WorldWideScience

Sample records for main injector numi

  1. FERMILAB: Main Injector

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x1031 cm-2 s-1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  2. Main injector particle production experiment at Fermilab

    Sonam Mahajan; Ashok Kumar; Rajendran Raja

    2012-11-01

    The main injector particle production (MIPP) experiment at Fermilab uses particle beams of charged pions, kaons, proton and antiproton with beam momenta of 5–90 GeV/c to measure particle production cross-sections of various nuclei including liquid hydrogen, MINOS target and thin targets of beryllium, carbon, bismuth and uranium. The physics motivation to perform such cross-section measurements is described here. Recent results on the analysis of NuMI target and forward neutron cross-sections are presented here. Preliminary cross-section measurements for 58 GeV/c proton on liquid hydrogen target are also presented. A new method is described to correct for low multiplicity inefficiencies in the trigger using KNO scaling.

  3. Switchyard in the Main Injector era conceptual design report

    This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics

  4. Main injector synchronous timing system

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  5. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 109 electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE's National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE's evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc

  6. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  7. The NuMI Neutrino Beam

    Adamson, P; Andrews, M; Andrews, R; Anghel, I; Augustine, D; Aurisano, A; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barr, G; Barrett, W L; Bernstein, R H; Biggs, J; Bishai, M; Blake, A; Bocean, V; Bock, G J; Boehnlein, D J; Bogert, D; Bourkland, K; Cao, S V; Castromonte, C M; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Corwin, L; Crane, D; Cravens, J P; Cronin-Hennessy, D; Ducar, R J; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Garkusha, V; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grossman, N; Grzelak, K; Habig, A; Hahn, S R; Harding, D; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Hays, S; Heller, K; Holin, A; Huang, J; Hylen, J; Ibrahim, A; Indurthy, D; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Johnstone, J; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Laughton, C; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Murtagh, M; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Oliver, W P; Olsen, M; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlovic, Z; Pawloski, G; Perch, A; Peterson, E A; Petyt, D A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Prieto, P; Pushka, D; Qiu, X; Radovic, A; Rameika, R A; Ratchford, J; Rebel, B; Reilly, R; Rosenfeld, C; Rubin, H A; Ruddick, K; Sanchez, M C; Saoulidou, N; Sauer, L; Schneps, J; Schoo, D; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Smart, W; Smith, C; Sousa, A; Stefanik, A; Tagg, N; Talaga, R L; Tassotto, G; Thomas, J; Thompson, J; Thomson, M A; Tian, X; Timmons, A; Tinsley, D; Tognini, S C; Toner, R; Torretta, D; Trostin, I; Tzanakos, G; Urheim, J; Vahle, P; Vaziri, K; Villegas, E; Viren, B; Vogel, G; Webber, R C; Weber, A; Webb, R C; Wehmann, A; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Wong-Squires, M L; Yang, T; Yumiceva, F X; Zarucheisky, V; Zwaska, R

    2015-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  8. The NuMI neutrino beam

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Bernstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A. B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O`Connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlović, Ž.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfützner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.

    2016-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  9. Multi-batch slip stacking in the Main Injector at Fermilab

    The Main Injector (MI) at Fermilab is planning to use multi-batch slip stacking scheme in order to increase the proton intensity at the NuMI target by about a factor of 1.5.[1] [2] By using multi-batch slip stacking, a total of 11 Booster batches are merged into 6, 5 double ones and one single. We have successfully demonstrated the multibatch slip stacking in MI and accelerated a record intensity of 4.6E13 particle per cycle to 120 GeV. The technical issues and beam loss mechanisms for multibatch slip stacking scheme are discussed

  10. Radiation shielding of the main injector

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  11. Proposed Fermilab upgrade main injector project

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  12. A gap clearing kicker for Main Injector

    Kourbanis, I; Biggs, J; Brown, B; Capista, D; Jensen, C C; Krafczyk, G E; Morris, D K; Scott, D; Seiya, K; Ward, S R; Wu, G; Yang, M -J

    2012-01-01

    Fermilab Main Injector has been operating at high Beam Power levels since 2008 when multi-batch slip stacking became operational. In order to maintain and increase the beam power levels the localized beam loss due to beam left over in the injection kicker gap during slip stacking needs to be addressed. A set of gap clearing kickers that kick any beam left in the injection gap to the beam abort have been built. The kickers were installed in the summer of 2009 and became operational in November of 2010. The kicker performance and its effect on the beam losses will be described.

  13. Intensity Limitations in Fermilab Main Injector

    Chan, W.

    1997-06-01

    The design beam intensity of the FNAL Main Injector (MI) is 3 x 10{sup 13} ppp. This paper investigates possible limitations in the intensity upgrade. These include the space charge, transition crossing, microwave instability, coupled bunch instability, resistive wall, beam loading (static and transient), rf power, aperture (physical and dynamic), coalescing, particle losses and radiation shielding, etc. It seems that to increase the intensity by a factor of two from the design value is straightforward. Even a factor of five is possible provided that the following measures are to be taken: an rf power upgrade, a {gamma}{sub t}-jump system, longitudinal and transverse feedback systems, rf feedback and feedforward, stopband corrections and local shieldings.

  14. Neutrino beams using the main injector

    TM-1946 summarizes the status of the NuMI project. This note presents more details on the technical design of the various NUMI beams. Several beam]Line options are investigated for producing neutrinos--(l) a wide-band beam(WBB) using horns, (2) a beam using a single lithium Lens, and (3) a two stage narrow-band beam(NBB) using a Lithium Lens, quadrupoles and dipoles. The first two are designed to maximize the muon neutrino event rate; the third is designed to have a tunable range of parent momenta from 5-60 GeV/c. In the context of NuMI, the Double Horns-and its target were concepts first described in 1991. The lithium Lens has been used at Fermilab for pbar production for several years. With recent upgrades, it forms the basis of what will be used by NuMI. Narrow band beams using conventional dipoles and quadrupoles have been studied, but have less acceptance than one using a lithium lens. The following practical limits are imposed on each of the systems: (1) Horns: The necks will not have a smaller radius than 1 cm; the maximum current will not exceed 170 kAmp. Keeping the inside diameter large allows the primary proton beam to vary in position, yet not strike the fragile neck. In addition, there is a trade-off between decreasing the radius and increasing the wall thickness to maintain the required strength in the conductor material. (2) Magnets: Reasonable conventional designs are used. The maximum gradient for quadrupoles is 12 kG/half-aperture; the maximum field for dipoles is about 16 kG; larger apertures scale the gradients and fields downward. Although not a primary consideration, optically it is desirable for the magnification in each plane to be comparable (within a factor of 2 or 3 is OK). (3) Lithium Lens: The maximum radius is 1.0 cm with a maximum gradient of 100 kG/cm. (4) Dumps: At the place where the primary protons are absorbed, the transverse beam center is ∼ 1 inch off the edge of the acceptance

  15. Main Chamber Injectors for Advanced Hydrocarbon Booster Engines

    Long, Matthew R.; Bazarov, Vladimir G.; Anderson, William E.

    2003-01-01

    Achieving the highest possible specific impulse has long been a key driver for space launch systems. Recently, more importance has been placed on the need for increased reliability and streamlined launch operations. These general factors along with more specific mission requirements have provided a new focus that is centered on the oxidizer rich staged combustion (ORSC) cycle. Despite a history of use in Russia that extends back to the 1960's, a proven design methodology for ORSC cycle engines does not exist in the West. This lack of design expertise extends to the main chamber injector, a critical subcomponent that largely determines the engine performance and main chamber life. The goals of the effort described here are to establish an empirical knowledge base to provide a fundamental understanding of main chamber injectors and for verification of an injector design methodology for the ORSC cycle. The design of a baseline injector element, derived from information on Russian engines in the open literature, is presented. The baseline injector comprises a gaseous oxidizer core flow and an annular swirling fuel flow. Sets of equations describing the steady-state and the dynamic characteristics of the injector are presented; these equations, which form the basis of the design analysis methodology, will be verified in tests later this year. On-going cold flow studies, using nitrogen and water as simulants, are described which indicate highly atomized and symmetric sprays.

  16. Component study of the NuMI neutrino beam for NOνA experiment at Fermilab

    The neutrino beam, NuMI, from Fermilab's Main Injector accelerator is the most intense neutrino beam in the world. The experiment NOνA will use this neutrino beam to study neutrino oscillation where neutrino of a given flavor oscillates into another flavor

  17. Secondary Electron Yield Measurements of Fermilab's Main Injector Vacuum Vessel

    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.

  18. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    Eldred, Jeffrey Scott [Indiana U.; Backfish, M. [Fermilab; Tan, C. Y. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance of beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.

  19. Secondary Electron Yield Measurements of Fermilab's Main Injector Vacuum Vessel

    Scott, D J; Duel, K L; Zwaska, R M; Greenwald, S; Hartung, W; Li, Y; Moore, T P; Palmer, M A; Kirby, R; Pivi, M; Wang, L

    2013-01-01

    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.

  20. Beam Loss Control for the Fermilab Main Injector

    Brown, Bruce C

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  1. Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation

    Brown, Bruce; Adamson, Philip; Capista, David; Drozhdin, A.I.; Johnson, David E.; Kourbanis, Ioanis; Mokhov, Nikolai V.; Morris, Denton K.; Rakhno, Igor; Seiya, Kiyomi; Sidorov, Vladimir; /Fermilab

    2009-05-01

    The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts.

  2. Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation

    The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts

  3. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    Park, Jaewon [Univ. of Rochester, NY (United States)

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  4. Impedance and instability threshold estimates in the main injector I

    Martens, M.A.; Ng, K.Y.

    1994-03-01

    One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 10{sup 10} protons per bunch, 95% normalized transverse emittances of 20{pi} mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations.

  5. Impedance and instability threshold estimates in the main injector I

    One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 1010 protons per bunch, 95% normalized transverse emittances of 20π mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations

  6. A kaon physics program at the Fermilab Main Injector

    In this paper we describe a triad of kaon experiments which will form the foundation of a kaon physics program at Fermilab in the Main Injector era. These three experiments; KAMI, CKM and CPT, span the range of experiment types discussed above. KAMI will use the existing neutral kaon beam and the KTeV detector as the basis of a search for the Standard Model ultra rare decay KL → π0ν anti ν decay mode is by far the theoretically cleanest measurement of the Standard Model parameter responsible for CP violation. CKM will measure the analogous charged kaon decay mode. Together these two experiments will determine the Standard Model contribution to CP violation independent of the B meson sector. The Standard Model parameters controlling CP violation must be observed to be the same in the K and B meson sectors in order to confirm the Standard Model as the sole source of CP violation in nature. CPT is a hybrid beam experiment using a high purity K+ beam to produce a pure K0 beam in order to search for violation of CPT symmetry at a mass scale up to the Planck mass. CPT also will measure new CP violation parameters to test the Standard Model and search for rare KS decays. The Fermilab infrastructure for such a physics program largely already exists. The Main Injector will be an existing accelerator by late 1998 with beam properties comparable to any of the previous ''kaon factory'' proposals. The KTeV detector and neutral kaon beamline are unsurpassed in the world and were originally designed to also operate with the 120 GeV Main Injector beam as KAMI. The Fermilab Meson laboratory was originally designed as an area for fixed target experiments using 200 GeV proton beams. The charged kaon beam experiments will naturally find a home there. Both charged kaon experiments, CKM and CPT, will share a new high purity RF separated charged kaon beam based on superconducting RF technology which will provide the highest intensity and purity charged kaon beam in the world

  7. Neutrino Flux Predictions for the NuMI Beam

    Aliaga, L; Golan, T; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bravar, A; Budd, H; Carneiro, M F; Diaz, G A; Endress, E; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Le, T; Maher, E; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Salinas, C J Solano; Falero, S Sanchez; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+, NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. We have also compared the prediction to in situ measurements of the neutrino flux and find good agreement.

  8. Forward Neutron Production at the Fermilab Main Injector

    Nigmanov, T S; Longo, M J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Jr.,; Bergfeld, T; Bujak, A; Carey, D; Dukes, E C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Gunaydin, Y O; Graf, N; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Heffner, M; Johnstone, C; Kaplan, D M; Kamaev, O; Klay, J; Kostin, M; Lange, D; Lebedev, A; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K S; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rosenfeld, C; Rubin, H A; Seun, S; Solomey, N; Soltz, R; Swallow, E; Torun, Y; Wilson, K; Wright, D; Wu, K

    2010-01-01

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\\alpha$ is $0.46\\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

  9. Survey and alignment overview: Fermilab main injector ring

    The purpose of the Fermilab main injector ring (FMI) is to replace and improve the performance of the existing main ring by simultaneously enhancing both Fermilab collider and fixed target programs. The FMI interacts with the Tevatron near the F-O straight section, and performs all the duties that currently the existing main ring does. The performance of the FMI as measured in terms of the protons per second delivered to the antiproton production target or the total protons delivered to the Tevatron production target or the total protons delivered to the Tevatron is expected to exceed twice or thrice of those of the main ring. In addition, the FMI provides high duty factor 120 GeV beam for the experimental areas. The design geometry of the FMI is described. In order to achieve the smooth and successful startup, the desired absolute and relative alignment tolerances for 208 quadrupole and 344 dipole magnets have been defined. Ten concrete pillar type monuments with forced centering devices constitute the framework for the surface control network. Regarding tunnel control system, geodetic considerations, monumentation, secondary tunnel constraint network and tunnel control network are described. Magnet fiduciarization and alignment are reported. (K.I.)

  10. Main Injector Lcw (low Conductivity Water) Control System

    Seino, K C

    2001-01-01

    There are six service buildings uniformly spaced along the perimeter of MI (Main Injector). A total of 18 LCW pumps were installed around the MI ring with 3 pumps per building. Approximately 8,000 GPM of LCW is required to cool magnets, bus and power supplies in the MI enclosure and service buildings. In each service building, a PLC control system controls pumps and valves, and it monitors pressures, flow, resistivities and temperatures. The PLC hardware system consists of a Gateway module and a variety of I/O modules, which are made by Sixnet of Clifton Park, NY. The control system communicates with other buildings including MCR (Main Control Room) via an Ethernet link and front-end computers. For more details of the MI LCW control system, refer to [1] and [2]. One of the key elements of the PLC software is called ISaGRAF workbench, which was created by CJ International of Seyssins, France. The workbench provides a comprehensive control-programming environment, where control programs can be written in five d...

  11. Tevatron energy and luminosity upgrades beyond the Main Injector

    The Fermilab Tevatron will be the world's highest energy hadron collider until the LHC is commissioned, it has the world's highest energy fixed target beams, and Fermilab will be the leading high energy physics laboratory in the US for the foreseeable future. Following the demise of the SSC, a number of possible upgrades to the Tevatron complex, beyond construction of the Main Injector, are being discussed. Using existing technology, it appears possible to increase the luminosity of the bar pp Collider to at least 1033cm-2sec-1 (Tevatron-Star) and to increase the beam energy to 2 TeV (DiTevatron). Fixed target beam of energy about 1.5 TeV could also be delivered. Leaving the existing Tevatron in the tunnel and constructing bypasses around the collider halls would allow simultaneous 800 GeV fixed target and √s = 4 TeV collider operation. These upgrades would give Fermilab an exciting physics program which would be complementary to the LHC, and they would lay the groundwork for the construction of a possible post-LHC ultra-high energy hadron collider

  12. Simulation of the electron cloud in the Fermilab Main Injector

    We present results from a precision simulation of the electron cloud (EC) problem in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and EM field maps have been generated. Various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results have been successfully benchmarked against the POSINST code for the 2D electrostatic case. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated as well as the more challenging microwave absorption experiment. While numerically accurate predictions can be made for a given secondary emission yield (SEY) and initial conditions, the large uncertainties in this SEY and in the spatial distribution of the EC prior to the exponential growth of the EC do make ab-initio prediction difficult. Note also that the RFA response is also uncertain due to the collection efficiency in unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program. Moreover, for a reasonable set of initial condition, this calculation shows that no dramatic, non-linear, increase of the EC density will occur when the bunch charges increases by a factor of three. Finally, electric field maps or parametric functions are being provided to the Synergia tracking code such that instabilities due to the EC can be simulated over much longer periods of time.

  13. Main Injector LCW (Low Conductivity Water) control system

    K. C. Seino

    1999-06-18

    There are six service buildings (MI-10, 20, 30, 40, 50 and 60) uniformly spaced along the perimeter of the MI (Main Injector). Each building supplies power and cooling water to 1,815 feet of circumference in the MI. A total of 18 LCW pumps were installed around the ring with 3 pumps per building. Each pump has a 100hp motor and delivers 550 GPM of LCW. Approximately 8,000 GPM of LCW is required to cool magnets, bus and power supplies in the MI enclosure and service buildings. The 18 centrifugal pumps are capable of delivering approximately 9.900 GPM of LCW. At each service building, the temperature of LCW is regulated to 95 +/-1 degF by a 3-way control valve which diverts a portion of LCW around a heat exchanger when less cooling is required. A constant flow of pond water is circulated in the tube side of the heat exchanger to remove the heat. In each service building, an LCW control system controls pumps and valves, and it monitors pressures, flows, resistivities and temperatures. The control system also communicates with other buildings including MCR (Main Control Room) via an Ethernet link and front-end computers. In the MI-60 service building, the magnet LCW control system controls/monitors a 3,000 gallon storage/expansion tank in addition to what�s done in the other service buildings. In MI-60, there are two additional LCW control systems for 95 degF RF and RF Cavities. In MI-40, there is an LCW control subsystem, which is attached to the MI-40 main system, and which controls/monitors the Beam Dump cooling system. In MI-52, there is an LCW control system for 150 Gev Proton Line. In CUB (Central Utility Building), there are two control systems (US Filter and Fermilab). The US Filter system controls the regeneration of DI (Deionization) columns, and the Fermilab system manipulates valves to fill the Tev (Tevatron) and MI rings with good LCW.

  14. Measurement of Pi-K Ratios from the NuMI Target

    Seun, Sin Man; /Harvard U.

    2007-07-01

    Interactions of protons (p) with the NuMI (Neutrinos at the Main Injector) target are used to create the neutrino beam for the MINOS (Main Injector Neutrino Oscillation Search) Experiment. Using the MIPP (Main Injector Particle Production) experimental apparatus, the production of charged pions and kaons in p+NuMI interactions is studied. The data come from a sample of 2 x 10{sup 6} events obtained by MIPP using the 120 GeV/c proton beam from the Main Injector at Fermi National Accelerator Laboratory in Illinois, USA. Pions and kaons are identified by measurement in a Ring Imaging Cherenkov detector. Presented are measurements of {pi}{sup -}/{pi}{sup +}, K{sup -}/K{sup +}, {pi}{sup +}/K{sup +} and {pi}{sup -}/K{sup -} production ratios in the momentum range p{sub T} < 2 GeV/c transversely and 20 GeV/c < p{sub z} < 90 GeV/c longitudinally. Also provided are detailed comparisons of the MIPP NuMI data with the MIPP Thin Carbon data, the MIPP Monte Carlo simulation and the current MINOS models in the relevant momentum ranges.

  15. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    Furman, M. A.; Kourbanis, I.; Zwaska, R. M.

    2009-05-04

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector. Areas of agreement and disagreement are spelled out, along with their possible significance.

  16. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    Furman, M.A.

    2011-01-01

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector. Areas of agreement and disagreement are spelled out, along with their possible significance.

  17. Geodetic determinations for the NuMI project at Fermilab

    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within ± 12 m from its ideal position at Soudan, MN, corresponding to ± 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  18. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  19. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  20. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; /Fermilab; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2010-05-01

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  1. Secondary Electron Yield Measurements of Fermilab?s Main Injector Vacuum Vessel

    Scott, D.J.; Capista, D.; Duel, K.L.; Zwaska, R.M.; /Fermilab; Greenwald, S.; Hartung, W.; Li, Y.; Moore, T.P.; Palmer, M.A.; /Cornell U.; Kirby, R.; Pivi, M.; /SLAC

    2012-05-01

    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.

  2. Simulations of the electron cloud buildups and suppressions in Tevatron and main injector

    To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3 maximum secondary electron yield, the electron cloud remains a serious concern for the planned future operational mode with 500 bunches, 3e11 proton per bunch. Electron cloud buildup can be mitigated in various ways. We consider a plausible scenario involving solenoids in straight section and a single clearing strip electrode (like SNEG in Tevatron) held at a potential of 500V. Simulations with parameters corresponding to Tevatron and Main Injector operating conditions at locations where special electron cloud detectors have been installed have been carried out and are in satisfactory agreement with preliminary measurements

  3. The Fermilab Main Injector: high intensity operation and beam loss control

    Brown, Bruce C; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  4. Comments on the behavior of α1 in main injector γt jump schemes

    Tracking studies of transition crossing in the Main Injector have shown that the Johnsen effect is the dominant cause of beam loss and emittance blow up. To suppress this effect one has to have control over α1 (dispersion of the momentum compaction factor α). Various γt jump configurations are examined and the resulting changes in α1 are assessed. These results are further validated by comparison between the simulation and simple analytic α1--formulas derived for a model FODO lattice with full chromaticity compensation in the presence of an eddy current sextupole component. A scheme involving the introduction of a dispersion wave in the arcs of the Main Injector, around transition time, seems to be promising if one regards the strength of the eddy current sextupole family as an external ''knob'' to control values of α1

  5. Microwave Transmission Through the Electron Cloud at the Fermilab Main Injector: Simulation and Comparison with Experiment

    Simulations of the microwave transmission properties through the electron cloud at the Fermilab Main Injector have been implemented using the plasma simulation code 'VORPAL'. Phase shifts and attenuation curves have been calculated for the lowest frequency TE mode, slightly above the cutoff frequency, in field free regions, in the dipoles and quadrupoles. Preliminary comparisons with experimental results for the dipole case are showed and will guide the next generation of experiments.

  6. Operational use of ionization profile monitors in the Fermilab Main Injector

    Morris, Denton K; Adamson, Philip; Capista, David; Kourbanis, Ioanis; Meyer, Thomas; Seiya, Kiyomi; Slimmer, David; Yang, Ming-Jen; Zagel, James

    2012-01-01

    Ionization profile monitors (IPMs) are used in the Fermilab Main Injector (MI) to monitor injection lattice matching by measuring turn-by-turn sigmas at injection and to measure transverse emittance of the beam during the acceleration cycle. The IPMs provide a periodic, non-destructive means of performing turn-by-turn emittance measurements where other techniques are not applicable. As Fermilab is refocusing its attention on the intensity frontier, non-intercepting diagnostics such as IPMs ar...

  7. A preliminary assessment of the electron cloud effect for the FNAL main injector upgrade

    Furman, M.A.

    2005-01-01

    We present results from a preliminary assessment, via computer simulations, of the electron cloud density for the FNAL main injector upgrade at injection energy. Assuming a peak value for secondary emission yield deltamax = 1.3, we find a threshold value of the bunch population, Nb,th~;=1.25x1011, beyond which the electron-cloud density rho_e reaches a steady-state level that is ~;104 times larger than for Nb

  8. Narrowband beam loading compensation in the Fermilab Main Injector accelerating cavities

    Joseph E. Dey; John S. Reid and James Steimel

    2001-07-12

    A narrowband beam loading compensation system was installed for the Main Injector Accelerating Cavities. This feedback operates solely on the fundamental resonant mode of the cavity. This paper describes modifications to the high level Radio Frequency system required to make the system operational. These modifications decreased the effect of steady-state beam loading by a factor of 10 and improved the reliability of paraphasing for coalescing.

  9. Microwave Transmission Through the Electron Cloud at the Fermilab Main Injector: Simulation and Comparison with Experiment

    Lebrun, Paul L.G.; /Fermilab; Veitzer, Seth Andrew; /Tech-X, Boulder

    2009-04-01

    Simulations of the microwave transmission properties through the electron cloud at the Fermilab Main Injector have been implemented using the plasma simulation code 'VORPAL'. Phase shifts and attenuation curves have been calculated for the lowest frequency TE mode, slightly above the cutoff frequency, in field free regions, in the dipoles and quadrupoles. Preliminary comparisons with experimental results for the dipole case are showed and will guide the next generation of experiments.

  10. Tritium transport in the NuMI decay pipe region - modeling and comparison with experimental data

    The NuMI (Neutrinos at Main Injector) beam facility at Fermilab is designed to produce an intense beam of muon neutrinos to be sent to the MINOS underground experiment in Soudan, Minnesota. Neutrinos are created by the decay of heavier particles. In the case of NuMI, the decaying particles are created by interaction of high-energy protons in a target, creating mostly positive pions. These particles can also interact with their environment, resulting in production of a variety of short-lived radionuclides and tritium. In the NuMI beam, neutrinos are produced by 120 GeV protons from the Fermilab Main Injector accelerator which are injected into the NuMI beam line using single turn extraction. The beam line has been designed for 400 kW beam power, roughly a factor of 2 above the initial (2005-06) running conditions. Extracted protons are bent downwards at a 57mr angle towards the Soudan Laboratory. The meson production target is a 94 cm segmented graphite rod, cooled by water in stainless tubes on the top and bottom of the target. The target is followed by two magnetic horns which are pulsed to 200 kA in synchronization with the passage of the beam, producing focusing of the secondary hadron beam and its daughter neutrinos. Downstream of the second horn the meson beam is transported for 675 m in an evacuated 2 m diameter beam (''decay'') pipe. Subsequently, the residual mesons and protons are absorbed in a water cooled aluminum/steel absorber immediately downstream of the decay pipe. Some 200 m of rock further downstream ranges out all of the residual muons. During beam operations, after installation of the chiller condensate system in December 2005, the concentration of tritiated water in the MINOS sump flow of 177 gpm was around 12 pCi/ml, for a total of 0.010 pCi/day. A simple model of tritium transport and deposition via humidity has been constructed to aid in understanding how tritium reaches the sump water. The model deals with tritium transported as HTO, water

  11. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.; S. Pordes; Shi, Z; Still, D.; Thurman-Keup, R.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection syste...

  12. Conceptual Design Report: Fermilab Upgrade. Main Injector. Technical Components and Civil Construction, January, 1989

    None

    1989-01-12

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Collider. The construction of this accelerator will simultaneously result in significant enhancements to the Fermilab fixed target program. The Main Injector (MI) is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The MI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the MI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the MI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two to three. In addition the MI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  13. Conceptual Design Report: Fermilab Upgrade: Main Injector - Technical Components and Civil Construction, January 1990 (Rev. 2)

    none,

    1990-01-10

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Accelerator Complex. The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The Main Injector (MI) is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The MI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the MI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the MI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two to three. In addition the MI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  14. Defining the systematic and random multipole errors for Main Injector Tracking

    At the Fermilab Magnet Test Facility (MTF) measurements of magnet field shape and strength have been performed. The tracking of the Fermi Main Injector (FMI) lattice requires a detailed knowledge of the magnetic field quality and its variation from magnet to magnet. As of this date only two prototype dipole magnets have been built, not enough to do a statistical analysis. For this purpose we have used old Main Ping dipole measurements. Measurements on a subset of Main Ring (MR) quadrupoles are also available. From the different sets of measurements available to us we have separated in our simulation the end multipoles from the body multipoles. Such a dissection of the magnet enables us to study more closely the effects of the end multipoles on the performance of the Main Injector. In particular we have studied the closed orbit errors due to variations in effective length of the long and short type dipoles. Tables of multipole errors are presented at both injection (8.9 GeV/c) and slow extraction (120 GeV/c) energies

  15. A dynamic dispersion insert in the Fermilab Main Injector for momentum collimation

    Johnson, D.E.; /Fermilab

    2007-06-01

    The Fermilab Main Injector (MI) accelerator is designed as a FODO lattice with zero dispersion straight sections. A scheme will be presented that can dynamically alter the dispersion of one of the long straight sections to create a non-zero dispersion straight section suitable for momentum collimation. During the process of slip stacking DC beam is generated which is lost during the first few milliseconds of the ramp. A stationary massive primary collimator/absorber with optional secondary masks could be utilized to isolate beam loss due to uncaptured beam.

  16. Progress on electron cloud effects calculations for the FNAL main injector

    We have studied the response of the beam to an electron cloud for the Fermilab Main Injector using the Quasistatic Model [1] implemented into the particle-in-cell code Warp [2]. Specifically, we have addressed the effects due to varying the beam intensity, electron cloud density and chromaticity. In addition, we have estimated the contribution to emittance evolution due to beam space-charge effects. We have carried out a comparison between how the beam responds at injection energy and at top energy. We also present some results on the validation of the computational model, and report on progress towards improving the computational model

  17. Physics at the Planck scale: Tests of CPT invariance at the Fermilab main injector

    It is possible that CPT-violating amplitudes with sizes of order mK/ mPlanck contribute to processes involving K mesons. We describe several tests of CPT invariance that could be carried out at the Fermilab Main Injector. To our surprise we find that one experiment, a precision measurement of the CP-violating charge asymmetry in semileptonic K decays, can be performed with sufficient statistical accuracy to detect the presence of CPT-violating amplitudes of size mK / mPlanck which generate a mass difference between K0 and bar K0. 10 refs

  18. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    Thurman-Keup, R; Blokland, W; Crisp, J; Eddy, N; Fellenz, B; Flora, R; Hahn, A; Hansen, S; Kiper, T; Para, A; Pordes, S; Tollestrup, A V

    2011-01-01

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This article describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  19. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs

  20. Beam manipulation and compression using broadband rf systems in the Fermilab Main Injector and Recycler

    G William Foster et al.

    2004-07-09

    A novel method for beam manipulation, compression, and stacking using a broad band RF system in circular accelerators is described. The method uses a series of linear voltage ramps in combination with moving barrier pulses to azimuthally compress, expand, or cog the beam. Beam manipulations can be accomplished rapidly and, in principle, without emittance growth. The general principle of the method is discussed using beam dynamics simulations. Beam experiments in the Fermilab Recycler Ring convincingly validate the concept. Preliminary experiments in the Fermilab Main Injector to investigate its potential for merging two ''booster batches'' to produce high intensity proton beams for neutrino and antiproton production are described.

  1. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    Baumbaugh, A; Brown, B C; Capista, D; Drennan, C; Fellenz, B; Knickerbocker, K; Lewis, J D; Marchionni, A; Needles, C; Olson, M; Pordes, S; Shi, Z; Still, D; Thurman-Keup, R; Utes, M; Wu, J

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and...

  2. Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam

    We report the results of a search for νμ disappearance by the Main Injector Neutrino Oscillation Search [D. G. Michael et al. (MINOS), Phys. Rev. Lett. 97, 191801 (2006).]. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27x1020 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336±14 νμ charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to |Δm2|=2.74-0.26+0.44x10-3 eV2/c4 and sin22θ>0.87 at 68% confidence level.

  3. Space charge measurements with a high intensity bunch at the Fermilab Main Injector

    For Project X, the Fermilab Main Injector will be required to operate with 3 times higher bunch intensity. The plan to study the space charge effects at the injection energy with intense bunches will be discussed. A multi-MW proton facility has been established as a critical need for the U.S. HEP program by HEPAP and P5. Utilization of the Main Injector (MI) as a high intensity proton source capable of delivering in excess of 2 MW beam power will require a factor of three increase in bunch intensity compared to current operations. Instabilities associated with beam loading, space charge, and electron cloud effects are common issues for high intensity proton machines. The MI intensities for current operations and Project X are listed in Table 1. The MI provides proton beams for Fermilab's Tevatron Proton-Antiproton Collider and MINOS neutrino experiments. The proposed 2MW proton facility, Project X, utilizes both the Recycler (RR) and the MI. The RR will be reconfigured as a proton accumulator and injector to realize the factor 3 bunch intensity increase in the MI. Since the energy in the RR and the MI at injection will be 6-8 GeV, which is relatively low, space charge effects will be significant and need to be studied. Studies based on the formation of high intensity bunches in the MI will guide the design and fabrication of the RF cavities and space-charge mitigation devices required for 2 MW operation of the MI. It is possible to create the higher bunch intensities required in the MI using a coalescing technique that has been successfully developed at Fermilab. This paper will discuss a 5 bunch coalescing scheme at 8 GeV which will produce 2.5 x 1011 protons in one bunch. Bunch stretching will be added to the coalescing process. The required RF parameters were optimized with longitudinal simulations. The beam studies, that have a goal of 85% coalescing efficiency, were started in June 2010.

  4. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    Backfish, Michael; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and ...

  5. Electron-Cloud Build-up in the FNAL Main Injector

    We present a summary on ongoing simulation results for the electron-cloud buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade [1] in a fieldfree region at the location of the RFA electron detector [2]. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding measurements obtained with the RFA we infer that the peak secondary electron yield (SEY) (delta)max is ∼> 1.4, and the average electron density is ne ∼> 1010 m-3 at transition energy for the specific fill pattern and beam intensities defined below. The sensitivity of our results to several variables remains to be explored in order to reach more definitive results. Effects from the electron cloud on the beam are being investigated separately [3

  6. Proposal for Drell-Yan Measurements of Nucleon and Nuclear Structure with the FNAL Main Injector

    Isenhower, L.D.; Sadler, M.E.; /Abilene Christian U.; Arrinton, J.; Geesamn, D.F.; Holt, R.J.; Jackson, H.E.; Reimer, P.E.; Potterveld, D.H.; /Argonne; Brown, C.N.; /Fermilab; Garvey, G.T.; Leitch, M.J.; /Los Alamos /Rutgers U. /Texas A-M /Valparaiso U.

