurskaya

    2015-02-01

    Full Text Available Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of cells. Some transporters together with periplasmic membrane fusion proteins (MFPs and outer membrane channels assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protect bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.

  2. Seat Belt Usage in Injured Car Occupants: Injury Patterns, Severity and Outcome After Two Main Car Accident Mechanisms in Kashan, Iran, 2012

    Mohammadzadeh, Mahdi; Paravar, Mohammad; Mirzadeh, Azadeh Sadat; Mohammadzadeh, Javad; Mahdian, Soroush

    2015-01-01

    Background: Road traffic accidents (RTAs) are the main public health problems in Iran. The seat belts, which are vehicle safety devices, are imperative to reduce the risk of severe injuries and mortality. Objectives: The aim of the study was to evaluate injury patterns, severity and outcome among belted and unbelted car occupants who were injured in car accidents. Patients and Methods: This cross-sectional prospective study was performed on all car occupants injured in RTAs (n = 822) who were transported to hospital and hospitalized for more than 24 hours from March 2012 to March 2013. Demographic profile of the patients, including age, gender, position in the vehicle, the use of seat belts, type of car crashes, injured body regions, revised trauma score (RTS), Glasgow coma score (GCS), duration of hospital stay and mortality rate were analyzed by descriptive analysis, chi-square and independent t-test. P occupants were younger (28 years vs. 38 years) and had more frequently sustained head, abdomen and multiple injuries (P = 0.01, P = 0.01 and P = 0.009, respectively). Also, these patients had significantly lower GCS and elongated hospitalization and higher death rate (P = 0.001, P = 0.001 and P = 0.05, respectively). Tendency of severe head trauma and low RTS and death were increased in unbelted occupants in car rollover accident mechanisms (P = 0.001, P = 0.01 and P = 0.008, respectively). Conclusions: During car crashes, especially car rollover, unbelted occupants are more likely to sustain multiple severe injuries and death. Law enforcement of the seat belt usage for all occupants (front and rear seat) is obligatory to reduce severe injuries sustained as a result of car accidents, especially in vehicles with low safety. PMID:26064867

  3. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing?

    Gu, Mian; Chen, Aiqun; Sun, Shubin; Xu, Guohua

    2016-03-01

    It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PHO84, in yeast. Since then, an increasing number of yeast PHO84 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, post-transcriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development. PMID:26714050

  4. Tagged ozone mechanism for MOZART-4, CAM-chem and other chemical transport models

    L. K. Emmons; Hess, P. G.; Lamarque, J. -F.; G. G. Pfister

    2012-01-01

    A procedure for tagging ozone produced from NO sources through updates to an existing chemical mechanism is described, and results from its implementation in the Model for Ozone and Related chemical Tracers (MOZART-4), a global chemical transport model, are presented. Artificial tracers are added to the mechanism, thus, not affecting the standard chemistry. The results are linear in the troposphere, i.e., the sum of ozone from individual tagged sources equals the ...

  5. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism.

    Mulligan, Christopher; Fenollar-Ferrer, Cristina; Fitzgerald, Gabriel A; Vergara-Jaque, Ariela; Kaufmann, Desirée; Li, Yan; Forrest, Lucy R; Mindell, Joseph A

    2016-03-01

    Secondary transporters use alternating-access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters use a 'rocking bundle' motion, wherein the protein moves around an immobile substrate-binding site. However, the glutamate-transporter homolog GltPh translocates its substrate-binding site vertically across the membrane, through an 'elevator' mechanism. Here, we used the 'repeat swap' approach to computationally predict the outward-facing state of the Na(+)/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial elevator-like movement of VcINDY's substrate-binding site, with a vertical translation of ~15 Å and a rotation of ~43°. Our observation that multiple disulfide cross-links completely inhibit transport provides experimental confirmation of the model and demonstrates that such movement is essential. In contrast, cross-links across the VcINDY dimer interface preserve transport, thus revealing an absence of large-scale coupling between protomers. PMID:26828963

  6. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.

    Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin

    2016-02-21

    Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed. PMID:26821701

  7. MAIN CONTENTS

    2012-01-01

    The Key to Agricultural Science and Technology Innovation should be placed on the FiveMajor Changes Based on analysis and forecasting on grain consumption influencing factors, production influencing factors and import influencing factors, the supply and demand of main sorts of grain in China is forecas- ted respectively, including paddy, wheat, corn and soybean. In 2020, grain consumption quantity, grain production quantity and grain import quantity of China is 693 million tons, 644 million tons and 49 million tons respectively. For grain security in future, new stratagem on food security should be im- plemented, grain import circumstance and global grain security. Father mechanism should be im- proved, and early warning and regulation on grain production capacity should be paid attention to sys- temically.

  8. Quantum Mechanical Study on Tunnelling and Ballistic Transport of Nanometer Si MOSFETs

    Using self-consistent calculations of million-atom Schrödinger-Poisson equations, we investigate the I–V characteristics of tunnelling and ballistic transport of nanometer metal oxide semiconductor held effect transistors (MOSFET) based on a full 3-D quantum mechanical simulation under nonequilibtium condition. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. We find that the ballistic transport dominates the I–V characteristics, whereas the effects of tunnelling cannot be neglected with the maximal value up to 0.8 mA/μm when the channel length of MOSFET scales down to 25 nm. The effects of tunnelling transport lower the threshold voltage Vt. The ballistic current based on fully 3-D quantum mechanical simulation is relatively large and has small on-off ratio compared with results derived from the calculation methods of Luo et al

  9. A fully resolved active musculo-mechanical model for esophageal transport

    Kou, Wenjun; Griffith, Boyce E; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A

    2015-01-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, which is modeled as an actively contracting, fiber-reinforced tube. A simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are then extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation i...

  10. Mass transport mechanism in the collision of sulphur on medium-weight nuclei

    The reactions of 32S on 59Co, 65Cu, 74Ge, 79Br, 85Rb, 89Y are studied. An explanation for the specific shape of the double differential cross sections as a function of the scattering angle and the mass asymmetry is given in the framework of a transport model. Conclusions about the reaction mechanism are drawn

  11. Microtubule-based transport -basic mechanisms, traffic rules and role in neurological pathogenesis

    M.A.M. Franker (Mariella); C.C. Hoogenraad (Casper)

    2013-01-01

    textabstractMicrotubule-based transport is essential for neuronal function because of the large distances that must be traveled by various building blocks and cellular materials. Recent studies in various model systems have unraveled several regulatory mechanisms and traffic rules that control the s

  12. Filtration as the main transport mechanism of protein exchange between plasma and the peritoneal cavity in hepatic cirrhosis

    Henriksen, Jens Henrik Sahl; Lassen, N A; Parving, H H; Winkler, K

    1980-01-01

    Fractional peritoneal reabsorption rates (FPRR) were determined from the plasma activity after simultaneous intraperitoneal injection of 131I-labelled serum albumin (a) and 125I-labelled immunoglobulin G-IgG (g) in eight patients with cirrhosis (+ ascites 6, -ascites 2) and in one patient with...... carcinomatous ascites. Trans-vascular escape rates of albumin (TERa) and IgG (TERg) were determined in the cirrhotic patients from the disappearance of simultaneously intravenously injected 131I-labelled serum albumin and 124I-labelled IgG. Peritoneal space to plasma appearance times ranged 0.1-3.3 h, and the...... appearance times of albumin and IgG were almost identical. In patients with cirrhosis FPRRa and FPRRg were on average 1.27 and 1.21% of intraperitoneal protein masses returning to plasma per hour, respectively. Mean FPRRg/FPRRa ratio was 0.95 and this value was not significantly different from unity, but...

  13. Slip rate estimation along the western segment of the Main Marmara Fault over the last 405-490 ka by correlating mass transport deposits

    Grall, C.; Henry, P.; Thomas, Y.; Westbrook, G. K.; ćaǧatay, M. N.; Marsset, B.; Saritas, H.; ćifçi, G.; Géli, L.

    2013-12-01

    3-D seismic data acquired in the Sea of Marmara on the Western High, along the northwestern branch of the North Anatolian Fault (also known as the Main Marmara Fault), shed new light on the evolution of the deformation over the last 500-600 ka. Sedimentary sequences in ponded basins are correlated with glacioeustatic cycles and transitions between marine and low sea/lake environments in the Sea of Marmara. In the 3 × 11 km2 of the 3-D seismic survey, deformation over the last 405-490 ka is localized along the main fault branch and north of it, where N130°-N140° trending normal faults and N40°-N50° folding accommodated strike-slip deformation associated with active argillokinesis. There is some evidence that deformation was more distributed further back in the past, at least over the depth range (mass transport deposits complex dated between 405-490 ka shows a lateral displacement of 7.7 ± 0.3 km, corresponding to an estimated slip rate of 15.1-19.7 mm/a. We conclude that this strand of the Main Marmara Fault on the Western High has taken up most of the strike slip motion between the Anatolian and Eurasian plates over the last 405 ka at least.

  14. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Saeed Yousefi

    2015-04-01

    Full Text Available Introduction Pyrite oxidation and acid mine drainage (AMD are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003. Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986. Although comprehensive researches were performed on the mathematical description of oxygen transport processes using the numerical modeling (Morin et al., 1988; Blowes et al., 1991; Wunderly et al., 1986; Elberling et al., 1994; Jannesar Malakooti et al., 2014, so far, the interactions between these processes and geochemical and mineralogical characteristics has not been studied especially in waste rock dumps. Therefore the main objective of this study is to identify the evidences for knowing the oxygen transport mechanisms in the waste dumps and also, its role in intensity of pyrite oxidation. It is expected that such these structural studies could be useful for better understanding of dominant processes in numerical modeling and also providing environmental management strategies in the study area and other sites by similar characteristics. Materials and Methods In this study, thirty solid samples were collected from six excavated trenches in the waste rock dumps No. 19 and 31 of the Sarcheshmeh porphyry copper mine. Collected samples were studied using several methods such as XRD, ASTM-D2492, paste pH and grain size distribution. The results obtained from these methods were used with the field observations in order to characterize some detail information about oxygen supplying mechanisms for oxidation reactions in the waste rock dumps. Result The main minerals found by the XRD analysis were quartz and muscovite which were present in all samples. Pyrite, orthose, albite, and chlorite were also

  15. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls.

    Rapoport, E; Montana, D; Beach, G S D

    2012-11-01

    An integrated platform for the capture, transport, and detection of individual superparamagnetic microbeads is described for lab-on-a-chip biomedical applications. Magnetic domain walls in magnetic tracks have previously been shown to be capable of capturing and transporting individual beads through a fluid at high speeds. Here it is shown that the strong magnetostatic interaction between a bead and a domain wall leads to a distinct magneto-mechanical resonance that reflects the susceptibility and hydrodynamic size of the trapped bead. Numerical and analytical modeling is used to quantitatively explain this resonance, and the magneto-mechanical resonant response under sinusoidal drive is experimentally characterized both optically and electrically. The observed bead resonance presents a new mechanism for microbead sensing and metrology. The dual functionality of domain walls as both bead carriers and sensors is a promising platform for the development of lab-on-a-bead technologies. PMID:22955796

  16. Mechanical Erosion in a Tropical River Basin in Southeastern Brazil: Chemical Characteristics and Annual Fluvial Transport Mechanisms

    Alexandre Martins Fernandes

    2012-01-01

    Full Text Available This study aims to evaluate the mechanical erosion processes that occur in a tropical river basin, located in the São Paulo state, southeastern Brazil, through the chemical characterization of fine suspended sediments and the transport mechanisms near the river mouth, from March 2009 to September 2010. The chemical characterization indicated the predominance of SiO2, Al2O3, and Fe2O3 and showed no significant seasonal influences on the major element concentrations, expressed as oxides. The concentration variations observed were related to the mobility of chemical species. The evaluation of the rock-alteration degree indicated that the physical weathering was intense in the drainage basin. The fine suspended sediments charge was influenced by the variation discharges throughout the study period. The solid charge estimate of the surface runoff discharge was four times higher in the rainy season than the dry season. The transport of fine suspended sediments at the Sorocaba River mouth was 55.70 t km−2 a−1, corresponding to a specific physical degradation of 37.88 m Ma−1, a value associated with the mechanical erosion rate that corresponds to the soil thickness reduction in the drainage basin.

  17. From mechanical motion to Brownian motion, thermodynamics and particle transport theory

    The motion of a particle in a medium is dealt with either as a problem of mechanics or as a transport process in non-equilibrium statistical physics. The two kinds of approach are often unrelated as they are taught in different textbooks. The aim of this paper is to highlight the link between the mechanical and statistical treatments of particle motion in a medium, starting from the well-studied case of Brownian motion. First, deterministic dynamics is supplemented with stochastic elements accounting for the thermal agitation of the host medium: it is the approach of Langevin, which has been rephrased and extended by Kramers. It handles time-independent and time-dependent stochastic motions as well. In that approach, the host medium is not affected by the guest particles and the latter do not interact with each other. Both limitations are shown to be overcome in thermodynamics, which however is restricted to equilibrium situations, i.e. stochastic motions with no net current. When equilibrium is slightly perturbed, we show how thermodynamic and kinetic concepts supersede mechanical concepts to describe particle transport. The description includes multicomponent transport. The discussions of stochastic dynamics and of thermodynamics are led at the undergraduate level; the treatment of multicomponent transport introduces graduate-level concepts

  18. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries

    Agar, Ertan

    Vanadium redox flow batteries (VRFBs) are an emerging energy storage technology that offers unique advantages for grid-scale energy storage due to their flexible design and decoupled power/energy feature. Despite their popularity, a series of technical challenges hinder their widespread implementation. Among these, capacity loss (i.e., loss of energy storage capability) due to the undesired species crossover across the membrane has been identified as the key issue limiting the longevity of these systems. This issue is primarily governed by the properties of the membrane and can be mitigated by using proper membrane architectures with desired features. Presently, identifying proper membrane architectures for VRFB systems is hampered by the lack of a fundamental understanding of the nature of species transport mechanisms and how they are related to the membrane properties and key operating conditions. This Ph.D. study seeks to address this critical challenge by exploring the fundamental mechanisms responsible for species transport within the membrane. The overall objective of this dissertation study is to establish a fundamental understanding of the multi-ionic transport in VRFB membranes by investigating the ionic transport mechanisms responsible for crossover, and utilize this understanding to reveal the role of membrane properties and operating conditions on the capacity loss. To achieve these goals, a combined experimental and computational study was designed. An experimentally validated, 2-D, transient VRFB model that can track the vanadium crossover and capture the related capacity loss was developed. In addition to the model, several electrochemical techniques were used to characterize different types of membrane and study the effects of various operating conditions on the species crossover. Using these computational and experimental tools, an in-depth understanding of the species transport mechanisms within the membrane and how they are related to membrane

  19. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  20. Competitiveness of the railway transportation in the conditions of functioning of the infrastructure new organizational-economic mechanism

    M.I. Mishchenko

    2012-08-01

    Full Text Available The transport infrastructure of railways of the countries of EU-27 in the conditions of functioning new organizational-economic mechanism, and also dynamics of level of competitiveness of a railway transportation as result of reforming of railways of the countries of EU-27, in the conditions of realisation of the European transport legislation is investigated.

  1. The properties of cells in the cat trigeminal main sensory and spinal subnuclei activated by mechanical stimulation of the periodontium.

    Woda, A; Azerad, J; Albe-Fessard, D

    1983-01-01

    Neurophysiological exploration of the trigeminal sensory complex was done on 42 cats under ketamine anaesthesia, paying special attention to units receiving a periodontal input. Among 492 cells recorded in the trigeminal sensory complex, 73 responded to mechanical stimulation of the periodontium and were precisely localized histologically. Thalamic stimulation was also delivered to the ipsi and contralateral ventro-posterior nucleus to test for antidromic responses. Results of this systematic study were plotted on reference drawings of the full extent of the trigeminal sensory complex. PMID:6578760

  2. Mechanical thermal and electric measurements on materials and components of the main coils of the Milan superconducting cyclotron

    The coils of the Milan Superconducting Cyclotron are the largest superconducting devices built up to now in Italy and constitute the first superconducting magnet for accelerator in Europe. Because of the large stored energy (more than 40 MJ), of the high stresses and of of the need of reliability, a lot of measurements were carried out as well on materials used for the coils, both on superconducting cable and structural materials, as on the main components of the coils and on two double pancakes prototypes (wound with full copper cable). In this paper the results on these measurements are reported and the results of tests on the prototypes are discussed. The aim is to provide an easy source of data for superconducting coils useful to verify calculations or to improve the performances

  3. Investigation of Sediment Transport Mechanisms in the Durres Gulf – Albania Using Radiotracers [Case Study: Radiotracer Applications for Investigation of Bedload Transport of Sediments

    The radiotracer study had the following objectives: • to clarify the mechanism and to obtain quantitative results regarding the sediment transport in the gulf of Durres; • to find the sediment transport direction and quantity in the vicinity of the access channel of Durres port; • to determine the sediment quantity deposed every year in the channel

  4. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism

    van Veen, HW; Margolles, A; Muller, M; Higgins, CF; Konings, WN

    2000-01-01

    The bacterial LmrA protein and the mammalian multidrug resistance P-glycoprotein are closely related ATP-binding cassette (ABC) transporters that confer multidrug resistance on cells by mediating the extrusion of drugs at the expense of ATP hydrolysis. The mechanisms by which transport is mediated,

  5. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  6. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications.

    Sun, Pengzhan; Wang, Kunlin; Zhu, Hongwei

    2016-03-01

    Significant achievements have been made on the development of next-generation filtration and separation membranes using graphene materials, as graphene-based membranes can afford numerous novel mass-transport properties that are not possible in state-of-art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene-based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass-transport mechanism and to optimize the synthesis of graphene-based membranes toward large-scale production for a wide range of applications. PMID:26797529

  7. Study on the mechanism of transport of heavy metals in soil in western suburb of Beijing

    LI Hongyan; WANG Jinsheng; TENG Yanguo; WANG Zhenyu

    2006-01-01

    Researchers are paying more and more attention to the adsorption and transport of heavy metals in soil. In this study, laboratory experiments were performed to investigate the characteristics of adsorption and transport of mercury in soils of different locations in the western suburb of Beijing. To characterize the adsorption mechanism of mercury in soil, adsorption isotherms were determined through a batch experiment. Soil column experiments were performed in saturated soil under steady-state flow at a specific water head. The breakthrough curves ( BTC ) for the tracer (bromine) and mercury were obtained after continuous input. Moreover, two solute transport models [ convection-dispersion equation model (CDE)and two-site non-equilibrium model (TSN) ] were used to simulate heavy metal movement in soil on a laboratory column scale. According to the simulating results, we explored which model is more adapted to simulate the movement of heavy metals in saturated soil in the western suburb of Beijing.

  8. Excess white noise to probe transport mechanisms in a membrane channel

    Queralt-Martín, María; López, M. Lidón; Alcaraz, Antonio

    2015-06-01

    Current fluctuation analysis has been successfully used over the years to investigate the physical properties of different systems. Here, we perform single-channel time-resolved current experiments in a protein channel to evaluate the different transport mechanisms governing the channel function. Using different salts of monovalent and divalent cations in a wide range of concentrations and applied potentials, we analyze current fluctuations focusing on the voltage dependence of the additional white noise that appears in the low-frequency range of the spectra. We demonstrate that the channel displays two characteristic transport regimes: at low salt concentrations (10 mM to 1 M) ion permeation is controlled by the protein fixed charges that induce accumulation or exclusion of ions to preserve local electroneutrality. At high salt concentrations (>1 M ) adsorption processes associated to the binding of cations to the channel charges regulate the transport properties.

  9. Comparison of mechanical and manual ventilation during transport of patients to the intensive care unit after cardiac surgery

    Canbulat, Atilla; Goren, Suna; Moğol, Elif Başağan; Kaya, Fatma Nur

    2012-01-01

    Objectives: We compared effects of mechanical and manual ventilation during transport to the intensive care unit(ICU) in cardiac surgeries. Materials and methods: After ethical approval, 66 patients (ASAgrade II and III, 20-80years) were assigned randomly. Ventilation during transport to ICU was performed manual (Group EV; n=36) or mechanical ventilation (Group MV; n=30). Measurements were recorded: operation room (A), during transport (T) and in ICU (YB). Systolic, diastolic pressures (S...

  10. Comparison of mechanical and manual ventilation during transport of patients to the intensive care unit after cardiac surgery

    Atilla Canbulat; Suna Gören; Elif Başağan Moğol; Fatma Nur Kaya

    2012-01-01

    Objectives: We compared effects of mechanical andmanual ventilation during transport to the intensive careunit(ICU) in cardiac surgeries.Materials and methods: After ethical approval, 66 patients(ASAgrade II and III, 20-80years) were assignedrandomly. Ventilation during transport to ICU was performedmanual (Group EV; n=36) or mechanical ventilation(Group MV; n=30). Measurements were recorded:operation room (A), during transport (T) and in ICU (YB).Systolic, diastolic pressures (SAP, DAP), pul...

  11. Mechanical evaluation of a natural UF6 transport container at high temperature

    International Atomic Energy Agency (IAEA) revised the transport regulation for natural uranium hexafluoride (UF6) transportation taking into account chemical and radiological hazards in 1996. A supplementary fire test requirement (800 deg. C for 30 minutes) was imposed on the natural UF6 transport container. In 1996, Central Research Institute of Electric Power Industry (CRIEPI) and Nuclear Protection and Safety Institute (IPSN) terminated experimental joint research works with the aim to determine the thermal-physical behavior of UF6 in a transport container under realistic fire conditions and to use the experimental data to validate a thermal-hydraulic numerical model. Now, they have started a new experimental joint research as to the rupture test of the 48Y-cylinder which will be terminated at the end of 1998. The purpose of this study is to evaluate numerically the mechanical integrity of this cylinder in the IAEA fire test conditions. Firstly, pre-thermal-hydraulic numerical analysis of the 48Y-cylinder under the IAEA fire test condition was performed. Nextly, the structural material model at high temperature for natural UF6 transport container was proposed based on the CRIEPI's material tests and applied to the ABAQUS computer code. According to the mechanical non-linear analysis results, it was found that it is necessary to evaluate the safety margin for the rupture of the 48Y-cylinder because considerable plastic and creep deformations are generated due to the temperature distribution of the cylinder and the inner pressure. This thermal-mechanical behavior of the container will be verified according to the rupture test results of the 48Y-cylinder until the end of 1998. (authors)

  12. Modified random hinge transport mechanics and multiple scattering step-size selection in EGS5

    The new transport mechanics in EGS5 allows for significantly longer electron transport step sizes and hence shorter computation times than required for identical problems in EGS4. But as with all Monte Carlo electron transport algorithms, certain classes of problems exhibit step-size dependencies even when operating within recommended ranges, sometimes making selection of step-sizes a daunting task for novice users. Further contributing to this problem, because of the decoupling of multiple scattering and continuous energy loss in the dual random hinge transport mechanics of EGS5, there are two independent step sizes in EGS5, one for multiple scattering and one for continuous energy loss, each of which influences speed and accuracy in a different manner. Further, whereas EGS4 used a single value of fractional energy loss (ESTEPE) to determine step sizes at all energies, to increase performance by decreasing the amount of effort expended simulating lower energy particles, EGS5 permits the fractional energy loss values which are used to determine both the multiple scattering and continuous energy loss step sizes to vary with energy. This results in requiring the user to specify four fractional energy loss values when optimizing computations for speed. Thus, in order to simplify step-size selection and to mitigate step-size dependencies, a method has been devised to automatically optimize step-size selection based on a single material dependent input related to the size of problem tally region. In this paper we discuss the new transport mechanics in EGS5 and describe the automatic step-size optimization algorithm. (author)

  13. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  14. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure

  15. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  16. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain.

    Coloma, M; Schaffer, J D; Carare, R O; Chiarot, P R; Huang, P

    2016-08-01

    Beta-amyloid accumulation within arterial walls in cerebral amyloid angiopathy is associated with the onset of Alzheimer's disease. However, the mechanism of beta-amyloid clearance along peri-arterial pathways in the brain is not well understood. In this study, we investigate a transport mechanism in the arterial basement membrane consisting of forward-propagating waves and their reflections. The arterial basement membrane is modeled as a periodically deforming annulus filled with an incompressible single-phase Newtonian fluid. A reverse flow, which has been suggested in literature as a beta-amyloid clearance pathway, can be induced by the motion of reflected boundary waves along the annular walls. The wave amplitude and the volume of the annular region govern the flow magnitude and may have important implications for an aging brain. Magnitudes of transport obtained from control volume analysis and numerical solutions of the Navier-Stokes equations are presented. PMID:26729476

  17. The application of fracture mechanics to the safety assessment of transport casks for radioactive materials

    BAM is the German responsible authority for the mechanical and thermal design safety assessment of packages for the transport of radioactive materials. The assessment has to cover the brittle fracture safety proof of package components made of potentially brittle materials. This paper gives a survey of the regulatory and technical requirements for such an assessment according to BAM's new ''Guidelines for the Application of Ductile Cast Iron for Transport and Storage Casks for Radioactive Materials''. Based on these guidelines higher stresses than before can become permissible, but it is necessary to put more effort into the safety assessment procedure. The fundamentals of such a proof with the help of the methods of fracture mechanics are presented. The recommended procedure takes into account the guidelines of the IAEA Advisory Material which are based on the prevention of crack initiation. Examples of BAM's research and safety assessment practices are given. Recommendations for further developments towards package designs with higher acceptable stress levels will be concluded

  18. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL's extensive research and development program, funded primarily by the U. S. Department of Energy's Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed

  19. Experiment showing a mechanical manifestation of the helicity of transport current in superconducting wires

    The transport current density of the mixed state of type II wires will have the form J = z J/sub z/ + THETA J/sub THETA/ when the supercurrent exhibits a helical distribution due to the application of an external field H/sub z/. This is proved by the magnetic moment measurements of Walmsley and Timms, who observed the so-called paramagnetic component of moment M when J/sub THETA/ not equal to 0. A mechanical manifestation of the helical current was observed by combining a normal-zone propagation experiment with a capacitive technique for measuring mechanical torsion of the sample. Moreover, the torsion was observed even when H/sub z/ = 0, an effect that might be explained by the theory of Kondo and Kuroda on the helicity of transport currents in normal metals due to spiral dislocations

  20. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.

