WorldWideScience

Sample records for main injector numi

  1. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 1031 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  2. Main injector particle production experiment at Fermilab

    Indian Academy of Sciences (India)

    Sonam Mahajan; Ashok Kumar; Rajendran Raja

    2012-11-01

    The main injector particle production (MIPP) experiment at Fermilab uses particle beams of charged pions, kaons, proton and antiproton with beam momenta of 5–90 GeV/c to measure particle production cross-sections of various nuclei including liquid hydrogen, MINOS target and thin targets of beryllium, carbon, bismuth and uranium. The physics motivation to perform such cross-section measurements is described here. Recent results on the analysis of NuMI target and forward neutron cross-sections are presented here. Preliminary cross-section measurements for 58 GeV/c proton on liquid hydrogen target are also presented. A new method is described to correct for low multiplicity inefficiencies in the trigger using KNO scaling.

  3. Switchyard in the Main Injector era conceptual design report

    International Nuclear Information System (INIS)

    This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics

  4. The NuMI Neutrino Beam

    CERN Document Server

    Adamson, P; Andrews, M; Andrews, R; Anghel, I; Augustine, D; Aurisano, A; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barr, G; Barrett, W L; Bernstein, R H; Biggs, J; Bishai, M; Blake, A; Bocean, V; Bock, G J; Boehnlein, D J; Bogert, D; Bourkland, K; Cao, S V; Castromonte, C M; Childress, S; Choudhary, B C; Coelho, J A B; Cobb, J H; Corwin, L; Crane, D; Cravens, J P; Cronin-Hennessy, D; Ducar, R J; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Erwin, A R; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Garkusha, V; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grossman, N; Grzelak, K; Habig, A; Hahn, S R; Harding, D; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Hays, S; Heller, K; Holin, A; Huang, J; Hylen, J; Ibrahim, A; Indurthy, D; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Johnstone, J; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Laughton, C; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Morfin, J; Mualem, L; Mufson, S; Murgia, S; Murtagh, M; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Oliver, W P; Olsen, M; Orchanian, M; Osprey, S; Pahlka, R B; Paley, J; Para, A; Patterson, R B; Patzak, T; Pavlovic, Z; Pawloski, G; Perch, A; Peterson, E A; Petyt, D A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Prieto, P; Pushka, D; Qiu, X; Radovic, A; Rameika, R A; Ratchford, J; Rebel, B; Reilly, R; Rosenfeld, C; Rubin, H A; Ruddick, K; Sanchez, M C; Saoulidou, N; Sauer, L; Schneps, J; Schoo, D; Schreckenberger, A; Schreiner, P; Shanahan, P; Sharma, R; Smart, W; Smith, C; Sousa, A; Stefanik, A; Tagg, N; Talaga, R L; Tassotto, G; Thomas, J; Thompson, J; Thomson, M A; Tian, X; Timmons, A; Tinsley, D; Tognini, S C; Toner, R; Torretta, D; Trostin, I; Tzanakos, G; Urheim, J; Vahle, P; Vaziri, K; Villegas, E; Viren, B; Vogel, G; Webber, R C; Weber, A; Webb, R C; Wehmann, A; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Wong-Squires, M L; Yang, T; Yumiceva, F X; Zarucheisky, V; Zwaska, R

    2015-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  5. Operational performance of a bunch by bunch digital damper in the Fermilab Main Injector

    International Nuclear Information System (INIS)

    We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project

  6. Operational Performance of a Bunch by Bunch Digital Damper in the Fermilab Main Injector

    CERN Document Server

    Adamson, Philip; Foster, G W; Hansen, Sten; Kang, Hyejoo; Marchionni, Alberto; Nicklaus, Dennis J; Semenov, Alexei; Wildman, David

    2005-01-01

    We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project.

  7. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  8. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 109 electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE's National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE's evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc

  9. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  10. Addendum to NuMI shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vaziri, Kamran; /Fermilab

    2007-10-01

    The original safety assessment and the Safety Envelope for the NuMI beam line corresponds to 400 kW of beam power. The Main Injector is currently capable of and approved for producing 500 kW of beam power2. However, operation of the NuMI beam line at 400 kW of power brings up the possibility of an occasional excursion above 400 kW due to better than usual tuning in one of the machines upstream of the NuMI beam line. An excursion above the DOE approved Safety Envelope will constitute a safety violation. The purpose of this addendum is to evaluate the radiological issues and modifications required to operate the NuMI beam line at 500 kW. This upgrade will allow 400 kW operations with a reasonable safety margin. Configuration of the NuMI beam line, boundaries, safety system and the methodologies used for the calculations are as described in the original NuMI SAD. While most of the calculations presented in the original shielding assessment were based on Monte Carlo simulations, which were based on the design geometries, most of the results presented in this addendum are based on the measurements conducted by the AD ES&H radiation safety group.

  11. Kaon Production at the Fermilab Main Injector

    Science.gov (United States)

    Lindgren, Emily

    2013-04-01

    The kinematic behavior and production of Kaons is an important input to planning and design for future kaon experiments. The data for this study was collected by the MIPP (Main Injector Particle Production) experiment at Fermi National Accelerator Laboratory. The kaons were produced by 120 GeV energy proton beam incident on a Bismuth target. This study reports the rate of production and the kinematic distributions of particles that were identified as Kaons using particle identification techniques.

  12. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  13. A gap clearing kicker for Main Injector

    CERN Document Server

    Kourbanis, I; Biggs, J; Brown, B; Capista, D; Jensen, C C; Krafczyk, G E; Morris, D K; Scott, D; Seiya, K; Ward, S R; Wu, G; Yang, M -J

    2012-01-01

    Fermilab Main Injector has been operating at high Beam Power levels since 2008 when multi-batch slip stacking became operational. In order to maintain and increase the beam power levels the localized beam loss due to beam left over in the injection kicker gap during slip stacking needs to be addressed. A set of gap clearing kickers that kick any beam left in the injection gap to the beam abort have been built. The kickers were installed in the summer of 2009 and became operational in November of 2010. The kicker performance and its effect on the beam losses will be described.

  14. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  15. Magnet end design: The main injector dipoles

    International Nuclear Information System (INIS)

    From the accelerator designer standpoint, one of the quantities of interest in a magnet is the axially integrated transverse field. It is easily shown that the latter satisfies the equations of 2D magnetostatics. This is the basic theoretical result needed to design accelerator magnet ends. Unfortunately, axially integrated fields must be obtained from accurate 3D field maps and magnets ends have historically been designed using a cut and try approach. To a certain extent, this remains true even today; however, the advent of reliable 3D magnet design codes now permits to substantially reduce the costs associated with the construction of various prototypes. In this paper, the theory of magnet end design is reviewed. The design of the end of the dipole magnets of the proposed Fermilab Main Injector is analyzed in a detailed manner using TOSCA, a well-established 3D finite element code. Provided the limitations of the code are well understood by the user, the integrated field profile is satisfactorily predicted

  16. Magnet end design: The Main Injector dipoles

    International Nuclear Information System (INIS)

    From the accelerator designer standpoint, one of the quantities of interest in a magnet is the axially integrated transverse field. It is easily shown that the latter satisfies the equations of 2D magnetostatics. This is the basic theoretical result needed to design accelerator magnet ends. Unfortunately, axially integrated fields must be obtained from accurate 3D field maps and magnets ends have historically been designed using a cut and try approach. To a certain extent, this remains true even today; however, the advent of reliable 3D magnet design codes now permits to substantially reduce the costs associated with the construction of various prototypes. In this paper, the theory of magnet end design is reviewed. The design of the end of the dipole magnets of the proposed Fermilab Main Injector is analyzed in a detailed manner using TOSCA, a well-established 3D finite element code. Provided the limitations of the code are well understood by the user, the integrated field profile is satisfactorily predicted

  17. Simulations of space charge in the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2011-03-01

    The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 10{sup 11} to 3.0 x 10{sup 11}. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

  18. Radiation levels around the Fermilab Main Injector extraction septa

    International Nuclear Information System (INIS)

    The Fermilab Main Injector extraction system will be capable of delivering a uniform 120 GeV beam of ? 3 x 1013 protons per spill to the fixed target experiments ( with spill time of 1 sec). Up to 2% of the beam is expected to be lost at the extraction septum and the Lambertson magnet. As a result, one expects increased radiation levels around the septa compared to other parts of the Main Injector. Realistic Monte-Carlo simulations have been performed to estimate the instantaneous and residual radiation levels in the beam extraction region. The results of these studies are presented and implications are discussed

  19. A transitionless lattice for the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; Trbojevic, D. (Fermi National Accelerator Lab., Batavia, IL (USA)); Lee, S.Y. (Indiana Univ., Bloomington, IN (USA). Dept. of Physics)

    1991-05-01

    Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the {gamma}{sub t} is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs.

  20. Field shape measurements of prototype Main Injector dipole endpacks

    International Nuclear Information System (INIS)

    Measurements of the transverse dependence of the flux on the symmetry plane were obtained on a series of endpacks mounted on a Main Injector prototype dipole. From these flux measurements, we determined the endfield shape, expressed in terms of normal harmonics, up to 14-pole. We describe the measurement and analysis procedure, and present the results for all endpacks that were tested. The final endpack (number 10) has a sextupole, normalized to the body, of +0.167 ± .072 units, and the relative field shape deviates by < 1.2 units relative to the on-axis field strength over the range |x| < 2.0 double-prime. These measurements indicate that Endpack 10 meets the requirements for the Main Injector dipole

  1. Beam Loss Control for the Fermilab Main Injector

    CERN Document Server

    Brown, Bruce C

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Losses were at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  2. NuMI Proton Kicker Extraction System

    CERN Document Server

    Jensen, C C

    2005-01-01

    This system extracts up to 9.6 us of 120 GeV beam every 1.87 seconds for the NuMI beamline neutrino experiments. A pulse forming network consisting of two continuous wound coils and 68 capacitors was designed and built to drive three kicker magnets. The field stability requirement is better than ± 1% with a field rise time of 1.6 us. New kicker magnets were built based on the successful traveling wave magnets built for the Main Injector. Two of these magnets, which have a propagation time of 550 ns, are in series making the risetime of the pulser a serious constraint. A forced cooling system using Fluorinert® was designed for the magnet termination resistors to maintain the field flatness and amplitude stability. The system has been commissioned and early results will be presented.

  3. Operational aspects of the Main Injector large aperture quadrupole (WQB)

    OpenAIRE

    Chou, W; Bartelson, L.; BROWN, B; Capista, D.; Crisp, J; DiMarco, J.; FitzGerald, J; Glass, H; HARDING, D.; Johnson, D.; Kashikhin, V.; Kourbanis, I.; Prieto, P.; Robotham, W.; Sager, T.

    2008-01-01

    A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40pi to 60pi mm-mrad. This ...

  4. Beam-Based Alignment of the NuMI Target Station Components at FNAL

    OpenAIRE

    Zwaska, R.; Bishai, M.; Childress, S.; Drake, G.; Escobar, C.; Gouffon, P.; Harris, D. A.; Hylen, J.; Indurthy, D.; Koizumi, G.; Kopp, S; Lucas, P; Marchionni, A.; Para, A.; Pavlovic, Z.

    2006-01-01

    The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.

  5. Forward Neutron Production at the Fermilab Main Injector

    CERN Document Server

    Nigmanov, T S; Longo, M J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Jr.,; Bergfeld, T; Bujak, A; Carey, D; Dukes, E C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Gunaydin, Y O; Graf, N; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Heffner, M; Johnstone, C; Kaplan, D M; Kamaev, O; Klay, J; Kostin, M; Lange, D; Lebedev, A; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K S; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rosenfeld, C; Rubin, H A; Seun, S; Solomey, N; Soltz, R; Swallow, E; Torun, Y; Wilson, K; Wright, D; Wu, K

    2010-01-01

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\\alpha$ is $0.46\\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

  6. Survey and alignment overview: Fermilab main injector ring

    International Nuclear Information System (INIS)

    The purpose of the Fermilab main injector ring (FMI) is to replace and improve the performance of the existing main ring by simultaneously enhancing both Fermilab collider and fixed target programs. The FMI interacts with the Tevatron near the F-O straight section, and performs all the duties that currently the existing main ring does. The performance of the FMI as measured in terms of the protons per second delivered to the antiproton production target or the total protons delivered to the Tevatron production target or the total protons delivered to the Tevatron is expected to exceed twice or thrice of those of the main ring. In addition, the FMI provides high duty factor 120 GeV beam for the experimental areas. The design geometry of the FMI is described. In order to achieve the smooth and successful startup, the desired absolute and relative alignment tolerances for 208 quadrupole and 344 dipole magnets have been defined. Ten concrete pillar type monuments with forced centering devices constitute the framework for the surface control network. Regarding tunnel control system, geodetic considerations, monumentation, secondary tunnel constraint network and tunnel control network are described. Magnet fiduciarization and alignment are reported. (K.I.)

  7. Measurement of Pi-K Ratios from the NuMI Target

    Energy Technology Data Exchange (ETDEWEB)

    Seun, Sin Man; /Harvard U.

    2007-07-01

    Interactions of protons (p) with the NuMI (Neutrinos at the Main Injector) target are used to create the neutrino beam for the MINOS (Main Injector Neutrino Oscillation Search) Experiment. Using the MIPP (Main Injector Particle Production) experimental apparatus, the production of charged pions and kaons in p+NuMI interactions is studied. The data come from a sample of 2 x 10{sup 6} events obtained by MIPP using the 120 GeV/c proton beam from the Main Injector at Fermi National Accelerator Laboratory in Illinois, USA. Pions and kaons are identified by measurement in a Ring Imaging Cherenkov detector. Presented are measurements of {pi}{sup -}/{pi}{sup +}, K{sup -}/K{sup +}, {pi}{sup +}/K{sup +} and {pi}{sup -}/K{sup -} production ratios in the momentum range p{sub T} < 2 GeV/c transversely and 20 GeV/c < p{sub z} < 90 GeV/c longitudinally. Also provided are detailed comparisons of the MIPP NuMI data with the MIPP Thin Carbon data, the MIPP Monte Carlo simulation and the current MINOS models in the relevant momentum ranges.

  8. Physics design for the C-ADS main linac based on two different injector design schemes

    International Nuclear Information System (INIS)

    The China ADS (C-ADS) project proposes to build a 1000 MW Accelerator Driven sub-critical System around 2032. The accelerator will work in CW mode with 10 mA in beam current and 1.5 GeV in final beam energy. The linac is composed of two major sections: the injector section and the main linac section. There are two different schemes for the injector section. The Injector-? scheme is based on a 325 MHz RFQ and superconducting spoke cavities of the same RF frequency and the Injector-? scheme is based on a 162.5 MHz RFQ and superconducting HWR cavities of the same frequency. The main linac design will be different for different injector choices. The two different designs for the main linac have been studied according to the beam characteristics from the different injector schemes. (authors)

  9. Simulation of the electron cloud in the Fermilab Main Injector

    International Nuclear Information System (INIS)

    We present results from a precision simulation of the electron cloud (EC) problem in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and EM field maps have been generated. Various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results have been successfully benchmarked against the POSINST code for the 2D electrostatic case. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated as well as the more challenging microwave absorption experiment. While numerically accurate predictions can be made for a given secondary emission yield (SEY) and initial conditions, the large uncertainties in this SEY and in the spatial distribution of the EC prior to the exponential growth of the EC do make ab-initio prediction difficult. Note also that the RFA response is also uncertain due to the collection efficiency in unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program. Moreover, for a reasonable set of initial condition, this calculation shows that no dramatic, non-linear, increase of the EC density will occur when the bunch charges increases by a factor of three. Finally, electric field maps or parametric functions are being provided to the Synergia tracking code such that instabilities due to the EC can be simulated over much longer periods of time.

  10. Geodetic determinations for the NuMI project at Fermilab

    International Nuclear Information System (INIS)

    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within ± 12 m from its ideal position at Soudan, MN, corresponding to ± 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  11. NuMI proton kicker extraction magnet termination resistor system

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.R.; Jensen, C.C.; /Fermilab

    2005-05-01

    The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert{reg_sign} FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert{reg_sign} must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert{reg_sign} processing system are described. Early performance results will be presented.

  12. An improved imaginary transition. gamma. sub t lattice for the Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; Trbojevic, D.

    1992-08-01

    An improved imaginary-{gamma}{sub t} lattice for the 150 GeV Fermilab Main Injector is presented. It has the properties of small dispersion function, good tunability, small tune dependences on momentum with the presence of chromaticity sextupoles, and a large dynamical aperture. In addition, many of the quadrupoles can be recycled from the present Main Ring.

  13. Calculation of the Orbit Length Change of the Recycler Due to Main Injector Ramp

    CERN Document Server

    Xiao Mei Qin

    2005-01-01

    Orbit length of beam in the Recycler changes during the Main Injector ramps. The unknown kicks from the effects generated by stray field are distributed around the ring. To estimate the changes, simulated virtual kicks are created around each lambson, C-magnet and bus cable of the Main Injector. The orbit lengths are calculated from measurements of evolution frequency and transverse beam positions. A BPM system distributed throughout the Recycler lattice in both Horizontal and vertical planes are used to take the closed orbit measurement during the ramps. The calculation method and the results of the orbit length changes and the strength of the simulated kicks are presented in this report.

  14. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; /Fermilab; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2010-05-01

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  15. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    International Nuclear Information System (INIS)

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  16. Installation status of the electron beam profiler for the Fermilab Main Injector

    CERN Document Server

    Thurman-Keup, R; Fitzgerald, J; Lundberg, C; Prieto, P; Roberts, M; Zagel, J; Blokland, W

    2015-01-01

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  17. Tritium transport in the NuMI decay pipe region - modeling and comparison with experimental data

    International Nuclear Information System (INIS)

    The NuMI (Neutrinos at Main Injector) beam facility at Fermilab is designed to produce an intense beam of muon neutrinos to be sent to the MINOS underground experiment in Soudan, Minnesota. Neutrinos are created by the decay of heavier particles. In the case of NuMI, the decaying particles are created by interaction of high-energy protons in a target, creating mostly positive pions. These particles can also interact with their environment, resulting in production of a variety of short-lived radionuclides and tritium. In the NuMI beam, neutrinos are produced by 120 GeV protons from the Fermilab Main Injector accelerator which are injected into the NuMI beam line using single turn extraction. The beam line has been designed for 400 kW beam power, roughly a factor of 2 above the initial (2005-06) running conditions. Extracted protons are bent downwards at a 57mr angle towards the Soudan Laboratory. The meson production target is a 94 cm segmented graphite rod, cooled by water in stainless tubes on the top and bottom of the target. The target is followed by two magnetic horns which are pulsed to 200 kA in synchronization with the passage of the beam, producing focusing of the secondary hadron beam and its daughter neutrinos. Downstream of the second horn the meson beam is transported for 675 m in an evacuated 2 m diameter beam (''decay'') pipe. Subsequently, the residual mesons and protons are absorbed in a water cooled aluminum/steel absorber immediately downstream of the decay pipe. Some 200 m of rock further downstream ranges out all of the residual muons. During beam operations, after installation of the chiller condensate system in December 2005, the concentration of tritiated water in the MINOS sump flow of 177 gpm was around 12 pCi/ml, for a total of 0.010 pCi/day. A simple model of tritium transport and deposition via humidity has been constructed to aid in understanding how tritium reaches the sump water. The model deals with tritium transported as HTO, water in which one hydrogen atom has been replaced with tritium. Based on concepts supported by the modeling, a dehumidification system was installed during May 2006 that reduced the tritium level in the sump by a factor of two. This note is primarily concerned with tritium that was produced in the NuMI target pile, carried by air flow into the target hall and down the decay pipe passageway (where most of it was deposited). The air is exhausted through the existing air vent shaft EAV2 (Figure 1)

  18. Field errors introduced by eddy currents in Fermilab main injector magnets

    International Nuclear Information System (INIS)

    The Fermilab Main Injector ramps from 8 GeV to 120 GeV in about half a second. The rapidly changing magnetic field induces eddy currents in the stainless steel vacuum tubes, which in turn produce error fields that can affect the beam. Field calculations and measurements are presented for the dipole and quadrupole magnets

  19. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    Science.gov (United States)

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  20. Simulations of the electron cloud buildups and suppressions in Tevatron and main injector

    International Nuclear Information System (INIS)

    To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3 maximum secondary electron yield, the electron cloud remains a serious concern for the planned future operational mode with 500 bunches, 3e11 proton per bunch. Electron cloud buildup can be mitigated in various ways. We consider a plausible scenario involving solenoids in straight section and a single clearing strip electrode (like SNEG in Tevatron) held at a potential of 500V. Simulations with parameters corresponding to Tevatron and Main Injector operating conditions at locations where special electron cloud detectors have been installed have been carried out and are in satisfactory agreement with preliminary measurements

  1. Coalescing at 8 GeV in the Fermilab Main Injector

    CERN Document Server

    Scott, D J; Chase, B; Dye, J; Kourbanis, I; Seiya, K; Yang, M -J

    2013-01-01

    For Project X, it is planned to inject a beam of 3 10**11 particles per bunch into the Main Injector. To prepare for this by studying the effects of higher intensity bunches in the Main Injector it is necessary to perform coalescing at 8 GeV. The results of a series of experiments and simulations of 8 GeV coalescing are presented. To increase the coalescing efficiency adiabatic reduction of the 53 MHz RF is required, resulting in ~70% coalescing efficiency of 5 initial bunches. Data using wall current monitors has been taken to compare previous work and new simulations for 53 MHz RF reduction, bunch rotations and coalescing, good agreement between experiment and simulation was found. Possible schemes to increase the coalescing efficiency and generate even higher intensity bunches are discussed. These require improving the timing resolution of the low level RF and/or tuning the adiabatic voltage reduction of the 53 MHz.

  2. Comments on the behavior of α1 in main injector γt jump schemes

    International Nuclear Information System (INIS)

    Tracking studies of transition crossing in the Main Injector have shown that the Johnsen effect is the dominant cause of beam loss and emittance blow up. To suppress this effect one has to have control over α1 (dispersion of the momentum compaction factor α). Various γt jump configurations are examined and the resulting changes in α1 are assessed. These results are further validated by comparison between the simulation and simple analytic α1--formulas derived for a model FODO lattice with full chromaticity compensation in the presence of an eddy current sextupole component. A scheme involving the introduction of a dispersion wave in the arcs of the Main Injector, around transition time, seems to be promising if one regards the strength of the eddy current sextupole family as an external ''knob'' to control values of α1

  3. Secondary Electron Yield Measurements of Fermilab?s Main Injector Vacuum Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.J.; Capista, D.; Duel, K.L.; Zwaska, R.M.; /Fermilab; Greenwald, S.; Hartung, W.; Li, Y.; Moore, T.P.; Palmer, M.A.; /Cornell U.; Kirby, R.; Pivi, M.; /SLAC

    2012-05-01

    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.

  4. The Fermilab Main Injector: high intensity operation and beam loss control

    CERN Document Server

    Brown, Bruce C; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-01-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at ~400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  5. Microwave Transmission Through the Electron Cloud at the Fermilab Main Injector: Simulation and Comparison with Experiment

    International Nuclear Information System (INIS)

    Simulations of the microwave transmission properties through the electron cloud at the Fermilab Main Injector have been implemented using the plasma simulation code 'VORPAL'. Phase shifts and attenuation curves have been calculated for the lowest frequency TE mode, slightly above the cutoff frequency, in field free regions, in the dipoles and quadrupoles. Preliminary comparisons with experimental results for the dipole case are showed and will guide the next generation of experiments.

  6. Narrowband beam loading compensation in the Fermilab Main Injector accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Joseph E. Dey; John S. Reid and James Steimel

    2001-07-12

    A narrowband beam loading compensation system was installed for the Main Injector Accelerating Cavities. This feedback operates solely on the fundamental resonant mode of the cavity. This paper describes modifications to the high level Radio Frequency system required to make the system operational. These modifications decreased the effect of steady-state beam loading by a factor of 10 and improved the reliability of paraphasing for coalescing.

  7. Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run

    CERN Document Server

    Badgett, William; Torretta, Donatella; Meier, Jerry; Gunderson, Jeffrey; Osterholm, Denise; Saranen, David

    2015-01-01

    The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with the extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet T...

  8. Magnet reliability in the Fermilab Main Injector and implications for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, M.A.; Blowers, J.; Capista, D.; Harding, D.J.; Kiemschies, O.; Rahimzadeh-Kalaleh, S.; Tompkins, J.C.; /Fermilab

    2007-08-01

    The International Linear Collider reference design requires over 13000 magnets, of approximately 135 styles, which must operate with very high reliability. The Fermilab Main Injector represents a modern machine with many conventional magnet styles, each of significant quantity, that has now accumulated many hundreds of magnet-years of operation. We review here the performance of the magnets built for this machine, assess their reliability and categorize the failure modes, and discuss implications for reliability of similar magnet styles expected to be used at the ILC.

  9. Progress on electron cloud effects calculations for the FNAL main injector

    International Nuclear Information System (INIS)

    We have studied the response of the beam to an electron cloud for the Fermilab Main Injector using the Quasistatic Model [1] implemented into the particle-in-cell code Warp [2]. Specifically, we have addressed the effects due to varying the beam intensity, electron cloud density and chromaticity. In addition, we have estimated the contribution to emittance evolution due to beam space-charge effects. We have carried out a comparison between how the beam responds at injection energy and at top energy. We also present some results on the validation of the computational model, and report on progress towards improving the computational model

  10. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    CERN Document Server

    Thurman-Keup, R; Blokland, W; Crisp, J; Eddy, N; Fellenz, B; Flora, R; Hahn, A; Hansen, S; Kiper, T; Para, A; Pordes, S; Tollestrup, A V

    2011-01-01

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This article describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  11. A dynamic dispersion insert in the Fermilab Main Injector for momentum collimation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.E.; /Fermilab

    2007-06-01

    The Fermilab Main Injector (MI) accelerator is designed as a FODO lattice with zero dispersion straight sections. A scheme will be presented that can dynamically alter the dispersion of one of the long straight sections to create a non-zero dispersion straight section suitable for momentum collimation. During the process of slip stacking DC beam is generated which is lost during the first few milliseconds of the ramp. A stationary massive primary collimator/absorber with optional secondary masks could be utilized to isolate beam loss due to uncaptured beam.

  12. Beam manipulation and compression using broadband rf systems in the Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    G William Foster et al.

    2004-07-09

    A novel method for beam manipulation, compression, and stacking using a broad band RF system in circular accelerators is described. The method uses a series of linear voltage ramps in combination with moving barrier pulses to azimuthally compress, expand, or cog the beam. Beam manipulations can be accomplished rapidly and, in principle, without emittance growth. The general principle of the method is discussed using beam dynamics simulations. Beam experiments in the Fermilab Recycler Ring convincingly validate the concept. Preliminary experiments in the Fermilab Main Injector to investigate its potential for merging two ''booster batches'' to produce high intensity proton beams for neutrino and antiproton production are described.

  13. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    CERN Document Server

    Baumbaugh, A; Brown, B C; Capista, D; Drennan, C; Fellenz, B; Knickerbocker, K; Lewis, J D; Marchionni, A; Needles, C; Olson, M; Pordes, S; Shi, Z; Still, D; Thurman-Keup, R; Utes, M; Wu, J; 10.1088/1748-0221/6/11/T11006

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and...

  14. A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam

    CERN Document Server

    Kordosky, Michael; Andreopoulos, C; Arms, K E; Armstrong, R; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Buckley-Geer, E; Cabrera, A; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; De Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Drakoulakos, D; Durkin, T; Dytman, S A; Erwin, A R; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Godley, A; Gogos, J; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Himmel, A; Holin, A; Howcroft, C; Hylen, J; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Kafka, T; Kang, H J; Kasahara, S M S; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Lebedev, A; Lee, R; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Metelko, C J; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Moore, C D; Morfn, J; Mualem, i L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovi, Z; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Ping, H; Pittam, R; Plunkett, R K; Rahman, D; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Reyna, D E; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Semenov, V K; Seun, S M; Shanahan, P; Smart, W; Smirnitsky, V; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Verebryusov, V; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zheng, H; Zois, M; Zwaska, R

    2007-01-01

    We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.

  15. Observation of Disappearance of Muon Neutrinos in the NuMI Beam

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Zarko; /Texas U.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a two detector long-baseline neutrino experiment designed to study the disappearance of muon neutrinos. MINOS will test the {nu}{sub {mu}} {yields} {nu}{sub {tau}} oscillation hypothesis and measure precisely {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} oscillation parameters. The source of neutrinos for MINOS experiment is Fermilab's Neutrinos at the Main Injector (NuMI) beamline. The energy spectrum and the composition of the beam is measured at two locations, one close to the source and the other 735 km down-stream in the Soudan Mine Underground Laboratory in northern Minnesota. The precision measurement of the oscillation parameters requires an accurate prediction of the neutrino flux at the Far Detector. This thesis discusses the calculation of the neutrino flux at the Far Detector and its uncertainties. A technique that uses the Near Detector data to constrain the uncertainties in the calculation of the flux is described. The data corresponding to an exposure of 2.5 x 10{sup 20} protons on the NuMI target is presented and an energy dependent disappearance pattern predicted by neutrino oscillation hypotheses is observed in the Far Detector data. The fit to MINOS data, for given exposure, yields the best fit values for {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23} to be (2.38{sub -0.16}{sup +0.20}) x 10{sup -3} eV{sup 2}/c{sup 4} and 1.00{sub -0.08}, respectively.

  16. Mobility of Tritium in Engineered and Earth Materials at the NuMI Facility, Fermilab: Progress report for work performed between June 13 and September 30, 2006

    International Nuclear Information System (INIS)

    This report details the work done between June 13 and September 30, 2006 by Lawrence Berkeley National Laboratory (LBNL) scientists to assist Fermi National Accelerator Laboratory (Fermilab) staff in understanding tritium transport at the Neutrino at the Main Injector (NuMI) facility. As a byproduct of beamline operation, the facility produces (among other components) tritium in engineered materials and the surrounding rock formation. Once the tritium is generated, it may be contained at the source location, migrate to other regions within the facility, or be released to the environment

  17. Electron-Cloud Build-up in the FNAL Main Injector

    International Nuclear Information System (INIS)

    We present a summary on ongoing simulation results for the electron-cloud buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade [1] in a fieldfree region at the location of the RFA electron detector [2]. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding measurements obtained with the RFA we infer that the peak secondary electron yield (SEY) (delta)max is ?> 1.4, and the average electron density is ne ?> 1010 m-3 at transition energy for the specific fill pattern and beam intensities defined below. The sensitivity of our results to several variables remains to be explored in order to reach more definitive results. Effects from the electron cloud on the beam are being investigated separately [3

  18. Analog signal pre-processing for the Fermilab Main Injector BPM upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Saewert, A.L.; Rapisarda, S.M.; Wendt, M.; /Fermilab

    2006-05-01

    An analog signal pre-processing scheme was developed, in the framework of the Fermilab Main Injector Beam Position Monitor (BPM) Upgrade, to interface BPM pickup signals to the new digital receiver based read-out system. A key component is the 8-channel electronics module, which uses separate frequency selective gain stages to acquire 53 MHz bunched proton, and 2.5 MHz anti-proton signals. Related hardware includes a filter and combiner box to sum pickup electrode signals in the tunnel. A controller module allows local/remote control of gain settings and activation of gain stages, and supplies test signals. Theory of operation, system overview, and some design details are presented, as well as first beam measurements of the prototype hardware.