    2001-04-01

    We propose measuring the fractional momentum (x) dependence of the ratio of the anti-down to anti-up quark distributions in the proton, {bar d}(x)/{bar u}(x), using proton induced Drell-Yan reactions at 120 GeV. Recent measurements by FNAL E866 unexpectedly show considerable x dependence in this ratio for x > 0.2. A lower energy primary proton beam from the Main Injector makes it possible to extend the E866 measurements to larger x with much higher precision. The apparatus will also be used with nuclear targets to measure parton energy loss and modifications to anti-quark distributions in nuclear targets at large x (x > 0.2).

  7. GeV-scale dark matter: Production at the main injector

    In this study, assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NOνA near detector is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes

  8. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    Backfish, Michael [Fermilab; Eldred, Jeffrey [Fermilab; Tan, Cheng Yang [Fermilab; Zwaska, Robert [Fermilab

    2015-07-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. We conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.

  9. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng-Yang; Zwaska, Robert

    2016-04-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. We conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.

  10. Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run

    Badgett, William; Torretta, Donatella; Meier, Jerry; Gunderson, Jeffrey; Osterholm, Denise; Saranen, David

    2015-01-01

    The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with the extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet T...

  11. Mobility of Tritium in Engineered and Earth Materials at the NuMI Facility, Fermilab: Progress report for work performed between June 13 and September 30, 2006

    This report details the work done between June 13 and September 30, 2006 by Lawrence Berkeley National Laboratory (LBNL) scientists to assist Fermi National Accelerator Laboratory (Fermilab) staff in understanding tritium transport at the Neutrino at the Main Injector (NuMI) facility. As a byproduct of beamline operation, the facility produces (among other components) tritium in engineered materials and the surrounding rock formation. Once the tritium is generated, it may be contained at the source location, migrate to other regions within the facility, or be released to the environment

  12. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    We present results from a precision simulation of the electron cloud (EC) in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and E.M. field maps have been generated. This has been done for various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results are compared with those obtained with the POSINST code. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated, as well as the more challenging microwave absorption experiment. Definite predictions of their exact response are difficult to obtain,mostly because of the uncertainties in the secondary emission yield and, in the case of the RFA, because of the sensitivity of the electron collection efficiency to unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program.

  13. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector (MI). Areas of agreement and disagreement are spelled out, along with their possible significance. An upgrade to the MI is being considered that would increase the bunch intensity Nb, from the present ∼ 1 x 1011 to 3 x 1011, corresponding to a total pulse intensity Ntot = 16.4 x 1013, in order to generate intense beams for the neutrino program. Such an increase in beam intensity would place the MI in a parameter regime where other storage rings have seen a significant EC effect. Motivated by this concern, efforts have been undertaken over the recent past to measure and simulate the magnitude of the effect and to assess its operational implications on the proposed upgrade. We report here a summary of simulation results obtained with the code POSINST, and certain benchmarks against measurements. Unless stated otherwise, the simulation parameters used are shown in Tab. 1. Some of these represent a slightly simplified version of the MI operation.

  14. Computation of electron cloud diagnostics and mitigation in the main injector

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  15. Electron-Cloud Build-Up Simulations for the FNAL Main Injector

    We present a summary on ongoing simulation results for the electron-cloud (EC) buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade effort (1). Most of the results presented here are for the field-free region at the location of the retarding field analyzer (RFA) electron detector (2-4). The primary input variable we exercise is the peak secondary electron yield (SEY) (delta)max, which we let vary in the range 1.2 (le) (delta)max (le) 1.7. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding RFA measurements we infer that 1.25 ∼max ∼e. We then compare the behavior of the EC for a hypothetical RF frequency fRF = 212 MHz with the current 53 MHz for a given total beam population Ntot. The density ne goes through a clear threshold as a function of Ntot in a field-free region. As expected, the higher frequency leads to a weaker EC effect: the threshold in Ntot is a factor ∼ 2 higher for fRF = 212 MHz than for 53 MHz, and ne is correspondingly lower by a factor ∼ 2 when Ntot is above threshold. We briefly describe further work that needs to be carried out, sensitivities in the calculation, and puzzles in the results that remain to be addressed

  16. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; /Fermilab; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2011-01-01

    We present results from a precision simulation of the electron cloud (EC) in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and E.M. field maps have been generated. This has been done for various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results are compared with those obtained with the POSINST code. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated, as well as the more challenging microwave absorption experiment. Definite predictions of their exact response are difficult to obtain,mostly because of the uncertainties in the secondary emission yield and, in the case of the RFA, because of the sensitivity of the electron collection efficiency to unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program.

  17. The Fermilab Main Injector dipole and quadrupole cooling design and bus connections

    Satti, J.A.

    1995-06-01

    The proposed system for connecting the low conductivity water (LCW) and the electrical power to the magnets is explained. This system requires minimum maintenance. Stainless steel headers supply LCW to local, secondary manifolds which regulate the flow to the dipole and to the copper bus which conduct both power and cooling water to the quadrupole. A combination of ceramic feedthroughs and thermoplastic hoses insulate the piping electrically from the copper bus system. The utilities for the Main Injector are grouped together at the outside wall of the tunnel leaving most of the enclosure space for servicing. Space above the headers is available for future accelerator expansion. The new dipoles have bolted electrical connections with flexible copper jumpers. Separate compression fittings are used for the water connections. Each dipole magnet has two water circuits in parallel designed to minimize thermal stresses and the number of insulators. Two electrical insulators are used in series because this design has been shown to minimize electrolyses problems and copper ion deposits inside the insulators. The design value of the temperature gradient of the LCW is 8{degrees}C.

  18. Experimental test of a new antiproton acceleration scheme in the Fermilab Main Injector

    In an effort to provide higher intensity and lower emittance antiproton beam to the Tevatron collider for high luminosity operation, a new Main Injector (MI) antiproton acceleration scheme has been developed [1-4]. In this scheme, beam is accelerated from 8 to 27 GeV using the 2.5 MHz rf system and from 27 to 150 GeV using the 53 MHz rf system. This paper reports the experimental results of beam study. Simulation results are reported in a different PAC'05 paper [5]. Experiments are conducted with proton beam from the Booster. Acceleration efficiency, emittance growth and beam harmonic transfer between 2.5 MHz (h=28) and 53 MHz (h=588) buckets have been studied. Beam study shows that one can achieve an overall acceleration efficiency of about 100%, longitudinal emittance growth less than 20% and negligible transverse emittance growth. accelerated to 150 GeV and injected to the Tevatron. The multi-bunch coalescing process is eliminated in this acceleration scheme. Consequently, longitudinal emittance growth is reduced. Smaller emittance growth reduces beam loss

  19. An rf separated kaon beam from the Main Injector: Superconducting aspects

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  20. Observation of Disappearance of Muon Neutrinos in the NuMI Beam

    Pavlovic, Zarko; /Texas U.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector long-baseline neutrino experiment designed to study the disappearance of muon neutrinos. MINOS will test the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation hypothesis and measure precisely {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} oscillation parameters. The source of neutrinos for MINOS experiment is Fermilab's Neutrinos at the Main Injector (NuMI) beamline. The energy spectrum and the composition of the beam is measured at two locations, one close to the source and the other 735 km down-stream in the Soudan Mine Underground Laboratory in northern Minnesota. The precision measurement of the oscillation parameters requires an accurate prediction of the neutrino flux at the Far Detector. This thesis discusses the calculation of the neutrino flux at the Far Detector and its uncertainties. A technique that uses the Near Detector data to constrain the uncertainties in the calculation of the flux is described. The data corresponding to an exposure of 2.5 x 10{sup 20} protons on the NuMI target is presented and an energy dependent disappearance pattern predicted by neutrino oscillation hypotheses is observed in the Far Detector data. The fit to MINOS data, for given exposure, yields the best fit values for {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} to be (2.38{sub -0.16}{sup +0.20}) x 10{sup -3} eV{sup 2}/c{sup 4} and 1.00{sub -0.08}, respectively.

  1. Electron-Cloud Build-Up Simulations for the FNAL Main Injector

    Furman, Miguel .A.

    2008-08-25

    We present a summary on ongoing simulation results for the electron-cloud (EC) buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade effort [1]. Most of the results presented here are for the field-free region at the location of the retarding field analyzer (RFA) electron detector [2-4]. The primary input variable we exercise is the peak secondary electron yield (SEY) {delta}{sub max}, which we let vary in the range 1.2 {le} {delta}{sub max} {le} 1.7. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding RFA measurements we infer that 1.25 {approx}< {delta}{sub max} {approx}< 1.35 at this location. From this piece of information we estimate features of the EC distribution for various fill patterns, including the average electron number density n{sub e}. We then compare the behavior of the EC for a hypothetical RF frequency f{sub RF} = 212 MHz with the current 53 MHz for a given total beam population N{sub tot}. The density n{sub e} goes through a clear threshold as a function of N{sub tot} in a field-free region. As expected, the higher frequency leads to a weaker EC effect: the threshold in N{sub tot} is a factor {approx} 2 higher for f{sub RF} = 212 MHz than for 53 MHz, and ne is correspondingly lower by a factor {approx} 2 when N{sub tot} is above threshold. We briefly describe further work that needs to be carried out, sensitivities in the calculation, and puzzles in the results that remain to be addressed.

  2. Design of Main Control Console Software in EAST Neutral Beam Injector's Control System for the First Beam Line

    Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long

    2013-10-01

    Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.

  3. The Modeling of Time-Structured Multiturn Injection into Fermilab Main Injector (Microbunch Injection with Parasitic Longitudinal Painting)

    Yoon, Phil S; Chou, Weiren

    2008-01-01

    This paper presents the modeling of time-structured multiturn injection for an upgraded Main Injector with the 8-GeV Superconducting RF proton driver, or an ILC-style linac, or a Project-X linac. The Radio-Frequency mismatch between a linac and the upgraded Main Injector will induce parasitic longitudinal painting in RF-phase direction. Several different scenarios with a choice of different RF parameters for single RF system and double RF system in the presence of longitudinal space charge have been investigated. From the studies of microbunch injection with the aid of ESME (2003) numerical simulations, it is found that the dual RF system with a choice of appropriate RF parameters allows us to overcome the space-charge limitation set by beam intensity during the multiturn-injection process. A double RF system with a harmonic ratio (R_H = H_2/H_1) of 2.0 and a voltage ratio (R_V = V_2/V_1) of 0.5 are most favored to reduce both longitudinal and transverse effects of space charge in the Main Injector.

  4. Conceptual Design Report: Fermilab Main Injector - Technical Components and Civil Construction, April 1992 (Rev. 3.1)

    None

    1992-04-01

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Fermilab Main Injector (FMI). The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The FMI is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The FMI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the FMI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the FMI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two-tothree. In addition the FMI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  5. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  6. Designing high energy accelerators under DOE's ''New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. ''New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example

  7. Designing high energy accelerators under DOE's 'New Culture' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. 'New Culture' environmental and safety questions are having to be addressed. The paper details the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line are presented so that other new accelerator proposals can benefit from the experience gained from this example

  8. Electron injector computer simulations

    The authors present contributions for electron injector computation and design, describing a simple but complete simulation code implemented on a personal computer, giving the main design choices taken for the BCMN and LEP high intensity injectors and for the ORION self-focussing injector. Electron dynamics are characterized by the predominant effect of the first ''accelerating'' cell, in contrast with proton dynamics. In this region shorter than an RF half-wavelength the non-linear bunching and acceleration can only be simulated in a step-by-step procedure. Analytical ''adiabatic'' approach cannot help the designer but he can take advantage of non-repetitive features to obtain radial RF self-focussing together with longitudinal bunching

  9. Status of NuMI experiments: MINOS+ and NO$\

    Coelho, João A.B. [Tufts U.

    2015-03-01

    The NuMI beam at Fermilab has been upgraded and is now capable of producing a 700 kW neutrino beam. Two major long-baseline neutrino experiments, MINOS+ and NOνA, have started data collection in the new NuMI configuration. This paper describes the latest developments of MINOS+ and NOνA. MINOS+ constitutes a new phase of the MINOS experiment and will provide improved sensitivity to new physics phenomena with a higher energy beam. NOνA will take advantage of its off-axis position to deliver precise measurements of

  10. Observation of deficit in NuMI neutrino-induced rock and non-fiducial muons in MINOS Far Detector and measurement of neutrino oscillation parameters

    The MINOS (Main Injector Neutrino Oscillation Search) experiment has observed muon neutrino disappearance consistent with the oscillation hypothesis tested by Super-Kamiokande and K2K. The survival probability for νμ is given approximately by 1 - sin22θ23sin2(1.27Δm232L/E), whereθ23 and Δm232 are the mixing angle and difference in mass squared in eV2/c4 between the mass eigenstates ν3 and ν2, L is the distance traveled in km, and E is the neutrino energy in GeV. In the Near Detector at Fermilab, a measurement of the energy spectrum of the NuMI neutrino beam is made 1 km from the beam target. The neutrinos travel to the Far Detector in the Soudan Underground Laboratory, where another measurement of the energy spectrum is made 735 km from the target. MINOS measures |Δm322| and sin22θ23 by comparing the ND and FD neutrino energy spectra. In this dissertation, a n alternate method is presented that utilizes rock muons, a class of events that occur when a νμ interaction takes place in the rock surrounding the FD. Many muons that result from these interactions penetrate the rock and reach the detector. Muon events from νμ interactions in the non-fiducial volume of the FD are also used in this analysis. The distribution of reconstructed muon momentum and direction relative to the beam is predicted by Monte Carlo simulation, normalized by the measured νμ energy spectrum at the ND. In the first year of NuMI running (an exposure of 1.27x1020 protons on target) 117 selected events are observed below 3.0 GeV/c, where 150.2±16.1 events are expected. When a fit is performed to events below 10.0 GeV/c, the null (no disappearance) hypothesis is ruled out at significance level α = 4.2 x 10-3. The data are consistent with the oscillation hypothesis given parameter values |Δm232| = 2.32 ±1.060.75 x 10-3 eV2/c4 (stat+sys) and sin22θ23 > 0.48 (68% CL) which is in agreement with the published MINOS result |Δm232| = 2.74 ±0.440.26 x 10-3 eV2/c4 (stat+sys) and sin22

  11. DAMAGES TO INJECTORS IN DIESEL ENGINES

    Piotr Ignaciuk

    2014-03-01

    Full Text Available The article describes damages to high pressure injectors used in common rail injection systems. The conducted analysis of their causes includes the diagnosis of injectors on a test bench and the results of microscopic research of damaged components. The tribological damages of high pressure injectors are local and cavitations pitting. The place of cavitations pitting are mainly check valves, where the reduction in the quantity of injected fuel is forming.

  12. CFD simulation of coaxial injectors

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  13. Studies of muon-induced radioactivity at NuMI

    Boehnlein, David J

    2012-01-01

    The JASMIN Collaboration has studied the production of radionuclides by muons in the muon alcoves of the NuMI beamline at Fermilab. Samples of aluminum and copper are exposed to the muon field and counted on HpGe detectors when removed to determine their content of radioactive isotopes. We compare the results to MARS simulations and discuss the radiological implications for neutrino factories and muon colliders.

  14. The Heidelberg High Current Injector: A Versatile Injector for Storage Ring Experiments

    von Hahn, R.; Grieser, M.; Repnow, R.; Schwalm, D.; Welsch, C.

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated single turn injector for the Test Storage Ring in Heidelberg to deliver mainly very high intensities of singly charged Li- and Be-ions for laser cooling experiments. After start of routine operation in 1999 the HCI delivered high quality beams for about 25% of the experiments with very high reliability. Due to the experimental requirements the HCI mutated from a specialized injector to a versatile multipurpose instrumen...

  15. MARS simulations of the NuMI primary beamline

    Sergei I Striganov

    2004-05-18

    MARS is a Monte Carlo code for simulation of three-dimensional hadronic and electromagnetic cascades, muon and low-energy neutron transport in shielding and in accelerator and detector components in the energy range from a fraction of an eV up to 100 TeV. This report uses MARS to both transport the 120 GeV primary proton beam from the NuMI extraction Lambertsons through the NuMI Pre-target Hall and calculate the radiological effect of beam losses at various locations and for a variety of conditions. These results are used to: anticipate where beam losses will be significant; determine the level of activation of components; and calculate ground water activation and confirm adequacy of shielding. The results are presented in tables and figures along with drawings of the magnets as they were modeled in MARS. Details of the model elements are found in Appendix A. Further details of beam loss case studies are included in Appendix B.

  16. Injector for calciner

    Davis, R.L.; Edwards, D.L.; Graf, H.G.; Macbeth, W.B. Jr.

    1983-10-04

    Combustion gas such as air, oxygen-enriched air or oxygen is introduced to a calcining zone at an intermediate level in a vertical shaft kiln for the calcining of petroleum coke utilizing a plurality of radially disposed combustion gas injectors and at least one vertically disposed injector located within the shaft kiln and extending into the calcining zone. The injector includes means for circulating coolant around the periphery of the injector so that common metals may be used in the high temperature (above 2000/sup 0/ F.) environment of the shaft kiln. The vertical combustion gas injector may extend from the top of the calcining chamber to the calcining zone or from the bottom of the calcining chamber to the calcining zone. When the vertical combustion gas injector extends vertically upwardly from the bottom of the calcining chamber, means for introducing recycle gas to the calcining chamber may be incorporated into the vertical combustion gas injector.

  17. Observation of deficit in NuMI neutrino-induced rock and non-fiducial muons in MINOS Far Detector and measurement of neutrino oscillation parameters

    McGowan, Aaron Michael; /Minnesota U.

    2007-08-01

    The MINOS (Main Injector Neutrino Oscillation Search) experiment has observed muon neutrino disappearance consistent with the oscillation hypothesis tested by Super-Kamiokande and K2K. The survival probability for {nu}{sub {mu}} is given approximately by 1 - sin{sup 2}2{theta}{sub 23}sin{sup 2}(1.27{Delta}m{sup 2}{sub 32}L/E), where{theta}{sub 23} and {Delta}m{sup 2}{sub 32} are the mixing angle and difference in mass squared in eV{sup 2}/c{sup 4} between the mass eigenstates {nu}{sub 3} and {nu}{sub 2}, L is the distance traveled in km, and E is the neutrino energy in GeV. In the Near Detector at Fermilab, a measurement of the energy spectrum of the NuMI neutrino beam is made 1 km from the beam target. The neutrinos travel to the Far Detector in the Soudan Underground Laboratory, where another measurement of the energy spectrum is made 735 km from the target. MINOS measures |{Delta}m{sub 32}{sup 2}| and sin{sup 2}2{theta}{sub 23} by comparing the ND and FD neutrino energy spectra. In this dissertation, a n alternate method is presented that utilizes rock muons, a class of events that occur when a {nu}{sub {mu}} interaction takes place in the rock surrounding the FD. Many muons that result from these interactions penetrate the rock and reach the detector. Muon events from {nu}{sub {mu}} interactions in the non-fiducial volume of the FD are also used in this analysis. The distribution of reconstructed muon momentum and direction relative to the beam is predicted by Monte Carlo simulation, normalized by the measured {nu}{sub {mu}} energy spectrum at the ND. In the first year of NuMI running (an exposure of 1.27x10{sup 20} protons on target) 117 selected events are observed below 3.0 GeV/c, where 150.2{+-}16.1 events are expected. When a fit is performed to events below 10.0 GeV/c, the null (no disappearance) hypothesis is ruled out at significance level {alpha} = 4.2 x 10{sup -3}. The data are consistent with the oscillation hypothesis given parameter values |{Delta

  18. Injector operations at LAMPF

    The injector complex at LAMPF consists of three on-line 750-kV injectors which provide simultaneous H+ and H- beams for LAMPF production and an off-line 200-keV injector for ion source and beam diagnostic development studies. The present operation now entails a 500-μA/sub a/ H+ beam accelerated simultaneously with either a 6-μA/sub a/ unpolarized or 10-nA/sub a/ polarized H- beam. In order to obtain the low-beam spill required for the operation of the LAMPF accelerator, it has been necessary to increase the brightness of the high-intensity H+ beam. The operating experience and development work that has been carried out on all of these injectors to improve the quality and intensity of these beams will be presented. The details of the construction of the test stand injector and the development program planned for this injector will also be outlined

  19. LHC Report: imaginative injectors

    Pierre Freyermuth for the LHC team

    2016-01-01

    A new bunch injection scheme from the PS to the SPS allowed the LHC to achieve a new peak luminosity record.   Figure 1: PSB multi-turn injection principle: to vary the parameters during injection with the aim of putting the newly injected beam in a different region of the transverse phase-space plan. The LHC relies on the injector complex to deliver beam with well-defined bunch populations and the necessary transverse and longitudinal characteristics – all of which fold directly into luminosity performance. There are several processes taking place in the PS Booster (PSB) and the Proton Synchrotron (PS) acting on the beam structure in order to obtain the LHC beam characteristics. Two processes are mainly responsible for the beam brightness: the PSB multi-turn injection and the PS radio-frequency (RF) gymnastics. The total number of protons in a bunch and the transverse emittances are mostly determined by the multi-turn Booster injection, while the number of bunches and their time spacin...

  20. The FNAL injector upgrade

    The present FNAL H- injector has been operational since the 1970s and consists of two magnetron H- sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H- beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H- source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H- injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.

  1. Pulsed injector of the working substance for magnetoplasma compressor

    Technical description of the high-speed pulsed injector of working substance with a radial gas supply for magnetoplasma compressor is given. The results of studies on the main gas-dynamic and electrotechnical characteristics of the gas injector are presented

  2. The Heidelberg High Current Injector A Versatile Injector for Storage Ring Experiments

    Von Hahn, R; Repnow, R; Schwalm, D; Welsch, C P

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated injector for the Test Storage Ring in Heidelberg to deliver mainly singly charged Li- and Be-ions. After start for routine operation in 1999 the HCI delivered stable beams during the following years for about 50 % of the experiments with very high reliability. Due to the requirements from the experiment the HCI changed during that period from a machine for singly charged positive ions to an injector for a large variety of molecules as well as positively or negatively charged light ions. After successful commissioning of the custom built 18 GHz high power ECR-source at its present test location various modifications and additions were made in preparation of a possible conversion into an injector for highly charged heavy ions as a second phase. This paper gives an overview of the experience gained in the passed 5 years and presents the status of the upgrade of the HCI.

  3. Linac LU-20 as injector of Nuclotron

    The linac LU-20 created as an injector of Synchrophasotron and Nuclotron is described. Tables of main parameters and beam intensities are included. The functional diagram of LU-20 is shown. Injection channels, diagnostic and control systems are described also. The scheme of beam transport line is also provided. (author)

  4. Linac pre-injector

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  5. PLT neutral injector performance

    The experience with respect to beamline operation on PLT and on the Princeton test stand is reviewed. We discuss the performance of the injectors, beam energy distributions as measured by two techniques, beam-associated impurities, control of gas evolution in the drift duct by titanium evaporation, reionization in the drift duct, and the computer archiving and control system currently under development

  6. Tritium pellet injector results

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  7. Pellet injectors for JET

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity (3). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  8. Update to the NLC Injector System Design

    The Next Linear Collider (NLC) Injector System is designed to produce low emittance 8 GeV electron and positron beams at 120 hertz for injection into the NLC main linacs. Each beam consists of a 265 ns train of bunches (190 bunches spaced by 1.4 ns or 95 bunches spaced by 2.8 ns); each bunch has a population of up to 1.6 x 1010 particles for 2.8 ns (or 0.8 x 1010 particles for 1.4 ns). Horizontal and vertical emittances are specified to be γ(varepsilon)x = 3 x 10-6 m-rad and γ(varepsilon)y = 2 x 10-8 m-rad; bunch length at injection is variable from 90-140 (micro)m. Electron polarization of greater than 80% is required. Electron and positron beams are generated in separate accelerator complexes each of which contains the source, damping ring systems, linacs, bunch length compressors, and collimation regions. Investigation into the feasibility of polarized positrons for the NLC has begun; operations at 180 Hz and the centralization of the injector complex have been studied. The need for affordable, low technical risk, reliable injector subsystems is a major consideration in the design effort. This paper presents an overview of the NLC injector systems with an emphasis on changes in the design since 1999 [1] and discusses the planned R and D

  9. CTF3 Drive Beam Injector Optimisation

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  10. MINOS+: a Proposal to FNAL to run MINOS with the medium energy NuMI beam

    Tzanankos, G.; /Athens U.; Bishai, M.; Diwan, M.; /Brookhaven; Escobar, C.O.; Gomes, R.A.; Gouffon, P.; /Campinas State U. /Goias U. /Sao Paulo U.; Blake, A.; Thomson, M.; /Cambridge U.; Patterson, R.B.; /Caltech; Adamson, P.; Childress, S.; /Fermilab /IIT, Chicago /Los Alamos /Minnesota U. /Minnesota U., Duluth /Bhubaneswar, NISER /Iowa State U.

    2011-05-01

    This is a proposal to continue to expose the two MINOS detectors to the NuMI muon neutrino beam for three years starting in 2013. The medium energy setting of the NuMI beam projected for NO{nu}A will deliver about 18 x 10{sup 20} protons-on-target during the first three years of operation. This will allow the MINOS Far Detector to collect more than 10,000 charged current muon neutrino events in the 4-10 GeV energy range and provide a stringent test for non-standard neutrino interactions, sterile neutrinos, extra dimensions, neutrino time-of-flight, and perhaps more. In addition there will be more than 3,000 neutral current events which will be particularly useful in extending the sterile neutrino search range.

  11. MINOS+: a Proposal to FNAL to run MINOS with the medium energy NuMI beam

    This is a proposal to continue to expose the two MINOS detectors to the NuMI muon neutrino beam for three years starting in 2013. The medium energy setting of the NuMI beam projected for NOνA will deliver about 18 x 1020 protons-on-target during the first three years of operation. This will allow the MINOS Far Detector to collect more than 10,000 charged current muon neutrino events in the 4-10 GeV energy range and provide a stringent test for non-standard neutrino interactions, sterile neutrinos, extra dimensions, neutrino time-of-flight, and perhaps more. In addition there will be more than 3,000 neutral current events which will be particularly useful in extending the sterile neutrino search range.

  12. Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    Michael, D G; Alexopoulos, T; Allison, W W M; Alner, G J; Anderson, K; Andreopoulos, C; Andrews, M; Andrews, R; Arms, K E; Armstrong, R; Arroyo, C; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barker, M A; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bocean, V; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Boyd, S; Buckley-Geer, E; Bungau, C; Byon-Wagner, A; Cabrera, A; Chapman, J D; Chase, T R; Cherdack, D; Chernichenko, S K; Childress, S; Choudhary, B C; Cobb, J H; Cossairt, J D; Courant, H; Crane, D A; Culling, A J; Dawson, J W; De Jong, J K; De Muth, D M; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drake, G; Drakoulakos, D; Ducar, R; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Fackler, O D; Falk-Harris, E; Feldman, G J; Felt, N; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Gebhard, M; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gornushkin, Yu; Gouffon, P; Gran, R; Grashorn, E; Grossman, N; Grudzinski, J J; Grzelak, K; Guarino, V; Habig, A; Halsall, R; Hanson, J; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Hill, N; Ho, Y; Holin, A; Howcroft, C; Hylen, J; Ignatenko, M A; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M; Kilmer, J; Kim, H; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kostin, M; Kotelnikov, S K; Krakauer, D A; Kreymer, A; Kumaratunga, S; Ladran, A S; Lang, K; Laughton, C; Lebedev, A; Lee, R; Lee, W Y; Libkind, M A; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Longley, N P; Lucas, P; Luebke, W; Madani, S; Maher, E; Makeev, V; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McDonald, J; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morf, J; Morse, R; Mualem, L; Mufson, S; Murgia, S; Murtagh, M J; Musser, J; Naples, D; Nelson, C; Nelson, J K; Newman, H B; Nezrick, F A; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, J; Oliver, W P; Onuchin, V A; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovich, Z; Pearce, G F; Pearson, N; Peck, C W; Perry, C; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Pla-Dalmau, A; Plunkett, R K; Price, L E; Proga, M; Pushka, D R; Rahman, D; Rameika, R A; Raufer, T M; Read, A L; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schoessow, P V; Schreiner, P; Schwienhorst, R; Semenov, V K; Seun, S M; Shanahan, P; Shield, P D; Smart, W; Smirnitsky, A V; Smith, C; Smith, P N; Sousa, A; Speakman, B; Stamoulis, P; Stefanik, A; Sullivan, P; Swan, J M; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trendler, R; Trevor, J; Trostin, I; Tsarev, V A; Tzanakos, G S; Urheim, J; Vahle, P; Vakili, M; Vaziri, K; Velissaris, C; Verebryusov, V; Viren, B; Wai, L; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; White, R F; Wojcicki, S G; Wright, D M; Wu, Q K; Yan, W G; Yang, T; Yumiceva, F X; Yun, J C; Zheng, H; Zois, M; Zwaska, R

    2006-01-01

    This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the beam axis at distances of 1 km and 735 km. With 1.27 x 10^{20} 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 \\pm 14.4 events. The data are consistent with muon neutrino disappearance via oscillation with |\\Delta m^2_{23}| = 2.74^{+0.44}_{-0.26} x 10^{-3} eV^2/c^4 and sin^2(2\\theta_{23}) > 0.87 (at 60% C.L.).

  13. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber

  14. Assembly process of the ITER neutral beam injectors

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  15. The FNAL injector upgrade

    Tan, C Y; Duel, K L; Lackey, J R; Pellico, W A

    2012-01-01

    The present FNAL H- injector has been operational since the 1970s and consists of two magnetron H- sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system.

  16. Control system for HIMAC injector

    A control system for HIMAC injector has been designed. The system consists of three mini-computers and many intelligent device controllers. The device controller is a single-board computer with a real time monitor and is installed in each device. Almost man-machine interactions for an operation of the injector system are performed by touch panels and rotary encoders. (author)

  17. Fundamental rocket injector/spray programs at the Phillips Laboratory

    Talley, D. G.

    1993-11-01

    The performance and stability of liquid rocket engines is determined to a large degree by atomization, mixing, and combustion processes. Control over these processes is exerted through the design of the injector. Injectors in liquid rocket engines are called upon to perform many functions. They must first of all mix the propellants to provide suitable performance in the shortest possible length. For main injectors, this is driven by the tradeoff between the combustion chamber performance, stability, efficiency, and its weight and cost. In gas generators and preburners, however, it is also driven by the possibility of damage to downstream components, for example piping and turbine blades. This can occur if unburned fuel and oxidant later react to create hot spots. Weight and cost considerations require that the injector design be simple and lightweight. For reusable engines, the injectors must also be durable and easily maintained. Suitable atomization and mixing must be produced with as small a pressure drop as possible, so that the size and weight of pressure vessels and turbomachinery can be minimized. However, the pressure drop must not be so small as to promote feed system coupled instabilities. Another important function of the injectors is to ensure that the injector face plate and the chamber and nozzle walls are not damaged. Typically this requires reducing the heat transfer to an acceptable level and also keeping unburned oxygen from chemically attacking the walls, particularly in reusable engines. Therefore the mixing distribution is often tailored to be fuel-rich near the walls. Wall heat transfer can become catastrophically damaging in the presence of acoustic instabilities, so the injector must prevent these from occurring at all costs. In addition to acoustic stability (but coupled with it), injectors must also be kinetically stable. That is, the flame itself must maintain ignition in the combustion chamber. This is not typically a problem with main

  18. Injector Design for Advanced Accelerators

    Henestroza, Enrique; Faltens, A.

    1996-11-01

    Accelerator designs intended to provide acceleration at a much lower cost per Joule than the ILSE or ELISE designs are under study. For these designs, which typically have many beams, an injector of significantly lower cost is needed. A goal, which from our design appears to be achievable, is to reduce the transverse dimension to half that of the 2 MeV, 800 mA ILSE injector(E. Henestroza, ``Injectors for Heavy Ion Fusion", Proc. of the 11th International Wkshp. on Laser Interaction and Related Plasma Phenomena, 1993.) while generating about the same current. A single channel of a lower cost injector includes an 800 kV column, accelerating a 700 mA beam extracted from a potassium source of 4 cm radius by a 120 kV electrode. The beam passes into a superconducting 7 T solenoid of 15 cm aperture and 15 cm length. This high-field solenoid provides the focusing needed for a small beam without increasing the electric field gradient. The injector and its matching section, also designed, fit within a 12 cm radius, which is small enough to allow construction of attractive multi-beam injectors. We will present solutions for the generation and transport of 700 mA potassium beams of up to 1.6 MeV within the same transverse constraint.