    Kolber, M A; Haynes, D H

    1981-01-01

    The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somew...

  1. Regulated transport as a mechanism for pattern generation: Capabilities for phyllotaxis and beyond

    Sahlin, Patrik; Söderberg, Bo; Jönsson, Henrik

    2009-01-01

    Abstract Large-scale pattern formation is a frequently occurring phenomenon in biological organisms, and several local interaction rules for generating such patterns have been suggested. A mechanism driven by feedback between the plant hormone auxin and its polarly localized transport mediator PINFORMED1 has been proposed as a model for phyllotactic patterns in plants. It has been shown to agree with current biological experiments at a molecular level as well as with respect to the...

  2. Comparative study of key exchange and authentication methods in application, transport and network level security mechanisms

    Fathirad, Iraj; Devlin, John; Jiang, Frank

    2012-09-01

    The key-exchange and authentication are two crucial elements of any network security mechanism. IPsec, SSL/TLS, PGP and S/MIME are well-known security approaches in providing security service to network, transport and application layers; these protocols use different methods (based on their requirements) to establish keying materials and authenticates key-negotiation and participated parties. This paper studies and compares the authenticated key negotiation methods in mentioned protocols.

  3. The influence of the membrane transport on the heart mechanical activity

    Převorovská, Světlana; Maršík, František

    Vol. 2. Brno : VUT, 1999 - (Kratochvíl, C.; Kotek, V.; Krejsa, J.), s. 55-60 ISBN 80-214-1325-5. [International conference Engineering mechanics '99.. Svratka (CZ), 17.05.1999-20.05.1999] R&D Projects: GA ČR GA106/98/1373 Grant ostatní: PP ÚT AV ČR(XC) 2/50 U Keywords : human cardiovascular system * myocardium * membrane transport Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  4. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure

    McDonough, Alicia A

    2010-01-01

    One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system (SNS) have begun to be revealed. These variables all converge on regulation of renal proximal tubule (PT) sodium transport. The PT reabsorbs...

  5. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference

    Sora,Ichiro; Hall, F. Scott; Andrews, Anne M.; Itokawa, Masanari; Li, Xiao-Fei; Wei, Hong-Bing; Wichems, Christine; Lesch, Klaus-Peter; Murphy, Dennis L.; Uhl, George R.

    2001-01-01

    Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy th...

  6. Mechanism of electroinduced ionic species transport through a multilamellar lipid system.

    Chizmadzhev, Y. A.; Zarnitsin, V G; Weaver, J C; Potts, R O

    1995-01-01

    A theoretical model for electroporation of multilamellar lipid system due to a series of large electrical pulses is presented and then used to predict the functional dependence of the transport of charged molecules. Previously, electroporation has been considered only for single bilayer systems such as artificial planar bilayer membranes and cell membranes. The former have been extensively studied with respect to electrical and mechanical behavior, and the latter with respect to molecular tra...

  7. Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China

    Improving energy efficiency is the primary method adopted by the Chinese government in an effort to achieve energy conservation target in the transport sector. However, the offsetting effect of energy rebound would greatly reduce its real energy-saving potentials. We set up a Linear Approximation of the Almost Ideal Demand System Model (LA-AIDS model) to estimate the rebound effect for passenger transportation in China. Real energy conservation effect of improving energy efficiency can also be obtained in the process. The result shows that the rebound effect is approximately 107.2%. This figure signifies the existence of ‘backfire effect’, indicating that efficiency improvement in practice does not always lead to energy-saving. We conclude that one important factor leading to the rebound effect, is the refined oil pricing mechanism. China's refined oil pricing mechanism has been subjected to criticism in recent years. The results of simulation analysis show that the rebound could be reduced to approximately 90.7% if the refined oil pricing mechanism is reformed. In this regard, we suggest further reforms in the current refined oil pricing mechanism. - Highlights: ► We set up the LA-AIDS model to estimate traffic service demand for urban residents. ► The size of the rebound effect for passenger transportation in China is evaluated. ► The rebound effect for passenger transportation in China is 107.2%. ► Reform of oil pricing could reduced the rebound to 90.7%. ► Reform of oil pricing might be an effective method for mitigating rebound effect

  8. Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells

    Lee, Na-Young; Lee, Ha-Eun; Kang, Young-Sook

    2014-01-01

    When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel...

  9. The Two Main Authentication Mechanism of XML%XML的两种主要验证机制

    陈娟

    2015-01-01

    为保证标准通用标记语言、可扩展标记语言文档格式正确,可通过验证判断文档是否有效。验证是把XML文档的结构、标记名称、数据类型等与预先设定的要求作比较的过程。预先设定的要求被保存在模式文档中。W3C标准制定了两种XML的验证机制(模式文档):DTD(Document Type Definition)和XSD(XML Schema Definition)。%In order to ensure the standard generalized markup language, extensible markup language document format is correct, can be verified by the judgment document is valid. Verification is the structure, the tag name, data type of XML document and the preset requirements for comparison process. The preset requirements are stored in the document model. W3C standard authentica⁃tion mechanism of two kinds of XML (schema):DTD(Document Type Definition)和XSD(XML Schema Definition).

  10. The Effect of Superficial Damage on the Mechanical Properties of Flexible Composite Pipe for Transporting Hydrocarbons

    Luz Amparo Quintero Ortiz

    2015-06-01

    Full Text Available This research examines the influence of outer sheath scratching on the mechanical properties of two systems of flexible composite pipe with nonmetal-reinforcement for transporting hydrocarbons. Tensile testing was carried out on notched rings, using Shore D hardness testing, and by physical characterization using cofocal microscopy on specimens with and without superficial damage. The tests were conducted following international technical standards and specifications. The results showed that variation in the depth and spacing of scratches affect the mechanical properties of the pipe, reducing ultimate tensile strength and leading to unit deformation. The effects are greater the deeper the scratches.

  11. QUANTUM-MECHANICAL PROPERTIES OF PROTON TRANSPORT IN THE HYDROGEN-BONDED MOLECULAR SYSTEMS

    PANG XIAO-FENG; LI PING

    2000-01-01

    The dynamic equations of the proton transport along the hydrogen bonded molecular systems have been obtainedby using completely quantum-mechanical method to be based on new Hamiltonian and model we proposed. Somequantum-mechanical features of the proton-solitons have also been given in such a case. The alternate motion of twodefects resulting from proton transfer occurred in the systems can be explained by the results. The results obtainedshow that the proton-soliton has corpuscle feature and obey classical equations of motion, while the free soliton movesin uniform velocity along the hydrogen bonded chains.

  12. Charge-carrier transport mechanisms in composites containing carbon-nanotube inclusions

    From the microwave-radiation transmittance and reflectance spectra, the temperature dependence of the complex permittivity of carbon nanotubes, subjected to high-temperature annealing, and composite materials produced on their basis is determined. The electron transport mechanisms in composites with inclusions of unannealed carbon nanotubes and nanotubes subjected to high-temperature annealing are determined. The influence of the annealing temperature on the parameters that are characteristic of these mechanisms and control the temperature dependence of the conductivity of multiwall carbon nanotubes is established

  13. Charge-carrier transport mechanisms in composites containing carbon-nanotube inclusions

    Usanov, D. A., E-mail: UsanovDA@info.sgu.ru; Skripal’, A. V.; Romanov, A. V. [Saratov State University (Russian Federation)

    2015-12-15

    From the microwave-radiation transmittance and reflectance spectra, the temperature dependence of the complex permittivity of carbon nanotubes, subjected to high-temperature annealing, and composite materials produced on their basis is determined. The electron transport mechanisms in composites with inclusions of unannealed carbon nanotubes and nanotubes subjected to high-temperature annealing are determined. The influence of the annealing temperature on the parameters that are characteristic of these mechanisms and control the temperature dependence of the conductivity of multiwall carbon nanotubes is established.

  14. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    Chaohua Guo

    Full Text Available Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  15. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  16. Structural basis of the alternating-access mechanism in a bile acid transporter

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  17. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  18. Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism

    Martino, Marcio Dalla Valle; Neves, Felipe; Ghedini Der Agopian, Paula; Martino, João Antonio; Vandooren, Anne; Rooyackers, Rita; Simoen, Eddy; Thean, Aaron; Claeys, Cor

    2015-10-01

    The goal of this work is to study the analog performance of tunnel field effect transistors (TFETs) and its susceptibility to temperature variation and to different dominant transport mechanisms. The experimental input characteristic of nanowire TFETs with different source compositions (100% Si and Si1-xGex) has been presented, leading to the extraction of the Activation Energy for each bias condition. These first results have been connected to the prevailing transport mechanism for each configuration, namely band-to-band tunneling (BTBT) or trap assisted tunneling (TAT). Afterward, this work analyzes the analog behavior, with the intrinsic voltage gain calculated in terms of Early voltage, transistor efficiency, transconductance and output conductance. Comparing the results for devices with different source compositions, it is interesting to note how the analog trends vary depending on the source characteristics and the prevailing transport mechanisms. This behavior results in a different suitability analysis depending on the working temperature. In other words, devices with full-Silicon source and non-abrupt junction profile present the worst intrinsic voltage gain at room temperature, but the best results for high temperatures. This was possible since, among the 4 studied devices, this configuration was the only one with a positive intrinsic voltage gain dependence on the temperature variation.

  19. The role of penetrant structure in the transport and mechanical properties of a thermoset adhesive

    Kwan, Kermit S.

    In this work the relationships between penetrant structure, its transport properties, and its effects on the mechanical properties of a polymer matrix were investigated. Although there is a vast amount of data on the diffusion of low molecular weight molecules into polymeric materials and on the mechanical properties of various polymer-penetrant systems, no attempts have been made to inter-relate the two properties with respect to the chemical structure of the diffusant. Therefore, two series of penetrants---n-alkanes and esters---were examined in this context, with the goal of correlating molecular size, shape, and chemical nature of the penetrant to its final transport and matrix mechanical properties. These correlations have been demonstrated to allow quantitative prediction of one property, given a reasonable set of data on the other parameters. A series of n-alkanes (C6--C17) and esters (C5--C17) have been used to separate the effects of penetrant size and shape, from those due to polymer-penetrant interactions, in the diffusion through a polyamide polymeric adhesive. These effects have been taken into account in order to yield a qualitative relationship that allows for prediction of diffusivity based upon penetrant structural information. Transport properties have been analyzed using mass uptake experiments as well as an in-situ FTIR-ATR technique to provide detailed kinetic as well as thermodynamic information on this process. The phenomenon of diffusion and its effects on the resulting dynamic mechanical response of a matrix polymeric adhesive have been studied in great detail using the method of reduced variables. The concept of a diffusion-time shift factor (log aDt) has been introduced to create doubly-reduced master curves, taking into account the effects of temperature and the variations in the polymer mechanical response due to the existence of a low molecular weight penetrant.

  20. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.

    Marie Courbebaisse

    Full Text Available BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1 binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

  1. How do we convert the transport sector to renewable energy and improve the sector's interplay with the energy system? Main findings and recommendations from Workshop on Transport - renewable energy in the transport sector and planning

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2009-07-15

    As part of the DTU Climate Change Technologies Programme, DTU arranged a series of workshops and conferences on climate change technology focusing on assessment of and adaptation to climate changes as well as on mitigation of greenhouse gasses (GHG). Each workshop targeted a specific technology problem area. The Workshop on Transport took place at DTU 17 - 18 March 2009. The workshop developed and discussed recommendations for future climate change technologies. This report presents summary and recommendations from the workshop. (au)

  2. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure.

    McDonough, Alicia A

    2010-04-01

    One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system (SNS) have begun to be revealed. These variables all converge on regulation of renal proximal tubule (PT) sodium transport. The PT reabsorbs two-thirds of the filtered Na(+) and volume at baseline. This fraction is decreased when BP or perfusion pressure is increased, during a high-salt diet (elevated ECFV), and during inhibition of the production of ANG II; conversely, this fraction is increased by ANG II, SNS activation, and a low-salt diet. These variables all regulate the distribution of the Na(+)/H(+) exchanger isoform 3 (NHE3) and the Na(+)-phosphate cotransporter (NaPi2), along the apical microvilli of the PT. Natriuretic stimuli provoke the dynamic redistribution of these transporters along with associated regulators, molecular motors, and cytoskeleton-associated proteins to the base of the microvilli. The lipid raft-associated NHE3 remains at the base, and the nonraft-associated NaPi2 is endocytosed, culminating in decreased Na(+) transport and increased PT flow rate. Antinatriuretic stimuli return the same transporters and regulators to the body of the microvilli associated with an increase in transport activity and decrease in PT flow rate. In summary, ECFV and BP homeostasis are, at least in part, maintained by continuous and acute redistribution of transporter complexes up and down the PT microvilli, which affect regulation of PT sodium reabsorption in response to fluctuations in ECFV, BP, SNS, and RAS. PMID:20106993

  3. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W; Argüello, José M

    2011-06-01

    Cu(+)-ATPases play a key role in bacterial Cu(+) homeostasis by participating in Cu(+) detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P(1B-1) type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu(+) with high affinity in a trigonal planar geometry. The cytoplasmic Cu(+) chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu(+) is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu(+)-ATPases drive cytoplasmic Cu(+) efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu(+)-efflux pumps responsible for Cu(+) tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments. PMID:21210186

  4. Current transport mechanisms in n-InSe/p-CdTe heterojunctions

    Anisotype heterojunctions n-InSe/p-CdTe were created by deposition over optical contact. The main electrical properties of the devices obtained were investigated. It was found that the current under the forward bias is determined by tunneling-recombination processes under the low voltage and over-barrier transport for the high voltage. The reverse current features a tunneling character for the small bias, and becomes significantly amplified for the large applied voltages due to the avalanche multiplication of the carriers caused by impact ionization. Our research has shown that the experimental results can be adequately described in the framework of the known models of current transport for the abrupt anisotype heterojunctions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Mechanical and transport properties of IBAD/EDDC-SmBCO coated conductor tapes during fatigue loading

    Shin, Hyung-Seop; Dedicatoria, Marlon J.

    2011-06-01

    In electrical devices like superconducting motor, generator and SMES, HTS coated conductor (CC) tapes will be subjected to alternating stress or strain during manufacturing and operation. The repeated loading will affect the mechanical integrity and eventually the electrical transport property of CC tapes. Therefore in such applications, electro-mechanical property of CC tapes should be evaluated. In this study, the endurance of an IBAD/EDDC-SmBCO CC tape under high-cycle fatigue loading has been evaluated. Applied maximum stress and fatigue life ( S-N) relation was obtained at 77 K. The mechanical properties and the critical current, I c, of the sample under fatigue loading were investigated at 77 K. Considering the practical operating environment, the effect of the stress ratio R, on the degradation behavior of I c under fatigue loading was also examined.

  6. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear.

    Kurabi, Arwa; Pak, Kwang K; Bernhardt, Marlen; Baird, Andrew; Ryan, Allen F

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 10(10th) 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME. PMID:26946957

  7. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport.

    Montigny, Cédric; Lyons, Joseph; Champeil, Philippe; Nissen, Poul; Lenoir, Guillaume

    2016-08-01

    Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26747647

  8. The riboflavin transporter RibU in Lactococcus lactis : Molecular characterization of gene expression and the transport mechanism

    Burgess, CM; Slotboom, DJ; Geertsma, ER; Duurkens, Hinderika; Poolman, B; van Sinderen, D

    2006-01-01

    This study describes the characterization of the riboflavin transport protein RibU in the lactic acid bacterium Lactococcus lactis subsp. cremoris NZ9000. RibU is predicted to contain five membrane-spanning segments and is a member of a novel transport protein family, not described in the Transport

  9. Air pollutants and plant cuticles: mechanisms of gas and water transport, and effects on water permeability

    A short overview of studies carried out by K.J. Lendzian and his group on transport rates of pure pollutant gases across isolated cuticles will be given. They show that the boiling point of a gas is a good predictor of cuticular permeability. Apparently good prediction quality, however, contrasts with a considerable gap between uptake rates determined in stomata-free systems, and rates of dry deposition to whole leaves observed under conditions where stomata should be closed to the maximum extent. Apart from other possible reasons for this difference, examination of cuticular sorption and diffusion characteristics indicates two major problems that may account for inconsistencies to some extent: (1) transport rates of gases in cuticles may be concentration-dependent and (2) interactions in gas mixtures with respect to cuticular transport are possible. Potential mechanisms of transport across cuticles and ways of interaction between gases (including water vapour) will be discussed. There has long been the notion that air pollutants may affect the water barrier quality of plant cuticles. This hypothesis has been tested in a recent study of effects of a wide range of air pollutants and elevated UV-B radiation on adaxial in situ-cuticular water permeability of various broadleaf tree species. No effects were found unless the leaves showed visible signs of stress due to treatment or chamber effects. (orig.)

  10. Coupled mechanical and chemo-transport model for the simulation of cementitious materials subjected to external sulfate attack

    We propose in this study to develop a chemo-transport-mechanical model for the simulation of external sulfate attack in cementitious materials. This degradation mainly consists in the hydrate decalcification/dissolution due to leaching, and in the reaction between the sulfate ions migrating within the material and mono-sulfate initially present to precipitate into ettringite. It may generate macroscopic expansions leading to severe microcracking. The key point in this study is the use of the integration numerical platform ALLIANCES which couples a code solving the chemical equations, the diffusion of ionic species into the porosity and the mechanical problem. The crystallization pressures resulting from the interaction between growing mono-sulfate crystals and the surrounding C-S-H matrix are assumed to cause the observed macroscopic swelling. A macroscopic bulk strain tensor calculated from the volume of formed ettringite is introduced for directly reproducing these expansions. Explicit up-scaling techniques applied on a simplified representation of the materials allow estimating both mechanical and diffusive properties of the evolving microstructure. The calculated macroscopic free expansions are in quite good agreement with experimental data, provided a correct calibration of the parameter involved in the expression of the bulk strain tensor. However, it is asserted that the model would lead to very high stress levels in the structures in the particular case of restrained displacements at its boundaries

  11. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells

    Shin, Dongha; Park, Jong Bo; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S.

    2015-02-01

    Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.

  12. Self-induced spontaneous transport of water molecules through a symmetrical nanochannel by ratchetlike mechanism

    Wan, R; Li, J; Bao, J; Hu, J; Fang, H; Wan, Rongzheng; Lu, Hangjun; Li, Jinyuan; Bao, Jingdong; Hu, Jun; Fang, Haiping

    2006-01-01

    Gaining work from thermal fluctuations without external input energy is a dream for scientists but is forbidden by the second law of thermodynamics. Feynman proposed a molecular ratchet toward this direction but there are still theoretical arguments against it. Here, we revisit this classical problem by using molecular dynamics simulation to monitor water molecules confined in a carbon nanotube. A spontaneous directional transportation of water molecules was observed in this symmetrical nanochannel by a ratchetlike mechanism. This is the first ratchetlike system without any asymmetrical structure or external field, while the asymmetric ratchetlike potential solely results from the transported water molecules that form hydrogen-bonded chains among themselves. Importantly, the resulting net water fluxes reached the level of biological channel, suggesting possible adoption by life. This effect is ascribed to the exceptive structure of the water molecule; a minute change in hydrogen-bond strength dramatically aff...

  13. Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording

    Budaev, Bair V.; Bogy, David B.

    2012-06-01

    This paper compares different mechanisms of heat transport across nano-scale gaps and discusses the role of electromagnetic phenomena in heat transport in general nano-scale layered structures. The results of the analysis suggest that heat transfer across sub-5 nm gaps like that appearing in prototypes of heat assisted magnetic recording (HAMR) systems is dominated by direct intermolecular interactions between the separated bodies and is little affected by electromagnetic radiation. The analysis further suggests that local heating for HAMR with sub-5 nm spacing can be more efficiently achieved by a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive for the nano-scale transducers than laser radiation, which may lead to their structural damage and short duration life of nanoscale transducers.

  14. A micro-mapping strategy to investigate mechanical and chemical mass transport in migmatite

    Lanari, Pierre; Riel, Nicolas

    2016-04-01

    Migmatites are fantastic objects to study both mechanical and chemical mass transport occurring at mm to cm-scale. However, migmatitic outcrops are the result of complex space and time interactions between (i) melt producing reactions, (ii) melt gain/loss and (iii) retrograde reactions. This succession of events is recorded in the minerals and microstructures of migmatites, and accounts for their apparent complexity. In order to explore the controlling parameters of these chemico-mechanical mass transport, it is thus necessary to characterize in great details the compositional changes between the different migmatitic domains, such as between leucosome and residuum. In this contribution we show how suitable local effective bulk (LEB) compositions can be derived by means of standardized microprobe X-ray images, using the program XMapTools. For chemically heterogeneous samples, such as migmatites, these LEB allow to forward model the stable mineral assemblages for each domain. Those thermodynamic models are used to investigate the conditions of leucosome-residuum separation. The studied sample is a metapelite embedded within a metasedimentary xenolith in the Marcabeli pluton, El Oro Complex, Ecuador. The sample exhibits complex mineral patterns due to local melt redistribution (at mm to cm-scale). Such physical mass transport involves major changes that affect the local chemical composition observed today. At the same time gradients in chemical potential can be established between adjacent domains such as residuum and leucosome, thus triggering chemical interaction. Diffusive transport between domains aims to reduce such chemical potential gradients. Along a modelled P-T path the chemical and mineralogical evolution of micro-domains can be reconstructed for (at least the reactive parts of) the crystallization history.

  15. Transport mechanisms and rates for the long-lived Chernobyl deposits

    A programme of work has been carried out to determine the various transport rates and mechanisms of Chernobyl radionuclides moving from catchment areas to rivers, reservoirs, lakes and sediments. In so doing the potential for Cs to be retained by and remobilised from sediments was assessed, along with the amount of deposited radioactivity which was in soluble form and hence was available in drinking water. Only a limited Ru-103 data set was obtained before it had decayed away below detection limits. However, results from this period showed that Ru mirrored Cs in its behaviour as it was measurable in the sediments at the same time after the deposition and it was trapped in the bottom waters of the lake. A substantial Cs data set was obtained for two lakes, Windermere and Esthwaite Water and it could be interpreted, with the aid of mathematical models developed during this study, to indicate the major processes and pathways operating in the transport of Cs through lake catchments. During the initial period after the deposition a maximum of 27% of the Cs in the water column was found in the particulate form and rapidly (months) reduced to 10-15% of the total. Total water column concentrations had reduced to half their initial measured values within 15 days in Esthwaite Water and 70 days in Windermere. Cs-134 was observed in surface sediments within 7 days in Esthwaite Water (15.5 m deep) and 30 days in Windermere (65 m deep) which, from a knowledge of mixing regimes of the lakes can be interpreted in terms of similar settlement velocities of 1-2 m per day. A small proportion of Chernobyl material was rapidly moved into the sediment as shown by small concentrations of Cs-134 being found at a depth of 8 cm after one year. This indicates that a non-diffusional transport mechanism, such as bioturbation, may be important for the transport of particulate caesium in sediments. (author)

  16. Soil erosion and sediment transport in the gullied Loess Plateau:Scale effects and their mechanisms

    2009-01-01

    Scale effects exist in the whole process of rainfall―runoff―soil erosion―sediment transport in river basins.The differences of hydrographs and sediment graphs in different positions in a river basin are treated as basic scale effects,which are more complex in the gullied Loess Plateau,a region notorious for high intensity soil erosion and hyper-concentrated sediment-laden flow.The up-scaling method of direct extrapolation that maintains dynamical mechanism effective in large scale application was cho-sen as the methodology of this paper.Firstly,scale effects of hydrographs and sediment graphs were analyzed by using field data,and key sub-processes and their mechanisms contributing to scale effects were clearly defined.Then,the Digital Yellow River Model that integrates sub-models for the sub-processes was used with high resolution to simulate rainfall―runoff―soil erosion―sediment transport response in Chabagou watershed,and the distributed results representing scale effects were obtained.Finally,analysis on the simulation results was carried out.It was shown that gravitational erosion and hyper-concentrated flow contribute most to the spatial variation of hydrographs and sediment graphs in the spatial scale.Different spatial scale distributions and superposition of different sub-processes are the mechanisms of scale effects.