  19. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    CERN Document Server

    Backfish, Michael; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and ...

  20. A preliminary assessment of the electron cloud effect for the FNAL main injector upgrade

    International Nuclear Information System (INIS)

    We present results from a preliminary assessment, via computer simulations, of the electron cloud density for the FNAL main injector upgrade at injection energy. Assuming a peak value for secondary emission yield (delta)max = 1.3, we find a threshold value of the bunch population, Nb,th ? 1.25 x 1011, beyond which the electron-cloud density ?e reaches a steady-state level that is ?104 times larger than for Nb b,th, essentially neutralizing the beam, and leading to a tune shift ?0.05. Our investigation is limited to a field-free region and to a dipole magnet, both of which yield similar results for both Nb,th and the steady-state value of ?e. Possible dynamical effects from the electron cloud on the beam, such as emittance growth and instabilities, remain to be investigated separately

  1. A preliminary assessment of the electron cloud effect for the FNAL main injector upgrade

    International Nuclear Information System (INIS)

    We present results from a preliminary assessment, via computer simulations, of the electron-cloud density for the FNAL main injector upgrade at injection energy. Assuming a peak value for secondary emission yield (delta)max = 1.3, we find a threshold value of the bunch population, Nb,th ? 1.25 x 1011, beyond which the electron-cloud density ?e reaches a steady-state level that is ? 104 times larger than for Nb b,th, essentially neutralizing the beam, and leading to a tune shift ? 0.05. Our investigation is limited to a field-free region and to a dipole magnet, both of which yield similar results for both Nb,th and the steady-state value of ?c. Possible dynamical effects from the electron cloud on the beam, such as emittance growth and instabilities, remain to be investigated separately

  2. Application of a new scheme for passing through transition energy to the Fermilab Main Ring and Main Injector

    International Nuclear Information System (INIS)

    In the vicinity of the transition energy of an ion synchrotron the longitudinal oscillation frequency drops and the motion becomes non-adiabatic; the result is emittance dilution. Furthermore, because the synchrotron oscillation is too slow to average particle energy gain, particles off the synchronous phase get too much or too little acceleration depending whether they lead or lag; therefore, momentum spread is increased. In this regime rf focusing degrades beam quality. To confront these effects directly the author has proposed eliminating the rf focusing near transition by flattening the rf waveform with a second or third harmonic component. The rf is phased so that all particles in the bunch are accelerated by the flattened portion, receiving just the acceleration required by the magnet cycle. The authors will show by concrete examples related to the Fermilab Main Ring (MR) and Main Injector (MI) that one can eliminate rf focusing sufficiently long before and after transition to reduce the maximum momentum spread and emittance growth significantly. Additionally, the bunch has its maximum phase spread at transition so the peak current and resulting microwave instability is mitigated, and bunch above transition becomes a satisfactory match to an accelerating bucket. The authors call this procedure the slide-under technique to distinguish it from the single-frequency duck-under technique and simultaneously to recognize that there are ideas in common

  3. The Fermilab Main Injector dipole and quadrupole cooling design and bus connections

    International Nuclear Information System (INIS)

    The proposed system for connecting the low conductivity water (LCW) and the electrical power to the magnets is explained. This system requires minimum maintenance. Stainless steel headers supply LCW to local, secondary manifolds which regulate the flow to the dipole and to the copper bus which conduct both power and cooling water to the quadrupole. A combination of ceramic feedthroughs and thermoplastic hoses insulate the piping electrically from the copper bus system. The utilities for the Main Injector are grouped together at the outside wall of the tunnel leaving most of the enclosure space for servicing. Space above the headers is available for future accelerator expansion. The new dipoles have bolted electrical connections with flexible copper jumpers. Separate compression fittings are used for the water connections. Each dipole magnet has two water circuits in parallel designed to minimize thermal stresses and the number of insulators. Two electrical insulators are used in series because this design has been shown to minimize electrolyses problems and copper ion deposits inside the insulators. The design value of the temperature gradient of the LCW is 8 degrees C

  4. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    International Nuclear Information System (INIS)

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector (MI). Areas of agreement and disagreement are spelled out, along with their possible significance. An upgrade to the MI is being considered that would increase the bunch intensity Nb, from the present ∼ 1 x 1011 to 3 x 1011, corresponding to a total pulse intensity Ntot = 16.4 x 1013, in order to generate intense beams for the neutrino program. Such an increase in beam intensity would place the MI in a parameter regime where other storage rings have seen a significant EC effect. Motivated by this concern, efforts have been undertaken over the recent past to measure and simulate the magnitude of the effect and to assess its operational implications on the proposed upgrade. We report here a summary of simulation results obtained with the code POSINST, and certain benchmarks against measurements. Unless stated otherwise, the simulation parameters used are shown in Tab. 1. Some of these represent a slightly simplified version of the MI operation.

  5. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    International Nuclear Information System (INIS)

    We present results from a precision simulation of the electron cloud (EC) in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and E.M. field maps have been generated. This has been done for various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results are compared with those obtained with the POSINST code. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated, as well as the more challenging microwave absorption experiment. Definite predictions of their exact response are difficult to obtain,mostly because of the uncertainties in the secondary emission yield and, in the case of the RFA, because of the sensitivity of the electron collection efficiency to unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program.

  6. Computation of electron cloud diagnostics and mitigation in the main injector

    International Nuclear Information System (INIS)

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  7. An rf separated kaon beam from the Main Injector: Superconducting aspects

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  8. Computation of electron cloud diagnostics and mitigation in the main injector

    Science.gov (United States)

    Veitzer, S. A.; LeBrun, P.; Cary, J. R.; Spentzouris, P.; Stoltz, P. H.; Amundson, J. F.

    2009-07-01

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  9. The Modeling of Time-Structured Multiturn Injection into Fermilab Main Injector (Microbunch Injection with Parasitic Longitudinal Painting)

    CERN Document Server

    Yoon, Phil S; Chou, Weiren

    2008-01-01

    This paper presents the modeling of time-structured multiturn injection for an upgraded Main Injector with the 8-GeV Superconducting RF proton driver, or an ILC-style linac, or a Project-X linac. The Radio-Frequency mismatch between a linac and the upgraded Main Injector will induce parasitic longitudinal painting in RF-phase direction. Several different scenarios with a choice of different RF parameters for single RF system and double RF system in the presence of longitudinal space charge have been investigated. From the studies of microbunch injection with the aid of ESME (2003) numerical simulations, it is found that the dual RF system with a choice of appropriate RF parameters allows us to overcome the space-charge limitation set by beam intensity during the multiturn-injection process. A double RF system with a harmonic ratio (R_H = H_2/H_1) of 2.0 and a voltage ratio (R_V = V_2/V_1) of 0.5 are most favored to reduce both longitudinal and transverse effects of space charge in the Main Injector.

  10. CROSS SECTION MEASUREMENTS IN THE MAIN INJECTOR PARTICLE PRODUCTION (FNAL-E907) EXPERIMENT AT 58 GEV ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Gunaydin, Yusuf Oguzhan; /Iowa U.

    2009-12-01

    Cross-sections are presented for 58 GeV {pi}, K, and p on a wide range of nuclear targets. These cross-sections are essential for determining the neutrino flux in measurements of neutrino cross-sections and oscillations. The E907 Main Injector Particle Production (MIPP) experiment at Fermilab is a fixed target experiment for measuring hadronic particle production using primary 120 GeV/c protons and secondary {pi}, K, and p beams. The particle identification is made by dE/dx in a time projection chamber, and by time-of-flight, differential Cherenkov and ring imaging Cherenkov detectors, which together cover a wide range of momentum from 0.1 GeV/c up to 120 GeV/c. MIPP targets span the periodic table, from hydrogen to uranium, including beryllium and carbon. The MIPP has collected {approx} 0.26 x 10{sup 6} events of 58 GeV/c secondary particles produced by protons from the main injector striking a carbon target.

  11. Studies of E-Cloud Build up for the FNAL Main Injector and for the LHC

    International Nuclear Information System (INIS)

    We present a summary of recent simulation studies of the electron-cloud (EC) build-up for the FNAL MI and for the LHC. In the first case we pay particular attention to the dependence on bunch intensity Nb at injection energy assuming the nominal bunch spacing tb = 19 ns, and we focus on the dipole magnets and field-free regions. The saturated value of the average EC density shows a clear threshold in Nb beyond which the beam will be approximately neutralized on average. For the case of the LHC we limit our discussion to arc dipoles at collision energy, and bunch spacings tb = 25 ns or tb = 75 ns. The main variables exercised in this study are Nb and the peak value of the secondary emission yield (SEY) (delta)max. For tb = 25 ns we conclude that the EC power deposition is comfortably below the available cooling capacity of the cryogenic system if (delta)max is below ? 1.2 at nominal Nb. For tb = 75 ns, the EC power deposition is insignificant. As a byproduct of this exercise, we reach a detailed understanding of the significant role played by the backscattered secondary electrons. This article summarizes the results, an slightly extends the discussions, presented in Refs. 1 and 2

  12. Studies of e-cloud build up for the FNAL main injector and for the LHC

    International Nuclear Information System (INIS)

    We present a summary of recent simulation studies of the electron-cloud (EC) build-up for the FNAL MI and for the LHC. In the first case we pay particular attention to the dependence on bunch intensity Nb at injection energy assuming the nominal bunch spacing tb=19 ns, and we focus on the dipole magnets and field-free regions. The saturated value of the average EC density shows a clear threshold in Nb beyond which the beam will be approximately neutralized on average. For the case of the LHC we limit our discussion to arc dipoles at collision energy, and bunch spacings tb=25 ns or tb=75 ns. The main variables exercised in this study are Nb and the peak value of the secondary emission yield (SEY) ?max. For tb=25 ns we conclude that the EC power deposition is comfortably below the available cooling capacity of the cryogenic system if ?max is below ?1.2 at nominal Nb. For tb=75 ns, the EC power deposition is insignificant. As a byproduct of this exercise, we reach a detailed understanding of the significant role played by the backscattered secondary electrons. This article summarizes the results, an slightly extends the discussions, presented in Refs. 1 and 2. (author)

  13. MECAR (Main Ring Excitation Controller and Regulator): A real time learning regulator for the Fermilab Main Ring or the Main Injector synchrotron

    International Nuclear Information System (INIS)

    The real time computer for controlling and regulating the FNAL Main Ring power supplies has been upgraded with a new learning control system. The learning time of the system has been reduced by an order of magnitude, mostly through the implementation of a 95 tap FIR filter in the learning algorithm. The magnet system consists of three buses, which must track each other during a ramp from 100 to 1700 amps at a 2.4 second repetition rate. This paper will present the system configuration and the tools used during development and testing

  14. Designing high energy accelerators under DOE's ''New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    International Nuclear Information System (INIS)

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. ''New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example

  15. Physics Potential of the Fermilab NuMI beamline

    OpenAIRE

    Mena, Olga; PARKE, Stephen

    2005-01-01

    We explore the physics potential of the NuMI beamline with a detector located 10 km off-axis at a distant site (810 km). We study the sensitivity to $\\sin^2 2 \\theta_{13}$ and to the CP-violating parameter $\\sin \\delta$ as well as the determination of the neutrino mass hierarchy by exploiting the $\

  16. Electron injector computer simulations

    International Nuclear Information System (INIS)

    The authors present contributions for electron injector computation and design, describing a simple but complete simulation code implemented on a personal computer, giving the main design choices taken for the BCMN and LEP high intensity injectors and for the ORION self-focussing injector. Electron dynamics are characterized by the predominant effect of the first ''accelerating'' cell, in contrast with proton dynamics. In this region shorter than an RF half-wavelength the non-linear bunching and acceleration can only be simulated in a step-by-step procedure. Analytical ''adiabatic'' approach cannot help the designer but he can take advantage of non-repetitive features to obtain radial RF self-focussing together with longitudinal bunching

  17. Studies of muon-induced radioactivity at NuMI

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein, David j.; Leveling, A.F.; Mokhov, N.V.; Vaziri, K.; /Fermilab; Iwamoto, Y.; Kasugai, Y.; Matsuda, N.; Nakashima, H.; Sakamoto, Y.; /JAEA, Ibaraki; Hagiwara, M.; Iwase, Hiroshi; /KEK, Tsukuba /Kyoto U., KURRI /Pohang Accelerator Lab. /Shimizu, Tokyo /Tohoku U.

    2009-12-01

    The JASMIN Collaboration has studied the production of radionuclides by muons in the muon alcoves of the NuMI beamline at Fermilab. Samples of aluminum and copper are exposed to the muon field and counted on HpGe detectors when removed to determine their content of radioactive isotopes. We compare the results to MARS simulations and discuss the radiological implications for neutrino factories and muon colliders.

  18. Studies of muon-induced radioactivity at NuMI

    International Nuclear Information System (INIS)

    The JASMIN Collaboration has studied the production of radionuclides by muons in the muon alcoves of the NuMI beamline at Fermilab. Samples of aluminum and copper are exposed to the muon field and counted on HpGe detectors when removed to determine their content of radioactive isotopes. We compare the results to MARS simulations and discuss the radiological implications for neutrino factories and muon colliders.

  19. Groundwater protection for the NuMI project

    International Nuclear Information System (INIS)

    The physics requirements for the long base line neutrino oscillation experiment MINOS dictate that the NuMI beamline be located in the aquifer at Fermilab. A methodology is described for calculating the level of radioactivation of groundwater caused by operation of this beamline. A conceptual shielding design for the 750 meter long decay pipe is investigated which would reduce radioactivation of the groundwater to below government standards. More economical shielding designs to meet these requirements are being explored. Also, information on local geology, hydrogeology, government standards, and a glossary have been included

  20. DAMAGES TO INJECTORS IN DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Piotr Ignaciuk

    2014-03-01

    Full Text Available The article describes damages to high pressure injectors used in common rail injection systems. The conducted analysis of their causes includes the diagnosis of injectors on a test bench and the results of microscopic research of damaged components. The tribological damages of high pressure injectors are local and cavitations pitting. The place of cavitations pitting are mainly check valves, where the reduction in the quantity of injected fuel is forming.

  1. Observation of deficit in NuMI neutrino-induced rock and non-fiducial muons in MINOS Far Detector and measurement of neutrino oscillation parameters

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Aaron Michael; /Minnesota U.

    2007-08-01

    The MINOS (Main Injector Neutrino Oscillation Search) experiment has observed muon neutrino disappearance consistent with the oscillation hypothesis tested by Super-Kamiokande and K2K. The survival probability for {nu}{sub {mu}} is given approximately by 1 - sin{sup 2}2{theta}{sub 23}sin{sup 2}(1.27{Delta}m{sup 2}{sub 32}L/E), where{theta}{sub 23} and {Delta}m{sup 2}{sub 32} are the mixing angle and difference in mass squared in eV{sup 2}/c{sup 4} between the mass eigenstates {nu}{sub 3} and {nu}{sub 2}, L is the distance traveled in km, and E is the neutrino energy in GeV. In the Near Detector at Fermilab, a measurement of the energy spectrum of the NuMI neutrino beam is made 1 km from the beam target. The neutrinos travel to the Far Detector in the Soudan Underground Laboratory, where another measurement of the energy spectrum is made 735 km from the target. MINOS measures |{Delta}m{sub 32}{sup 2}| and sin{sup 2}2{theta}{sub 23} by comparing the ND and FD neutrino energy spectra. In this dissertation, a n alternate method is presented that utilizes rock muons, a class of events that occur when a {nu}{sub {mu}} interaction takes place in the rock surrounding the FD. Many muons that result from these interactions penetrate the rock and reach the detector. Muon events from {nu}{sub {mu}} interactions in the non-fiducial volume of the FD are also used in this analysis. The distribution of reconstructed muon momentum and direction relative to the beam is predicted by Monte Carlo simulation, normalized by the measured {nu}{sub {mu}} energy spectrum at the ND. In the first year of NuMI running (an exposure of 1.27x10{sup 20} protons on target) 117 selected events are observed below 3.0 GeV/c, where 150.2{+-}16.1 events are expected. When a fit is performed to events below 10.0 GeV/c, the null (no disappearance) hypothesis is ruled out at significance level {alpha} = 4.2 x 10{sup -3}. The data are consistent with the oscillation hypothesis given parameter values |{Delta}m{sup 2}{sub 32}| = 2.32 {+-}{sup 1.06}{sub 0.75} x 10{sup -3} eV{sup 2}/c{sup 4} (stat+sys) and sin{sup 2}2{theta}{sub 23} > 0.48 (68% CL) which is in agreement with the published MINOS result |{Delta}m{sup 2}{sub 32}| = 2.74 {+-}{sup 0.44}{sub 0.26} x 10{sup -3} eV{sup 2}/c{sup 4} (stat+sys) and sin{sup 2}2{theta}{sub 23} > 0.87 (68% CL).

  2. The KEKB injector linac

    International Nuclear Information System (INIS)

    An 8-GeV electron/3.5-GeV positron injector for KEKB was completed in 1998 by upgrading the existing 2.5-GeV electron/positron linac. The main goals were to upgrade its accelerating energy from 2.5 to 8 GeV and to increase the positron intensity by about 20 times. This article describes not only the composition and features of the upgraded linac, but also how these goals were achieved, by focusing on an optics design and commissioning issues concerning especially high-intensity single-bunch acceleration to produce positron beams

  3. The Heidelberg High Current Injector: A Versatile Injector for Storage Ring Experiments

    OpenAIRE

    von Hahn, R; Grieser, M.; Repnow, R; Schwalm, D.; Welsch, C.

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated single turn injector for the Test Storage Ring in Heidelberg to deliver mainly very high intensities of singly charged Li- and Be-ions for laser cooling experiments. After start of routine operation in 1999 the HCI delivered high quality beams for about 25% of the experiments with very high reliability. Due to the experimental requirements the HCI mutated from a specialized injector to a versatile multipurpose instrumen...

  4. Electron injector for UHF generator

    International Nuclear Information System (INIS)

    This invention concerns the techniques for injecting an electron beam into a cavity resonator or electromagnetic structure. It features an injector of simple construction for injecting a tubular beam of monokinetic electrons in a helical orbit and which, by a very easy adjustment, makes it possible to obtain at will annular beams of monokinetic electrons the thickness of which is variable at will in significant proportions and of which the slope angle of the helical trajectories of each electron in relation to the centre of the corresponding helix can reach high figures. This injector is of the kind that include an annular electron gun in an axisymmetrical vacuum vessel and having also as main characteristic electric coils able to create the cyclotron effect by a static magnetic field varying progressively and continuously according to the axis of the injector

  5. Neutrinos from the NuMI beamline in the MiniBooNE detector

    International Nuclear Information System (INIS)

    With the startup of the NuMI beamline early in 2005, the MiniBooNE detector has the unique opportunity to be the first user of an off-axis neutrino beam (110 mrad off-axis). MiniBooNE is assembling a rich sample of neutrino interactions from this source

  6. Design of new injector to RIKEN ring cyclotron

    International Nuclear Information System (INIS)

    Design study of a new injector to the RIKEN ring cyclotron is presented. This injector will be exclusively used for the RI-beam factory (RIBF), providing intense beams of medium charge state of heavy ions such as 84Kr13+, 136Xe20+ and 238U35+, while the present injector, RIKEN linear accelerator, is used for the research of the super heavy elements. Specifications of the main components of the new injector are shown, consisting of an ECR ion source, rf linacs and strong quadrupole magnets. (author)

  7. CEBAF: Injector in operation

    International Nuclear Information System (INIS)

    Extensive 45 MeV injector testing has validated the basic superconducting design of the 4 GeV accelerator at CEBAF, the Continuous Electron Beam Accelerator Facility under construction in Newport News, Virginia. The injector has met all beam performance objectives, using production hardware and software similar to that being installed in the recirculating accelerator, including 18 superconducting cavities in two and one-quarter cryomodules

  8. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  9. Particle injector for fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, J.F.

    1996-12-31

    A particle injector device provides injection of particles into a liquid stream. The device includes a funnel portion comprising a conical member having side walls tapering from a top opening (which receives the particles) down to a relatively smaller exit opening. A funnel inlet receives a portion of the liquid stream and the latter is directed onto the side walls of the conical member so as to create a cushion of liquid against which the particles impact. A main section of the device includes an inlet port in communication with the exit opening of the funnel portion. A main liquid inlet receives the main portion of the liquid stream at high pressure and low velocity and a throat region located downstream of the main liquid inlet accelerates liquid received by this inlet from the low velocity to a higher velocity so as to create a low pressure area at the exit opening of the funnel portion. An outlet opening of the main section enables the particles and liquid stream to exit from the injector device. This invention is particularly concerned with particle injection in connection with the calibration of inline optical particle counters.

  10. Observation of Muon Neutrino Disappearance with the MINOS Detectors in the NuMI Neutrino Beam

    Science.gov (United States)

    Michael, D. G.; Adamson, P.; Alexopoulos, T.; Allison, W. W. M.; Alner, G. J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Arms, K. E.; Armstrong, R.; Arroyo, C.; Auty, D. J.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barker, M. A.; Barnes, P. D., Jr.; Barr, G.; Barrett, W. L.; Beall, E.; Becker, B. R.; Belias, A.; Bergfeld, T.; Bernstein, R. H.; Bhattacharya, D.; Bishai, M.; Blake, A.; Bocean, V.; Bock, B.; Bock, G. J.; Boehm, J.; Boehnlein, D. J.; Bogert, D.; Border, P. M.; Bower, C.; Boyd, S.; Buckley-Geer, E.; Bungau, C.; Byon-Wagner, A.; Cabrera, A.; Chapman, J. D.; Chase, T. R.; Cherdack, D.; Chernichenko, S. K.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Cossairt, J. D.; Courant, H.; Crane, D. A.; Culling, A. J.; Dawson, J. W.; de Jong, J. K.; Demuth, D. M.; de Santo, A.; Dierckxsens, M.; Diwan, M. V.; Dorman, M.; Drake, G.; Drakoulakos, D.; Ducar, R.; Durkin, T.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Fackler, O. D.; Falk Harris, E.; Feldman, G. J.; Felt, N.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Gebhard, M.; Giurgiu, G. A.; Godley, A.; Gogos, J.; Goodman, M. C.; Gornushkin, Yu.; Gouffon, P.; Gran, R.; Grashorn, E.; Grossman, N.; Grudzinski, J. J.; Grzelak, K.; Guarino, V.; Habig, A.; Halsall, R.; Hanson, J.; Harris, D.; Harris, P. G.; Hartnell, J.; Hartouni, E. P.; Hatcher, R.; Heller, K.; Hill, N.; Ho, Y.; Holin, A.; Howcroft, C.; Hylen, J.; Ignatenko, M.; Indurthy, D.; Irwin, G. M.; Ishitsuka, M.; Jaffe, D. E.; James, C.; Jenner, L.; Jensen, D.; Joffe-Minor, T.; Kafka, T.; Kang, H. J.; Kasahara, S. M. S.; Kilmer, J.; Kim, H.; Kim, M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Koskinen, D. J.; Kostin, M.; Kotelnikov, S. K.; Krakauer, D. A.; Kreymer, A.; Kumaratunga, S.; Ladran, A. S.; Lang, K.; Laughton, C.; Lebedev, A.; Lee, R.; Lee, W. Y.; Libkind, M. A.; Ling, J.; Liu, J.; Litchfield, P. J.; Litchfield, R. P.; Longley, N. P.; Lucas, P.; Luebke, W.; Madani, S.; Maher, E.; Makeev, V.; Mann, W. A.; Marchionni, A.; Marino, A. D.; Marshak, M. L.; Marshall, J. S.; Mayer, N.; McDonald, J.; McGowan, A. M.; Meier, J. R.; Merzon, G. I.; Messier, M. D.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Mislivec, A.; Miyagawa, P. S.; Moore, C. D.; Morfín, J.; Morse, R.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M. J.; Musser, J.; Naples, D.; Nelson, C.; Nelson, J. K.; Newman, H. B.; Nezrick, F.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, J.; Oliver, W. P.; Onuchin, V. A.; Osiecki, T.; Ospanov, R.; Paley, J.; Paolone, V.; Para, A.; Patzak, T.; Pavlovi?, Ž.; Pearce, G. F.; Pearson, N.; Peck, C. W.; Perry, C.; Peterson, E. A.; Petyt, D. A.; Ping, H.; Piteira, R.; Pittam, R.; Pla-Dalmau, A.; Plunkett, R. K.; Price, L. E.; Proga, M.; Pushka, D. R.; Rahman, D.; Rameika, R. A.; Raufer, T. M.; Read, A. L.; Rebel, B.; Reichenbacher, J.; Reyna, D. E.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Ryabov, V. A.; Saakyan, R.; Sanchez, M. C.; Saoulidou, N.; Schneps, J.; Schoessow, P. V.; Schreiner, P.; Schwienhorst, R.; Semenov, V. K.; Seun, S.-M.; Shanahan, P.; Shield, P. D.; Smart, W.; Smirnitsky, V.; Smith, C.; Smith, P. N.; Sousa, A.; Speakman, B.; Stamoulis, P.; Stefanik, A.; Sullivan, P.; Swan, J. M.; Symes, P. A.; Tagg, N.; Talaga, R. L.; Terekhov, A.; Tetteh-Lartey, E.; Thomas, J.; Thompson, J.; Thomson, M. A.; Thron, J. L.; Tinti, G.; Trendler, R.; Trevor, J.; Trostin, I.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vakili, M.; Vaziri, K.; Velissaris, C.; Verebryusov, V.; Viren, B.; Wai, L.; Ward, C. P.; Ward, D. R.; Watabe, M.; Weber, A.; Webb, R. C.; Wehmann, A.; West, N.; White, C.; White, R. F.; Wojcicki, S. G.; Wright, D. M.; Wu, Q. K.; Yan, W. G.; Yang, T.; Yumiceva, F. X.; Yun, J. C.; Zheng, H.; Zois, M.; Zwaska, R.

    2006-11-01

    This Letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rates and energy spectra of charged current ?? interactions are compared in two detectors located along the beam axis at distances of 1 and 735 km. With 1.27×1020 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336±14 events. The data are consistent with ?? disappearance via oscillations with |?m322|=2.74-0.26+0.44×10-3eV2 and sin?2(2?23)>0.87 (68% C.L.).

  11. MINOS+: a Proposal to FNAL to run MINOS with the medium energy NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Tzanankos, G.; /Athens U.; Bishai, M.; Diwan, M.; /Brookhaven; Escobar, C.O.; Gomes, R.A.; Gouffon, P.; /Campinas State U. /Goias U. /Sao Paulo U.; Blake, A.; Thomson, M.; /Cambridge U.; Patterson, R.B.; /Caltech; Adamson, P.; Childress, S.; /Fermilab /IIT, Chicago /Los Alamos /Minnesota U. /Minnesota U., Duluth /Bhubaneswar, NISER /Iowa State U.

    2011-05-01

    This is a proposal to continue to expose the two MINOS detectors to the NuMI muon neutrino beam for three years starting in 2013. The medium energy setting of the NuMI beam projected for NO{nu}A will deliver about 18 x 10{sup 20} protons-on-target during the first three years of operation. This will allow the MINOS Far Detector to collect more than 10,000 charged current muon neutrino events in the 4-10 GeV energy range and provide a stringent test for non-standard neutrino interactions, sterile neutrinos, extra dimensions, neutrino time-of-flight, and perhaps more. In addition there will be more than 3,000 neutral current events which will be particularly useful in extending the sterile neutrino search range.

  12. Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    CERN Document Server

    Michael, D G; Alexopoulos, T; Allison, W W M; Alner, G J; Anderson, K; Andreopoulos, C; Andrews, M; Andrews, R; Arms, K E; Armstrong, R; Arroyo, C; Auty, D J; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barker, M A; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bocean, V; Bock, B; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Border, P M; Bower, C; Boyd, S; Buckley-Geer, E; Bungau, C; Byon-Wagner, A; Cabrera, A; Chapman, J D; Chase, T R; Cherdack, D; Chernichenko, S K; Childress, S; Choudhary, B C; Cobb, J H; Cossairt, J D; Courant, H; Crane, D A; Culling, A J; Dawson, J W; De Jong, J K; De Muth, D M; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drake, G; Drakoulakos, D; Ducar, R; Durkin, T; Erwin, A R; Escobar, C O; Evans, J J; Fackler, O D; Falk-Harris, E; Feldman, G J; Felt, N; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Gebhard, M; Giurgiu, G A; Godley, A; Gogos, J; Goodman, M C; Gornushkin, Yu; Gouffon, P; Gran, R; Grashorn, E; Grossman, N; Grudzinski, J J; Grzelak, K; Guarino, V; Habig, A; Halsall, R; Hanson, J; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Hill, N; Ho, Y; Holin, A; Howcroft, C; Hylen, J; Ignatenko, M A; Indurthy, D; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jenner, L; Jensen, D; Joffe-Minor, T; Kafka, T; Kang, H J; Kasahara, S M; Kilmer, J; Kim, H; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kostin, M; Kotelnikov, S K; Krakauer, D A; Kreymer, A; Kumaratunga, S; Ladran, A S; Lang, K; Laughton, C; Lebedev, A; Lee, R; Lee, W Y; Libkind, M A; Ling, J; Liu, J; Litchfield, P J; Litchfield, R P; Longley, N P; Lucas, P; Luebke, W; Madani, S; Maher, E; Makeev, V; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; Mayer, N; McDonald, J; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Mislivec, A; Miyagawa, P S; Moore, C D; Morf, J; Morse, R; Mualem, L; Mufson, S; Murgia, S; Murtagh, M J; Musser, J; Naples, D; Nelson, C; Nelson, J K; Newman, H B; Nezrick, F A; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, J; Oliver, W P; Onuchin, V A; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovich, Z; Pearce, G F; Pearson, N; Peck, C W; Perry, C; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pittam, R; Pla-Dalmau, A; Plunkett, R K; Price, L E; Proga, M; Pushka, D R; Rahman, D; Rameika, R A; Raufer, T M; Read, A L; Rebel, B; Reichenbacher, J; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schoessow, P V; Schreiner, P; Schwienhorst, R; Semenov, V K; Seun, S M; Shanahan, P; Shield, P D; Smart, W; Smirnitsky, A V; Smith, C; Smith, P N; Sousa, A; Speakman, B; Stamoulis, P; Stefanik, A; Sullivan, P; Swan, J M; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trendler, R; Trevor, J; Trostin, I; Tsarev, V A; Tzanakos, G S; Urheim, J; Vahle, P; Vakili, M; Vaziri, K; Velissaris, C; Verebryusov, V; Viren, B; Wai, L; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; White, R F; Wojcicki, S G; Wright, D M; Wu, Q K; Yan, W G; Yang, T; Yumiceva, F X; Yun, J C; Zheng, H; Zois, M; Zwaska, R

    2006-01-01

    This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the beam axis at distances of 1 km and 735 km. With 1.27 x 10^{20} 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 \\pm 14.4 events. The data are consistent with muon neutrino disappearance via oscillation with |\\Delta m^2_{23}| = 2.74^{+0.44}_{-0.26} x 10^{-3} eV^2/c^4 and sin^2(2\\theta_{23}) > 0.87 (at 60% C.L.).