  19. Commissioning the LCLS Injector

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

    2007-11-28

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam was completed in August 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch clearly demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photo-cathode drive laser, RF gun, photocathode, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  20. Commissioning the LCLS Injector

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam was completed in August 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch clearly demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photo-cathode drive laser, RF gun, photocathode, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics

  1. The light-ion injector

    In an extensive field mapping program the magnetic fields of the main coils and various pole-gap coils of the light-ion injector (SPC1) were measured. As a further test, the measured field maps were used to calculate the excitation currents through the various coils for a specific field shape. Orbit calculations, based on the electric potential fields measured is the electrolytic tank on the 3:1 scale model of the central region, made it possible to optimise the ion-source position, improve the axial focussing of the beam and specify an approximate position for the second axial. The coils for the first magnetic channel were manufactured and field measurements with the channel in position in the pole-gap have been performed. The radio-frequency system of SPC1 consists of three main sections, namely resonators, power amplifiers and the control systems. The purpose of the rf-system is to provide the accelerating voltages of up to 70 kV peak in the 8,6 to 26 MHz frequency range, which are required to accelerate the particle beams

  2. The injector of the Utrecht en tandem

    Zwol, N.A. van; van der Borg, K.; de Haas, A.P.; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90° analysing magnet, m/Δm = 300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  3. High-brightness electron injectors

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  4. Assessment of radiological releases from the NuMI facility during MINOS and NOvA operations

    Martens, Mike; /Fermilab

    2007-04-01

    This report makes projections of the radiological releases from the NuMI facility during operations for the MINOS and NO ?A experiments. It includes an estimate of the radionuclide levels released into the atmosphere and the estimated tritium and sodium-22 concentrations in the NuMI sump water and Fermilab pond system. The analysis was performed for NuMI operations with a beam power on target increased from the present 400 kW design up to a possible 1500 kW with future upgrades. The total number of protons on target was assumed to be 18 x 10{sup 20} after the completion of MINOS and 78 x 10{sup 20} after the completion of NO ?A.

  5. Neutrino Oscillations Experiments using Off-axis NuMI Beam

    Para, A

    2001-01-01

    NuMI neutrino beam is constructed to aim at the MINOS detector in Soudan mine. Neutrinos emitted at angles $10-20 mrad$ with respect to the beam axis create an intense beam with a well defined energy, dependent on the angle. Additional surface detectors positioned at the transverse distance of several kilometers from the mine offer an opportunity for very precise mesurements of the neutrino oscillation parameters. The mixing matrix element $|U_{e3}|^{2}$ can be measured down to a value of 0.0025 with the exposure of the order of $20 kton\\times years$.

  6. Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Baller, B; Barnes, P D; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; De Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Metelko, C J; Michael, D G; Miller, J L; Miller, W H; Mishra, S R; Moore, C D; Morfn, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovi, Z; Pawloski, G; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, A; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Seun, S M; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Symes, P; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zois, M; Zhang, K; Zwaska, R

    2008-01-01

    This letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum mechanical oscillations of neutrino flavor with mass splitting $|\\Delta m^2|=(2.43\\pm 0.13)\\times10^{-3}$ eV$^2$ (68% confidence level) and mixing angle $\\sin^2(2\\theta)>0.90$ (90% confidence level). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight, namely neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively.

  7. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    Auty, David John; /Sussex U.

    2010-05-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0% {bar {nu}}{sub {mu}}, which can be separated from the {nu}{sub {mu}} because the MINOS detectors are magnetized. This makes it possible to study {bar {nu}}{sub {mu}} oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the {bar {nu}}{sub {mu}} oscillation parameters and comparing them with those for {nu}{sub {mu}}, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam {bar {nu}}{sub {mu}} before. It is also possible to produce an almost pure {bar {nu}}{sub {mu}} beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% {bar {nu}}{sub {mu}} component of the forward horn current NuMI beam. The {bar {nu}}{sub {mu}} of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3{sub -7.6}{sup +7.6}(stat.){sub -3.6}{sup +3.6}(syst.) events. This corresponds to a 1.9 {sigma} deficit, and a best fit value of {Delta}{bar m}{sub 32}{sup 2} = 18 x 10{sup -3} eV{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23} = 0.55. This thesis focuses particularly on the selection of {bar {nu}}{sub {mu}} events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The thesis also investigates how the systematic errors affect the

  8. Steady state neutral beam injector

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >105 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m2, frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  9. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Ling, Jiajie [Univ. of South Carolina, Columbia, SC (United States)

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  10. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  11. Detonation drive pellet injector

    Detonation drive pellet injector has been developed and tested. By this method the free piston is not necessary because the pellet accelerated the high pressure shock directly. In the experiment, the Teflon pellet (5 mm dia., 5 mm length) was accelerated by hydrogen, oxygen and dilution gas mixtured detonation. When the gas pressure was only 500 kPa and the mixture rates of hydrogen, oxygen and helium were 3:6:1 or 3:6:0, the Teflon pellet speed was up to 747 m/s. Typical experimental results over 300 kPa of the initial gas pressure range are 78--92% of the one-dimensional calculational values. It showed that the pellet could be accelerated by a relative low pressure gas. When the helium dilution rate is larger than 20%, it was often found the strong detonation of which speed is more than the Chapman-Jouguet speed. Then the pellet speed above 1,100 m/s was obtained

  12. Technical achievements in creation of intense classical type polarized particle injectors

    A review of achievements in the technique of intense polarized beam production is presented in connection with preparation for the KhFTI injector reconstruction. The main attention is given to the polarized particle source (PPS) assemblies of classical type. Effectiveness of contemporary PPS is compared with that of the KhFTI injector. 40 refs.; 10 figs.; 3 tables. (author)

  13. Experimental characterization of CANDELA photo-injector

    Travier, C.; Devanz, G.; Leblond, B.; Mouton, B.

    1997-02-01

    CANDELA photo-injector is made of a 2-cell S-band RF gun, using a dispenser cathode illuminated by a Ti : sapphire laser. This electron source provides a single bunch (at 12.5 Hz), with a charge of 1 nC and an energy of 2 MeV. After recalling the experimental set-up, this paper presents some results concerning mainly energy and bunch length measurements, and also comparisons with simulations done with the PARMELA code. Measured pulse durations of less than 10 ps show for the first time that dispenser photocathodes are "fast response" cathodes.

  14. A new biolistic intradermal injector

    Brouillette, M.; Doré, M.; Hébert, C.; Spooner, M.-F.; Marchand, S.; Côté, J.; Gobeil, F.; Rivest, M.; Lafrance, M.; Talbot, B. G.; Moutquin, J.-M.

    2016-01-01

    We present a novel intradermal needle-free drug delivery device which exploits the unsteady high-speed flow produced by a miniature shock tube to entrain drug or vaccine particles onto a skin target. A first clinical study of pain and physiological response of human subjects study is presented, comparing the new injector to intramuscular needle injection. This clinical study, performed according to established pain assessment protocols, demonstrated that every single subject felt noticeably less pain with the needle-free injector than with the needle injection. Regarding local tolerance and skin reaction, bleeding was observed on all volunteers after needle injection, but on none of the subjects following powder injection. An assessment of the pharmacodynamics, via blood pressure, of pure captopril powder using the new device on spontaneously hypertensive rats was also performed. It was found that every animal tested with the needle-free injector exhibited the expected pharmacodynamic response following captopril injection. Finally, the new injector was used to study the delivery of an inactivated influenza vaccine in mice. The needle-free device induced serum antibody response to the influenza vaccine that was comparable to that of subcutaneous needle injection, but without requiring the use of an adjuvant. Although no effort was made to optimize the formulation or the injection parameters in the present study, the novel injector demonstrates great promise for the rapid, safe and painless intradermal delivery of systemic drugs and vaccines.

  15. Report from the polarization group of the Fermilab injector workshop

    The group considered physics, accelerator, and polarized source issues. Most of the physics study was concerned with what significant and unique experiments could be done if polarized protons could be accelerated in the main injector and eventually in the Tevatron. 12 refs., 4 figs

  16. Academic Training: A walk through the LHC injector chain - POSTPONED!

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16 February from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB The lectures are postponed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  17. Academic Training: A walk through the LHC injector chain

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 21, 22, 23 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  18. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    Auty, David John [Univ. of Sussex, Brighton (United Kingdom)

    2010-03-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0%$\\bar{v}$μ, which can be separated from the vμ because the MINOS detectors are magnetized. This makes it possible to study $\\bar{v}$μ oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the $\\bar{v}$μ oscillation parameters and comparing them with those for vμ, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam $\\bar{v}$μ before. It is also possible to produce an almost pure $\\bar{v}$μ beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% $\\bar{v}$μ component of the forward horn current NuMI beam. The $\\bar{v}$μ of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3-7.6+7.6(stat.)-3.6+3.6(syst.) events. This corresponds to a 1.9 σ deficit, and a best fit value of Δ$\\bar{m}$322 = 18 x 10-3 eV2 and sin2 2$\\bar{θ}$23 = 0.55. This thesis focuses particularly on the selection of $\\bar{v}$μ events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The

  19. Request for a Test Exposure of OPERA Targets in the NuMI Beam

    We request to use the Fermilab NuMI neutrino beam in the MINOS Near Detector Hall to produce neutrino interactions in two separate detector arrangements using prototype target bricks designed for the OPERA experiment. OPERA is scheduled to to begin taking data in the CERN Neutrinos to Gran Sasso (CNGS) beam in 2006. The proposed test set up would be located just upstream of the MINOS Near Detector. The data will be used to validate the OPERA analysis scheme and to study backward particle production in neutrino interactions, which is of interest to the OPERA collaboration as well as the neutrino community in general. In addition, we contend that the data taken in this exposure may also be useful to the MINOS collaboration as additional input to the understanding of the initial composition of the neutrino beam. Ideally, this exposure could take place in early to mid-2005, providing timely feedback to both the OPERA and MINOS collaborations.

  20. Detector R and D for future neutrino experiments with the NuMI beamline

    This document is the result of a request from the Fermilab directorate to (i) investigate the detector technology issues relevant for future long baseline experiments and (ii) consider the associated detector R and D that would be needed to prepare the way for future neutrino oscillation experiments using the NuMI beamline. Because of the narrow energy spread provided by an off-axis beam and the resulting low intrinsic electron neutrino background, as well as the very favorable duty cycle of the NuMI beamline, a well-placed neutrino detector at the surface of the earth could take the next important steps in neutrino oscillation physics. The biggest outstanding issue in this field is whether or not the last unmeasured element of the leptonic mixing matrix, parameterized by the mixing angle θ13, is nonzero. If it is in fact non-zero, this opens the door to measurements of the neutrino mass hierarchy and, if the solar neutrino oscillations are described by the LMA solution, searches for CP violation in the lepton sector. In order to get to any of these measurements, an off-axis detector must be capable of measuring the νμ((bar ν)μ) → νe((bar ν)e) transition probabilities as well as the νμ((bar ν)μ) survival probabilities, at the energies present in these off-axis beams, which could lie anywhere from 0.6 to 3 GeV. Optimal baselines and energies will depend on the physics goal of the experiment. For example, an optimization of the sensitivity for νe appearance from a νμ beam assuming Δm322 = 3 x 10-3 eV2 would lead to a baseline of ∼ 700-900 km and an energy of ∼ 2.2 GeV

  1. The FNAL Injector Upgrade Status

    The new FNAL H- injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H- source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

  2. High-current cyclotron injector

    Choosing the parameters of a high-current cyclotron intended for production of 1-10 mA intensity beam is considered. The cyclotron is assumed to be used as an injector for deuteron accelerating facility to 45 MeV/nucleon energy. 13 refs.; 4 figs.; 1 tab

  3. Tritium pellet injector for TFTR

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  4. Tritium pellet injector for TFTR

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single- stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. A new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellets. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  5. Pb injector at CERN

    For the CERN Lead Ion Accelerating Facility (achieved within a collaboration of several outside laboratories and with financial help of some member states) a new dedicated Linac has been built. This Linac has been installed in 1994 and served during two extended physics runs. This paper reviews the main characteristics of this machine and describes the first operational experience. Emphasis is put on new features of this accelerator, its associated equipment and on the peculiarities of heavy ions. (author)

  6. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    Morfin, J.G.; /Fermilab; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  7. The FNAL Injector Upgrade Status

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Karns, P.R.; Lackey, J.R.; Pellico, W.A; Scarpine, V.E.; Tomlin, R.E.; /Fermilab

    2012-05-14

    The new FNAL H{sup -} injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H{sup -} source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

  8. Centrifuge pellet injector for JET

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  9. Injector linac of SPring-8

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  10. A fine-grained detector to study nuclear effects in a NuMI neutrino scattering experiment

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos making it the ideal location for high statistics (anti)neutrino-nucleon/nucleus experiments. With such intensities, a fine-grained, solid scintillator detector becomes practical. The ability of such a detector to examine so-far unstudied nuclear effects in neutrino scattering will be addressed. Recent theoretical work suggests that such effects will be considerably different from those measured with electron and muon beams

  11. Fermilab Antiproton Source, Recycler Ring, and Main Injector

    Nagaitsev, Sergei

    2014-01-01

    At the end of its operations in 2011, the Fermilab antiproton production complex consisted of a sophisticated target system, three 8-GeV storage rings (namely the Debuncher, the Accumulator and the Recycler), 25 independent multi-GHz stochastic cooling systems, the world's only relativistic electron cooling system and a team of technical experts equal to none. The accelerator complex at Fermilab supported a broad physics program including the Tevatron Collider Run II, neutrino experiments using 8-GeV and 120-GeV proton beams, as well as a test beam facility and other fixed target experiments using 120-GeV primary proton beams. This paper provides a brief description of Fermilab accelerators as they operated at the end of the Collider Run II (2011).

  12. The main injector particle production experiment at Fermilab

    Rajendran Raja

    2006-11-01

    We describe the physics capabilities and status of the MIPP experiment which concluded its physics data taking run in March 2006. We show some preliminary results from this run and describe plans to upgrade the spectrometer.

  13. Investigations of injectors for scramjet engines

    Maddalena, Luca

    Three, coordinate experimental studies were undertakes. First, an experimental study of an aerodynamic ramp (aeroramp) injector was conducted at Virginia Tech. The aeroramp consisted of an array of two rows with two columns of flush-wall holes that induce vorticity and enhance mixing. The holes were spaced four diameters apart in the streamwise direction with two diameters transverse spacing between them. For comparison, a single-hole circular injector with the same area angled downstream at 30 degrees was also examined. Test conditions involved sonic injection of helium heated to 313 K, to safely simulate hydrogen into a Mach 4 air cross-stream with average Reynolds number 5.77 · 107 per meter at a jet to freestream momentum flux ratio of 2.1. Sampling probe measurements were utilized to determine the local helium concentration. Pitot and cone-static pressure probes and a diffuser thermocouple probe were employed to document the flow. The main results of this work was that the mixing efficiency value of this aeroramp design which was originally optimized at Mach 2.4 for hydrocarbon injectants was only slightly higher than that of the single-hole injector at these high Mach number flow conditions with a low molecular weight injectant. The mass-averaged total pressure loss parameter showed that the aero-ramp and single-hole injectors had the same overall losses. The natural extension of the investigation was then to look in detail at two major physical phenomena that occur in a complex injector design such the aeroamp as well as in Scramjet combustors in general: the jet-shock interaction and the interaction of the vortical structures produced by the jets injection into a supersonic cross flow with an added axial vortex. Experimental studies were performed to investigate the effects of impinging shocks on injection of heated helium into a Mach 4 crossflow. Helium concentration, Pitot pressure, total temperature and cone-static measurements were taken during the

  14. 3 GeV Injector Design Handbook

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  15. Design of Injector Systems for LUX

    The LUX concept [1] for a superconducting recirculating linac based ultrafast x-ray facility features a unique high-brightness electron beam injector. The design of the injector complex that meets the baseline requirements for LUX is presented. A dual-rf gun injector provides both high-brightness electron beams to drive the cascaded, seeded harmonic generation VUV-soft x-ray FELs as well as the ultra- low-vertical emittance (''flat'') beams that radiate in hard x-ray spontaneous emission synchrotron beamlines. Details of the injector complex design and performance characteristics are presented. Contributions by the thermal emittance and optical pulse shaping to the beam emission at the photocathode and to the beam dynamics throughout the injector are presented. Techniques that seek to optimize the injector performance, as well as constraints that prevent straightforward optimization, are discussed

  16. Low emittance injector design for free electron lasers

    Bettoni, S.; Pedrozzi, M.; Reiche, S.

    2015-12-01

    Several parameters determine the performance of free electron lasers: the slice and the projected emittance, the slice energy spread, and the peak current are the most crucial ones. The peak current is essentially obtained by magnetic compression stages along the machine or occasionally assisted by velocity bunching at low energy. The minimum emittance and the alignment of the slices along the bunch are mainly determined in the low energy part of the accelerator (injector). Variations at the per-mille level of several parameters in this section of the machine strongly influence these quantities with highly nonlinear dynamic. We developed a numerical tool to perform the optimization of the injector. We applied this code to optimize the SwissFEL injector, assuming different gun designs, initial bunch lengths and intrinsic emittances. We obtained an emittance along the bunch of 0.14 mm mrad and around 0.08 mm mrad for the maximum and the minimum SwissFEL charges (200 and 10 pC, respectively). We applied the same tool to a running injector, where we automatized the optimization of the machine.

  17. Status of the JET high frequency pellet injector

    Highlights: ► JET pellet injection system operational for plasma fuelling and ELM pacing. ► Good reliability of the system for Low Field Side injection of fuelling size pellets. ► ELM triggered by small pellets at up to 4.5 times the intrinsic ELM frequency. ► Pellet parameters range leading to a high probability to trigger ELM identified. -- Abstract: A new high frequency pellet injector, part of the JET programme in support of ITER, has been installed on JET at the end of 2007. Its main objective is the mitigation of the Edge Localized Modes (ELMs), responsible for unacceptable thermal loads on the wall when their amplitude is too high. The injector was also required to have the capability to inject pellets for plasma fuelling. To reach this double goal, the injector has to be capable to produce and accelerate either small pellets to trigger ELMs (pace making), allowing to control their frequency and thus their amplitude, or large pellets to fuel the plasma. Operational since the beginning of the 2009 JET experimental campaign, the injector, based on the screw extruder technology, suffered from a general degradation of its performance linked to extrusion instability. After modifications of the nozzle assembly, re-commissioning on plasma has been undertaken during the first half of 2012 and successful pellet ELM pacing was achieved, rising the intrinsic ELM frequency up to 4.5 times

  18. Design status of heavy ion injector program

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10-7 torr) high voltage (HV) accelerating column

  19. Investigations of Injectors for Scramjet Engines

    Maddalena, Luca

    2007-01-01

    Investigations of Injectors for Scramjet Engines Luca Maddalena An experimental study of an aerodynamic ramp (aeroramp) injector was conducted at Virginia Tech. The aeroramp consisted of an array of two rows with two columns of flush-wall holes that induce vorticity and enhance mixing. For comparison, a single-hole circular injector with the same area angled downstream at 30 degrees was also examined. Test conditions involved sonic injection of helium heated to 313 K, to safely ...

  20. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES and H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading

  1. LER-LHC injector workshop summary and super-ferric fast cycling injector in the SPS tunnel

    Ambrosio, Giorgio; Hays, Steven; Huang, Yuenian; Johnstone, John; Kashikhin, Vadim; MacLachlan, James; Mokhov, Nikolai; Piekarz, Henryk; Sen, Tanaji; Shiltsev, Vladimir; /Fermilab; de Rijk, Gijsbert; /CERN

    2007-03-01

    A Workshop on Low Energy Ring (LER) in the LHC tunnel as main injector was convened at CERN on October 11-12, 2006. We present the outline of the LER based on the presentations, and respond to the raised questions and discussions including the post-workshop studies. We also outline the possibility of using the LER accelerator technologies for the fast cycling injector accelerator in the SPS tunnel (SF-SPS). A primary goal for the LER (Low Energy Ring) injector accelerator is to inject 1.5 TeV proton beams into the LHC, instead of the current injection scheme with 0.45 TeV beams from the SPS. At this new energy, the field harmonics [1] of the LHC magnets are sufficiently satisfactory to prevent the luminosity losses expected to appear when applying the transfer of the 0.45 TeV SPS beams. In addition, a feasibility study of batch slip stacking in the LER has been undertaken with a goal of increasing in this way the LHC luminosity by up to a factor of 4. A combined luminosity increase may, therefore, be in the range of an order of magnitude. In the long term, the LER injector accelerator would greatly facilitate the implementation of a machine, which doubles the LHC energy (DLHC).

  2. Pellet injector development at ORNL

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  3. Pneumatic pellet injector for JET

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  4. Electrostatic steering and beamlet aiming in large neutral beam injectors

    Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4 - 35127 Padova (Italy); Cavenago, M. [INFN-LNL, viale dell' Università n. 2, 35020 Legnaro (Italy)

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  5. Electrostatic steering and beamlet aiming in large neutral beam injectors

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed

  6. Control System of Pellet Injector on the HT-7 Tokamak

    2001-01-01

    In this paper the control system of the pellet injector is introduced in detail and the system mainly includes two parts: the present and the remote control system. The present control system controls the injector and provides the interface to the remote system. And the remote control system has acquired present signals with analog input card and perform the actions through digit output card, it also has an interface for Windows programming easily used by the operators when carrying out the pellet injection experiments. Through several HT-7 campaigns, the remote control system has been validated to be feasible and reliable and has made successful shots for studying the interactions between the pellets and plasma.

  7. A hot-spare injector for the APS linac

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades

  8. Pellet injector development and experiments at ORNL

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  9. Diagnostics for the CEBAF FEL Injector

    Kehne, D.; Engwall, D.; Jordan, K.; Benson, S.; Bohn, C.; Cardman, L.; Douglas, D.; Happek, U.; Krafft, G. A.; Neil, G.; Sinclair, C.

    1996-04-01

    A test stand for the 10 MeV, 5 mA average current injector for the CEBAF FEL is currently under construction. The injector tests will progress through two phases. The first phase will be devoted to characterizing the gun transverse and longitudinal emittance performance as a function of bunch charge, beam size, and energy. The goal of the second phase is to achieve the nominal requirements of the 10 MeV injector, including bunch length, emittance, charge per bunch, and energy stability. This paper summarizes the diagnostics planned to be used in these experiments.

  10. Next linear collider test accelerator injector upgrade

    Yeremian, A.D.; Miller, R.H. [Stanford Linear Accelerator Center, CA (United States)

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  11. Improved performance of the ATA injector

    During the last year we re-configured the ATA injector to accommodate field emission cathodes. The injector is now run as a diode machine with a 7 cm radius cathode, an A-K gap of 12.9 cm and a field stress of 190 kV/cm. The advantage of using field emission cathodes is we have increased the injector brightness by a factor of ten above the level we were able to reach using the low density plasma cathodes

  12. Nozzle insert for mixed mode fuel injector

    Lawrence, Keith E.

    2006-11-21

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.

  13. Investigation of the Effect of Pilot Burner on Lean Blow Out Performance of A Staged Injector

    YANG Jinhu; ZHANG Kaiyu; LIU Cunxi; RUAN Changlong; LIU Fuqiang; XU Gang

    2014-01-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes.Moreover,it is promising to employ this injector design in military engine,which requires most of the combustion air enters the combustor through injector to reduce smoke emission.However,lean staged injector is prone to combustion instability and extinction in low load operation,so techniques for broadening its stable operation ranges are crucial for its application in real engine.In this work,the LBO performance of a staged injector is assessed and analyzed on a single sector test section.The experiment was done in atmospheric environment with optical access.Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns.Emphasis is put on the influence of pilot burner on LBO performance.The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition.Results show that the increase of pilot swirler vane angle could promote the air assisted atomization,which in turn improves the LBO performance slightly.Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results.It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel,atomization quality become more and more important and is the main contributing factor of LBO.In the end of the paper,conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  14. Academic Training: A walk through the LHC injector chain

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16 February from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on...

  15. Structural analyses and integrated design of the MITICA Injector assembly

    Highlights: ► Seismic design has been carried out on PRIMA building. ► Three-dimensional FE models have been developed the vessel and TL device. ► Three bellows stiffness have been considered to evaluate maximum TL displacements. -- Abstract: In the framework of the activities foreseen for PRIMA (Padova Research on Injector Megavolt Accelerated) the MITICA neutral beam injector plays the role of main experiment, aiming to build, operate, test and optimize a full power and full scale prototype of the ITER Heating Neutral Beam Injector [1–3]. The entire MITICA system will be housed in special buildings, suitably designed to provide all the necessary supports, interfaces and shielding walls for nuclear radiation safety. Therefore an integrated design of the MITICA system and relevant buildings shall be developed and verified carefully, considering all the different configurations, operational modes and load combinations. This paper presents the numerical models and the results of MITICA assembly integrated analyses. The model takes into account properly constraints to ground and surrounding buildings, to study and verify the static and seismic response of the whole assembly. The load cases are defined and the numerical analyses described. Load definition and analyses have been performed considering the requirements of both the ASME [4] and the National Standard NTC2008 [5] for the seismic verification of structures subject to design response spectra. The obtained results are finally shown in detail and discussed, also comparing some different design options for design optimization

  16. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  17. Triaxial Swirler Liquid Injector Development Project

    National Aeronautics and Space Administration — Sierra Engineering Inc. (Sierra) believes that the subject triaxial liquid propellant swirl injector has the potential to meet many of NASA's Earth-to-Orbit (ETO)...

  18. An introduction to photo-injector design

    A quick overview is given of the RF gun basic theory for photo-injectors and of the presently achievable technical parameters thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (author) 65 refs., 11 figs., 3 tabs

  19. The high charge state injector for GSI

    A new injector for acceleration of U28+ to 1.4 MeV/u was designed. It consists of a 14.5 GHz ECR source, a 108 MHz RFQ linac and an interdigital H-type accelerator. The installation of the new linac was completed in 1991. The commissioning and first operational experience confirmed the overall performance of the new injector. Remaining problems are discussed. (Author) 8 figs., tab., 12 refs

  20. Resonant tunneling diode with spin polarized injector

    Slobodskyy, A.; Gould, C.; Slobodskyy, T.; Schmidt, G.; Molenkamp, L. W.; Sanchez, D

    2007-01-01

    We investigate the current-voltage characteristics of a II-VI semiconductor resonant-tunneling diode coupled to a diluted magnetic semiconductor injector. As a result of an external magnetic field, a giant Zeeman splitting develops in the injector, which modifies the band structure of the device, strongly affecting the transport properties. We find a large increase in peak amplitude accompanied by a shift of the resonance to higher voltages with increasing fields. We discuss a model which sho...

  1. Beam acceleration test of the HIMAC injector

    A heavy-ion synchrotron dedicated to medical use is under construction at National Institute of Radiological Sciences. The injector system, comprising a PIG source, an ECR source, an RFQ linac, and an Alvarez linac of 100MHz, accelerates heavy ions with a charge-to-mass ratio as small as 1/7, up to 6 MeV/u. First operation of the injector system has shown satisfactory performance. (author)

  2. PXIE: Project X Injector Experiment

    Ostroumov, P.N.; /Argonne; Holmes, S.D.; Kephart, R.D.; Kerby, J.S.; Lebedev, V.A.; Mishra, C.S.; Nagaitsev, S.; Shemyakin, A.V.; Solyak, N.; Stanek, R.P.; /Fermilab; Li, D.; /LBL, Berkeley

    2012-05-01

    A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are planning a program of research and development aimed at integrated systems testing of critical components comprising the front end of the Project X. This program is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. Integrated systems testing, known as the Project X Injector Experiment (PXIE), will be accomplished with a new test facility under construction at Fermilab and will be completed over the period FY12-16. PXIE will include an H{sup -} ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

  3. Solid deuterium centrifuge pellet injector

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 1500 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  4. Status of PRIMA, the test facility for ITER neutral beam injectors

    Sonato, P.; Antoni, V.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Toigo, V.; Zaccaria, P.; ITER International Team

    2013-02-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1MV a 40A beam of negative deuterons, delivering to the plasma about 17MW up to one hour. As these requirements have never been experimentally met, it was decided to build a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. The Japan and the India Domestic Agencies participate in the PRIMA enterprise; European laboratories, such as KIT-Karlsruhe, IPP-Garching, CCFE-Culham, CEA-Cadarache and others are also cooperating. In the paper the main requirements are discussed and the design of the main components and systems are described.

  5. Preliminary considerations about the injectors of the HE-LHC

    Garoby, R

    2011-01-01

    A hadron collider operating at an energy much larger than the LHC ("HE-LHC") would be a logical successor to the LHC itself, especially if its cost can be minimized by reusing a significant part of the CERN infrastructure like the existing tunnels and/or accelerators. The injector complex must however be extended to reach a beam energy of ~1.2 TeV and. in view of the time span of the HE-LHC project, the replacement of ageing accelerators can also be necessary. The main possible options are outlined together with their specificities.

  6. Magnet design issues and concepts for the new injector

    Fabbricatore, P

    2011-01-01

    Possible layouts of superconducting dipoles for the main injector of High Energy LHC (HE-LHC) are proposed on the basis of the experience matured with ongoing R&D activities at the Italian National Institute of Nuclear Physics (INFN), targeted at developing the technologies for high field fast cycled superconducting magnets for the SIS300 synchrotron of FAIR. Two different magnets are analysed: a) a 4 T dipole ramped up to 1.5 T/s, and b) a 6 T dipole to be operated at lower ramp rates.

  7. Status of Resistive Magnets in the LHC Injectors Chain

    Tommasini, D; Thonet, P; Bauche, J; Zickler, T; Newborough, A; Sgobba, S; Lopez, R

    2010-01-01

    About 4650 normal conducting magnets are presently installed in the CERN accelerators complex, more than 3000 of them belonging to the LHC injector chain and 163 installed in the LHC. The oldest magnets have been in operation for 50 years, and some of them are submitted to aggressive conditions, either in terms of radiation, extreme water cooling conditions or temperature. The smallest magnets in the linacs weigh a few kilograms, whilst each of the main magnets of the Proton Synchrotron weighs 33 tons. The paper reviews the status of these magnets and gives some examples of findings and relevant recent actions undertaken to ensure their reliable operation in the coming years.

  8. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images

  9. An introduction to photo-injector design

    Over the past ten years, photo-injectors have proven their ability to produce very bright electron beams, thus becoming a very attractive injector for any linear accelerator needing intense and/or small emittance beams. When designing such a gun under given specifications, it is helpful to have some simple rules to choose the most adequate set of parameters. This paper gives a quick overview of the basic theory of rf guns and of the presently achievable technical parameters, thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Finally, the various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (orig.)

  10. Status of the SPIRAL2 injector commissioning

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS/IN2P3, 15 rue Georges Clémenceau, 91406 Orsay Cedex (France); Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM/Irfu/SACM, 91191 Gif Sur Yvette (France); and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  11. LTP fibre injector qualification and status

    This paper presents the current state of the LISA Technology Package (LTP) fibre injector qualification project in terms of vibration and shock tests. The fibre injector is a custom built part and therefore must undergo a full space qualification process. The mounting structure and method for sinusoidal vibration and random vibration tests as well as shock tests will be presented. Furthermore a proposal will be presented to use the fibre injector pair qualification model to build an optical prototype bench. The optical prototype bench is a full-scale model of the flight model. It will be used for development and rehearsal of all the assembly stages of the flight model and will provide an on-ground simulator for investigation as an updated engineering model.

  12. Status of the SPIRAL2 injector commissioning

    Thuillier, T.; Angot, J.; Barué, C.; Bertrand, P.; Biarrotte, J. L.; Canet, C.; Denis, J.-F.; Ferdinand, R.; Flambard, J.-L.; Jacob, J.; Jardin, P.; Lamy, T.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Peaucelle, C.; Roger, A.; Sole, P.; Touzery, R.; Tuske, O.; Uriot, D.

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ˜50. A status of its assembly is proposed.

  13. First operational experience with the positive-ion injector of ATLAS

    A Positive-Ion Injector (PII) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structure. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to ≅ 1.1 MeV/u. When ions with q/A>0.1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating 30Si7+, 40Ar11+, 132Xe13+, and 208Pb24+. For all of these, transmission through the injector linac was ≅ 100% of the pre-bunched beam, which corresponds to ≅ 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time. (orig.)

  14. Coaxial Injectors for Liquid Oxygen/Methane (LOX/CH4) Technology Development

    Elam, Sandra; Osborne, Robin; Protz, Christopher

    2010-01-01

    Since late 2005, NASA s Marshall Space Flight Center (MSFC) has been developing and demonstrating technology for liquid oxygen and methane (LOX/CH4) engine designs. Efforts were undertaken to help advance technology that might benefit NASA s Exploration Technology Development Program. The propellant combination has gained interest as a potential option for the ascent stage main propulsion system on the Altair lunar lander vehicle. The propellants are also attractive for eventual Mars missions in future development activities. MSFC s efforts focus on evaluating the performance potential of both liquid and gaseous methane for specific injector designs. Previous JANNAF papers reported the performance observed for LOX and methane with an impinging injector. More recent efforts have focused on testing coaxial injector designs. Hot-fire testing performed at MSFC with thrust levels close to 5000 lbf demonstrated high performance with coaxial injectors of different element densities and various fuel film cooling levels. Test data provided results on performance, chamber wall compatibility, and heat flux profiles for different injectors. A variety of igniters were also demonstrated, including a torch igniter and a microwave (or plasma) igniter.

  15. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    LIU Sheng-Guang; HUANG Tong-Ming; XU Jin-Qiang

    2011-01-01

    The Beijing X-ray Energy Recovery Linac(BXERL)test facility is proposed in Institute of High Physics(IHEP).In this proposal,the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current.An injector based on DC gun technology is the first candidate electron source for BXERL.However,the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV.Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility.We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code.In this paper,we present the optimized design of the gun cavity,the gun RF parameters and the set-up of the whole injector system.The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalizedemittance 1.0 πmm.mrad,bunch length 0.77 mm,beam energy 5.0 MeV and energy spread 0.60%.

  16. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    Liu, Sheng-Guang; Huang, Tong-Ming; Xu, Jin-Qiang

    2011-09-01

    The Beijing X-ray Energy Recovery Linac (BXERL) test facility is proposed in Institute of High Physics (IHEP). In this proposal, the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current. An injector based on DC gun technology is the first candidate electron source for BXERL. However, the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV. Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility. We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code. In this paper, we present the optimized design of the gun cavity, the gun RF parameters and the set-up of the whole injector system. The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalized emittance 1.0 πmm·mrad, bunch length 0.77 mm, beam energy 5.0 MeV and energy spread 0.60%.