  17. Soil erosion and sediment transport in the gullied Loess Plateau: Scale effects and their mechanisms

    LI TieJian; WANG GuangQian; XUE Hai; WANG Kai

    2009-01-01

    Scale effects exist in the whole process of rainfall--runoff--soil erosion--sediment transport in river basins. The differences of hydrographa and sediment graphs in different positions in a river basin are treated as basic scale effects, which are more complex in the gullied Loess Plateau, a region notorious for high intensity soil erosion and hyper-concentrated sediment-laden flow. The up-scaling method of direct extrapolation that maintains dynamical mechanism effective in large scale application was cho-sen as the methodology of this paper. Firstly, scale effects of hydrographa and sediment graphs were analyzed by using field data, and key sub-processes and their mechanisms contributing to scale effects were clearly defined. Then, the Digital Yellow River Model that integrates sub-models for the sub-processes was used with high resolution to simulate rainfall--runoff--soil erosion--sediment transport response in Chabagou watershed, and the distributed results representing scale effects were obtained.Finally, analysis on the simulation results was carried out. It was shown that gravitational erosion and hyper-concentrated flow contribute most to the spatial variation of hydrographs and sediment graphs in the spatial scale. Different spatial scale distributions and superposition of different sub-processes are the mechanisms of scale effects.

  18. In situ investigation of the mechanisms of the transport to tissues of polycyclic aromatic hydrocarbons adsorbed onto the root surface of Kandelia obovata seedlings.

    Li, Ruilong; Zhu, Yaxian; Zhang, Yong

    2015-06-01

    A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5-1240ng/spot for phenanthrene, 1.0-1360ng/spot for pyrene and 5.0-1220ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. PMID:25779208

  19. Mechanical and transport properties of NafionRTM for PEM fuel cells; temperature and hydration effects

    Majsztrik, Paul William

    This work investigates the mechanical and water transport properties of Nafion, a fully fluorinated ion conducting polymer used as a membrane material in proton exchange membrane fuel cells (PEMFCs). Both of these properties are extremely important to the short and long term operation of fuel cells. Nafion is a viscoelastic material, responding to stress in a time-dependant manner. The result is that Nafion flows under stress and responds dynamically to changes in hydration and stress. Stresses applied to the membrane of a PEM fuel cell, both from clamping as well as strain from changing levels of hydration, cause Nafion to flow. This results in thinning in spots and sometimes leads to the development of pinholes or contact problems between membrane and electrode. Temperature and water content strongly affect Nafion's viscoelastic response, of direct importance for operating PEM fuel cells. The viscoelastic response of Nafion was measured over a range of temperature and hydration using viscoelastic creep. A specially designed creep apparatus with environmental controls was used. It was found that the effects of temperature and hydration on Nafion's viscoelastic response are very complicated. Around room temperature, water acts to plasticize Nafion; elastic modulus and resistance to creep decrease with increasing hydration. As temperature increases, water has the opposite effect on mechanical response; hydration acts to stabilize the material. Mechanical property values are reported over a range of temperature and hydration germane to the operation of PEMFCs. Additionally, the data is used to infer molecular level interactions and the effects of temperature and hydration on microstructure. Hydration of Nafion and other PEMFC materials is required for the high proton conductivity needed for fuel cell operation. Uptake of water by Nafion results in volumetric swelling. Water transport through Nafion was directly measured by permeation. Both liquid and vapor phase

  20. A fully resolved active musculo-mechanical model for esophageal transport

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-10-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.

  1. Main Facilities

    This chapter discuss on main nuclear facilities available in the Malaysian Institute for Nuclear Technology Research (MINT). As a national research institute whose core activities are nuclear science and technology, MINT are made up of main commercializable radiation irradiators, pilot plant and fully equipped laboratories. Well elaboration on its characteristics and functions explain for RTP (PUPSPATI TRIGA reactors), Cobalt-60 gamma irradiator, electron beam accelerators, and radioactive waste management center

  2. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram

    M.CHANDRASEKAR; S.SURESH

    2009-01-01

    We provide an approximate method to determine the dominant heat transport mechanism responsible for the anomalous enhancement of thermal conductivity in aqueous nanofluids.Due to a large degree of randomness and scatter observed in the published experimental data,limits to nanofluid thermal conductivity are fixed analytically by taking into account the contribution of particle Brownian motion and clustering,and a regime diagram is developed.Experimental data from a range of independent published sources is used for validation of the developed regime diagram.

  3. Molecular Mechanism of Inhibition of the Mitochondrial Carnitine/Acylcarnitine Transporter by Omeprazole Revealed by Proteoliposome Assay, Mutagenesis and Bioinformatics

    Annamaria Tonazzi; Ivano Eberini; Cesare Indiveri

    2013-01-01

    The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s). Inhibition of the C-less mutant transporter indicated also the occurrence of an alternative non-covalent mechanism. The IC50 of the inhibition...

  4. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  5. Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

    Ince, C.

    2015-06-01

    Full Text Available The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs on water transport kinetics and mechanical properties of hydrated lime (CL90 and Portland cement (PC mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.El objetivo de este artículo es investigar el papel de los materiales cementantes suplementarios (SCMs en la cinética de transporte del agua y en las propiedades mecánicas de los morteros de cal hidratada (CL90 y cemento Portland. Las propiedades de la cal hidratada son significativamente diferentes a las del cemento y por lo tanto el control de las propiedades de los morteros frescos y endurecidos es fundamental en la optimización mortero/substrato en albañilería. Los parámetros estudiados en este trabajo son a menudo las principales barreras para el uso de la cal hidratada en la práctica de la construcción. Los resultados indican que la absortividad y el tiempo necesario para deshidratar morteros de cal hidratada recién mezclados pueden ser controlados cuando el conglomerante es parcialmente remplazado por SCMs. La resistencia a compresión de los morteros CL90 aumenta sistem

  6. Transport

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  7. Formation of the mechanism of interaction of the motor transportation enterprise with subjects the market of the international freight traffics

    A.M.Ponomaryov

    2011-12-01

    Full Text Available Takes up a question of formation of the mechanism of interaction of the motor transportation enterprise (MC in the market of the international cargo automobile transportations (ICAT with subjects of the market. Given the characteristic of the basic subjects which operate in market ICAT. The innovation model card clientenoughtable MC in market of ICAT is offered.

  8. Transport mechanisms of uranium released to the coolant from fuel defects

    Fuel performance at domestic CANDU-600s, Point Lepreau and Gentilly, has been very good, with only a small number of fuel defects releasing uranium to the coolant. The in-core monitoring on these early fuel defects using the delayed neutron system, provides some insight into uranium transport mechanisms and how they influence signal trends. Better understanding of these mechanisms, will assist the station operator in responding to trend changes and will ultimately provide guidance in assigning removal priorities should several fuel defects occur simultaneously. The average delayed neutron signal of all channels is the key parameter for monitoring fuel performance in-core, and should be regarded as an early warning indicator of fuel performance problems

  9. Photoluminescence and carrier transport mechanisms of silicon-rich silicon nitride light emitting device

    Highlights: • Amorphous silicon quantum dots (a-Si QDs) embedded in silicon nitride were fabricated using plasma-enhanced chemical vapor deposition (PECVD). • Two different excitation sources were used to investigate the PL mechanisms. • Light emitting diode (LED) with ITO/SiNx/p-Si/Al structure was fabricated and the carrier transport mechanisms were investigated. - Abstract: Silicon-rich silicon nitride (SRSN) films were prepared on p-type silicon substrates using plasma-enhanced chemical vapor deposition (PECVD). Small size (∼3 nm) amorphous silicon quantum dots (a-Si QDs) were obtained after 1100 °C annealing. Two different excitation sources, namely 325 nm and 532 nm lasers, were introduced to investigate the photoluminescence (PL) properties. The PL bands pumped by 325 nm laser at ∼2.90 eV and ∼1.80 eV were contributed to the radiative centers from N dangling bonds (DBs), while the dominant PL bands at 2.10 eV were ascribed to the instinct PL centers in the nitride matrix. However, PL emissions from band tail luminescence and quantum confined effect (QCE) in a-Si QDs were found under the excitation of 532 nm laser. Light emitting diode (LED) with ITO/SiNx/p-Si/Al structure was fabricated. Intensely red light emission was observed by naked eyes at room temperature under forward 20 V. Three different carrier transport mechanisms, namely Poole–Frenkel (P–F) tunneling, Fowler–Nordheim (F–N) tunneling and space charge limited current (SCLC), were found to fit different electric field regions. These results help to understand the PL mechanisms and to optimize the fabrication of a-Si QD LED

  10. 影响机械加工精度的主要因素研究%Research on Main Factors Affecting the Precision of Mechanical Machining

    蒋兴方

    2014-01-01

    In this paper, on the basis of the concept of machining precision, the main factors affecting machining precision was introduced to provide a theoretical basis to achieve the accuracy of the mechanical machining.%文章在介绍机械加工精度概念的基础上,详细的介绍了影响机械加工精度的主要因素,为实现机械的精度加工提供了理论依据。

  11. Effects of intravenous furosemide on mucociliary transport and rheological properties of patients under mechanical ventilation

    Kondo, Cláudia Seiko; Macchionne, Mariângela; Nakagawa, Naomi Kondo; de Carvalho, Carlos Roberto Ribeiro; King, Malcolm; Saldiva, Paulo Hilário Nascimento; Lorenzi-Filho, Geraldo

    2002-01-01

    The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distributed in two groups, furosemide (n = 12) and control (n = 14). Mucus collection was done at 0, 1, 2, 3 and 4 hours. The rheological properties of mucus were studied with a microrheometer, and in vitro mucociliary transport (MCT) (frog palate), contact angle (CA) and cough clearance (CC) (simulated cough machine) were measured. After the administration of furosemide, MCT decreased by 17 ± 19%, 24 ± 11%, 18 ± 16% and 18 ± 13% at 1, 2, 3 and 4 hours respectively, P < 0.001 compared with control. In contrast, no significant changes were observed in the control group. The remaining parameters did not change significantly in either group. Our results support the hypothesis that IV furosemide might acutely impair MCT in patients under MV. PMID:11940271

  12. Evaluation of the film formation and the charge transport mechanism of indium tin oxide nanoparticle films

    The structure formation and charge transfer of thin nanoparticulate indium tin oxide (ITO) films prepared by dip-coating was studied as a function of stabilizer before and after annealing at different temperatures. The analysis of the film structure by optical methods revealed that it is a function of the stability. Suspensions containing an optimum stabilizer concentration of 0.1 mol/l resulted in densely packed films with a peak specific conductivity of 8.3 S cm-1 after annealing at 550 oC for 1 h in air and 121 S cm-1 after annealing in forming gas at 250 oC for 1 h, respectively. Furthermore, for the densely packed films fluctuation-induced tunnelling was found to be the dominant charge transport mechanism, whereas for the low density films a thermally activated charge transport was observed. That the films of maximum density showed a metallic charge transport behaviour at temperatures above 300 K indicated the optimal contact between ITO particles had been achieved.

  13. Perturbation of the Electron Transport Mechanism by Proton Intercalation in Nanoporous TiO2 Films

    Halverson, A. F.; Zhu, K.; Erslev, P. T.; Kim, J. Y.; Neale, N. R.; Frank, A. J.

    2012-04-11

    This study addresses a long-standing controversy about the electron-transport mechanism in porous metal oxide semiconductor films that are commonly used in dye-sensitized solar cells and related systems. We investigated, by temperature-dependent time-of-flight measurements, the influence of proton intercalation on the electron-transport properties of nanoporous TiO{sub 2} films exposed to an ethanol electrolyte containing different percentages of water (0-10%). These measurements revealed that increasing the water content in the electrolyte led to increased proton intercalation into the TiO{sub 2} films, slower transport, and a dramatic change in the dependence of the thermal activation energy (E{sub a}) of the electron diffusion coefficient on the photogenerated electron density in the films. Random walk simulations based on a microscopic model incorporating exponential conduction band tail (CBT) trap states combined with a proton-induced shallow trap level with a long residence time accounted for the observed effects of proton intercalation on E{sub a}. Application of this model to the experimental results explains the conditions under which E{sub a} dependence on the photoelectron density is consistent with multiple trapping in exponential CBT states and under which it appears at variance with this model.

  14. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids

    Sarkar, Suranjan; Selvam, R. Panneer

    2007-10-01

    Nanofluids have been proposed as a route for surpassing the performance of currently available heat transfer liquids in the near future. In this study an equilibrium molecular dynamics simulation was used to model a nanofluid system. The thermal conductivity of the base fluid and nanofluid was computed using the Green-Kubo method for various volume fractions of nanoparticle loadings. This study showed the ability of molecular dynamics to predict the enhanced thermal conductivity of nanofluids. Through molecular dynamics calculation of mean square displacements for liquid phase in base fluid and for liquid and solid phases in nanofluid, this study tried to investigate the mechanisms involved in thermal transport of nanofluids at the atomic level. The result showed that the thermal transport enhancement of nanofluids was mostly due to the increased movement of liquid atoms in the presence of nanoparticle. Diffusion coefficients were also calculated for base fluid and nanofluids. Similarity of enhancement in thermal conductivity and diffusion coefficient for nanofluids indicates similar transport process for mass and heat.

  15. The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles

    Guenet, B.; Eglin, T.; Vasilyeva, N.; Peylin, P.; Ciais, P.; Chenu, C.

    2013-04-01

    Soil is the major terrestrial reservoir of carbon and a substantial part of this carbon is stored in deep layers, typically deeper than 50 cm below the surface. Several studies underlined the quantitative importance of this deep soil organic carbon (SOC) pool and models are needed to better understand this stock and its evolution under climate and land-uses changes. In this study, we tested and compared three simple theoretical models of vertical transport for SOC against SOC profiles measurements from a long-term bare fallow experiment carried out by the Central-Chernozem State Natural Biosphere Reserve in the Kursk Region of Russia. The transport schemes tested are diffusion, advection and both diffusion and advection. They are coupled to three different formulations of soil carbon decomposition kinetics. The first formulation is a first order kinetics widely used in global SOC decomposition models; the second one, so-called "priming" model, links SOC decomposition rate to the amount of fresh organic matter, representing the substrate interactions. The last one is also a first order kinetics, but SOC is split into two pools. Field data are from a set of three bare fallow plots where soil received no input during the past 20, 26 and 58 yr, respectively. Parameters of the models were optimised using a Bayesian method. The best results are obtained when SOC decomposition is assumed to be controlled by fresh organic matter (i.e., the priming model). In comparison to the first-order kinetic model, the priming model reduces the overestimation in the deep layers. We also observed that the transport scheme that improved the fit with the data depended on the soil carbon mineralisation formulation chosen. When soil carbon decomposition was modelled to depend on the fresh organic matter amount, the transport mechanism which improved best the fit to the SOC profile data was the model representing both advection and diffusion. Interestingly, the older the bare fallow is, the

  16. PfMDR1: mechanisms of transport modulation by functional polymorphisms.

    Pedro Eduardo Ferreira

    Full Text Available ATP-Binding Cassette (ABC transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now

  17. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    Altuntas, Halit, E-mail: altunhalit@gmail.com, E-mail: biyikli@unam.bilkent.edu.tr [Faculty of Science, Department of Physics, Cankiri Karatekin University, Cankiri 18100 (Turkey); Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi, E-mail: altunhalit@gmail.com, E-mail: biyikli@unam.bilkent.edu.tr [National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara 06800 (Turkey)

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  18. Constraints on Transport and Emplacement Mechanisms of Labile Fractions in Lunar Cold Traps

    Rickman, D.; Gertsch, L.

    2014-01-01

    Sustaining the scientific exploration of the Solar System will require a significant proportion of the necessary fuels and propellants, as well as other bulk commodities, to be produced from local raw materials [1]. The viability of mineral production depends on the ability to locate and characterize mineable deposits of the necessary feedstocks. This requires, among other things, a workable understanding of the mechanisms by which such deposits form, which is the subject of Economic Geology. Multiple deposition scenarios are possible for labile materials on the Moon. This paper suggests labile fractions moved diffusely through space; deposits may grow richer with depth until low porosity rock; lateral transport is likely to have occurred with the regolith, at least for short distances; crystalline ice may not exist; the constituent phases could be extremely complex. At present we can constrain the sources only mildly; once on the Moon, the transport mechanisms inherently mix and therefore obscure the origins. However, the importance of expanding our understanding of ore-forming processes on the Moon behooves us to make the attempt. Thus begins a time of new inquiry for Economic Geology.

  19. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  20. The application of fracture mechanics to the safety assessment of transport casks for radioactive materials

    Zencker, U.; Mueller, K.; Droste, B.; Roedel, R.; Voelzke, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2004-07-01

    BAM is the German responsible authority for the mechanical and thermal design safety assessment of packages for the transport of radioactive materials. The assessment has to cover the brittle fracture safety proof of package components made of potentially brittle materials. This paper gives a survey of the regulatory and technical requirements for such an assessment according to BAM's new ''Guidelines for the Application of Ductile Cast Iron for Transport and Storage Casks for Radioactive Materials''. Based on these guidelines higher stresses than before can become permissible, but it is necessary to put more effort into the safety assessment procedure. The fundamentals of such a proof with the help of the methods of fracture mechanics are presented. The recommended procedure takes into account the guidelines of the IAEA Advisory Material which are based on the prevention of crack initiation. Examples of BAM's research and safety assessment practices are given. Recommendations for further developments towards package designs with higher acceptable stress levels will be concluded.

  1. Investigations on the mechanism of terrestrial transport of radionuclides in a complex terrain

    Indian Atomic Energy program ensures that the operations of nuclear facilities do not lead to any adverse effect on the surrounding environment. Environmental Survey Laboratories (ESLs) are setup at major nuclear sites to assess the impact of the operating nuclear facilities. The laboratories are involved in R and D programs leading to improved understanding of the mechanism of interaction of radiation with the biota and that of the transport of radionuclides through different environmental compartments. The Kaiga site, being part of Western Ghats, is ecologically complex with the presence of hills and valleys and a forest cover inhabiting several biological species. This paper presents the results of the investigation on the mechanism involved in the terrestrial transport of radioactivity in Kaiga region. In view of the heavy rainfall in this area, wet deposition is the significant pathway of transfer of radionuclides from air to soil. Air to rain water transfer and wet deposition rate were estimated using 7Be as a tracer. Influence of Kd on the soil-to-soil solution transfer was studied. The data on the distribution of some trace and major elements in plant system is studied. It was observed that, when a competition arises between chemically similar nuclides (40K and 137Cs), biologically necessary elements are preferentially absorbed by the plant. This data will be an input to the calculation of radiation risk to the plant as well as animal feeding on them. (author)

  2. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  3. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL`s extensive research and development program, funded primarily by the U. S. Department of Energy`s Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed.

  4. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  5. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  6. To Gate, or Not to Gate: Regulatory Mechanisms for Intercellular Protein Transport and Virus Movement in Plants

    Shoko Ueki; Vitaly Citovsky

    2011-01-01

    Cell-to-cell signal transduction is vital for orchestrating the whole-body physiology of multi-cellular organisms,and many endogenous macromolecules,proteins,and nucleic acids function as such transported signals.In plants,many of these molecules are transported through plasmodesmata (Pd),the cell wall-spanning channel structures that interconnect plant cells.Furthermore,Pd also act as conduits for cell-to-cell movement of most plant viruses that have evolved to pirate these channels to spread the infection.Pd transport is presumed to be highly selective,and only a limited repertoire of molecules is transported through these channels.Recent studies have begun to unravel mechanisms that actively regulate the opening of the Pd channel to allow traffic.This macromolecular transport between cells comprises two consecutive steps:intracellular targeting to Pd and translocation through the channel to the adjacent cell.Here,we review the current knowledge of molecular species that are transported though Pd and the mechanisms that control this traffic.Generally,Pd traffic can occur by passive diffusion through the trans-Pd cytoplasm or through the membrane/lumen of the trans-Pd ER,or by active transport that includes protein-protein interactions.It is this latter mode of Pd transport that is involved in intercellular traffic of most signal molecules and is regulated by distinct and sometimes interdependent mechanisms,which represent the focus of this article.

  7. MAIN ABSTRACTS

    2012-01-01

    Zhou Enlai and the Sinicization of Marxism Chen Dacai As a key member of the first generation of collective leadership of the CPC, Zhou Enlai contributed greatly to the theoretical cause of the sinicization of Marxism. Such contribution mainly include the fllowing aspects: he spread Marxism in a at a very special historical period as one of the representative of the earliest Chinese Marxists; he presented at an early stage the relationship between Marxism and Chinese revolution,

  8. Main Memory

    Boncz, Peter; Liu, Lei; Özsu, Tamer, M.

    2008-01-01

    Primary storage, presently known as main memory, is the largest memory directly accessible to the CPU in the prevalent Von Neumann model and stores both data and instructions (program code). The CPU continuously reads instructions stored there and executes them. It is also called Random Access Memory (RAM), to indicate that load/store instructions can access data at any location at the same cost, is usually implemented using DRAM chips, which are connected to the CPU and other peripherals (di...

  9. Evidence for enhanced cross-field transport mechanisms in the TCV Snowflake divertor

    Vijvers, Wouter

    2015-11-01

    TCV experiments demonstrate that cross-field plasma transport is enhanced in the Snowflake divertor (SFD) compared to a standard single-null divertor (SND). This enhanced cross-field transport spreads the exhaust power over a larger surface area than can be achieved by magnetic geometry alone and, thereby, reduces the peak heat flux. Comparison of the experiments with modelling identifies steepened radial gradients, ExB drift effects, and βp-driven instabilities as the responsible transport mechanisms. The uncovered physics is also relevant to the SND and may help improve predictive models for the target profiles in ITER and DEMO. In SFD variants with an X-point in the scrape-off layer (SOL), part of the heat flux profile is split off and redirected to an additional target. The resulting steepened radial gradients enhance cross-field diffusion. This is confirmed by EMC3-Eirene simulations, which show a factor two reduction of the parallel heat flux, even if diffusivities remain constant. Theoretical analysis predicts enhanced ExB drifts in the SFD by increased poloidal gradients of the temperature and density. The predictions are confirmed by target heat and particle flux measurements in dedicated experiments with both toroidal field directions. Cross-field convection by curvature-driven modes at high βp (``churning modes'') explains the large fluxes into the private flux region of the SFD. This activates the extra targets and reduces the peak power to the primary targets up to a factor four. This mechanism is expected to be most effective when the divertor conditions are most severe: near the separatrix of a narrow, high-pressure SOL of a large tokamak. These and other alternative divertor configurations thus provide potential solutions to the power exhaust challenge, as well as laboratories to study SOL transport, one of the most important topics in tokamak research. This project was carried out with financial support from NWO. The work was carried out within

  10. Review: Role of Chemistry, Mechanics, and Transport on Well Integrity in CO2 Storage Environments

    Carroll, Susan A.; Carey, William J.; Dzombak, David; Huerta, Nicolas J.; Li, Li; Richard, Tom; Um, Wooyong; Walsh, Stuart D.; ZHANG, LIWEI

    2016-01-11

    Among the various risks associated with CO2 storage in deep geologic formations, wells are important potential pathways for fluid leaks and groundwater contamination. Injection of CO2 will perturb the storage reservoir and any wells that penetrate the CO2 or pressure footprints are potential pathways for leakage of CO2 and/or reservoir brine. Well leakage is of particular concern for regions with a long history of oil and gas exploration because they are top candidates for geologic CO2 storage sites. This review explores in detail the ability of wells to retain their integrity against leakage with careful examination of the coupled physical and chemical processes involved. Understanding time-dependent leakage is complicated by the changes in fluid flow, solute transport, chemical reactions, and mechanical stresses over decade or longer time frames for site operations and monitoring. Almost all studies of the potential for well leakage have been laboratory based, as there are limited data on field-scale leakage. When leakage occurs by diffusion only, laboratory experiments show that while CO2 and CO2-saturated brine react with cement and casing, the rate of degradation is transport-limited and alteration of cement and casing properties is low. When a leakage path is already present due to cement shrinkage or fracturing, gaps along interfaces (e.g. casing/cement or cement/rock), or casing failures, chemical and mechanical alteration have the potential to decrease or increase leakage risks. Laboratory experiments and numerical simulations have shown that mineral precipitation or closure of strain-induced fractures can seal a leak pathway over time or conversely open pathways depending on flow-rate, chemistry, and the stress state. Experiments with steel/cement and cement/rock interfaces have indicated that protective mechanisms such as metal passivation, chemical alteration, mechanical deformation, and pore clogging can also help mitigate leakage. The specific rate

  11. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  12. Sub-continental transport mechanisms and pathways during two ozone episodes in northern Spain

    G. Gangoiti

    2006-01-01

    Full Text Available Two ozone episodes (occurring in June 2001 and June 2003 in the air quality monitoring network of the Basque Country (BC are analyzed. The population information threshold was exceeded in many stations (urban, urban-background and rural. During this type of episodes, forced by a blocking anticyclone over the British Isles, ozone background concentrations over the area increase after the import of pollution from both, the continental Europe and the western Mediterranean areas (Gangoiti et al., 2002. For the present analysis, emphasis is made in the search for transport mechanisms, pathways and area sources contributing to the build-up of the episodes. Contributions from a selection of 17 urban and industrial conglomerates in the western European Atlantic (WEA and the western Mediterranean (WM are shown after the results of a coupled RAMS-HYPACT modelling system. Meteorological simulations are tested against both the high-resolution wind data recorded at the BC coastal area by a boundary layer wind-profiler radar (Alonso et al., 1998 and the wind soundings reported by the National Centres of Meteorology at a selection of European and north-African sites. Results show that during the accumulation phase of the episodes, background ozone concentrations increase in the whole territory as a consequence of transport from the Atlantic coast of France and the British Channel. For the peak phase, intrusions from new sources, located at the Western Mediterranean, Southern France, Ebro Valley, and, occasionally, the area of Madrid are added, resulting in a further increase in the ozone concentrations. Direct day and night transport within the north-easterly winds over the sea from the WEA source region, and night-time transport within the residual layer over continental areas (southern France, the Ebro Valley, and central Iberia modulate the import sequence of pollutants and the local increase of ozone concentrations. The alternative direct use of low

  13. Transportation R and D included in thermal and mechanical sciences program

    NONE

    1995-03-01

    Argonne National Laboratory is a multiprogram research and development laboratory operated by The University of Chicago for the US Department of Energy. At Argonne, applied research in thermal and mechanical sciences is performed within the Thermal and Mechanical Sciences Section of the Energy Technology Division. Current program areas include compact evaporators and condensers for the process and transportation industries, ice slurries for district cooling, advanced fluids for improved heat transfer and reduced pressure drop, flow-induced vibration and flow distribution in shell-and-tube heat exchangers, and dynamics and control of maglev systems. In general, the objective of the research is to extend the technology base in each of these areas and to facilitate its application in solving problems of importance to US industries and utilities. This is accomplished by developing validated design correlations and predictive methods. The staff of the Thermal and Mechanical Sciences Section have extensive experimental and analytical experience in heat transfer, multiphase flow, structural dynamics and control, fluid-structure interaction, transient flow and mixing, thermally driven flows, and flow visualization using ultra-high-speed video. Large, general-purpose test facilities and smaller, single-purpose test apparatuses are available for experiments and component design evaluation. A world-class capability in the study of flow-induced vibrations exists within the Section. Individual fact sheets, describing currently active research program areas, related facilities, and listing, as a contact, the principal investigator, are included.