  13. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    International Nuclear Information System (INIS)

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber

  14. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  15. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  16. PLT neutral injector performance

    International Nuclear Information System (INIS)

    The experience with respect to beamline operation on PLT and on the Princeton test stand is reviewed. We discuss the performance of the injectors, beam energy distributions as measured by two techniques, beam-associated impurities, control of gas evolution in the drift duct by titanium evaporation, reionization in the drift duct, and the computer archiving and control system currently under development

  17. Linac pre-injector

    CERN Multimedia

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  18. Assessment of radiological releases from the NuMI facility during MINOS and NOvA operations

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Mike; /Fermilab

    2007-04-01

    This report makes projections of the radiological releases from the NuMI facility during operations for the MINOS and NO ?A experiments. It includes an estimate of the radionuclide levels released into the atmosphere and the estimated tritium and sodium-22 concentrations in the NuMI sump water and Fermilab pond system. The analysis was performed for NuMI operations with a beam power on target increased from the present 400 kW design up to a possible 1500 kW with future upgrades. The total number of protons on target was assumed to be 18 x 10{sup 20} after the completion of MINOS and 78 x 10{sup 20} after the completion of NO ?A.

  19. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Auty, David John; /Sussex U.

    2010-05-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0% {bar {nu}}{sub {mu}}, which can be separated from the {nu}{sub {mu}} because the MINOS detectors are magnetized. This makes it possible to study {bar {nu}}{sub {mu}} oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the {bar {nu}}{sub {mu}} oscillation parameters and comparing them with those for {nu}{sub {mu}}, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam {bar {nu}}{sub {mu}} before. It is also possible to produce an almost pure {bar {nu}}{sub {mu}} beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% {bar {nu}}{sub {mu}} component of the forward horn current NuMI beam. The {bar {nu}}{sub {mu}} of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3{sub -7.6}{sup +7.6}(stat.){sub -3.6}{sup +3.6}(syst.) events. This corresponds to a 1.9 {sigma} deficit, and a best fit value of {Delta}{bar m}{sub 32}{sup 2} = 18 x 10{sup -3} eV{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23} = 0.55. This thesis focuses particularly on the selection of {bar {nu}}{sub {mu}} events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The thesis also investigates how the systematic errors affect the precision of {Delta}{bar m}{sub 32}{sup 2} and sin{sup 2} 2{bar {theta}}{sub 23}. Furthermore, it describes a study to determine the gains of the PMTs via the single-photoelectron spectrum. The results were used as a crosscheck of the gains determined at higher intensities by an LED-based light-injection system.

  20. Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Baller, B; Barnes, P D; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; De Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Merzon, G I; Messier, M D; Metelko, C J; Michael, D G; Miller, J L; Miller, W H; Mishra, S R; Moore, C D; Morfn, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovi, Z; Pawloski, G; Pearce, G F; Peck, C W; Peterson, E A; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, A; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Seun, S M; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Symes, P; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, C P; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zois, M; Zhang, K; Zwaska, R

    2008-01-01

    This letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum mechanical oscillations of neutrino flavor with mass splitting $|\\Delta m^2|=(2.43\\pm 0.13)\\times10^{-3}$ eV$^2$ (68% confidence level) and mixing angle $\\sin^2(2\\theta)>0.90$ (90% confidence level). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight, namely neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively.

  1. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  2. Photoelectric injector design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, B.E.; Sheffield, R.L.

    1988-01-01

    We will present an analysis for different emittance growth mechanisms for electron beams in photoelectric injectors. The mechanisms will be broken up into three groups: space-charge forces due to self-similar expansion, space-charge forces due to non-self-similar expansion (including divergences and convergences of the beam), and rf forces. We will show that some of the emittance can be eliminated downstream, particularly that of the first group. General design considerations will become clear from this analysis and a generic design will be presented. In addition, a photoelectric injector design for both the Los Alamos National Laboratory XUV FEL and a compact free-electron laser (FEL) will be used to show a numerical agreement with the analysis. 5 refs., 2 figs.

  3. The Unilac-injector

    International Nuclear Information System (INIS)

    With two dc-preaccelerators, symmetrically arranged to the axis of the Unilac, ions of all stable elements can be accelerated to 11.7 keV/u. The beam transport system bends the beam into the Wideroee linac. It works either in a nondispersive or a dispersive mode. The injector system is described and first operation experience is discussed. For several elements, up to uranium, beam parameters are given. (author)

  4. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity (3). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  5. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  6. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  7. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the main rail of the overhead crane associated with offset tooling when necessary. The overhead crane is used for the assembly of the components, and the final positioning of the beamline components and the beam source will be adjusted with respect to laser targets referring to the optimum beam axis and source position. This paper describes the installation tasks and the alignment and positioning solutions and the complexity of operations within the NB cell. Particular constraints on the HNB installation sequence due to the planned testing of the 1 MV high voltage supply are also described.

  8. Assembly process of the ITER neutral beam injectors

    International Nuclear Information System (INIS)

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the main rail of the overhead crane associated with offset tooling when necessary. The overhead crane is used for the assembly of the components, and the final positioning of the beamline components and the beam source will be adjusted with respect to laser targets referring to the optimum beam axis and source position. This paper describes the installation tasks and the alignment and positioning solutions and the complexity of operations within the NB cell. Particular constraints on the HNB installation sequence due to the planned testing of the 1 MV high voltage supply are also described

  9. SLC injector modeling

    International Nuclear Information System (INIS)

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results

  10. SLC injector modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.; Miller, R.H.

    1985-03-01

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results.

  11. LCLS Injector Drive Laser

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  12. Necessary LIU studies in the injectors during 2012

    International Nuclear Information System (INIS)

    A significant fraction of the Machine Development (MD) time in the LHC injectors in 2011 was devoted to the study of the intensity limitations in the injectors (e.g. space charge effects in PS and SPS, electron cloud effects in the PS and SPS, single bunch and multi-bunch instabilities in PS and SPS, emittance preservation across the injector chain, etc.). The main results achieved in 2011 are presented as well as the questions that still remain unresolved and are of relevance for the LHC Injector Upgrade (LIU) project. 2012 MD will also continue exploring the potential of scenarios that might become operational in the future, like the development of a low gamma transition optics in the SPS or alternative production schemes for the LHC beams in the PS. A tentative prioritized list of studies is provided. (authors)

  13. Advanced Test Accelerator (ATA) injector

    International Nuclear Information System (INIS)

    The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm2 plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements

  14. Search for the disappearance of muon antineutrinos in the NuMI neutrino beam

    CERN Document Server

    Adamson, P; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cao, S V; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Howcroft, C; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Ochoa-Ricoux, J P; Oliver, W P; Orchanian, M; Pahlka, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-01-01

    We report constraints on muon antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 +/- 11.7(stat) ^{+10.2}_{-8.9}(syst) events under the assumption |dm2bar|=2.32x10^-3 eV^2, snthetabar=1.0. A fit to the two-flavor oscillation approximation constrains |dm2bar|<3.37x10^-3 eV^2 at the 90% confidence level with snthetabar=1.0.

  15. The TESLA test facility linac injector

    International Nuclear Information System (INIS)

    The TESLA Test Facility (TTF) Linac is a 500 MeV, 1.3 GHz superconducting accelerator under construction at DESY (Hamburg) by an international collaboration. The linac is being built to demonstrate the viability of the superconducting RF approach to a future e+e- linear collider. Within the collaboration three participating French laboratories (LAL, IPN and DAPNIA) have undertaken the task of designing and constructing a phase 1 injector for TTF. We describe the studies towards the realisation of this 7 - 14 MeV, 8 mA high duty cycle (800 ?s pulse, 10 Hz repetition rate) injector. The front end of the injector will consist of a 250 keV electron gun, a 216.7 MHz sub-harmonic bunching cavity and a superconducting capture cavity at the main linac frequency. This is followed by a beam analysis line and a transport section to match the beam from the capture cavity to the first cryomodule of the main linac. (authors). 8 refs., 1 fig

  16. The light-ion injector

    International Nuclear Information System (INIS)

    In an extensive field mapping program the magnetic fields of the main coils and various pole-gap coils of the light-ion injector (SPC1) were measured. As a further test, the measured field maps were used to calculate the excitation currents through the various coils for a specific field shape. Orbit calculations, based on the electric potential fields measured is the electrolytic tank on the 3:1 scale model of the central region, made it possible to optimise the ion-source position, improve the axial focussing of the beam and specify an approximate position for the second axial. The coils for the first magnetic channel were manufactured and field measurements with the channel in position in the pole-gap have been performed. The radio-frequency system of SPC1 consists of three main sections, namely resonators, power amplifiers and the control systems. The purpose of the rf-system is to provide the accelerating voltages of up to 70 kV peak in the 8,6 to 26 MHz frequency range, which are required to accelerate the particle beams

  17. Steam injectors modelling with CATHARE

    International Nuclear Information System (INIS)

    Among thermal-hydraulic passive systems, the Steam Injectors are one of the most interesting apparatus. In a Steam Injector (SI), steam is used as an energy source to pump low pressure and low temperature water. The envisaged reactor application is the Steam Generator Emergency Feed Water System (EFWS) of Pressurized Water Reactors (PWRs). The DEEPSSI program was supported by the European Commission in the framework of the 5th R and D program. The heart of this project is the development and the testing of an innovative Steam Injector (SI) design. In the frame of the DEEPSSI project, the development of a specific 1D module of the CATHARE code for the Steam Injector has been achieved. A set of modified correlations - the interfacial friction and the bulk condensation rate in the mixing chamber is used in the presented studies. The first results have confirmed the capabilities of CATHARE to well describe the studied steam injectors. The proposed SI modeling was qualified in different test conditions (different inlet vapor pressures, different liquid flow rates, different injectors: CLAUDIA, IETI, IMP-PAN) and it seems rather satisfactory. A simple model of closed circuit has been proposed. It proved the capability of the steam injector model for the CATHARE computer code to work in a closed circuit under relevant reactor conditions. (author)

  18. Piezo inline injectors; Piezo-Inline-Injektoren

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, P.; Boecking, F.; Kampmann, S. [Robert Bosch GmbH, Stuttgart (Germany)

    2005-07-01

    Fundamentals of piezo inline injectors are gased on the experience with conventional common rail injectors and with a mechatronic approach to injection system design. With the development of this injector family and its successful serial application in 2003, Robert Bosch GmbH provided the basis for an innovative concept of common rail injectors.

  19. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  20. 2.5 MV, 4kA, 2?s Electron Beam Injector for DARHT

    Science.gov (United States)

    Henestroza, E.; Yu, S.; Eylon, S.; Carlsten, B.

    1997-05-01

    An injector design for the long pulse option for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) has been studied. This design is based on the LBNL Heavy Ion Fusion Injector technology. The proposed injector consists of a single gap diode extracting electrons from a thermionic source and powered through a high voltage ceramic insulator column by a Marx generator. The key issues in the design are the control of beam quality to meet the DARHT 2nd axis final focus requirements, to minimize high-voltage breakdown risks, and to fit the injector structure within the available space. We will present the injector conceptual design as well as beam dynamics simulations in the diode and in the injector-main-accelerator interface.

  1. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, J.G.; /Fermilab; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  2. Heavy Ion Fusion Injector Program

    International Nuclear Information System (INIS)

    A program is underway to construct a 2 MV, 800 mA, K+ injector for heavy ion fusion. The Electrostatic Quadrupole (ESQ) injector configuration consists of a zeolite source, a diode of up to 1 MV, together with several electrostatic quadrupole units to simultaneously focus and accelerate the beam to 2 MV. The key issues of source technology, high voltage breakdown, beam aberrations, and transient effects will be discussed. Results from ongoing experiments and simulations will be presented

  3. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    International Nuclear Information System (INIS)

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES and H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to schedule delays, inefficiencies, and corrective actions. The Working Group discussions emphasized that early planning and up-front appreciation of the problems ahead are very important for minimizing the cost and for the greatest success of any such project. Perhaps part of the project approval process should re-enforce this need. The cost of all this up-front work is now reflected in the DOE cost of any project we do. If we are being held to an upper limit on the project cost, the only thing available for compromise is the eventual project scope

  4. A new biolistic intradermal injector

    Science.gov (United States)

    Brouillette, M.; Doré, M.; Hébert, C.; Spooner, M.-F.; Marchand, S.; Côté, J.; Gobeil, F.; Rivest, M.; Lafrance, M.; Talbot, B. G.; Moutquin, J.-M.

    2013-07-01

    We present a novel intradermal needle-free drug delivery device which exploits the unsteady high-speed flow produced by a miniature shock tube to entrain drug or vaccine particles onto a skin target. A first clinical study of pain and physiological response of human subjects study is presented, comparing the new injector to intramuscular needle injection. This clinical study, performed according to established pain assessment protocols, demonstrated that every single subject felt noticeably less pain with the needle-free injector than with the needle injection. Regarding local tolerance and skin reaction, bleeding was observed on all volunteers after needle injection, but on none of the subjects following powder injection. An assessment of the pharmacodynamics, via blood pressure, of pure captopril powder using the new device on spontaneously hypertensive rats was also performed. It was found that every animal tested with the needle-free injector exhibited the expected pharmacodynamic response following captopril injection. Finally, the new injector was used to study the delivery of an inactivated influenza vaccine in mice. The needle-free device induced serum antibody response to the influenza vaccine that was comparable to that of subcutaneous needle injection, but without requiring the use of an adjuvant. Although no effort was made to optimize the formulation or the injection parameters in the present study, the novel injector demonstrates great promise for the rapid, safe and painless intradermal delivery of systemic drugs and vaccines.

  5. ILC Electron Source Injector Simuations

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, Manu; /Cornell U., LNS /SLAC

    2007-08-29

    As part of the global project aimed at proposing an efficient design for the ILC (International Linear Collider), we simulated possible setups for the electron source injector, which will provide insight into how the electron injector for the ILC should be designed in order to efficiently accelerate the electron beams through the bunching system. This study uses three types of software: E-Gun to simulate electron beam emission, Superfish to calculate solenoidal magnetic fields, and GPT (General Particle Tracer) to trace charged particles after emission through magnetic fields and subharmonic bunchers. We performed simulations of the electron source injector using various electron gun bias voltages (140kV - 200kV), emitted beam lengths (500ps - 1ns) and radii (7mm - 10mm), and electromagnetic field strengths of the first subharmonic buncher (5 - 20 MV/m). The results of the simulations show that for the current setup of the ILC, a modest electron gun bias voltage ({approx}140kV) is sufficient to achieve the required bunching of the beam in the injector. Extensive simulations of parameters also involving the second subharmonic buncher should be performed in order to gain more insight into possible efficient designs for the ILC electron source injector.

  6. A new biolistic intradermal injector

    Science.gov (United States)

    Brouillette, M.; Doré, M.; Hébert, C.; Spooner, M.-F.; Marchand, S.; Côté, J.; Gobeil, F.; Rivest, M.; Lafrance, M.; Talbot, B. G.; Moutquin, J.-M.

    2016-01-01

    We present a novel intradermal needle-free drug delivery device which exploits the unsteady high-speed flow produced by a miniature shock tube to entrain drug or vaccine particles onto a skin target. A first clinical study of pain and physiological response of human subjects study is presented, comparing the new injector to intramuscular needle injection. This clinical study, performed according to established pain assessment protocols, demonstrated that every single subject felt noticeably less pain with the needle-free injector than with the needle injection. Regarding local tolerance and skin reaction, bleeding was observed on all volunteers after needle injection, but on none of the subjects following powder injection. An assessment of the pharmacodynamics, via blood pressure, of pure captopril powder using the new device on spontaneously hypertensive rats was also performed. It was found that every animal tested with the needle-free injector exhibited the expected pharmacodynamic response following captopril injection. Finally, the new injector was used to study the delivery of an inactivated influenza vaccine in mice. The needle-free device induced serum antibody response to the influenza vaccine that was comparable to that of subcutaneous needle injection, but without requiring the use of an adjuvant. Although no effort was made to optimize the formulation or the injection parameters in the present study, the novel injector demonstrates great promise for the rapid, safe and painless intradermal delivery of systemic drugs and vaccines.

  7. Control system of pellet injector on the HT-7 tokamak

    International Nuclear Information System (INIS)

    The control system of the pellet injector is introduced in detail and the system mainly includes two parts: the present and the remote control system. The present control system controls the injector and provides the interface to the remote system. And the remote control system has a acquired present signals with analog input card and perform the actions through digit output card, it also has an interface for Windows programming easily used by the operator: when carrying out the pellet injection experiments. Through several HT-7 campaigns, the remote control system has been validated to be feasible and reliable and has made successful shots for studying the interactions between the pellets and plasma

  8. Necessary LIU studies in the injectors during 2012

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2012-01-01

    A significant fraction of the Machine Development (MD) time in the LHC injectors in 2011 was devoted to the study of the intensity limitations in the injectors (e.g. space charge effects in PS and SPS, electron cloud effects in the PS and SPS, single bunch and multi-bunch instabilities in PS and SPS, emittance preservation across the injector chain, etc.). The main results achieved in 2011 will be presented as well as the questions that still remain unresolved and are of relevance for the LIU project. 2012 MDs will also continue exploring the potential of scenarios that might become operational in the future, like the development of a low gamma transition optics in the SPS or alternative production schemes for the LHC beams in the PS. A tentative prioritized list of studies is provided.

  9. Fuel injector for use in a gas turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  10. Academic Training: A walk through the LHC injector chain

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 21, 22, 23 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  11. Shear coaxial injector spray characterization

    Science.gov (United States)

    Kaltz, T.; Milicic, M.; Glogowski, M.; Micci, M. M.

    1993-06-01

    Analytical results on the injector response obtained from a linearized lumped-element model are presented as a function of temperature and frequency and compared to chamber high-frequency pressure measurements. LDV measurements in the recess region at the base of the LOX post show reverse flow indicative of recirculation region. Measurements of droplet size and velocity distributions based on a Phase Doppler Particle Analyzer are presented for a coaxial injector element. The latter is similar to the SSME preburner element operating with water and air at atmospheric pressure and liquid and gaseous nitrogen at 20 bars.

  12. Construction and test of a high power injector of hydrogen cluster ions

    CERN Document Server

    Becker, E W; Hagena, O F; Henkes, P R W; Klingelhofer, R; Moser, H O; Obert, W; Poth, I

    1979-01-01

    A high power injector of hydrogen cluster ions, rated for 1 MV and 100 kW, is described. The injector is split in three separate tanks connected by a 1 MV transfer line. The cluster ion beam source and all its auxiliary equipment is placed at high voltage, insulated by SF/sub 6/ gas at pressure of 4 bar. The main components of the injector are: The cluster ion beam source with integrated helium cryopumps, the CERN type acceleration tube with 750 mm ID, the beam dump designed to handle the mass and energy flux under DC conditions, a 1 MV high voltage terminal for the auxiliary equipment supplied by its 40 kVA power supply with power, and the 1 MV 120 kW DC high voltage generator. This injector is installed in Karlsruhe. Performance tests were carried out successfully. It is intended to use this injector for refuelling experiments at the ASDEX Tokamak. (12 refs).

  13. The FNAL Injector Upgrade Status

    International Nuclear Information System (INIS)

    The new FNAL H- injector upgrade is currently being tested before installation in the Spring 2012 shutdown of the accelerator complex. This line consists of an H- source, low energy beam transport (LEBT), 200 MHz RFQ and medium energy beam transport (MEBT). Beam measurements have been performed to validate the design before installation. The results of the beam measurements are presented in this paper.

  14. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single- stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. A new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellets. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  15. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  16. The main injector particle production experiment at Fermilab

    Indian Academy of Sciences (India)

    Rajendran Raja

    2006-11-01

    We describe the physics capabilities and status of the MIPP experiment which concluded its physics data taking run in March 2006. We show some preliminary results from this run and describe plans to upgrade the spectrometer.

  17. Using Quasi-Elastic Events to Measure Neutrino Oscillations with MINOS Detectors in the NuMI Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Masaki; /Texas A& M University

    2010-05-01

    MINOS (Main Injector Neutrino Oscillation Search) experiment has been designed to search for a change in the flavor composition of a beam of muon neutrinos as they travel between the Near Detector at Fermi National Accelerator Laboratory and the Far Detector in the Soudan mine in Minnesota, 735 km from the target. The MINOS oscillation analysis is mainly performed with the charged current (CC) events and sensitive to constrain high-{Delta}m{sup 2} values. However, the quasi-elastic (QEL) charged current interaction is dominant in the energy region important to access low-{Delta}m{sup 2} values. For further improvement, the QEL oscillation analysis is performed in this dissertation. A data sample based on a total of 2.50 x 10{sup 20} POT is used for this analysis. In summary, 55 QEL-like events are observed at the Far detector while 87.06 {+-} 13.17 (syst.) events are expected with null oscillation hypothesis. These data are consistent with {nu}{sub {mu}} disappearance via oscillation with {Delta}m{sup 2} = 2.10 {+-} 0.37 (stat.) {+-} 0.24 (syst.) eV{sup 2} and the maximal mixing angle.

  18. Pb injector at CERN

    International Nuclear Information System (INIS)

    For the CERN Lead Ion Accelerating Facility (achieved within a collaboration of several outside laboratories and with financial help of some member states) a new dedicated Linac has been built. This Linac has been installed in 1994 and served during two extended physics runs. This paper reviews the main characteristics of this machine and describes the first operational experience. Emphasis is put on new features of this accelerator, its associated equipment and on the peculiarities of heavy ions. (author)

  19. Heavy ion fusion injector experiments

    International Nuclear Information System (INIS)

    We report on three experiments performed in connection with the 2 MV electrostatic quadrupole (ESQ) injector under construction at Lawrence Berkeley Laboratory. Scaled experiments have been conducted to study possible beam emittance growth due to beam aberrations in an ESQ injector. The experiment uses the SBTE (Single Beam Transport Experiment) accelerator system, quarter-scale ESQ setup and a potassium ion diode source. Measured emittance growth changes significantly with variations in current and diode energy, in good agreement with theoretical predictions. In addition, beam transport experiments were performed in a 1 MV axisymmetric electrostatic aperture column using a zeolite 1 inch diameter potassium ion source. Experimental measurements in good agreement with 2-1/2 D simulations showed that low emittance beams can be produced in axisymmetric structures. Finally, ESQ breakdown voltage tests without beam were performed at up to two times the quadrupole working voltage

  20. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  1. On-line control system for electron injector based on autoemission cathode

    International Nuclear Information System (INIS)

    An original on-line system of control of electron injector parameters on the base of an autoemission cathode is described. The system includes hardware (analog-to-digital and graphical displays, a printer, a magnetic disc memory a plotter) and data control and readout equipment. A high-voltage power source of the 'RACE' is controlled by digital measuring devices connected with a computer data via a special matching device. Software includes servicing subroutines for injector controls and those permitting to display, plot and print results. The main operating program functioning in the interactive mode enables to specify the injector operating conditions and check its characteristics

  2. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    Science.gov (United States)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  3. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  4. Design of Injector Systems for LUX

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    2004-07-01

    The LUX concept [1] for a superconducting recirculating linac based ultrafast x-ray facility features a unique high-brightness electron beam injector. The design of the injector complex that meets the baseline requirements for LUX is presented. A dual-rf gun injector provides both high-brightness electron beams to drive the cascaded, seeded harmonic generation VUV-soft x-ray FELs as well as the ultra- low-vertical emittance (''flat'') beams that radiate in hard x-ray spontaneous emission synchrotron beamlines. Details of the injector complex design and performance characteristics are presented. Contributions by the thermal emittance and optical pulse shaping to the beam emission at the photocathode and to the beam dynamics throughout the injector are presented. Techniques that seek to optimize the injector performance, as well as constraints that prevent straightforward optimization, are discussed.

  5. Flow and atomization in flashing injectors

    Science.gov (United States)

    Solomon, A. S. P.; Rupprecht, S. D.; Chen, L.-D.; Faeth, G. M.

    1985-01-01

    Flashing injection involves expanding a fluid through an injector until a supersaturated state is reached, causing a portion of the fluid to flash to a vapor. This investigation considered the flow, atomization and spreading properties of flashing injectors with flowing liquids containing dissolved gases (Jet A/air) as well as superheated liquids (Freon-11). The use of a two-stage expansion process, separated by an expansion chamber, was found to be beneficial for good atomization properties of flashing injection - particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, and to correlate drop size measurements. Additional experimental results are provided for spray angles of sprays from flashing injectors.

  6. Atomization and combustion properties of flashing injectors

    Science.gov (United States)

    Solomon, A. S. P.; Rupprecht, S. D.; Chen, L.-D.; Faeth, G. M.

    1982-01-01

    Flashing injection involves expanding a fluid through an injector until a supersaturated state is reached, causing a portion of the fluid to flash to a vapor. This investigation considered the flow, atomization and spreading properties of flashing injectors flowing liquids containing dissolved gases (Jet A/air) as well as superheated liquids (Freon 11). The use of a two stage expansion process, separated by an expansion chamber, was found to be beneficial for good atomization properties of flashing injection - particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  7. Letter of Intent to build an Off-axis Detector to study numu to nue oscillations with the NuMI Neutrino Beam

    CERN Document Server

    Ayres, D

    2002-01-01

    The NuMI neutrino beam line and the MINOS experiment represent a major investment of US High Energy Physics in the area of neutrino physics. The forthcoming results could decisively establish neutrino oscillations as the underlying physics mechanism for the atmospheric $\

  8. Design status of heavy ion injector program

    International Nuclear Information System (INIS)

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10-7 torr) high voltage (HV) accelerating column

  9. LER-LHC injector workshop summary and super-ferric fast cycling injector in the SPS tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio; Hays, Steven; Huang, Yuenian; Johnstone, John; Kashikhin, Vadim; MacLachlan, James; Mokhov, Nikolai; Piekarz, Henryk; Sen, Tanaji; Shiltsev, Vladimir; /Fermilab; de Rijk, Gijsbert; /CERN

    2007-03-01

    A Workshop on Low Energy Ring (LER) in the LHC tunnel as main injector was convened at CERN on October 11-12, 2006. We present the outline of the LER based on the presentations, and respond to the raised questions and discussions including the post-workshop studies. We also outline the possibility of using the LER accelerator technologies for the fast cycling injector accelerator in the SPS tunnel (SF-SPS). A primary goal for the LER (Low Energy Ring) injector accelerator is to inject 1.5 TeV proton beams into the LHC, instead of the current injection scheme with 0.45 TeV beams from the SPS. At this new energy, the field harmonics [1] of the LHC magnets are sufficiently satisfactory to prevent the luminosity losses expected to appear when applying the transfer of the 0.45 TeV SPS beams. In addition, a feasibility study of batch slip stacking in the LER has been undertaken with a goal of increasing in this way the LHC luminosity by up to a factor of 4. A combined luminosity increase may, therefore, be in the range of an order of magnitude. In the long term, the LER injector accelerator would greatly facilitate the implementation of a machine, which doubles the LHC energy (DLHC).

  10. Transient Beam Dynamics in the LBL 2 MV Injector

    International Nuclear Information System (INIS)

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K+) and low normalized emittance (< 1 ? mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented

  11. Electron gun for the injector of a free electron laser

    International Nuclear Information System (INIS)

    Design and experimental results obtained at the tetrode electron gun for the injector of a free electron laser are presented. The main parameters are: repetition rate range of electron bunches is 0-22.5 MHz, peak current is ? 1.8 A, pulse duration is 1.3 ns. Small emittance of the 300 keV electron beam is ensured by the cathode-grid unit of tetrode type. The measured instability of electron bunches is less than ± 50 ps

  12. Long multi-cell rf guns as full scale injectors

    International Nuclear Information System (INIS)

    The behavior of single particle beam dynamics in long rf guns is discussed, mainly concerning the effect of rf focusing, relevant in a high gradient standing wave structure. An analytical transport matrix is derived and compared to simulations, showing that it is possible to transport the beam through the gun up to full scale injector energy (1 GeV) without the need for any other external focusing. (orig.)

  13. Pellet injector for diagnostics purposes

    International Nuclear Information System (INIS)

    We report the design, construction and the testbed results for a novel compact gas gun injector for solid diagnostic pellets of different sizes and materials. The injector was optimized for the diagnostic requirements of the ASDEX Upgrade tokamak, yielding the possibility of a widely varying deposition profile of ablated material inside the plasma. This allows variation of the pellet velocity and the total number of injected atoms. The use of different propellant gases (He, N2, H2) results in an accessible velocity range from about 150 m/s to more than 600 m/s in the case of spherical carbon pellets with masses ranging from 2x1018 to 1020 atoms. Both the scattering angle (?1 ) and the maximum propellant gas throughput to the tokamak (less than 1016 gas particles) were found to be sufficiently low. The injector provided both high efficiency (?85%) and high reliability during the whole testbed operation period and also during the first injection experiments performed on ASDEX Upgrade. The pellet velocities achieved for different propellant gas pressures, pellet diameters, and pellet materials were analyzed. We found that, although the pellet diameters range from 0.45 to 0.85 times the barrel diameter, the pellet acceleration is mostly caused by gas drag. Pellet velocities in excss of those calculated on the basis of the gas drag model were observed. Additional acceleration that increases with the pellet diameter contrary to the gas drag model may be explained by the influence of the pellet on the gas dynamics in the barrel. (orig.)

  14. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  15. Synchronization of the 14 kTon NOνA neutrino detector with the Fermilab NuMI beam

    International Nuclear Information System (INIS)

    The NOνA experiment is a neutrino oscillation experiment designed to measure parameters related to the neutrino mixing matrix, mass hierarchy and CP violation. The experiment measures neutrino and anti-neutrino interactions from the NuMI beam line at Fermilab in a Near Detector and a Far Detector located 810 kilometers away. Making these measurements requires precise synchronization of 344,064 channels in the Far Detector to an absolute wall time with a channel to channel variation of less then 10 ns. The experiment must correlate the presence of the relatively narrow neutrino beam in the detector with data readout. This paper will discuss the performance of the NOνA timing system during the first few months of operation at the Far Detector.