  17. A high resolution AMS-injector for the Pelletron in Lund

    R Bellborg; S Bazhal; M Faarinen; K Håkansson; C-E Magnusson; P Persson; G Skog; K Stenström

    2002-12-01

    A high resolution injector system has recently been installed at the Lund 3 MV tandem Pelletron accelerator. The new injector, designed mainly for 26Al ions, will increase the experimental potential of the Lund AMS facility considerably. High quality energy- and mass-resolution is obtained by using a 90° spherical electrostatic analyzer followed by a 90° magnetic analyzer. The injector is equipped with a high intensity sputtering source with a spherical ionizer. A new analytical technique for acceptance calculations as well as PC-based computational methods have been used in the design of the ion optical system of the new injector. Compared to our old injector system which has a magnetic analyzer with a bending angle of only 15°, the new system has a more than ten times better resolution. The beam optics of the new system is also better designed to match the accelerator acceptance. In this way the ion transmission from the ion source to the detector, for different ions of interest in our AMS programme, has been increased.

  18. The Long-Term Beam Losses in the CERN Injector Chain

    Gilardoni, Simone; Benedetto, Elena; Damerau, Heiko; Forte, Vincenzo; Giovannozzi, Massimo; Goddard, Brennan; Hancock, Steven; Hanke, Klaus; Huschauer, Alexander; Kowalska, Magdalena; Mcateer, Meghan Jill; Metral, Elias; Mikulec, Bettina; Papaphilippou, Yannis; Rumolo, Giovanni; Sterbini, Guido; Wasef, Raymond; Arduini, Gianluigi; Meddahi, Malika; Chapochnikova, Elena

    2015-01-01

    For the production of the LHC type beams, but also for the high intensity ones, the budget allocated to losses in the CERN injector chain is maintained as tight as possi- ble, in particular to keep as low as possible the activation of the different machine elements. Various beam dynamics effects, like for example beam interaction with betatronic resonances, beam instabilities, but also reduced efficiency of the RF capture processes or RF noise, can produce losses even on a very long time scale. The main different mecha- nisms producing long term losses observed in the CERN injectors, and their cure or mitigation, will be revised.

  19. Narrow electron injector for ballistic electron spectroscopy

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔEinj=10 meV is derived. [copyright] 2001 American Institute of Physics

  20. Repeating pneumatic pellet injector in JAERI

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  1. Challenges and Plans for the Proton Injectors

    Garoby, R

    2015-01-01

    The flexibility of the LHC injectors combined with multiple longitudinal beam gymnastics have significantly contributed to the excellent performance of the LHC during its first run, delivering beam with twice the ultimate brightness with 50 ns bunch spacing. To meet the requirements of the High Luminosity LHC, 25 ns bunch spacing is required, the intensity per bunch at injection has to double and brightness shall almost triple. Extensive hardware modifications or additions are therefore necessary in all accelerators of the injector complex, as well as new beam gymnastics.

  2. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane

  3. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    Hajari, Sh. Sanaye, E-mail: ssanayeh@cern.ch [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Shaker, H. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Doebert, S. [European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland)

    2015-11-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.

  4. TJ-II neutral beam injectors control and data acquisition system

    The Control and Data Acquisition System for the Neutral Beam Injectors of TJ-II are described in this paper. The DAQ and Control architecture is based on a distributed system including VME-OS9 real-time computers and personal computers (PCs) with Linux and Windows NT. One OS9-VME local computer located near each injector performs the timing, local signal processing, signal interlock, and operation of the injector mechanical and electrical components. A main OS9-VME interfaces and controls some peripheral systems, such as the high voltage power supplies, water cooling, safety and protection systems. Control is performed from the OS9-VME machines, in which the software elements are basically C/C++ programs performing real time processing and a web server enabling access to the HTML pages acting as user graphic interface

  5. Sensitivity and alternative operating point studies on a high charge CW FEL injector test stand at CEBAF

    A high charge CW FEL injector test stand is being built at CEBAF based on a 500 kV DC laser gun, a 1500 MHz room-temperature buncher, and a high-gradient (∼10 MV/m) CEBAF cryounit containing two 1500 MHz CEBAF SRF cavities. Space-charge-dominated beam dynamics simulations show that this injector should be an excellent high-brightness electron beam source for CW UV FELs if the nominal parameters assigned to each component of the system are experimentally achieved. Extensive sensitivity and alternative operating point studies have been conducted numerically to establish tolerances on the parameters of various injector system components. The consequences of degraded injector performance, due to failure to establish and/or maintain the nominal system design parameters, on the performance of the main accelerator and the FEL itself are discussed

  6. Overview of neutral beam injector technology developments at universities

    Activities of universities on the neutral beam injector developments have been overviewed. The subjects consist of NBI construction, components developments and system analyses, which are intensively studied at universities. Although neutral beam injector technologies are present day top topics, however, still a lot of efforts with flexible ideas are necessary to realize reactor relevant neutral beam injector system. (author)

  7. Smart drug delivery injector microsystem based on pyrotechnical actuation

    Puig-Vidal, Manel; Lopez, Jaime; Miribel, Pere; Samitier-Marti, Josep; Rossi, Carole; Berthold, Axel

    2003-04-01

    A smart drug delivery injector microsystem is presented based on small pyrotechnics to impulse drugs to be injected to a human being. The proposal refers to a feasibility demonstration of the technology for pharmaceutical chips. These chips would be around some cm2 in section and will be able to inject a drug into de subject skin responding to an electrical signal. The product derived from this activity will be useful for astronaut's health, being able to administrate emergency doses of products (for instance cardio-tonic or hypoallegic drugs) enough to survive an emergency situation (as it can be a heart attack during EVA). The system can also be used for easy administration of drugs needed for physiological research. The usefulness of the device in terrestrial applications has no doubt, allowing remote administration of drugs to patients whose biomedical parameters are remotely monitored. The concept proposed here is new in combining the idea of pharmaceutical chip with the ultrasonic droplet technology and the use of pyrotechnics to provide energy to the drug to be injected. The proposed Drug Injector Microsystem is based on 2 main blocks:- Micropyrotechnic system: defines the ignition part based on pyrotechnic.- Microfluidic system: defines the drug injection part. This part is also divided in different critical parts: Expansion chamber, membrane or piston, drug reservoir and a needle. Different sensors are placed on the expansion chamber of microfluidic system and on the micropyrotechnic system. A complete electronic module is implemented with a PC interface to define flexible and user friendly experiences showing the smart drug delivery injector microsystem principle.

  8. Diagnostics and camera strobe timers for hydrogen pellet injectors

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  9. Spray features in the near field of a flow-blurring injector investigated by high-speed visualization and time-resolved PIV

    Jiang, Lulin; Agrawal, Ajay K.

    2015-05-01

    In a flow-blurring (FB) injector, atomizing air stagnates and bifurcates at the gap upstream of the injector orifice. A small portion of the air penetrates into the liquid supply line to create a turbulent two-phase flow. Pressure drop across the injector orifice causes air bubbles to expand and burst thereby disintegrating the surrounding liquid into a fine spray. In previous studies, we have demonstrated clean and stable combustion of alternative liquid fuels, such as biodiesel, straight vegetable oil and glycerol by using the FB injector without requiring fuel pre-processing or combustor hardware modification. In this study, high-speed visualization and time-resolved particle image velocimetry (PIV) techniques are employed to investigate the FB spray in the near field of the injector to delineate the underlying mechanisms of atomization. Experiments are performed using water as the liquid and air as the atomizing gas for air to liquid mass ratio of 2.0. Flow visualization at the injector exit focused on a field of view with physical dimensions of 2.3 mm × 1.4 mm at spatial resolution of 7.16 µm per pixel, exposure time of 1 µs, and image acquisition rate of 100 k frames per second. Image sequences illustrate mostly fine droplets indicating that the primary breakup by FB atomization likely occurs within the injector itself. A few larger droplets appearing mainly at the injector periphery undergo secondary breakup by Rayleigh-Taylor instabilities. Time-resolved PIV is applied to quantify the droplet dynamics in the injector near field. Plots of instantaneous, mean, and root-mean-square droplet velocities are presented to reveal the secondary breakup process. Results show that the secondary atomization to produce fine and stable spray is complete within a few diameters from the injector exit. These superior characteristics of the FB injector are attractive to achieve clean combustion of different fuels in practical systems.

  10. Pellet injector research and development at ORNL

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of ∼1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research

  11. Main Oxidizer Valve Design

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  12. Development of Compact Toroid Injector for C-2 FRCs

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  13. Performance potential of the injectors after LS1

    Bartosik, H; Damerau, H; Garoby, R; Gilardoni, S; Goddard, B; Hancock, S; Hanke, K; Lombardi, A; Mikulec, B; Raginel, V; Rumolo, G; Shaposhnikova, E; Vretenar, M

    2012-01-01

    The main upgrades of the injector chain in the framework of the LIU project will only be implemented in the second long shutdown (LS2), in particular the increase of the PSB energy to 2 GeV or the implementation of cures/solutions against instabilities/e-cloud effects. On the other hand, Linac4 will become available by the end of 2014. Until the end of 2015 it may replace Linac2 at short notice, taking 50 MeV protons in the PSB via the existing injection system but with reduced performance. Afterwards, the H- injection equipment will be ready and Linac4 could be connected for 160MeV H- injection into the PSB during a prolonged winter shutdown before LS2. The anticipated beam performance of the LHC injectors after LS1 in these different cases is presented. Space charge on the PS flat-bottom will remain a limitation because the PSB to PS transfer energy will stay at 1.4 GeV. As a mitigation measure new RF manipulations are presented which can improve brightness for 25 ns bunch spacing, allowing for more than no...

  14. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    Marshall, John Stuart [Univ. of Cambridge (United Kingdom)

    2008-06-01

    This thesis presents the results of an analysis of vμ disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current vμ interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 1020 protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current vμ events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 ± 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as Δm$2\\atop{32}$ = 2.29$+0.14\\atop{-0.14}$ x 10-3 eV2 and sin223

  15. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    Marshall, John Stuart; /Cambridge U.

    2008-06-01

    This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0

  16. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  17. NOvA Proposal to Build a 30 Kiloton Off-Axis Detector to Study Neutrino Oscillations in the Fermilab NuMI Beamline

    Ayres, D

    2005-01-01

    This is an updated version of the NOvA proposal. The detector is a 30 kiloton tracking calorimeter, 15.7 m by 15.7 m by 132 m long, with alternating horizontal and vertical rectangular cells of liquid scintillator contained in PVC extrusion modules. Light from each 15.7 m long cell of liquid scintillator filled PVC is collected by a wavelength shifting fiber and routed to an avalanche photodiode pixel. The reach of NOvA for sin^2(2_theta_13) and related topics is increased relative to earlier versions of the proposal with the assumption of increased protons available from the Fermilab Main Injector following the end of Tevatron Collider operations in 2009.

  18. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    Andrews, Mike; Appel, Jeffrey A.; Bogert, Dixon; Childress, Sam; Cossairt, Don; Griffing, William; Grossman, Nancy; Harding, David; Hylen, Jim; Kuchler, Vic; Laughton, Chris; /Fermilab /Argonne /Brookhaven /LBL, Berkeley

    2009-05-01

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES&H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to

  19. Radionuclides in the Cooling Water Systems for the NuMi Beamline and the Antiproton Production Target Station at Fermilab

    Matsumura, Hiroshi; Bessho, Kotaro; Sekimoto, Shun; Yashima, Hiroshi; Kasugai, Yoshimi; Matsuda, Norihiro; Sakamoto, Yukio; Nakashima, Hiroshi; Oishi, Koji; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran

    2014-01-01

    At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {\\gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% f...

  20. LS1 Report: injectors 2.0

    Anaïs Schaeffer

    2014-01-01

    Launched in 2009, the Accelerator Controls Renovation Project (ACCOR) will come to an end this year. It was brought in to replace the approximately 450 real-time control systems of the LHC injector complex, some of which were based on technology more than 20 years old.   One of the approximately 450 real-time systems that have been modified in the ACCOR project. These systems, which use special software and thousands of electronics boards, control devices that are essential to the proper functioning of the injectors – the radiofrequency system, the instrumentation, the injection kicker system, the magnets, etc. – and some of them were no longer capable of keeping pace with the LHC. As a result, they urgently needed to be upgraded. "In 2009, after assessing the new technology available on the market, we signed contracts with Europe's most cutting-edge electronics manufacturers," explains Marc Vanden Eynden, ACCOR Project Leader. We then quickly m...

  1. Tritium proof-of-principle injector experiment

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  2. Flash X-Ray Injector Study

    Paul, A C

    2004-03-26

    The study described in this report1 models the FXR injector from the cathode to the exit of the injector. The calculations are compared to actual experimental measurements, table 1. In these measurements the anode voltage was varied by changing the Marks-Bank charging voltage. The anode-cathode spacing was varied by adjusting the location of the cathode in hopes of finding an island of minimum emittance (none found). The bucking coil current was set for zero field on the cathode. In these measurements, a pepper-pot mask was inserted into FXR at beam bug 135 and viewed downstream via a wiggle probe diagnostic at cell gap J21, figure 1. The observed expansion of the beamlets passing through the mask of known geometric layout and hole size allow a calculation of the phase space beam properties.

  3. Initial Commissioning Results of the RTA Injector

    Eylon, Shmuel; Henestroza, Enrique; Lidia, Steve; Vanecek, David; Yu, Simon; Houck, Tim; Westenskow, Glenn

    1999-11-01

    The creation of the drive beam remains one of the most challenging technical endeavors in constructing two-beam accelerators. The RTA (Relativistic Klystron Two Beam Accelerator) test experiment will enable the study of the special drive beam issues. We have begun testing the 1.2-kA, 1.0-MeV electron induction injector for the RTA experiment. The electron source is a 3.5-inch diameter, thermionic, flat-surface dispenser cathode with a designed maximum shroud electrical field stress of approximately 165 kV/cm. The pulse length of the injector is approximately 250 ns, with a 120-150-ns flattop region. We report here the performance of the pulsed power system and cathode. In particular, we present measurements of the perveance, emittance and current density profile.

  4. Integrated design of the SSC linac injector

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H- beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  5. Tritium proof-of-principle injector experiment

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fusion reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium. Tritium experiments will be carried out at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL)

  6. Adjustable Powder Injector For Vacuum Plasma Sprayer

    Burns, D. H.; Woodford, W. H.; Mckechnie, T. N.; Mcferrin, D. C.; Davis, W. M.; Beason, G. P., Jr.

    1993-01-01

    Attachment for plasma spray gun provides four degrees of freedom for adjustment of position and orientation at which powder injected externally into plasma flame. Manipulator provides for adjustment of pitch angle of injection tube: set to inject powder at any angle ranging from perpendicular to parallel to cylindrical axis. Scribed lines on extension bar and manipulator indicate pitch angle of extension tube. Collar changed to adapt injector to different gun.

  7. The electron test accelerator beam injector

    A beam chopper and buncher system has been designed to improve the capture efficiency and reduce the beam spill in the Electron Test Accelerator. The buncher increases the dc beam capture from 30 to 70%. 100% beam transmission through the accelerator structures is obtained with the chopper. This report describes results of experimental tests with the beam injector. Results from computer modeling and from measurements with prototypes that have led to the design of the beam chopper and buncher system are discussed

  8. Visualisation of diesel injector with neutron imaging

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  9. New Results with the Ignitor Pellet Injector

    Frattolillo, A.; Migliori, S.; Podda, S.; Bombarda, F.; Baylor, L. R.; Combs, S. K.; Foust, C. R.; Meitner, S.; Fehling, D.; Roveta, G.

    2011-10-01

    The Ignitor Pellet Injector (IPI) has been developed in collaboration between ENEA and ORNL to provide greater control over the density time evolution and the density peaking in plasmas produced by the Ignitor device. The four barrel, two stage injector has been designed to reach speeds up to 4 km/s, for effective low field side injection into ignited plasmas (Te ≅Ti ≅ 11 keV). The present arrangement accomodates both a two-stage gun and a standard propellant valve on each barrel, allowing seamless switching between standard and high speed operation on any or all gun barrels. The cryostat is actively cooled by a pulse tube refrigerator, equipped with supplemental cooling from a liquid He dewar. The injector has shown very good repeatability; however, intact pellets were not observed over 2 km/s, possibly due to a spinning effect on the pellets at higher speed. The cross sections of the guiding tubes have been increased and other design improvements have been implemented, aimed in particular at reducing leak rates and reducing the dispersion of the pellet trajectories, in preparation of the experimental campaign reported here. Sponsored in part by ENEA of Italy, and by the U.S. D.O.E.

  10. Commissioning operation of the compact ERL injector

    As a test facility to establish key technologies for Energy Recovery Linac (ERL), the compact ERL (cERL) has been constructed in KEK. In April 2013, the construction of the cERL injector, which consists of a DC photo cathode gun, superconducting RF cavities, and a beam diagnostic line, was completed, and the beam commissioning operation was carried out from 22 April to 28 June. The targets of the commissioning were to pass a radiation safety inspection, to establish beam adjustment method, and to improve beam quality. In a brief period of one week, acceleration to 5 MeV by the injector superconducting cavities, and the transportation of it to the end of beamline were achieved. To 28 June, tests of hardware components and the beam adjustments were carried out. So far, 0.2 mm mrad with 10 fC/bunch, and ∼ 0.8 mm mrad with 7.7 pC/bunch were achieved after the beam adjustment. In the next beam operation for the whole cERL from autumn 2013, the target for the injector is to improve the beam quality. (author)

  11. Plans for ions in the injector complex

    The heavy ion beams required during the HL-LHC era will imply significant modifications to the existing injector chain. We review the various options, highlighting the importance of an early definition of the future needs and keeping in mind the compatibility with the rest of the future CERN physics programme. It appears that with the present injector complex, increasing the number of bunches seems to be the only route for a marginally higher luminosity, and at the expense of a longer LHC filling time. A solution exists to produce up to 3.5 times the current peak luminosity, i.e. about 7*1027 cm-2.s-1 at 7 ZTeV/c per beam, but it necessitates an upgrade of the beam production stage (ECR source and/or Linac3) and of the SPS injection kicker. If we are to implement the suggested improvements in order to reach the required Pb-Pb luminosity (provided the LHC can digest it), it is more than time to start the RnD on all parts of the injector chain. Ar and Xe will be available after LS1 (parameter list still to be defined and optimised) but other species, if desired, would come in addition, and require more studies, in particular a new source and pre-accelerator for deuterons, or safety and handling issues for Uranium

  12. The S-DALINAC polarized electron injector SPIN

    At the superconducting 130 MeV Darmstadt electron linac S-DALINAC a source of polarized electrons has been installed. Pulsed Ti:Sapphire and diode lasers illuminate a superlattice-GaAs cathode, producing polarized electrons preaccelerated to 100 keV. A Wien filter and Mott polarimeter are used for spin manipulation and polarization measurement. Downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter has been installed. A Moeller polarimeter behind the main linac has been designed for energies between 50 and 130 MeV, and additional Compton-transmission polarimeters will be installed for online polarization monitoring. Photo-fission measurements of different uranium isotopes have been carried out and an active target setup is under investigation. We report on the status and performance of the source of polarized electrons and currently planned experiments with polarized beams.

  13. RLIUP: Review of LHC and Injector Upgrade Plans

    Zimmermann, F; RLIUP Workshop

    2014-01-01

    This report contains the Proceedings of the "Review of LHC and Injector Upgrade Plans" (RLIUP), held in the Centre de Convention, Archamps, France, 29–31 October 2013. The RLIUP examined the parameters of the LIU and HL-LHC projects following the experience and changes in the beam parameters experienced over the previous two years. It discussed which level of integrated luminosity will necessitate a replacement of the inner detectors and the insertions, the importance of reaching 3000 $fb^{-1}$ or the minimum integrated luminosity which would be tolerated. The main outcome of RLIUP is a staged path from the LHC performance at the end of 2012 to the required performance for the HL-LHC, along with a number of important recommendations on the work organization of the coming years.

  14. Ion Sources and Injectors for HIF Induction Linacs

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  15. Computed tomography and magnetic resonance imaging contrast media injectors: technical feature review - what is really needed?

    Friebe, Michael

    2016-01-01

    There has been little technical innovation over the last few years for contrast media (CM) injectors that are used for diagnostic imaging (computed tomography [CT], magnetic resonance imaging [MRI], and hybrid imaging systems, such as positron emission tomography-CT or magnetic resonance-positron emission tomography) examinations. The medical need of CM for the enhancement of diagnostic images has been around for a long time, but the application of the CM into the blood stream comes with potential medical complications for the patient and requires a lot of operator experience and training. Most power injector systems that are currently used can do significantly more than what is typically required; this complexity however, adds error potential and cost. This paper focuses on the main features that CM injector systems should have and highlights the technical developments that are useful to have but which add complexity and cost, increase setup time, and require intensive training for safe use. CM injection protocols are very different between CT and MRI, with CT requiring many more variances, has a need for multiphase protocols, and requires a higher timing accuracy. A CM injector used in the MRI suite, on the other-hand, could only need a relatively time insensitive injection with a standard injection flow rate and a volume that is dependent on the patients' weight. This would make easy and lightweight systems possible, which are able to safely and accurately perform the injection task, while allowing full MRI compatibility with relatively low cost investment and consumable costs. PMID:27486345

  16. The control and diagnostics system for the CEBAF injector

    The authors present the first experience with the CEBAF injector control and diagnostics system. The computer architecture of the control system has been described elsewhere. The injector system is a model for the CEBAF controls. A computer system controls the gun, the steering magnets, and the focusing elements, and in the near future also the injector rf system. The beam parameters such as current, position, and emittance are measured by various monitors and are automatically analyzed by the computer. 5 refs., 11 figs

  17. 2-MV electrostatic quadrupole injector for heavy-ion fusion

    High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector

  18. Development of Advanced Pellet Injector Systems for Plasma Fueling

    SAKAMOTO, Ryuichi; Yamada, Hiroshi; LHD Experimental Group

    2009-01-01

    Two types of solid hydrogen pellet injection systems have been developed, and plasma refueling experiments have been performed using these pellet injectors. One is an in-situ pipe-gun type pellet injector, which has the simplest design of all pellet injectors. This in-situ pipe-gun injector has 10 injection barrels, each of which can independently inject cylindrical solid hydrogen pellets (3.4 and 3.8mm in diameter and length, respectively) at velocities up to 1,200m/s. The other is a repetit...

  19. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    Niner, Evan David [Indiana Univ., Bloomington, IN (United States)

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  20. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin22θ13, δ, and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 x 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  1. CFD Simulation of Liquid Rocket Engine Injectors

    Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)

    2001-01-01

    Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by

  2. Cybele: a large size ion source of module construction for Tore-Supra injector

    A 70 keV 40 A hydrogen beam injector has been developed at Cadarache for plasma diagnostic purpose (MSE diagnostic and Charge exchange) on the Tore-Supra Tokamak. This injector daily operates with a large size ions source (called Pagoda) which does not completely fulfill all the requirements necessary for the present experiment. As a consequence, the development of a new ion source (called Cybele) has been underway whose objective is to meet high proton rate (>80%), current density of 160 mA/cm2 within 5% of uniformity on the whole extraction surface for long shot operation (from 1 to 100 s). Moreover, the main particularity of Cybele is the module construction concept: it is composed of five source modules vertically juxtaposed, with a special orientation which fits the curved extraction surface of the injector; this curvature ensures a geometrical focalization of the neutral beam 7 m downstream in the Tore-Supra chamber. Cybele will be tested first in positive ion production for the Tore-Supra injector, and afterward in negative ion production mode; its modular concept could be advantageous to ensure plasma uniformity on the large extraction surface (about 1 m2) of the ITER neutral beam injector. A module prototype (called the Drift Source) has already been developed in the past and optimized in the laboratory both for positive and negative ion production, where it has met the ITER ion source requirements in terms of D-current density (200 A/m2), source pressure (0.3 Pa), uniformity and arc efficiency (0.015 A D-/kW). (authors)

  3. High-brightness injectors for hadron colliders

    The counterrotating beams in collider rings consist of trains of beam bunches with NB particles per bunch, spaced a distance SB apart. When the bunches collide, the interaction rate is determined by the luminosity, which is defined as the interaction rate per unit cross section. For head-on collisions between cylindrical Gaussian beams moving at speed βc, the luminosity is given by L = NB2βc/4πσ2SB, where σ is the rms beam size projected onto a transverse plane (the two transverse planes are assumed identical) at the interaction point. This beam size depends on the rms emittance of the beam and the focusing strength, which is a measure of the 2-D phase-space area in each transverse plane, and is defined in terms of the second moments of the beam distribution. Our convention is to use the rms normalized emittance, without factors of 4 or 6 that are sometimes used. The quantity β is the Courant-Synder betatron amplitude function at the interaction point, a characteristic of the focusing lattice and γ is the relativistic Lorentz factor. Achieving high luminosity at a given energy, and at practical values of β and SB, requires a large value for the ratio NB2/var-epsilon n, which implies high intensity and small emittance. Thus, specification of the luminosity sets the requirements for beam intensity and emittance, and establishes the requirements on the performance of the injector to the collider ring. In general, for fixed NB, the luminosity can be increased if var-epsilon n can be reduced. The minimum emittance of the collider is limited by the performance of the injector; consequently the design of the injector is of great importance for the ultimate performance of the collider

  4. High-brightness injectors for hadron colliders

    Wangler, T.P.

    1990-01-01

    The counterrotating beams in collider rings consist of trains of beam bunches with N{sub B} particles per bunch, spaced a distance S{sub B} apart. When the bunches collide, the interaction rate is determined by the luminosity, which is defined as the interaction rate per unit cross section. For head-on collisions between cylindrical Gaussian beams moving at speed {beta}c, the luminosity is given by L = N{sub B}{sup 2}{beta}c/4{pi}{sigma}{sup 2}S{sub B}, where {sigma} is the rms beam size projected onto a transverse plane (the two transverse planes are assumed identical) at the interaction point. This beam size depends on the rms emittance of the beam and the focusing strength, which is a measure of the 2-D phase-space area in each transverse plane, and is defined in terms of the second moments of the beam distribution. Our convention is to use the rms normalized emittance, without factors of 4 or 6 that are sometimes used. The quantity {tilde {beta}} is the Courant-Synder betatron amplitude function at the interaction point, a characteristic of the focusing lattice and {gamma} is the relativistic Lorentz factor. Achieving high luminosity at a given energy, and at practical values of {tilde {beta}} and S{sub B}, requires a large value for the ratio N{sub B}{sup 2}/{var epsilon}{sub n}, which implies high intensity and small emittance. Thus, specification of the luminosity sets the requirements for beam intensity and emittance, and establishes the requirements on the performance of the injector to the collider ring. In general, for fixed N{sub B}, the luminosity can be increased if {var epsilon}{sub n} can be reduced. The minimum emittance of the collider is limited by the performance of the injector; consequently the design of the injector is of great importance for the ultimate performance of the collider.

  5. First coupled CH power cavity for the FAIR proton injector

    For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. In 2012, the assembly and tuning of the first power prototype was finished. Until then, the cavity was tested with a preliminary aluminum drift tube structure, which was used for precise frequency and field tuning. In 2013 the final drift tube structure has been welded inside the main tanks and the preparation for copper plating has taken place. This paper reports on the main tuning and commissioning steps towards that novel type of DTL, and it shows the latest results measured on a fully operational and copper plated CH proton cavity.

  6. The Supervisory Control System for the HL-2A Neutral Beam Injector

    Supervisory control and protection system of the neutral beam injector (NBI) in the HL-2A tokamak is presented. The system is used for a safe coordination of all the main NBI subsystems. Because the system is based on computer networks with its transmission medium of optical fiber, its advantages in high operational stability, reliability, security and flexible functional expandability are clearly shown during the NBI commissioning and heating experiment in HL-2A.

  7. Radiotracer injector: An Industrial Application (RIIA)

    The radiotracer injector is meant for transferring liquid radiotracer in the system for industrial radiotracer application with minimal radiation exposure to the operator. The motivation of its invention is coming from the experience of the workers who are very concern about the radiation safety while handling with the radioactive source. The idea ensuring the operation while handling the radioactive source is fast and safe without interrupting the efficiency and efficacy of the process. Thus, semi automated device assisting with pneumatic technology is applied for its invention. (author)

  8. CANDELA photo-injector: the drive laser

    In view of the future linear colliders, a bright photo-injector named CANDELA is being constructed at LAL Orsay. To illuminate the photo-cathode, a femtosecond Ti:sapphire laser has been developed. It consists of an oscillator that delivers a continuous train of femtosecond pulses at a repetition rate of 100 MHz. This train is then amplified in a regenerative amplifier pumped by a second harmonic Q-switched Nd:YAG laser. The status of the overall RF gun experiment is also mentioned. (author) 6 refs.; 1 fig

  9. The new-generation of solenoid injectors equipped with pressure-balanced pilot valves for energy saving and dynamic response improvement

    Highlights: • Distinct pilot-valve setups, typical of modern Common Rail injectors, are compared. • The analysis focuses on injector static leakages and the injector dynamic response. • Experimental results are integrated or explained by means of simulation data. - Abstract: A numerical–experimental analysis on a new generation of hydraulically controlled servo solenoid injectors for Euro 6 Diesel engine applications has been carried out. The main innovation of these high-pressure injectors is the replacement of the standard pilot-valve configuration with a pressure-balanced layout. The new setup is aimed at reducing clearance leakages and at improving the dynamic response of the needle to the electrical command. A previously developed advanced one-dimensional code for the simulation of Common Rail injection systems has been adapted to simulate the innovative injectors. In particular, electromagnetic, hydraulic and mechanical submodels have been set up for the pressure-balanced pilot-valve simulation. The validated numerical model of the injector has been applied to investigate the mechanics of the pressure-balanced pilot-valve and the sensitivity of the dynamic response of the needle to some of the innovative pilot-valve layout design parameters. Furthermore, the developed simulation tool has been used to examine the real impact that the replacement of the standard pilot-valve layout with a pressure-balanced one could have on the injected flow-rate performance. The comparative investigation between the standard and the innovative pilot-valve has been completed with an analysis of their experimental static leakages. A comparison has also been made with static leakages measured for hydraulically-controlled servo piezoelectric injectors. Finally, a simple and accurate thermodynamic flow model has been developed to predict static leakages in indirect-acting solenoid and piezoelectric injectors. This model has pointed out the significant dependence of static

  10. Cfd Simulation to the Flow Field of Venturi Injector

    Huang, Xingfa; Li, Guangyong; Wang, Miao

    Venturi injector is widely used in fertigation system due to its obvious advantages such as cheap and robust system without mobile pieces, simple structure, convenient to operation, stable performance, needless of external energy for operation etc. At present, the hydraulic parameters such as suction capacity (injection rate) for the most of the Venturi injectors produced domestically are not very desirable. In this paper, CFD (Computational Fluid Dynamics) method was used to simulate the inner flow field of the Venturi injectors, and the relationships among the structure parameters (i.e., throat length L, throat diameter D, slot diameter Da) and suction capacity q, and the optimal structure sizes of the Venturi injector were analyzed. The results show that when the inlet pressure and the slot position are kept unchanged as the sample one, the suction capacity of Venturi injector increases with the decrease of throat diameter D and throat length L, and the increase of slot diameter Da; while keeping the slot diameter Da, throat diameter D and throat length L unchanged, the suction capacity of Venturi injector q increases with the increase of inlet pressure P. The optimal combination of the structural parameters in this size was selected as follows: throat diameter D=8mm, slot diameter Da=18.5mm, and throat length L=14mm. In this case, the suction capacity of the Venturi injector q=1.203m3/h. The results can provide theoretic support for domestic Venturi injector research, design and manufacturing.

  11. Injector for RFQ using electrostatically focused transport and matching

    We discuss the principles and performance of a new type of high- current H- injector for RFQs. The distinguishing feature of our injector is that we replace the conventional gas-neutralized transport and matching units by electrostatic focusing units. Our system prevents plasma formation along the beam instead of utilizing it. Some advantages of this approach are discussed. 13 refs., 6 figs

  12. Radiological aspects of the SSRL 3 GeV injector

    This document describes the shielding of the injector, results of radiation measurements, the personnel protection system, the beam containment system, the area monitoring, administrative controls and procedures, operator training and personnel dosimetry. In addition, other radiological aspects of the injector such as muons, air activation, toxic gases, induced activity and skyshine are discussed. 79 refs., 18 figs., 13 tabs

  13. Steam injector development for ALWR's application

    Steam Injectors (SI's) can be used in Advanced Light Water Reactors (ALWR's) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of SI's, that would take advantage of the available energy from steam without introduction of any rotating machinery. In particular, SI's could be used for high pressure safety injection in BWR's or for emergency feedwater in the secondary side of evolutionary PWR's. An instrumented Steam Injector (SI) prototype, operating at high pressures, has been built and tested. The experimental results confirm the capability of tested SI to operate at constant inlet water pressure (about 0.3 MPa) and inlet water temperature up to 50 deg. C, with steam pressure ranging from 2.5 to 9 MPa (4.5-9 MPa at maximum inlet water temperature). The discharge pressure target (10% higher than steam pressure) was fulfilled in the operating range. It should be noted that the minimum operating limit can be lowered to 1.5 MPa with some modifications. To achieve these results an original double-overflow flowrate-control/startup system, patented by ENEL/CISE in 1993, has been used. (author). 9 refs, 10 figs, 2 tabs

  14. An improved injector bunching geometry for ATLAS

    Richard C Pardo; J Bogaty; B E Clifft; S Sherementov; P Strickhorn

    2002-12-01

    The bunching system of the ATLAS positive ion injector (PII) has been improved by relocating the harmonic buncher to a point significantly closer to the second stage sine-wave buncher and the injector LINAC. The longitudinal optics design has also been modified and now employs a virtual waist from the harmonic buncher feeding the second stage sine-wave buncher. This geometry improves the handling of space charge for high-current beams, significantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PII has been demonstrated as high as 80% of the injected dc beam while the population of the parasitic, unwanted rf bucket is typically less than 3% of the total transported beam. To remove this small residual parasitic component a new traveling-wave transmission-line chopper has been developed reducing both transverse and longitudinal emittance growth from the chopping process. This work was supported by the U.S. Department of Energy under contract W-31-109-ENG-38.