  14. Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro

    Monika Słomińska-Wojewódzka

    2013-04-01

    Full Text Available Ricin is a type II ribosome inactivating protein (RIP isolated from castor beans. Its high toxicity classifies it as a possible biological weapon. On the other hand, ricin linked to specific monoclonal antibodies or used in other conjugates has powerful medical applications. Ricin consists of an A-chain (RTA that damages ribosomes and inhibits protein synthesis, and a B-chain that plays a role in binding and cellular uptake. A number of recent studies have demonstrated that ricin-induced inhibition of protein synthesis is not the only mechanism responsible for cell death. It turns out that ricin is able to induce apoptosis in different cell lines and multiple organs in animals. However, the molecular link between protein synthesis inhibition and ricin-dependent triggering of apoptotic cell death is unclear. This review describes the intracellular transport of ricin and ricin-based immunotoxins and their mechanism of action in different non-malignant and cancer cell lines. Moreover, various ricin-containing immunotoxins, their composition, medical applications and side-effects will be described and discussed. Understanding the mechanism of action of ricin-based immunotoxins will facilitate construction of effectively acting immunotoxins that can be used in the clinic for cancer treatment.

  15. Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants.

    Dölger, Julia; Rademaker, Hanna; Liesche, Johannes; Schulz, Alexander; Bohr, Tomas

    2014-10-01

    Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the

  16. Transport and Mechanical Characteristics of Corrosion-Inhibited High- Strength Self-Compacting Concrete

    Marva Blankson

    2015-11-01

    Full Text Available This paper is on the study of traditional silica fume (SG self-compacting concrete (SCC samples that was made as control and then incorporated with carboxylic inhibitor (SM to study the transport, rheological and mechanical responses of the inhibited samples. Comparison with the respective SG control, showed that the carboxylic inhibitor resulted in the reduction of the homogeneity of the SM samples and there was the development of flaws that could have contributed to the reduction in strength of the SM samples. When the concentration of the inhibitor was increased from the basic content to 100% higher, there was a noticeable increase in the chloride migration resistance of the SM samples. The study also showed that the transit time of the ultrasonic pulse that was transmitted was slower in the carboxylic inhibited-samples.

  17. Structural, electronic, mechanical, and transport properties of phosphorene nanoribbons: Negative differential resistance behavior

    Maity, Ajanta; Singh, Akansha; Sen, Prasenjit; Kibey, Aniruddha; Kshirsagar, Anjali; Kanhere, Dilip G.

    2016-08-01

    Structural, electronic, mechanical, and transport properties of two different types of phosphorene nanoribbons are calculated within the density functional theory and nonequilibrium Green's function formalisms. Armchair nanoribbons turn out to be semiconductors at all widths considered. Zigzag nanoribbons are metallic in their layer-terminated structure, but undergo Peierls-like transition at the edges. Armchair nanoribbons have smaller Young's modulus compared to a monolayer, while zigzag nanoribbons have larger Young's modulus. Edge reconstruction further increases the Young's modulus of zigzag nanoribbons. A two-terminal device made of zigzag nanoribbons show negative differential resistance behavior that is robust with respect to edge reconstruction. We have also calculated the I -V characteristics for two nonzero gate voltages. The results show that the zigzag nanoribbons display strong p -type character.

  18. Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases

    Andersen, N.H.; Bandaranyake, P.W.S.K.; Careem, M.A.;

    1992-01-01

    Lithium sulphate and a few other compounds have high temperature phases which are both solid electrolytes and plastic crystals (rotor phases). Three types of experiments are here considered in order to test the validity of a "paddle-wheel mechanism" that has been proposed for cation conductivity...... curved pathway of continuous lithium occupation corresponding to a distance of about 3.7 angstrom. Thus, lithium transport occurs in one of the six directions [110], [110BAR], [101] etc. The electrical conductivity has been studied for solid solutions of lithium tungstate in cubic lithium sulphate....... The conductivity is reduced in the one-phase region, while it is increased in a two phase (solid-melt) region. There are pronounced differences between the rotor phases and other phases concerning how partial cation substitution affects the electrical conductivity of solid solutions. Regarding self...

  19. Quantum mechanical simulation of hole transport in p-type Si Schottky barrier MOSFETs.

    Choi, Wonchul; Shin, Mincheol

    2011-07-01

    A full quantum-mechanical simulation of p-type nanowire Schottky barrier metal oxide silicon field effect transistors (SB-MOSFETs) is performed by solving the three-dimensional Schrödinger and Poisson's equations self-consistently. The non-equilibrium Green's function (NEGF) approach is adopted to treat hole transport, especially quantum tunneling through SB. In this work, p-type nanowire SB-MOSFETs are simulated based on the 3-band k.p method, using the k.p parameters that were tuned by benchmarking against the tight-binding method with sp3s* orbitals. The device shows a strong dependence on the transport direction, due to the orientation-sensitive tunneling effective mass and the confinement energy. With regard to the subthreshold slope, the [110] and [111] oriented devices with long channel show better performance, but they are more vulnerable to the short channel effects than the [100] oriented device. The threshold voltage also shows a greater variation in the [110] and [111] oriented devices with the decrease of the channel length. PMID:22121621

  20. Solute transport in fractured media - The important mechanisms for performance assessment

    The most important mechanisms that control the release of contaminants from a repository for nuclear or chemical waste have been studied. For the time scale of interest for the disposal of nuclear or even chemical waste, diffusion into the rock matrix is an important factor which retards and dilutes the contaminants. It is found that the water flow-rate distribution and the flow-wetted surface are the entities that primarily determine the solute transport. If the diffusion in the rock matrix is negligible, the solute transport is determined by the water flow-rate and the flow porosity. This is shown by simulations using analytical solutions obtained for simple geometries, such as the flow in a fracture or a channel. Similar results are obtained for more complex systems, such as flow in a fracture with variable aperture and through a network of channels. It is also found that the use of a retardation factor relating the travel times of interacting and noninteracting solutes is inappropriate and may be misleading. 11 refs, 9 figs, 1 tab

  1. Mechanisms of molecular transport through the urea channel of Helicobacter pylori

    McNulty, Reginald; Ulmschneider, Jakob P.; Luecke, Hartmut; Ulmschneider, Martin B.

    2013-12-01

    Helicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen’s periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori. The crystal structure of HpUreI describes a static snapshot of the channel with two constriction sites near the center of the bilayer that are too narrow to allow passage of urea or even water. Here we describe the urea transport mechanism at atomic resolution, revealed by unrestrained microsecond equilibrium molecular dynamics simulations of the hexameric channel assembly. Two consecutive constrictions open to allow conduction of urea, which is guided through the channel by interplay between conserved residues that determine proton rejection and solute selectivity. Remarkably, HpUreI conducts water at rates equivalent to aquaporins, which might be essential for efficient transport of urea at small concentration gradients.

  2. Gamma ray attenuation studies of interception from Sitka spruce: some evidence for an additional transport mechanism

    Various forest canopy characteristics of stands of Sitka spruce (Picea sitchensis (Bong.) Carr.), including canopy density, the aerodynamic resistance to the transfer of water vapor, and the rates of change of drainage and evaporation of water with respect to canopy storage, were investigated using direct measurements of canopy mass and water storage. The measurements, made at sites located in Wales and Scotland, utilized the attenuation of a horizontal beam of gamma rays which was arranged to scan through the canopy at different levels. The aerodynamic resistance to the transport of water vapor from the canopy to a reference level 5 m above mean tree height was found to be consistent with the value of 3.5 s m−1, determined from earlier modeling studies (I. R. Calder, 1977). This value is, however, lower and shows less wind speed dependence than would be expected from conventional formulae which are based on eddy diffusion theory and tree height. The possibility of explaining these discrepancies in terms of an additional transport mechanism involving large-scale eddies is discussed

  3. Catecholamine transport in cultured bovine adrenal medullary cells: kinetics and mechanism

    In primary cultures of bovine adrenomedullary cells, catecholamine uptake was found to be a saturable process exhibiting Michaelis-Menten kinetics with an apparent K/sub m/ for 1-norepinephrine of 0.5 μM. Radiolabeled catecholamines were employed to study the general characteristics and kinetic properties of catecholamine transport in cultured adrenomedullary cells. This process was found to be temperature, energy and Na+-dependent. In addition, uptake required the presence of extracellular Cl-, K+, and divalent cation such as Mn2+, Ca2+, or Mg2+. Agents that induce Ca2+-dependent, exocytotic secretion of catecholamines from these cells had significant inhibitory effects on catecholamine uptake. The secretagogues, nicotine, veratridine and elevated extracellular K+ concentrations, were all found to inhibit norepinephrine uptake. The inhibitory effects of the secretagogues could be fully demonstrated in the absence of catecholamine secretion. Investigation into the mechanism of catecholamine transport was pursued by measuring the effects of various catecholamine altering conditions or agents on the cellular membrane potential and/or the inwardly directed Na+ concentration gradient. Changes in the membrane potential were determined biochemically using tetraphenylphosphonium ion distribution, whereas changes in the Na+-gradient were assessed using 22Na+ distribution

  4. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-05-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant-rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open-ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one-dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the ``main flow zone''). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h-1, respectively. Storage processes decreased the depth-averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a

  5. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements

    Gheiratmand, T.; Hosseini, H. R. Madaah

    2016-06-01

    Finemet soft magnetic alloy has been in the focus of interest in the last years due to its high saturation magnetization, high permeability and low core loss. The great quantity of papers has been devoted to the study of its structural and magnetic properties, confirms this claim. This paper reviews the different researches performed on Finemet up to now. The criteria that should be satisfied in order to have the high glass forming ability in an alloy and also the techniques applied for production of Finemet ribbons, powders and bulk samples have been explained. In addition, the mechanism of devitrification, nanocrystallization and magnetic softness in this applicable magnetic alloy has been discussed in detail. Finally, the effect of different elements substituted with the main constituents in Finemet has been summarized through the studies on the characterization and magnetic properties of different Finemet-type alloys.

  6. Main aspects in licensing of a type B(U) package design for the transport of 12.95 PBq of cobalt 60

    This paper points out the relevant technical issues related to the licensing process, of a type B(U) package design, with cylindrical form and 9.3 ton mass, approved by the Argentine Competent Authority for the transport of 12.95 PBq of cobalt 60 as special form radioactive material. It is briefly described the heat transfer analysis, the structural performance under impulsive loads and the shielding calculation under both normal and accidental conditions of transport, as well as the comparative analysis of the results obtained from design, pre-operational tests and independent evaluation performed by the Argentine Competent Authority to verify the compliance with the Regulations for the Safe Transport of Radioactive Material of the International Atomic Energy Agency. (author). 14 refs., 1 fig., tabs

  7. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysisincludes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based...... on data from The Danish Road Directorate. Theelectricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potentialtransition...... towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO2-emission reduction achievable in the overall transport and powersupply system. Detailed model simulations, on an hourly basis, have...

  8. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  9. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2014-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  10. “Green” fuel tax on private transportation services and subsidies to electric energy. A model-based assessment for the main European countries

    This paper evaluates the environmental and macroeconomic implications for France, Germany, Italy and Spain of taxing motor vehicle fuels for private transportation, a sector not subject to the Emissions Trading System, so as to reduce taxes on electricity consumption and increase subsidies to renewable sources of electricity generation. The assessment is based on a dynamic general equilibrium model calibrated for each of the four countries. The results suggest that the measures posited will reduce carbon dioxide emissions in the transportation sector and favor the development of electricity generation from renewable sources, thus limiting the growth of emissions from electricity generation. The measures do not jeopardize economic activity. The results are robust whether implementation is unilateral in one country or simultaneous throughout the EU. - Highlights: • The European Union's Agenda 2020 calls for member countries to reduce greenhouse gas emissions and increase renewable energy. • We evaluate implications in the EU of taxing fuels for private transportation, reducing taxes on electricity and increase subsidies to renewable sources of electricity. • The assessment is based on a dynamic general equilibrium model. • The measures reduce emissions, in particular in the transportation sector, favor electricity generation from renewable sources and do not jeopardize economic activity

  11. Interstitial Oxide Ion Distribution and Transport Mechanism in Aluminum-Doped Neodymium Silicate Apatite Electrolytes.

    An, Tao; Baikie, Tom; Orera, Alodia; Piltz, Ross O; Meven, Martin; Slater, Peter R; Wei, Jun; Sanjuán, María L; White, T J

    2016-04-01

    Rare earth silicate apatites are one-dimensional channel structures that show potential as electrolytes for solid oxide fuel cells (SOFC) due to their high ionic conductivity at intermediate temperatures (500-700 °C). This advantageous property can be attributed to the presence of both interstitial oxygen and cation vacancies, that create diffusion paths which computational studies suggest are less tortuous and have lower activation energies for migration than in stoichiometric compounds. In this work, neutron diffraction of Nd(28+x)/3AlxSi6-xO26 (0 ≤ x ≤ 1.5) single crystals identified the locations of oxygen interstitials, and allowed the deduction of a dual-path conduction mechanism that is a natural extension of the single-path sinusoidal channel trajectory arrived at through computation. This discovery provides the most thorough understanding of the O(2-) transport mechanism along the channels to date, clarifies the mode of interchannel motion, and presents a complete picture of O(2-) percolation through apatite. Previously reported crystallographic and conductivity measurements are re-examined in the light of these new findings. PMID:27015162

  12. Study on a self-similar traffic shaping mechanism with QoS in transport networks

    Bo, Mingxia; Lee, Peiyuan; Pan, Xiaofei; Gu, Wanyi

    2005-11-01

    Due to easy realization and high bandwidth utilization, SDH/WDM technology becomes the important way to carry IP traffic over the backbone network. On the other hand, the feature of the data traffic which is much different from the voice traffic is dynamic, burst and self-similar, and many proofs show that the self-similar traffic can lead to some adverse effects on the network performance due to the property of long-range dependence (LRD). For this reason it is widely recognized that self-similarity of the traffic is a significant problem as far as network engineering is concerned. So any reduction in the degree of self-similarity will be greatly beneficial. One possible strategy for mitigating the deleterious effects of the self-similarity is to reduce the burstiness of the input traffic through traffic shaping function at the edge nodes. According to this scheme, in this paper, we present a new self-similar traffic shaping mechanism with QoS in transport networks, called double threshold algorithm (DTA). Simulation results show that the proposed mechanism can effectively reduce the degree of input self-similar traffic, and performs better in the terms of network packet-loss rate and blocking probability than the non-traffic shaping schemes. At the same time it guarantees good quality of service.

  13. Preliminary investigation of gas transport mechanism in a H+ irradiated polyimide-ceramic composite membrane

    Recent research by our group indicated that ion beam irradiation can simultaneously increase the gas permeability and permselectivity of polymeric membrane materials. The temperature dependence of the gas permeation properties of a H+ ion irradiated polyimide-ceramic composite membrane was investigated to address issues of changes in the gas transport mechanism in irradiated polymers. As was seen for glassy polymers, the temperature dependence of the permeation properties of the irradiated membrane followed an Arrhenius type relationship. Both the activation energy (Ep) for gas permeation and the pre-exponential factor (P0) of the irradiated polymer were greater than the values of the unmodified bulk polymer. Large increases in the pre-exponential factor of the irradiated sample for small size gas molecules (He, O2 and CO2) combined with the dominant contribution of the pre-exponential factor to the permselectivity for several gas pairs (He/CH4, O2/N2, and CO2/CH4) implied that the irradiated sample had a different permeation mechanism than the bulk material

  14. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    Lu Ming-Ming; Yuan Jie; Wen Bo; Liu Jia; Cao Wen-Qiang; Cao Mao-Sheng

    2013-01-01

    We investigate the dielectric properties of muhi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz.M WCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  15. Effect of temperature and UV illumination on charge transport mechanisms in DNA

    Narenji, Alaleh G.; Goshi, Noah; Bui, Chris; Mokili, John; Kassegne, Sam

    2015-04-01

    Research into the use of DNA molecules as building blocks for nanoelectronics as well as nanosystems continues. Recently, our group has reported significant electrical conductivity in λ-DNA through direct and in-direct measurements involving high-aspect ratio electrodes that eliminate the effect of the substrate. Our results demonstrate that, at moderate to high frequencies, λ-DNA molecular wires show low impedance. In addition, to prove that the conductivity is indeed from DNA bridge, we studied the effect of temperature and UV irradiation on DNA molecular wires. The temperature results indicate that λ-DNA molecular wires have differing impedance responses at two temperature regimes: impedance increases between 4°C - 40°C, then decreases from 40°C to the melting point (~110°C) at which λ-DNA denatures resulting in a complete loss of current transduction. This hysteric and bi-model behavior makes DNA a candidate for nanoelectronics components such as thermal transistors and switches. The data from UV exposure experiments indicates decreased conductivity of λ-DNA molecular wires after UV exposure, due to damage to GC base pairs and phosphate groups reducing the path available for both charge hopping and short-range electron tunneling mechanisms. The lessons learned from these conductivity experiments along with our knowledge of different charge transport mechanisms within DNA can be applied to the design of synthetic molecular wires for the construction of nanoelectronic devices.

  16. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

    McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali; Lee, Jumin; Mitra, Sharmistha; Levin, Elena J; Poget, Sebastien; Quick, Matthias; Im, Wonpil; Zhou, Ming

    2016-06-01

    The phosphoenolpyruvate:carbohydrate phosphotransferase systems are found in bacteria, where they play central roles in sugar uptake and regulation of cellular uptake processes. Little is known about how the membrane-embedded components (EIICs) selectively mediate the passage of carbohydrates across the membrane. Here we report the functional characterization and 2.55-Å resolution structure of a maltose transporter, bcMalT, belonging to the glucose superfamily of EIIC transporters. bcMalT crystallized in an outward-facing occluded conformation, in contrast to the structure of another glucose superfamily EIIC, bcChbC, which crystallized in an inward-facing occluded conformation. The structures differ in the position of a structurally conserved substrate-binding domain that is suggested to play a central role in sugar transport. In addition, molecular dynamics simulations suggest a potential pathway for substrate entry from the periplasm into the bcMalT substrate-binding site. These results provide a mechanistic framework for understanding substrate recognition and translocation for the glucose superfamily EIIC transporters. PMID:27161976

  17. Main findings

    Licensing regimes vary from country to country. When the license regime involves several regulators and several licenses, this may lead to complex situations. Identifying a leading organisation in charge of overall coordination including preparation of the licensing decision is a useful practice. Also, if a stepwise licensing process is implemented, it is important to fix in legislation decisions and/or time points and to identify the relevant actors. There is considerable experience in civil and mining engineering that can be applied when constructing a deep geological disposal facility. Specific challenges are, however, the minimization of disturbances to the host rock and the understanding of its long-term behavior. Construction activities may affect the geo-hydraulic and geochemical properties of the various system components which are important safety features of the repository system. Clearly defined technical specifications and an effective quality management plan are important in ensuring successful repository implementation which is consistent with safety requirements. Monitoring plan should also be defined in advance. The regulatory organization should prepare itself to the licensing review before construction by allocating sufficient resources. It should increase its competence, e.g., by interacting early with the implementer and through its own R and D. This will allow the regulator to define appropriate technical conditions associated to the construction license and to elaborate a relevant inspection plan of the construction work. After construction, obtaining the operational license is the most important and crucial step. Main challenges include (a) establishing sufficient confidence so that the methods for closing the individual disposal units comply with the safety objectives and (b) addressing the issue of ageing of materials during a 50-100 years operational period. This latter challenge is amplified when reversibility/retrievability is required

  18. The role of lock-in mechanisms in transition processes: The case of energy for road transport

    Klitkou, Antje; Bolwig, Simon; Hansen, Teis;

    2015-01-01

    is based on a comparative analysis of case studies. The main lock-in mechanisms analysed are learning effects, economies of scale, economies of scope, network externalities, informational increasing returns, technological interrelatedness, collective action, institutional learning effects and the...

  19. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  20. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path-Force Matching QM/MM Method.

    Zhou, Y; Ojeda-May, P; Nagaraju, M; Pu, J

    2016-01-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path-force matching (RP-FM) has been developed. In RP-FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP-FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  1. 椰子剥衣机自动上料机构的设计%Design of the automatic coconuts transport mechanism

    王锐; 樊军庆

    2012-01-01

    Focusing on the problem that the coconuts' transportation of the husking machines mainly relies on artificial work nowadays. the article introduces the automatic transport mechanism for coconuts based on the coconuts husking machines m order to provide coconuts in time, cut the cost and improve the efficiency. The convey ors achieve the function of transporting coconuts and the grab motion is completed by the manipulator. The main driving power comes from the actuating motors, plus pneumatic devices. The producing and receiving of signals between each part will be the basis of coordinating motions of the whole mechanism can satisfy the requirement of providing coconuts for the coconuts husking machine. The whole process realizes automatic transportation and is quite efficient. It can satisfy the demand of sending coconuts for the husking machines.%针对目前椰子剥衣机送料部分主要靠人工运送的问题,为达到即时为椰子剥衣机提供椰子以及运送过程自动化,降低成本,提高效率的目的,介绍以一种椰子剥衣机为基础设计的椰子自动上料机构.由带传动负责椰子的输送,椰子的抓取靠机械手完成.采用伺服电机驱动,兼有气动装置控制.通过相互之间信号的产生和接收作为协调整个机构动作的前提.可以完成为剥衣机自动送料的任务.整个过程实现了自动化,效率较高,满足剥衣机的送料要求.

  2. Multi-Path Transportation Futures Study. Vehicle Characterization and Scenario Analyses: Main Text and Appendices A, B, C, D, and F

    Plotkin, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Margaret [Argonne National Lab. (ANL), Argonne, IL (United States); Patterson, Phil [U.S. Dept. of Energy, Washington, DC (United States); Ward, Jake [U.S. Dept. of Energy, Washington, DC (United States); Wood, Frances [OnLocation Inc., Vienna, VA (United States); Kydes, Niko [OnLocation Inc., Vienna, VA (United States); Holte, John [OnLocation Inc., Vienna, VA (United States); Moore, Jim [TA Engineering, Inc., Catonsville, MD (United States); Miller, Grant [TA Engineering, Inc., Catonsville, MD (United States); Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greene, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2009-07-22

    This report provides details for Phase 2 of the Multi-Path Transportation Futures Study, which compares alternative ways to make significant reductions in oil use and carbon emissions from U.S. light vehicles to 2050. Phase I, completed in 2009, examined the full range of pathways of interest to EERE, with multiple scenarios aimed at revealing the issues and impacts associated with a national effort to reduce U.S. dependence on oil use in transportation. Phase 2 expanded the scope of the analysis by examining the interactive effects of multiple pathways on each other and on oil and feedstock prices, focusing far more on costs; and substantially increasing the number of metrics used to compare pathways and scenarios.

  3. Lipid transport function is the main target of oral oleoylethanolamide to reduce adiposity in high-fat-fed mice[S

    Thabuis, Clémentine; Destaillats, Frédéric; Lambert, Didier M; Muccioli, Giulio G.; Maillot, Matthieu; Harach, Touafiq; Tissot-Favre, Delphine; Martin, Jean-Charles

    2011-01-01

    Abstract We evaluated the biological basis of reduced fat gain by oleoylethanolamide (OEA) in high-fat-fed mice and sought to determine how degradation of OEA affected its efficiency by comparing its effects to those of KDS-5104, a nonhydrolyzable lipid OEA analog. Mice were given OEA or KDS-5104 by the oral route (100 mg/kg body weight). Sixty-eight variables per mouse, describing six biological processes (lipid transport, lipogenesis, energy intake, energy expenditure, endocannabinoid signa...

  4. An evaluation of perfomance management in the Department of Public Works, Roads and Transport of the North West Privince / S. E Maine

    Maine, S E

    2014-01-01

    Effective performance management is vital in all public and private sectors and contributes to service delivery of the organisations. Research on public-sector performance management, however, points out challenges in the implementation of the systems and questions the effectiveness of policy tools for enhancing the governmental accountability. The Department of Public Works, Roads and Transport is a large institution and its vision is to provide successful infrastructure projects...