  16. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  17. Apparatus for testing high pressure injector elements

    Science.gov (United States)

    Myers, William Neill; Scott, Ewell M.; Forbes, John C.; Shadoan, Michael D.

    1995-05-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  18. Pellet injector research at ORNL

    International Nuclear Information System (INIS)

    Advanced plasma fueling systems for magnetic confinement devices are under development a the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogen isotope pellets at speeds in the range 1-2 km/s and higher. Recently, ORNL provided pneumataic-based pellet fueling systems for two of the world's largest tokamak experiments, the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). A new versatile centrifuge type injector is being readied at ORNL for use on the Tore Supra tokamak. Also, a new simplified eight-shot injector design has been developed for use on the Princeton Beta Experiment (PBX) and the Advanced Toroidal Facility (ATF). In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of 2 km/s and is carrying out a Tritium Proof-of-Principle (TPOP) experiment in which the fabrication and acceleration of tritium pellets have already been demonstrated. This paper describes these ongoing activities. 25 refs., 9 figs

  19. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) has been developing pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER) and future reactors. The proposed ITER fueling system will use a combination of deuterium- tritium (D-T) gas puffing and pellet injection to achieve and maintain ignited plasmas. The pellet injection system will have to provide D-T fueling for much longer pulse lengths (up to ?1000 s) than present day applications (typically limited to less than several seconds). In this paper, we describe the ongoing pellet injector development activities at ORNL, including the following three in direct support of ITER: (1) an improved pellet feed system for the centrifuge injector, (2) a steady-state extruder feed system, and (3) tritium extruder technology. In addition to the major activities, a repeating two-stage light gas gun for high-speed pellet injection (?2.5 km/s) has been developed in a collaboration with ENEA Frascati; also, the production of impurity pellets (Ne, Ar, and Kr) has been demonstrated using the DIII-D and Tokamak Fusion Test Reactor pneumatic pellet injection system

  20. Electrostatic steering and beamlet aiming in large neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4 - 35127 Padova (Italy); Cavenago, M. [INFN-LNL, viale dell' Università n. 2, 35020 Legnaro (Italy)

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1?MeV, a total ion current of ? 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  1. Electrostatic steering and beamlet aiming in large neutral beam injectors

    International Nuclear Information System (INIS)

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1?MeV, a total ion current of ? 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed

  2. Electrostatic steering and beamlet aiming in large neutral beam injectors

    Science.gov (United States)

    Veltri, P.; Cavenago, M.; Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2015-04-01

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ˜ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic "steerer" to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  3. Intensity Upgrade Plans for CERN-LHC Injectors

    CERN Document Server

    Shaposhnikova, Elena

    2008-01-01

    With LHC coming into operation very soon an upgrade plan for the whole CERN accelerator complex has been proposed to allow full exploitation of the LHC potential in the future as well as giving increased support to traditional and possible new experiments at lower beam energies. This plan foresees replacing during the period 2011 - 2017 all the accelerators in the LHC injector chain (Linac2,Booster, PS) by new machines (Linac4, SPL and PS2) except for the last - the SPS. In this scenario the SPS should be able to reliably accelerate twice higher beam intensity than achieved so far and therefore significant improvements to the machine performance, in addition to the increased injection energy due to PS2, should be found and implemented at the same time scale. The present status of proposals and ongoing studies for all accelerator injector chain is described with main emphasis on the SPS challenges and upgrade plans.

  4. Understanding the spectrum of diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Robert; Barbour, Robert [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Understanding the origin of diesel fuel injector deposits used to be relatively simple; for the most part they were caused by the decomposition of fuel during the combustion process, were generally organic in nature and typically only affected the nozzle orifices. However, modem fuel injector designs appear to be both more severe in terms of generating conditions conducive to creating new and different types of deposits and more likely to have their operation affected by those deposits. Changes to fuel composition and type have in some cases increased the potential pool of reactive species or provided new potential deposit precursors. As a result, the universe of diesel injector deposits now range from the traditional organic to partially or fully inorganic in nature and from nozzle coking deposits to deposits which can seize the internal components of the injector; so called internal diesel injector deposits. Frequently, combinations of inorganic and organic deposits are found. While power loss is one well known issue associated with nozzle deposits, other field problems resulting from these new deposits include severe issues with drivability, emissions, fuel consumption and even engine failure. Conventional deposit control additive chemistries were developed to be effective against organic nozzle coking deposits. These conventional additives in many cases may prove ineffective against this wide range of deposit types. This paper discusses the range of deposits that have been found to adversely impact modem diesel fuel injectors and compares the performance of conventional and new, advanced deposit control additives against these various challenges to proper fuel injector functioning. (orig.)

  5. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for more than 15 years. Recent major applications of the ORNL development program include (1) a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor, (2) a centrifuge pellet injector for the Tore Supra tokamak, and most recently (3) a three-barrel repeating pneumatic injector for the DIII-D tokamak. In addition to applications, ORNL is developing advanced technologies, including high-speed pellet injectors, tritium injectors, and long-pulse pellet feed systems. The high-speed research involves a collaboration between ORNL and ENEA-Frascati in the development of a repeating two-stage light gas gun based on an extrusion-type pellet feed system. Construction of a new tritium-compatible, extruder-based repeating pneumatic injector (8-mm-diam) is complete and will replace the pipe gun in the original tritium proof-of-principle experiment. The development of a steady-state feed system in which three standard extruders operate in tandem is under way. These research and development activities are relevant to the International Thermonuclear Experimental Reactor and are briefly described in this paper

  6. Microscale ethanol vapor ejector and injector

    Science.gov (United States)

    Gardner, William G.; Wang, Ivan; Brikner, Natalya A.; Jaworski, Justin W.; Protz, Jonathan M.

    2010-04-01

    Two non-rotating pumping components, a jet ejector and injector, were designed and tested. Two jet ejectors were designed and tested to induce a suction draft using a supersonic micronozzle. Three-dimensional axisymmetric nozzles were microfabricated to produce throat diameters of 187 ?m and 733 ?m with design expansion ratios near 2.5:1. The motive nozzles achieved design mass flow efficiencies above 95% compared to isentropic calculations. Ethanol vapor was used to motivate and entrain ambient air. Experimental data indicate that the ejector can produce a sufficient suction draft to satisfy both microengine mass flow and power off-take requirements to enable its substitution for high speed microscale pumping turbomachinery. An ethanol vapor driven injector component was designed and tested to pressurize feed liquid ethanol. The injector was supplied with 2.70 atmosphere ethanol vapor and pumped liquid ethanol up to a total pressure of 3.02 atmospheres. Dynamic pressure at the exit of the injector was computed by measuring the displacement of a cantilevered beam placed over the outlet stream. The injector employed a three-dimensional axisymmetric nozzle with a throat diameter of 733 ?m and a three-dimensional converging axisymmetric nozzle. The experimental data indicate that the injector can pump feed liquid into a pressurized boiler, enabling small scale liquid pumping without any moving parts. Microscale injectors could enable microscale engines and rockets to satisfy pumping and feedheating requirements without high speed microscale turbomachinery.

  7. Pellet injector development and experiments at ORNL

    International Nuclear Information System (INIS)

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  8. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for over 15 years. Recently, ORNL has provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR); this injector, which is based on the in situ condensation technique for pellet formation, features three conventional single-stage gas guns and an advanced two-stage light gas gun driver. In addition, the international collaboration and the Tore Supra tokamak in 1989 continue with an objective of improving injector performance. In a new application, the three-barrel repeating pneumatic injector that operated on the Joint European Torus (JET) from 1987 to 1992 has been returned to ORNL and is being readied for installation on DIII-D; this device consists of three independent, machine-gun-like mechanisms. Also, ORNL is developing advanced technologies, including high-velocity pellet injectors, tritium injectors, and long-pulse pellet feed systems. Two acceleration techniques for achieving higher velocities under experimental investigation at ORNL are the two-stage light gas gun and the electron-beam-driven rocket; the objective of these studies is the development of reliable systems capable of providing pellets with higher speeds (2-10 km/s) than available with conventional pneumatic or mechanical injectors. The tritium proof-of-principle (TPOP) experiment that operated between 1988 and 1989 demonstrated the basic scientific feasibility of the production and pneumatic acceleration of tritium pellets. A new tritium-compatible, extruder-based repeating pneumatic injector (8-mm-diam) is being designed to replace the pipe gun in the TPOP experiment, and operation of this gun will explore issues related to the extrudability of tritium and acceleration of extruded pellets. The tritium experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER). 25 refs, 13 figs, 1 tab

  9. 21 CFR 870.1650 - Angiographic injector and syringe.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiographic injector and syringe. 870.1650... injector and syringe. (a) Identification. An angiographic injector and syringe is a device that consists of a syringe and a high-pressure injector which are used to inject contrast material into the...

  10. An injector of solid hydrogen pellets

    International Nuclear Information System (INIS)

    An injector of solid hydrogen pellets was designed for experiments at the T-10 and T-15 tokamak fusion reactors. The injector consists of a helium low-temperature vessel, a barrel, an electrodynamic valve, a hydrogen feed system, a monitoring system with a velocity meter, a PZT transducer, a low-temperature thermometer, and a photographic camera. The hydrogen for a pellet is condensed in the barrel. The injector uses a fast valve, yielding a velocity of 2.07 km/sec at a moderate pressure of 12 MPa, which exceeds that of other facilities with comparable characteristics

  11. Diagnostics for the CEBAF FEL Injector

    International Nuclear Information System (INIS)

    A test stand for the 10 MeV, 5 mA average current injector for the CEBAF FEL is currently under construction. The injector tests will progress through two phases. The first phase will be devoted to characterizing the gun transverse and longitudinal emittance performance as a function of bunch charge, beam size, and energy. The goal of the second phase is to achieve the nominal requirements of the 10 MeV injector, including bunch length, emittance, charge per bunch, and energy stability. This paper summarizes the diagnostics planned to be used in these experiments. copyright 1996 American Institute of Physics

  12. Nozzle insert for mixed mode fuel injector

    Science.gov (United States)

    Lawrence, Keith E. (Peoria, IL)

    2006-11-21

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.

  13. Analytical study on large-scale steam injector to next-generation BWR

    International Nuclear Information System (INIS)

    A steam injector is a simple, compact, passive device for water injection, such as the Passive Core Injection System (PCIS) or the Primary Loop Recirculation System with SI Driven Jet Pumps (PLR with SIDJP). The system needs no large turbo-machinery such as the current PLR pumps used in a PCV. The energy to drive the steam injector (SIDJP) is recovered as enthalpy of the feed water of a core. This is one of the great advantages of SIDJP: none of the driving energy for the PLR escapes to sea water or to air through the main turbine condenser. An analytical study has been conducted on a large-scale steam injector for a next-generation reactor, in order to check the feasibility of a large-scale steam injector for which a demonstration test was not able to be conducted at present. Analysis of characteristics of the steam injector was conducted for both small-scale and large-scale injectors using newly developed separate-two-phase flow models installed in the PHOENICS Code. The models for analysis were examined with Toshiba's test data for the low-pressure visualized-model test and high-pressure small-size model test. The analysis results showed the SIDJP could not work in the high-pressure range over 7 MPa, and discharged over 12 MPa even at the large-scale rated-flow rate of 61.1 kg/s (220 t/h). (author)

  14. Investigation of the effect of pilot burner on lean blow out performance of a staged injector

    Science.gov (United States)

    Yang, Jinhu; Zhang, Kaiyu; Liu, Cunxi; Ruan, Changlong; Liu, Fuqiang; Xu, Gang

    2014-12-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine. In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section. The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper, conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  15. Structural analyses and integrated design of the MITICA Injector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucco, G., E-mail: gianluca.mazzucco@dicea.unipd.it [Department ICEA, Università degli Studi di Padova (Italy); Muraro, D.; Salomoni, V.; Majorana, C. [Department ICEA, Università degli Studi di Padova (Italy); Marcuzzi, D.; Rigato, W.; Sonato, P.; Zaccaria, P.; Toigo, V. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Inoue, T.; Takemoto, J.; Tobari, H.; Tsuchida, K.; Yamanaka, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki-ken 311-0193 (Japan)

    2013-10-15

    Highlights: ? Seismic design has been carried out on PRIMA building. ? Three-dimensional FE models have been developed the vessel and TL device. ? Three bellows stiffness have been considered to evaluate maximum TL displacements. -- Abstract: In the framework of the activities foreseen for PRIMA (Padova Research on Injector Megavolt Accelerated) the MITICA neutral beam injector plays the role of main experiment, aiming to build, operate, test and optimize a full power and full scale prototype of the ITER Heating Neutral Beam Injector [1–3]. The entire MITICA system will be housed in special buildings, suitably designed to provide all the necessary supports, interfaces and shielding walls for nuclear radiation safety. Therefore an integrated design of the MITICA system and relevant buildings shall be developed and verified carefully, considering all the different configurations, operational modes and load combinations. This paper presents the numerical models and the results of MITICA assembly integrated analyses. The model takes into account properly constraints to ground and surrounding buildings, to study and verify the static and seismic response of the whole assembly. The load cases are defined and the numerical analyses described. Load definition and analyses have been performed considering the requirements of both the ASME [4] and the National Standard NTC2008 [5] for the seismic verification of structures subject to design response spectra. The obtained results are finally shown in detail and discussed, also comparing some different design options for design optimization.

  16. Academic Training: A walk through the LHC injector chain

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16 February from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on...

  17. A study of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, John Stuart; /Cambridge U.

    2008-06-01

    This thesis presents the results of an analysis of {nu}{sub {mu}} disappearance with the MINOS experiment, which studies the neutrino beam produced by the NuMI facility at Fermi National Accelerator Laboratory. The rates and energy spectra of charged current {nu}{sub {mu}} interactions are measured in two similar detectors, located at distances of 1 km and 735 km along the NuMI beamline. The Near Detector provides accurate measurements of the initial beam composition and energy, while the Far Detector is sensitive to the effects of neutrino oscillations. The analysis uses data collected between May 2005 and March 2007, corresponding to an exposure of 2.5 x 10{sup 20} protons on target. As part of the analysis, sophisticated software was developed to identify muon tracks in the detectors and to reconstruct muon kinematics. Events with reconstructed tracks were then analyzed using a multivariate technique to efficiently isolate a pure sample of charged current {nu}{sub {mu}} events. An extrapolation method was also developed, which produces accurate predictions of the Far Detector neutrino energy spectrum, based on data collected at the Near Detector. Finally, several techniques to improve the sensitivity of an oscillation measurement were implemented, and a full study of the systematic uncertainties was performed. Extrapolating from observations at the Near Detector, 733 {+-} 29 Far Detector events were expected in the absence of oscillations, but only 563 events were observed. This deficit in event rate corresponds to a significance of 4.3 standard deviations. The deficit is energy dependent and clear distortion of the Far Detector energy spectrum is observed. A maximum likelihood analysis, which fully accounts for systematic uncertainties, is used to determine the allowed regions for the oscillation parameters and identifies the best fit values as {Delta}m{sub 32}{sup 2} = 2.29{sub -0.14}{sup +0.14} x 10{sup -3} eV{sup 2} and sin{sup 2} 2{theta}{sub 23} > 0.953 (68% confidence level). The models of neutrino decoherence and decay are disfavored at the 5.0{sigma} and 3.2{sigma} levels respectively, while the no oscillation model is excluded at the 9.4{sigma} level.

  18. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    Science.gov (United States)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  19. Triaxial Swirler Liquid Injector Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Engineering Inc. (Sierra) believes that the subject triaxial liquid propellant swirl injector has the potential to meet many of NASA's Earth-to-Orbit (ETO)...

  20. Liquid atomization by coaxial rocket injectors

    Science.gov (United States)

    Sankar, S. V.; Brena De La Rosa, A.; Isakovic, A.; Bachalo, W. D.

    1991-01-01

    The atomization characteristics of a scaled-down version of a coaxial rocket injector was investigated using a phase Doppler particle analyzer (PDPA). The injector was operated in the conventional mode with liquid being injected through its inner orifice and gas being injected through its outer annulus. The shearing action occurring at the liquid-gas interface causes the liquid jet to atomize. In this study, two different liquid-air systems, namely a water-air system and a liquid nitrogen-gaseous nitrogen system, were chosen for detailed investigation. This paper discusses the performance characteristics of the coaxial injector under different flow and geometric conditions. Specifically, the effects of injection gas pressure and the injector cavity size on variables such as the mean particle diameter, Sauter mean diameter, number density, volume flux, and velocity have been presented.

  1. Atomization characteristics of swirl injector sprays

    Science.gov (United States)

    Feikema, Douglas A.

    1996-01-01

    Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.

  2. Numerical simulation of an accelerator injector

    International Nuclear Information System (INIS)

    Accelerator injector designs have been evaluated using two computer codes. The first code self consistently follows relativistic particles in two dimensions. Fields are obtained in the Darwin model which includes inductive effects. This code is used to study cathode emission and acceleration to full injector voltage. The second code transports a fixed segment of a beam along the remainder of the beam line. Using these two codes the effects of electrode configuration on emittance, beam quality and beam transport have been studied

  3. An introduction to photo-injector design

    International Nuclear Information System (INIS)

    A quick overview is given of the RF gun basic theory for photo-injectors and of the presently achievable technical parameters thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (author) 65 refs., 11 figs., 3 tabs

  4. Membrane injector for a portable mass spectrometer

    International Nuclear Information System (INIS)

    Paper describes a system for a membrane injection into a portable mass-spectrometer used to determine the concentration of organic components in complex composition mixtures. One measured spectra of samples containing saturated hydrocarbons ranging from methane up to hexane. One compared the analysis results derived using both membrane and diaphragm injectors. One showed the promising future of application of membrane injectors in portable mass-spectrometers designed for the ecological monitoring and control of industrial processes

  5. Injector Layout and Beam Injection into Solaris

    OpenAIRE

    Wawrzyniak, Adriana; Bocchetta, Carlo; Leemann, Simon; Thorin, Sara

    2011-01-01

    The Solaris synchrotron radiation storage ring to be built in Krakow, Poland is based on the MAX IV 1.5 GeV design. The injector will be a linear accelerator and its components identical to those for the MAX IV project, however, injection is not at full energy and the injector layout is different. The linac and transfer line layout, optics and injection scheme into the storage ring is presented and an analysis of accumulation before energy ramping is discussed.

  6. Pellet injectors for a steady state fuelling

    International Nuclear Information System (INIS)

    Repetitive injectors providing a steady state plasma fuelling by an unlimited number of pellets have been designed for fusion devices. Several thousands of hydrogen pellets of 2 mm diameter each were made and accelerated to 0.6-0.8 km/s at a rate of 1-5 Hz with an average reliability over 92% by an injector equipped with a screw extruder. The extruder had a 8 cm3 working volume and was used for a continuous extrusion of over 500 cm3 of solid hydrogen with an average production rate of 63 mm3/s. Another injector consisted of a pipe gun with a porous unit producing solid hydrogen pellets for 1-2 s without any movable parts. Over two thousand hydrogen pellets of 2.4 mm diameter were accelerated to 1 km/s in this injector. A two-stage pellet injector with a cryogenic piston formed from carbon dioxide inside a pump tube has been designed and tested. Helium gas compression of over 300 MPa inside the pump tube and cellular plastic pellet velocities of about 2.5 km/s have been achieved in initial experiments. The injector designs and experimental results are presented. (authors)

  7. Radionuclides in the Cooling Water Systems for the NuMi Beamline and the Antiproton Production Target Station at Fermilab

    CERN Document Server

    Matsumura, Hiroshi; Bessho, Kotaro; Sekimoto, Shun; Yashima, Hiroshi; Kasugai, Yoshimi; Matsuda, Norihiro; Sakamoto, Yukio; Nakashima, Hiroshi; Oishi, Koji; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran

    2014-01-01

    At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {\\gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% f...

  8. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 1500 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  9. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 1500 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  10. CARE-JRA2* Activities on Photo-Injectors and CLIC Test Facility (CTF3)

    CERN Document Server

    Rinolfi, Louis

    2005-01-01

    In the frame of the CARE project, there is a Joint Research Activity (JRA2) called PHIN (PHoto-INjectors). The main objective of this JRA is to perform Research and Development on charge-production by interaction of a laser pulse with material within RF fields and improve or extend existing infrastructures. Another activity of PHIN is the coordination of the activities of various Institutes concerning photo-injectors. A brief review of the work of the eight European laboratories involved in PHIN is presented. One of these R&D topics is the construction of a photo-injector for the CLIC Test Facility (CTF3). In this context the status of CTF3 and its main goals - the demonstration of the feasibility of the key issues of the CLIC two-beam acceleration scheme - is also presented.

  11. Status of Resistive Magnets in the LHC Injectors Chain

    CERN Document Server

    Tommasini, D; Thonet, P; Bauche, J; Zickler, T; Newborough, A; Sgobba, S; Lopez, R

    2010-01-01

    About 4650 normal conducting magnets are presently installed in the CERN accelerators complex, more than 3000 of them belonging to the LHC injector chain and 163 installed in the LHC. The oldest magnets have been in operation for 50 years, and some of them are submitted to aggressive conditions, either in terms of radiation, extreme water cooling conditions or temperature. The smallest magnets in the linacs weigh a few kilograms, whilst each of the main magnets of the Proton Synchrotron weighs 33 tons. The paper reviews the status of these magnets and gives some examples of findings and relevant recent actions undertaken to ensure their reliable operation in the coming years.

  12. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Wook [Korea Institue of Machinery and Materials, Daejeon (Korea, Republic of); Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2006-06-15

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

  13. A high resolution AMS-injector for the Pelletron in Lund

    Indian Academy of Sciences (India)

    R Bellborg; S Bazhal; M Faarinen; K Håkansson; C-E Magnusson; P Persson; G Skog; K Stenström

    2002-12-01

    A high resolution injector system has recently been installed at the Lund 3 MV tandem Pelletron accelerator. The new injector, designed mainly for 26Al ions, will increase the experimental potential of the Lund AMS facility considerably. High quality energy- and mass-resolution is obtained by using a 90° spherical electrostatic analyzer followed by a 90° magnetic analyzer. The injector is equipped with a high intensity sputtering source with a spherical ionizer. A new analytical technique for acceptance calculations as well as PC-based computational methods have been used in the design of the ion optical system of the new injector. Compared to our old injector system which has a magnetic analyzer with a bending angle of only 15°, the new system has a more than ten times better resolution. The beam optics of the new system is also better designed to match the accelerator acceptance. In this way the ion transmission from the ion source to the detector, for different ions of interest in our AMS programme, has been increased.

  14. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    International Nuclear Information System (INIS)

    The Beijing X-ray Energy Recovery Linac (BXERL) test facility is proposed in Institute of High Physics (IHEP). In this proposal, the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current. An injector based on DC gun technology is the first candidate electron source for BXERL. However, the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV. Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility. We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code. In this paper, we present the optimized design of the gun cavity, the gun RF parameters and the set-up of the whole injector system. The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalized emittance 1.0 πmm·mrad, bunch length 0.77 mm, beam energy 5.0 MeV and energy spread 0.60%. (authors)

  15. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    Science.gov (United States)

    Liu, Sheng-Guang; Huang, Tong-Ming; Xu, Jin-Qiang

    2011-09-01

    The Beijing X-ray Energy Recovery Linac (BXERL) test facility is proposed in Institute of High Physics (IHEP). In this proposal, the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current. An injector based on DC gun technology is the first candidate electron source for BXERL. However, the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV. Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility. We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code. In this paper, we present the optimized design of the gun cavity, the gun RF parameters and the set-up of the whole injector system. The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalized emittance 1.0 πmm·mrad, bunch length 0.77 mm, beam energy 5.0 MeV and energy spread 0.60%.

  16. Error analysis and lattice improvement for the C-ADS Injector-I

    OpenAIRE

    Meng, Cai; LI, ZHIHUI; Tang, Jingyu

    2013-01-01

    The injector (Scheme-I) of the C-ADS linac is a 10-mA 10-MeV proton linac working in CW mode. It is mainly comprised of a 3.2-MeV room-temperature 4-vane RFQ and twelve superconducting single-spoke cavities housed in a long cryostat. Error analysis including alignment and field errors, static and dynamic ones for the injector are presented. Based on detailed numerical simulations, an orbit correction scheme has been designed. It shows that with correction the rms residual or...

  17. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    International Nuclear Information System (INIS)

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H0 beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies

  18. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J. E-mail: gozalo@ciemat.es; Liniers, M.; Martinez Laso, L.; Jauregi, E.; Lucia, C.; Valcarcel, F

    2001-10-01

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H{sup 0} beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies.

  19. Status of the SPIRAL2 injector commissioning

    Science.gov (United States)

    Thuillier, T.; Angot, J.; Barué, C.; Bertrand, P.; Biarrotte, J. L.; Canet, C.; Denis, J.-F.; Ferdinand, R.; Flambard, J.-L.; Jacob, J.; Jardin, P.; Lamy, T.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Peaucelle, C.; Roger, A.; Sole, P.; Touzery, R.; Tuske, O.; Uriot, D.

    2016-02-01

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ˜50. A status of its assembly is proposed.

  20. Sample injector for high pressure liquid chromatography

    Science.gov (United States)

    Paul, Phillip H. (Livermore, CA); Arnold, Don W. (Livermore, CA); Neyer, David W. (Castro Valley, CA)

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  1. LTP fibre injector qualification and status

    International Nuclear Information System (INIS)

    This paper presents the current state of the LISA Technology Package (LTP) fibre injector qualification project in terms of vibration and shock tests. The fibre injector is a custom built part and therefore must undergo a full space qualification process. The mounting structure and method for sinusoidal vibration and random vibration tests as well as shock tests will be presented. Furthermore a proposal will be presented to use the fibre injector pair qualification model to build an optical prototype bench. The optical prototype bench is a full-scale model of the flight model. It will be used for development and rehearsal of all the assembly stages of the flight model and will provide an on-ground simulator for investigation as an updated engineering model.

  2. Neutral beam injector performance on the PLT and PDX tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures.

  3. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    Science.gov (United States)

    Hajari, Sh. Sanaye; Shaker, H.; Doebert, S.

    2015-11-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.

  4. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    International Nuclear Information System (INIS)

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane

  5. Construction and commissioning of cERL injector and status of cERL return loop

    International Nuclear Information System (INIS)

    The Compact Energy Recovery Linac (cERL) is under construction at KEK for the future 3-GeV ERL project. During the past year, we have finished key devices, such as a 500-kV DC photocathode electron gun and superconducting (SC) cryomodules for the injector and for the main linac. We installed these devices into a shielding room of the cERL, and carried out high-voltage or high-power tests successfully. In the April of 2013, the 5-MeV injector of the cERL was completed. During April to June in 2013, we commissioned the cERL-injector successfully, and carried out beam tuning and studies. During July to November, 2013, we will construct the return loop of the cERL. (author)

  6. Challenges and Plans for the Proton Injectors

    CERN Document Server

    Garoby, R

    2015-01-01

    The flexibility of the LHC injectors combined with multiple longitudinal beam gymnastics have significantly contributed to the excellent performance of the LHC during its first run, delivering beam with twice the ultimate brightness with 50 ns bunch spacing. To meet the requirements of the High Luminosity LHC, 25 ns bunch spacing is required, the intensity per bunch at injection has to double and brightness shall almost triple. Extensive hardware modifications or additions are therefore necessary in all accelerators of the injector complex, as well as new beam gymnastics.

  7. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  8. Development of D2 pellet injectors

    International Nuclear Information System (INIS)

    Working principles, design details and test firing performance are described for a versatile D2 pellet injector and for an arc-heated gas gun developed at Riso National Laboratory. The pneumatic injector is characterized by a pellet mass range of 0.01-1 mg, a velocity range of 0.1-1.5 km/s and a modular construction for easy adaptability to different experiments. The arc-heated gas gun is intended for experiments requiring large pellets (> 5 mg) and high velocities (> 2 km/s)

  9. The Advanced Photon Source Injector Test Stand Control System

    OpenAIRE

    Maclean, J. F.; Arnold, N. D.

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector pri...

  10. Measurements of Inclusive Muon Neutrino and Antineutrino Charged Current Differential Cross Sections on Argon in the NuMI Antineutrino Beam

    CERN Document Server

    Acciarri, R; Asaadi, J; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Hatcher, R; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Rameika, G; Rebel, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G P

    2014-01-01

    The ArgoNeuT collaboration presents measurements of inclusive muon neutrino and antineutrino charged current differential cross sections on argon in the Fermilab NuMI beam operating in the low energy antineutrino mode. The results are reported in terms of outgoing muon angle and momentum at a mean neutrino energy of 9.6 GeV (neutrinos) and 3.6 GeV (antineutrinos), in the range $0^\\circ < \\theta_\\mu < 36^\\circ$ and $0 < p_\\mu < 25$ GeV/$c$, for both neutrinos and antineutrinos.

  11. 21 CFR 870.1670 - Syringe actuator for an injector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Syringe actuator for an injector. 870.1670 Section... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1670 Syringe actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical...

  12. Main Oxidizer Valve Design

    Science.gov (United States)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  13. Spray features in the near field of a flow-blurring injector investigated by high-speed visualization and time-resolved PIV

    Science.gov (United States)

    Jiang, Lulin; Agrawal, Ajay K.

    2015-05-01

    In a flow-blurring (FB) injector, atomizing air stagnates and bifurcates at the gap upstream of the injector orifice. A small portion of the air penetrates into the liquid supply line to create a turbulent two-phase flow. Pressure drop across the injector orifice causes air bubbles to expand and burst thereby disintegrating the surrounding liquid into a fine spray. In previous studies, we have demonstrated clean and stable combustion of alternative liquid fuels, such as biodiesel, straight vegetable oil and glycerol by using the FB injector without requiring fuel pre-processing or combustor hardware modification. In this study, high-speed visualization and time-resolved particle image velocimetry (PIV) techniques are employed to investigate the FB spray in the near field of the injector to delineate the underlying mechanisms of atomization. Experiments are performed using water as the liquid and air as the atomizing gas for air to liquid mass ratio of 2.0. Flow visualization at the injector exit focused on a field of view with physical dimensions of 2.3 mm × 1.4 mm at spatial resolution of 7.16 µm per pixel, exposure time of 1 µs, and image acquisition rate of 100 k frames per second. Image sequences illustrate mostly fine droplets indicating that the primary breakup by FB atomization likely occurs within the injector itself. A few larger droplets appearing mainly at the injector periphery undergo secondary breakup by Rayleigh-Taylor instabilities. Time-resolved PIV is applied to quantify the droplet dynamics in the injector near field. Plots of instantaneous, mean, and root-mean-square droplet velocities are presented to reveal the secondary breakup process. Results show that the secondary atomization to produce fine and stable spray is complete within a few diameters from the injector exit. These superior characteristics of the FB injector are attractive to achieve clean combustion of different fuels in practical systems.