  15. Multi-beam injector development at LBL

    LBL is developing a multi-beam injector that will be used for scaled accelerator experiments related to Heavy Ion Fusion. The device will produce sixteen 0.5 Amp beams of C+ at 2 MeV energy. The carbon arc source has been developed to the point where the emittance is within a factor of four of the design target. Modelling of the source behavior to find ways to reduce the emittance is discussed. Source lifetime and reliability is also of paramount importance to us and data regarding the lifetime and failure modes of different source configurations is discussed. One half of the accelerating column has been constructed and tested at high voltage. One beam experiments in this half column are underway. The second half of the column is being built and the transition 2 MV experiments should begin soon. In addition to beam and source performance we also discuss the controls for the injector and the electronics associated with the source and current injection. 3 refs., 2 figs

  16. SLC injector simulation and tuning for high charge transport

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model. (Author) 5 figs., 7 refs

  17. Can the proton injectors meet the HL-LHC requirements after LS2?

    The LIU project has as mandate the upgrade of the LHC injector chain to match the requirements of HL-LHC. The present planning assumes that the upgrade work will be completed in LS2, for commissioning in the following operational year. The known limitations in the different injectors are described, together with the various upgrades planned to improve the performance. The expected performance reach after the upgrade with 25 and 50 ns beams is examined. The project planning is discussed in view of the present LS1 and LS2 planning. The main unresolved questions and associated decision points are presented, and the key issues to be addressed by the end of 2012 are detailed in the context of the machine development programs and hardware construction activities. (authors)

  18. Injector Research at the Advanced Photon Source

    Lewellen, John

    2003-04-01

    During the past several years, various techniques for improving the operational capabilities of high-brightness electron beam sources have been explored at the Advanced Photon Source. Areas of particular emphasis include novel methods of longitudinal phase space control, reduced emittance via blunt-needle cathodes, and alternate cavity geometries for improved source reliability and fabrication. To date most of this work has been computationally based, and a sampling of the results is presented. The APS injector test stand, now undergoing commissioning, will allow the experimental exploration of these and other aspects of high-brightness beam production and preservation. The capabilities of the test stand, along with an initial experimental schedule, will also be presented.

  19. The injector linac for the Mainz microtron

    The design and setup of a 3.5 MeV, 100μA injector for a cascade of race track microtrons is presented. It replaces a 2.1 MeV Van De Graaff for getting higher reliability, improved beam dynamics in the first RTM by increased and more stable input energy, as well as an easier access and a better vacuum to launch a beam of polarized electrons. In this paper, the considerations which led under given boundary conditions to the final design concept are discussed and its realization with PARMELA is described. Details of the linac setup are given. First operation showed a good longitudinal performance (energy stability ≤ ±2 star 10-4, spectrum ≤ 1 star 10-3 FWHM, bunch length ≤ ± 1.5 degrees) and an excellent reproducibility of machine operation

  20. Emittance compensation for an SRF photo injector

    Vennekate, H.; Lu, P. [HZDR (Germany); TU Dresden (Germany); Arnold, A.; Mucek, P.; Teichert, J.; Xiang, R. [HZDR (Germany); Kamps, T. [HZB (Germany); Kneisel, P. [JLab (Germany); Voelker, J. [HZB (Germany); Humboldt Universitaet Berlin (Germany); Volkov, V. [BINP (Germany); Will, I. [MBI (Germany)

    2013-07-01

    The development of a superconducting photo injector is an ongoing challenge at the HZDR in Dresden. Several milestones like the first operation of a half cell niobium cavity in 2002 and the worldwide first beam transfer from a 3 1/2-cell SRF gun into an actual accelerator structure have already been accomplished. Nevertheless, as superconducting electron sources are of great interest for future ERL or cw operated FEL projects, studies to improve their output parameters and stability continue to get them on the same level as their normal conducting counterparts. The talk discusses several of the current approaches to reduce the transversal emittance of the next 3 1/2-cell cavity at the HZDR including the installation of a superconducting solenoid within the gun's cryostat.

  1. Initial Commissioning Experience With the LCLS Injector

    The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam is taking place during the spring and summer of 2007. The second phase of construction, including second bunch compressor and full linac, will begin later, in the fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics

  2. Commissioning Results of the LCLS Injector

    The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam has recently been completed. The second phase of construction, including second bunch compressor and full linac, is planned for 2008. In this paper, we report experimental results and experience gained during the first phase of machine commissioning. This includes the cathode, drive laser, RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics

  3. A Neutral Beam Injector Upgrade for NSTX

    T. Stevenson; B McCormack; G.D. Loesser; M. Kalish; S. Ramakrishnan; L. Grisham; J. Edwards; M. Cropper; G. Rossi; A. von Halle; M. Williams

    2002-01-18

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current.

  4. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  5. Main Facilities

    This chapter discuss on main nuclear facilities available in the Malaysian Institute for Nuclear Technology Research (MINT). As a national research institute whose core activities are nuclear science and technology, MINT are made up of main commercializable radiation irradiators, pilot plant and fully equipped laboratories. Well elaboration on its characteristics and functions explain for RTP (PUPSPATI TRIGA reactors), Cobalt-60 gamma irradiator, electron beam accelerators, and radioactive waste management center

  6. FEL injector control system on the base of EPICS

    Salikova, T V; Kurkin, G Ya; Oreshkov, A D; Scheglov, M A; Tribendis, A G

    2001-01-01

    The control system of the 1.5 MeV FEL injector is built on the base of ported EPICS. It uses low-cost hardware: personal computers with the processor Intel x86 and CAMAC equipment produced by our institute. At present time, the distributed control system includes one Pentium at OPerator Interface (OPI) level and two IOC (Input Output Controllers) under supervision of the real time operating system LynxOS/x86 at the low-level. Each IOC is used for monitoring of autonomous parts of the injector. The first IOC operates the Radio Frequency (RF) system. The second IOC operates the injector equipment

  7. Performance reach of the injector complex in 2012

    Steerenberg, R; Cornelis, K; Damerau, H; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Hancock, S; Manglunki, D; Métral, E; Mikulec, B; Wenninger, J

    2012-01-01

    At the start of the 2011 physics run quite some margin in the performance of the injectors was available and identified. Following the fast increase of the performance of the LHC itself during 2011, these margins have very much been exploited and some have even been pushed further. In view of further increase in the LHC luminosity, the 2012 performance reach of the injectors will be reviewed. One of the arising topics is satellite bunches from the injectors. Until now concerted effort went into supressing satellite bunches to a minimum, but a recent successful test with "controlled" satellites might make their routine production and characterisation an important topic in 2012.

  8. Progress in the study and construction of the TESLA test facility injector

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  9. Combustion Characteristics of Bi-Liquid Swirl Coaxial Injectors with Respect to a Recess

    Seo, Seonghyeon; Han, Yeoung-Min; Choi, Hwan-Seok

    Uni-element combustion tests were conducted employing double swirl coaxial injectors fed by liquid oxygen and kerosene. In this study, two major experimental parameters have been considered: the recess length and fuel swirl chamber shape. It was revealed that combustion efficiency depends mainly on the mixing mechanism for the present swirl coaxial injectors, and acoustic intensities become reduced with a decrease of the recess length. Low-frequency pressure oscillations around 200 Hz have been observed for all injectors. Dynamic behavior examined by the measurements of pressure fluctuations considerably differs for external and internal mixing based on the recess length. Internal mixing induces a mixture ratio and a total mass flow rate that vary with strong bias at a single frequency, resulting in high-amplitude pressure fluctuations generated by combustion of pulsating coherent flow structures. However, the results for external mixing show that the fuel and oxidizer mixture flow carries more dispersed, multiple-wave characteristics due to the broad mixing region as well as disintegration and merging phenomena of propellant sheets before mixing.

  10. Numerical and experimental study of the beam dynamics of CANDELA photo-injector and associated instrumentation

    Laser triggered radiofrequency guns are the most luminous electron sources allowing to reach the performances requested by highly demanding applications like the e+/e-linear colliders and the short wave free electron lasers. CANDELA is a band S photo-injector triggered by a sub-picosecond laser. It allows reaching peak currents of hundred of amperes at average energies higher than 2 MeV. The original concept of two accelerating cavities aims at minimizing the transverse and longitudinal emittances following the Gao's principles. From practical reasons the operating parameters, particularly the laser pulse duration, do not correspond to those considered in the design. Hence, numerical simulations were performed to evaluate the gun's performances in experimental environment. The study of a stabile injector operation resulted in evolutions with consequences in the phase control systems implying the laser and the HF (Hyper Frequency) source. The beam transverse and longitudinal characteristics have been measured as a function of the main parameters i.e., the beam charge and the phase shift between the laser and the HF wave. Measurements of the transverse emittance energy dispersion and wave packed duration are presented for several injector configurations. The systems of existing beam measurements have been studied to determine the resolution and the experimental conditions to fulfill, in order to suggest improvements for the CANDELA beam. The experiments with the beam have been compared with numerical simulations. Agreement was obtained within wide ranges of parameters for most of the characteristic beam quantities

  11. Integrated numerical modeling of a laser gun injector

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ''conditioning for final bunching'' is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source

  12. The Advanced Photon Source Injector Test Stand Control System

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  13. Injector for the University of Maryland Electron Ring (UMER)

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline

  14. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K+) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  15. Pellet injectors for the tokamak fusion test reactor

    The repeating pneumatic injector is a device from the ORNL development program. A new eight-shot deuterium pellet injector has been designed and constructed specifically for the TFTR application and is scheduled to replace the repeating injector this year. The new device combines a cryogenic extruder and a cold wheel rotary mechanism to form and chamber eight pellets in a batch operation; the eight pellets can then be delivered in any time sequence. Another unique feature of the device is the variable pellet size with three pellets each of 3.0 and 3.5 mm diam and two each of 4.0 mm diam. The experience and technology that have been developed on previous injectors at ORNL have been utilized in the design of this latest pellet injection system

  16. Numerical determination of injector design for high beam quality

    The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile

  17. Radiation Environments and their Impact at the CERN's Injector Chain

    De Carvalho Saraiva, Joao Pedro; CERN. Geneva. ATS Department

    2015-01-01

    Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its Injector Chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix the faults. This note describes the different radiation environments present along the CERN’s Injector Chain and the expected evolution over the next years with the ongoing LHC Injectors Upgrade (LIU) project. The available dosimetry and beam monitoring systems used to assess radiation levels are presented, outlining their respective pros and cons. The interplay between Monte Carlo simulations and the available radiation monitoring in the Injectors is also presented.

  18. Design of injector section for SPring-8 linac

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  19. Injector for the University of Maryland Electron Ring (UMER)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  20. Spark-integrated propellant injector head with flashback barrier

    Mungas, Gregory Stuart (Inventor); Fisher, David James (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  1. Development of a low swirl injector concept for gas turbines

    Cheng, R. K.; Fable, S.A.; D. Schmidt; L. Arellano; Smith, K O

    2000-01-01

    This paper presents a demonstration of a novel lean premixed low-swirl injector (LSI) concept for ultra-low NOx gas turbines. Low-swirl flame stabilization method is a recent discovery that is being applied to atmospheric heating equipment. Low-swirl burners are simple and support ultra-lean premixed flames that are less susceptible to combustion instabilities than conventional high-swirl designs. As a first step towards transferring this method to turbines, an injector modeled after th...

  2. A Homemade Autosampler/Injector Commutator for Flow Injection Analysis

    de Figueiredo, Eduardo Costa; de Souza, Leandro Ruela; de Magalhães, Cristiana Schmidt; Wisniewski, Célio

    2006-01-01

    An autosampler/injector commutator for flow injection analysis (FIA) was constructed with electronic components of used equipments. The apparatus is controlled by commercially available multifunctional interface (PCL711B) connected to a personal computer, and the software was written in Visual Basic language. The system was applied to water analysis and it presented satisfactory results. The low cost and simplicity are the principal characteristics of the autosampler/injector commutator. PMID:17671617

  3. The ATLAS tile calorimeter ROD injector and multiplexer board

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  4. The DEEPSSI project, design and modelling of steam injectors

    The DEEPSSI project is supported by the European commission in the frame of the 5th R and D framework programme. DEEPSSI is a research programme dealing with steam injectors. Among thermalhydraulic passive systems, the steam injectors (also called 'condensing ejectors' or 'steam jet pumps') are very interesting apparatus with very specific thermal-hydraulic quantities (high velocity, very low pressure). The envisaged reactor application is the Steam Generator Emergency FeedWater System (EFWS) of Pressurised Water Reactors (PWRs). The heart of this project is the development and the testing of an innovative steam injector design. Three experimental facilities are involved : CLAUDIA in France, IETI in Italy and IMP-PAN in Poland. In these facilities, different design options have been tested and some significant improvements of the initial design have been obtained. In addition to the experimental studies, the development of a steam injector computational model has been undertaken in order to model industrial systems based on steam injectors. The one-dimensional module of the system code CATHARE2 has been chosen to be the basis of this model. The first results obtained have confirmed the capabilities of CATHARE2 to describe the steam injector thermal-hydraulics

  5. The DEEPSSI project, design and modelling of steam injectors

    Dumaz, P.; Geffraye, G.; Verloo, E. [CEA Cadarache, St Paul lez Durance (France)] [and others

    2003-07-01

    The DEEPSSI project is supported by the European commission in the frame of the 5{sup th} R and D framework programme. DEEPSSI is a research programme dealing with steam injectors. Among thermalhydraulic passive systems, the steam injectors (also called 'condensing ejectors' or 'steam jet pumps') are very interesting apparatus with very specific thermal-hydraulic quantities (high velocity, very low pressure). The envisaged reactor application is the Steam Generator Emergency FeedWater System (EFWS) of Pressurised Water Reactors (PWRs). The heart of this project is the development and the testing of an innovative steam injector design. Three experimental facilities are involved : CLAUDIA in France, IETI in Italy and IMP-PAN in Poland. In these facilities, different design options have been tested and some significant improvements of the initial design have been obtained. In addition to the experimental studies, the development of a steam injector computational model has been undertaken in order to model industrial systems based on steam injectors. The one-dimensional module of the system code CATHARE2 has been chosen to be the basis of this model. The first results obtained have confirmed the capabilities of CATHARE2 to describe the steam injector thermal-hydraulics.

  6. MAIN ABSTRACTS

    2012-01-01

    Zhou Enlai and the Sinicization of Marxism Chen Dacai As a key member of the first generation of collective leadership of the CPC, Zhou Enlai contributed greatly to the theoretical cause of the sinicization of Marxism. Such contribution mainly include the fllowing aspects: he spread Marxism in a at a very special historical period as one of the representative of the earliest Chinese Marxists; he presented at an early stage the relationship between Marxism and Chinese revolution,

  7. Main Memory

    Boncz, Peter; Liu, Lei; Özsu, Tamer, M.

    2008-01-01

    Primary storage, presently known as main memory, is the largest memory directly accessible to the CPU in the prevalent Von Neumann model and stores both data and instructions (program code). The CPU continuously reads instructions stored there and executes them. It is also called Random Access Memory (RAM), to indicate that load/store instructions can access data at any location at the same cost, is usually implemented using DRAM chips, which are connected to the CPU and other peripherals (di...

  8. Recent progress in photo-injectors

    In photoinjector electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense RF fields in a resonant cavity. Photoinjectors are very versatile tools. Normally we think of them in terms of the production of high electron density in 6-D phase space, for reasons such as injection to laser accelerators, generation of x-rays by Compton scattering and short wavelength FELs. Another example for the use of photo-injectors is the production of a high charge in a short time, for wake- field acceleration, two-beam accelerators and high-power, long-wavelength FELs. There are other potential uses, such as the generation of polarized electrons, compact accelerators for industrial applications and more. Photoinjectors are in operation in many electron accelerator facilities and a large number of new guns are under construction. The purpose of this work is to present some trend setting recent results that have been obtained in some of these laboratories. In particular the subjects of high density in 6-D phase space, new diagnostic tools, photocathode advances and high-charge production will be discussed

  9. An Injector Test Facility for the LCLS

    Colby, E., (ed.); /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  10. LHC Injectors Upgrade (LIU) Project at CERN

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  11. Tritium proof-of-principle pellet injector

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3He separator, which was an integral part of the gun assembly, was capable of lowering 3He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  12. Preparation of the SPS as LHC injector

    Collier, Paul

    1998-01-01

    A major project (SLI) for the preparation the SPS in its role as the final link in the injector chain to the LHC was launched one year ago [1,2]. The major areas of work include the upgrade of the RF and the injection systems, together with the provision of a new extraction channel to serve ring 2 of the LHC. In addition, studies have been made on the ability of the SPS to meet the stringent trans verse and longitudinal beam requirements of the LHC. This has lead to several other programmes of work including upgrades to the beam instrumentation, the transverse damper and the shielding of over 8 00 inter-magnet pumping ports to reduce the impedance of the machine. The planning of the project is influenced by the continued operation of LEP and the proposed new long base-line neutrino facility (NGS). In addition, during the machine upgrades, the SPS must continue to deliver high quality proton beams to the fixed-target experimental community and for an extensive range of experimental detect or test beams. The ma...

  13. Development of a repetitive compact torus injector

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  14. Computed tomography and magnetic resonance imaging contrast media injectors: technical feature review – what is really needed?

    Friebe, Michael

    2016-01-01

    There has been little technical innovation over the last few years for contrast media (CM) injectors that are used for diagnostic imaging (computed tomography [CT], magnetic resonance imaging [MRI], and hybrid imaging systems, such as positron emission tomography–CT or magnetic resonance–positron emission tomography) examinations. The medical need of CM for the enhancement of diagnostic images has been around for a long time, but the application of the CM into the blood stream comes with potential medical complications for the patient and requires a lot of operator experience and training. Most power injector systems that are currently used can do significantly more than what is typically required; this complexity however, adds error potential and cost. This paper focuses on the main features that CM injector systems should have and highlights the technical developments that are useful to have but which add complexity and cost, increase setup time, and require intensive training for safe use. CM injection protocols are very different between CT and MRI, with CT requiring many more variances, has a need for multiphase protocols, and requires a higher timing accuracy. A CM injector used in the MRI suite, on the other-hand, could only need a relatively time insensitive injection with a standard injection flow rate and a volume that is dependent on the patients’ weight. This would make easy and lightweight systems possible, which are able to safely and accurately perform the injection task, while allowing full MRI compatibility with relatively low cost investment and consumable costs. PMID:27486345

  15. MAIN CONTENTS

    2012-01-01

    The Key to Agricultural Science and Technology Innovation should be placed on the FiveMajor Changes Based on analysis and forecasting on grain consumption influencing factors, production influencing factors and import influencing factors, the supply and demand of main sorts of grain in China is forecas- ted respectively, including paddy, wheat, corn and soybean. In 2020, grain consumption quantity, grain production quantity and grain import quantity of China is 693 million tons, 644 million tons and 49 million tons respectively. For grain security in future, new stratagem on food security should be im- plemented, grain import circumstance and global grain security. Father mechanism should be im- proved, and early warning and regulation on grain production capacity should be paid attention to sys- temically.

  16. Physics design of the injector source for ITER neutral beam injector (invited).

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented. PMID:24593568

  17. Impact of palm biodiesel blend on injector deposit formation

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NOx emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  18. Beam emittance investigation in high brightness injector using different driver laser profiles

    2011-01-01

    Beam emittance plays an important role in any accelerator, and it is a main parameter to judge the performance of an accelerator. Emittance optimization is an indispensable part in conditioning and operation of the facility. For a laser-driven high brightness injector, different time structure of the laser pulse has different effects on transverse emittance. In order to compare Gaussian and flat-top laser pulse, systematic simulations of 500 pC have been done. From the simulation results, one can see that flat-top pulse laser will yield smaller minimal transverse beam size and transverse beam emittance than Gaussian pulse laser.

  19. General layout of the 17 MeV injector for MYRRHA

    Podlech, Holger; Amberg, Michael; Klein, Horst; Mäder, Dominik; Busch, Marco; Ratzinger, Ulrich; Schempp, Alwin; Tiede, Rudolf; Vossberg, Markus; Zhang, Chuansheng

    2011-01-01

    The MYRRHA Project (Multi Purpose Hybrid Reactor for High Tech Applications) at Mol/belgium will be a user facility with emphasis on research with neutron generated by a spallation source. One main aspect is the demonstration of nuclear waste technology using an accelerator driven system. A superconducting linac delivers a 4 mA, 600 MeV proton beam. The first accelerating section is covered by the 17 MeV injector. It consists of a proton source, an RFQ, two room temperature CH cavities and 4 ...

  20. Achromatic beam transport of High Current Injector

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  1. Study on two-phase flow dynamics in steam injectors

    Analytical and experimental studies have been conducted on large-scale steam injectors for a next-generation reactor. The steam injectors are simple, compact, passive steam jet pumps for a steam-injector-driven passive core injection system (SI-PCIS) or steam-injector-driven primary loop recirculation system (SI-PLR). In order to check the feasibility of such large-scale steam injectors, we developed the separate-two-phase flow models installed in the PHOENICS Code, and scale-model tests were conducted for both SI-PCIS and SI-PLR. A 1/2 scale SI-PCIS model achieved a discharge pressure of almost 8 MPa with 7 MPa steam and 0.4 MPa water, and a 1/5 scale SI-PLR model attained a discharge pressure of 12.5 MPa with 3 MPa steam and 7 MPa water. Both results are in good agreement with the analysis, confirming the feasibility of both systems. The systems will help to simplify the next generation of BWRs. (author)

  2. A fuel pellet injector for the Microwave Tokamak Experiment (MTX)

    Unlike other fueling systems for magnetically confined fusion plasmas, a pellet injector can deliver many fuel gas particles to the core of the plasma, enhancing plasma confinement. We installed a new pellet injector on the MTX (formerly Alcator-O) to provide a plasma with a high core density for experiments both with and without ultrahigh-power microwave heating. Its four-barrel pellet generator is the first to be designed and built at LLNL. Based on 'pipe-gun'' technology originated at Oak Ridge National Laboratory (ORNL), it incorporates our structural and thermal engineering innovations and a unique control system. The pellet transport, differential vacuum-pumping stages, and fast-opening propellant valves are reused parts of the Impurity Study EXperiment (ISX) pellet injector built by ORNL. We tailored designs of all other systems and components to the MTX. Our injector launches pellets of frozen hydrogen or deuterium into the MTX, either singly or in timed bursts of up to four pellets at velocities of up to 1000 m/s. Pellet diameters range from 1.02 to 2.08 mm. A diagnostic stage measures pellet velocities and allows us to photograph the pellets in flight. We are striving to improve the injector's performance, but its operations is already very consistent and reliable

  3. Main findings

    Licensing regimes vary from country to country. When the license regime involves several regulators and several licenses, this may lead to complex situations. Identifying a leading organisation in charge of overall coordination including preparation of the licensing decision is a useful practice. Also, if a stepwise licensing process is implemented, it is important to fix in legislation decisions and/or time points and to identify the relevant actors. There is considerable experience in civil and mining engineering that can be applied when constructing a deep geological disposal facility. Specific challenges are, however, the minimization of disturbances to the host rock and the understanding of its long-term behavior. Construction activities may affect the geo-hydraulic and geochemical properties of the various system components which are important safety features of the repository system. Clearly defined technical specifications and an effective quality management plan are important in ensuring successful repository implementation which is consistent with safety requirements. Monitoring plan should also be defined in advance. The regulatory organization should prepare itself to the licensing review before construction by allocating sufficient resources. It should increase its competence, e.g., by interacting early with the implementer and through its own R and D. This will allow the regulator to define appropriate technical conditions associated to the construction license and to elaborate a relevant inspection plan of the construction work. After construction, obtaining the operational license is the most important and crucial step. Main challenges include (a) establishing sufficient confidence so that the methods for closing the individual disposal units comply with the safety objectives and (b) addressing the issue of ageing of materials during a 50-100 years operational period. This latter challenge is amplified when reversibility/retrievability is required

  4. Computed tomography and magnetic resonance imaging contrast media injectors: technical feature review – what is really needed?

    Friebe M

    2016-07-01

    Full Text Available Michael Friebe Institute of Medical Engineering, Otto-von-Guericke-University, Magdeburg, Germany Abstract: There has been little technical innovation over the last few years for contrast media (CM injectors that are used for diagnostic imaging (computed tomography [CT], magnetic resonance imaging [MRI], and hybrid imaging systems, such as positron emission tomography–CT or magnetic resonance–positron emission tomography examinations. The medical need of CM for the enhancement of diagnostic images has been around for a long time, but the application of the CM into the blood stream comes with potential medical complications for the patient and requires a lot of operator experience and training. Most power injector systems that are currently used can do significantly more than what is typically required; this complexity however, adds error potential and cost. This paper focuses on the main features that CM injector systems should have and highlights the technical developments that are useful to have but which add complexity and cost, increase setup time, and require intensive training for safe use. CM injection protocols are very different between CT and MRI, with CT requiring many more variances, has a need for multiphase protocols, and requires a higher timing accuracy. A CM injector used in the MRI suite, on the other-hand, could only need a relatively time insensitive injection with a standard injection flow rate and a volume that is dependent on the patients’ weight. This would make easy and lightweight systems possible, which are able to safely and accurately perform the injection task, while allowing full MRI compatibility with relatively low cost investment and consumable costs. Keywords: power injector, contrast media injection, injection protocols, MRI compatibility

  5. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the ...

  6. Feasibility study on steam injector water injection system for JSBWR

    A feasibility study has been conducted respecting a steam injector driven system (SIS) for low pressure core injection system (SI-LPCI) for a Japanese-type simplified BWR (JSBWR). The steam injector (SI) is a simple, compact passive pump driven by supersonic steam jet condensation. The feasibility and demonstration tests were conducted and water was successfully injected into the simulated injection line. The steam injector could operate under the condition of very low steam pressure, such as near atmospheric pressure (0.3 MPa), and it discharged water at 0.6 MPa by the time the gravity driven core injection system (GDCS) started operation. The system simplified the core depressurization system using large depressurization valves (DPV). 8 refs., 22 figs., 5 tabs

  7. Linac injector options for a relativistic heavy ion synchrotron

    A growing interest in medical uses for high energy heavy ion beams has led to two recent proposals to build dedicated medical heavy ion synchrotrons. Linear accelerators are generally preferred as injectors for synchrotrons, but in the case of heavy ions with relatively low charge to mass ratios, the required linacs are extremely large, and/or complex, low frequency structures. Cyclotrons were therefore initially proposed as the injectors for the medical synchrotrons. Recently a new radio-frequency quadrupole (RFQ) linac structure has been developed. Its excellent capture, beam transport and acceleration characteristics for low velocity ion beams makes it ideally suited as a heavy ion synchrotron injector either alone or in combination with a drift tube linac

  8. A high peak current source for the CEBAF injector

    The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nuclear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13 pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration in the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented. (Author) 7 refs., 6 figs

  9. Final design of the beam source for the MITICA injector

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  10. A pump-probe XFEL particle injector for hydrated samples

    Weierstall, U; Spence, J C H

    2011-01-01

    We have developed a liquid jet injector system that can be used for hydrated sample delivery at X-ray Free Electron Laser (XFEL) sources and 3rd generation synchrotron sources. The injector is based on the Gas Dynamic Virtual Nozzle (GDVN), which generates a liquid jet with diameter ranging from 300 nm to 20 {\\mu}m without the clogging problems associated with conventional Rayleigh jets. An improved nozzle design is presented here. A differential pumping system protects the vacuum chamber and an in-vacuum microscope allows observation of the liquid jet for diagnostics while it is being exposed to the X-ray beam. A fiber optically coupled pump laser illuminating the jet is incorporated for pump-probe experiments. First results with this injector system have been obtained at the LCLS.

  11. Shielding calculations for the TFTR neutral beam injectors

    Two-dimensional discrete ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor (TFTR) neutral beam injectors. Two sets of calculations were performed: one to determine the dose equivalent rate on the roof and walls of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m are sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/DT pulse

  12. Jefferson Lab injector development for next generation parity violation experiments

    Grames, J.; Hansknect, J.; Poelker, M.; Suleiman, R.

    2011-11-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  13. Light-Weight Injector Technology for Cryogenic Mars Ascent Engines

    Trihn, Huu Phuoc; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale

  14. DARHT-II Injector Transients and the Ferrite Damper

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  15. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    Hong, In-Seok, E-mail: ishong@ibs.re.kr; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of)

    2016-02-15

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  16. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  17. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation

  18. Development of a low swirl injector concept for gas turbines

    This paper presents a demonstration of a novel lean premixed low-swirl injector (LSI) concept for ultra-low NOx gas turbines. Low-swirl flame stabilization method is a recent discovery that is being applied to atmospheric heating equipment. Low-swirl burners are simple and support ultra-lean premixed flames that are less susceptible to combustion instabilities than conventional high-swirl designs. As a first step towards transferring this method to turbines, an injector modeled after the design of atmospheric low-swirl burner has been tested up to T=646 F and 10 atm and shows good promise for future development

  19. Injector spray characterization of methanol in reciprocating engines

    Dodge, L.; Naegeli, D. [Southwest Research Inst., San Antonio, TX (United States)

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  20. SLC injector end to end simulation for high charge transport

    The authors describe the end-to-end simulation of the SLC injector from the Gun through the first accelerating section. The purpose of these simulations is to aid the injector tuning for high charge transport. Simulations are conducted using PARMELA, a 3 dimensional ray trace code with a two dimensional space charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The results from POISSON and SUPERFISH are used in PARMELA to simulate and prescribe experimental parameters

  1. Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

    Filipović Ivan

    2011-01-01

    Full Text Available The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions. The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely

  2. Study on the characteristics of the supersonic steam injector

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper

  3. Flash radiographic technique applied to fuel injector sprays

    A flash radiographic technique, using 50 ns exposure times, was used to study the pattern and density distribution of a fuel injector spray. The experimental apparatus and method are described. An 85 kVp flash x-ray generator, designed and fabricated at the Lawrence Livermore Laboratory, is utilized. Radiographic images, recorded on standard x-ray films, are digitized and computer processed

  4. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point

  5. Design of a tritium pellet injector for TFTR

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  6. Design of a tritium pellet injector for TFTR

    This paper reports on the TFTR tritium pellet injector (TPI) designed to provide a tritium pellet fueling capability with pellet speeds in the 1-to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector (DPI) is being modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle (TPOP) injector experiments conducted on the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller (PLC)

  7. An isotope separation magnet for the injector test experiment (MITE)

    A magnet has been designed for space-charge neutralization studies on the Injector Test Experiment at the Chalk River Nuclear Laboratories. Augmented by suitable collectors, the magnet could also be used for pilot-scale isotope separations. The present report documents the design of this particular magnet and illustrates the process of designing beam transport magnets in general

  8. 49 CFR 230.57 - Injectors and feedwater pumps.

    2010-10-01

    ... delivery systems required. Each steam locomotive must be equipped with at least two means of delivering water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers...

  9. ALS LOX/H2 subscale coaxial injector testing

    Dexter, Carol E.

    1991-01-01

    Tests of a 40K subscale LOX/H2 coaxial LOX swirl injector conducted without injector or chamber degradation are reported. Chamber pressures ranged from 1572 to 2355 psia with overall mixture ratios from 5.04 to 6.39. The highest characteristic velocities were measured when the mixture ratio across the injector face was uniform. Scarfing of the outer row LOX posts had the largest effect on chamber heating rates. As a result of the tests, the LSI design was modified to arrange the outer row LOX posts in a circular pattern, eliminate O/F biasing and fuel film cooling, and modify the interpropellant plate to allow for larger pressure differentials during the start and cutoff transients. Testing of a 100 K LOX/H2 coaxial LOX swirl injector involved chamber pressure ranging from 700 to 2500 psia with overall mixture ratios from 3.2 to 8.8. Stable combustion was observed to a fuel temperature of 90R and characteristic velocity efficiencies were good.

  10. The Effect of Resistance on Rocket Injector Acoustics

    Morgan, C. J.

    2015-01-01

    Combustion instability, where unsteady heat release couples with acoustic modes, has long been an area of concern in liquid rocket engines. Accurate modeling of the acoustic normal modes of the combustion chamber is important to understanding and preventing combustion instability. The injector resistance can have a significant influence on the chamber normal mode shape, and hence on the system stability.

  11. Study on the characteristics of the supersonic steam injector

    Abe, Yutaka, E-mail: abe@kz.tsukuba.ac.jp; Shibayama, Shunsuke

    2014-03-15

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper.