  5. Theoretical analysis of selectivity mechanisms in molecular transport through channels and nanopores

    Selectivity is one of the most fundamental concepts in natural sciences, and it is also critically important in various technological, industrial, and medical applications. Although there are many experimental methods that allow to separate molecules, frequently they are expensive and not efficient. Recently, a new method of separation of chemical mixtures based on utilization of channels and nanopores has been proposed and successfully tested in several systems. However, mechanisms of selectivity in the molecular transport during the translocation are still not well understood. Here, we develop a simple theoretical approach to explain the origin of selectivity in molecular fluxes through channels. Our method utilizes discrete-state stochastic models that take into account all relevant chemical transitions and can be solved analytically. More specifically, we analyze channels with one and two binding sites employed for separating mixtures of two types of molecules. The effects of the symmetry and the strength of the molecular-pore interactions are examined. It is found that for one-site binding channels, the differences in the strength of interactions for two species drive the separation. At the same time, in more realistic two-site systems, the symmetry of interaction potential becomes also important. The most efficient separation is predicted when the specific binding site is located near the entrance to the nanopore. In addition, the selectivity is higher for large entrance rates into the channel. It is also found that the molecular transport is more selective for repulsive interactions than for attractive interactions. The physical-chemical origin of the observed phenomena is discussed

  6. Theoretical analysis of selectivity mechanisms in molecular transport through channels and nanopores

    Agah, Shaghayegh; Pasquali, Matteo; Kolomeisky, Anatoly B.

    2015-01-01

    Selectivity is one of the most fundamental concepts in natural sciences, and it is also critically important in various technological, industrial, and medical applications. Although there are many experimental methods that allow to separate molecules, frequently they are expensive and not efficient. Recently, a new method of separation of chemical mixtures based on utilization of channels and nanopores has been proposed and successfully tested in several systems. However, mechanisms of selectivity in the molecular transport during the translocation are still not well understood. Here, we develop a simple theoretical approach to explain the origin of selectivity in molecular fluxes through channels. Our method utilizes discrete-state stochastic models that take into account all relevant chemical transitions and can be solved analytically. More specifically, we analyze channels with one and two binding sites employed for separating mixtures of two types of molecules. The effects of the symmetry and the strength of the molecular-pore interactions are examined. It is found that for one-site binding channels, the differences in the strength of interactions for two species drive the separation. At the same time, in more realistic two-site systems, the symmetry of interaction potential becomes also important. The most efficient separation is predicted when the specific binding site is located near the entrance to the nanopore. In addition, the selectivity is higher for large entrance rates into the channel. It is also found that the molecular transport is more selective for repulsive interactions than for attractive interactions. The physical-chemical origin of the observed phenomena is discussed.

  7. Charge carrier transport mechanisms in perovskite CdTiO3 fibers

    Electrical transport properties of electrospun cadmium titanate (CdTiO3) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is Nt = 6.27 × 1017 /cm3. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(EF) = 5.51 × 1021 eV−1 cm−3 at 2 V. Other VRH parameters such as hopping distance (Rhop) and hopping energy (Whop) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO3 fibers efficient material for capacitive energy storage devices

  8. Study on transportation and accumulation mechanisms of cesium in Camellia sinensis by SR-XRF imaging

    After the tragedy in Fukushima, soil and food pollution by radionuclides has become a serious problem. Cs can be uptaken by many plants due to its chemical similarities with K. So, removal of radioactive Cs from the soils can be carried out using the phytoremediation technology. However, the development of phytoremediation techniques require the knowledge on the interactions between the plants and soils. Although the competitive relation between K and Cs to enter the plant is known, few works were dedicated to the visual localization of Cs in the plant and its relation to potassium. In this study, we have used synchrotron radiation X-ray fluorescence (SR-XRF) imaging in order to reveal accumulation of Cs with a cellular spatial resolution. The Cs Lβ intensity measured in the XRF imaging were transformed into the Cs concentration based on the calibration curves prepared using in house standard samples of known Cs concentrations. It is remarkable that after exposure to 10 ppm Cs solution for 4 weeks Camellia sinensis accumulated Cs up to 300 ppm (expressed in dry weight) in the body. XRF imaging of the root show that Cs was located mainly at the epidermis. On the other hand, K was located mainly at endodermis and the cell wall. A correlation coefficient(R) between XRF intensity of K and that of Cs in the root was about R=0.5. This suggest that Cs is hardly absorbed from roots of Camellia sinensis compared with K, due to its large ionic radius. In the case of stem, distribution of Cs was similar to that of K. They were located at the exodermis, epidermis and the cell wall. Their correlation coefficient was about R=0.8. These results suggest that Cs was transported through the same pathway as that of K in the stem. (author)

  9. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees.

    Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460

  10. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2010-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyz...

  11. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  12. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter.

    Jufang Shan

    Full Text Available BACKGROUND: The dopamine transporter (DAT, a member of the neurotransmitter:Na(+ symporter (NSS family, terminates dopaminergic neurotransmission and is a major molecular target for psychostimulants such as cocaine and amphetamine, and for the treatment of attention deficit disorder and depression. The crystal structures of the prokaryotic NSS homolog of DAT, the leucine transporter LeuT, have provided critical structural insights about the occluded and outward-facing conformations visited during the substrate transport, but only limited clues regarding mechanism. To understand the transport mechanism in DAT we have used a homology model based on the LeuT structure in a computational protocol validated previously for LeuT, in which steered molecular dynamics (SMD simulations guide the substrate along a pathway leading from the extracellular end to the intracellular (cytoplasmic end. METHODOLOGY/PRINCIPAL FINDINGS: Key findings are (1 a second substrate binding site in the extracellular vestibule, and (2 models of the conformational states identified as occluded, doubly occupied, and inward-facing. The transition between these states involve a spatially ordered sequence of interactions between the two substrate-binding sites, followed by rearrangements in structural elements located between the primary binding site and the cytoplasmic end. These rearrangements are facilitated by identified conserved hinge regions and a reorganization of interaction networks that had been identified as gates. CONCLUSIONS/SIGNIFICANCE: Computational simulations supported by information available from experiments in DAT and other NSS transporters have produced a detailed mechanistic proposal for the dynamic changes associated with substrate transport in DAT. This allosteric mechanism is triggered by the binding of substrate in the S2 site in the presence of the substrate in the S1 site. Specific structural elements involved in this mechanism, and their roles in the

  13. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO2-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  14. Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings

    Oberste Berghaus, Jörg; Legoux, Jean-Gabriel; Moreau, Christian; Tarasi, Fariba; Chráska, Tomas

    2008-03-01

    Micro-laminates and nanocomposites of Al2O3 and ZrO2 can potentially exhibit higher hardness and fracture toughness and lower thermal conductivity than alumina or zirconia alone. The potential of these improvements for abrasion protection and thermal barrier coatings is generating considerable interest in developing techniques for producing these functional coatings with optimized microstructures. Al2O3-ZrO2 composite coatings were deposited by suspension thermal spraying (APS and HVOF) of submicron feedstock powders. The liquid carrier employed in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to unique and novel fine-scaled microstructures. The suspensions were injected internally using a Mettech Axial III plasma torch and a Sulzer-Metco DJ-2700 HVOF gun. The different spray processes induced a variety of structures ranging from finely segregated ceramic laminates to highly alloyed amorphous composites. Mechanisms leading to these structures are related to the feedstock size and in-flight particle states upon their impact. Mechanical and thermal transport properties of the coatings were compared. Compositionally segregated crystalline coatings, obtained by plasma spraying, showed the highest hardness of up to 1125 VHN3 N, as well as the highest abrasion wear resistance (following ASTM G65). The HVOF coating exhibited the highest erosion wear resistance (following ASTM G75), which was related to the toughening effect of small dispersed zirconia particles in the alumina-zirconia-alloyed matrix. This microstructure also exhibited the lowest thermal diffusivity, which is explained by the amorphous phase content and limited particle bonding, generating local thermal resistances within the structure.

  15. Transport policy

    1980-01-01

    Transport is a fundamental component of all modern economies. Transport Policy presents a wide ranging collection of previously published articles which aim to provide the reader with an understanding of the main elements of transport policy.

  16. Transport properties of melanosomes along microtubules interpreted by a tug-of-war model with loose mechanical coupling.

    Sebastián Bouzat

    Full Text Available In this work, we explored theoretically the transport of organelles driven along microtubules by molecular motors of opposed polarities using a stochastic model that considers a Langevin dynamics for the cargo, independent cargo-motor linkers and stepping motion for the motors. It has been recently proposed that the stiffness of the motor plays an important role when multiple motors collectively transport a cargo. Therefore, we considered in our model the recently reported values for the stiffness of the cargo-motor linker determined in living cells (∼0.01 pN/nm, which is significantly lower than the motor stiffness obtained in in vitro assays and used in previous studies. Our model could reproduce the multimodal velocity distributions and typical trajectory characteristics including the properties of the reversions in the overall direction of motion observed during melanosome transport along microtubules in Xenopus laevis melanophores. Moreover, we explored the contribution of the different motility states of the cargo-motor system to the different modes of the velocity distributions and could identify the microscopic mechanisms of transport leading to trajectories compatible with those observed in living cells. Finally, by changing the attachment and detachment rates, the model could reproduce the different velocity distributions observed during melanosome transport along microtubules in Xenopus laevis melanophores stimulated for aggregation and dispersion. Our analysis suggests that active tug-of-war processes with loose mechanical coupling can account for several aspects of cargo transport along microtubules in living cells.

  17. A molecular mechanism for aberrantCFTR-dependent HCO3– transport in cystic fibrosis

    Ko, Shigeru B. H.; Shcheynikov, Nikolay; Choi, Joo Young; Luo, Xiang; Ishibashi, Kenichi; Thomas, Philip J.; Kim, Joo Young; Kim, Kyung Hwan; Lee, Min Goo; Naruse, Satoru; Muallem, Shmuel

    2002-01-01

    Aberrant HCO3– transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl–-dependent HCO3– transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO3– current by CFTR cannot account for CFTR-activated HCO3– transport and that CFTR does not activate AE1–AE4. In contrast, CFTR markedly activates Cl– and OH–/HCO3– transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporte...

  18. Transport Properties of Graphene and Suspended Graphene with EMC: The Role of Various Scattering Mechanisms

    Özdemir, M. D.; Atasever, Ö. S.; Özdemir, B.; Yarar, Z.; Özdemir, M.

    2016-08-01

    The electronic transport properties of graphene and suspended (intrinsic) graphene sheets are studied using an ensemble Monte Carlo (EMC) technique. The combined scattering mechanisms that are taken into account for both cases are nonpolar optic and acoustic phonons, ionized impurity, interface roughness, and surface polar phonon scatterings. The effect of screening is also considered in the ionized impurity and surface polar phonon scatterings of electrons. A rejection technique is used in EMC simulations to account for the occupancy of the final states. Velocity-field characteristics of graphene and suspended graphene sheets are obtained using various values of acoustic deformation potential constants. The variation of electron mobility of graphene is studied as a function of electron concentration and its variation as a function of temperature are investigated for the case of suspended graphene. For the former case, the mobility increases with electron concentration first and after a certain value of electron concentration it begins to decrease, while for the latter case the mobility decreases almost linearly with temperature. The mobility results from EMC simulations are compatible with the existing experimental studies for the unsuspended graphene case.

  19. X-ray structures and mechanism of the human serotonin transporter.

    Coleman, Jonathan A; Green, Evan M; Gouaux, Eric

    2016-04-21

    The serotonin transporter (SERT) terminates serotonergic signalling through the sodium- and chloride-dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signalling. Here we report X-ray crystallographic structures of human SERT at 3.15 Å resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8 and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and transmembrane helices 1, 6, 10 and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT, and provide blueprints for future drug design. PMID:27049939

  20. Rate and mechanism of facilitated americium(III) transport through a supported liquid membrane containing a bifunctional organophosphorus mobile carrier

    The facilitated transport of Am(III) from aqueous nitrate solutions to formic acid aqueous solutions through a supported liquid membrane (SLM) is described. The supported liquid membrane consists of a solution of a new (carbamoylmethyl)phosphine oxide in diethylbenzene (DEB) absorbed into a 48 μm thick microporous polypropylene film. The transport mechanism consists of a diffusion process through an aqueous diffusion film, a fast interfacial chemical reaction, and diffusion through the membrane itself. Equations describing the rate of transport are derived. They correlate the membrane permeability coefficient to diffusional parameters and to the chemical composition of the system. Different rate-controlling processes are shown to control the membrane permeability when the composition of the system is varied and as long as the transport occurs. The experimental data are quantitatively explained with the derived equations. The diffusion coefficient of the permeating species and the equilibrium constant of the fast interfacial reactions are evaluated. 13 figures, 1 table

  1. Facet-selective charge carrier transport, deactivation mechanism and stabilization of a Cu2O photo-electro-catalyst.

    Li, Yang; Yun, Xiaogang; Chen, Hong; Zhang, Wenqin; Li, Yongdan

    2016-03-14

    A facet-dependent photo-deactivation mechanism of Cu2O was verified and reported, which is caused by the facet-dependent charge carrier transport. During irradiation, the {100} and {110} crystal facets are selectively corroded by the photo-generated holes, while the {111} facets are comparatively stable. PMID:26898270

  2. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. PMID:26107287

  3. Transport and regulation mechanism of the colloidal gold liposomes in the brain microvascular endothelial cells

    WANG Lipeng; CHANG Yanzhong

    2015-01-01

    Objective:Blood-brain barrier is the key barrier of brain in the innate immune. It can prevent the harmful substances from the blood into the brain. In order to keep the brain in a relatively stable environment and maintain the normal function of the nervous system, it can also pump harmful substances or excess substances outside the brain selectively. Among them, brain microvascular endothelial cell tissue is a key part in the blood-brain barrier's function. The number of the patients with central nervous system ( CNS) diseases increased year by year. The therapeutic drug is usually inhibited by the blood-brain barrier and is difficult to work. Therefore, how to modify the drug and to make it easier to cross the blood brain barrier is the key point to cure CNS. At present, more than 95% research focus only on how nano drugs can enter the cell, the way and efficiency to enter the cell and the research of effect of nano drug etc. For the process of drug carrier in endocytosis, intracellular transport and release and regulation of research are rarely reported. Clathrin and P-glycoprotein are related protein in endo-cytosis and exocytosis with nano drug. Clathrin is located on the plasma membrane. It participates in endocytosis of some nutrients, and maybe the entry into the cell of some drugs. P-glycoprotein is located in the membrane of cer-ebral capillary endothelial cells. It can efflux drugs relying on ATP. Although there is a certain understanding of the cell in the inner swallow and efflux. But the process of the liposome drug is not clear. To solve the above prob-lems, using colloidal gold liposome nano materials to trace liposome's transport and regulation mechanism in brain microvascular endothelial cells, and study endocytosis, release, distribution and regulation mechanism of nano lipo-somes in brain microvascular. The solution of this problem can guide to construct reasonable drug carrier, and look forward to clarifing the molecular basis and mechanism of

  4. Evidence for non-diffusive transport as an important mechanism determining the soil CO2 efflux in a temperate grassland

    Roland, Marilyn; Vicca, Sara; Bahn, Michael; Schmitt, Michael; Janssens, Ivan

    2013-04-01

    Research on soil respiration has largely focused on the emission of CO2 from soils and far less on the production and subsequent transport of CO2 from soil to atmosphere. The limited knowledge of CO2 transport through the soil, restricts our understanding of the various abiotic and biotic processes underlying emissions of CO2 from terrestrial ecosystems. Soil CO2 efflux is most often measured using soil chambers, but since the early 2000s, solid-state CO2 sensors that measure soil CO2 concentrations at different depths, are becoming more popular. From these continuous high-frequency measurements of the CO2 gradient, the flux can easily be calculated in a very cost-efficient way with minimal disturbance of the natural conditions. This so-called flux-gradient method is based on Fick's law, assuming diffusion to be the only transport mechanism. To test to what extend diffusion is indeed the governing transport process, we compared the CO2 efflux from chamber measurements with the CO2 efflux calculated from soil CO2 concentration profiles for a grassland site in the Austrian Alps. The four commonly used models for diffusivity that we tested, all underestimated the soil chamber effluxes and their amplitudes. What is more, we observed that transport rates correlated well with irradiation (PAR) and -below a certain soil moisture content- with wind speed. Indeed, correlation coefficients of the fits of observed transport rate versus PAR were consistently positive, and those of observed transport rate versus wind speed were positive on days that were not extremely wet (soil water content below 33%). Also, we found that the coupling of transport rate and PAR became stronger as wind speed increased. Our results suggest that non-diffusive bulk air transport mechanisms, such as advective mass transport and pressure pumping, could considerably contribute to soil CO2 transport at this site. We therefore emphasize the importance of investigating alternative transport processes

  5. Investigating radionuclide bearing suspended sediment transport mechanisms in the Ribble estuary using airborne remote sensing

    BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 1952. In the aquatic environment the radionuclides are adsorbed by sediments and are thus redistributed by sediment transport mechanisms. This sediment is known to accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to discharge isotopically different radionuclides directly to the Ribble estuary. Thus there is a need to understand the sediment dynamics of the Ribble estuary in order to understand the fate of these radionuclides within the Ribble estuary. Estuaries are highly dynamic environments that are difficult to monitor using the conventional sampling techniques. However, remote sensing provides a potentially powerful tool for monitoring the hydrodynamics of the estuarine environment by providing data that are both spatially and temporally representative. This research develops a methodology for mapping suspended sediment concentration (SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that there is a relationship between SSC and 137Cs concentration is proven in-situ (R2=0.94), thus remotely sensed SSC can act as a surrogate for 137Cs concentration. Initial in-situ characterisation of the suspended sediments was investigated to identify spatial and temporal variability in grain size distributions and reflectance characteristics for the Ribble estuary. Laboratory experiments were then performed to clearly define the SSC reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC and to demonstrate the effects on reflectance of the environmental variables of salinity and clay content. Images were corrected for variation in solar elevation and angle to give a ground truth calibration for SSC, with an R2=0.76. The remaining scatter in this relationship was attributed to the differences in spatial and temporal representation between sampling techniques and remote sensing. The second hypothesis

  6. CBM and CO{sub 2}-ECBM related coupled transport- and mechanical properties

    Gensterblum, Y.; Satorius, M.; Krooss, B.M. [RWTH Aachen Univ. (Germany). Energy and Mineral Resources Group (EMR); Busch, A. [Shell Global Solutions International, Rijswijk (Netherlands)

    2013-08-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH{sub 4}, CO{sub 2}) and inert gases (N{sub 2}, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected 'true' permeability coefficients and the Klinkenberg slip factors were derived. The 'true'-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (c{sub f}) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (c{sub f}) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and 'diffusion coefficients' were calculated using several unipore and bidisperse diffusion models

  7. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  8. A Chemical Genetic Screen for Modulators of Exocytic Transport Identifies Inhibitors of a Transport Mechanism Linked to GTR2 Function▿

    Zhang, Lisha; Huang, Min; Harsay, Edina

    2009-01-01

    Membrane and protein traffic to the cell surface is mediated by partially redundant pathways that are difficult to perturb in ways that yield a strong phenotype. Such robustness is expected in a fine-tuned process, regulated by environmental cues, that is required for controlled cell surface growth and cell proliferation. Synthetic genetic interaction screens are especially valuable for investigating complex processes involving partially redundant pathways or mechanisms. In a previous study, ...

  9. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline

    Suresh Kumar Gupta; Vandna Luthra; Ramadhar Singh

    2012-10-01

    A detailed comparative study of electron paramagnetic resonance (EPR) in conjunction with d.c. electrical conductivity has been undertaken to know about the charge transport mechanism in polyaniline (PANI) doped with monovalent and multivalent protonic acids. This work is in continuation of our previous work for further understanding the conduction mechanism in conducting polymers. The results reveal that the polarons and bipolarons are the main charge carriers formed during doping process and these cause increase in electrical conductivity not only by increase in their concentration but also because of their enhanced mobility due to increased inter-chain transport in polyaniline at high doping levels. EPR line asymmetry having Dysonian line shape for highly doped samples shows a marked deviation of amplitudes / ratio from values close to one to much high values as usually observed in metals, thereby support the idea of high conductivity at higher doping levels. The nature of dopant ions and their doping levels control the charge carriers concentration as well as electrical conductivity of polyaniline. The electrical conductivity has also been studied as a function of temperature to know the thermally assisted transport process of these charge carriers at different doping levels which has been found to follow the Mott’s variable range hopping (VRH) conduction model for all the three dopants used. The charge carriers show a change over from 3D VRH to quasi 1D VRH hopping process for multivalent ions at higher doping levels whereas 1D VRH has been followed by monovalent ion for full doping range. These studies collectively give evidence of inter-chain percolation at higher doping levels causing increase in effective mobility of the charge carriers which mainly seems to govern the electrical conduction behaviour in this system.

  10. Cysteine could change the transport mechanism of PVP-coated silver nanoparticles in porous media

    Yang, X.; Lin, S.; Wiesner, M.

    2012-12-01

    Silver nanoparticles (AgNPs) can hardly be removed by wastewater treatment plant and have big potential to enter groundwater, jeopardizing the water quality & aquatic ecosystem. Most AgNPs have surface coatings such as polyvinylpyrrolidone (PVP) which dominate their transport in porous media. Our previous study shows that PVP may promote the deposition of AgNPs on silica surface by a bridging mechanism. This study further explored how cysteine, a natural organic matter type, may influence the role of the PVP coating on AgNP translocation. Dynamic Light Scattering (DLS) measurement (Figure 1A) shows that the PVP coating rendered the AgNP dispersion high stability during the measuring period (3hrs). Addition of 100 ppm cysteine to the dispersion resulted in a rapid decrease in particle size from 100nm to 52nm within one hour, following which no further decline in particle size occurred. Column experiment results (Figure 1B) show that corresponding to the particle size change was a substantial decrease in particle deposition rates: introduction of 100 ppm cysteine into the particle dispersion resulted in a decrease in AgNP attenuation by the porous medium from 67% to 26%. The decline in particle size suggested that cysteine may have displaced the macromolecular PVP from the particle surface. Desorption of PVP resulted in a weakening or vanish of polymer bridging effect which in turn lowered the deposition rates substantially. This study demonstrated an implication of environmental transformation of coated AgNPs to their mobility in saturated sand aquifers. Acknowledgment Xinyao Yang appreciates the Natural Science Foundation of China (Grant No.:41101475) for covering the registration fee and traveling costs.igure 1 Particle size measurement (A) and breakthrough curves (B) of PVP-coated silver nanoparticle in the absence and presence of cysteine: pH=7.0, ionic strength=1mM, flow rate=1ml/min.