  14. Diagnostics and camera strobe timers for hydrogen pellet injectors

    International Nuclear Information System (INIS)

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  15. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  16. Acquisition system of tandem injector parameters

    International Nuclear Information System (INIS)

    The system centralizes all the parameters belonging to the accelerator injector. The acquisition center system reinforces an original device made of cameras and video receivers. Besides giving access to all the parameters of the ion source, the new system allows, in the ''OSCILLO'' mode, to visualize in real time any channel on the oscilloscope

  17. Challenges and Plans for the Ion Injectors

    CERN Document Server

    Manglunki, D

    2015-01-01

    We review the performance of the ion injector chain in the light of the improvements which will take place in the near future, and we derive the expected luminosity gain for Pb–Pb collisions in the collider during the HL-LHC era.

  18. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of ∼1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research

  19. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  20. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  1. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be rapidly scaled from small in-space applications [500-5,000 lbf (2.2 22.2 kN)] to large thrust engine applications [80,000 lbf (356 kN) and beyond]. The triaxial injector is also less sensitive to eccentricities, manufacturing tolerances, and gap width of many traditional coaxial and pintle injector designs. The triaxial-injector injection orifice configuration provides for high injection stiffness. The low parts count and relatively large injector design features are amenable to low-cost production.

  2. Transient beam dynamics in the Lawrence Berkeley Laboratory 2 MV injector

    International Nuclear Information System (INIS)

    A driver-scale injector for the heavy ion fusion accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (above 2 MV), high current (more than 0.8 A of K+) and low normalized emittance (less than 1 ? mm mrad). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator which provides strong (alternating gradient) focusing for the space-charge-dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun pre-injector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot alumino-silicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and to avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 ?s, and is reversed to turn off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several microseconds), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the particle-in-cell codes GYMNOS and WARP3D in a time-dependent mode. The generalization and its implementation is WARP3D of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented. (orig.)

  3. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  4. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    International Nuclear Information System (INIS)

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R and D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment.The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed.The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R and D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  5. SIPHORE: Conceptual Study of a High Efficiency Neutral Beam Injector Based on Photo-detachment for Future Fusion Reactors

    Science.gov (United States)

    Simonin, A.; Christin, L.; de Esch, H.; Garibaldi, P.; Grand, C.; Villecroze, F.; Blondel, C.; Delsart, C.; Drag, C.; Vandevraye, M.; Brillet, A.; Chaibi, W.

    2011-09-01

    An innovative high efficiency neutral beam injector concept for future fusion reactors is under investigation (simulation and R&D) between several laboratories in France, the goal being to perform a feasibility study for the neutralization of intense high energy (1 MeV) negative ion (NI) beams by photo-detachment. The objective of the proposed project is to put together the expertise of three leading groups in negative ion quantum physics, high power stabilized lasers and neutral beam injectors to perform studies of a new injector concept called SIPHORE (SIngle gap PHOto-neutralizer energy REcovery injector), based on the photo-detachment of negative ions and energy recovery of unneutralised ions; the main feature of SIPHORE being the relevance for the future Fusion reactors (DEMO), where high injector efficiency (up to 70-80%), technological simplicity and cost reduction are key issues to be addressed. The paper presents the on-going developments and simulations around this project, such as, a new concept of ion source which would fit with this injector topology and which could solve the remaining uniformity issue of the large size ion source, and, finally, the presentation of the R&D program in the laboratories (LAC, ARTEMIS) around the photo-neutralization for Siphore.

  6. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  7. Flash X-Ray Injector Study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C

    2004-03-26

    The study described in this report1 models the FXR injector from the cathode to the exit of the injector. The calculations are compared to actual experimental measurements, table 1. In these measurements the anode voltage was varied by changing the Marks-Bank charging voltage. The anode-cathode spacing was varied by adjusting the location of the cathode in hopes of finding an island of minimum emittance (none found). The bucking coil current was set for zero field on the cathode. In these measurements, a pepper-pot mask was inserted into FXR at beam bug 135 and viewed downstream via a wiggle probe diagnostic at cell gap J21, figure 1. The observed expansion of the beamlets passing through the mask of known geometric layout and hole size allow a calculation of the phase space beam properties.

  8. LS1 Report: injectors 2.0

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    Launched in 2009, the Accelerator Controls Renovation Project (ACCOR) will come to an end this year. It was brought in to replace the approximately 450 real-time control systems of the LHC injector complex, some of which were based on technology more than 20 years old.   One of the approximately 450 real-time systems that have been modified in the ACCOR project. These systems, which use special software and thousands of electronics boards, control devices that are essential to the proper functioning of the injectors – the radiofrequency system, the instrumentation, the injection kicker system, the magnets, etc. – and some of them were no longer capable of keeping pace with the LHC. As a result, they urgently needed to be upgraded. "In 2009, after assessing the new technology available on the market, we signed contracts with Europe's most cutting-edge electronics manufacturers," explains Marc Vanden Eynden, ACCOR Project Leader. We then quickly m...

  9. Progress on Lead Photocathodes for Superconducting Injectors

    CERN Document Server

    Smedley, John; Langner, Jerzy; Lefferts, Richard; Lipski, Andrzej; Rao, Triveni; Sekutowicz, Jacek; Strzyzewski, P

    2005-01-01

    We present the results of our investigation of bulk, electroplated and vacuum deposited lead as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the wavelength of the incident light, from 310 nm to 190 nm. Quantum efficiencies of 0.3% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  10. 30 degree injectors at hypervelocity conditions

    Science.gov (United States)

    Loomis, Mark P.; Zambrana, Horacio A.; Bogdanoff, David W.; Tam, Tim C.; Cavolowsky, John A.; Newfield, Mark E.; Bittner, Robert D.

    1992-01-01

    Results are presented of the first high-speed propulsion-related experiments performed in the NASA-Ames 16-Inch Shock Tunnel, designed to simulate combustor inlet conditions at approximately Mach 14. Results demonstrate the capability of the tunnel for high-speed propulsion testing and yield data on the performance of 30-deg flush wall injectors tested in the tunnel. The experimental results are compared with those of a CFD analysis.

  11. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  12. The electron test accelerator beam injector

    International Nuclear Information System (INIS)

    A beam chopper and buncher system has been designed to improve the capture efficiency and reduce the beam spill in the Electron Test Accelerator. The buncher increases the dc beam capture from 30 to 70%. 100% beam transmission through the accelerator structures is obtained with the chopper. This report describes results of experimental tests with the beam injector. Results from computer modeling and from measurements with prototypes that have led to the design of the beam chopper and buncher system are discussed

  13. The injector of the superconducting linac LISA

    International Nuclear Information System (INIS)

    The injector of the LNF project LISA (LInear Superconducting Accelerator) is a room temperature system, consisting of a 100 keV gun, a transport line with chopper and prebuncher systems, a capture section (a graded-? 2.5 GHz structure) which accelerates the beam to 1.1 MeV, and an isochronous and achromatic transport line which injects the beam into the SC-Linac after a ?-bending. The status of the project is presented

  14. Progress on lead photocathodes for superconducting injectors

    Energy Technology Data Exchange (ETDEWEB)

    John Smedley; Triveni Rao; Jacek Sekutowicz; Peter Kneisel; J. Langner; P. Strzyzewski; Richard Lefferts; Andrzej Lipski

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead plated cathode is underway.

  15. Adjustable Powder Injector For Vacuum Plasma Sprayer

    Science.gov (United States)

    Burns, D. H.; Woodford, W. H.; Mckechnie, T. N.; Mcferrin, D. C.; Davis, W. M.; Beason, G. P., Jr.

    1993-01-01

    Attachment for plasma spray gun provides four degrees of freedom for adjustment of position and orientation at which powder injected externally into plasma flame. Manipulator provides for adjustment of pitch angle of injection tube: set to inject powder at any angle ranging from perpendicular to parallel to cylindrical axis. Scribed lines on extension bar and manipulator indicate pitch angle of extension tube. Collar changed to adapt injector to different gun.

  16. Quantum interference hybrid spin-current injector

    OpenAIRE

    Giazotto, F.; Bergeret, F. S.

    2013-01-01

    We propose a quantum interference spin-injector nanodevice consisting of a superconductor-normal metal hybrid loop connected to a superconductor- ferromagnet bilayer via a tunneling junction. We show that for certain values of the applied voltage bias across the tunnel barrier and the magnetic flux through the loop, the spin-current can be fully polarized. Moreover, by tuning the magnetic flux, one can switch the sign of the spin polarization. This operation can be performed at frequencies wi...

  17. Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion

    International Nuclear Information System (INIS)

    Highlights: ? Effect of using diesel or biodiesel on injector hydraulic behavior has been analyzed. ? Single and main + post injections have been studied for different injection pressures. ? Higher viscosity affects needle dynamics, especially for low injection pressure. ? The post injection masses are lower for biodiesel fuel despite its higher density. ? Modified injector has been proposed to compensate the differences between the fuels. - Abstract: The influence of using biodiesel fuels on the hydraulic behavior of a solenoid operated common rail injection system has been explored by means of a one-dimensional model. This model has been previously obtained, including a complete characterization of the different components of the injector (mainly the nozzle, the injector holder and the electrovalve), and extensively validated by means of mass flow rate results under different conditions. After that, both single and multiple injection strategies have been analyzed, using a standard diesel fuel and rapeseed methyl ester (RME) as working fluids. Single long injections allowed the characterization of the hydraulic delay of the injector, the needle dynamics and the discharge capability of the couple injector-nozzle for the two fuels considered. Meanwhile, the effect of biodiesel on main plus post injection strategies has been evaluated in several aspects, such as the separation of the two injections or the effect of the main injection on the post injection fueling. Finally, a modification in the injector hardware has been proposed in order to have similar performances using biodiesel as the original injector configuration using standard diesel fuel.

  18. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D0 to the ITER plasma for pulse length of ?1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D-. This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  19. Lithium Pellet Injector Development for NSTX

    International Nuclear Information System (INIS)

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described

  20. Plans for ions in the injector complex

    International Nuclear Information System (INIS)

    The heavy ion beams required during the HL-LHC era will imply significant modifications to the existing injector chain. We review the various options, highlighting the importance of an early definition of the future needs and keeping in mind the compatibility with the rest of the future CERN physics programme. It appears that with the present injector complex, increasing the number of bunches seems to be the only route for a marginally higher luminosity, and at the expense of a longer LHC filling time. A solution exists to produce up to 3.5 times the current peak luminosity, i.e. about 7*1027 cm-2.s-1 at 7 ZTeV/c per beam, but it necessitates an upgrade of the beam production stage (ECR source and/or Linac3) and of the SPS injection kicker. If we are to implement the suggested improvements in order to reach the required Pb-Pb luminosity (provided the LHC can digest it), it is more than time to start the RnD on all parts of the injector chain. Ar and Xe will be available after LS1 (parameter list still to be defined and optimised) but other species, if desired, would come in addition, and require more studies, in particular a new source and pre-accelerator for deuterons, or safety and handling issues for Uranium

  1. RLIUP: Review of LHC and Injector Upgrade Plans

    CERN Document Server

    Zimmermann, F; RLIUP Workshop

    2014-01-01

    This report contains the Proceedings of the "Review of LHC and Injector Upgrade Plans" (RLIUP), held in the Centre de Convention, Archamps, France, 29–31 October 2013. The RLIUP examined the parameters of the LIU and HL-LHC projects following the experience and changes in the beam parameters experienced over the previous two years. It discussed which level of integrated luminosity will necessitate a replacement of the inner detectors and the insertions, the importance of reaching 3000 $fb^{-1}$ or the minimum integrated luminosity which would be tolerated. The main outcome of RLIUP is a staged path from the LHC performance at the end of 2012 to the required performance for the HL-LHC, along with a number of important recommendations on the work organization of the coming years.

  2. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels

    International Nuclear Information System (INIS)

    Highlights: ? Fluid-dynamic simulation of injection process with biodiesel and diesel fuel. ? Coupling of Eulerian and Lagrangian spray CFD simulations. ? Effects of hole shaping: conical versus cylindrical and edge rounding effects. ? Prediction of spray characteristics improved using inner nozzle flow data. ? Explanation of mass flow differences depending on hole shape and fuel type. -- Abstract: The aim of the paper is the comparison of the injection process with two fuels, a standard diesel fuel and a pure biodiesel, methyl ester of soybean oil. Multiphase cavitating flows inside injector nozzles are calculated by means of unsteady CFD simulations on moving grids from needle opening to closure, using an Eulerian–Eulerian two-fluid approach which takes into account bubble dynamics. Afterward, spray evolutions are also evaluated in a Lagrangian framework using results of the first computing step, mapped onto the hole exit area, for the initialization of the primary breakup model. Two nozzles with cylindrical and conical holes are studied and their behaviors are discussed in relation to fuel properties. Nozzle flow simulations highlighted that the extent of cavitation regions is not much affected by the fuel type, whereas it is strongly dependent on the nozzle shape. Biodiesel provides a slightly higher mass flow in highly cavitating nozzles. On the contrary using hole shaped nozzles (to reduce cavitation) diesel provides similar or slightly higher mass flow. Comparing the two fuels, the effects of different viscosities and densities play main role which explains these behaviors. Simulations of the spray evolution are also discussed highlighting the differences between the use of fossil and biodiesel fuels in terms of spray penetration, atomization and cone-angle. Usage of diesel fuel in the conical convergent nozzle gives higher liquid penetration.

  3. The control and diagnostics system for the CEBAF injector

    International Nuclear Information System (INIS)

    The authors present the first experience with the CEBAF injector control and diagnostics system. The computer architecture of the control system has been described elsewhere. The injector system is a model for the CEBAF controls. A computer system controls the gun, the steering magnets, and the focusing elements, and in the near future also the injector rf system. The beam parameters such as current, position, and emittance are measured by various monitors and are automatically analyzed by the computer. 5 refs., 11 figs

  4. 2-MV electrostatic quadrupole injector for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Prost, L.; Seidl, P.A.

    2004-11-10

    High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.

  5. Letter of intent to build an off-axis detector to study νμ ---> νe oscillations with the NuMI neutrino beam

    International Nuclear Information System (INIS)

    The NuMI neutrino beam line and the MINOS experiment represent a major investment of US High Energy Physics in the area of neutrino physics. The forthcoming results could decisively establish neutrino oscillations as the underlying physics mechanism for the atmospheric νμ deficit and provide a precise measurement of the corresponding oscillation parameters, dmsq23 and sinsq2t23 neutrino sector may well be within our reach. The full potential of the NuMI neutrino beam can be exploited by complementing the MINOS detector, under construction, with a new detector(s) placed at some off-axis position and collecting data in parallel with MINOS. The first phase of the proposed program includes a new detector, optimized for νe detection, with a fiducial mass of the order of 20 kton and exposed to neutrino and antineutrino beams. In a five year run its sensitivity to the numutonue oscillations will be at least a factor of ten beyond the current limit. The future direction of the program will depend on the results of this first phase, but it is very likely that it will be a combination of a significant increase of the neutrino beam intensity via an upgraded proton source and an increase of the detector mass by a factor of five or so. Depending on the circumstances, the goals of Phase II may be a further increase of the sensitivity of a search for numutonue oscillations, or, perhaps, a measurement of the CP violating phase δ in the lepton sector

  6. RF Design of the TW Buncher for the CLIC Drive Beam Injector

    CERN Document Server

    Shaker, H

    2015-01-01

    The CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the first report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This report includes the design of the power couplers. The fundamental mode beam loading and higher order modes effect were preliminary studied.

  7. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    International Nuclear Information System (INIS)

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160?MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5?kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6–7.5?kHz frequency peak is proposed to be the natural frequency for the injector’s main internal fuel line. Other spectral peaks were found between 35 and 45?kHz for certain nozzle geometries, suggesting that these particular frequencies may be linked to nozzle dependent cavitation phenomena. (paper)

  8. First coupled CH power cavity for the FAIR proton injector

    Energy Technology Data Exchange (ETDEWEB)

    Brodhage, Robert; Vinzenz, Wolfgang [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Almomani, Ali; Ratzinger, Ulrich [Institut fuer Angewandte Physik, Uni Frankfurt (Germany)

    2014-07-01

    For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. In 2012, the assembly and tuning of the first power prototype was finished. Until then, the cavity was tested with a preliminary aluminum drift tube structure, which was used for precise frequency and field tuning. In 2013 the final drift tube structure has been welded inside the main tanks and the preparation for copper plating has taken place. This paper reports on the main tuning and commissioning steps towards that novel type of DTL, and it shows the latest results measured on a fully operational and copper plated CH proton cavity.

  9. First coupled CH power cavity for the FAIR proton injector

    Energy Technology Data Exchange (ETDEWEB)

    Brodhage, Robert; Ratzinger, Ulrich [IAP, Frankfurt University, Frankfurt am Main (Germany); Vinzenz, Wolfgang; Clemente, Gianluigi [GSI, Darmstadt (Germany)

    2013-07-01

    For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. In Summer 2012, the assembly and tuning of the first power prototype was finished. Until then, the cavity was tested with a preliminary aluminum drift tube structure, which was used for precise frequency and field tuning. Before Spring 2013 the final drift tube structure will be welded inside the main tanks and the preparation for copper plating will take place. This paper reports on the main tuning and commissioning steps towards that novel type of DTL and it shows the latest results measured on a fully operational CH proton cavity.

  10. CFD Simulation of Liquid Rocket Engine Injectors

    Science.gov (United States)

    Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)

    2001-01-01

    Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.

  11. High-brightness injectors for hadron colliders

    International Nuclear Information System (INIS)

    The counterrotating beams in collider rings consist of trains of beam bunches with NB particles per bunch, spaced a distance SB apart. When the bunches collide, the interaction rate is determined by the luminosity, which is defined as the interaction rate per unit cross section. For head-on collisions between cylindrical Gaussian beams moving at speed ?c, the luminosity is given by L = NB2?c/4??2SB, where ? is the rms beam size projected onto a transverse plane (the two transverse planes are assumed identical) at the interaction point. This beam size depends on the rms emittance of the beam and the focusing strength, which is a measure of the 2-D phase-space area in each transverse plane, and is defined in terms of the second moments of the beam distribution. Our convention is to use the rms normalized emittance, without factors of 4 or 6 that are sometimes used. The quantity ? is the Courant-Synder betatron amplitude function at the interaction point, a characteristic of the focusing lattice and ? is the relativistic Lorentz factor. Achieving high luminosity at a given energy, and at practical values of ? and SB, requires a large value for the ratio NB2/var-epsilon n, which implies high intensity and small emittance. Thus, specification of the luminosity sets the requirements for beam intensity and emittance, and establishes the requirements on the performance of the injector to the collider ring. In general, for fixed NB, the luminosity can be increased if var-epsilon n can be reduced. The minimum emittance of the collider is limited by the performance of the injector; consequently the design of the injector is of great importance for the ultimate performance of the collider

  12. The new-generation of solenoid injectors equipped with pressure-balanced pilot valves for energy saving and dynamic response improvement

    International Nuclear Information System (INIS)

    Highlights: • Distinct pilot-valve setups, typical of modern Common Rail injectors, are compared. • The analysis focuses on injector static leakages and the injector dynamic response. • Experimental results are integrated or explained by means of simulation data. - Abstract: A numerical–experimental analysis on a new generation of hydraulically controlled servo solenoid injectors for Euro 6 Diesel engine applications has been carried out. The main innovation of these high-pressure injectors is the replacement of the standard pilot-valve configuration with a pressure-balanced layout. The new setup is aimed at reducing clearance leakages and at improving the dynamic response of the needle to the electrical command. A previously developed advanced one-dimensional code for the simulation of Common Rail injection systems has been adapted to simulate the innovative injectors. In particular, electromagnetic, hydraulic and mechanical submodels have been set up for the pressure-balanced pilot-valve simulation. The validated numerical model of the injector has been applied to investigate the mechanics of the pressure-balanced pilot-valve and the sensitivity of the dynamic response of the needle to some of the innovative pilot-valve layout design parameters. Furthermore, the developed simulation tool has been used to examine the real impact that the replacement of the standard pilot-valve layout with a pressure-balanced one could have on the injected flow-rate performance. The comparative investigation between the standard and the innovative pilot-valve has been completed with an analysis of their experimental static leakages. A comparison has also been made with static leakages measured for hydraulically-controlled servo piezoelectric injectors. Finally, a simple and accurate thermodynamic flow model has been developed to predict static leakages in indirect-acting solenoid and piezoelectric injectors. This model has pointed out the significant dependence of static leakages on temperature and pressure

  13. X-33 Injector Ignition Single Cell Test

    Science.gov (United States)

    1997-01-01

    The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.

  14. Laser ignition in an LPP-injector

    Energy Technology Data Exchange (ETDEWEB)

    El-Rabii, H.; Rolon, J.C.; Lacas, F. [Ecole Centrale Paris, Chatenay-Malabry (France). Lab. EM2C Grande Voie des Vignes; Zaehringer, K. [Magdeburg Univ. (Germany). Lehrstuhl fuer Stroemungsmechanik und Stroemungstechnik

    2005-07-01

    Laser-induced spark ignition is an alternative way for ignition compared to conventional electrical spark ignition. The feasibility of laser spark ignition of a lean premixed prevaporized injector, similar to those used in low-NO{sub x} air jet engines is show in this paper. Liquid n-heptane is used as fuel in preheated air with a high level of turbulence. Starting form the theory of the ignition process, special attention is given to the minimal ignition energies for different positions in the combustion chamber. Shadowgraphy visualisation and spontaneous emission of ignition events is presented and discussed. (orig.)

  15. The LELIA induction injector: First results

    International Nuclear Information System (INIS)

    LELIA is an induction accelerator designed and built at CESTA for FEL applications. The objective of this program is to produce a high-brightness and high-average-power electron beam. An injector (1.5 MeV, 1.5 kA, 50 ns flat top pulse) is now under test. It uses an Osmium dispenser cathode and ten induction cells driven by a high voltage pulse generator (150 kV, 60 ns, 2 ?). It is able to work at high repetition rate (1 KHz). Initial operation began in June last year. Beam characteristics have ben measured and compared with numerical simulations

  16. Fuel-injector/air-swirl characterization

    Science.gov (United States)

    Mcvey, J. B.; Kennedy, J. B.; Russell, S.

    1988-01-01

    Experimental data on the characteristics of the spray produced by a gas-turbine engine airblast fuel injector are reported. The data acquired include the mass-flux distribution measured by use of a high-resolution spray patternator; the gas-phase velocity field measured by use of a two-component laser Doppler velocimeter, and the liquid droplet size and velocity distributions measured by use of a single-component phase-Doppler anemometer. The data are intended for use in assessments of two-phase flow computational methods as applied to combustor design procedures.

  17. Numerical analysis of coaxial swirl injectors

    Science.gov (United States)

    Canino, James Vincent

    A growing recognition exists in the United States that injector dynamics play a pivotal role in the combustion instabilities of some Liquid Rocket Engines (LREs). Russian researchers believe injector dynamics can lead to unsteady mass flow from the injector to the combustion chamber resulting in unsteady heat release. Unsteady heat release coupled with the chamber modes, could cause combustion instability and the destruction of the rocket. The research described herein focused on the use of computational fluid dynamics to describe the frequency and amplitude of unsteady mass flow rate from a gas-centered coaxial swirl injector with varying geometries and fluid properties. An incompressible model, therefore, was utilized to investigate the effects of density ratio, liquid swirl velocity, liquid film thickness, collar thickness, and recess length. Present findings showed that the frequency at which the liquid film oscillates increases as the density ratio and collar thickness increase, decreases as the film thickness and liquid swirl velocity increases, and is unaffected by the recess length. Thus, the frequency seems dependent on the behavior of the vortex shedding/reattachment from the collar and the dynamic pressure imbalance on the liquid surface. The vortex behavior has been included as an important parameter for determining the behavior of the film given that the collar thickness affects the frequency. Since these studies lead to the belief that the vortex dynamics aft of the collar are important, a more fundamental study concerning the vortex dynamics behind a splitter plate/post was undertaken. For this study a compressible model was utilized to investigate the effects of momentum ratio, axisymmetry, the presence of a wall near the splitter, and swirl. Shedding frequency was found to increase as the momentum ratio varies from unity. Furthermore, axisymmetry reduced the shedding frequency over all momentum ratios. The presence of a wall near the splitter, in contrast, increased the shedding frequency when the higher momentum stream was adjacent to the wall. Finally, swirl caused complex interactions aft of the splitter rendering distinct trends in shedding frequency difficult to discern for high amounts of swirl.

  18. Control system of SPring-8 injector LINAC

    International Nuclear Information System (INIS)

    In the present accelerators, it is necessary for us to construct the advanced control system. Because the beam specification is requested to get higher quality. The SPring-8 injector LINAC, will be completed in 1996, has also some requirements and future plans which except for the injection. Whatever requests, the control system have to keep up with a efficient improvement. It means that the control system must be constructed a flexible one. In this case, we have carried out the LINAC control system in accordance with the present state of the Software Technology. In this paper, the status of our software project which accord with the Software Technology is described. (author)

  19. MAINE AQUIFERS

    Science.gov (United States)

    AQFRS24 contains polygons of significant aquifers in Maine (glacial deposits that are a significant ground water resource) mapped at a scale 1:24,000. This statewide coverage was derived from aquifer boundaries delineated and digitized by the Maine Geological Survey from data com...

  20. The development of neutral injectors at Fontenay-aux-Roses

    International Nuclear Information System (INIS)

    The devices studied at Fontenay-aux-Roses in order to develop more and more powerful neutral injectors for the heating of toroidal fusion experiments are described: a periplasmatron to increase the intensity of the beam, energy-recovery systems to improve the efficiency of the injectors, and water-cooled extraction grids necessary to lengthen the injection pulse to seconds

  1. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  2. Study on mechanism of condensation heat transfer of water jet in steam injector. Radiation between waves on the jet surface and heat transfer

    International Nuclear Information System (INIS)

    Characteristics of a steam injector and steam condensation phenomena on water jet surface in the steam injector were experimentally examined. In visual experiments of behavior of the water jet in the steam injector, many large waves were observed on the water jet surface. The waves showed the tendency to grow as those proceeded downstream. Direct steam condensation on to the water jet surface in the steam injector was mainly controlled by radial heat transport in the water jet. The radial heat transport in the water jet was considerably more effective than that in the usual turbulent heat transport in a pipe. It was pointed out that this highly effective radial heat transport mechanism was created by local circulation in the water jet that was produced by waves on the water jet surface. Waves on the jet surface ware examined. Based on it, the heat transfer correlation of the jet flow accompanying the direct condensation of steam on the surface was proposed. (author)

  3. Supersonic gas injector for plasma fueling

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Kugel, H W; Kaita, R; Roquemore, A L; Bell, M; Blanchard, W; Bush, C; Gernhardt, R; Gettelfinger, G; Gray, T; Majeski, R; Menard, J; Provost, T; Sichta, P; Raman, R

    2005-09-30

    A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low field side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples and five pickup coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 4 x 10{sup 21} particles/s, comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 0.33 MPa. The deuterium jet Mach number of about 4, and the divergence half-angle of 5{sup o}-25{sup o} have been measured in laboratory experiments simulating NSTX environment. In initial NSTX experiments reliable operation of the SGI and all mounted diagnostics at distances 1-20 cm from the plasma separatrix has been demonstrated. The SGI has been used for fueling of ohmic and 2-4 MW NBI heated L- and H-mode plasmas. Fueling efficiency in the range 0.1-0.3 has been obtained from the plasma electron inventory analysis.

  4. Supersonic gas injector for plasma fueling

    International Nuclear Information System (INIS)

    A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low field side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples and five pickup coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 4 x 1021 particles/s, comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 0.33 MPa. The deuterium jet Mach number of about 4, and the divergence half-angle of 5o-25o have been measured in laboratory experiments simulating NSTX environment. In initial NSTX experiments reliable operation of the SGI and all mounted diagnostics at distances 1-20 cm from the plasma separatrix has been demonstrated. The SGI has been used for fueling of ohmic and 2-4 MW NBI heated L- and H-mode plasmas. Fueling efficiency in the range 0.1-0.3 has been obtained from the plasma electron inventory analysis

  5. Multi-beam injector development at LBL

    International Nuclear Information System (INIS)

    LBL is developing a multi-beam injector that will be used for scaled accelerator experiments related to Heavy Ion Fusion. The device will produce sixteen 0.5 Amp beams of C+ at 2 MeV energy. The carbon arc source has been developed to the point where the emittance is within a factor of four of the design target. Modelling of the source behavior to find ways to reduce the emittance is discussed. Source lifetime and reliability is also of paramount importance to us and data regarding the lifetime and failure modes of different source configurations is discussed. One half of the accelerating column has been constructed and tested at high voltage. One beam experiments in this half column are underway. The second half of the column is being built and the transition 2 MV experiments should begin soon. In addition to beam and source performance we also discuss the controls for the injector and the electronics associated with the source and current injection. 3 refs., 2 figs

  6. An improved injector bunching geometry for ATLAS

    Indian Academy of Sciences (India)

    Richard C Pardo; J Bogaty; B E Clifft; S Sherementov; P Strickhorn

    2002-12-01

    The bunching system of the ATLAS positive ion injector (PII) has been improved by relocating the harmonic buncher to a point signi?cantly closer to the second stage sine-wave buncher and the injector LINAC. The longitudinal optics design has also been modi?ed and now employs a virtual waist from the harmonic buncher feeding the second stage sine-wave buncher. This geometry improves the handling of space charge for high-current beams, signi?cantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PII has been demonstrated as high as 80% of the injected dc beam while the population of the parasitic, unwanted rf bucket is typically less than 3% of the total transported beam. To remove this small residual parasitic component a new traveling-wave transmission-line chopper has been developed reducing both transverse and longitudinal emittance growth from the chopping process. This work was supported by the U.S. Department of Energy under contract W-31-109-ENG-38.

  7. Pneumatic pellet injector research at ORNL

    International Nuclear Information System (INIS)

    Advanced pneumatic-injector-based pellet fueling systems are under development at Oak Ridge National Laboratory (ORNL) for fueling magnetically confined plasmas. The general approach is that of producing and accelerating frozen hydrogen isotope pellets at speeds in the range from 1 to 2 km/s and higher. Recently, ORNL provided pneumatic-based pellet fueling systems for the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET), and a new simplified eight-shot injector has been developed for use on the Princeton Beta Experiment (PBX) and the Advanced Toroidal Facility (ATF). These long-pulse devices operate reliably at up to 1.5 km/s with pellet sizes ranging between 1 and 6 mm. In addition to these activities, ORNL is pursuing advanced technologies such as the electrothermal gun and the two-stage light-gas gun to achieve pellet velocities significantly in excess of 2 km/s and is carrying out a tritium proof-of-principle (TPOP) experiment in which the fabrication and acceleration of tritium pellets to 1.4 km/s were recently demonstrated. 27 refs., 10 figs

  8. Development of a high average current rf linac thermionic injector

    Science.gov (United States)

    Gold, S. H.; Ting, A.; Jabotinski, V.; Zhou, B.; Sprangle, P.