  12. Outline design of a neutral beam injector for ITER EDA

    Pamela, J. [Association Euratom-CEA, CE Cadarache, 13 St Paul lez Durance (France); Hemsworth, R. [Association Euratom-CEA, CE Cadarache, 13 St Paul lez Durance (France); Feist, J. [Euratom Association, IPP, Garching (Germany); Fumelli, M. [Association Euratom-CEA, CE Cadarache, 13 St Paul lez Durance (France); Heinemann, B. [Euratom Association, IPP, Garching (Germany); Jacquot, C. [Association Euratom-CEA, CE Cadarache, 13 St Paul lez Durance (France); Jequier, F. [Association Euratom-CEA, CE Cadarache, 13 St Paul lez Durance (France); Lochter, M. [Euratom Association, KFA, Juelich (Germany); Martin, S. [Euratom Association, KFA, Juelich (Germany); Nightingale, M. [Euratom Association, UKAEA Government Div., Culham Lab. (United Kingdom); Sielanko, J. [Univ. of Lublin (Poland); Simonin, A. [Association Euratom-CEA, CE Cadarache, 13 St Paul lez Durance (France); Speniak, C. [Euratom Association, IPP, Garching (Germany); Speth, E. [Euratom Association, IPP, Garching (Germany); Taylor, N. [Euratom Association, UKAEA Government Div., Culham Lab. (United Kingdom); Thompson, E. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Watson, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1995-12-31

    A self consistent physics design for a 50 MW 1 MeV negative-ion based injector has been produced which forms the basis of a preliminary engineering design. Neutronics calculations show that radiation damage to insulators and nuclear heating of cryogenic components does not present any major problem. A detailed report is being issued at NET [1]. (orig.).

  13. Outline design of a neutral beam injector for ITER EDA

    A self consistent physics design for a 50 MW 1 MeV negative-ion based injector has been produced which forms the basis of a preliminary engineering design. Neutronics calculations show that radiation damage to insulators and nuclear heating of cryogenic components does not present any major problem. A detailed report is being issued at NET [1]. (orig.)

  14. Outline design of a neutral beam injector for ITER EDA

    Pamela, J.; Hemsworth, R.; Fumelli, M.; Jacquot, C.; Jequier, F. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Feist, J.; Heinemann, B. [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Lochter, M.; Martin, S. [Association Euratom-Kernforschungsanlage Juelich GmbH (Germany); Nightingale, M. [UKAEA Culham Lab., Abingdon (United Kingdom); and others

    1994-12-31

    A self consistent physics design for a 50 MW 1 MeV negative-ion based injector has been produced which forms the basis of a preliminary engineering design. Neutronics calculations show that radiation damage to insulators and nuclear heating of cryogenic components does not present any major problem. (author) 11 refs.; 6 figs.; 1 tab.

  15. Outline design of a neutral beam injector for ITER EDA

    A self consistent physics design for a 50 MW 1 MeV negative-ion based injector has been produced which forms the basis of a preliminary engineering design. Neutronics calculations show that radiation damage to insulators and nuclear heating of cryogenic components does not present any major problem. (author) 11 refs.; 6 figs.; 1 tab

  16. The positive-ion injector of ATLAS: design and operating experience

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed. (orig.)

  17. Design considerations for single-stage and two-stage pneumatic pellet injectors

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  18. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    Wang, Yan [Jefferson Lab., Newport News, VA (United States); Hofler, Alicia S. [Jefferson Lab., Newport News, VA (United States); Kazimi, Reza [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  19. Tritium pellet injector for the Tokamak Fusion Test Reactor

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  20. Impact of biodiesel blend on injector deposit formation

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NOx emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  1. Study liquid length penetration results obtained with a direct acting piezo electric injector

    Highlights: ► A direct acting injector capable of controlling needle lift has been used to determine liquid phase penetration. ► The influence of injection pressure, chamber density and chamber temperature have been measured. ► When needle lift is reduced the stabilized liquid length is shortened. ► The relationship between needle lift and liquid length makes needle lift as a new way to control the injection event. - Abstract: A state of the art prototype common rail injector featuring direct control of the needle by means of a piezo stack (direct acting) has been tested. Liquid phase penetration of the sprays in diesel engine-like conditions has been studied via imaging technique in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic conditions (up to 1000 K and 15 MPa). This state of the art injector fitted with a 7-hole nozzle, allows a fully flexible control on the nozzle needle movement, enabling various fuel injection rate typologies. The temporal evolution of the seven sprays has been studied recording movies of the injection event in evaporative conditions via Mie scattering imaging technique and using a high speed camera. The results showed a strong influence of needle position on the stabilized liquid length while the effect of the injection pressure is negligible: the decrease of the needle lift causes a pressure drop in the needle seat and thus a reduction in the effective pressure upstream of the orifices (in the nozzle sac). According to known literature the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on fuel velocity at the orifice outlet. Therefore, due to small change in the spray cone-angle, higher injection pressures give slightly lower liquid length. However, partial needle lifts has an opposite effect: when needle is partially lifted a dramatic increase of the spray cone-angle and a consequent reduction of

  2. Expected performance in the injectors at 25 ns without and with Linac4

    Rumolo, G; Damerau, H; Findlay, A; Hancock, S; Mikulec, B; Oeftiger, A

    2014-01-01

    The quality of the 25ns beams that can be delivered at the LHC injection is determined by the injection process into the PSB, as well as by space charge, collective interactions, electron cloud and RF power limitations in the PS and SPS. Using the information available from our present experience, the main goal of this paper is twofold: (1) to assess the intensity and brightness reach of the 25ns beams produced by the LHC injector chain with the two main schemes, before and after the connection of the PSB to Linac 4; and (2) to identify which bottlenecks will be likely to limit the performance with Linac 4. A few options to maximize the potential of the increased brightness provided by Linac 4, based on flattened bunch profiles at the PS injection or the use of alternative optics configurations, will be included in the analysis.

  3. LS1 “First Long Shutdown of LHC and its Injector Chains”

    Foraz, K; Barberan, M; Bernardini, M; Coupard, J; Gilbert, N; Hay, D; Mataguez, S; McFarlane, D

    2014-01-01

    The LHC and its Injectors were stopped in February 2013, in order to maintain, consolidate and upgrade the different equipment of the accelerator chain, with the goal of achieving LHC operation at the design energy of 14 TeV in the centre-of-mass. Prior to the start of this First Long Shutdown (LS1), a major effort of preparation was performed in order to optimize the schedule and the use of resources across the different machines, with the aim of resuming LHC physics in early 2015. The rest of the CERN complex will restart beam operation in the second half of 2014. This paper presents the schedule of the LS1, describes the organizational set-up for the coordination of the works, the main activities, the different main milestones, which have been achieved so far, and the decisions taken in order to mitigate the issues encountered.

  4. Beam dynamic design of a high intensity injector for proton linac

    Dou, Wei-Ping; Wang, Zhi-Jun; Jia, Fang-Jian; He, Yuan; Wang, Zhi; Lu, Yuan-Rong

    2016-08-01

    A compact room-temperature injector is designed to accelerate 100 mA proton beam from 45 keV to 4.06 MeV for the proposed high intensity proton linac at State Key Lab of Nuclear Physics and Technology in Peking university. The main feature is that the Radio Frequency Quadruple (RFQ) and the Drift Tube linac (DTL) sections are merged in one piece at the total length of 276 cm. The beam is matched in transverse directions with an compact internal doublet instead of an external matching section in between. The design has reached a high average accelerating gradient up to 1.55 MV/m with transmission efficiency of 95.9% at the consideration of high duty factor operation. The operation frequency is chose to be 200 MHz due to the already available RF power source. The injector combines a 150 cm long 4-vanes RFQ internal section from 45 keV to 618 keV with a 126 cm long H-type DTL section to 4.06 MeV. In general the design satisfy the challenges of the project requirements. And the details are presented in this paper.

  5. Digital holographic diagnostics of near-injector region

    Lee, Jaiho

    Study of primary breakup of liquid jets is important because it is motivated by the application to gas turbine fuel injectors, diesel fuel injectors, industrial cleaning and washing machine, medical spray, and inkjet printers, among others. When it comes to good injectors, a liquid jet has to be disintegrated into a fine spray near injector region during primary breakup. However the dense spray region near the injectors is optically obscure for Phase Doppler Interferometer like Phase Doppler Particle Analyzers (PDPA). Holography can provide three dimensional image of the dense spray and eliminate the problem of the small depth of focus associated with shadowgraphs. Traditional film-based holographic technique has long been used for three dimensional measurements in particle fields, but it is time consuming, expensive, chemically hazardous. With the development of the CCD sensor, holograms were recorded and reconstructed digitally. Digital microscopic holography (DMH) is similar to digital inline holography (DIH) except that no lens is used to collimate the object beam. The laser beams are expanded with an objective lens and a spatial filter. This eliminates two lenses from the typical optical path used for in-line holography, which results in a much cleaner hologram recording. The DMH was used for drop size and velocity measurements of the breakup of aerated liquid jets because it is unaffected by the non-spherical droplets that are encountered very close to the injector exit, which would cause problems for techniques such as Phase Doppler Particle Analyzer, otherwise. Large field of view was obtained by patching several high resolution holograms. Droplet velocities in three dimensions were measured by tracking their displacements in the streamwise and cross-stream direction and by tracking the change in the plane of focus in the spanwise direction. The uncertainty in spanwise droplet location and velocity measurements using single view DMH was large at least 33

  6. Experimental and numerical study of high-pressure-swirl injector sprays in a direct injection gasoline engine

    Gao, J.; Jiang, D.; Huang, Z.; Wang, X. [Xi' an Jiaotong University, Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering

    2005-12-15

    The characteristics of free spray of a new type high-pressure-swirl injector in gasoline direct injection (GDI) engine under various injection conditions are investigated. The fuel spray with hollow-cone structure, wide spreading, and large spray angle is observed under the injection condition simulating to the GDI engine operation at full load. The study shows that a vortex structure can be clearly observed in the periphery of the spray. Meanwhile, an initial spray slug also appears at the tip of the main spray. Under the injection condition of GDI engine partial load, the structure of fuel spray changes into the more compact and solid-cone shape with decreased spray width. Moreover, the influences of the injection pressures and ambient pressures on the spray characteristics of the injector are studied. Along with the experimental studies, a general numerical model for the swirl spray is developed. Then, the model is implemented into a multi-dimensional computational fluid dynamics code (KIVA-3V) to theoretically study the pressure-swirl injector sprays. Comparisons between the computed and measured spray characteristics such as spray structure, spray tip penetration, and droplet sizes are made, and good agreement has been achieved between the model prediction and measurement. (author)

  7. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  8. An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design

    Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2007-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.

  9. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC), which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in νe charged current interactions can be maintained at an efficiency of 80%. Backgrounds for νe appearance searches from neutral current events with a π0 are reduced well below the ∼ 0.5-1.0% νe contamination of the νμ beam. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC, a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very preliminary cost estimate for a 50-kton detector is $100M

  10. Negative ion based neutral beam injector for JT-60U

    Okumura, Y.; Araki, M.; Hanada, M.; Inoue, T.; Kunieda, S.; Kuriyama, M.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Tanaka, M.; Watanabe, K.

    1992-10-01

    A 500 keV, 10 MW neutral beam injector is to be constructed in JT-60 Upgrade for the experiments of current drive and heating of heat density core plasmas. This is the first neutral beam injector in the world using negative ions as the primary ions. In the design, D- ion beams of 44 A, 500 keV are produced by two ion sources (22 A/each ion source) and neutralized in a long gas neutralizer. The total system efficiency is about 40%. The ion source is a cesium-seeded multicusp volume source having a three stage electrostatic accelerator. To reduce the stripping loss of D- ions in the accelerator, the ion source should be operated at a low pressure of 0.3 Pa with a current density of 13 mA/cm2. The first test of the full-size negative ion source is scheduled from middle of 1993.

  11. Optimization of RF Compressor in the SPARX Injector

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  12. Transmission of electrons inside the cryogenic pumps of ITER injector.

    Veltri, P; Sartori, E

    2016-02-01

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed. PMID:26932041

  13. Beam dynamics and optics studies for the LHC injectors upgrade

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  14. Injector nozzle for molten salt destruction of energetic waste materials

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  15. Transmission of electrons inside the cryogenic pumps of ITER injector

    Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Sartori, E. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.

  16. Neutral beam injectors for the Big Dee vessel

    The four neutral beam injectors built for Doublet III will be modified to reoptimize beam transmission into the Big Dee vessel. All beamline components will be remounted 900 to their original position in the cylindrical vacuum vessel. This will permit optimum alignment with the available port opening. While these modifications are being incorporated into the disassembled injectors, it is planned that improvements and upgrading features will be added at the least possible cost. The calorimeter will be replaced by two independently driven calorimeters, thus decoupling the operation of the two ion sources. The beam path is being opened up to accommodate a long pulse (cw) source and all beam absorbing surfaces are being increased in size to withstand up to 5 s of operation with heat fluxes up to 700 W/cm2. By opening up the apertures along the beam trajectory, an increase in power transmission into the plasma of 33% is realized compared with the present Doublet III performance

  17. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  18. Therminoic gun control system for the CEBAF injector

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  19. Neutronics calculations for the TFTR neutral beam injectors

    Estimates, based entirely on one-dimensional transport calculations, of some of the effects of radiation on the operation and maintenance of the neutral beam injector for the Tokamak Fusion Test Reactor (TFTR) to be built at the Plasma Physics Laboratory of Princeton University are presented. Radiation effects due to 14-MeV neutrons produced by D-T reactions in the plasma and due to 2.6-MeV neutrons produced by D-D reactions in the calorimeter and in the charged-deuteron beam dump are considered. The results presented here are intended to indicate potential radiation problems rather than to be an accurate estimate of the magnitude of the actual radiation effects that will exist in the vicinity of the final injectors

  20. Operation of the rf controls in the CEBAF injector

    The CEBAF injector has produced its first relativistic beam with two superconducting cavities. Six RF control modules are used to control amplitude and phase in the chopper cavities, the buncher, the capture section, and the two superconducting cavities. In this paper the required stability and actual performance of the modules are discussed. For the superconducting cavity control, performance is consistent with energy stability of ∼10-4

  1. Synchrotron injectors based on high charge state ion sources

    The performance of any injector contemplated to replace the electrostatic tandem accelerators some time in the future should evidently match or surpass the characteristics of the tandems. It is a fortunate coincidence that the performance of the BNL tandem satisfies in most respects the requirements of the proposed collider, although originally tandems were not built with this application in mind. Requests for heavy ion beams with parameters suitable for injection into the rings of a heavy ion collider have appeared rather recently, at a stage when the high charge state ion sources, which in principle are capable of producing many ion species, have not yet reached such a level of performance. Therefore, consideration of such sources as part of a future injector replacing the tandem accelerators will have to rely on the extrapolation of results from existing models, developed for a different purpose. At the same time, present and future collider requirements for heavy ion beams should serve as a stimulus for the development of sources producing ions with adequate charge states and intensities. Injectors based on such sources may present a better alternative than the tandem accelerators because a higher charge-to-mass ratio of ions from the source results in a more efficient and less costly accelerator. In this report, two candidates for a high charge state, heavy ion source will be considered: an EBIS and an ECR. Other approaches, e.g. laser ion sources, are much further away in the development of a device to be used in a synchrotron injector. 25 refs., 7 figs., 4 tabs

  2. The beam optics of the Argonne Positive-Ion Injector

    The beam optics for Phase I of the Argonne Positive-Ion Injector linac system have been studied for a representative set of beams. The results of this study indicate that high charge state beams from an ECR source can be accelerated without significantly increasing the transverse or longitudinal emittance of the initial beam. It is expected that the beam quality from the PII-ATLAS system will be at least as good as presently achieved with the tandem-ATLAS system

  3. Ethnic dimensions of habitus among homeless heroin injectors

    Bourgois, Philippe; Schonberg, Jeff

    2007-01-01

    Ten years of participant-observation fieldwork and photography among a multi-ethnic social network of homeless heroin injectors and crack smokers in California reveal hierarchical interpersonal relations between African Americans, whites and Latinos despite the fact that they all share a physical addiction to heroin and live in indigent poverty in the same encampments. Focusing on tensions between blacks and whites, we develop the concept of ‘ethnicized habitus’ to understand how divisions dr...

  4. Ignition sequence of an annular multi-injector combustor

    Philip, Maxime; Boileau, Matthieu; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  5. A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS

    PATOUNA, STAVROULA

    2012-01-01

    In Diesel engines, the internal flow characteristics in the fuel injection nozzles, such as the turbulence level and distribution, the cavitation pattern and the velocity profile affect significantly the air-fuel mixture in the spray and subsequently the combustion process. Since the possibility to observe experimentally and measure the flow inside real size Diesel injectors is very limited, Computational Fluid Dynamics (CFD) calculations are generally used to obtain the relevant informati...

  6. LFI: A Practical and General Library-Level Fault Injector

    MARINESCU Paul; Candea, George

    2009-01-01

    Fault injection, a critical aspect of testing robust systems, is often overlooked in the development of general-purpose software. We believe this is due to the absence of easy-to-use tools and to the extensive manual labor required to perform fault injection tests. This paper introduces LFI (Library Fault Injector), a tool that automates the preparation of fault scenarios and their injection at the boundary between shared libraries and applications. LFI extends prior work by automatically pro...

  7. Hollow-Cone Spray Modeling for Outwardly Opening Piezoelectric Injector

    Sim, Jaeheon

    2016-01-04

    Linear instability sheet atomization (LISA) breakup model has been widely used for modeling hollow-cone spray. However, the model was originally developed for inwardlyopening pressure-swirl injectors by assuming toroidal ligament breakups. Therefore, LISA model is not suitable for simulating outwardly opening injectors having string-like structures at wide spray angles. Furthermore, the varying area and shape of the annular nozzle exit makes the modeling difficult. In this study, a new spray modeling was proposed for outwardly opening hollow-cone injector. The injection velocities are computed from the given mas flow rate and injection pressure regardless of ambiguous nozzle exit geometries. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like liquid film spray. Liquid spray injection was modeled using Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the detailed model was implemented by user defined functions. It was found that the new model predicted the liquid penetration length and local SMD accurately for various fuels and chamber conditions.

  8. Understanding and improving the neutral beam injector conditioning problem

    The occurrence of high voltage electrical breakdowns between the ion beam extraction grids of a high-power neutral beam injector is one of the major factors that determine the performance of an injector. The tedious procedure of 'conditioning' the electrodes in up to several thousand shots and the stressing of electrical supplies by the fast transients are two examples illustrating the need for more understanding of the actual origins of the high-voltage breakdown and the desire to reduce their frequency, thereby shortening the down-times on an injector. This report is an attempt to systematically address these questions. It starts with a survey of the relevant literature relevant to gap breakdown in the extraction optics system. Considering the various possible reasons for breakdowns, different methods for conditioning are discussed as to their potential effectiveness and with respect to the necessary effort. The proposed experimental work to improve the conditioning time will then be described. Finally the results so far obtained will be reported. (orig.)

  9. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  10. A Compact High-Brightness Heavy-Ion Injector

    Westenskow, Glen; Grote, D P; Halaxa, Erni; Kwan, Joe W

    2005-01-01

    To provide compact high-brightness heavy-ion beams for Heavy Ion Fusion (HIF) accelerators, we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. In an 80-kV 20-microsecond experiment, the RF plasma source has produced up to 5 mA of Ar+ in a single beamlet. An extraction current density of 100 mA/cm2 was achieved, and the thermal temperature of the ions was below 1 eV. More than 90% of the ions were in the Ar+ state, and the energy spread from charge exchange was found to be small. We have tested at full voltage gradient the first 4 gaps of a 61-beamlet injector design. Einzel lens were used to focus the beamlets while reducing the beamlet to beamlet space charge interaction. We will report on a converging 119 multi-beamlet source. Although the source has the same optics as a full 1.6 MV injector system, the test will be carried out at 400 kV due to the test stand HV limit. We will measure the beam’s emittance after the beamlets are merged and have bee...

  11. Neutral beam injectors for the Big Dee vessel

    The four neutral beam injectors built for Doublet III will be modified to reoptimize beam transmission into the Big Dee vessel. All beamline components will be remounted 900 to their original position in the cylindrical vacuum vessel. This will permit optimum alignment with the available port opening. While these modifications are being incorporated into the disassembled injectors, it is planned that improvements and upgrading features will be added at the least possible cost. The calorimeter will be replaced by two independently driven calorimeters, thus decoupling the operation of the two ion sources. The beam path is being opened up to accommodate a long pulse (cw) source and all beam absorbing surfaces are being increased in size to withstand up to 5 s of operation with heat fluxes up to 700 W/cm2. By opening up the apertures along the beam trajectory, an increase in power transmission into the plasma of 33% is realized compared with the present Doublet III performance. In addition to improving the performance of the present system, this modification allows for the simple replacement of the present field free sources with larger cw sources to be developed and available at a later date. Ultimately, the four injectors will be capable of delivering up to 16 MW of heating into the Big Dee for up to 5-second pulses

  12. A Design Tool for Liquid Rocket Engine Injectors

    Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.

    2000-01-01

    A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.

  13. Initial development of a blurry injector for biofuels

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  14. Feasibility Study on a Neutral Beam Diagnostic Injector for TJ-II

    McCarthy, K. J.; Balbin, R.; Lopez-Fraguas, A.

    2003-07-01

    A diagnostic neutral beam system is proposed for the TJ-II stellarator. The main goal of installing such a system in TJ-II is to increase the signal to noise ratio and provide spatial resolution in diagnostic systems based on Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis, while also opening up new opportunities for physics studies in this magnetically confined plasma device. After outlining the unique characteristics of the TJ-II and reviewing available diagnostic injector systems, the compact system selected for TJ-II is presented together with estimates of the resulting increased signal levels Finally other important aspects are discussed, in particular its location and orientation, as well as possible solutions to avoid perturbing the TJ-II magnetic configurations in the heliac device. (Author) 31 refs.

  15. Feasibility Study on a Neutral Beam Diagnostic Injector for TJ-II

    A diagnostic neutral beam system is proposed for the TJ-II stellarator. The main goal of installing such a system in TJ-II is to increase the signal to noise ratio and provide spatial resolution in diagnostic systems based on Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis, while also opening up new opportunities for physics studies in this magnetically confined plasma device. After outlining the unique characteristics of the TJ-II and reviewing available diagnostic injector systems, the compact system selected for TJ-II is presented together with estimates of the resulting increased signal levels Finally other important aspects are discussed, in particular its location and orientation, as well as possible solutions to avoid perturbing the TJ-II magnetic configurations in the heliac device. (Author) 31 refs

  16. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  17. Determination of the longitudinal phase space distribution produced with the TTF photo injector

    The longitudinal phase space distribution of the beam produced with the rf photo injector of the TESLA Test Facility at DESY is mainly determined by the longitudinal laser pulse shape and the compression due to the rf acceleration field in the rf gun. The longitudinal electron distribution is measured with a high resolution streak camera using synchrotron radiation at the spectrometer dipole (E - 200 MeV). The same streak camera is used to measure the UV laser pulse shape. The longitudinal distribution of the laser and the electron beam can alternatively be determined by Fourier transform spectroscopy. The energy spread of the beam is determined by measuring the beam profile in the dispersive section using optical transition radiation. Dephasing of the superconducting accelerating cavities and variation of bunch compression parameters allow further measurements of the longitudinal phase space distribution. (authors)

  18. Study on biodiesel heat transfer through self-temperature limit injector during vehicle cold start

    Wang Jun

    2015-01-01

    Full Text Available A type of Self-Temperature Limit-Injector (STL- injector is proposed to reduce the biodiesel consumption and emission in vehicle cold start process. The STL-injector is capable of fast raising fuel temperature, which helps improve the quality of diesel spray and its combustion efficiency. A STL-injector model is established with consideration of electro-mechanic coupling and fluid-structure interaction. A transient simulation is conducted using dynamic grid technology. The results show that STL-injector can effectively raise biodiesel temperature to 350K from 300K in 32 seconds. That is to say, adding STL-injector to existing biodiesel combustion system is an environment-friendly solution due to improving atomization and spray quality quickly.

  19. Measuring the needle lift and return timing of a CRDI injector using an accelerometer

    Choong Hoon Lee

    2014-10-01

    Full Text Available The needle lift and return timing of a CRDI (common rail direct injection injector were investigated using an accelerometer and the Bosch injection rate measurement method. The Bosch method was used to measure the fuel injection rate shape when fuel was injected with several patterns. An accelerometer was mounted on the outside of the injector to catch the needle lift and return timing of the injector according to the switching signal of the injector driving voltage. The accelerometer accurately caught the timing of the injector needle lift and return for a single-injection pattern, but it could not for the second or third injection when multiple injections occurred. Only the first needle lift timing of the injector was caught with the injection rate shape obtained from the Bosch method, however, this method cannot identify any other lift or return timing values after the first lift timing.

  20. Experimental study of hydrogen-rich/oxygen-rich gas-gas injectors

    Jin Ping; Li Mao; Cai Guobiao

    2013-01-01

    Five types of coaxial injectors were investigated experimentally using hot hydrogen-rich gas and oxygen-rich gas, which were respectively provided by a GH2/GO2 hydrogen-rich perburner and a GH2/GO2 oxygen-rich preburner. The injectors were the shear coaxial injector, the oxidizer post expansion coaxial injector, the fuel impinging coaxial injector, the central body coaxial injec-tor, and the shear tri-coaxial injector. The characteristic velocity efficiency and the combustor’s wall temperatures were obtained for different design parameters through the experiments. It can be con-cluded that angles of the oxidizer post expansion and the fuel impinging have little influence on the combustion performance and the wall temperatures. The contact area between fuel and oxidizer and the mass flow rate have significant impacts on the combustion performance. The shear tri-coaxial injector has the best combustion performance but also the highest wall temperatures among the five types of injectors.

  1. Design and experimental study on steam injector with pressure-gain

    In the steam injector with pressure-gain, the water gains pressure by the power of steam. The outlet water pressure is higher than the inlet steam pressure. The characteristics of pressure-gain makes it possible to use the injector in the nuclear passive safety system. The study on the injector design is rarely reported. This paper presents the method to design the steam injector with pressure-gain. An experimental system was established according to the design. The experimental characteristic curve agrees well with the design curve, which proves the security and reliability of the design. (authors)

  2. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (11) Visualization Study on the Start-Up of the Steam Injector

    The Steam Injector is the superior system to pump the fluid without rotating machine. Because the water column is surrounded by the saturated steam, very high heat transfer is also expected with direct condensation. The inside of the Steam Injector is very complicated. To improve the efficiency of the Steam Injector, the water column behavior inside the Injector is visualized using the Dynamic PIV system. Dynamic PIV system consists of the high-speed camera and lasers. In this study, 384 x 180 pixel resolution with 30,000 fps camera is used to visualize the flow. For the illumination CW green laser with 300 mW is applied. To view inside the Injector, relay lens system is set at the Injector wall. Very high speed water column during the starting up of Steam Injector had been clearly visualized with 30,000 fps. The wave velocity on the water column had been analyzed using PIV technique. The instability of the water column is also detected. (authors)

  3. Progress in SLIP stacking and barrier bucket

    The slip stacking for pbar production has been operational in the Main Injector(MI) since December 2004 and has increased the beam intensity on the pbar target by more than 60%. We plan to use slip stacking for the NuMI neutrino experiment to effectively increasing the beam intensity to NuMI target by about a factor two in a MI cycle. In parallel with slip stacking, we plan to study fast momentum stacking using barrier buckets. One barrier rf system has been installed and tested, and a second system is being installed during the current shutdown. (author)

  4. MI high power operation and future plans

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  5. The MINOS Detectors

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  6. Novel design for transparent high-pressure fuel injector nozzles

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  7. Concept for the real-time control and data acquisition of the W7X diagnostic injector (RudiX)

    This document is composed of a poster and its abstract. The Russian diagnostics injector for Wendelstein 7-X (RudiX) is built within the scope of an international cooperation by 3 associations (FZJ-IEF-4 1, IPP-HGW 2, BINP 3). With respect to the large distance between the partner institutes and the huge number of interfaces at the injector side a modular, decentralized concept became necessary. It has to fulfill the requirements regarding the operation modes as well as local boundary conditions (limited access to the experiment). The control system based on S7 300/400 series by Siemens and for programming and visualisation environment the Step 7 and WinCC software packages are used. Connection to other systems and sub-systems of the diagnostics injector are realised by standardised interfaces, using the following protocols: professional bus DP and Ethernet TCP-IP. The concept is separated in two parts: a) an interfaces to the W7-X main control and b) an internal subsystem interfaces. For the internal set-up several independent PLC 4 or decentralized peripheral modules with separate Cpu are used according to the safety requirements (fault-tolerant Cpu and peripheral). The data acquisition modules allowing connections to XDV 5 and to the PLC at the same. Following this modular and decentralized set-up it is possible to develop and apply standardised and re-usable software components allowing the operation of sub-systems independently from the complete system. For the connection to the central W7-X main control an interface simulator will be developed to test the functionality during the project phase independently. (authors)

  8. Control System for the NSTX Lithium Pellet Injector

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  9. Control System for the NSTX Lithium Pellet Injector

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  10. Introduction of Modern Subsystems at the KEK Injector-linac

    Kamikubota, N; Kusano, S; Obata, T

    2001-01-01

    As an accelerator control system survives over several years, it is often the case that new subsystems are introduced into the original control system. The control system for the KEK electron/positron injector-linac has been using Unix workstations and VME computers since 1993. During the eight-year operation, we extended the system by introducing a) Windows PCs, b) PLC controllers with a network interface, and c) web servers based on modern information technology. Although such new subsystems are essential to improve control functionalities, they often cause communication problems with the original control system. We discuss the experienced problems, and present our solutions for them.

  11. Development of compact toroids injector for direct plasma controls

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 1021m-3. (orig.)

  12. Support of accelerator section of KEK injector linac

    The reexamination of the support of accelerator section is required for the recovery from the damage caused by the Great East Japan Earthquake on 11th, March, 2011. The general idea of KEK injector linac support has the feature of flexible structure, and these were not able to sustain under the shake of lower-6th on the Japanese intensity scale. We investigated the vibration characteristic aiming at the more rigid structure. Furthermore, some new supports were installed on the beamline for positron capture section of SuperKEKB. This report describes the two types of supports of accelerator section. (author)

  13. Fuel Injector Nozzle For An Internal Combustion Engine

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  14. PICs in the injector complex - what are we talking about?

    Hanke, K

    2014-01-01

    This presentation will identify PIC activities for the LHC injector chain, and point out borderline cases to pure consolidation and upgrade. The most important PIC items will be listed for each LIU project (PSB, PS, SPS) and categorized by a) the risk if not performed and b) the implications of doing them. This will in particular address the consequences on performance, schedule, reliability, commissioning time, operational complexity etc. The additional cost of PICs with regard to pure consolidation will be estimated and possible time lines for the implementation of the PICs will be discussed. In this context, it will be evaluated if the PICs can be implemented over several machine stops.

  15. A0 Photo-Injector: Experiments with Gun A June 97 to December 97

    An RF photo-injector was installed at Fermilab between January and June 1997. The photo-injector produced its first beam on 4 June 1997. This report provides a brief description of the accelerator and a summary of the experiments carried out through December 1997

  16. Intervention to repair a tritiated JET neutral beam injector

    Watson, M.J.; Bell, A.C.; Dines, A.J.; Hurd, F.H.; Lundquist, J.G.; Macklin, B.J.; Orchard, J.C.; Patel, B. [JET Joint Undertaking, Abingdon, Oxon (United Kingdom)

    1998-07-01

    At the end of May 1997, tritium neutral beams were run for the first time in the JET Octant 8 Neutral Injector Box (NIB8). On 4 June 1997 there were indications of a water leak in the NIB8. The leak was associated with operation of the Fast Shutter system positioned between the Injector and the Rotary Valve. The presence of water was detected at a very early stage by routine operating procedures using the NIB Mass Spectrometer and Penning gauge instrumentation. Operations on NIB8 were suspended whilst the pressure was still below 5.10{sup -7} mb with the Cryopumps cold. The pressure was still two orders of magnitude below the interlock trip level from the Fast Beam Interlock system which would have automatically inhibited pulsing. Some 3 cm{sup 3} of water was estimated to have leaked into the NIB. In order to effect a manned intervention with minimal impact on the JET operational programme several critical issues had to be addressed in parallel: Rate of tritium removal from NIB8 using the Exhaust Detritiation System (EDS). Health Physics procedures to be agreed and the appropriate controls established. NIB access requirements and the removal of the Octant 8 Central Support Column (CSC). The design and procurement of an access facility together with the appropriate services. (author)

  17. F-18 production with the TOP linac injector

    ENEA and ISS (Italian National Institute of Health), are collaborating to develop a dedicated proton medical accelerator, TOP (Oncological Therapy with Protons) linac, consisting of a sequence of three pulsed linear accelerators. The 7 MeV injector can be used in three operating modes: Protontherapy and Radiobiology Mode-injecting low current proton beam into the TOP linac accelerating sections; Radioisotope Mode-generating an intense proton beam (8-10 mA, 50-100 μs, 30-100 Hz) to produce the positron-emitting radionuclide F18 for PET analyses. In the high current mode, at the exit of the injector the beam is guided through a magnetic quadrupoles channel to a target composed by a thin chamber (0.5 mm thick and 1 in. diameter) containing water enriched with O18. Production yield as well as total activity similar to these achieved with higher energy cyclotrons have been obtained. Environmental doses measured give indications on the shielding required for operation under current radioprotection regulations. Improvements are foreseen to optimize the production yield, the useful beam current and to better characterize gamma and neutron dose rates in the different operational modes

  18. F-18 production with the TOP linac injector

    Cianfarani, Cesidio [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy); Cisbani, Evaristo [ISS, Viale Regina Elena 299, Rome (Italy); Orlandi, Gianluca [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy); Frullani, Salvatore [ISS, Viale Regina Elena 299, Rome (Italy)]. E-mail: salvatore.frullani@iss.infn.it; Picardi, Luigi [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy); Ronsivalle, Concetta [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy)

    2006-06-23

    ENEA and ISS (Italian National Institute of Health), are collaborating to develop a dedicated proton medical accelerator, TOP (Oncological Therapy with Protons) linac, consisting of a sequence of three pulsed linear accelerators. The 7 MeV injector can be used in three operating modes: Protontherapy and Radiobiology Mode-injecting low current proton beam into the TOP linac accelerating sections; Radioisotope Mode-generating an intense proton beam (8-10 mA, 50-100 {mu}s, 30-100 Hz) to produce the positron-emitting radionuclide F18 for PET analyses. In the high current mode, at the exit of the injector the beam is guided through a magnetic quadrupoles channel to a target composed by a thin chamber (0.5 mm thick and 1 in. diameter) containing water enriched with O18. Production yield as well as total activity similar to these achieved with higher energy cyclotrons have been obtained. Environmental doses measured give indications on the shielding required for operation under current radioprotection regulations. Improvements are foreseen to optimize the production yield, the useful beam current and to better characterize gamma and neutron dose rates in the different operational modes.