  11. Mechanical, sorption and transport experiments on a German high volatile bituminous coal

    Gensterblum, Y.; Krooss, B.M. [RWTH Aachen Univ. (Germany). Inst. of Geology and Geochemistry of Petroleum and Coal; Massarotto, Paul [Queensland Univ., Brisbane, St Lucia, QLD (Australia). School of Engineering

    2013-08-01

    A high volatile bituminous coal (vitrinite reflectance: 0.93%, carbon content: 83%) from the Prosper-Haniel mine, North Rhine-Westphalia has been studied using a comprehensive set of measurements and experimental procedures at RWTH Aachen University and the University of Queensland. Using the True Triaxial Stress Coal Permeameter (TTSCP) (Massarotto 2003) of the University of Queensland, permeability and gas displacement tests were performed on an 80 mm cube of the Prosper-Haniel coal. Extensive data sets were recorded to assess the effects of stress changes on gas transport and the impact of nitrogen, methane and CO{sub 2} sorption on the mechanical properties. We investigate the permeability coefficients for helium, nitrogen, methane and carbon dioxide measured on this sample as a function of net stress. As expected, permeability values decrease with increasing stress. Methane and nitrogen have nearly identical permeability coefficients throughout the entire net stress range, while permeability coefficients measured with helium are higher and those measured with CO{sub 2} significantly lower. During the permeability measurements with CO{sub 2} an anisotropic swelling of the coal cube by about 0.19% to 0.23% was observed. The volumetric effect (swelling) is 100 times slower than gas displacement. Simultaneous mechanical tests indicated a softening of the coal block upon exposure to CO{sub 2}. Thus, a decrease of Young's modulus (YM) of the coal cube during the CO{sub 2} flow test was observed as compared to the methane and nitrogen tests. High-pressure sorption isotherms with CH{sub 4} and CO{sub 2} were determined on different grain-size fractions of the Prosper-Haniel coal at 318K and different moisture contents. Methane sorption capacity decreases by 29% with increasing moisture content. Also, a decrease of sorption rate was observed with increasing moisture content. While sorption rates are generally faster for CO{sub 2} than for CH{sub 4}, the sorption

  12. Comparison of mechanical and manual ventilation during transport of patients to the intensive care unit after cardiac surgery

    Atilla Canbulat

    2012-12-01

    Full Text Available Objectives: We compared effects of mechanical andmanual ventilation during transport to the intensive careunit(ICU in cardiac surgeries.Materials and methods: After ethical approval, 66 patients(ASAgrade II and III, 20-80years were assignedrandomly. Ventilation during transport to ICU was performedmanual (Group EV; n=36 or mechanical ventilation(Group MV; n=30. Measurements were recorded:operation room (A, during transport (T and in ICU (YB.Systolic, diastolic pressures (SAP, DAP, pulmonary arterialpressure (PAP, pulmonary capillary wedge pressure(PCWP, central venous pressure (CVP, heart rate (HR,cardiac output (CO, blood gases (pH, PCO2, PO2, BEand peripheral oxygen saturation (SpO2 were recorded.Stroke volume index (SVI, systemic and pulmonary vascularresistance indices (SVRI, PVRI and mean arterialpressures(MAP were calculated.Results: Patients were similar. Duration of transportwas shorter in Group MV (p< 0.01. The alterations inHR, MAP, DAP, CVP, PAP, PCWP, PVRI, SVRI, SVI, CO,SpO2 were similar, the increase in SAP during T periodwas higher in Group MV (p<0.05. Pulmonary arterial pHin Group MV was lower (p< 0.05. Arterial and pulmonaryarterial pO2, pCO2 decreased in Group MV, there was increasein Group EV during ICU (p< 0.001, p< 0.01, p<0.01, p< 0.05. During T period hypotension and tachycardiain Group EV, and hypertension in Group MV wereobserved.Conclusions: Mechanical ventilation had short transporttime, less alterations in hemodynamic and respiration valuesand less complication rates. We concluded that theuse of mechanical ventilation is a safer method for theintrahospital transport of critical patients. J Clin Exp Invest2012; 3(4: 521-528Key words: Cardiac surgery, patient transport, mechanicalventilator, manual ventilator, hemodynamia

  13. Mechanisms for Two-Step Proton Transfer Reactions in the Outward-Facing Form of MATE Transporter.

    Nishima, Wataru; Mizukami, Wataru; Tanaka, Yoshiki; Ishitani, Ryuichiro; Nureki, Osamu; Sugita, Yuji

    2016-03-29

    Bacterial pathogens or cancer cells can acquire multidrug resistance, which causes serious clinical problems. In cells with multidrug resistance, various drugs or antibiotics are extruded across the cell membrane by multidrug transporters. The multidrug and toxic compound extrusion (MATE) transporter is one of the five families of multidrug transporters. MATE from Pyrococcus furiosus uses H(+) to transport a substrate from the cytoplasm to the outside of a cell. Crystal structures of MATE from P. furiosus provide essential information on the relevant H(+)-binding sites (D41 and D184). Hybrid quantum mechanical/molecular mechanical simulations and continuum electrostatic calculations on the crystal structures predict that D41 is protonated in one structure (Straight) and, both D41 and D184 protonated in another (Bent). All-atom molecular dynamics simulations suggest a dynamic equilibrium between the protonation states of the two aspartic acids and that the protonation state affects hydration in the substrate binding cavity and lipid intrusion in the cleft between the N- and C-lobes. This hypothesis is examined in more detail by quantum mechanical/molecular mechanical calculations on snapshots taken from the molecular dynamics trajectories. We find the possibility of two proton transfer (PT) reactions in Straight: the 1st PT takes place between side-chains D41 and D184 through a transient formation of low-barrier hydrogen bonds and the 2nd through another H(+) from the headgroup of a lipid that intrudes into the cleft resulting in a doubly protonated (both D41 and D184) state. The 1st PT affects the local hydrogen bond network and hydration in the N-lobe cavity, which would impinge on the substrate-binding affinity. The 2nd PT would drive the conformational change from Straight to Bent. This model may be applicable to several prokaryotic H(+)-coupled MATE multidrug transporters with the relevant aspartic acids. PMID:27028644

  14. A multi-scale approach of mechanical and transport properties of cementitious materials under rises of temperature

    The modern industrial activities (storage of nuclear waste, geothermal wells, nuclear power plants,...) can submit cementitious materials to some extreme conditions, for example at temperatures above 200 C. This level of temperature will induce phenomena of dehydration in the cement paste, particularly impacting the CSH hydrates which led to the mechanical cohesion. The effects of these temperatures on the mechanical and transport properties have been the subject of this thesis.To understand these effects, we need to take into account the heterogeneous, porous, multi-scale aspects of these materials. To do this, micro-mechanics and homogenization tools based on the Eshelby problem's solution were used. Moreover, to support this multi-scale modeling, mechanical testing based on the theory of porous media were conducted. The measurements of modulus compressibility, permeability and porosity under confining pressure were used to investigate the mechanisms of degradation of these materials during thermal loads up to 400 C. (author)

  15. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  16. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter

    Weyand, Simone; Shimamura, Tatsuro; Yajima, Shunsuke;

    2008-01-01

    the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the...... transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and...... alternating access model for membrane transport....

  17. How to distinguish between the vacuum cleaner and flippase mechanisms of the LmrA multi-drug transporter in Lactococcus lactis

    Hofmeyr, JHS; Rohwer, JM; Snoep, JL; Westerhoff, HV; Konings, WN

    2002-01-01

    A numerical model of the LmrA multi-drug transport system of Lactococcus lactis is used to explore the possibility of distinguishing experimentally between two putative transport mechanisms, i.e., the vacuum-cleaner and the flippase mechanisms. This comparative model also serves as an example of num

  18. Description of the transport mechanisms and pathways in the far field of a KBS-3 type repository

    The main purpose of this document is to serve as a reference document for the far field radionuclide transport description within SKB 91. A conceptual description of far field transport in crystalline rock is given together with a discussion of the application of the stream tube concept. In this concept the transport in a complex tree-dimensional flow field is divided into a number of imaginary tubes which are modelled independently. The stream tube concept is used as the basis for the radionuclide calculations in SKB 91. Different mathematical models for calculating the transport of radionuclides in fractured rock are compared: advection dispersion models, channeling models and network models. In the SKB 91 project a dual-porosity continuum model based on the one dimensional advection-dispersion equation taking into account matrix diffusion, sorption in the rock matrix and radioactive chain decay. Furthermore, the data needed for the transport models is discussed and recommended ranges and central values are given. (42 refs.) (au)

  19. Mechanisms affecting the transport and retention of bacteria, bacteriophage and microspheres in laboratory-scale saturated fractures

    Seggewiss, G.; Dickson, S. E.

    2013-12-01

    Groundwater is becoming an increasingly important water source due to the ever-increasing demands from agricultural, residential and industrial consumers. In search of more secure sources, wells are routinely finished over large vertical depths in bedrock aquifers, creating new hydraulic pathways and thus increasing the risk of cross contamination. Moreover, hydraulic pathways are also being altered and created by increasing water withdrawal rates from these wells. Currently, it is not well understood how biological contaminants are transported through, and retained in, fractured media thereby making risk assessment and land use decisions difficult. Colloid transport within fractured rock is a complex process with several mechanisms affecting transport and retention, including: advection, hydrodynamic dispersion, diffusion, size exclusion, adsorption, and decay. Several researchers have investigated the transport of bacteria, bacteriophage, and microspheres (both carboxylated and plain) to evaluate the effects of surface properties and size on transport and retention. These studies have suggested that transport is highly dependent on the physico-chemical properties of the particle, the fracture, and the carrying fluid. However, these studies contain little detail regarding the specific mechanisms responsible for transport beyond speculating about their existence. Further, little work has been done to compare the transport of these particulate materials through the same fracture, allowing for direct observations based on particulate size and surface properties. This research examines the similarities and differences in transport and retention between four different particles through two different laboratory-scale, saturated fractures. This work is designed to explore the effects of particle size, surface properties, ionic strength of the carrying solution, and aperture field characteristics on transport and retention in single, saturated fractures. The particulates

  20. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  1. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  2. Carrier Transport Mechanism in Single Crystalline Organic Semiconductor Thin Film Elucidated by Visualized Carrier Motion.

    Matsubara, Kohei; Abe, Kentaro; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    Time-resolved microscopic second harmonic generation (TRM-SHG) measurement was conducted to evaluate temperature dependence of the anisotropic carrier transport process in 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene single crystalline domains for two orthogonal directions. Enhancement of the electric field induced SHG (EFI-SHG) signal at the electrode edge at low temperature suggests the presence of potential drop in the injection process. We directly evaluated temperature dependence of the carrier mobility by taking into account the potential drop, and concluded that the Marcus theory is appropriate to interpret the carrier transport in anisotropic TIPS pentacene thin film. TRM-SHG method is a facile and effective way to directly visualize transport process in anisotropic materials and to evaluate injection and transport processes simultaneously. PMID:27451638

  3. Mechanism for Cocaine Blocking the Transport of Dopamine: Insights from Molecular Modeling and Dynamics Simulations

    Huang, Xiaoqin; Gu, Howard H.; Zhan, Chang-Guo

    2009-01-01

    Molecular modeling and dynamics simulations have been performed to study how cocaine inhibits dopamine transporter (DAT) for the transport of dopamine. The computationally determined DAT-ligand binding mode is totally different from previously proposed overlap binding mode in which cocaine- and dopamine-binding sites are the same (Beuming, T. et al. Nature Neurosci. 2008, 11, 780–789). The new cocaine-binding site does not overlap with, but close to, the dopamine-binding site. Analysis of all...

  4. Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation

    Haguenauer-Tsapis, Rosine; André, Bruno

    2004-01-01

    Of the 125 plasma membrane transporters thus far identified in the yeast S. cerevisiae, a growing number is reported to be subject to tight control at membrane trafficking level, in addition to control at transcriptional level. Typical physiological conditions inducing these controls include changes of substrate concentration and availability of alternative nutrients. These changes of conditions often provoke the downregulation of specific transporters eventually accompanied by upregulation o...

  5. Transport and Removal Mechanisms of Trace Organic Pollutants by Nanofiltration and Reverse Osmosis Membranes

    Wang, Jinwen

    2014-01-01

    The objective and focus of this study is to fully understand trace organic pollutant transport through NF/RO membranes. An extension of the classical solution-diffusion model had been developed that relates transport through NF/RO membranes directly to membrane structure descriptors (i.e., effective barrier layer pore size, porosity and thickness, etc.). In general, model predictions agreed well with experimental data suggesting the model captures the phenomenological behavior of commercial N...

  6. Mechanism of active transport: Free energy dissipation and free energy transduction

    Tanford, C

    1983-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  7. Time to Stop Holding the Elevator: A New Piece of the Transport Protein Mechanism Puzzle.

    Vastermark, Ake; Saier, Milton H

    2016-06-01

    In this issue of Structure, McCoy et al. (2016) describe the 2.55-Å X-ray structure of the outward-facing occluded conformation of the Bacillus cereus maltose transporter MalT. This structure represents the penultimate piece needed to complete the picture of the transport cycle of the glucose superfamily of membrane-spanning EIIC components. PMID:27276425

  8. Mechanism of ABC transporters: A molecular dynamics simulation of a well characterized nucleotide-binding subunit

    Peter M Jones; Anthony M George

    2002-01-01

    ATP-binding cassette (ABC) transporters are membrane-bound molecular pumps that form one of the largest of all protein families. Several of them are central to phenomena of biomedical interest, including cystic fibrosis and resistance to chemotherapeutic drugs. ABC transporters share a common architecture comprising two hydrophilic nucleotide-binding domains (NBDs) and two hydrophobic transmembrane domains (TMDs) that form the substrate pathway across the membrane. The conformational changes ...

  9. The theoretical basis of state control mechanisms by national oil and gas transport systems

    Ірина Миколаївна Ісаєва

    2014-01-01

    The information materials and state control experience in oil and gas pipeline transport systems were analyzed in the context of globalization and European integration. The theoretical basis for organization the effective functioning of national oil and gas transport systems were developed. Elementary business process was interpreted as a typical section of cross-functional coherence. Dimensional model the pareto-optimal point searching of the economically efficient market interaction between...

  10. Mechanisms of equinatoxin II-induced transport through the membrane of a giant phospholipid vesicle.

    Mally, M; Majhenc, J; Svetina, S; Zeks, B.

    2002-01-01

    Protein equinatoxin II from sea anemone Actinia equina L. was used to form pores in phospholipid membranes. We studied the effect of these pores on the net transmembrane transport of sucrose and glucose by observing single giant (cell-size) vesicles under the phase contrast microscope. Sugar composition in the vesicle was determined by measuring the width of the halo, which appears around the vesicle in the phase contrast image. The transport of sugars was induced when a vesicle, filled with ...

  11. Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals

    Pszenny, Alexander A. P.; Fischer, Emily V.; Russo, Rachel S.; Sive, Barkley C.; Varner, Ruth K.

    2007-05-01

    Average hydroxyl radical (OH) to chlorine atom (Cl·) ratios ranging from 45 to 119 were determined from variability-lifetime relationships for selected nonmethane hydrocarbons (NMHC) in surface air from six different transport sectors arriving at Appledore Island, Maine, during July 2004. Multiplying these ratios by an assumed average OH concentration of 2.5 × 106 cm-3 yielded estimates of Cl· concentrations of 2.2 to 5.6 × 104 cm-3. Summed reaction rates of methane and more than 30 abundant NMHCs with OH and Cl· suggest that Cl· reactions increased the kinetic reactivity of hydrocarbons by 16% to 30% over that due to OH alone in air associated with the various transport sectors. Isoprene and other abundant biogenic alkenes were the most important hydrocarbon contributors after methane to overall kinetic reactivity.

  12. Impact of microstructure on oxygen semi-permeation performance of perovskite membranes: Understanding of oxygen transport mechanisms

    Reichmann, M.; Geffroy, P.-M.; Richet, N.; Chartier, T.

    2016-08-01

    The influence of dense membrane microstructures on semi permeation performance is still not well understood, and no consensus or explanation can be established from the literature. The apparent discrepancy is likely due to a poor understanding of the oxygen transport mechanisms through the membrane and, specifically, to the impact of the microstructure on the oxygen surface exchange kinetics. The aim of this paper is to provide a better understanding of the impact of microstructures on oxygen transport mechanisms through the membrane. Two reference materials, Ba0.5Sr0.5Fe0.7Co0.3O3 (BSFCo) and La0.5Sr0.5Fe0.7Ga0.3O3 (LSFG) perovskites, are considered to explain the discrepancies observed in the literature.

  13. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms.

    An, Lihong; Li, Guozhen; Si, Jiliang; Zhang, Cuili; Han, Xiaoying; Wang, Shuo; Jiang, Lulu; Xie, Keqin

    2016-05-01

    Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport. PMID:26721510

  14. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees

    Guseman, Alex J.; Kaliah Miller; Grace Kunkle; Dively, Galen P.; Jeffrey S Pettis; Evans, Jay D.; Dennis vanEngelsdorp; Hawthorne, David J.

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporte...

  15. Triboelectric-Potential-Regulated Charge Transport Through p-n Junctions for Area-Scalable Conversion of Mechanical Energy.

    Meng, Xian Song; Wang, Zhong Lin; Zhu, Guang

    2016-01-27

    Regulation of charge-transport direction is realized through the coupling of triboelectrification, electrostatic induction, and semiconducting properties for area-scalable conversion of mechanical energy. The output current from each unit triboelectric generator can always constructively add up due to the unidirectional flow of electrons. This work proposes a practical and general route to area-scalable applications of the triboelectric generator and other energy-harvesting techniques. PMID:26611707

  16. 影响他汀类药物疗效的主要转运体的遗传药理学因素研究进展%The relationship between main transporter pharmacogenetics and statin efficacy

    王丽萍; 宋金春

    2013-01-01

    有机阴离子转运多肽1B1 (Organic aniontransporting polypeptide 1B1,OATP1B1)和乳腺癌耐药蛋白(Breast cancer-resistance protein,BCRP/ABCG2)是人体内重要的转运物质,参与很多物质(包括他汀类药物)的吸收、分布、排泄等环节.一直以来研究者比较关注代谢酶等对药物药代动力学、药效学的影响,而对转运体影响研究落后于代谢酶.近年来,随着科学的不断进步,人们开始关注转运体对他汀类药物毒性的研究,现就影响他汀类药物疗效的主要转运体的遗传药理学因素研究进展进行阐述.%Organic anion-transporting poly-peptide 1B1 and breast cancer-resistance protein are the important transporters in human, participating in absorption, distribution and excretion of many substances including statins. However, researchers had paid more attention on the metabolic enzymes in the pharmacokinetics and phar-macodynamics, the studies on transporters is lagged behind of metabolic enzymes. With the development of science, we got to focus on the role of transporters on the statin toxicity recently. This paper is to review the relationship between the main transporter pharmacogenetics and statin efficacy.

  17. Main regularities in variations of mechanical properties and microstructure of fuel element assembly can material (steel EhP-450) irradiated in BN-600 and BN-350 reactors

    The complex of mechanical properties of steel EhP-450 fuel assembly cans irradiated in fast reactors was under study. The steel is shown to possess a high resistance to swelling as well as acceptable values of mechanical properties under tension and impact bending. Based on the results obtained a conclusion is made that in a low-temperature zone of BN-600 reactor fuel assembly cans at 15% burnup the most essential change in mechanical properties should be expected in the vicinity of a lower reactor core boundary at damaging doses of 20-40 dpa

  18. Multi-scales modeling of reactive transport mechanisms. Impact on petrophysical properties during CO2 storage

    The geo-sequestration of carbon dioxide (CO2) is an attractive option to reduce the emission of greenhouse gases. Within carbonate reservoirs, acidification of brine in place can occur during CO2 injection. This acidification leads to mineral dissolution which can modify the transport properties of a solute in porous media. The aim of this study is to quantify the impact of reactive transport on a solute distribution and on the structural modification induced by the reaction from the pore to the reservoir scale. This study is focused on reactive transport problem in the case of single phase flow in the limit of long time. To do so, we used a multi-scale up-scaling method that takes into account (i) the local scale, where flow, reaction and transport are known; (ii) the pore scale, where the reactive transport is addressed by using averaged formulation of the local equations; (iii) the Darcy scale (also called core scale), where the structure of the rock is taken into account by using a three-dimensions network of pore-bodies connected by pore-throats; and (iv) the reservoir scale, where physical phenomenon, within each cell of the reservoir model, are taken into account by introducing macroscopic coefficients deduced from the study of these phenomenon at the Darcy scale, such as the permeability, the apparent reaction rate, the solute apparent velocity and dispersion. (author)

  19. Structure and mechanism of Zn2+-transporting P-type ATPases

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    , respectively. The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P...... extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase4, 5 (SERCA) and Na+, K+-ATPase6. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.......Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (Znt...

  20. Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing Nafion® and sulfonated Radel membranes

    Highlights: • Species transport mechanisms are investigated in Nafion® and s-Radel for VRFBs. • Unlike diffusion in Nafion®, crossover in s-Radel is dominated by convection. • In particular, electro-osmotic convection is the dominant mode in s-Radel. • Change in direction of convection causes a lower crossover in s-Radel. • Hydraulic and electrokinetic permeability are as important as vanadium permeability. -- Abstract: In this study, a 2-D, transient vanadium redox flow battery (VRFB) model was used to investigate and compare the ion transport mechanisms responsible for vanadium crossover in Nafion® 117 and sulfonated Radel (s-Radel) membranes. Specifically, the model was used to distinguish the relative contribution of diffusion, migration, osmotic and electro-osmotic convection to the net vanadium crossover in Nafion® and s-Radel. Model simulations indicate that diffusion is the dominant mode of vanadium transport in Nafion®, whereas convection dominates the vanadium transport through s-Radel due to the lower vanadium permeability, and thus diffusivity of s-Radel. Among the convective transport modes, electro-osmotic convection (i.e., electro-osmotic drag) is found to govern the species crossover in s-Radel due to its higher fixed acid concentration and corresponding free ions in the membrane. Simulations also show that vanadium crossover in s-Radel changes direction during charge and discharge due to the change in the direction of electro-osmotic convection. This reversal in the direction of crossover during charge and discharge is found to result in significantly lower “net” crossover for s-Radel when compared to Nafion®. Comparison of these two membranes also provides guidance for minimizing crossover in VRFB systems and underscores the importance of measuring the hydraulic and the electro-kinetic permeability of a membrane in addition to vanadium diffusion characteristics, when evaluating new membranes for VRFB applications

  1. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  2. Long-range pollution transport: Trans-Atlantic mechanisms and Lagrangian modeling methods

    Owen, Robert Christopher

    Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB

  3. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport

    The coupling of optical excitation and electron transport through a sodium atom in a plasmonic dimer junction is investigated using time-dependent density functional theory. The optical absorption and dynamic conductance is determined as a function of gap size. Surface plasmons are found to couple to atomic-scale transport through several different channels including dipolar, multipolar, and charge transfer plasmon modes. These findings provide insight into subnanoscale couplings of plasmons and atoms, a subject of general interest in plasmonics and molecular electronics.

  4. The theoretical basis of state control mechanisms by national oil and gas transport systems

    Ірина Миколаївна Ісаєва

    2014-12-01

    Full Text Available The information materials and state control experience in oil and gas pipeline transport systems were analyzed in the context of globalization and European integration. The theoretical basis for organization the effective functioning of national oil and gas transport systems were developed. Elementary business process was interpreted as a typical section of cross-functional coherence. Dimensional model the pareto-optimal point searching of the economically efficient market interaction between participants of the business process was constructed. The scheme of multilateral international private partnership was developed.

  5. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Morrison, Glenn C.

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  6. ACIDIFICATION TRENDS AND THE EVOLUTION OF NEUTRALIZATION MECHANISMS THROUGH TIME AT THE BEAR BROOK WATERSHED IN MAINE (BBWM), U.S.A.

    The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987-1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been...

  7. Charge transport through DNA/DNA duplexes and DNA/RNA hybrids: complex mechanism study

    Kratochvílová, Irena; Vala, M.; Weiter, M.; Špérová, M.; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Roč. 20, č. 1 (2013), s. 9-9. ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] Institutional support: RVO:61388963 ; RVO:68378271 ; RVO:86652036 Keywords : charge transport * fluorescence spectroscopy * DFT Subject RIV: CF - Physical ; Theoretical Chemistry

  8. MECHANISM AND ENERGETICS OF A CITRATE-TRANSPORT SYSTEM OF KLEBSIELLA-PNEUMONIAE

    VANDERREST, ME; ABEE, T; MOLENAAR, D; KONINGS, WN

    1991-01-01

    The citrate-transport determinant of plasmid pES1 from Klebsiella pneumoniae [Schwarz, E. & Oesterhelt, D. (1985) EMBO J. 4, 1599 - 1603] has been subcloned in Escherichia coli DH1. Uptake of citrate in E. coli membrane vesicles via this uptake system is an electrogenic process, although the pH grad

  9. Transport Mechanism of Propan-1-ol and Toluene through Polyethylene Membrane during Pervaporation and Vapor Permeation

    Fialová, Kateřina; Petričkovič, Roman; Uchytil, Petr

    Hamburg: TUHHTechnologie, 2004 - (Hapke, J.; Na Ranong, C.; Paul, D.). s. 643 ISBN 3-930400-65-0. [Euromembrane 2004. 28.09.2004-01.10.2004, Hamburg] R&D Projects: GA ČR GD203/03/H140 Institutional research plan: CEZ:AV0Z4072921 Keywords : transport * pervaporation * vapor permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  10. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    Jensen, Thomas Elbenhardt; Sylow, Lykke; Rose, Adam John; Madsen, Agnete Louise Bjerregaard; Angin, Yeliz; Maarbjerg, Stine J; Richter, Erik

    2014-01-01

    signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca(2+) release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress......-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport...

  11. Assessing the gas transport mechanisms in the Swiss L/ILW concept using numerical modeling and supporting experimental work

    In low/intermediate-level waste (L/ILW) repositories, anaerobic corrosion of metals and degradation of organic materials produce hydrogen, methane, and carbon dioxide. Gas accumulation and gas transport in a L/ILW repository is an important component in the safety assessment of proposed deep repositories in low-permeability formations. The dominant gas transport mechanisms are dependent on the gas overpressures as with increasing overpressure the gas transport capacity of the system increases. The dominant gas transport mechanisms occurring with increasing gas pressure within the anticipated pressure ranges are: diffusion of gas dissolved in pore water (1), two phase flow in the host rock and the excavation damaged zone (EDZ) whereby no deformation of the pore space occurs (2), gas migration within parts of the repository (if repository materials are appropriately chosen) (3) and pathway dilation (4). Under no circumstances the gas is expected to induce permanent fractures in the host rock. This paper focuses on the gas migration in parts of the repository whereby materials are chosen aimed at increasing the gas transport capacity of the backfilled underground structures without compromising the radionuclide retention capacity of the engineered barrier system (EBS). These materials with enhanced gas permeability and low water permeability can supplement the gas flow that is expected to occur through the EDZ and the host rock. The impact of the use of adapted backfill and sealing materials on the gas pressure build-up and the major gas paths were assessed using numerical two-phase flow models on the repository scale. Furthermore, both the gas and water fluxes as a function of time and gas generation rate can be evaluated by varying the physical properties of the materials and hence their transport capacity. Results showed that by introducing seals with higher gas permeability, the modelled gas flow is largely limited to the access tunnels and the excavation

  12. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump.

    Puts, Catheleyne F; Holthuis, Joost C M

    2009-07-01

    Members of the P(4) subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanism that appears to be conserved throughout the family. A challenging problem is to understand how this mechanism is adapted in P(4) ATPases to flip phospholipids. P(4) ATPases form oligomeric complexes with members of the CDC50 protein family. While formation of these complexes is required for P(4) ATPase export from the endoplasmic reticulum, little is known about the functional role of the CDC50 subunits. The Na(+)/K(+)-ATPase and closely-related H(+)/K(+)-ATPase are the only other P-type pumps that are oligomeric, comprising mandatory beta-subunits that are strikingly reminiscent of CDC50 proteins. Besides serving a role in the functional maturation of the catalytic alpha-subunit, the beta-subunit also contributes specifically to intrinsic transport properties of the Na(+)/K(+) pump. As beta-subunits and CDC50 proteins likely adopted similar structures to accomplish analogous tasks, current knowledge of the Na(+)/K(+)-ATPase provides a useful guide for understanding the inner workings of the P(4) ATPase class of lipid pumps. PMID:19233312

  13. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  14. On the mechanism of seasonal and solar cycle NmF2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observations

    Mikhailov, A. V.; Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow Region, Russia; Perrone, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia

    2011-01-01

    Seasonal (winter/summer) and solar cycle NmF2 variations as well as summer saturation effect in NmF2 have been analyzed using Millstone Hill incoherent scatter radar (ISR) daytime observations. A self‐consistent approach to the Ne(h) modeling has been applied to extract from ISR observations a consistent set of main aeronomic parameters and to estimate their quantitative contribution to the observed NmF2 variations. The retrieved aeronomic parameters are independent of uncertai...