    2013-08-01

    Thermionic electron guns are capable of operating at high average currents in a variety of vacuum electronic applications, including conventional microwave tubes, but have been replaced by laser photocathode injectors for most applications requiring high-brightness electron beams. However, while laser photocathode guns are capable of providing the very high-brightness beams, they provide an increased level of system complexity and do not extrapolate well to injectors for high average current applications requiring high beam quality. We are developing a 714 MHz injector based on a gridded thermionic electron gun for these applications. This paper presents an experimental study, computer simulations, and analysis of the performance of an existing gridded thermionic electron gun as an injector prototype, and a design concept for an improved injector configuration based on these results.

  9. New repetitive pellet injectors for steady state fuelling

    International Nuclear Information System (INIS)

    Two new repetitive injectors providing a steady state plasma fuelling by an unlimited number of pellets have been designed for fusion devices. Several thousands of hydrogen pellets of 2 mm diameter each were made and accelerated to 0.8 km/s at the rate of 1 Hz and 2 Hz by an injector equipped with a screw extruder. The extruder had a 5 cm3 working volume and was used for a continuous extrusion of over 250 cm3 of solid hydrogen with an average production rate of 65 mm3/s. Another injector consisted of ten pipe guns with porous units producing solid hydrogen pellets for 5-9 s in every barrel. Over one thousand hydrogen pellets of 2.4 mm diameter were accelerated to 1 km/s in this injector. The injector designs and experimental results are presented. (author)

  10. Error analysis and lattice improvement for the C-ADS Injector-I

    CERN Document Server

    Meng, Cai; Tang, Jingyu

    2013-01-01

    The injector (Scheme-I) of the C-ADS linac is a 10-mA 10-MeV proton linac working in CW mode. It is mainly comprised of a 3.2-MeV room-temperature 4-vane RFQ and twelve superconducting single-spoke cavities housed in a long cryostat. Error analysis including alignment and field errors, static and dynamic ones for the injector are presented. Based on detailed numerical simulations, an orbit correction scheme has been designed. It shows that with correction the rms residual orbit errors can be controlled within 0.3 mm and a beam loss rate of 1.7*10^-6 is obtained. To reduce the beam loss rate further, an improved lattice design for the superconducting spoke cavity section has been studied.

  11. Can the proton injectors meet the HL-LHC requirements after LS2?

    International Nuclear Information System (INIS)

    The LIU project has as mandate the upgrade of the LHC injector chain to match the requirements of HL-LHC. The present planning assumes that the upgrade work will be completed in LS2, for commissioning in the following operational year. The known limitations in the different injectors are described, together with the various upgrades planned to improve the performance. The expected performance reach after the upgrade with 25 and 50 ns beams is examined. The project planning is discussed in view of the present LS1 and LS2 planning. The main unresolved questions and associated decision points are presented, and the key issues to be addressed by the end of 2012 are detailed in the context of the machine development programs and hardware construction activities. (authors)

  12. Multi-injector modeling of transverse combustion instability experiments

    Science.gov (United States)

    Shipley, Kevin J.

    Concurrent simulations and experiments are used to study combustion instabilities in a multiple injector element combustion chamber. The experiments employ a linear array of seven coaxial injector elements positioned atop a rectangular chamber. Different levels of instability are driven in the combustor by varying the operating and geometry parameters of the outer driving injector elements located near the chamber end-walls. The objectives of the study are to apply a reduced three-injector model to generate a computational test bed for the evaluation of injector response to transverse instability, to apply a full seven-injector model to investigate the inter-element coupling between injectors in response to transverse instability, and to further develop this integrated approach as a key element in a predictive methodology that relies heavily on subscale test and simulation. To measure the effects of the transverse wave on a central study injector element two opposing windows are placed in the chamber to allow optical access. The chamber is extensively instrumented with high-frequency pressure transducers. High-fidelity computational fluid dynamics simulations are used to model the experiment. Specifically three-dimensional, detached eddy simulations (DES) are used. Two computational approaches are investigated. The first approach models the combustor with three center injectors and forces transverse waves in the chamber with a wall velocity function at the chamber side walls. Different levels of pressure oscillation amplitudes are possible by varying the amplitude of the forcing function. The purpose of this method is to focus on the combustion response of the study element. In the second approach, all seven injectors are modeled and self-excited combustion instability is achieved. This realistic model of the chamber allows the study of inter-element flow dynamics, e.g., how the resonant motions in the injector tubes are coupled through the transverse pressure waves in the chamber. The computational results are analyzed and compared with experiment results in the time, frequency and modal domains. Results from the three injector model show how applying different velocity forcing amplitudes change the amplitude and spatial location of heat release from the center injector. The instability amplitudes in the simulation are able to be tuned to experiments and produce similar modal combustion responses of the center injector. The reaction model applied was found to play an important role in the spatial and temporal heat release response. Only when the model was calibrated to ignition delay measurements did the heat release response reflect measurements in the experiment. While insightful the simulations are not truly predictive because the driving frequency and forcing function amplitude are input into the simulation. However, the use of this approach as a tool to investigate combustion response is demonstrated. Results from the seven injector simulations provide an insightful look at the mechanisms driving the instability in the combustor. The instability was studied over a range of pressure fluctuations, up to 70% of mean chamber pressure produced in the self-exited simulation. At low amplitudes the transverse instability was found to be supported by both flame impingement with the side wall as well as vortex shedding at the primary acoustic frequency. As instability level grew the primary supporting mechanism shifted to just vortex impingement on the side walls and the greatest growth was seen as additional vortices began impinging between injector elements at the primary acoustic frequency. This research reveals the advantages and limitations of applying these two modeling techniques to simulate multiple injector experiments. The advantage of the three injector model is a simplified geometry which results in faster model development and the ability to more rapidly study the injector response under varying velocity amplitudes. The possibly faster run time is offset though by the need to run multiple cases to calibrate the

  13. Physics design of the injector source for ITER neutral beam injector (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, V.; Agostinetti, P.; Aprile, D.; Chitarin, G.; Fonnesu, N.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, c.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy)

    2014-02-15

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R and D physics program aimed to the development of the injector source are presented.

  14. Coaxial injector spray characterization using water/air as simulants

    Science.gov (United States)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  15. Injector for scattering measurements on fully solvated biospecies.

    Science.gov (United States)

    Weierstall, U; Spence, J C H; Doak, R B

    2012-03-01

    We describe a liquid jet injector system developed to deliver fully solvated microscopic target species into a probe beam under either vacuum or ambient conditions. The injector was designed specifically for x-ray scattering studies of biological nanospecies using x-ray free electron lasers and third generation synchrotrons, but is of interest to any application in which microscopic samples must be delivered in a fully solvated state and with microscopic precision. By utilizing a gas dynamic virtual nozzle (GDVN) to generate a sample-containing liquid jet of diameter ranging from 300 nm to 20 ?m, the injector avoids the clogging problems associated in this size range with conventional Rayleigh jets. A differential pumping system incorporated into the injector shields the experimental chamber from the gas load of the GDVN, making the injector compatible with high vacuum systems. The injector houses a fiber-optically coupled pump laser to illuminate the jet for pump-probe experiments and a hermetically sealed microscope to observe the liquid jet for diagnostics and alignment during operation. This injector system has now been used during several experimental runs at the Linac Coherent Light Source. Recent refinements in GDVN design are also presented. PMID:22462961

  16. The JET multi-pellet injector launcher

    International Nuclear Information System (INIS)

    Under a collaborative agreement between the Joint European Torus JET and the United States Department of Energy US DOE, JET and Oak Ridge National Laboratory (ORNL) jointly built a multi-pellet injector for fuelling and re-fuelling of the JET plasma. A three-barrel repetitive pneumatic pellet Launcher - built by ORNL - is attached to a JET pellet launcher-machine interface (in short: Pellet Interface) which is the subject of this paper. The present Launcher-Interface combination provides deuterium or hydrogen injection at moderate pellet speeds for the next two operational periods on JET. The Pellet Interface, however, takes into account the future requirements of JET. It was designed to allow the attachment of the high speed pellet launchers now under development at JET and complies with the requirements of remote handling and tritium operation. In addition, the use of tritium pellets is being considered

  17. Injector upgrade for the S-DALINAC

    International Nuclear Information System (INIS)

    The injector section of the S-DALINAC currently delivers beams of up to 10 MeV w ith a current of up to 60?A. The upgrade aims to increase both parameters to 14 MeV and 150?A in order to allow more demanding experiments. Therefor e, a modified cryostat module equipped with two new cavities is required. Due to an increase in rf power to 2 kW the old coaxial rf input couplers, being design ed for a maximum power of 500 W, have to be replaced by new waveguide couplers. We review the design principles and report on the fabrication of the cavities an d the whole module

  18. Ring injector of the IHEP accelerator

    International Nuclear Information System (INIS)

    IHEP synchrotron new injection system under construction including 1.5 GeV high-cyclic booster has been described. Booster intensity equals 1.7x1012 prot/pulse, pulse recurrence frequency equals 20 Hz. 30 Mev ''Ural-30'' linear accelerator is being developed as an injector for the booster. 220 t booster electromagnet consists of bending blocks amd quadrupole lenses, forming 12 periods of the triplet type system. Booster injection devices consist of a deffecting septum magnet and four ferrite pulsed full-aperture magnets. Acceleration is accomplished by nine accelerating stations with 10 kW maximum voltage. A beam envelope in a channel does not exceed +-6 cm at 6 cm-mrad beam vemittance at the booster oxtraction. The booster complex is being constructed near the existing accelerator, at the same ground level. Dimensions of a booster ring tunnel are 5x4.7 m2

  19. ATLAS positive-ion injector proposal

    International Nuclear Information System (INIS)

    The ATLAS facility will provide beams of heavy-ions through approximately mass 130. Energies provided will range from over 20 MeV/A for lighter ions down to approximately 5 MeV/A for mass 130. In discussions with our user group concerning future program needs, two major areas of focus emerged. The first was a desire to increase the beam intensities available by approximately a factor of ten beyond what is possible from our present negative-ion source and tandem injector for all ion species. The second was to obtain beams of at least 10 MeV/A energy for all possible masses through uranium. These features were desired without compromising the presnt qualities of the ATLAS facility: good beam quality, ease of operation, and continuous (DC) operation. The facility which has been proposed to address these goals consists of replacing the negative-ion injector and FN tandem with a positive-ion source and a superconducting linac of a new design which makes use of the high field gradients possible with superconducting structures. The positive-ion source proposed is an electron cyclotron resonance source mounted on a high-voltage platform, providing a 350-kV potential for preacceleration of the ions. This will produce, for example, uranium ions of 7 MeV with a velocity of .008c, assuming a charge state of 20+. The ions will be bunched in a two stage bunching system providing a pulsed beam with a time width of better than 0.4 ns for injection into the linac

  20. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  1. FEL injector control system on the base of EPICS

    CERN Document Server

    Salikova, T V; Kurkin, G Ya; Oreshkov, A D; Scheglov, M A; Tribendis, A G

    2001-01-01

    The control system of the 1.5 MeV FEL injector is built on the base of ported EPICS. It uses low-cost hardware: personal computers with the processor Intel x86 and CAMAC equipment produced by our institute. At present time, the distributed control system includes one Pentium at OPerator Interface (OPI) level and two IOC (Input Output Controllers) under supervision of the real time operating system LynxOS/x86 at the low-level. Each IOC is used for monitoring of autonomous parts of the injector. The first IOC operates the Radio Frequency (RF) system. The second IOC operates the injector equipment

  2. A new injector (NPI) for nuclear physics at SLAC

    International Nuclear Information System (INIS)

    A program of nuclear physics experiments has been approved at SLAC, and a new high average current injector is being added to the accelerator 650 meters upstream (Sector 25) of the accelerator output. The new injector (NPI) will produce beams in End Station A of up to 150 mA, 1.6 ?sec, 180 pps at energies from 0.5 to 6 GeV. NPI will also have 1 nsec short pulse capability for electron injection into SSRL. Work on NPI started in October of 1983, and the first beam from the new injector is scheduled for the Fall of 1984. (orig.)

  3. Simulation of transient effects in the heavy ion fusion injectors

    International Nuclear Information System (INIS)

    The authors have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced

  4. Performance and Modeling of the JLab IR FEL Upgrade Injector

    CERN Document Server

    Hernandez-Garcia, Carlos; Benson, S V; Herman-Biallas, George; Bullard, Don; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Jordan, Kevin; Neil, George; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Yunn, Byung; Zhang, Shukui

    2004-01-01

    The JLab IR Upgrade Injector has delivered up to 9.1 mA CW of electron beam current at 9 MeV. The injector is driven by a 350 kV DC Photocathode Gun. Injector behavior and beam-based measurements are in very good agreement with PARMELA simulations. The injected beam envelopes were established by measuring beam spot sizes and comparing them with those predicted by a transport matrix based model. The emittances were measured by fitting an initial trial beam matrix to the measured data. The injected bunch length was established by measuring the energy spread downstream of the Linac while operating at either side of crest.

  5. Evaluation Methods for Coolant Injector Performances and Severe Accident Phenomena

    International Nuclear Information System (INIS)

    This report provides the numerical simulation methods of the coolant injector in the direct cooling type core catcher, and evaluation methods of the severe accident phenomena. Firstly, the numerical simulation method for two-phase flow behaviour inside coolant injectors is established. Installation of the coolant injectors in the direct cooling type core catcher is one of the concepts to deliver cooling water mixed with inert gas such as nitrogen to prevent steam explosion while effectively cooling down the corium by direct heat transfer. Secondly, the evaluation tools of the severe accident phenomena such as in-vessel accident scenario, the DCH, steam explosion, MCCI, and containment pressurization are surveyed and discussed

  6. Multibarrel repetitive injector with a porous pellet formation unit

    International Nuclear Information System (INIS)

    New repetitive multibarrel pellet injector for steady-state fueling and diagnostics purposes in large fusion devices has been designed. The injector is intended to apply in the Large Helical Device at the National Institute for Fusion Science in Japan. The steady-state operation is provided by ten pipe-guns with unique porous units forming solid hydrogen pellets for 5 - 9 s in every barrel. Over one thousand hydrogen pellets have been formed and accelerated to 1.2 km/s at the different repetitive rates. The injector design and experimental results are presented. (author)

  7. Multibarrel repetitive injector with a porous pellet formation unit

    Energy Technology Data Exchange (ETDEWEB)

    Viniar, I. [Saint-Petersburg State Technical Univ., Saint-Petersburg (Russian Federation); Sudo, S.

    1997-07-01

    New repetitive multibarrel pellet injector for steady-state fueling and diagnostics purposes in large fusion devices has been designed. The injector is intended to apply in the Large Helical Device at the National Institute for Fusion Science in Japan. The steady-state operation is provided by ten pipe-guns with unique porous units forming solid hydrogen pellets for 5 - 9 s in every barrel. Over one thousand hydrogen pellets have been formed and accelerated to 1.2 km/s at the different repetitive rates. The injector design and experimental results are presented. (author)

  8. Pressure injectors for radiologists: A review and what is new

    Directory of Open Access Journals (Sweden)

    Inna K Indrajit

    2015-01-01

    Full Text Available Pressure Injectors are used routinely in diagnostic and interventional radiology. Advances in medical science and technology have made it is imperative for both diagnostic as well as interventional radiologists to have a thorough understanding of the various aspects of pressure injectors. Further, as many radiologists may not be fully conversant with injections into ports, central lines and PICCs, it is important to familiarize oneself with the same. It is also important to follow stringent operating protocols during the use of pressure injectors to prevent complications such as contrast extravastion, sepsis and air embolism. This article aims to update existing knowledge base in this respect.

  9. Pressure injectors for radiologists: A review and what is new.

    Science.gov (United States)

    Indrajit, Inna K; Sivasankar, Rajeev; D'Souza, John; Pant, Rochan; Negi, Raj S; Sahu, Samresh; Hashim, Pi

    2015-01-01

    Pressure Injectors are used routinely in diagnostic and interventional radiology. Advances in medical science and technology have made it is imperative for both diagnostic as well as interventional radiologists to have a thorough understanding of the various aspects of pressure injectors. Further, as many radiologists may not be fully conversant with injections into ports, central lines and PICCs, it is important to familiarize oneself with the same. It is also important to follow stringent operating protocols during the use of pressure injectors to prevent complications such as contrast extravastion, sepsis and air embolism. This article aims to update existing knowledge base in this respect. PMID:25709157

  10. Computation of Cavitating Flows in a Diesel Injector

    Energy Technology Data Exchange (ETDEWEB)

    Echouchene, F; Belmabrouk, H, E-mail: frchouchene@yahoo.fr, E-mail: hafedh.belmabrouk@fsm.rnu.t [Laboratoire d' electronique et de microelectronique, Departement de Physique, Faculte des Sciences de Monastir, 5000 (Tunisia)

    2010-11-15

    The flow inside Diesel injectors is important because of its effect on the spray and the atomization process in the combustion chamber. Due to huge stress at the orifice entrance, cavitation occurs in high-pressure Diesel injectors. In this study, we investigate numerically the cavitating steady flow in a Diesel injector. The mixture model based on a single fluid and the standard k-e turbulence model are used to simulate the multiphase turbulent flow. The effects of some geometrical parameters on both the discharge coefficient and the vapor fraction are presented.

  11. Progress in the study and construction of the TESLA test facility injector

    International Nuclear Information System (INIS)

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  12. Conceptional Design of Heavy Ion Linac Injector for HIRFL-CSRm

    CERN Document Server

    Zhang, Xiaohu; Xia, Jiawen; Yin, Xuejun; Yin, Dayu; Li, Xiaoni; Xie, Xiucui; Du, Heng; Li, zhongshan

    2013-01-01

    A room temperature heavy ion linac has been proposed as a new injector of CSRm (the main Cooler Storage Ring) at HIRFL (Heavy Ion Research Facility in Lanzhou), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ion with maximum mass to charge ratio of 7 and injection kinetic energy of 7.272MeV/u for CSRm, and the pulsed beam intensity is 3emA with the duty factor of 3%. Compared with the present cyclotron injector SFC (Sector Focusing Cyclotron), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48MHz 4-rod RFQ accelerates ion beam from 4keV/u to 300keV/u, which achieves the transmission efficiency of 95.3% with 3.07m long vanes. The phase advance has been taken into account to analysis the error tolerance, and parametric resonance have been carefully avoided by adjusting the structure parameters. KONUS IH-DTLs, which follow the RFQ, accelerate the ions up to the energy of 7.272MeV/u and inject into HIRFL-CSRm. Th...

  13. Numerical and experimental study of the beam dynamics of CANDELA photo-injector and associated instrumentation

    International Nuclear Information System (INIS)

    Laser triggered radiofrequency guns are the most luminous electron sources allowing to reach the performances requested by highly demanding applications like the e+/e-linear colliders and the short wave free electron lasers. CANDELA is a band S photo-injector triggered by a sub-picosecond laser. It allows reaching peak currents of hundred of amperes at average energies higher than 2 MeV. The original concept of two accelerating cavities aims at minimizing the transverse and longitudinal emittances following the Gao's principles. From practical reasons the operating parameters, particularly the laser pulse duration, do not correspond to those considered in the design. Hence, numerical simulations were performed to evaluate the gun's performances in experimental environment. The study of a stabile injector operation resulted in evolutions with consequences in the phase control systems implying the laser and the HF (Hyper Frequency) source. The beam transverse and longitudinal characteristics have been measured as a function of the main parameters i.e., the beam charge and the phase shift between the laser and the HF wave. Measurements of the transverse emittance energy dispersion and wave packed duration are presented for several injector configurations. The systems of existing beam measurements have been studied to determine the resolution and the experimental conditions to fulfill, in order to suggest improvements for the CANDELA beam. The experiments with the beam have been compared with numerical simulations. Agreement was obtained within wide ranges of parameters for most of the characteristic beam quantities

  14. Structure and mixing properties of the near-injector region of nonevaporating pressure-atomized sprays

    Science.gov (United States)

    Ruff, Gary Allen

    A theoretical and experimental study of the dense-spray region of pressure-atomized nonevaporating sprays is described, emphasizing flows in the wind-induced and atomization breakup regimes. Large scale water jets were injected vertically downward into still air at atmospheric pressure. Injectors producing fully-developed turbulent pipe flow and slug flow exit conditions were considered. The applicability of the locally-homogeneous flow (LHF) approximation to predict flow properties in the near-injector region was also evaluated. It was found that mixing was strongly influenced by the degree of flow development at the injector exit as well as the breakup regime. The structure of the flow in the atomization breakup regime consisted of a liquid core surrounded by a drop-containing mixing layer with the inner portion of the mixing layer containing large irregularly-shaped liquid elements and drops. Even though the mean liquid volume fraction was high near the axis, the gas-containing region is relatively dilute at each instant, suggesting that drop formation and secondary drop breakup dominate the process in the mixing layer-not drop collisions. The velocities of large drops are generally much larger than small drops and the gas throughout the mixing layer providing direct evidence of significant separated flow effects. Conditions required for secondary drop breakup were found to exist mainly near the liquid surface. The LHF analysis gave encouraging predictions of dense-spray properties in the near-injector region for atomization breakup, including representation of flow effects wherever liquid volume fractions were greater than approximately 0.2. It was effective at high liquid volume fractions. The LHF analysis underestimates the velocity of the larger drops in the mixing layer and overestimates the rate of development of the spray in the more dilute spray regions.

  15. Injector for the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  16. Injector for the University of Maryland Electron Ring (UMER)

    International Nuclear Information System (INIS)

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline

  17. High Brightness Injectors Based On Photocathode DC Gun

    International Nuclear Information System (INIS)

    Sample results of new injector design method based on a photocathode dc gun are presented, based on other work analytically proving the validity of the emittance compensation scheme for the case even when beam bunching is involved. We have designed several new injectors appropriate for different bunch charge ranges accordingly. Excellent beam quality produced by these injectors clearly shows that a photocathode dc gun can compete with a rf gun on an equal footing as the source of an electron beam for the bunch charge ranging up to 2 nano Coulomb (nC). This work therefore elevates a dc gun based injector to the preferred choice for many ongoing high brightness accelerator projects considering the proven operational stability and high average power capability of the dc gun

  18. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K+) and low normalized emittance (< 1 ? mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  19. Radiation Environments and their Impact at the CERN's Injector Chain

    CERN Document Server

    De Carvalho Saraiva, Joao Pedro; CERN. Geneva. ATS Department

    2015-01-01

    Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its Injector Chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix the faults. This note describes the different radiation environments present along the CERN’s Injector Chain and the expected evolution over the next years with the ongoing LHC Injectors Upgrade (LIU) project. The available dosimetry and beam monitoring systems used to assess radiation levels are presented, outlining their respective pros and cons. The interplay between Monte Carlo simulations and the available radiation monitoring in the Injectors is also presented.

  20. 49 CFR 230.57 - Injectors and feedwater pumps.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... braced so as to minimize vibration....

  1. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  2. Numerical determination of injector design for high beam quality

    International Nuclear Information System (INIS)

    The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile

  3. Performance of the oxygen injector for the CERN Linac 1

    International Nuclear Information System (INIS)

    An injector system has been constructed to provide an oxygen beam for the CERN accelerators. An ECR source produces an O6+ ion beam, which is accelerated in an RFQ structure from 5.6 keV/u to 139.5 keV/u. The specifications of this preaccelerator are described and results of test measurements at GSI are presented. The oxygen injector is now installed at CERN. Preliminary experiences with oxygen and ?-particles are given. (orig.)

  4. Fuel injector utilizing non-thermal plasma activation

    Science.gov (United States)

    Coates, Don M. (Santa Fe, NM); Rosocha, Louis A. (Los Alamos, NM)

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  5. A pump-probe XFEL particle injector for hydrated samples

    OpenAIRE

    Weierstall, U.; Doak, R. B.; Spence, J. C. H.

    2011-01-01

    We have developed a liquid jet injector system that can be used for hydrated sample delivery at X-ray Free Electron Laser (XFEL) sources and 3rd generation synchrotron sources. The injector is based on the Gas Dynamic Virtual Nozzle (GDVN), which generates a liquid jet with diameter ranging from 300 nm to 20 {\\mu}m without the clogging problems associated with conventional Rayleigh jets. An improved nozzle design is presented here. A differential pumping system protects the vacuum chamber and...

  6. Buncher-cavities for the MYRRHA injector LINAC

    International Nuclear Information System (INIS)

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is currently being designed as an Accelerator Driven System (ADS) for demonstrating the feasibility of transmutation of high level nuclear waste. The MAX project (MYRRHA Accelerator eXperiment and development) is the corresponding R and D programme for the designated proton driver, which should provide the spallation target with a continuous wave proton beam of 600 MeV and 4 mA. The current layout of the injector design includes a 2-gap as well as a 5-gap room temperature rebunching structure operating at 176,1 MHz with total effective voltages of 116 kV and 270 kV, respectively, which both are being designed at IAP. For maximum power efficiency the 2-gap structure is going to be implemented as a quarter-wave coaxial resonator whereas the 5-gap structure will be a CH cavity, for which a prototype was already built within the scope of FRANZ. In order to optimize the performance and to provide a reliable cooling system and mechanical stability, RF, thermal and structural mechanics simulations are done mainly using CST Studio. Also the beam dynamics is going to be investigated using a new particle in cell tracking code called BENDER, which was developed at IAP.

  7. Buncher-cavities for the MYRRHA injector LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Koser, Daniel; Basten, Markus; Maeder, Dominik; Noll, Daniel; Podlech, Holger; Ratzinger, Ulrich; Schwarz, Malte; Seibel, Anja; Vossberg, Markus [Institute for Applied Physics IAP, Frankfurt am Main (Germany)

    2014-07-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is currently being designed as an Accelerator Driven System (ADS) for demonstrating the feasibility of transmutation of high level nuclear waste. The MAX project (MYRRHA Accelerator eXperiment and development) is the corresponding R and D programme for the designated proton driver, which should provide the spallation target with a continuous wave proton beam of 600 MeV and 4 mA. The current layout of the injector design includes a 2-gap as well as a 5-gap room temperature rebunching structure operating at 176,1 MHz with total effective voltages of 116 kV and 270 kV, respectively, which both are being designed at IAP. For maximum power efficiency the 2-gap structure is going to be implemented as a quarter-wave coaxial resonator whereas the 5-gap structure will be a CH cavity, for which a prototype was already built within the scope of FRANZ. In order to optimize the performance and to provide a reliable cooling system and mechanical stability, RF, thermal and structural mechanics simulations are done mainly using CST Studio. Also the beam dynamics is going to be investigated using a new particle in cell tracking code called BENDER, which was developed at IAP.

  8. The ATLAS tile calorimeter ROD injector and multiplexer board

    International Nuclear Information System (INIS)

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  9. The DEEPSSI project, design and modelling of steam injectors

    International Nuclear Information System (INIS)

    The DEEPSSI project is supported by the European commission in the frame of the 5th R and D framework programme. DEEPSSI is a research programme dealing with steam injectors. Among thermalhydraulic passive systems, the steam injectors (also called 'condensing ejectors' or 'steam jet pumps') are very interesting apparatus with very specific thermal-hydraulic quantities (high velocity, very low pressure). The envisaged reactor application is the Steam Generator Emergency FeedWater System (EFWS) of Pressurised Water Reactors (PWRs). The heart of this project is the development and the testing of an innovative steam injector design. Three experimental facilities are involved : CLAUDIA in France, IETI in Italy and IMP-PAN in Poland. In these facilities, different design options have been tested and some significant improvements of the initial design have been obtained. In addition to the experimental studies, the development of a steam injector computational model has been undertaken in order to model industrial systems based on steam injectors. The one-dimensional module of the system code CATHARE2 has been chosen to be the basis of this model. The first results obtained have confirmed the capabilities of CATHARE2 to describe the steam injector thermal-hydraulics

  10. The DEEPSSI project, design and modelling of steam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dumaz, P.; Geffraye, G.; Verloo, E. [CEA Cadarache, St Paul lez Durance (France)] [and others

    2003-07-01

    The DEEPSSI project is supported by the European commission in the frame of the 5{sup th} R and D framework programme. DEEPSSI is a research programme dealing with steam injectors. Among thermalhydraulic passive systems, the steam injectors (also called 'condensing ejectors' or 'steam jet pumps') are very interesting apparatus with very specific thermal-hydraulic quantities (high velocity, very low pressure). The envisaged reactor application is the Steam Generator Emergency FeedWater System (EFWS) of Pressurised Water Reactors (PWRs). The heart of this project is the development and the testing of an innovative steam injector design. Three experimental facilities are involved : CLAUDIA in France, IETI in Italy and IMP-PAN in Poland. In these facilities, different design options have been tested and some significant improvements of the initial design have been obtained. In addition to the experimental studies, the development of a steam injector computational model has been undertaken in order to model industrial systems based on steam injectors. The one-dimensional module of the system code CATHARE2 has been chosen to be the basis of this model. The first results obtained have confirmed the capabilities of CATHARE2 to describe the steam injector thermal-hydraulics.