  19. Pellet injector development at ORNL [Oak Ridge National Laboratory

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low 3He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor

  20. Travelling wave chopper for the high current injector at IUAC

    IUAC is developing High Current Injector (HCI) accelerator as an alternative injector for the existing superconducting linear accelerator. The HCI project was envisaged to overcome the low current limitation of the Pelletron Accelerator and to provide varieties of ion species like nobel gases etc. which are not possible with existing Pelletron Accelerator. The LEBT (low energy beam transport) section of HCI consists of various beam dynamics components like GP Tubes, Diagnostic Box, Chopper and TWD, Multi Harmonic Buncher (MHB), Vacuum System, Magnetic Quadruple, and Fast Faraday Cup etc. A Chopper and Travelling Wave Deflector (TWD) is required to provide the chopped beam with various repetition rate to IUAC experimental facilities ego NAND, HYRA, HlRA, INGA etc. The proposed MHB in the LEBT section of HCI, is having 60 ns linear portion in its saw tooth wave form. The requirement of the repetition rate for the experimental facilities are 250ns, 500ns, 1μs, 2μs, 4μs and 8μs. It was decided that output of chopper must have 60 ns pulse length with maximum current and TWD must provide the various repetition rate as mentioned above. In this paper we will present the details of the design and fabrication of prototype

  1. Collective effects in the LHC and its injectors

    Metral, E; Assmann, R; Bartosik, H; Baudrenghien, P; Bohl, T; Bruning, O; Buffat, X; Damerau, H; Fartoukh, S; Gilardoni, S; Goddard, B; Hancock, S; Herr, W; Hofle, W; Mounet, N; Papaphilippou, Y; Pieloni, T; Rumolo, G; Salvant, B; Shaposhnikova, E; Zimmermann, F; Burov, A

    2012-01-01

    Operation during 4-8 hours at a constant luminosity of five times the nominal one (with “leveling”) is required for the CERN HL-(High Luminosity)-LHC project* to be able to reach integrated luminosities of ~ 250 fb-1 per year and ~ 3 ab-1 twelve years after the upgrade. This means that the potential peak luminosity should be at least two times larger than the leveled one, i.e. a factor more than ten compared to the nominal case is contemplated. Even though the LHC had a bold beginning, reaching one third of the nominal peak luminosity at the end of the 2011 run, a factor more than thirty remains to be gained, which will be achieved only if all the collective effects are deeply understood and mastered both in the LHC and its injectors. The observations made during the 2010-2011 runs are first reviewed and compared to predictions to try and identify possible bottlenecks. The lessons learned and the possible solutions and/or mitigation measures to implement in the HL-LHC and the LHC Injectors Upgrade (LIU) p...

  2. NSLS-II injector commissioning and initial operation

    Bacha, B.; Blum, E.; Bassi, B.; Bengtsson, J.; Blednykh, A.; Buda, S.; Cheng, W.; Choi, J.; Cuppolo, J.; D Alsace, R.; Davidsaver, M.; DeLong, J.; Doom, L.; Durfee, d.; fliller, R.; Fulkerson, M.; Ganetis, G.; Gao, F.; Gardner, C.; Guo, W.; Heese, R.; Hidaka, Y.; Hu, Y.; Johanson, M.; Kosciuk, B.; Kowalski, S.; Dramer, S.; Krinsky, S.; Li, Y.; Louie, W.; Maggipinto, M.; Marino, P.; Mead, J.; Oliva, G.; Padrazo, D.; Pedersen, K.; Podobedov, B.; Rainer, R.; Rose, J.; Santana, M.; Seletskiy, S.; Shaftan, T.; Singh, O.; Singh, P.; Smalyuk, V.; Smith, R.; Summers, T.; Tagger, J.; Tian, Y.; Wahl, W.; Wang, G.; Weiner, G.; Willeke, F.; Yang, L.; Yang, X.; Zeitler, E.; Zitvogel, E.; Zuhoski, P.

    2015-05-03

    The injector for the National Synchrotron Light Source II (NSLS-II) storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle in a train of bunches up to 300 ns long. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC, this has proven to be more than sufficient for storage ring commissioning and operation. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of linac and booster operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.

  3. A low-charge-state injector linac for ATLAS

    The design of a low-charge-state linac which is capable of accelerating, for example, 132Sn1+ for injection into the existing heavy-ion linac ATLAS is discussed. The injector linac is intended for radioactive beam applications, and will accelerate a low- charge-state beam to energies of 500 keV/nucleon, at which point the ions can be stripped to charge states sufficiently high to be injected into ATLAS. A primary design goal has been to extend the very good longitudinal beam quality typical of ATLAS to low charge state beams. The proposed injector linac consists of several elements. First is a gridded-gap four-harmonic buncher and a short (normally-conducting) 12 MHz RFQ structure, both operating on a 350 kV open-air variable-voltage platform. Then comes an array of 24 Mhz and 48 Mhz superconducting interdigital accelerating structures interspersed with superconducting quadrupole transverse focusing elements. Numerical ray-tracing studies indicate that a transverse acceptance greater than 0.25π mm-mrad can be obtained while simultaneously limiting longitudinal emittance growth to a very few keV-nsec

  4. Energy feedback system for the SSRL Injector linac

    The SSRL Injector microwave gun, linac, and booster were commissioned last year. For efficient injection into the booster the linac beam energy must be stable to within about 1%. Unfortunately, fluctuations in the line voltage supplying the unregulated klystron modulators cause fluctuations in the linac beam energy, thus making the operation of the booster potentially very difficult. Without any corrections, the linac energy may drift by as much as one percent per minute or it may jump suddenly by one percent. Fortunately, the linac beam energy can be kept close to the desired value by using feedback on the low level controls of the klystrons feeding two of the linac sections. The energy of the linac is sampled at a beam position monitor (BPM) downstream of the first magnet following the linac. The feedback loop is closed using a low-pass filter that filters out noise from the BPM processing electronics. The feedback is implemented as a computer program (energy feedback) written in C for the SSRL Injector control system, and is robust against various fault conditions, as a result of the many changes and adjustments suggested by the commissioning team who are mentioned in the acknowledgements

  5. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  6. A control system upgrade of the spear synchrotron and injector

    The SPEAR electron synchrotron is an old and venerable facility with a history of great physics. When this storage ring was converted to serve as a full-time synchrotron light source, it was evident that the facility was due for an overhaul of its control system. Outdated hardware interfaces, custom operator interfaces, and the control computer itself were replaced with off-the-shelf distributed intelligent controllers and networked X-workstations. However, almost all applications and control functions were retained by simply rewriting the layer of software closest to each new device. The success of this upgrade prompted us to do a similar upgrade of our Injector system. Although the Injector was already running an X-windows based control system, it was non-networked and Q-bus based. By using the same Ethernet based controllers that were used at SPEAR, we were able to integrate the two systems into one that resembles the ''standard model'' for control systems, and at the same time preserve the applications software that has been developed over the years on both systems

  7. First operational experience with the positive-ion injector of ATLAS

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized. (orig.)

  8. Transient Tolerant Automated Control System for the LEDA 75kV Injector

    The Low-Energy Demonstration Accelerator (LEDA) injector is designed to inject 75-keV, 110-mA, proton beams into the LEDA RFQ. The injector operation has been automated to provide long term, high availability operation using the Experimental Physics and Industrial Control System (EPICS). Automated recovery from spark-downs demands reliable spark detection and sequence execution by the injector controller. Reliable computer control in the high-energy transient environment required transient suppression and isolation of hundreds of analog and binary data lines connecting the EPICS computer controller to the injector and it's power supplies and diagnostics. A transient suppression design based on measured and modeled spark transient parameters provides robust injector operation. This paper describes the control system hardware and software design, implementation and operational performance

  9. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    Gobin, Raphael, E-mail: rjgobin@cea.fr; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Cara, Philippe; Duglué, Daniel; Gex, Dominique [Fusion for Energy, BFD Department, Garching (Germany); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Obuchi-Omotedate, 2-166, Rokkasho, Aomori (Japan); and others

    2016-02-15

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H{sup +} and D{sup +} 100 keV beams) are reported in a second article.

  10. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article

  11. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  12. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  13. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  14. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    Staykov, Lazar

    2012-10-15

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  15. Finding a solution to internal diesel injector deposits

    Barbour, Robert; Quigley, Robert; Panesar, Avtar; Payne, James [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim; Stevens, Andrew [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Internal diesel injector deposits (IDIDs) have caused widespread problems in the automotive industry since around 2005. Modem injectors that have been precisely engineered to operate highly controlled injection strategies are experiencing problems in the field due to deposits that have formed on their critical moving parts, such as the needle and control valve. Problems range from rough idling to a failure to start, when the moving parts become stuck. Early studies showed that the composition of these deposits is variable. In some cases the deposit contained noticeable amounts of sodium carboxylate; these are now generally referred to as 'sodium soaps'. In other incidences the dominant chemical functionality observed was an amide group, and hence these deposits are referred to as 'amide lacquers'. A combination of both types has been observed in many cases and other metals, like calcium, have also been detected. Further studies have shown that the sodium soap type can be formed from specific types of corrosion inhibitors. The source of the amide lacquers is less certain, but there are indications that they originate from specific fuel additives that contain critical levels of low molecular weight species. This paper broadly explores this area of high interest. It will report results on the analysis of deposits and the conditions needed to reproduce both types of IDID in bench engine testing. It will also investigate the types of contaminants that are likely to form IDIDs and explore difference in chemical structure that can lead to pro-fouling, non-fouling and anti-fouling behaviour. It will then show that a deposit control additive, specifically designed to control nozzle tip deposits in modem direct injection diesels, is equally effective in controlling IDIDs; both in terms of prevention and removal. Since IDIDS are formed from multiple sources, some of which are difficult to control in today' s market, the use of a broadly acting fuel

  16. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots

  17. What factors affect the carriage of epinephrine auto-injectors by teenagers?

    Macadam Clare

    2012-02-01

    Full Text Available Abstract Background Teenagers with allergies are at particular risk of severe and fatal reactions, but epinephrine auto-injectors are not always carried as prescribed. We investigated barriers to carriage. Methods Patients aged 12-18 years old under a specialist allergy clinic, who had previously been prescribed an auto-injector were invited to participate. Semi-structured interviews explored the factors that positively or negatively impacted on carriage. Results Twenty teenagers with food or venom allergies were interviewed. Only two patients had used their auto-injector in the community, although several had been treated for severe reactions in hospital. Most teenagers made complex risk assessments to determine whether to carry the auto-injector. Most but not all decisions were rational and were at least partially informed by knowledge. Factors affecting carriage included location, who else would be present, the attitudes of others and physical features of the auto-injector. Teenagers made frequent risk assessments when deciding whether to carry their auto-injectors, and generally wanted to remain safe. Their decisions were complex, multi-faceted and highly individualised. Conclusions Rather than aiming for 100% carriage of auto-injectors, which remains an ambitious ideal, personalised education packages should aim to empower teenagers to make and act upon informed risk assessments.

  18. Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    An experimental study of two real multi-hole Diesel injectors is performed under current DI Diesel engine operating conditions. The aim of the investigation is to study the influence of injector technology on the flow at the nozzle exit and to analyse its effect on the spray in evaporative conditions and combustion development. The injectors used are two of the most common technologies used nowadays: solenoid and piezoelectric. The nozzles for both injectors are very similar since the objective of the work is the understanding of the influence of the injector technology on spray characteristics for a given nozzle geometry. In the first part of the study, experimental measurements of hydraulic characterization have been analyzed for both systems. Analysis of spray behaviour in evaporative conditions and combustion development will be carried out in the second part of the work. Important differences between both injectors have been observed, especially in their transient opening and closing of the needle, leading to a more efficient air-fuel mixing and combustion processes for the piezoelectric actuated injector. (author)

  19. The S-DALINAC polarized electron injector SPIN

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  20. Electrostatic LEBTs for High-Intensity Linac-Injectors

    This paper discusses options for Low-Energy Beam Transport (LEBT) systems as part of injectors for high-intensity linear accelerators such as proton drivers and similar machines. Building on the demonstrated success of the Spallation Neutron Source (SNS) front end, the presented LEBT designs are based on the electrostatic focusing principle, but the arrangement of lenses and steerer elements is modified for ease of operation and to reduce optical aberrations that somewhat affected the performance of the SNS LEBT. After treating two examples of such LEBTs to be applied to proton and deuteron beams, an extraction system for H-beams is presented that provides for electron removal at intermediate energy and can easily be integrated into an electrostatic LEBT of the type discussed before. Beam simulation results with output emittances for the three systems are included in the paper

  1. Report of the Accelerator Group: the light-ion injector

    Good progress was made on the various sub-systems of the light-ion injector cyclotron SPC1. The radio-frequency system, which consists of the two resonators (each with a 25 kW power amplifier) and the stabilization and control system was completed. Orbit calculations were used to determine the phase selection attainable from the combined axial and radial slits, and also to give an indication of the momentum selection which could be achieved using the radial slits. The detail design of all the extraction elements, i.e. the eletrostatic extraction channel EEK and two magnetic channel MEK1 and MEK2 has been completed. On the 15th December 1983, the first beams of ions were accelerated in SPC1. The following subsystems of SPC1 are discussed: magnets, radio-frequency systems, orbit calculations of the phase section, extraction process, vacuum system and beam diagnostics

  2. Two-pulse injector experiments with the RIIM electron accelerator

    The RADLAC-II accelerator foilless diode injector was operated under double-pulse conditions utilizing the RIIM accelerator as the test bed [M. G. Mazarakis, D. L. Smith, R. B. Miller, R. S. Clark, D. E. Hasti, D. L. Johnson, J. W. Poukey, K. R. Prestwich, and S. L. Shope, IEEE Trans. Nucl. Sci. NS-32, 3237 (1985)]. The original RIIM accelerator pulsed-power network was modified to provide for the generation, transmission, and delivery to the foilless diode of two distinct multimegavolt pulses with variable interpulse separation from 0 to 2 ms. The foilless diode successfully produced two 10-kA current pulses with interpulse separations up to 1 μs. For larger separations, the generated plasma and an excessive neutral gas release following the first pulse prevented the diode from producing a second current pulse

  3. Descemet′s tear due to injector cartridge tip deformity

    Partha Biswas

    2012-01-01

    Full Text Available Foldable intraocular lens (IOL implantation using an injector system through 2.8-mm clear corneal incision following phacoemulsification provides excellent speedy postoperative recovery. In our reported case, a Sensar AR40e IOL (Abbott Medical Optics, USA was loaded into Emerald C cartridge, outside the view of the operating microscope, by the first assistant. The surgeon proceeded with the IOL injection through a 2.8-mm clear corneal incision after uneventful phacoemulsification, immediately following which he noted a Descemet′s tear with a rolled out flap of about 2 mm near the incision site. Gross downward beaking of the bevelled anterior end of the cartridge was subsequently noticed upon examination under the microscope. We suggest careful preoperative microscopic inspection of all instruments and devices entering the patient′s eyes to ensure maximum safety to the patient.

  4. Cap assembly for a bundled tube fuel injector

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  5. RF Design Optimization for New Injector Cryounit at CEBAF

    Wang, Haipeng; Cheng, Guangfeng; Hannon, Fay E.; Hofler, Alicia S.; Kazimi, Reza; Preble, Joe; Rimmer, Robert A.

    2013-06-01

    A new injector superconducting RF (SRF) cryounit with one new 2-cell, B=0.6 cavity plus one refurbished 7-cell, B=0.97, C100 style cavity has been re-designed and optimized for the engineering compatibility of existing module for CEBAF operation. The optimization of 2-cell cavity shape for longitudinal beam dynamic of acceleration from 200keV to 533keV and the minimization of transverse kick due to the waveguide couplers to less than 1 mrad have been considered. Operating at 1497MHz, two cavities has been designed into a same footprint of CEBAF original quarter cryomodule to deliver an injection beam energy of 5MeV in less than 0.27{degree} rms bunch length and a maximum energy spread of 5keV.

  6. Frequency tuning with RFQ temperature in China ADS Injector II

    Jing, Wang; Jian-Long, Huang; Xiao-Qi, Zhang; Bin, Zhang; Yuan, He; Zhou-Li, Zhang; Ai-Min, Shi

    2016-03-01

    A 162.5 MHz four-vane radio frequency quadruple (RFQ) accelerator has been developed at the Institute of Modern Physics (IMP) for Injector II of the China ADS linac. The RFQ will operate in continuous wave mode at 100 kW. For the designed 10 mA beam, the additional RF power dissipation will induce a very large reflection of power. A water-temperature controlling system will be used to reduce the power reflection by tuning the frequency of the RFQ. The tuning capability of the water temperature is studied under different configurations of cooling water. Simulations and experiment are compared in this paper. The experimental results agree well with simulation using ANSYS. This can be used as a reference to tune the RFQ in beam commissioning. Supported by National Natural Science Foundation of China (91026001)

  7. Beam forming system modernization at the MMF linac proton injector

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  8. Upgrade of JT-60 pellet injector for higher velocity

    Pellet injection experiments have been performed to improve the plasma performance by the JT-60 tokamak from June, 1988. From the results of the experiments, it was found that the plasma confinement time increased up to 40% with pellet injection (velocity over 1.5 km/s), in which was obtained with 10 MW neutral beam injection highly peaked electron density profile. The experimental results suggested that improvement of the plasma confinement time depends on the penetration depth of the pellet into the plasma column, especially into 'q2 to 100 kg/cm2 and from 80degC to 200degC respectively. The upgraded pellet injector can inject, independently, four pellets, two of which are 3.0 mm in diameter x 3.0 mm in length and the other two of which are 4.0 mm in diameter x 4.0 mm in length. (author)

  9. Progress of beam diagnosis system for EAST neutral beam injector

    Xu, Y. J., E-mail: yjxu@ipp.ac.cn; Hu, C. D.; Yu, L.; Liang, L. Z.; Zhang, W. T.; Chen, Y.; Li, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (NBI) were built and operational in 2014. The paper presents the development of beam diagnosis system for EAST NBI and the latest experiment results obtained on the test-stand and EAST-NBI-1 and 2. The results show that the optimal divergence angle is (0.62°, 1.57°) and the full energy particle is up to 77%. They indicate that EAST NBI work properly and all targets reach or almost reach the design targets. All these lay a solid foundation for the achievement of high quality plasma heating for EAST.

  10. Experimental Results from Initial Operation of Plasma Injector 1

    Howard, Stephen

    2010-11-01

    General Fusion has begun operation of its first full-scale plasma injector, designed to accelerate high density spheromak plasmas into the compression chamber of a proposed MTF reactor. The geometry of Plasma Injector 1 (PI-1) is that of a two stage coaxial Marshal gun with a conical converging accelerator electrodes, similar in shape to the MARAUDER device, while pulsed power is applied in the same configuration as the RACE device. PI-1 is 5 meters in length and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration/compression stage is 4 m long and tapers to a final outer diameter of 40 cm. PI-1 is now operating at 1 MJ of total capacitor power, which will be doubled again before it reaches its design parameters. Diagnostics include 3 interferometer chords, 21 magnetic probes (2 axis poloidal/toroidal), 13 fast photodiode chords, as well as one Thomson scattering chord, a visible light survey spectrometer, and a Langmuir triple probe. Electrode voltage and current are also monitored. So far spheromaks of poloidal flux exceeding 100 mWb have been formed in the expansion region, and spheromaks of 40-50 mWb have been formed and accelerated out the end of the accelerator into a flux conserving target chamber. Expansion region densities are typically ˜5 x10^14cm-3, while conditions in the target chamber have reached ne˜10^16cm-3, and lifetimes of 300 μs.

  11. Active steering system for the neutral beam injector for ITER

    ITER requires an additional power injection of 33 MW from neutral beams, which can be provided by two injectors, delivering 16.5 MW each, having an ion current of 40 A and an accelerating voltage of 1 MV. The requirement of on-axis and off-axis injection into ITER is presently accomplished by mechanical tilting of the injector source. To preserve the integrity of the beam line components, on the horizontal plane, very tight misalignment is tolerable (±3 mrad); such accuracy requires precise installation of the components. Breaking the vacuum and executing a long series of operations is required to provide proper beam alignment. It would be helpful if such alignments could be performed remotely. A study has been conducted on the possibility of steering the negative ions by suitable magnetic fields, generated by dedicated coils located at the exit of the accelerator. It results that the magnetic system can meet the requirements in terms of beam alignment. The steering system will heavily affect the trajectory of the electrons extracted from the accelerator and can be used to deflect the electrons onto suitable dump plates. The system can steer the ions and dump the electrons in a controlled way, even in case of modulation of the acceleration voltage; a flexible beam aiming system can be used to adapt the power deposition profile in ITER to the plasma characteristics; active steering can provide a suitable way to control the power deposition with respect to the possibility of exciting Alfven eigenmodes, which can reduce the performances of ITER plasmas. The present contribution reviews the preliminary design of the active steering system and provides an analysis of advantages and disadvantages. (author)

  12. Assembly of neutral beam injector with SST-1

    Neutral Beam Injector (NBI) is capable of delivering a hydrogen beam of power 1.7 MW to the SST-1 tokomak for the purpose of heating its plasma. The Steady State Superconducting Tokamak (SST-1) is the core project aimed at producing high temperature plasma. The Neutral Beam Injector (NBI) is a system meant for heating the SST-1 plasma. NBI system is used for generating a beam of energetic hydrogen particles and then launches them into the SST-1. The NBI system is currently being operated for production of such a beam on a designated test stand in the NBI hall. As a next step, it is now required to transfer the entire NBI system from the test stand (in NBI hall) to the NBI-SST-1 area and then integrate with the SST-1 Tokamak. The NBI system comprises of a huge vacuum vessel with an ion source and gate valve mounted on it. The vacuum vessel contains the following major sub-systems such as neutralizer, electromagnet (magnet), magnet liner, calorimeter, Ion dump, Beam Transmission Duct, Shine-Through and cryo-condensation pumps (cryopumps). It also contains headers and distribution systems for liquid nitrogen, liquid helium and cooling water, external vacuum system, external cryogenic distribution, external cooling water distribution and snubber deck. NBI integration with SST-1 involves assembly sequence of activities, Heat Transfer Elements welding with neutraliser, ion dump, magnet liner and calorimeter, dis-mantling of existing cooling water lines, dis-assembly of snubber deck, shifting of Vacuum Vessel (VV), lifting of VV and placing VV on the Support Structure, and alignment of VV with SST-1 at pre-defined position. In this paper, we present the planning, sequence of assembly activities, VV lifting methodology. (author)

  13. Advancing the State-of-the-Practice for Liquid Rocket Engine Injector Design

    Tucker, P. K.; Kenny, R. J.; Richardson, B. R.; Anderso, W. E.; Austin, B. J.; Schumaker, S. A.; Muss, J. A.

    2015-01-01

    Current shortcomings in both the overall injector design process and its underlying combustion stability assessment methodology are rooted in the use of empirically based or low fidelity representations of complex physical phenomena and geometry details that have first order effects on performance, thermal environments and combustion stability. The result is a design and analysis capability that is often inadequate to reliably arrive at a suitable injector design in an efficient manner. Specifically, combustion instability has been particularly difficult to predict and mitigate. Large hydrocarbon-fueled booster engines have been especially problematic in this regard. Where combustion instability has been a problem, costly and time-consuming redesign efforts have often been an unfortunate consequence. This paper presents an overview of a recently completed effort at NASA Marshall Space Flight Center to advance the state-of-the-practice for liquid rocket engine injector design. Multiple perturbations of a gas-centered swirl coaxial (GCSC) element that burned gaseous oxygen and RP-1 were designed, assessed for combustion stability, and tested. Three designs, one stable, one marginally unstable and one unstable, were used to demonstrate both an enhanced overall injector design process and an improved combustion stability assessment process. High-fidelity results from state-of-the-art computational fluid dynamics CFD simulations were used to substantially augment and improve the injector design methodology. The CFD results were used to inform and guide the overall injector design process. They were also used to upgrade selected empirical or low-dimensional quantities in the ROCket Combustor Interactive Design (ROCCID) stability assessment tool. Hot fire single element injector testing was used to verify both the overall injector designs and the stability assessments. Testing was conducted at the Air Force Research Laboratory and at Purdue University. Companion papers

  14. Experimental Investigation of Characteristics of a Double-Base Swirl Injector in a Liquid Rocket Propellant Engine

    Fathollah OMMI

    2009-07-01

    Full Text Available In this work the fundamentals of swirl injector calculation is investigated and new design procedure is proposed. The design method for double-base liquid-liquid injectors is presented based on this theory and experimental results. Then special conditions related to double-based liquid-liquid injectors are studied and the corresponding results are applied in design manipulation. The behaviour of injector in various performing conditions is studied, and the design procedure is presented based on obtained results. A computer code for designing the injector is proposed. Based on this code, four injectors are manufactured. A specialized laboratory was setup for the measurement of macroscopic spray characteristics under different pressure such as homogeneous droplet distribution, spray angle, swirl effect. Finally, through PDA cold test, the microscopic characteristics of injectors spray are also obtained and measured. The results, which will be explained in detail, are satisfactory.

  15. Performance of an injector system for the ETL electron linac, TELL

    A new injector of the ETL linac TELL was prepared to improve the quality of the electron beam and the efficiency of injection to storage rings, TERAS, NIJI-IV, and so on. The generation of the beam current 600mA(pulse width of 1μs) from an electron gun and the generation of 2ns short pulsed beam required for the single bunch injection to NIJI-IV were already achieved. The emittance and the energy spread of the electron beams will be measured downstream of the new injector. The operation of TELL by using the new injector will be started after the measurements. (author)

  16. Thermal effects in high power cavities for photoneutralization of D- beams in future neutral beam injectors

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-01

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  17. Design of spheromak injector using conical accelerator for large helical device

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  18. Initial performance and characteristics of the PBX-M pellet injector

    The Princeton Beta Experiment-Modified (PBX-M) Pellet Injector Project provides for the fabrication, installation and operation of a pellet injector fueling system on the PBX-M tokamak experiment. The system consists of an eight barrel pellet gun, a pellet transport facility and a control system. The gun is an eight-shot pneumatic assembly designed and fabricated at the Oak Ridge National Laboratory (ORNL). The pellet transport and control facilities were designed, fabricated and installed by Princeton Plasma Physics Laboratory (PPPL). The integrated pellet injector system has been installed on PBX-M and is operational for use in plasma experiments. 1 ref., 7 figs

  19. Feasibility study on Steam Injector Driven Jet Pump for next-generation reactor

    A feasibility study has been conducted on Steam Injector (SI) for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) and Primary Loop Recirculation System with SI Driven Jet Pumps (PLR with SIDJP). An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a SIDJP recirculation system. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIDJP could work under high pressure range over 7MPa, and the steam injector is applicable to PLR as a SIDJP in the next generation reactors. (author)

  20. Future development of high-current DC injectors for accelerator-based breeding systems

    The Chalk River Nuclear Laboratories are examining the economic and technical feasibility of producing nuclear fuel in a spallation breeder, which would consist of a 300 mA 1 GeV, 100 percent duty factor proton accelerator producing neutrons in a target assembly of fertile material. The requirements for the dc injector section of such an accelerator are discussed. They cannot be satisfied by present-day injectors. Design criteria for dc accelerating columns, based on experimental results and a literature survey, are summarized. One- and two-stage acceleration systems are compared, and the two-stage approach is shown to be preferable for the spallation breeder injector. A conceptual design for the injector is described. (author)

  1. PROCEEDING OF WORKSHOP ON PHOTO-INJECTOR FOR ENERGY RECOVERY LINAC.

    WANG,X.J.

    2001-01-22

    Workshop on Photo-injectors for Energy Recovery Linac was held at National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) on January 22 and 23, 2001. Fifty people attended the workshop; they came from three countries, representing universities, industries and national laboratories. This is the first workshop ever held on photo-injectors for CW operation, and for the first time, both DC and RF photo-injectors were discussed at the workshop. Workshop covered almost all major issues of photo-injectors, photocathode, laser system, vacuum, DC, 433 MHz/B-factory cavities based RF gun, 1.3 GHz RF gun and beam instrumentation. High quantum efficiency and long live time photocathode is the issue discussed during the workshop. Four working group leaders have done great jobs summarizing the workshop discussion, and identifying the major issues for future R and D.

  2. Investigation of gaseous propellant combustion and associated injector/chamber design guidelines

    Calhoon, D. F.; Ito, J. I.; Kors, D. L.

    1973-01-01

    Injector design criteria are provided for gaseous hydrogen-gaseous oxygen propellants. Design equations and procedures are presented which will allow an injector-chamber designer to a priori estimate of the performance, compatibility and stability characteristics of prototype injectors. The effects of chamber length, element geometry, thrust per element, mixture ratio, impingement angle, and element spacing were evaluated for four element concepts and their derivatives. The data from this series of tests were reduced to a single valued mixing function that describes the mixing potential of the various elements. Performance, heat transfer and stability data were generated for various mixture ratios, propellant temperatures, chamber pressures, contraction ratios, and chamber lengths. Applications of the models resulted in the design of procedures, whereby the performance and chamber heat flux can be calculated directly, and the injector stability estimated in conjunction with existing models.

  3. Evolutionary genetic optimization of the injector beam dynamics for the ERL test facility at IHEP

    Yi, Jiao

    2013-01-01

    The energy recovery linac test facility (ERL-TF), a compact ERL-FEL (free electron laser) two-purpose machine, was proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector started with a photocathode direct-current gun was designed and preliminarily optimized. In this paper an evolutionary genetic method, non-dominated sorting genetic algorithm II, is applied to optimize the injector beam dynamics, especially in the high-charge operation mode. Study shows that using an incident laser with rms transverse size of 1~1.2 mm, the normalized emittance of the electron beam can be kept below 1 mm.mrad at the end of the injector. This work, together with the previous optimization for the low-charge operation mode by using the iterative scan method, provides guidance and confidence for future constructing and commissioning of the ERL-TF injector.

  4. Neutron and gamma-ray streaming calculations for the engineering test facility neutral beam injectors

    Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma-ray streaming on the performance of the Engineering Test Facility neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 X 10-3 MW/m3, which implies a total heat load of 2.2 X 10-4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated

  5. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    Lillie, R. A.; Santoro, R. T.; Alsmiller, R. G., Jr.; Barnes, J. M.

    1981-02-01

    Two dimensional radiation transport methods were used to estimate the effects of neutron and gamma ray streaming on the performance of the engineering test facility neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10(+3) MW/m(3) which implies a total heat load of 2.2 x 10(+4) MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated.

  6. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma ray streaming on the performance of the Engineering Test Facility (ETF) neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10-3 MW/m3 which implies a total heat load of 2.2 x 10-4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated

  7. Beam intensity upgrade at Fermilab

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  8. The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius

  9. Spray stability of outwards opening pintle injectors for stratified direct injection spark ignition engine operation

    Marchi, A.; Nouri, J. M.; Yan, Y; Arcoumanis, C.

    2010-01-01

    The spray characteristics and spray stability from three prototype piezoelectric pintle-type injectors were investigated under different operating conditions in an optical direct injection engine designed for stratified combustion. The pintle-type outwards opening injector has the potential to address and overcome many of the typical problems related to close-spacing, spray-guided configurations owing to its hollow cone spray, exhibiting better air utilization than multihole sprays, with good...

  10. Temperature and Species Measurements of Combustion Produced by a 9-Point Lean Direct Injector

    Tedder, Sarah A.; Hicks, Yolanda R.; Locke, Randy J.

    2013-01-01

    This paper presents measurements of temperature and relative species concentrations in the combustion flowfield of a 9-point swirl venturi lean direct injector fueled with JP-8. The temperature and relative species concentrations of the flame produced by the injector were measured using spontaneous Raman scattering (SRS). Results of measurements taken at four flame conditions are presented. The species concentrations reported are measured relative to nitrogen and include oxygen, carbon dioxide, and water.