  15. An Human Reliability Analysis to Identify Human Error Mechanisms for Reducing the Risks Associated with Human Errors in a Main Control Room of the SMART

    The research results are summarized as followed: (1) The task analysis performed on the EOGs of the SMART MMIS identified seven different human error mechanisms: Perception Error, Decision Error, Control-Identification Error, Control-Selection Error, Control-Execution Error, Communication Error, and Extraneous Error. The human error mechanisms includes 48 different human error types. 2) The design requirements were proposed to prevent 48 different possible human errors while running the HSI of SMART. 3) Sixteen different human errors were found for the SC designed by KAERI. Fifty six PSFs were also identified influencing the initiation of a human error mechanism. 4) Human factors design requirements were developed to hinder the human error mechanisms. CHED in KHU proposed a design alternative of the SC which took into account the human factors design requirements previously identified. 5) An human error quantification technique was applied to compare the CHED design with that the KAERI's in terms of the probabilities of the human errors caused by each design. The comparison showed that the CHD design was more effective than the KAERI's to reduce the human error probability from 0.0108 to 0.00004. It meant that 96.3% of the human error probability in the KAERI's was prevented by introducing the human factors design recommendations on the SC design

  16. The Bubble Transport Mechanism: Indications for a bubble-mediated transfer of microorganisms from the sediment into the water column

    Schmale, Oliver; Stolle, Christian; Schneider von Deimling, Jens; Leifer, Ira; Kießlich, Katrin; Krause, Stefan; Frahm, Andreas; Treude, Tina

    2015-04-01

    Gas releasing seep areas are known to impact the methane biogeochemistry in the surrounding sediment and water column. Due to microbial processes most of the methane is oxidized under anaerobic and aerobic conditions before the greenhouse gas can escape into the atmosphere. However, methane gas bubbles can largely bypass this microbial filter mechanism, enabling highly efficient transport of methane from the sediment towards the sea surface. Studies in the water column surrounding hydrocarbon seeps indicated an elevated abundance of methanotrophic microorganism in the near field of gas bubble plumes. The enhanced methane concentration in the seep-affected water column stimulates the activity of methane oxidizers and leads to a rapid rise in the abundance of methane-oxidizing microorganisms in the aging plume water. In our study we hypothesized that a bubble-mediated transport mechanisms between the benthic and pelagic habitats represents an exchange process, which transfers methanotrophic microorganisms from the sediment into the water column, a process we termed the "Bubble Transport Mechanism". This mechanism could eventually influence the pelagic methanotrophic community, thereby indirectly providing feedback mechanisms for dissolved methane concentrations in the water column and thus impacting the sea/atmosphere methane flux. To test our hypothesis, field studies were conducted at the "Rostocker Seep" site (Coal Oil Point seep area, California, USA). Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was a newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the

  17. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain.

    Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S

    2016-01-01

    The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes. PMID:26198375

  18. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O52–. Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O2– exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

  19. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-08-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  20. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites.

    Du, Ximing; Brown, Andrew J; Yang, Hongyuan

    2015-08-01

    Cholesterol is an essential membrane constituent, and also plays a key role in cell signalling. Within a cell, how cholesterol is transported and how its heterogeneous distribution is maintained are poorly understood. Recent advances have identified novel pathways and regulators of cholesterol trafficking. Sterol transfer by lipid-binding proteins, such as OSBP (oxysterol-binding protein), coupled with phosphatidylinositol 4-phosphate exchange at membrane contact sites (MCSs) has emerged as a new theme of cholesterol transport between organellar membranes. Moreover, a previously unappreciated role of peroxisomes in cholesterol trafficking has been revealed recently. These discoveries highlight the crucial role of MCSs, or junctions, in facilitating lipid movement, and provide mechanistic insights into how cholesterol is sorted in cells. PMID:25932595

  1. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  2. Towards the Restructuring and Co-ordination Mechanisms for the Architecture of Chinese Transport Logistics

    Yang, Jiaqi

    2009-01-01

    textabstractWith China’s emergence as a global manufacturing centre, reshaping the country’s logistics industry is assuming a global dimension too. The Chinese transport sector, despite its tremendous potential in facilitating the economic development of the country, is plagued with problems of insufficient infrastructure; overlapping regulatory authority; operational inefficiencies and a lack of logistics culture. The thesis shows that China urgently needs to restructure the architecture of ...

  3. Direct Measurement of Electrical Transport Through G-Quadruplex DNA with Mechanically Controllable Break Junction Electrodes

    Liu, Shou-Peng; Weisbrod, Samuel H.; Tang, Zhuo; Marx, Andreas; Scheer, Elke; Erbe, Artur

    2010-01-01

    The need for miniaturization of devices for future nanoelectronic applications has led to the search for new constituents in molecular electronics. DNA is particularly interesting for applications in nanoelectronics circuits owing to its inherent properties, such as the predictable size and selfassembly of the stacked nucleobase pairs. In recent years, charge transport in double-stranded DNA (dsDNA) has attracted considerable attention because of its potential use in building blocks for futur...

  4. Description of Transport Mechanism in Polymeric Membrane via Sorption in Steady State

    Fialová, Kateřina

    Geesthacht : GKSS Research Centre, 2004 - (Castano, M.; Schipolowski, T.; Siegert, M.), s. 82-83 [Network Young Membrains 6th Meeting. Hamburg (DE), 22.09.2004-24.09.2004] R&D Projects: GA ČR GD203/03/H140; GA AV ČR IAA4072402 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapor permeation * pervaporation * membrane transport Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function

    Raimunda, Daniel; González-Guerrero, Manuel; Leeber, Blaise W.; Argüello, José M.

    2011-01-01

    Cu+-ATPases play a key role in bacterial Cu+ homeostasis by participating in Cu+ detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P1B-1 type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combi...

  6. Transport Mechanism in Polyethylene Membrane during Vapor Permeation of Propan-1-ol and Toluene

    Fialová, Kateřina; Petričkovič, Roman; Uchytil, Petr

    Sofia: University of Chemical Technology and Metallurgy, 2005 - (Mehmetli, E.; Kemperman, A.; Kozhukharov, V.), s. 45-50 ISBN 954-8954-55-9. [Application of Nanotechnologies for Separation and Recovery of Volatile Organic Compounds from Waste Air Streams. Istanbul (TR), 30.05.2005-01.06.2005] R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapor permeation * sorption * transport model Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  7. Electron transport mechanisms in individual cobalt-doped ZnO nanorods

    Ko, T. Y.; Tsai, M.-H.; Lee, C.-S.; Sun, K. W., E-mail: kwsun@mail.nctu.edu.tw [National Chiao Tung University, Department of Applied Chemistry, Taiwan (China)

    2012-11-15

    This study examined carrier transport in single cobalt-doped zinc oxide (Co:ZnO) nanorods in temperatures ranging from 80 to 405 K. Measurements were taken on single nanorods deposited on a Si template, where two- and four-point metallic contacts were previously made using e-beam lithography, dielectrophoresis, and focused ion beam. In both two- and four-point probe measurements, the current-voltage curves were clearly linear and symmetrical with respect to both axes. The electrical measurements were carried out according to three different measuring methods to accurately determine the resistivity of the single Co:ZnO nanorods. The Co-doped nanorods exhibited ferromagnetic behavior at room temperature. The remanence permanent magnet of the nanorods increased with increasing Co concentration, however, this was accompanied by the decrease in electrical resistivity. The transport properties were dominated by the thermal activation of electrons from the Fermi level to the conduction band for a temperature above 140-160 K, and to the impurity band at a lower temperature. The electronic transport of the nanorods was influenced by the surface states when exposed in the air.

  8. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B.

    Slim Azouzi

    Full Text Available Urea transporter B (UT-B is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC, while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1 or UT-B. We found that UT-B's osmotic water unit permeability (pfunit is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water-protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family.

  9. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells.

    Kono, Yusuke; Iwasaki, Ayu; Matsuoka, Kenta; Fujita, Takuya

    2016-01-01

    To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro. PMID:27476939

  10. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-01

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications. PMID:27049403

  11. Unveiling the Mechanism of Arginine Transport through AdiC with Molecular Dynamics Simulations: The Guiding Role of Aromatic Residues

    Krammer, Eva-Maria; Ghaddar, Kassem; André, Bruno

    2016-01-01

    Commensal and pathogenic enteric bacteria have developed several systems to adapt to proton leakage into the cytoplasm resulting from extreme acidic conditions. One such system involves arginine uptake followed by export of the decarboxylated product agmatine, carried out by the arginine/agmatine antiporter (AdiC), which thus works as a virtual proton pump. Here, using classical and targeted molecular dynamics, we investigated at the atomic level the mechanism of arginine transport through AdiC of E. coli. Overall, our MD simulation data clearly demonstrate that global rearrangements of several transmembrane segments are necessary but not sufficient for achieving transitions between structural states along the arginine translocation pathway. In particular, local structural changes, namely rotameric conversions of two aromatic residues, are needed to regulate access to both the outward- and inward-facing states. Our simulations have also enabled identification of a few residues, overwhelmingly aromatic, which are essential to guiding arginine in the course of its translocation. Most of them belong to gating elements whose coordinated motions contribute to the alternating access mechanism. Their conservation in all known E. coli acid resistance antiporters suggests that the transport mechanisms of these systems share common features. Last but not least, knowledge of the functional properties of AdiC can advance our understanding of the members of the amino acid-carbocation-polyamine superfamily, notably in eukaryotic cells. PMID:27482712

  12. The influence of particle shape on structure, mechanics, and transport in granular materials

    Smith, Kyle C.

    The development of materials with tailored transport properties is essential to energy conversion and storage applications. Utilization of heterogeneous composite materials composed of discrete particles (i.e., granular materials) represents a promising approach to sustainable, scalable materials production. The so-called jamming point, which represents the transition between fluid-like and solid-like regimes of granular materials, has been the subject of recent fundamental studies. Prior studies have incorporated highly simplified grain shapes that do not reflect the diversity commonly observed in advanced composite materials (e.g., nanomaterials). In the present work, the coupling of heat and charge transport to the level of order in jammed microstructures composed of faceted 3D grains is explored. The systems investigated include lithium ion battery cathodes composed of LiFePO4 nanoparticles, solid state H2 storage in packed beds composed of metal hydride particles, and the Platonic solids. Empirical and theoretical representations of particle shape are determined with single crystal growth models, statistical geometric models, and experimental measurements. An energy-based structural optimization method for the jamming of such arbitrary polyhedral grains is developed to model the mesoscopic structure of heterogeneous materials. Diffusion through the resulting microstructures is simulated with the finite volume method. In LiFePO4 systems a strong dependence of jamming on particle shapes is observed, in which columnar structures aligned with the [010] direction inhibit diffusion along [010] in anisotropic LiFePO4. Transport limitations are induced by [010] columnar order and lead to catastrophic performance degradation in anisotropic LiFePO4 cathodes. Further, judicious mixing of nanoplatelets with additive nanoparticles can frustrate columnar ordering and thereby enhance the rate capability of LiFePO4 electrodes by nearly an order of magnitude. In contrast

  13. Seasonal transportation and deposition of the suspended sediments in the Bohai Sea and Yellow Sea and the related mechanisms

    Qiao, Lulu; Zhong, Yi; Wang, Nan; Zhao, Ke; Huang, Lingling; Wang, Zhen

    2016-05-01

    The Yellow River is well known for high concentration of suspended particulate matter (SPM), which is one of the most important SPM sources in the Bohai Sea and Yellow Sea, China. The mechanisms of long-distance transport and deposition of the Yellow River sediment discharges are hot topics. Based on field observations in four different seasons of 2010-2011 and 15 numerical experiments, this work studied the seasonal sediment transportation and deposition in the Bohai and Yellow Seas. Results show that the horizontal distribution of suspended sediment concentration in the Bohai Sea and Yellow Sea is neither closely related to the Yellow River discharge in flood and dry seasons nor to the temperature and salinity distributions in winter and summer because most of the Yellow River-discharged sediments deposited near the river mouth. However, the winter northerly wind events, especially the winter storm events with high waves, are the major factors inducing the long-distance transport of the sediments from the Bohai Sea to the Yellow Sea. The net SPMs are transported to the Yellow Sea from the Bohai Sea in both winter and summer. The net SPM flux at the Bohai Strait is 14.0 Mt/year by the combined effects of tides, wind, and waves. The SPM is transported to the Shandong Peninsula in the Yellow Sea for the generation of the mud wedge off the peninsula. The northern part of the mud wedge is related to the southerly wind in summer, and the southeastern part resulted from the winter northerly wind, especially the strong wind.

  14. A physiochemical analysis of the mechanisms for transport and retention of technetium (Tc-99) in unsaturated soils - 59050

    Document available in abstract form only. Full text of publication follows: The transport of technetium (Tc-99), is of interest due to the potential for human exposure and impact on ecosystems. Technetium has been released to the environment through nuclear power production and nuclear fuel processing; as a result, further spreading of Tc-99 is a concern at DOE sites across the US. Specifically, technetium is a contaminant of concern at the Hanford Site in southeastern Washington, due to the magnitude of material that was disposed. The current body of work conducted on Tc- 99 has provided a wealth of information regarding the redox relationships, sorption, solubility, and stability of the mineral phases (Artinger et al., 2003; Beals and Hayes, 1995; Cui and Eriksen, 1996b; Gu and Schulz, 1991; Jaisi et al., 2009; Keith-Roach et al., 2003; Kumar et al., 2007), however little work has been conducted on the transport of technetium in unsaturated soils. Current conceptual models do not explain the persistence and presence of technetium in deep vadose zone environments such as the Hanford site. In an oxic reducing environment with low organic content the residence time of technetium is the soil would be expected to be low, due to its low sorption and high solubility. Surprisingly, nearly 50 years following the release of contamination into the site, much of the element has persisted in the subsurface. Using an integrated testing approach we examined the mechanisms for physical and chemical retention and transport of technetium. By employing transport and breakthrough curve analysis as well as pore water and sequential extractions, we evaluated transport behavior, technetium mineral association, and technetium leachability with regard to pore size distribution. (authors)

  15. Mechanism and specificity of lanthanide series cation transport by ionophores A23187, 4-BrA23187, and ionomycin.

    Wang, E; Taylor, R W; Pfeiffer, D R

    1998-09-01

    A23187, 4-BrA23187, and ionomycin transport several lanthanide series trivalent cations at efficiencies similar to Ca2+, when compared at cation concentrations of approximately 10(-5) M, ionophore concentrations of approximately 10(-6) M, and a pH of 7.00. Selectivity sequences and the range of relative rates are as follows: A23187, Nd3+ > La3+ > Eu3+ > Gd3+ > Er3+ > Yb3+ > Lu3+ (approximately 34-fold); 4-BrA23187, Nd3+ > Eu3+ > Gd3+ > La3+ > Er3+ > Yb3+ > Lu3+ (approximately 34-fold); ionomycin, La3+ > Yb3+ > Nd3+ > Lu3+ > Er3+ > Eu3+ > Gd3+ (approximately 4-fold). At concentrations between 9 and 250 microM, La3+ is transported by an electroneutral mechanism, predominately through mixed complexes of the type (ionophore)2La-OH (A23187 and 4-BrA23187) or (ionophore)La-OH (ionomycin), when no membrane potential is present. For all three ionophores, an induced potential of approximately 160 mV accelerates transport by approximately 50-100%. However, measured values of H+/La3+ exchange indicate that only 4-BrA23187 displays a significant electrogenic activity under these conditions. At a La3+ concentration of 17 mM, transport by all three ionophores is electroneutral and apparently occurs through complexes of type (ionophore)3La (A23187 and 4-BrA23187) or (ionophore)La-OH (ionomycin). Analysis of these patterns in a context of comproportionation equilibria involving the transporting species and free La3+ indicates that the species containing three ionophore molecules are formed on the membrane when aqueous phase solution conditions would strongly favor a 1:1 complex, based upon previous studies in solution. The implications of this and other findings are discussed. PMID:9726927

  16. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel

  17. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    Thomas E. Jensen

    2014-10-01

    Full Text Available Understanding how muscle contraction orchestrates insulin-independent muscle glucose transport may enable development of hyperglycemia-treating drugs. The prevailing concept implicates Ca2+ as a key feed forward regulator of glucose transport with secondary fine-tuning by metabolic feedback signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca2+ release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport during muscle contraction, and call for a major reconsideration of the established Ca2+ centric paradigm.

  18. Comparative anatomy of the peduncles of Thai Sugar Palms provides insight on putative sugar transport mechanisms

    Somjaiai, Pananun; Barfod, Anders; Jampeetong, Arunothai

    sap is used mainly for jaggery, syrup and different types of beverages. In this study we looked for anatomical correlates of the elevated sap flow in injured peduncles of sugar palms. Despite a limited sample size we observed that sugar producing palms differ from the reference palm Chamaedorea...

  19. Metalloprotein tunnel junctions: compressional modulation of barrier height and transport mechanism.

    Davis, Jason J; Wang, Nan; Morgan, Ashley; Zhang, Tiantian; Zhao, Jianwei

    2006-01-01

    Though the incorporation of sensory or potentially-switchable biological entities into electronic devices brings with it a number of complicating issues associated with hydration, structural complexity/delicacy, and low conductance, the possibility of resolving properties of fundamental importance (such as the influence of protein fold on conductance) at a molecularly-resolved level, are exciting. Our ability to analyse charge transport through a biological macromolecule remains, though, a significant practical and theoretical challenge. Though much information can be gained by carrying out such examinations at a molecular level, there exist few methods where such controlled analyses are, in fact, feasible. Here we report on the electron transport characteristics of a blue copper metalloprotein as characterized by conductive-probe atomic force microscopy. At very low imposed force, contact resistance is high, electrical contact unstable, and the junction undergoes dielectric breakdown at 1.1-1.5 GV m(-1). At increased applied force, the current-voltage characteristics are entirely reproducible and well-described by a Simmons (non-resonant) tunnelling model. Though highly resistive, observations demonstrate the ability of the protein matrix to mediate appreciable tunnelling current. Non-resonant behaviour is consistent with observations of bias-independent tunnelling imaging. In fitting observed transport characteristics to this model, it is possible to deconvolute barrier height and length at specific experimental conditions and, specifically, to monitor the modulation of these parameters by imposed compressional force. At higher field spectroscopic features assignable to metal based density of states are reproducibly observed. These vanish in a force regime where the tunnel barrier to direct tip-sample communication decreases. PMID:16512371

  20. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact

  1. Mechanisms of meridional transport processes in the tropical Atlantic; Mechanismen meridionaler Transportprozesse im tropischen Atlantik

    Kroeger, J.

    2001-07-01

    Meridional transport processes of water masses and tracers in the subtropical and tropical Atlantic are investigated using a regional eddy resolving model of the wind driven and thermohaline circulation. Analytical emphasis is on float simulations in the model which, complementary to Eulerian means, represent the Lagrangian view and give further insight into the spreading and pathways of characteristic water masses in this area. In the tropics and subtropics shallow 3-dimensional circulation cells are superimposed on the northward warm water transfer within the deep reaching thermohaline overturning cell (MOC) as part of the global ''Conveyor Belt''. Under present-day climate conditions the model shows that the equatorial thermocline is exclusively ventilated by subsurface flow within the tropical-subtropical cell (STC) of the South Atlantic. Only with a prescribed ''Conveyor-off''-Mode the STC of the North Atlantic contributes to this ventilation process with equal amounts. Throughout the year the interhemispheric transport of surface and central water masses of South Atlantic origin into the Caribbean Sea is dominated by zonal detours to the east as a consequence of the interplay of several retroflection events occuring in the North Atlantic. The eulerian mean flow field in the deep layer postulates the interhemispheric mass transport into the South Atlantic to be confined entirely to the western boundary, whereas Lagrangian means indicate intermittent eastward excursions along the equator, related to seasonally alternating zonal currents due to long Rossby waves. It was suggested that the observed characteristic eastward maximum of tracer concentrations along the equator is a consequence of rectifying effects of single or interacting equatorial waves. The model does not validate this hypothesis. The response to transport anomalies of subpolar origin and long periodicity is subject to different time-scales in both

  2. Current transport mechanisms in epitaxial CdS/CdTe heterojunctions

    Ercelebi, C.; Brinkman, A. W.; Furlong, T. S.; Woods, J.

    1990-04-01

    Epitaxial n-CdS/p-CdTe heterojunctions have been fabricated by the vacuum evaporation of CdS onto phosphorus doped {⦶111} B CdTe substrates. Analysis of the current-voltage and capacitance-voltage characteristics suggests that electrical transport across the junction is dominated by a multi-step tunneling process. Although open circuit voltage and short circuit current values were high, the overall photovoltaic conversion efficiency of the devices was restricted to ≈ 6%, because of the relatively high resistivity of the CdTe substrates.

  3. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.

    Moghadam, Mohammad Charjouei; Deyranlou, Amin; Sharifi, Alireza; Niazmand, Hamid

    2015-09-01

    The interstitial fluid transport plays an important role in terms of its effect on the delivery of therapeutic agents to the cancerous organs. In this study, a comprehensive numerical simulation of the interstitial fluid transport establishing 3D models of tumor and normal tissue is accomplished. Different shapes of solid tumors and their surrounding normal tissues are selected, by employing the porous media model and incorporating Darcy's model and Starling's law. Besides, effects of the tumor radius, normal tissue size, tissue hydraulic conductivity and necrotic core are investigated on the interstitial fluid pressure (IFP) and interstitial fluid velocity (IFV). Generally, results suggest that the configurations of the tumor and surrounding normal tissue affect IFP and IFV distributions inside the interstitium, which are much more pronounced for various configuration of the tumor. Furthermore, findings demonstrate that larger tumors are more prone for producing elevated IFP comparing with the smaller ones and impress both IFP and IFV dramatically. Nevertheless, normal tissue size has less impact on IFP and IFV, until its volume ratio to the tumor remains greater than unity; conversely, for the values lower than unity the variations become more significant. Finally, existence of necrotic core and its location in the tumor interstitium alters IFP and IFV patterns and increases IFV, considerably. PMID:26122936

  4. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism.

    Graeme Mitchison

    2015-10-01

    Full Text Available Auxin underlies many processes in plant development and physiology, and this makes it of prime importance to understand its movements through plant tissues. In stems and coleoptiles, classic experiments showed that the peak region of a pulse of radio-labelled auxin moves at a roughly constant velocity down a stem or coleoptile segment. As the pulse moves it becomes broader, at a roughly constant rate. It is shown here that this 'spreading rate' is larger than can be accounted for by a single channel model, but can be explained by coupling of channels with differing polar transport rates. An extreme case is where strongly polar channels are coupled to completely apolar channels, in which case auxin in the apolar part is 'dragged along' by the polar part in a somewhat diffuse distribution. The behaviour of this model is explored, together with others that can account for the experimentally observed spreading rates. It is also shown that saturation of carriers involved in lateral transport can explain the characteristic shape of pulses that result from uptake of large amounts of auxin.

  5. Molecular characterisation of transport mechanisms at the developing mouse blood-CSF interface

    Liddelow, Shane A; Temple, Sally; Møllgård, Kjeld;

    2012-01-01

    Exchange mechanisms across the blood-cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their mole......Exchange mechanisms across the blood-cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about...... transfer of plasma proteins at the blood-CSF interface....

  6. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  7. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles

    Haase, Georg; Rabouille, Catherine

    2015-01-01

    Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained c

  8. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The understanding established by a mechanics to a particular prototype, behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  9. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium (234U et 238U), thorium (230Th et 232Th), 226Ra and 222Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  10. Mechanisms of energetic efficiency in the transportation sector: environmental impacts and reflections in final energy consumption: PNE 2030; Mecanismos de eficiencia energetica no setor de transportes: impactos ambientais e os reflexos no consumo final de energia: PNE 2030

    Berni, Mauro Donizeti [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], email: mauro_berni@nipeunicamp.org.br; Dorileo, Ivo Leandro [Universidade Federal do Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico; Perez, Andrea Juliana Ortiz [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Dept. de Energia. Fac. de Engenharia Mecanica; Paccola, Jose Angelo; Silva Junior, Herculano Xavier da; Bernardes, Cyro Barbosa [MCPAR Engenharia, Campinas, SP (Brazil)

    2010-07-01

    This work presents an energy efficiency mechanisms analysis in the Brazilian transport sector. Significant energy savings can be made in this sector and rely on urgent widespread implementation of mechanisms. The experience of the developed countries serves as base for the critical evaluation of the Brazilian situation, considering the current technological period, the investments and initiatives to reduce CO{sub 2} emissions. (author)

  11. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  12. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs. PMID:26651751

  13. Comparative study of electron transport mechanisms in epitaxial and polycrystalline zinc nitride films

    Cao, Xiang; Yamaguchi, Yuuki; Ninomiya, Yoshihiko; Yamada, Naoomi, E-mail: n-yamada@isc.chubu.ac.jp [Department of Applied Chemistry, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487–8501 (Japan)

    2016-01-14

    Zn{sub 3}N{sub 2} has been reported to have high electron mobility even in polycrystalline films. The high mobility in polycrystalline films is a striking feature as compared with group-III nitrides. However, the origins of the high mobility have not been elucidated to date. In this paper, we discuss the reason for high mobility in Zn{sub 3}N{sub 2}. We grew epitaxial and polycrystalline films of Zn{sub 3}N{sub 2}. Electron effective mass (m*) was determined optically and found to decrease with a decrease in electron density. Using a nonparabolic conduction band model, the m* at the bottom of the conduction band was derived to be (0.08 ± 0.03)m{sub 0} (m{sub 0} denotes the free electron mass), which is comparable to that in InN. Optically determined intra-grain mobility (μ{sub opt}) in the polycrystalline films was higher than 110 cm{sup 2} V{sup −1} s{sup −1}, resulting from the small m*. The Hall mobility (μ{sub H}) in the polycrystalline films was significantly smaller than μ{sub opt}, indicating that electron transport is impeded by scattering at the grain boundaries. Nevertheless, μ{sub H} higher than 70 cm{sup 2} V{sup −1} s{sup −1} was achievable owing to the beneficial effect of the high μ{sub opt}. As for the epitaxial films, we revealed that electron transport is hardly affected by grain boundary scattering and is governed solely by ionized impurity scattering. The findings in this study suggest that Zn{sub 3}N{sub 2} is a high-mobility semiconductor with small effective mass.