  11. The DEEPSSI project, design, testing and modeling of steam injectors

    International Nuclear Information System (INIS)

    The DEEPSSI project is a steam injector research programme. Among thermal-hydraulic passive systems, the steam injectors (also called 'condensing ejectors' or 'steam jet pumps') are very interesting apparatus with very specific characteristics (high velocity, very low pressure). The envisaged reactor application is the Steam Generator Emergency FeedWater System (EFWS) of Pressurised Water Reactors (PWRs). The heart of this project is the development and the testing of an innovative steam injector design. Three experimental facilities are involved: CLAUDIA in France, IETI in Italy and IMP-PAN in Poland. In these facilities, different design options have been tested and some significant improvements of the initial design have been obtained. In addition to the experimental studies, the development of a steam injector computational model has been undertaken in order to model industrial systems based on steam injectors. The one-dimensional module of the system code CATHARE2 has been chosen to be the basis of this model. The first results obtained have confirmed the capabilities of CATHARE2 to describe the steam injector thermal-hydraulics

  12. Piezoelectric driven non-toxic injector for automated cell manipulation.

    Science.gov (United States)

    Huang, H B; Su, Hao; Chen, H Y; Mills, J K

    2011-01-01

    Stimulated by state-of-the-art robotic and computer technology, Intra Cytoplasmic Sperm Injection (ICSI) automation aims to scale and seamlessly transfer the human hand movements into more precise and fast movements of the micro manipulator. Piezo-drill cell injection, a novel technique using piezo-driven pipettes with a very small mercury column, has significantly improves the survival rates of ICSI process. It is found that complications are due, in large part, to toxicity of mercury and the damage to the cell membrane because of the lateral tip oscillations of injector pipette. In this paper, a new design of piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design centralizes the piezo oscillation power on the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. Detrimental lateral tip oscillations of the injector pipette are attenuated to a desirable level even without the help of mercury column. This mercury-free injector can sublime the piezoelectric driven injection technique to completely non-toxic level with great research and commercial application in gene injection, in-vitro fertilization, ICSI and drug development. PMID:21335794

  13. Liquid Methane/Oxygen Injector Study for Mars Ascent Engines

    Science.gov (United States)

    Trinh, Huu Phuoc

    1999-01-01

    As a part of the advancing technology of the cryogenic propulsion system for the Mars exploration mission, this effort aims at evaluating propellant injection concepts for liquid methane/liquid oxygen (LOX) rocket engines. Split-triplet and unlike impinging injectors were selected for this study. A total of four injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows, at MSFC. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure ranging from 320 to 510 and the mixture ratio from 1.5 to 3.5, were conducted. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability. Initial assessments of the test results showed that the injectors provided stable combustion and there were no injector face overheating problems under all operating conditions. The Raman scattering signal measurement method was successfully demonstrated for the hydrocarbon/oxygen reactive flow field. The near-injector face flow field was visually observed through the use of an infrared camera. Chamber wall temperature, high frequency chamber pressure, and average throat section heat flux were also recorded throughout the test series. Assessments of the injector performance are underway.

  14. Preparation of the SPS as LHC injector

    CERN Document Server

    Collier, Paul

    1998-01-01

    A major project (SLI) for the preparation the SPS in its role as the final link in the injector chain to the LHC was launched one year ago [1,2]. The major areas of work include the upgrade of the RF and the injection systems, together with the provision of a new extraction channel to serve ring 2 of the LHC. In addition, studies have been made on the ability of the SPS to meet the stringent trans verse and longitudinal beam requirements of the LHC. This has lead to several other programmes of work including upgrades to the beam instrumentation, the transverse damper and the shielding of over 8 00 inter-magnet pumping ports to reduce the impedance of the machine. The planning of the project is influenced by the continued operation of LEP and the proposed new long base-line neutrino facility (NGS). In addition, during the machine upgrades, the SPS must continue to deliver high quality proton beams to the fixed-target experimental community and for an extensive range of experimental detect or test beams. The ma...

  15. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3He separator, which was an integral part of the gun assembly, was capable of lowering 3He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  16. Streamlined Darwin methods for particle beam injectors

    International Nuclear Information System (INIS)

    Physics issues that involve inductive effects, such as beam fluctuations, electromagnetic (EM) instability, or interactions with a cavity require a time-dependent simulation. The most elaborate time-dependent codes self-consistently solve Maxwell's equations and the force equation for a large number of macroparticles. Although these full EM particle-in-cell (PIC) codes have been used to study a broad range of phenomena, including beam injectors, they have several drawbacks. In an explicit solution of Maxwell's equations, the time step is restricted by a Courant condition. A second disadvantage is the production of anomalously large numerical fluctuations, caused by representing many real particles by a single computational macroparticle. Last, approximate models of internal boundaries can create nonphysical radiation in a full EM simulation. In this work, many of the problems of a fully electromagnetic simulation are avoided by using the Darwin field model. The Darwin field model is the magnetoinductive limit of Maxwell's equations, and it retains the first-order relativistic correction to the particle Lagrangian. It includes the part of the displacement current necessary to satisfy the charge-continuity equation. This feature is important for simulation of nonneutral beams. Because the Darwin model does not include the solenoidal vector component of the displacement current, it cannot be used to study high-frequency phenomena or effects caused by rapid current changes. However, because wave motion is not followed, the Courant condition of a fully electromagnetic code can be exceeded. In addition, inductive effects are modeled without creating nonphysical radiation

  17. An Injector Test Facility for the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E., (ed.); /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  18. Development of a repetitive compact torus injector

    Science.gov (United States)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  19. Electrothermal plasma gun as a pellet injector

    International Nuclear Information System (INIS)

    The NCSU electrothermal plasma gun SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets, to determine the feasibility of the use of electrothermal guns as pellet injectors. The use of an electrothermal gun to inject frozen hydrogenic pellets requires a mechanism to provide protective shells (sabots) for shielding the pellet from ablation during acceleration into and through the barrel of the gun. The gun has been modified to accommodate acceleration of the plastic pellets using special acceleration barrels equipped with diagnostics for velocity and position of the pellet, and targets to absorb the pellet's energy on impact. The length of the acceleration path could be varied between 15 and 45 cm. The discharge energy of the electrothermal gun ranged from 2 to 6 kJ. The pellet velocities have been measured via a set of break wires. Pellet masses were varied between 0.5 and 1.0 grams. Preliminary results on 0.5 and 1.0 g pellets show that the exit velocity reaches 0.9 km/s at 6 kJ input energy to the source. Higher velocities of 1.5 and 2.7 km/s have been achieved using 0.5 and 1.0 gm pellets in 30 cm long barrel, without cleaning the barrel between the shots

  20. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 ?m diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 ?M) and linear ranges (between about 10 and 1000 ?M). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. PMID:25752271

  1. Injector for liquid fueled rocket engine

    Science.gov (United States)

    Cornelius, Charles S. (Inventor); Myers, W. Neill (Inventor); Shadoan, Michael David (Inventor); Sparks, David L. (Inventor)

    2000-01-01

    An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.

  2. Main findings

    International Nuclear Information System (INIS)

    Licensing regimes vary from country to country. When the license regime involves several regulators and several licenses, this may lead to complex situations. Identifying a leading organisation in charge of overall coordination including preparation of the licensing decision is a useful practice. Also, if a stepwise licensing process is implemented, it is important to fix in legislation decisions and/or time points and to identify the relevant actors. There is considerable experience in civil and mining engineering that can be applied when constructing a deep geological disposal facility. Specific challenges are, however, the minimization of disturbances to the host rock and the understanding of its long-term behavior. Construction activities may affect the geo-hydraulic and geochemical properties of the various system components which are important safety features of the repository system. Clearly defined technical specifications and an effective quality management plan are important in ensuring successful repository implementation which is consistent with safety requirements. Monitoring plan should also be defined in advance. The regulatory organization should prepare itself to the licensing review before construction by allocating sufficient resources. It should increase its competence, e.g., by interacting early with the implementer and through its own R and D. This will allow the regulator to define appropriate technical conditions associated to the construction license and to elaborate a relevant inspection plan of the construction work. After construction, obtaining the operational license is the most important and crucial step. Main challenges include (a) establishing sufficient confidence so that the methods for closing the individual disposal units comply with the safety objectives and (b) addressing the issue of ageing of materials during a 50-100 years operational period. This latter challenge is amplified when reversibility/retrievability is required. Managing concomitant construction of new galleries with continuing operation and/or closure in the existing galleries remains as another challenge. There is a need, during the project, to address targets very different in nature and which may potentially compete with each other. Alternative solutions are typically compared and evaluated with a view to lower potential impacts and risks to workers, people and the environment in the short and the long term to as low as reasonably practicable. This is often called 'radiological optimisation'. In repository development, the set of target functions can be much broader, blurring the meaning of 'optimisation'. The visibility and importance to optimisation for licensing varies from country to country, and it may take different names

  3. Physics design of the injector source for ITER neutral beam injector (invited).

    Science.gov (United States)

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented. PMID:24593568

  4. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P.A.; /Fermilab; Bromberg, C.; /Michigan State U.; Lu, C.; McDonald, T.; /Princeton U.; Gallagher,; Mann, A.; Schneps, J.; /Tufts U.; Cline, D.; Sergiampietri, F.; Wang, H.; /UCLA; Curioni, A.; Fleming, B.T.; /Yale U.; Menary, S.; /York U., Canada

    2005-09-01

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC) [2], which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in {nu}{sub e} charged current interactions can be maintained at an efficiency of 80%. Backgrounds for {nu}{sub e} appearance searches from neutral current events with a {pi}{sup 0} are reduced well below the {approx} 0.5-1.0% {nu}{sub e} contamination of the {nu}{sub {mu}} beam [3]. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC [4], a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept [5] based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very preliminary cost estimate for a 50-kton detector is $100M (unloaded) [6]. Continuing R&D will emphasize those issues pertaining to implementation of this very large scale liquid argon detector concept. Key hardware issues are achievement and maintenance of argon purity in the environment of an industrial tank, the assembly of very large electrode planes, and the signal quality obtained from readout electrodes with very long wires. Key data processing issues include an initial focus on rejection of cosmic rays for a surface experiment. Efforts are underway at Fermilab and a small number of universities in the US and Canada to address these issues with the goal of embarking on the construction of industrial-scale prototypes within one year. One such prototype could be deployed in the MiniBooNE beamline or in the NuMI surface building where neutrino interactions could be observed. These efforts are complementary to efforts around the world that include US participation, such as the construction of a LArTPC for the 2-km detector location at T2K [7]. The 2005 APS neutrino study [1] recommendations recognize that ''The development of new technologies will be essential for further advances in neutrino physics''. In a recent talk to EPP2010, Fermilab director P. Oddone, discussing the Fermilab program, states on his slides: ''We want to start a long term R&D program towards massive totally active liquid Argon detectors for extensions of NOvA''. [8]. As such, we are poised to enlarge our R&D efforts to realize the promise of a large liquid argon detector for neutrino physics.

  5. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    Science.gov (United States)

    Crua, Cyril; Heikal, Morgan R.

    2014-12-01

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the natural frequency for the injector’s main internal fuel line. Other spectral peaks were found between 35 and 45 kHz for certain nozzle geometries, suggesting that these particular frequencies may be linked to nozzle dependent cavitation phenomena.

  6. Impact of palm biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NOx emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  7. General layout of the 17 MeV injector for MYRRHA

    OpenAIRE

    Podlech, Holger; Amberg, Michael; Klein, Horst; Mäder, Dominik; Busch, Marco; Ratzinger, Ulrich; Schempp, Alwin; Tiede, Rudolf; Vossberg, Markus; Zhang, Chuansheng

    2011-01-01

    The MYRRHA Project (Multi Purpose Hybrid Reactor for High Tech Applications) at Mol/belgium will be a user facility with emphasis on research with neutron generated by a spallation source. One main aspect is the demonstration of nuclear waste technology using an accelerator driven system. A superconducting linac delivers a 4 mA, 600 MeV proton beam. The first accelerating section is covered by the 17 MeV injector. It consists of a proton source, an RFQ, two room temperature CH cavities and 4 ...

  8. Flow-induced Vibration of SSME Main Injector Liquid-oxygen Posts

    Science.gov (United States)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1985-01-01

    The liquid-oxygen (LOX) posts are exposed to hot hydrogen flowing over the tubes on its way to the combustion chamber. Fatigue cracking of some LOX posts was observed after test firing of the SSMEs. A current design modification consists of attaching impingement shields to the LOX posts in the outer row. The modification improved the vibration/fatigue problem of the LOX posts, but resulted in an increased pressure drop that ultimately shortened the life expectancy of other components. A fundamental study of vibration of the LOX posts was initiated to understand the flow-induced vibration problem and to develop techniques to avoid detrimental vibrational effects with the overall objective of improving engine life. This effort, including an assessment of the problem, scoping calculation and experiment, and a work plan for an integrated theoretical/experimental study of the problem is summarized.

  9. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    OpenAIRE

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the ...

  10. Conceptual SPL RF Main Power Coupler design

    CERN Document Server

    Montesinos, Eric

    2011-01-01

    While the upgrade plans of the LHC injectors had to be reduced in scope in 2010, the Superconducting Proton Linac (SPL) remains a fundamental element of plans for a possible future neutrino facility. Prototyping work is therefore continuing at CERN and the current focus is on the test of a first four cavity SPL-like cryomodule with full power. This report summarizes the parameters for the Main Power Coupler design as discussed and approved within the ‘Review of SPL RF power couplers’, held at CERN in March 2010.

  11. How far from correct is the use of adrenaline auto-injectors? A survey in Italian patients.

    Science.gov (United States)

    Ridolo, Erminia; Montagni, Marcello; Bonzano, Laura; Savi, Eleonora; Peveri, Silvia; Costantino, Maria Teresa; Crivellaro, Mariangiola; Manzotti, Giuseppina; Lombardi, Carlo; Caminati, Marco; Incorvaia, Cristoforo; Senna, Gianenrico

    2015-12-01

    Self-administered adrenaline through an auto-injector is the main out-of-hospital treatment for anaphylaxis, and patients should be trained to promptly and correctly use the device. The aim of the study was to verify the proper use of the device and the correct drug administration, and to identify possible misuse by patients. In seven Italian Allergy clinics, patients who were previously provided with self-injectable adrenaline were recruited at the follow-up visit required for the renewal of their prescription. All patients completed a questionnaire covering details of their allergic reactions, and knowledge of the device. The correct use was verified by the physician using a trainer with a four-step examination. 242 patients were included; 46 patients (18 %) did not always carry the auto-injector, and 35 patients (14 %) reported situations in which they were doubtful about whether to use adrenaline. Only 39 % of patients properly managed the device, while some patients (6 %) failed in all four steps. The majority of patients considered it appropriate to use adrenaline at the onset of respiratory symptoms (56 %). The factor most closely related to proper use of the device was the education of the patient (p = 0.03), while age and the time from first prescription did not affect the ability to properly use the auto-injector. Even though accurate training is conducted, many patients are still unable to properly use the adrenaline auto-injector in case of anaphylaxis. Allergists should review the instructions provided to the patients every time a renewal of the auto-injector is prescribed. PMID:25990486

  12. Deuteron injector for Peking University Neutron Imaging Facility project

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D{sup +} ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A {phi}5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D{sup +} beam that passed through the {phi}5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16{pi} mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  13. Study on two-phase flow dynamics in steam injectors

    International Nuclear Information System (INIS)

    Analytical and experimental studies have been conducted on large-scale steam injectors for a next-generation reactor. The steam injectors are simple, compact, passive steam jet pumps for a steam-injector-driven passive core injection system (SI-PCIS) or steam-injector-driven primary loop recirculation system (SI-PLR). In order to check the feasibility of such large-scale steam injectors, we developed the separate-two-phase flow models installed in the PHOENICS Code, and scale-model tests were conducted for both SI-PCIS and SI-PLR. A 1/2 scale SI-PCIS model achieved a discharge pressure of almost 8 MPa with 7 MPa steam and 0.4 MPa water, and a 1/5 scale SI-PLR model attained a discharge pressure of 12.5 MPa with 3 MPa steam and 7 MPa water. Both results are in good agreement with the analysis, confirming the feasibility of both systems. The systems will help to simplify the next generation of BWRs. (author)

  14. An Injector for the Variable Specific Impulse Magnetoplasma Rocket

    Science.gov (United States)

    Glover, T. W.; Chang-Diaz, F. R.; Squire, J. P.; Chan, A. A.

    1997-11-01

    We present a summary of progress on the development of a plasma injector for NASA's VASIMR (Variable Specific Impulse Magnetoplasma Rocket) engine. The plasma rocket constrains a flowing plasma in an asymmetric magnetic bottle and exhausts it through a magnetic nozzle to produce thrust. The injector is a plasma source located on the axis of symmetry, forward of the series of coils forming the constraining magnetic field. The injector is intended to produce a well-collimated jet of highly ionized plasma which will enter the central cell of the machine through its forward mirror. The prototype design is based on that of a Lorentz Force Accelerator developed as a thruster by the electric propulsion research group at Princeton. Our investigation focuses on the effects of the rocket's magnetic field on the operation of the injector, the effect of a local magnetic field on the discharge behavior, and the effectiveness of discharge initiation by glow discharge versus initiation by ECRH. We evaluate the performance of this prototype injector by comparing the characteristics of the plasma it inserts into the central cell of the engine with the characteristics called for in the design of the plasma rocket.

  15. Viability of $\\Delta m^2\\sim$ 1 eV$^2$ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines

    CERN Document Server

    Karagiorgi, G; Conrad, J; Shaevitz, M H; Sorel, M

    2009-01-01

    This paper examines sterile neutrino oscillation models in light of recently published results from the MiniBooNE Experiment. The new MiniBooNE data include the updated neutrino results, including the low energy region, and the first antineutrino results, as well as first results from the off-axis NuMI beam observed in the MiniBooNE detector. These new global fits also include data from LSND, KARMEN, NOMAD, Bugey, CHOOZ, CCFR84, and CDHS. Constraints from atmospheric oscillation data have been imposed.

  16. Operation of the repeating pneumatic injector on TFTR and design of an 8-shot deuterium pellet injector

    International Nuclear Information System (INIS)

    The repeating pneumatic hydrogen pellet injector, which was developed at the Oak Ridge National Laboratory (ORNL), has been installed and operated on the Tokamak Fusion Test Reactor (TFTR). The injector combines high-speed extruder and pneumatic acceleration technologies to propel frozen hydrogen isotope pellets repetitively at high speeds. The pellets are transported to the plasma in an injection line that also serves to minimize the gas loading on the torus; the injection line incorporates a fast shutter valve and two stages of guide tubes with intermediate vacuum pumping stations. A remote, stand-alone control and data acquisition system is used for injector and vacuum system operation. In early pellet fueling experiments on TFTR, the injector has been used to deliver deuterium pellets at speeds ranging from 1.0 to 1.5 km/s into plasma discharges. First, single large (nominal 4-mm-dia) pellets provided high densities in TFTR (1.8 x 1014 cm-3 on axis); after conversion to smaller (nominal 2.7-mm-dia) pellets, up to five pellets were injected at 0.25-s intervals into a plasma discharge, giving a line-averaged density of 1 x 1014 cm-3. Operating characteristics and performance of the injector in initial tests on TFTR are presented

  17. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  18. Tritium pellet injector design for tokamak fusion test reactor

    International Nuclear Information System (INIS)

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper

  19. Linac injector options for a relativistic heavy ion synchrotron

    International Nuclear Information System (INIS)

    A growing interest in medical uses for high energy heavy ion beams has led to two recent proposals to build dedicated medical heavy ion synchrotrons. Linear accelerators are generally preferred as injectors for synchrotrons, but in the case of heavy ions with relatively low charge to mass ratios, the required linacs are extremely large, and/or complex, low frequency structures. Cyclotrons were therefore initially proposed as the injectors for the medical synchrotrons. Recently a new radio-frequency quadrupole (RFQ) linac structure has been developed. Its excellent capture, beam transport and acceleration characteristics for low velocity ion beams makes it ideally suited as a heavy ion synchrotron injector either alone or in combination with a drift tube linac

  20. NATIONAL HIGH MAGENTIC FIELD LABORATORY FEL INJECTOR DESIGN CONSIDERATION

    International Nuclear Information System (INIS)

    A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, nd is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility

  1. RHIC injector complex online model status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Schoefer,V.; Ahrens, L.; Brown, K.; Morris, J.; Nemesure, S.

    2009-05-04

    An online modeling system is being developed for the RHIC injector complex, which consists of the Booster, the AGS and the transfer lines connecting the Booster to the AGS and the AGS to RHIC. Historically the injectors have been operated using static values from design specifications or offline model runs, but tighter beam optics constraints required by polarized proton operations (e.g, accelerating with near-integer tunes) have necessitated a more dynamic system. An online model server for the AGS has been implemented using MAD-X [1] as the model engine, with plans to extend the system to the Booster and the injector transfer lines and to add the option of calculating optics using the Polymorphic Tracking Code (PTC [2]) as the model engine.

  2. Electron Beam Ion Source Pre-Injector Diagnostics

    International Nuclear Information System (INIS)

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  3. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  4. Final design of the beam source for the MITICA injector

    Science.gov (United States)

    Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M.; Boilson, D.; Graceffa, J.; Hemsworth, R. S.; Choi, C. H.; Marti, M.; Roux, K.; Singh, M. J.; Masiello, A.; Froeschle, M.; Heinemann, B.; Nocentini, R.; Riedl, R.; Tobari, H.; de Esch, H. P. L.; Muvvala, V. N.

    2016-02-01

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  5. A pump-probe XFEL particle injector for hydrated samples

    CERN Document Server

    Weierstall, U; Spence, J C H

    2011-01-01

    We have developed a liquid jet injector system that can be used for hydrated sample delivery at X-ray Free Electron Laser (XFEL) sources and 3rd generation synchrotron sources. The injector is based on the Gas Dynamic Virtual Nozzle (GDVN), which generates a liquid jet with diameter ranging from 300 nm to 20 {\\mu}m without the clogging problems associated with conventional Rayleigh jets. An improved nozzle design is presented here. A differential pumping system protects the vacuum chamber and an in-vacuum microscope allows observation of the liquid jet for diagnostics while it is being exposed to the X-ray beam. A fiber optically coupled pump laser illuminating the jet is incorporated for pump-probe experiments. First results with this injector system have been obtained at the LCLS.

  6. Subscale Injector Testing to Support J-2X Engine Development

    Science.gov (United States)

    Protz, Christopher; Elam, Sandy; Weber, Jim; Miller, Ken

    2008-01-01

    The J-2X engine being pursued for the Ares I will be a derivative of the J-2 engine developed by Pratt & Whitney Rocketdyne (PWR). As part of the engine development, a subscale injector was fabricated by PWR and hot-fire tested at NASA s Marshall Space Flight Center (MSFC) to evaluate performance data. This subscale injector had a reduced injector diameter and fewer elements than the full scale design, but the element density (#elements / injector area), and element geometries nearly identical to the full scale design. Three different materials were used for the LOX posts in order to test for durability. The subscale injector included 46 standard elements and 6 baffle elements, corresponding to the ratio of baffled elements to core elements in the full scale design. The baffle elements were included to demonstrate thermal compatibility of the baffles and to more closely represent the full scale performance. Fifteen hot-fire tests were conducted totaling over 200 seconds of mainstage time on the injector. Chamber pressures with oxygen/hydrogen propellants ranged from 870-1380 psig with mixture ratios ranging from 4.8-6.1. Fuel manifold inlet temperatures were varied from 190 to 300 R. Modular, water cooled, calorimeter chamber assemblies were used to provide heating rate data and evaluate the effects of characteristic length (L*). Performance was evaluated relative to the resulting characteristic velocity (C*) efficiency. Performance met the value required in order to proceed with this design for the full scale hardware. Hardware inspections show no evidence of cracking at the tip of the LOX post for any of the materials tested. Minor erosion of the baffle element tips was observed in the early testing. A design change was quickly implemented and tested, and this change resolved the issue. Development of the J-2X is continuing with this element density and design.

  7. Injector Control Unit for 750 keV DC accelerator

    International Nuclear Information System (INIS)

    The unit is designed for the supply of power to electron-gun of the 750 keV DC accelerator, floating at a potential of -750 kV w.r.t. earth. The filament current value is set by the beam current stabilizing unit located at ground potential. The stimulus signal is transmitted to the injector control unit through an optical communication link. The injector control unit generates a signal whose pulse-width is proportional to the filament current. This signal is then transmitted to the current stabilizing unit through another optical link where it is processed to realize a feedback signal for the filament current. (author)

  8. Development of a low swirl injector concept for gas turbines

    International Nuclear Information System (INIS)

    This paper presents a demonstration of a novel lean premixed low-swirl injector (LSI) concept for ultra-low NOx gas turbines. Low-swirl flame stabilization method is a recent discovery that is being applied to atmospheric heating equipment. Low-swirl burners are simple and support ultra-lean premixed flames that are less susceptible to combustion instabilities than conventional high-swirl designs. As a first step towards transferring this method to turbines, an injector modeled after the design of atmospheric low-swirl burner has been tested up to T=646 F and 10 atm and shows good promise for future development

  9. The Berkeley 2 MV heavy ion fusion injector

    International Nuclear Information System (INIS)

    This paper is an update on the development of the 500 mA per beam sixteen beam injector being built at LBL. An inductively graded Marx bank provides the acceleration potential on the electrostatic column. A carbon arc source provides the pulsed current for the injector. We report recent results on extracted beam parameters, column performance, the generator performance, and system design changes. The carbon ion beam is diagnosed with Faraday cups and with a double slit emittance measurement system. Controls for the final machine are also discussed. 7 refs., 4 figs

  10. High-speed gas injector for powerful plasma dynamic systems

    International Nuclear Information System (INIS)

    The paper describes the design features of gas injectors for the axial (parallel to the axis of the accelerator) and radial (perpendicular to the axis of the accelerator) working gas supply into the accelerator channel. The results of gas-dynamic studies of the injectors are presented. The amount of the working gas inlet was investigated as a function of gas pressure under the blocking valve element. A strong dependence of the amount of the injected working gas on the current value in the control coil was found

  11. Exergy analysis of two-phase steam-water injector

    OpenAIRE

    Trela, Marian; Kwidzinski, Roman; Butrymowicz, Dariusz

    2009-01-01

    Abstract Exergy analysis is used as a tool for the evaluation of exergy losses in a two-phase steam-water injector in an effort to improve its overall performance in respect to exit pressure. The aim of this paper is to study irreversible losses in the component parts of the injector, including the steam nozzle, water nozzle and diffuser as well as the two-phase region comprising the mixing chamber and the condensation shock wave. Calculations based on experimental data revealed th...

  12. The Effect of Resistance on Rocket Injector Acoustics

    Science.gov (United States)

    Morgan, C. J.

    2015-01-01

    Combustion instability, where unsteady heat release couples with acoustic modes, has long been an area of concern in liquid rocket engines. Accurate modeling of the acoustic normal modes of the combustion chamber is important to understanding and preventing combustion instability. This study evaluates the effect of injector resistance on the mode shapes and complex eigen-frequencies of an injector/combustion chamber system by defining a high Mach-flow form of the convective wave equation (see Eq. 1) in COMSOL Multiphysics' Coefficient Form PDE Mathematics Module.

  13. The BOEING double subharmonic electron injector - performance measurements

    International Nuclear Information System (INIS)

    A two stage subharmonic injector has been installed and tested on the Boeing S band linac. The injector is designed as a prototype front end for a high voltage linac for free electron laser research. This accelerator will require long macropulse trains of widely spaced high current micropulses. Single micropulse output beams of 1-2 nC, 10 ps width, 1% full width energy spread and normalized emittance of epsilon /SUB n/ = ???r/phi/ = 0.01 cm-rad have been measured. The data are in good agreement with model predictions

  14. Injector spray characterization of methanol in reciprocating engines

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L.; Naegeli, D. [Southwest Research Inst., San Antonio, TX (United States)

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  15. Transverse beam performance measurement at compact-ERL injector

    International Nuclear Information System (INIS)

    Commissioning operation of Compact-ERL injector has started in KEK. It consists of a photo-cathode electron gun, a super conducting accelerator, and a beam diagnostic line. The beam diagnostic line was built for proving the performance of the injector. It has an emittance measurement system with a slit scanner. We did a series of emittance measurements by changing bunch charge up to 7.7 pC/bunch. We also did the measurement at different conditions of initial pulse length aiming to check space charge effects. (author)

  16. Longitudinal beam performance measurement at compact-ERL injector

    International Nuclear Information System (INIS)

    Commissioning operation of Compact-ERL injector has started in KEK. It consists of a photo-cathode electron gun, a super conducting accelerator, and a beam diagnostic line. The beam diagnostic line was built for proving the performance of the injector. It has a bunch length monitor with an RF deflection cavity system, an energy spread measurement system at a dispersive section. We did a series of longitudinal beam characteristics measurements at bunch charge up to 7.7 pC/bunch. (author)

  17. Initial diagnostics commissioning results for the APS injector subsystem

    International Nuclear Information System (INIS)

    In recent months the first beams have been introduced into the various injector subsystems of the Advanced Photon Source (APS). An overview will be given of the diagnostics results on beam profiling, beam position monitors (BPMs), loss rate monitors (LRMs), current monitors (CMs), and photon monitors on the low energy transport lines, positron accumulator ring (PAR), and injector synchrotron (IS). Initial measurements have been done with electron beams at energies from 250 to 450 MeV and 50 to 400 pC per macrobunch. Operations in single turn and stored beam conditions were diagnosed in the PAR and IS

  18. High Current Ion Sources and Injectors for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  19. Injector modeling and achievement/maintenance of high brightness

    International Nuclear Information System (INIS)

    Viewgraphs for the workshop presentation are given. The presentation has three fundamental parts. In part one the need for numerical calculations is justified and the available computer codes are enumerated. The capabilities and features of the DPC computer code are the focal point in this section. In part two the injector design issues are discussed. These issues include such things as the beam optics and magnetic field profile. In part three the experimental results of two injector designs are compared with DPC predictions. 8 figs

  20. Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

    Directory of Open Access Journals (Sweden)

    Filipovi? Ivan

    2011-01-01

    Full Text Available The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions. The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely avoid a use of the coefficient of total losses inside the injector. At the same time, semi-empirical expressions have the universal constant that does not depend on the injector design.

  1. D1+ ion injector for a linear accelerator with quadrupole radiofrequency focusing

    International Nuclear Information System (INIS)

    A D1+ (H2+) ion injector for a linear accelerator with quadrupole radiofrequency focusing is described. The injector consists of an ion source (duoplasmatron, system for beam acceleration and shaping), system for matching the beam characteristics with the accelerator acceptance and vacuum chamber. The design characteristics of the injector are presented

  2. Space Shuttle main engine product improvement

    Science.gov (United States)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  3. How to Successfully Renovate a Controls System? - Lessons Learned from the Renovation of the CERN Injectors’ Controls Software

    CERN Document Server

    Kruk, G; Kulikova, O; Lezhebokov, V; Pace, M; Pera Mira, P; Roux, E; Wozniak, J Pawel

    2014-01-01

    Renovation of the control system of the CERN LHC injectors was initiated in 2007 in the scope of the Injector Controls Architecture (InCA) project. One of its main objectives was to homogenize the controls software across CERN accelerators and reuse as much as possible the existing modern sub-systems, such as the settings management used for the LHC. The project team created a platform that would permit coexistence and intercommunication between old and new components via a dedicated gateway, allowing a progressive replacement of the former. Dealing with a heterogeneous environment, with many diverse and interconnected modules, implemented using different technologies and programming languages, the team had to introduce all the modifications in the smoothest possible way, without causing machine downtime. After a brief description of the system architecture, the paper discusses the technical and non-technical sides of the renovation process such as validation and deployment methodology, operational applicatio...