  11. Comparative Usability Study of a Novel Auto-Injector and an Intranasal System for Naloxone Delivery

    Edwards, Evan T.; Edwards, Eric S.; Davis, Erin; Mulcare, Maureen; Wiklund, Michael; Kelley, Glen

    2015-01-01

    Introduction The standard of care for reversal of opioid-induced respiratory depression associated with opioid overdose is injectable naloxone. This study compared the usability of two naloxone delivery devices, a naloxone auto-injector (NAI) and a naloxone intranasal delivery system (NXN), in the administration of naloxone during a simulated opioid overdose emergency. NAI (EVZIO ® ; kaleo, Inc., Richmond, VA, USA) is a Food and Drug Administration approved single-use pre-filled auto-injector...

  12. Conceptual Design of an Ultra-Dense Phase Injector and Feed System

    Ken Sprouse; Fred Widman; Alan Darby

    2006-03-30

    Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine technology to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. One key feature of the PWR concept is the use of an ultra-dense phase feed system to provide dry coal to the multi-element injector. This report describes the design of an ultra-dense phase multi-element injector and feed system for use on PWR gasifiers operating at pressures to 1,000 psia. For the design of this injector and feed system, the pulverized coal's Bingham fluid yield stress is approximately 11 Pascals (Pa) with a coefficient of rigidity of 10 centipoise (cp). These values are typical of earlier experimental testing conducted with dried pulverized coal below 18 wt% moisture -- see, e.g., Sprouse and Schuman (1983, 1986). Each individual injector element is designed for a coal flow rate between 3 and 4 tons/hr (0.76 to 1.0 kg/sec) at full flow conditions. Hence, a small 400 to 500 tons/day (4.2 to 5.25 kg/sec) gasifier will require a 6-element injector, a 1,500 tons/day (15.7 kg/sec) gasifier will require an 18-element injector and a 3,000 tons/day (31.5 kg/sec) gasifier will require a 36-element injector. These injectors and feed systems are capable of 'turn-down' below 50% of full-flow operation.

  13. The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod

    Urbahn, J.A.

    1994-05-01

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius.

  14. Link between in-nozzle cavitation and jet spray in a gasoline multi-hole injector

    Gavaises, E.; Mirshahi, M.; Nouri, J. M.; Yan, Y.

    2013-01-01

    The importance of cavitation inside multi-hole injectors has been addressed in many previous investigations where the cavitation formation and its development, fuel spray characteristics and atomisation have quantified. Different types of geometrical and vortex cavitations have been previously reported inside the nozzles of multi-hole injectors with good indication of their influences on the emerging spray. However, the effect of cavitation on jet spray, its stability and liquid breakup and a...

  15. Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

    Short wavelength, high intensity Free Electron Lasers (FELs) require a high brightness electron beam, i.e. the beam should have small transverse and longitudinal sizes, small divergence and energy spread and high peak current. Therefore, the detailed characterization of the beam is required. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for Free electron Laser in Hamburg (FLASH) and the European X-ray Free Electron Laser (XFEL). The PITZ beamline consists of various types of diagnostic devices for the detailed bunch characterization. Mainly, the transverse phase space characterization is performed at PITZ, but longitudinal phase space measurements are also of great importance for full characterization of high brightness electron bunches from the photo injector. One of the ways to measure the longitudinal phase space of electron bunch is an RF deflector. It deflects particles transversely with respect to the movement direction of the bunch in a linear dependence on their longitudinal coordinates within the bunch. As a result it gives the possibility to perform measurements of the bunch longitudinal properties in combination with a following transverse beam characterization. Using additionally a dispersive section the longitudinal phase space can be obtained as well. Another approach to measure the longitudinal phase space of the bunch is a tomographic method based on measurements of the momentum spectra while varying the electron bunch energy chirp. The energy chirp at PITZ can be applied and changed by varying the RF phase of the CDS booster - the accelerating structure installed downstream the gun. The resulting momentum distribution can be measured with a dipole spectrometer downstream. As a result, the longitudinal phase space at the entrance and exit of the CDS booster can be reconstructed over a wide range of bunch charges. In this thesis both methods for longitudinal phase space

  16. Development of a measuring system for vapor-jet forms of small-sized fuel injectors; Kogata injector funmu keijo sokutei system no kaihatsu

    Hibino, H.; Komatsubara, H.; Kawashima, O.; Fujita, A. [Aisan Industry Co. Ltd., Aichi (Japan)

    1997-10-01

    In the small-sized fuel injectors adapted to the United States` exhaust-gas regulation or the like, the vapor jet is extremely atomized and the jet form as one of the performances of the product has become more important than before. Accordingly, we have developed a measuring system in which the vapor jet of the small-sized fuel injector is irradiated with a flat laser light, the sectional form of the jet that is shining due to diffusion is sampled, and the distribution and the form of the sampled sections are determined by the image processing. 2 refs., 15 figs., 4 tabs.

  17. Development of a pellet cutting and loading device for the JT-60 repetitive pellet injector

    In JT-60, a pellet injector that repetitively injects deuterium pellets is under development to supply fuel to high temperature plasmas and sustain high-density plasmas. The pellet injector generates cubic pellets and accelerates them with a straight-arm rotor by centrifugal force. In this acceleration method, it is important to supply pellets reliably and stably, to prevent pellet orbits from disordering and to stabilize the launching direction. To achieve higher performance of the injector, a pellet cutting and loading device that cuts a deuterium ice rod into cubic pellets and loads them to the pellet injector successively and stably has been developed. The pellet cutting and loading device can cut a deuterium ice rod produced at low temperature of -8 Pam3/s, cutting time of <3 ms, cutting frequency of 1-20 Hz and cutter stroke of 2.5 mm were confirmed in the device test. In the operation test after assembling this device to the centrifugal pellet injector, the operational performance of pellet injection frequency of ∼10 Hz, pellet speed of ∼690 m/s and pellet injection duration time of ∼3.5 s was achieved. Thus, the development of the pellet cutting and loading device contributed to the upgrade of the JT-60 pellet injector. (author)

  18. The CH section of the 17 MeV injector for MYRRHA

    The newly developed beam-dynamics design for the MYRRHA injector was optimized in view of a high reliability and availability and fulfills all requirements of the nuclear reactor. The basic concept of the EUROTRANS injector was revised and further developed. Ar result of this work among others the quality of the excite beam could be distrinctly improved. In the statistical error analysis the beam dynamics have been shown as extremely robust and yields even under most pessimistic error assumptions a transmission of above 99.9 %. The new injector concept offers essential advances against the injector design presented in ''MAX Referenzdesign 012'' and is applied as new ''MAX Referenzdesign 2014''. The development history until the new reference design was a successive process with numerous iterative intermediate steps. With the altrnative design (C1) and the consolidated alternative design (C2) in this thesis also the milestones of the injector development are described. The good beam-dynamical properties of the new injector design (C3) could be confirmed in comparison calculations with TraceWin at the IN2P3 rate at CNRS. Beside the beam dynamics the required accelerator cavities were developed and optimized for a high reliability and availability too. The RF design of the CH structures is layed out for a most possible breakdown safety in the operation with low electrical field gradients far below the technical power limits and possibilities of each cavity.

  19. The MINERνA data acquisition system and infrastructure

    MINERνA (Main INjector ExpeRiment ν-A) is a new few-GeV neutrino cross-section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERνA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERνA data acquisition system (DAQ) including the readout electronics, software, and computing architecture.

  20. Ionization Chambers for Monitoring in High-Intensity Charged Particle Beams

    McDonald, J.; Naples, D.; Velissaris, C.; Erwin, A.; Ping, H.; Viren, B.; Diwan, M.

    2002-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  1. Accelerator/Experiment operations - FY 2006

    Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

    2006-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

  2. Charged current quasi-elastic neutrino analysis at MINERνA

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator

  3. RF Plasma source for a Heavy Ion Fusion injector

    We are developing high-current ion sources for Heavy Ion Fusion (HIF) applications. Our proposed RF plasma source starts with an array of high current density mini-beamlets (of a few milliampere each at ∼100 mA/cm2) that are kept separated from each other within a set of acceleration grids. After they have gained sufficient kinetic energy (>1.2 MeV), the mini-beamlets are allowed to merge together to form a high current beam (about 0.5 A) with low emittance. Simulations have been done to maximize the beam brightness within the physical constraints of the source. We have performed a series of experiments on an RF plasma source. A 80-kV 20-μs source has produced up to 5 mA of Ar+ in a single beamlet and we measured the emittance of a beamlet, its energy spread, and the fraction of ions in higher charge states. We have also tested a 50-kV 61-hole multi-beamlet array. Two upcoming experiments are being prepared: the first experiment will test full-gradient extraction and transport of 61 beamlets through the first four electrodes, and the second experiment will converge 119 beamlets into an ESQ channel at one-quarter scaled voltage of a 1.6 MV HIF injector

  4. Design report on PF injector linac upgrade for KEKB

    Sato, Isamu; Anami, Shozo; Enomoto, Atsushi; Fukuda, Shigeki; Kobayashi, Hitoshi; Nakahara, Kazuo [eds.

    1966-03-01

    The purpose of the B Factory project is to verify the physical problem `Is there difference in the physical laws of particle world and anti-particle world?` The outline of the KEK B Factory project (KEKB) is explained. The condition of injection corresponding to the KEKB, the increase of the energy of the PF injector and the augmentation of positron beam intensity for the KEKB, the guideline for, the most important problems of and the schedule of energy augmentation are described. Buildings and utilities, various problems related to large current electron beam acceleration, the generation of positrons, the examination of acceleration method, beam transport system, acceleration unit, vacuum system, high frequency source, the high frequency phase control between beam and acceleration high frequency wave, electron beam injection system, trigger system, beam monitors, the precision alignment of acceleration tube, electromagnets and beam monitors, the extension of control system, rise and adjustment, and radiation safety and the application related to radiation are described. Efforts are exerted for the development of klystron, the capability of high frequency power compression system, and the withstanding to pressure of acceleration tube. (K.I.)

  5. Condition monitoring for a neutral beam injector cryopumping system

    Wright, N., E-mail: n.wright@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Dixon, R., E-mail: r.dixon@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Verhoeven, R., E-mail: roel.verhoeven@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► The development of a cryopumping condition monitoring scheme is presented. ► A residual generation scheme is used to detect two faults. ► Kalman filtering is used to generate the residuals. ► A filtering and voting arrangement is used to evaluate the residuals. ► A non-linear simulation model is used to verify the scheme. -- Abstract: For neutral beam injection systems, the maintenance of a vacuum inside the injector box is essential for normal operation. Cryogenic pumping systems are often used to create and maintain this vacuum. Cryogenic pumping systems have been deployed on the neutral beam heating systems supporting the Joint European Torus. With these as a target application, the development of a condition monitoring scheme is presented. The scheme uses a residual generation approach. A bank of Kalman filters is used to estimate measured process variables. A residual evaluator is used to map residual signals onto a set of faults. Two example faults are simulated to demonstrate the response of the scheme. This paper contributes to the wider fusion development programme by demonstrating how a contemporary condition monitoring technique can be applied to a fusion support system, in order to improve its availability.

  6. Progress and upgrading of the Heidelberg high current injector

    Roland Repnow

    2002-11-01

    A specialized rf-accelerator system HSI consisting of two RFQ’s and 8 rf seven-gap cavities was built for injection of high intensities of singly charged heavy ions into the Heidelberg heavy ion storage ring TSR. With different ion sources, this system now is used to deliver positive or negative, atomic and molecular ion beams with energies between 150 keV/a.m.u. and 5.3 MeV/a.m.u. final energy. For a future replacement of the MP-tandem-postaccelerator-system the new HSI-accelerator is to be equipped with an ECR source for high intensities of highly charged ions. An advanced commercial ECR source with a 18 GHz rf klystron and an adjustable extraction system for adaption of a wide range of injection energies has been commissioned at the manufacturer and is delivered. Test bench operation presently is in preparation at Heidelberg. A stripper section with an achromatic charge state selector is under construction between injector and postaccelerator. Other ion sources, e.g., for ultra cold $H^{+}_{3}$ molecular ion beams are under development.

  7. Formation and Acceleration Physics on Plasma Injector 1

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  8. Beam diagnostics in the Indiana University Cooler Injector Synchrotron

    Ball, M.; Derenchuk, V.; Hamilton, B. J.

    1997-01-01

    Diagnostic systems are being designed for the new Cooler Injector Synchrotron (CIS) being built at the Indiana University Cyclotron Facility (IUCF). There will be two separate beam position monitor (BPM) systems used in the CIS project. In the 7-MeV injection beamline, where the beam will be a DC pulse 200 to 300 μs long with a 1-s period, the pickups will be 4-quadrant electrostatic type used with high input impedance, front-end amplifiers. In the CIS ring, elliptically shaped, 4-quadrant electrostatic pickups will be located at the entrance and exit to each bending magnet. Logarithmic amplifiers will be used in the front end to detect the rf bunched beam. The 200-MeV extraction beamline will have a 150-ns-pulse beam with a 0.2- to 1-s period and use 4-quadrant electrostatic pickups and logarithmic amps with a peak detector circuit. The output of the BPMs will include intensity as well as horizontal and vertical position. Harps are being designed for use in the injection beamline, the CIS ring, and the high-energy extraction beamline. An emittance measurement system, incorporating a harp and movable slits, will be used in the 25-keV beam transport line between the H- source and the RFQ and the 7-MeV injection beamline.

  9. Heavy ion linac as a high current proton beam injector

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  10. Emittance Measurements from a Laser Driven Electron Injector

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  11. Design report on PF injector linac upgrade for KEKB

    The purpose of the B Factory project is to verify the physical problem 'Is there difference in the physical laws of particle world and anti-particle world?' The outline of the KEK B Factory project (KEKB) is explained. The condition of injection corresponding to the KEKB, the increase of the energy of the PF injector and the augmentation of positron beam intensity for the KEKB, the guideline for, the most important problems of and the schedule of energy augmentation are described. Buildings and utilities, various problems related to large current electron beam acceleration, the generation of positrons, the examination of acceleration method, beam transport system, acceleration unit, vacuum system, high frequency source, the high frequency phase control between beam and acceleration high frequency wave, electron beam injection system, trigger system, beam monitors, the precision alignment of acceleration tube, electromagnets and beam monitors, the extension of control system, rise and adjustment, and radiation safety and the application related to radiation are described. Efforts are exerted for the development of klystron, the capability of high frequency power compression system, and the withstanding to pressure of acceleration tube. (K.I.)

  12. Ophthalmic viscosurgical device backflow into cartridge during intraocular lens insertion using injectors

    Matsuura K

    2014-01-01

    Full Text Available Kazuki Matsuura,1 Yoshitsugu Inoue2 1Nojima Hospital, 2Tottori University, Kurayoshi City, Tottori, Japan Background: The purpose of this study was to assess the risk of intraocular contamination caused by intraocular lens (IOL insertion with injectors by observing the dynamics of an ophthalmic viscosurgical device (OVD. Methods: Each type of injector was equipped with a colored OVD and IOL, and a 2 mm length from the tip of the cartridge was replaced with a colored OVD. The various combinations of IOLs and injectors used were: a three-piece shaped IOL, VA60BBR + TypeE1 (HOYA incision size 2.5 mm; group A, n=5; a single-piece IOL, 251+ iSert micro, preloaded (HOYA, incision size 2.2 mm; group G, n=5; and a single-piece IOL, SN6CWS preloaded (Alcon, incision size 2.7 mm; group C, n=5. Results: In group A, the intraocular OVD instantly flowed backward into the injector, whereas the colored OVD was pushed backward deep inside the cartridge without flowing into the eye. In group B, the backflow of the intraocular OVD into the injector was limited, resulting in the influx of a large amount of the colored OVD into the eye along with the IOL. In group C, as in group A, a large amount of the intraocular OVD flowed backward into the injector. Consequently, a small amount of the colored OVD flowed into the eye. Conclusion: The tip of the injector and OVD could be contaminated because the surgical field cannot be completely sterile, even after preoperative disinfection. Our experiments revealed that OVD backflow into the injector cavity occurs during IOL insertion, and this phenomenon may have minimized intraocular contamination. However, small-diameter cartridges along with plate-type haptics allow insufficient OVD backflow, resulting in intraocular influx of the contaminated OVD. Surgeons have to be notified that intraoperative bacterial contamination can occur even after IOL insertion using injectors. Keywords: intraocular lens insertion

  13. Validation of High-Fidelity CFD Simulations for Rocket Injector Design

    Tucker, P. Kevin; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2008-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by evaluating the sensitivity of performance and injector-driven thermal environments to the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process. This paper documents the status of a focused effort to compare and understand the predictive capabilities and computational requirements of a range of CFD methodologies on a set of single element injector model problems. The steady Reynolds-Average Navier-Stokes (RANS), unsteady Reynolds-Average Navier-Stokes (URANS) and three different approaches using the Large Eddy Simulation (LES) technique were used to simulate the initial model problem, a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants. While one high-fidelity LES result matches the experimental combustion chamber wall heat flux very well, there is no monotonic convergence to the data with increasing computational tool fidelity. Systematic evaluation of key flow field regions such as the flame zone, the head end recirculation zone and the downstream near wall zone has shed significant, though as of yet incomplete, light on the complex, underlying causes for the performance level of each technique. 1 Aerospace Engineer and Combustion CFD Team Leader, MS ER42, NASA MSFC, AL 35812, Senior Member, AIAA. 2 Professor and Director, Computational Combustion Laboratory, School of Aerospace Engineering, 270 Ferst Dr., Atlanta, GA 30332, Associate Fellow, AIAA. 3 Reilly Professor of Engineering, School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, Fellow, AIAA. 4 Principal Member of Technical Staff, Combustion Research Facility, 7011 East Avenue, MS9051, Livermore, CA 94550, Associate

  14. The Maine Event

    McHale, Tom

    2007-01-01

    In this article, the author describes the successful laptop program employed at Mt. Abram High School in Strong, Maine. Through the Maine Learning Technology Initiative, the school has issued laptops to all 36,000 teachers and students in grades 7-8. This program has helped level the playing field for a student population that is 50 percent to 55…

  15. Real Time Flame Monitoring of Gasifier and Injectors

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  16. Positron injectors for high-luminosity storage-ring colliders

    This paper reports on high-luminosity B-factories utilizing storage rings operating at unequal energies which require high-energy, low-emittance sources of positrons, and electrons suitable to fill the storage rings. As an example, consider the proposed characteristics of a collider with a luminosity of 1034 cm-2s-1 using the PEP facility at SLAC as studied by LBL (Apiary-III) and summarized. The collider consists of two rings, a large 9-GeV ring (PEP or a modification thereof) plus a 3.1-GeV ring of one-third the circumference, each with a circulating current of 3 A. Ideally, the time to fill the positron ring should be much shorter than the luminosity lifetime (set by the size of the low-energy ring). Since the luminosity lifetime of the collider is not expected to be very high, the PEP-based B-factory should have a powerful, dedicated injector. In the estimate of the characteristics of the injection system the maximum time for a complete fill of the positron ring is taken as ∼100 seconds. In the design of the injection system several choices are possible: injection by linacs at full energy of the rings or use of an intermediate booster synchrotron; accelerating e+ and e- to high energy using conventional linacs or using high-gradient linacs plus gigawatt power RF-sources being developed for linear colliders; and using a conventional (warm magnet) damping ring for cooling the positron beam at an intermediate energy or a full energy ring with a radius equal to that of the low-energy ring

  17. Numerical simulation of cantilevered ramp injector flow fields for hypervelocity fuel/air mixing enhancement

    Schumacher, Jurgen Christian

    Increasing demand for affordable access to space and high speed terrestrial transport has spawned research interest into various air-breathing hypersonic propulsion systems. Propulsion concepts such as the supersonic combustion ramjet (scramjet) and the shock-induced combustion ramjet (shcramjet) utilize oxygen freely available in the atmosphere and thereby substantially reduce the weight penalty of on-board oxidizer tankage used in rocket based systems. Of key importance to the ultimate success of an air-breathing concept is the ability to efficiently mix the fuel with atmospheric air. In the case of a hypersonic air-breather the challenge is accentuated due to the requirement of supersonic combustion. Flow velocities through the combustor on the order of thousands of meters per second provide the fuel and air with only a brief time to adequately combine. Contemporary mixing augmentation methods to address this issue have focused on fuel injection devices which promote axial vortices to enhance the mixing process. Much research effort has been expended on investigation of ramp injectors for this purpose. The present study introduces a new ramp injector design, based on the conventional ramp injector, dubbed the cantilevered ramp injector. A two-pronged numerical approach was employed to investigate the mixing performance and characteristics of the cantilevered injector consisting of, (1) comparison with conventional designs and (2) a parametric study of various cantilevered injector geometries. A laminar, three-dimensional, multispecies flowsolver was developed in generalized coordinates to solve the Navier-Stokes equations for the flow fields of injected H2 into high-enthalpy air. The scheme consists of an upwind TVD scheme for discretization of the convective fluxes coupled with a semi-implicit LU-SGS scheme for temporal discretization. Through analysis of the numerical solutions, it has been shown that the cantilevered ramp injector is a viable fuel injection

  18. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37oC, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  19. Design of ion-atom channel of the T-15 tokamak injector

    Calculation parameters of ion-atom channel elements are given and the design of T-15 tokamak injectors meant for input of atom beam of 10 MW power at 80 keV energy and pulse duration 1,5 sec. into the tokamak chamber for plasma heating as described. Injection system is based on simultaneous operation of three autonomous injectors. In each injector two modules of ion sources are mounted. The ion-atom channel of the injector consists of two ion sources neutralizer of ions beam into fast atoms beam magnetic flit shield, diaphragms ion and atom receptors deflecting electromagnet, cryopanels of 15 cm2 general area, rectangular vacuum chamber manufactured of sheet steel 12Kh18N10T of 16 mm thickness. The vacuum chamber weight constitutes 25 tons volume 24,5 m3. Ion sources are situated one above another by vertical order. In neutralizers ion beams formed are converted into fast atom beams on gas base. Behind the neutralizer situated is magnetic flit shield along the length of which gas pumping out occurs. Separation of atoms and non recharged ions is realized by the deflecting electromagnet. The deflected ions get to the receptor and fast atoms by atomguide into the tokamak. The injector diaphragm protects the electromagnet construction from overheating

  20. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  1. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles

    Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.

    2015-12-01

    Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.

  2. Design and implementation of a control and data acquisition system for pellet injectors

    A stand-alone control and data acquisition system for pellet injectors has been designed and implemented to support pellet injector development at Oak Ridge Laboratory (ORNL) and to enable ORNL pellet injectors to be installed on various fusion experimental devices. The stand-alone system permits LOCAL operation of the injector from a nearby panel and REMOTE operation from the experiment control room. Major components of the system are (1) an Allen-Bradley PLC 2/30 programmable controller, (2) a VAX minicomputer, and (3) a CAMAC serial highway interface. The programmable logic controller (PLC) is used to perform all control functions of the injector. In LOCAL, the operator interface is provided by an intelligent panel system that has a keypad and pushbutton module programmed from the PLC. In REMOTE, the operator interfaces via a VAX-based color graphics display and uses a trackball and keyboard to issue commands. Communications between the remote and local controls and to the fusion experiment supervisory system are via the CAMAC highway. The VAX archives transient data from pellet shots and trend data acquired from the PLC. Details of the hardware and software design and the operation of the system are presented in this paper. 3 refs., 1 fig

  3. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  4. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    Kowalski Jerzy

    2016-01-01

    Full Text Available The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.

  5. Electron acceleration in laser-plasma interaction: development and characterization of an optical injector

    In any particle accelerator, the injector plays a crucial role since it determines most of the characteristics of the accelerated beam. This is also true for laser-plasma accelerators, that are based on the interaction of an ultra short, ultra intense laser with an underdense plasma. However, due to the compactness of these accelerators, injection is a real challenge: to obtain a good beam quality, injected electron beams have to be ultra short and precisely synchronized with the laser. In this manuscript, the relevance of an optical injector, that relies on a second laser pulse, is experimentally demonstrated. With this injector, mono energetic electron beams have been produced in a stable manner. Moreover, this injector gives control over the electron beam parameters. Using the parameters of the second laser pulse, it has been proven that the energy, the charge and the energy spread of the accelerated beam can be simply tuned. Those additional controls make it possible to study in great details the physical phenomena at play during the acceleration. Beam loading effects, due to the interaction of the accelerated bunch with the plasma, have been identified and studied. With optimized injector parameters, the narrowest electron beams measured to date in the laser plasma interaction have been obtained, with a relative energy spread of 1%. (author)

  6. Study on heat transfer and interfacial stability in supersonic steam injector

    Supersonic steam injector is one of the most possible devices for Next-generation nuclear systems to achieve more simplified system and to enhance the safety and credibility of the systems. Supersonic steam injector has dual functions that are passive jet pump and high efficient heat exchanger. In order to design the supersonic steam injector, it is important to clarify the heat transfer and flow behavior of high-speed water jet in supersonic steam flow. However, thermal-hydraulic behaviors in the steam injector including the interfacial heat transfer behavior due to the direct contact condensation and interfacial stability of water jet are not clarified in detail yet. The purpose of the present study is to investigate the interfacial heat transfer behavior of high-speed water jet. The interface of water jet is observed by using high-speed video camera. From the observation results obtained, wave propagation on the interface is identified. The velocity of the wave propagation is estimated from the visual information. Radial distribution of the pressure and the temperature in the supersonic steam injector are also measured experimentally in order to investigate the dynamic behavior and the heat transfer due to the condensation. From the results, the interaction between the interfacial dynamic behavior and the heat transfer due to the condensation are discussed. (author)

  7. Optimizing RF gun cavity geometry within an automated injector design system

    Alicia Hofler ,Pavel Evtushenko

    2011-03-28

    RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability because EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.

  8. Initial Evaluation of Engine Combustion Network Injectors with X-Ray Diagnostics

    A significant hurdle in the understanding of diesel sprays is the sensitivity of such sprays to the detailed geometry of the spray nozzle. This sensitivity hampers the comparison of results from spray measurements by different research groups, even if the groups measure nozzles with the same nominal geometry. Moreover, these differences make the comparison and validation of different diagnostic techniques problematic. To remove this source of uncertainty from diesel spray measurements, a collaboration of several research groups has formed to measure a common set of injectors under identical conditions under the auspices of Sandia National Laboratorys Engine Combustion Network. The current work describes the initial measurement of these injectors and the sprays created by these injectors using the x-ray diagnostics available at the Advanced Photon Source. X-ray phase-enhanced imaging is used to perform time-resolved, in situ measurements of injector pintle motion. In addition to these measurements, x-ray radiography measurements of the sprays from these injectors will be performed to better understand the near-nozzle fuel mass distribution in these sprays.

  9. Turbine main engines

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  10. Census Snapshot: Maine

    Romero, Adam P; Rosky, Clifford J; Badgett, M. V. Lee; Gates, Gary J.

    2008-01-01

    Using data from the U.S. Census Bureau, this report provides demographic and economic information about same-sex couples and same-sex couples raising children in Maine. We compare same-sex “unmarried partners,” which the Census Bureau defines as an unmarried couple who “shares living quarters and has a close personal relationship,” to different-sex married couples in Maine. In many ways, the more than 4,800 same-sex couples living in Maine are similar to married couples. According to...

  11. Update on development of the Space Shuttle main engine /as of 5 May 1977/

    Johnson, J. R.

    1977-01-01

    The development and testing of the Space Shuttle main engine are described. The preburners, main injector, main combustion chamber, and 35:1 expansion ratio test nozzle were successfully run at full power level (109 percent of rated power level). Integral combustion stability aids damped induced instability oscillations within 6 milliseconds. Three significant turbomachinery problems were identified and solved during the past year. These problems involved high-pressure fuel turbopump subsynchronous whirl, severe overheating of the turbine bearing and components and, in the high-pressure oxidizer turbopump, burning that first occurred in the drain cavity downstream of the primary oxidizer seal.

  12. The Maine Music Box

    Lutz, Marilyn; Gallucci, Laura

    2005-01-01

    The paper describes the Maine Music Box and examines its potential as a tool for teaching and learning music. Pedagogical concepts are demonstrated using MIDI, Scorch, image and streaming video files.

  13. 2004 Maine Lidar

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of Light Detection and Ranging (LIDAR) data over an area along the coast of Maine. Data was collected...

  14. Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics

    Highlights: • Two common types of diesel injector nozzles (VCO and microsac) are compared. • A CFD code with a HEM model for two-phase flow and a RANS approach is used. • Simulations are performed in stationary conditions at several needle lifts. • Differences in cavitation inception and morphology are analysed. • VCO nozzles are more prone to cavitate and more affected by the needle presence. - Abstract: A computational study focused on the inner nozzle flow and cavitation phenomena has been reported in this paper in order to investigate the two most common types of diesel injector nozzles at the present: microsac and valve covered orifice (VCO). The geometrical differences among both types of nozzles are mainly located at the needle seat, upstream of the discharge orifices. In the case of microsac nozzles there is a small volume upstream of the discharge orifices which is not present in VCO nozzles. Due to these geometrical differences among both type of nozzles, differences in the inner flow and the cavitation development have been found and analysed in this research. For the study, two cylindrical nozzles with six orifices and the same outlet diameter have been experimentally characterized in terms of mass flow rate. These measurements have been used to validate the CFD results obtained with the code OpenFOAM used for the analysis of the internal nozzle flow. For the simulations, two meshes that reproduce the microsac and VCO nozzles seat geometry while keeping the same geometry at the orifices have been built. The simulations have been carried out with a code previously validated and able to simulate cavitation phenomena using a homogeneous equilibrium model (HEM) and with RANS approach for the turbulence modelling (RNG k–ε). For the computational study, three injection pressures and different geometries simulating different needle lifts have been used. The comparison among nozzles has been made in terms of mass flow, momentum flux and effective

  15. System for supporting a bundled tube fuel injector within a combustor

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  16. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 109 n/s has been observed in the deuterium operation

  17. 1.54 GeV ATF injector linac for JLC

    The Accelerator Test Facility (ATF) is under construction in the TRISTAN Assembly Hall to produce multi-bunch electrons with vertical emittance of 3x10-8 mrad. The ATF consists of a 1.54 GeV injector linac, beam transport line, 1.54 GeV damping ring, bunch compressor, final focus system and positron target test-stand. The injector linac consists of a 80 MeV pre-injector linac, accelerating linac and energy compensation system. The accelerating gradient of 33 MeV/m is produced at 200 MW input power. The linac accelerates 20 bunches of electrons with bunch separation of 2.8 ns. The accelerating structures, beam monitors and Q-magnets are aligned within ±50 μm by active alignment system. The energy spectrum of multi-bunch is compressed to ±0.16% by the energy compensation system. (author)

  18. Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

    Okumura, Y., E-mail: okumura.yoshikazu@jaea.go.jp, E-mail: rjgobin@cea.fr; Knaster, J.; Ayala, J.-M.; Marqueta, A.; Perez, M.; Pruneri, G.; Scantamburlo, F. [IFMIF/EVEDA Project Team, Obuchi-Omotedate, 039-3212 Rokkasho, Aomori (Japan); Gobin, R., E-mail: okumura.yoshikazu@jaea.go.jp, E-mail: rjgobin@cea.fr; Bolzon, B.; Chauvin, N.; Chel, S.; Harrault, F.; Senée, F.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Heidinger, R.; Cara, P.; Gex, D.; Phillips, G. [F4E, Fusion for Energy, BFD Department, D-85748 Garching (Germany); Ichimiya, R.; Ihara, A. [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate, 039-3212 Rokkasho, Aomori (Japan); and others

    2016-02-15

    The objective of linear IFMIF prototype accelerator is to demonstrate 125 mA/CW deuterium ion beam acceleration up to 9 MeV. The injector has been developed in CEA Saclay and already demonstrated 140 mA/100 keV deuterium beam [R. Gobin et al., Rev. Sci. Instrum. 85, 02A918 (2014)]. The injector was disassembled and delivered to the International Fusion Energy Research Center in Rokkasho, Japan. After reassembling the injector, commissioning has started in 2014. Up to now, 100 keV/120 mA/CW hydrogen and 100 keV/90 mA/CW deuterium ion beams have been produced stably from a 10 mm diameter extraction aperture with a low beam emittance of 0.21 π mm mrad (rms, normalized). Neutron production by D-D reaction up to 2.4 × 10{sup 9} n/s has been observed in the deuterium operation.

  19. General design of the International Fusion Materials Irradiation Facility deuteron injector: Source and beam line

    In the framework of the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA) project, CEA/IRFU is in charge of the design and realization of the 140 mA cw deuteron Injector. The electron cyclotron resonance ion source operates at 2.45 GHz and a 4 electrode extraction system has been chosen. A 2 solenoid beam line, together with a high space charge compensation have been optimized for a proper beam injection in the 175 MHz radio frequency quadrupole. The injector will be tested with proton and deuteron beam production either in pulsed mode or in cw mode on the CEA-Saclay site before to be shipped to Japan. Special attention was paid to neutron emission due to (d,D) reaction. In this paper, the general IFMIF Injector design is reported, pointing out beam dynamics, radioprotection, diagnostics, and mechanical aspects.

  20. Shielding calculations for the Tokamak Fusion Test Reactor neutral beam injectors

    Two-dimensional discrete-ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor neutral beam injectors. Two sets of calculations were performed, one to determine the dose equivalent rate on the roof and wall of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m is sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/D-T pulse