  14. Increased D-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis.

    Kramer, Naomi E; Hasper, Hester E; van den Bogaard, Patrick T C; Morath, Siegfried; de Kruijff, Ben; Hartung, Thomas; Smid, Eddy J; Breukink, Eefjan; Kok, Jan; Kuipers, Oscar P

    2008-06-01

    Nisin is a post-translationally modified antimicrobial peptide produced by Lactococcus lactis which binds to lipid II in the membrane to form pores and inhibit cell-wall synthesis. A nisin-resistant (Nis(R)) strain of L. lactis, which is able to grow at a 75-fold higher nisin concentration than its parent strain, was investigated with respect to changes in the cell wall. Direct binding studies demonstrated that less nisin was able to bind to lipid II in the membranes of L. lactis Nis(R) than in the parent strain. In contrast to vancomycin binding, which showed ring-like binding, nisin was observed to bind in patches close to cell-division sites in both the wild-type and the Nis(R) strains. Comparison of modifications in lipoteichoic acid of the L. lactis strains revealed an increase in d-alanyl esters and galactose as substituents in L. lactis Nis(R), resulting in a less negatively charged cell wall. Moreover, the cell wall displays significantly increased thickness at the septum. These results indicate that shielding the membrane and thus the lipid II molecule, thereby decreasing abduction of lipid II and subsequent pore-formation, is a major defence mechanism of L. lactis against nisin. PMID:18524930

  15. Chaotic Advection at the Pore Scale: Mechanisms, Upscaling and Implications for Macroscopic Transport

    Lester, D R; Metcalfe, Guy

    2016-01-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the porescale generate chaotic advection, involving exponential stretching and folding of fluid elements,the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit t...

  16. Horizontal Transport of Nitrate Nitroge in Main Paddy Soil of Tai Lake Area%太湖地区主要水稻土中硝态氮水平运移规律的研究

    陈效民; 潘根兴; 沈其荣

    2001-01-01

    对太湖地区主要水稻土乌栅土中硝态氮水平运移规律的研究结果表明:硝态氮的浓度随供试示踪剂源距离的增加而减小,其变化趋势呈对数曲线关系。硝态氮水平运移过程中,硝态氮浓度与含水量有密切的关系,硝态氮浓度随土壤含水量的增加而成比例增加,呈指数曲线关系。硝态氮的运移速率与运移距离有很好的相关性,并呈幂函数关系。从供试的示踪剂源开始到距离20cm时,硝态氮的运移速率主要由硝态氮的浓度梯度和水势梯度控制;而在20cm以后,则趋于平稳,这时主要由土壤的基质势起作用。%The nitrate nitroge horizontal transport of mainly paddysoil(Wushan soil) in Ta i Lake area was studied. The results were as follows: The concentration of nitra te nitroge in horizontal transport decreased with the increasing distance of th e tracer source and changed with logarithm function. The transport concentration of the nitrate nitroge was in a sharp positive relation with the soil moisture content and changed with exponential function. The horizontal transport velocity of nitrate nitroge was significant relation with the distance of the tracer sou rce in power function. Therefore, the velocity of nitrate nitroge horizontal tra nsport was controlled bo th by the concentration gradient and soil water potential gradient from begin to 20 cm in horizontal soil column. It was stable after 20 cm, which was controlle d by soil matric potential.

  17. Performance-Governing Transport Mechanisms for Heat Pipes at Ultra-thin Form Factors

    Yadavalli, Y.; Weibel, J. A.; Garimella, S V

    2015-01-01

    Heat pipes and vapor chamber heat spreaders offer a potential solution to the increasing thermal management challenges in thin-form-factor mobile computing platforms, where efficient spreading is required to simultaneously prevent overheating of internal components and formation of hot regions on the device exterior surfaces. Heat pipe performance limitations unique to such ultrathin form factors and the key heat transfer mechanisms governing the performance must be characterized. A thermal r...

  18. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Saeed Yousefi; Faramarz Doulati Ardejan; Arezoo Abedi; Mansour Ziaii; Esmat Esmaeil Zadeh

    2015-01-01

    Introduction Pyrite oxidation and acid mine drainage (AMD) are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003). Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986). Although comprehensive researc...

  19. The influence of Morphology on the Transport and Mechanical Properties of Polyethylene

    Neway, Bereket

    2003-01-01

    The sorption/desorption behaviour of n-hexane in high molarmass linear polyethylene (PE) and branched PEs with 0.39 and5.09 hexyl branches per 100 main chain C atoms andcrystallinities between 4 and 82% at 298 K has been studied.Crystal core contents determined by Raman spectroscopy werealways lower than those determined by density measurements. Then-hexane solubilities in the copolymers depended in anon-linear manner on the content of penetrable polymercomponent and were lower for homogeneou...

  20. Effects of Annealing on Electrical Characteristics and Current Transport Mechanisms of the Y/ p-GaN Schottky Diode

    Reddy, V. Rajagopal; Asha, B.; Choi, Chel-Jong

    2016-07-01

    This study investigates the effects of annealing on the electrical properties and current transport mechanism of Y/ p-GaN Schottky barrier diodes (SBDs). We found no significant change in the surface morphology of the Y Schottky contacts during the annealing process. The Schottky barrier height (SBH) of the as-deposited Y/ p-GaN SBD was estimated to be 0.95 eV ( I- V)/1.19 eV ( C- V). The SBH increased upon annealing at 400°C and 500°C, and then decreased slightly with annealing at 600°C. Thus the maximum SBH of the Y/ p-GaN SBD was achieved at 500°C, with values of 1.01 eV ( I- V)/1.29 eV ( C- V). In addition, the SBH values were estimated by Cheung's, Norde, and Ψs- V plots and were found to be in good agreement with one another. Series resistance ( R S) values were also calculated by I- V, Cheung's, and Norde functions at different annealing temperatures, with results showing a decrease in the interface state density of the SBD with annealing at 500°C, followed by a slight increase upon annealing at 600°C. The forward-bias current transport mechanism of SBD was investigated by the log I-log V plot at different annealing temperatures. Our investigations revealed that the Poole-Frenkel emission mechanism dominated the reverse leakage current in Y/ p-GaN SBD at all annealing temperatures.

  1. Abnormal expression of dopamine and serotonin transporters associated with the pathophysiologic mechanism of Tourette syndrome

    Jijun Li

    2010-01-01

    Full Text Available Background : Tourette syndrome (TS is a neurobehavioral and neuropsychiatric disorder and its pathophysiology is not well understood. However, recent studies provide evidence implicating metabolic abnormalities of dopamine (DA and serotonin (5-HT of the basal ganglia both in TS patients and TS animal models. It is also well known that dopamine and serotonin transporters (DAT and SERT are monoamine neurotransmitter transporters, which participate in the metabolism of DA and 5-HT, respectively. Objective : To evaluate whether expression of DAT and SERT in the striatum could lead to pathophysiological change in TS rat model. Materials and Methods : Twenty-four Wistar male rats were randomly allocated to: TS model group (n=12 and control group (n=12. The stereotypy counts were recorded during the 2-week period of inducing TS rat models. The levels of DA and 5-HT in striatum homogenate were measured by ELISA. The protein and mRNA expression of DAT and SERT in the striatum were tested respectively by Immunofluorescence, Western blot and quantitative real-time PCR. Results : ANOVA analysis indicated that the stereotypy scores were much higher in the TS model group than in the control group at different time points (P<0.01. By ELISA analysis, the DA concentration in striatum homogenate was higher in the TS model group (130.92 ± 25.60 ng/mL than in the control group (101.00 ± 20.14 ng/mL (P<0.01, but 5-HT concentration in striatum was found to be lower in the TS model group (59.79 ± 14.73 ng/mL compared to the control group (77.01 ± 14.05 ng/mL (P<0.05. Analysis of protein and mRNA levels revealed a lower expression of DAT, concomitant with a higher expression of SERT in striatum of the TS model group than in the control group. Conclusions : Lower expression in DAT, concomitant with higher expression in SERT could participate in the pathophysiology of TS.

  2. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  3. Transmembrane Domain Lengths Serve as Signatures of Organismal Complexity and Viral Transport Mechanisms.

    Singh, Snigdha; Mittal, Aditya

    2016-01-01

    It is known that membrane proteins are important in various secretory pathways, with a possible role of their transmembrane domains (TMDs) as sorting determinant factors. One key aspect of TMDs associated with various "checkposts" (i.e. organelles) of intracellular trafficking is their length. To explore possible linkages in organisms with varying "complexity" and differences in TMD lengths of membrane proteins associated with different organelles (such as Endoplasmic Reticulum, Golgi, Endosomes, Nucleus, Plasma Membrane), we analyzed ~70000 membrane protein sequences in over 300 genomes of fungi, plants, non-mammalian vertebrates and mammals. We report that as we move from simpler to complex organisms, variation in organellar TMD lengths decreases, especially compared to their respective plasma membranes, with increasing organismal complexity. This suggests an evolutionary pressure in modulating length of TMDs of membrane proteins with increasing complexity of communication between sub-cellular compartments. We also report functional applications of our findings by discovering remarkable distinctions in TMD lengths of membrane proteins associated with different intracellular transport pathways. Finally, we show that TMD lengths extracted from viral proteins can serve as somewhat weak indicators of viral replication sites in plant cells but very strong indicators of different entry pathways employed by animal viruses. PMID:26925972

  4. Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture

    Yuan, Jinlong; Zhang, Xu; Zhu, Xi; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2014-06-01

    The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by a complex metabolic system of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. In this paper, in consideration of the fact that the transport ways of 1,3-PD and glycerol with different weights across cell membrane are still unclear in batch culture, we consider 121 possible metabolic pathways and establish a novel mathematical model which is represented by a complex metabolic system. Taking into account the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium point for the metabolic system of batch culture, the novel approach used here is to define quantitatively biological robustness of the intracellular substance concentrations for the overall process of batch culture. To determine the most possible metabolic pathway, we take the defined biological robustness as cost function and establish an identification model, in which 1452 system parameters and 484 pathway parameters are involved. Simultaneously, the identification model is subject to the metabolic system, continuous state constraints and parameter constraints. As such, solving the identification model by a serial program is a very complicated task. We propose a parallel migration particle swarm optimization algorithm (MPSO) capable of solving the identification model in conjunction with the constraint transcription and smoothing approximation techniques. Numerical results show that the most possible metabolic pathway and the corresponding metabolic system can reasonably describe the process of batch culture.

  5. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells

    Jäckle, Sara; Mattiza, Matthias; Liebhaber, Martin; Brönstrup, Gerald; Rommel, Mathias; Lips, Klaus; Christiansen, Silke

    2015-08-01

    We investigated hybrid inorganic-organic solar cells combining monocrystalline n-type silicon (n-Si) and a highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The build-in potential, photo- and dark saturation current at this hybrid interface are monitored for varying n-Si doping concentrations. We corroborate that a high build-in potential forms at the hybrid junction leading to strong inversion of the n-Si surface. By extracting work function and valence band edge of the polymer from ultraviolet photoelectron spectroscopy, a band diagram of the hybrid n-Si/PEDOT:PSS heterojunction is presented. The current-voltage characteristics were analyzed using Schottky and abrupt pn-junction models. The magnitude as well as the dependence of dark saturation current on n-Si doping concentration proves that the transport is governed by diffusion of minority charge carriers in the n-Si and not by thermionic emission of majorities over a Schottky barrier. This leads to a comprehensive explanation of the high observed open-circuit voltages of up to 634 mV connected to high conversion efficiency of almost 14%, even for simple planar device structures without antireflection coating or optimized contacts. The presented work clearly shows that PEDOT:PSS forms a hybrid heterojunction with n-Si behaving similar to a conventional pn-junction and not, like commonly assumed, a Schottky junction.

  6. Using high pressure to study thermal transport and phonon scattering mechanisms

    Hohensee, Gregory Thomas

    The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine

  7. Molecular mechanisms regulating oxygen transport and consumption in high altitude and hibernating mammals

    Revsbech, Inge Grønvall

    2016-01-01

    The aim of this thesis is to broaden the knowledge of molecular mechanisms of adjustment in oxygen (O2) uptake, conduction, delivery and consumption in mammals adapted to extreme conditions. For this end, I have worked with animals living at high altitude as an example of environmental hypoxia, and...... temperature to elevate blood O2 affinity. Additionally, our studies indicate a role for H2S during hibernation, possibly as part of the metabolic downregulation. Finally, results from this dessertaion support the growing theory that not necessarily only a few amino acids are paramount to protein function, but...

  8. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized

  9. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  10. Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells

    Introduction: We investigated the mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid (anti-[14C]FACBC) transport by human-derived prostate cancer (PCa) cells and normal human prostatic epithelial cells (PrECs). Methods: Using PCa cells (DU145, PC-3, LNCaP) and PrECs, we performed the following in vitro experiments: time-course, kinetics, competitive inhibition by synthetic/naturally occurring amino acids (AAs), exchange transport with synthetic/naturally occurring AAs and pH-dependency of anti-[14C]FACBC uptake. We also examined the amino acid transporter (AAT) expression using flow cytometry. Results: The uptake of anti-[14C]FACBC by LNCaP and DU145 cells was higher than that by PC-3 and PrECs. The Km values for anti-[14C]FACBC were 64.4 and 191.7 μmol/L in the DU145 cells and PrECs, respectively. Total levels of anti-[14C]FACBC uptake were positively correlated with the expression level of system ASC in PCa cells. The contributions of Na+-dependent AATs to anti-[14C]FACBC uptake were greater than those of Na+-independent AATs, especially in PCa cells. In the presence of Na+, glutamine and serine showed the strongest inhibitory effect against anti-[14C]FACBC uptake, suggesting that system ASC, especially ASCT2, is an important AAT for anti-[14C]FACBC. In contrast, phenylalanine and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid, but not N-ethylmaleimide, almost completely inhibited the anti-[14C]FACBC uptake in the absence of Na+, indicating the contribution of LAT1. In the exchange transport experiments, glutamine showed the strongest transstimulation of intracellular anti-[14C]FACBC efflux in DU145 cells. Furthermore, the contributions of Na+-independent AATs to the uptake of anti-[14C]FACBC in DU145 and PrECs were greater under acidic pH conditions than under neutral or alkaline pH conditions. Conclusions: Total uptake of anti-[14C]FACBC by PCa cells correlates with the expression level of system ASC in PCa cells. Furthermore, LAT1 is an

  11. Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: vertical distribution, correlation with TOC and transport mechanism

    HE Fengpeng; ZHANG Zhihuan; WAN Yunyang; LU Song; WANG Liang; BU Qingwei

    2009-01-01

    Concentrations and compositions of 20 polycyclic aromatic hydrocarbons (PAHs) or heterocyclic aromatic hydrocarbons (HAHs) were investigated in 16 soil profiles of Beijing and Tianjin region. Transport of high molecular weight PAHs (HMWPAHs) and correlation between total organic carbon (TOC) and the concentrations were also discussed. The results indicated that highly contaminated sites were located at urban or wastewater irrigation areas and pollutants mainly accumulated in topsoil (<40 cm), with a sharp content decrease at the vertical boundary of 30--40 cm. Total PAHs/HAHs concentrations in soils from Tianjin were markedly greater than those from Beijing. Even the contents at bottoms of soil profiles in Tianjin were higher than those in topsoils of Beijing soil profile. HMWPAHs (4-6 rings PAHs) dominated the PAH profiles, exhibiting a uniform distribution of pyrogenic origin between topsoils and deep layers. Furthermore, the percentages of HMWPAHs remained relative constant with the depth of soil profiles, which were consistent with the distribution of particulate matter-associated PAHs in the local atmospheric environments. Therefore, HMWPAHs transport with particulates might be the predominant source found in soil profiles.

  12. 双库协同机制对知识发现主流发展的驱动%The Driving Force of Double Bases Cooperating Mechanism to Knowledge Discovery Main Stream

    周颖; 杨炳儒

    2003-01-01

    The paper, by a research report, summarizes emergence and definition of double bases cooperating mecha-nism, and introduces its driving force and influence to many sides of main stream of knowledge discovery from struc-tural model to algorithm , from structuring data mining to complex type data mining. The influence also expands tophilosophy field. It has been above five years from proposing it to now. Summarizing it makes us learn a thing clear-ly : its functions are not simply improvement to algorithm, are to bring forward many new structural models and tech-nology methods . It answers those urgent questions in the one paragraph of the paper to a greater extent. So we maysay: double bases cooperating mechanism has important driving force to main stream of knowledge discovery.

  13. Technical-evaluation report on the proposed technical-specification changes for the inservice surveillance of safety-related hydraulic and mechanical snubbers at the Maine Yankee Nuclear Power Plant (Docket No. 50-309)

    This report documents the technical evaluation of the proposed Technical Specification changes to Limiting Conditions for Operation, Surveillance Requirements and Bases for safety-related hydraulic and mechanical snubbers at the Maine Yankee Nuclear Power Plant. The evaluation is to determine whether the proposed Technical Specifications are in conformance with the model Standard Technical Specification set forth by the NRC. A check list, Appendix A of this report, compares the licensee's submittal with the NRC requirements and includes Proposed Resolution of the Deviations

  14. Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films

    Duong, Duc T.

    2014-04-09

    In this work, crystallization kinetics and aggregate growth of poly(3-ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X-ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time-dependent, field-effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2-3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter-aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics. Recrystallization kinetics and its relationship to charge transport in poly(3-ethylhexylthiophene) (P3EHT) thin films are investigated using a combination of grazing incidence X-ray diffraction, optical absorption, and field-effect transistor measurements. These results show that thin film crystallization kinetics is limited by polymer chain reorganization and that charge percolation depends strongly on the edge-to-edge distance between aggregates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Virus in Groundwater: Characterization of transport mechanisms and impacts on an agricultural area in Uruguay

    Gamazo, P. A.; Colina, R.; Victoria, M.; Alvareda, E.; Burutaran, L.; Ramos, J.; Lopez, F.; Soler, J.

    2014-12-01

    In many areas of Uruguay groundwater is the only source of water for human consumption and for industrial-agricultural economic activities. Traditionally considered as a safe source, due to the "natural filter" that occurs in porous media, groundwater is commonly used without any treatment. The Uruguayan law requires bacteriological analysis for most water uses, but virological analyses are not mentioned in the legislation. In the Salto district, where groundwater is used for human consumption and for agricultural activities, bacterial contamination has been detected in several wells but no viruses analysis have been performed. The Republic University (UDELAR), with the support of the National Agency for Research and Innovation (ANII), is studying the incidence of virus in groundwater on an intensive agriculture area of the Salto district. In this area water is pumped from the "Salto Aquifer", a free sedimentary aquifer. Below this sedimentary deposit is the "Arapey" basaltic formation, which is also exploited for water productions on its fractured zones. A screening campaign has been performed searching for bacterial and viral contamination. Total and fecal coliforms have been found on several wells and Rotavirus and Adenovirus have been detected. A subgroup of the screening wells has been selected for an annual survey. On this subgroup, besides bacteria and viruses analysis, a standard physical and chemical characterization was performed. Results show a significant seasonal variation on microbiological contamination. In addition to field studies, rotavirus circulation experiments on columns are being performed. The objective of this experiments is to determinate the parameters that control virus transport in porous media. The results of the study are expected to provide an insight into the impacts of groundwater on Salto's viral gastroenterocolitis outbreaks.

  16. Auxin apical control of the auxin polar transport and its oscillation - a suggested cellular transduction mechanism

    Tomasz J. Wodzicki

    2014-02-01

    Full Text Available The proposed hypothesis concerns the transduction of auxin molecular signals arriving from the apoplast at the plasma membrane or recognized by the proteineous receptors of the responding cell, to the concentration gradients oscillating in the supracellular space, associated usually with the specific plant growth and differentiation. Acting as an agonist from outside the target cell auxin stimulates in this cell: (1 the liberation of auxin from the cytosolic pool of its conjugates directly into the basipetal efflux; (2 the synthesis of new auxin which restores the cytosolic reserve of auxin conjugates. The functioning of such a system may be effective in a series of processes initiated by the changing concentration of cytosolic calcium. The hypothesis suggests a molecular mechanism for the development and effective operation of the morphogenetic field in the supracellular space of the plant body, such as the field resulting from auxin waves discovered in cambium.

  17. Scanning internal photoemission microscopy for the identification of hot carrier transport mechanisms

    Differt, D.; Pfeiffer, W.; Diesing, D.

    2012-09-01

    Linear and nonlinear internal photoemission in a thin-film metal-insulator-metal heterosystem, i.e., a Ta-TaOx-Ag junction, together with surface reflectivity are mapped with a lateral resolution of better than 5 μm. The spatial correlation of the different signals and time-resolved internal photoemission spectroscopy reveal excitation mechanisms and ballistic hot carrier injection. The internal photoemission yield variation with Ag layer thickness is quantitatively explained by above-barrier injection. The hot-spot-like behavior of the two-photon induced internal photoemission observed for short pulse excitation is attributed to local field enhancements because of Ag-film thickness reduction and plasmonic effects at structural defects.

  18. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation

    Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, D.A.; Rogie, J.D.; Shuster, D.L.

    2001-01-01

    Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22

  19. Mechanisms of electrolyte transport across the endometrium. II. Regulation by GRP and substance P.

    Vetter, A E; O'Grady, S M

    1997-07-01

    The purpose of this study was to investigate the regulation of electrolyte transport across the porcine endometrium by gastrin-releasing peptide (GRP) and substance P (SP). Luminal addition of GRP, neuromedin B (NMB), SP, or neurokinin A(NKA) to mucosal tissues mounted in Ussing chambers produced a multiphasic change in short-circuit current (Isc) characterized by an initial rapid increase and subsequent decrease in current. A similar response was obtained after addition of ionomycin or thapsigargin to the tissues. The Isc response to the peptides or Ca ionophore was inhibited by pretreatment of the tissues with luminal amiloride or benzamil. GRP and SP were more potent [50% effective concentration (EC50) of 3 nM] than NMB or NKA (EC50 values of 46 and 26 nM, respectively) in producing the decrease in Isc. Pretreatment with the GRP receptor antagonist 3-Phe-His-Trp-Ala-Val-D-Ala-His-D-Pro-psi Phe-NH2 blocked the Isc response to GRP and NMB but not to SP or NKA, whereas the NMB receptor antagonist D-Nal-[Cys-Try-D-Trp-Orn-Val-Cys]-Nal-NH2 was ineffective in inhibiting the Isc response to any of the peptides. In contrast, pretreatment of the tissue with the nonpeptide SP receptor antagonist CP-99,994 blocked the Isc response to SP and NKA but not to GRP or NMB. Experiments with amphotericin B-permeabilized tissues showed that GRP, SP, ionomycin, and thapsigargin increased current through an outwardly rectifying K conductance located on the apical membrane of the cells. The K-to-Na selectivity ratio of this conductance was calculated to be 2.5:1. These experiments showed that GRP and SP, acting through different receptors, produced an increase in K efflux through a Ca-dependent K conductance present in the apical membrane of surface endometrial epithelial cells. In addition, immunohistochemistry data showed that GRP-like immunoreactivity was localized to surface and glandular epithelial cells, whereas GRP receptor antibody labeling was observed in both epithelial and

  20. On the electronic transport mechanism in thin films of some new poly(azomethine sulfone)s

    The studied polymers, poly(azomethine sulfone)s, were prepared by the reaction of bis(4-chlorophenyl)sulfone with a mixture of bisphenols: 2,2-bis(p-hydroxyphenyl)propane (bisphenol A) and 4,4'-bis(4-hydroxybenzylideneiminophenoxy)biphenyl in various molar ratios. The temperature dependences of the electrical conductivity and Seebeck coefficient of polymers were investigated using thin-film samples deposited from chloroform solutions (spin coating method) onto glass substrates. It was found that the respective polymers show typical semiconducting properties. Some correlations between these properties and the chemical structures of the polymers were established. The mechanism of electronic transport in the films studied is discussed. The study of optical absorption (in spectral range, 300-1400 nm) evidenced direct bandgaps ranged between 1.30 and 1.80 eV