  4. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    This paper reports on the TFTR tritium pellet injector (TPI) designed to provide a tritium pellet fueling capability with pellet speeds in the 1-to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector (DPI) is being modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle (TPOP) injector experiments conducted on the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller (PLC)

  5. Characteristics of modified CT injector for JFT-2M

    International Nuclear Information System (INIS)

    The HIT-CTI mark II compact toroid (CT) injector employed for the JFT-2M tokamak facility at the Japan Atomic Energy Research Institute (JAERI) has been upgraded to improve injection performance. The nozzle of the mark III injector now has a linear tube in place of the original focus cone to avoid rapid focus and deceleration, and the tapered outer electrode has been replaced with more gentle taper in the compression section in order to facilitate gradual compression. The dependence of CT velocity and electron density on poloidal bias flux and trigger time of CT acceleration have been investigated in the operable range of 70-230 km/s average CT velocity and electron density of 0.1-1.0 x 1022 m-3 at an accelerator bank voltage of 25 kV. The operation window is broader than that of the mark II injector. Emission of a CT plasmoid from the injector, and transport to the flux conserver as a high-density spheromak magnetic structure have also been confirmed

  6. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  7. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  8. Development and validation of a railgun hydrogen pellet injector model

    International Nuclear Information System (INIS)

    A railgun hydrogen pellet injector model is presented and its predictions are compared with the experimental data. High-speed hydrogenic ice injection is the dominant refueling method for magnetically confined plasmas used in controlled thermonuclear fusion research. As experimental devices approach the scale of power-producing fusion reactors, the fueling requirements become increasingly more difficult to meet since, due to the large size and the high electron densities and temperatures of the plasma, hypervelocity pellets of a substantial size will need to be injected into the plasma continuously and at high repetition rates. Advanced technologies, such as the railgun pellet injector, are being developed to address this demand. Despite the apparent potential of electromagnetic launchers to produce hypervelocity projectiles, physical effects that were neither anticipated nor well understood have made it difficult to realize this potential. Therefore, it is essential to understand not only the theory behind railgun operation, but the primary loss mechanisms, as well. Analytic tools have been used by many researchers to design and optimize railguns and analyze their performance. This has led to a greater understanding of railgun behavior and opened the door for further improvement. A railgun hydrogen pellet injector model has been developed. The model is based upon a pellet equation of motion that accounts for the dominant loss mechanisms, inertial and viscous drag. The model has been validated using railgun pellet injectors developed by the Fusion Technology Research Laboratory at the University of Illinois at Urbana-Champaign

  9. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  10. Development of H2 pellet injectors for industrial marketing

    International Nuclear Information System (INIS)

    1. Discussion of the construction of injector installation at ETA-BETA II. 2. Production and experience with two different ''pipe-guns''. One for large pellets, diameter/length = 4.5-5 mm/8-20 mm and one for small pellets, diameter/length = 2 mm/3-4 mm. (author) 27 ills., 39 refs

  11. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Rinolfi, L; Pittin, R; Zhou, F; Mouton, B; Miller, R; Yeremian, D

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  12. LBL Wideroe-based heavy ion injector project

    International Nuclear Information System (INIS)

    The LBL Wideroe-based high-intensity heavy-ion injector for the SuperHILAC will be operational by April 1981. It will provide several emA of low charge state ions up through uranium at high duty factor to the SuperHILAC. Several of the subsystems have already operated to specification and will be described

  13. Flash radiographic technique applied to fuel injector sprays

    International Nuclear Information System (INIS)

    A flash radiographic technique, using 50 ns exposure times, was used to study the pattern and density distribution of a fuel injector spray. The experimental apparatus and method are described. An 85 kVp flash x-ray generator, designed and fabricated at the Lawrence Livermore Laboratory, is utilized. Radiographic images, recorded on standard x-ray films, are digitized and computer processed

  14. Study on the characteristics of the supersonic steam injector

    International Nuclear Information System (INIS)

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper

  15. Study on the characteristics of the supersonic steam injector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka, E-mail: abe@kz.tsukuba.ac.jp; Shibayama, Shunsuke

    2014-03-15

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper.

  16. Magnetic shielding considerations for the ITER neutral beam injectors

    International Nuclear Information System (INIS)

    As a possible means for heating and current drive, negative ion based neutral beam injection is envisaged for ITER. In order to make the overall volume of the tritium containment as small as possible, the neutral beam injectors have to be placed close to the machine. In this region, the magnetic stray field from the tokamak is rather high (> 1 kG). It has to be shielded to less than 1 G in the source and neutraliser region of the injector. To achieve this reduction, the magnetic shield has to consist of three parts: Several tens of cms thick iron walls on both sides of the injector have to reduce the field by a factor of 2 to 3. A double walled screen of very soft iron around the injector vessel, again with a thickness of tens of cms, reduces the field to less than 10 G. This residual field can be compensated with actively controlled coils. The disturbance of the ITER magnetic field due to this shielding is less than 0.3 %, within the accuracy of the present calculations. (orig.)

  17. Initial operation of the new Bevatron local injector

    International Nuclear Information System (INIS)

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV dc platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2?lambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the SuperHILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs. 5 refs

  18. The Effect of Resistance on Rocket Injector Acoustics

    Science.gov (United States)

    Morgan, C. J.

    2015-01-01

    Combustion instability, where unsteady heat release couples with acoustic modes, has long been an area of concern in liquid rocket engines. Accurate modeling of the acoustic normal modes of the combustion chamber is important to understanding and preventing combustion instability. The injector resistance can have a significant influence on the chamber normal mode shape, and hence on the system stability.

  19. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Jefferson Lab, Newport News, VA; Hofler, Alicia S. [Jefferson Lab, Newport News, VA; Kazimi, Reza [Jefferson Lab, Newport News, VA

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are describe in this paper. The results of beam commissioning of the injector are also presented.

  20. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  1. Study liquid length penetration results obtained with a direct acting piezo electric injector

    International Nuclear Information System (INIS)

    Highlights: ► A direct acting injector capable of controlling needle lift has been used to determine liquid phase penetration. ► The influence of injection pressure, chamber density and chamber temperature have been measured. ► When needle lift is reduced the stabilized liquid length is shortened. ► The relationship between needle lift and liquid length makes needle lift as a new way to control the injection event. - Abstract: A state of the art prototype common rail injector featuring direct control of the needle by means of a piezo stack (direct acting) has been tested. Liquid phase penetration of the sprays in diesel engine-like conditions has been studied via imaging technique in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic conditions (up to 1000 K and 15 MPa). This state of the art injector fitted with a 7-hole nozzle, allows a fully flexible control on the nozzle needle movement, enabling various fuel injection rate typologies. The temporal evolution of the seven sprays has been studied recording movies of the injection event in evaporative conditions via Mie scattering imaging technique and using a high speed camera. The results showed a strong influence of needle position on the stabilized liquid length while the effect of the injection pressure is negligible: the decrease of the needle lift causes a pressure drop in the needle seat and thus a reduction in the effective pressure upstream of the orifices (in the nozzle sac). According to known literature the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on fuel velocity at the orifice outlet. Therefore, due to small change in the spray cone-angle, higher injection pressures give slightly lower liquid length. However, partial needle lifts has an opposite effect: when needle is partially lifted a dramatic increase of the spray cone-angle and a consequent reduction of the liquid length are observed. A deeper analysis revealed that low charges are linked also to higher hole to hole dispersion and flow instabilities. Needle vibrations caused by the fuel-needle interactions with fuel flow at partial needle lift and the onset of cavitation in the needle seat are likely the causes of this unexpected behavior. Finally, the effect of injection rate shaping on the transient liquid penetration is presented, showing the capability of the injector to control the liquid length along the injection event. This feature, when applied in a real engine, yields to develop new injection strategies to avoid fuel wall impingement

  2. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NOx emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  3. Expected performance in the injectors at 25 ns without and with Linac4

    CERN Document Server

    Rumolo, G; Damerau, H; Findlay, A; Hancock, S; Mikulec, B; Oeftiger, A

    2014-01-01

    The quality of the 25ns beams that can be delivered at the LHC injection is determined by the injection process into the PSB, as well as by space charge, collective interactions, electron cloud and RF power limitations in the PS and SPS. Using the information available from our present experience, the main goal of this paper is twofold: (1) to assess the intensity and brightness reach of the 25ns beams produced by the LHC injector chain with the two main schemes, before and after the connection of the PSB to Linac 4; and (2) to identify which bottlenecks will be likely to limit the performance with Linac 4. A few options to maximize the potential of the increased brightness provided by Linac 4, based on flattened bunch profiles at the PS injection or the use of alternative optics configurations, will be included in the analysis.

  4. LS1 “First Long Shutdown of LHC and its Injector Chains”

    CERN Multimedia

    Foraz, K; Barberan, M; Bernardini, M; Coupard, J; Gilbert, N; Hay, D; Mataguez, S; McFarlane, D

    2014-01-01

    The LHC and its Injectors were stopped in February 2013, in order to maintain, consolidate and upgrade the different equipment of the accelerator chain, with the goal of achieving LHC operation at the design energy of 14 TeV in the centre-of-mass. Prior to the start of this First Long Shutdown (LS1), a major effort of preparation was performed in order to optimize the schedule and the use of resources across the different machines, with the aim of resuming LHC physics in early 2015. The rest of the CERN complex will restart beam operation in the second half of 2014. This paper presents the schedule of the LS1, describes the organizational set-up for the coordination of the works, the main activities, the different main milestones, which have been achieved so far, and the decisions taken in order to mitigate the issues encountered.

  5. A proposed alternative for protecting ion sources of neutral injectors against damage from high voltage sparking

    International Nuclear Information System (INIS)

    Grid structures of ion sources for neutral injectors are frequently subject to high voltage breakdowns leading to deconditioning and/or permanent damage, if the energy deposited in the spark exceeds a limit in the order of 5 to 10 Joules. Besides interrupting the main current path by a series path tube within microseconds other measures have to be taken to limit the remaining stored energy (i.e. designing with respect to minimize the stray capacitance of the ion source, cable and auxiliaries) and to add other components in the electrical network feeding the ion source, which have to absorb most of this energy (e.g. core snubbers). In the protection system proposed the neutral injector is supplied by a HV transmission line with a ferromagnetic conductor of special design which is able to absorb a high amount of energy stored in the line, when a breakdown between the grids occurs. The design principle is discussed and results of a model experiment are presented. (author)

  6. Low-Cost Approach to the Design and Fabrication of a LOX/RP-1 Injector

    Science.gov (United States)

    Shadoan, Michael D.; Sparks, Dave L.; Turner, James E. (Technical Monitor)

    2000-01-01

    NASA Marshall Space Flight Center (MSFC) has designed, built, and is currently testing Fastrac, a liquid oxygen (LOX)/RP-1 fueled 60K-lb thrust class rocket engine. One facet of Fastrac, which makes it unique is that it is the first large-scale engine designed and developed in accordance with the Agency's mandated "faster, better, cheaper" (FBC) program policy. The engine was developed under the auspices of MSFC's Low Cost Boost Technology office. Development work for the main injector actually began in 1993 in subscale form. In 1996, work began on the full-scale unit approximately 1 year prior to initiation of the engine development program. In order to achieve the value goals established by the FBC policy, a review of traditional design practices was necessary. This internal reevaluation would ultimately challenge more conventional methods of material selection. design process, and fabrication techniques. The effort was highly successful. This "new way" of thinking has resulted in an innovative injector design, one with reduced complexity and significantly lower cost. Application of lessons learned during this effort to new or existing designs can have a similar effect on costs and future program successes.

  7. Progress in SLIP stacking and barrier bucket

    International Nuclear Information System (INIS)

    The slip stacking for pbar production has been operational in the Main Injector(MI) since December 2004 and has increased the beam intensity on the pbar target by more than 60%. We plan to use slip stacking for the NuMI neutrino experiment to effectively increasing the beam intensity to NuMI target by about a factor two in a MI cycle. In parallel with slip stacking, we plan to study fast momentum stacking using barrier buckets. One barrier rf system has been installed and tested, and a second system is being installed during the current shutdown. (author)

  8. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  9. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    Science.gov (United States)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  10. The detection of back-to-back proton pairs in Charged-Current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line

    CERN Document Server

    Acciarri, R; Asaadi, J; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Rameika, G; Rebel, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G P

    2014-01-01

    Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nu...

  11. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen/Liquid Methane Main Engine

    Science.gov (United States)

    Melcher, J. C.; Morehead, Robert L.

    2014-01-01

    The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.

  12. Equipment of the accelerator and injector

    International Nuclear Information System (INIS)

    Investigations are being done to understand the failure mechanism of insulating links from the laddertron. Several improvements were brought to the accelerator: new controls for the main pumping units allow automatic re-start; a shaft encoder was provided for the source wheel of ORION; an X steerer is available in the terminal; focusing of cluster ion beams is performed by an electrostatic quadrupole doublet. (authors)

  13. An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design

    Science.gov (United States)

    Tucker, Paul K.; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2007-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by simulating the sensitivity of performance and injector-driven thermal environments to. the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process.. This paper documents the status of an effort to understand and compare the predictive capabilities and resource requirements of a range of CFD methodologies on a set of model problem injectors. Preliminary results from a steady Reynolds-Average Navier-Stokes (RANS), an unsteady Reynolds-Average Navier Stokes (URANS) and three different Large Eddy Simulation (LES) techniques used to model a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants are presented. Initial observations are made comparing instantaneous results, corresponding time-averaged and steady-state solutions in the near -injector flow field. Significant differences in the flow fields exist, as expected, and are discussed. An important preliminary result is the identification of a fundamental mixing mechanism, accounted for by URANS and LES, but missing in the steady BANS methodology. Since propellant mixing is the core injector function, this mixing process may prove to have a profound effect on the ability to more correctly simulate injector performance and resulting thermal environments. Issues important to unifying the basis for future comparison such as solution initialization, required run time and grid resolution are addressed.

  14. Optimization of RF Compressor in the SPARX Injector

    CERN Document Server

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  15. Pernifer 36 Z for actuator casings in piezo injectors

    Energy Technology Data Exchange (ETDEWEB)

    Gehrmann, B. [R and D, ThyssenKrupp VDM GmbH, Altena (Germany)

    2006-07-01

    The ThyssenKrupp VDM material Pernifer 36 Z was developed for the production of an actuator sleeve as a part of a piezo injector used in the latest automotive engine technology. The sleeve material has a very low thermal expansion in the temperature range -60 to +200 C which matches the expansion characteristics of the piezo actuator both in terms of magnitude and temperature dependence. Only an actuator sleeve with very low thermal expansion within the very narrowly specified tolerance window guarantees the required functionality of the injector. In order to set the thermal expansion and mechanical properties to the exact requirements, in addition to the chemical composition, the complete process path from melting to rolling and annealing the strip, as well as the annealing of the actuator sleeve, was optimized with respect to the necessary process parameters. (orig.)

  16. Performance reach of the injector complex in 2012

    International Nuclear Information System (INIS)

    The operational beam performance in the injector chain has evolved considerably since the 2010 run and is much better than ever anticipated. Available margins have been well exploited and leave little room for further performance increases, unless changes as foreseen by the LIU project are implemented. The best operational performance to the LHC in 2011 was a beam with a bunch intensity of 1.5*1011 protons in 1.9 ?m 1? normalized, resulting in a beam brightness of 7.9*1010 p/b/?m. After careful adjustments of the beam in the injector chain the anticipated operational performance to the LHC in 2012 is a beam with a bunch intensity of 1.6*1011 protons in 2 ?m 1? normalized, resulting in a beam brightness of 8*1010 p/b/?m

  17. Therminoic gun control system for the CEBAF injector

    International Nuclear Information System (INIS)

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  18. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  19. High-current injector for the proposed SLAC linear collider

    International Nuclear Information System (INIS)

    A new, high-current injector has been designed to yield the 7.5 x 1010e- per S-band bunch necessary for the proposed linear collider. The injector consists of two prebunchers at the 16th subharmonic, a 0.75 c traveling wave buncher, and a three-meter velocity of light traveling wave structure. The e- beam is confined by a solonoidal magnetic field in the buncher and capture regions. A computer simulation similar to that used by Mavrogenes et al., has been used to calculate the bunching. The calculation indicates it is possible to achieve approx. 1 x 1011e- in 160 of S-band from a 15 amp gun pulse of 1.5 nsec duration

  20. HELIOS, the Linac Injector of SOLEIL Installation and First Results

    CERN Document Server

    Pottin, Bruno; Jousse, Dominique; Pastre, Jean-Luc; Pollina, Jean-Pierre; Setty, Andrew; Tordeux, Marie-Agnès

    2005-01-01

    HELIOS is the Hundred MeV Electron Linac Injector Of SOLEIL the new French SR facility. The Linac is constructed by THALES as a ?turn key? equipment on the basis of SOLEIL's APD design. The Linac injector is composed of a triode gun (90 kV, 500 mA), a prebuncher (10 kV, 200 W), a buncher (SW, 15 MeV, 5 MW) focalised by a solenoid and two accelerating sections (TW, 2pi/3, 45 MeV, 12 MW) feeded by 2 klystrons (35 MW). The major Linac components have been previously tested at THALES factory and the installation on the site has begun from October 2004. After a brief description of the building construction, the tests of the Linac components and operating modes will be detailed. The commissioning with beam is planned on March; the results on beam qualities will be presented: energy spread, emittance, and beam dynamics along the Linac.

  1. Status of the ATLAS Positive-Ion Injector Project

    International Nuclear Information System (INIS)

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make available at ATLAS essentially all beams including uranium. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides high charge state ions at microampere currents, and RF superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m, resulting in an essentially new method of acceleration for low-energy heavy ions. 5 refs., 7 figs., 1 tabs

  2. Increasing The Positron Capture Efficiency Of The Cesr Linac Injector

    CERN Document Server

    Fromowitz, D B

    2000-01-01

    At the Cornell Electron-positron Storage Ring (CESR) at Cornell University, injection of positrons requires a considerable fraction of the run time in which the positrons are used in experiments. Increasing the positron injection rate would allow more time for all experiments performed at CESR. Therefore, determining a method for an increased injection rate is the objective of this investigation. Several different projects were accomplished throughout the course of this research. Simulations were the bulk of this work and involved (1) modeling the creation of positrons, (2) determining the optics of the linac injector, (3) creating a simulation (utilizing the BMAD code) to transport positrons through the optics, and (4) validating the simulations so that predictions could be accepted. Measurements from the linac injector were used as parameters in the simulations, in addition to being central to the validations. Finally, the simulation parameters in the model were varied to maximize the capture efficiency: th...

  3. An improved ion source for the Levitron injector

    International Nuclear Information System (INIS)

    The 'duopigatron' plasma source used on the Culham Levitron Injector is limited in output due to instability, non-uniform plasma distribution across the diameter of the multi-aperture extraction array and magnetic interference from the Levitron coil system. The admittance of the machine is fixed by the coil geometry and increase of injected power can be achieved only by improving the injector brightness under all conditions of machine operation. A new source has been developed which is stable in operation, is insensitive to external magnetic fields and which significantly increases the available injected power. The source is also capable of being modulated at high frequency (approximately - 1 KHz), permitting the use of phase sensitive detection methods for certain machine experiments, eg. the measurement of the Okhawa current

  4. Development of lithium vapor injector for boundary control

    International Nuclear Information System (INIS)

    A lithium (Li) vapor injector for boundary control has been developed. A diverter covered with lithium is expected to reduce particle recycling. Recycling reduction is considered to be one of the triggers for the L-H transition. In this paper, the method of lithium dispersion is investigated under the assumption that the experiment is carried out in the Large Helical Device in National Institute for fusion Science, Japan (LHD). A performance test is performed on a prototype of the vapor injector. The amount of injected lithium was approximately 1% of the value expected from the vapor pressure data, due to the generation of lithium oxide. It is also found that nozzle temperature is quite important to suppress the Li dispersion.

  5. Numerical investigation of a laser gun injector at CEBAF

    International Nuclear Information System (INIS)

    A laser gun injector is being developed based on the superconducting rf technologies established at CEBAF. This injector will serve as a high charge cw source for a high power free electron laser. It consists of a dc laser gun, a buncher, a cryounit and a chicane. Its space-charge-dominated performance has been thoroughly investigated using the time-consuming but more appropriate point-by-point space charge calculation method in PARMELA. The notion of ''conditioning for final bunching'' will be introduced. This concept has been built into the code and has greatly facilitated the optimization of the whole system to achieve the highest possible peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies have shown that the design will perform better than the specifications. (orig.)

  6. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching signi?cantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the ?rst part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  7. Transmission of electrons inside the cryogenic pumps of ITER injector

    Science.gov (United States)

    Veltri, P.; Sartori, E.

    2016-02-01

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.

  8. Ignition sequence of an annular multi-injector combustor

    CERN Document Server

    Philip, Maxime; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  9. Development of gateway system using EPICS for KEKB injector linac

    International Nuclear Information System (INIS)

    EPICS gateway has been developed for the control system of the KEKB injector linac. EPICS clients can monitor the device status through this gateway with EPICS channel access network protocol. This system provides information of following devices: klystron, beam position monitor, vacuum, interlock and beam switch. These data are accumulated in Channel Archiver, which is one of EPICS clients, and are displayed by a Web browser. The gateway has a capability to treat over 4900 transactions per second practically. (author)

  10. Design of an injector for the ERL test facility

    International Nuclear Information System (INIS)

    Research and development towards an ERL light source is conducted by collaboration team of JAEA and KEK. In this paper, we present a design study of an injector for the ERL test facility, where critical technologies required for a future ERL light source will be demonstrated. Using a particle tracking simulation in combination with optimization routines, we can find an optimum design to produce an electron beam of 0.1 mm-mrad emittance. (author)

  11. Commissioning and operation of the Nuclear Physics Injector at SLAC

    International Nuclear Information System (INIS)

    The new Nuclear Physics Injector (NPI) approved for construction in October of 1983 was completed by September of 1984, and delivered short pulse beams for SPEAR ring checkout in mid-October. Long pulse beams of up to 1.6 microsecond length were also demonstrated. The paper describes the startup operation, reviews the performance characteristics, and discusses the beam transport optics used to deliver 1 to 4 GeV beams to nuclear physics experiments in End Station A

  12. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  13. Cylinder-Pressure Based Injector Calibration for Diesel Engines

    OpenAIRE

    König, Johan

    2008-01-01

    One way of complying with future emission restrictions for diesel engines is to use pressure sensors for improved combustion control. Implementation of pressure sensors into production engines would lead to new possibilities for fuel injection monitoring where one potential use is injector calibration. The scope of this thesis is to investigate the possibility of using pressure sensors for finding the minimal energizing time necessary for fuel injection. This minimal energizing time varies ov...

  14. A CFD STUDY OF CAVITATION IN REAL SIZE DIESEL INJECTORS

    OpenAIRE

    Patouna, Stavroula

    2012-01-01

    In Diesel engines, the internal flow characteristics in the fuel injection nozzles, such as the turbulence level and distribution, the cavitation pattern and the velocity profile affect significantly the air-fuel mixture in the spray and subsequently the combustion process. Since the possibility to observe experimentally and measure the flow inside real size Diesel injectors is very limited, Computational Fluid Dynamics (CFD) calculations are generally used to obtain the relevant informati...

  15. RF drivers for the Bevalac injector final stage RF amplifiers

    International Nuclear Information System (INIS)

    A 200Mhz intermediate power amplifier system, comprised of four separate chassis or cavity amplifiers is being developed as a driver stage for the Bevalac injector final RF amplifiers. These amplifiers are in to upgrade and replace the present systems with an expected increase in the available RF output power and the system reliability while reducing the associated operating costs. The system construction, design, and initial high power test results are presented

  16. 70 MeV injector auto tuning system handbook

    International Nuclear Information System (INIS)

    The handbook is in three sections: (1) description and location; (2) operating instructions; and (3) design notes on the tank and debuncher auto tuning systems for the 70 MeV injector. The purpose of the auto tuning system is to maintain the 'tune' of the four tanks and debuncher to within a few Hz, stabilizing against changes of temperature and other physical factors affecting the resonant frequency of the tanks. (U.K.)

  17. Health physics aspects of nuclear radiations from deuterium beam injectors

    International Nuclear Information System (INIS)

    Estimations are made for X-ray generation from the accelerator column of various neutral beam injectors. For the case of deuterium beam operation where 2.5-MeV D-D neutrons pose a serious health physics concern, neutron and tritium production rates from beam targets are calculated for different beam energies. Biological doses from these radiations and shielding requirements are discussed

  18. LFI: A Practical and General Library-Level Fault Injector

    OpenAIRE

    MARINESCU Paul; Candea, George

    2009-01-01

    Fault injection, a critical aspect of testing robust systems, is often overlooked in the development of general-purpose software. We believe this is due to the absence of easy-to-use tools and to the extensive manual labor required to perform fault injection tests. This paper introduces LFI (Library Fault Injector), a tool that automates the preparation of fault scenarios and their injection at the boundary between shared libraries and applications. LFI extends prior work by automatically pro...

  19. Design of a Pulse Injector for DME Propellant

    Science.gov (United States)

    Fukunaga, Masato; Kakami, Akira; Tachibana, Takeshi

    Recently, a pulsed plasma thruster (PPT), which has advantages such as smallness, lightweight and low power consumption, has attracted attention again for the application to small satellites. Liquid propellant like water or alcohol provides higher specific impulse in comparison with conventional Teflon propellant. Nevertheless, water and alcohol propellants have problems: higher freezing point or contamination to satellites by the exhaust gas. In this study, we propose to apply DME (Di-methyl ether) to the PPT's propellant. DME can be stored as liquid, and requires no pressurant because DME has a vapor pressure of 0.6 MPa at 298 K. DME would also be potentially usable as heat transfer media, coolant, working fluid of heat pipe etc. We have designed and tested a prototyped pulse injector supplying liquid DME to discharge channels of the PPTs. Experimental results showed that the pulse injector successfully injected liquefied DME of 1.16 mg/shot, which is equivalent to the mass shot of a high power class PPT. The shape of injected liquid was dependent on the duration of the gating-pulse applied to the injector; a group of droplets were provided with a 20 ms gating-pulse duration, and a single stream with 25 ms or longer gating-pulse duration.

  20. Hollow-Cone Spray Modeling for Outwardly Opening Piezoelectric Injector

    KAUST Repository

    Sim, Jaeheon

    2016-01-04

    Linear instability sheet atomization (LISA) breakup model has been widely used for modeling hollow-cone spray. However, the model was originally developed for inwardlyopening pressure-swirl injectors by assuming toroidal ligament breakups. Therefore, LISA model is not suitable for simulating outwardly opening injectors having string-like structures at wide spray angles. Furthermore, the varying area and shape of the annular nozzle exit makes the modeling difficult. In this study, a new spray modeling was proposed for outwardly opening hollow-cone injector. The injection velocities are computed from the given mas flow rate and injection pressure regardless of ambiguous nozzle exit geometries. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like liquid film spray. Liquid spray injection was modeled using Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the detailed model was implemented by user defined functions. It was found that the new model predicted the liquid penetration length and local SMD accurately for various fuels and chamber conditions.

  1. Understanding internal diesel injector deposits. New insights from laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Painsi, Monika; Grafl, Alexander [AC2T research GmbH, Wiener Neustadt (Austria)

    2013-06-01

    The formation of deposits inside the diesel injector can deteriorate the engine performance, causing decrease in power, higher fuel consumption and poor driveability. Among others, one type of deposits is described as polymeric organic material which may contain moieties attributed to additives. Such deposits and their formation mechanisms are investigated in the present study. In order to be able to prevent the deposition of insolubles inside the injector, it is necessary to understand the conditions leading to their formation. In a first approach, laboratory experiments were conducted to generate deposits from different fuel blends under different stressing conditions. For the understanding of the relevance of the different kinds of stress, the influence of pressure, shear stress induced by ultrasonic waves, oxidation and thermal stress were studied separately. An experimental method was established to attempt the generation of deposits similar to those found inside diesel injectors from engines, whilst recognising that there may not be a direct correlation with field issues. This method was then employed to study the behaviour and the interactions of different fuel components. (orig.)

  2. Understanding and improving the neutral beam injector conditioning problem

    International Nuclear Information System (INIS)

    The occurrence of high voltage electrical breakdowns between the ion beam extraction grids of a high-power neutral beam injector is one of the major factors that determine the performance of an injector. The tedious procedure of 'conditioning' the electrodes in up to several thousand shots and the stressing of electrical supplies by the fast transients are two examples illustrating the need for more understanding of the actual origins of the high-voltage breakdown and the desire to reduce their frequency, thereby shortening the down-times on an injector. This report is an attempt to systematically address these questions. It starts with a survey of the relevant literature relevant to gap breakdown in the extraction optics system. Considering the various possible reasons for breakdowns, different methods for conditioning are discussed as to their potential effectiveness and with respect to the necessary effort. The proposed experimental work to improve the conditioning time will then be described. Finally the results so far obtained will be reported. (orig.)

  3. Microcomputer control system for the SuperHILAC third injector

    International Nuclear Information System (INIS)

    A new control system using the latest technology in microcomputers will be used on the third injector at the SuperHILAC. It incorporates some new and progressive ideas in both hardware and software design. These ideas were inspired by the revolution in microprocessors. The third injector project consists of a high voltage pre-injector, a Wideroe type linear accelerator, and connecting beam lines, requiring control of 80 analog and 300 boolean devices. To solve this problem, emphasizing inexpensive, commercially available hardware, we designed a control system consisting of 20 microcomputer boards with a total of 700 kilobytes of memory. Each computer board using a 16-bit microprocessor has the computing power of a typical minicomputer. With these microcomputers operating in parallel, the programming can be greatly simplified, literally replacing software with hardware. This improves system response speed and cuts costs dramatically. An easy to use interpretive language, similar to BASIC, will allow operations personnel to write special purpose programs in addition to the compiled procedures

  4. New Beam Position Monitor System Design for the APS Injector

    Science.gov (United States)

    Lill, R.; Singh, O.; Arnold, N.

    2002-12-01

    Demands on the APS injector have evolved over the last few years to the point that an upgrade to the existing beam position monitor (BPM) electronics is required. The injector is presently being used as a source for both the low-energy undulator test line (LEUTL) project and the top-up mode of operation. These new requirements and the fact that many new rf receiver components are available at reasonable cost make this upgrade very desirable at this time. The receiver topology selected is a logarithmic processor, which is designed around the Analog Devices AD8313 log amplifier demodulation chip. This receiver will become the universal replacement for all injector applications measuring positions signals from 352 to 2856 MHz with minimum changes in hardware and without the use of a downconverter. The receiver design features integrated front-end gain and built-in self test. The data acquisition being considered at this time is a 100-MHz, 12-bit transient recorder digitizer. The latest experimental and commissioning data and results will be presented.

  5. Development of the centrifugal pellet injector for JT-60U

    International Nuclear Information System (INIS)

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D2 cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x1020 atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D? intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  6. Initial development of a blurry injector for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  7. High Brightness Hadron Injectors for TeV Colliders

    CERN Document Server

    Schindl, Karlheinz

    1998-01-01

    The ambitious performance goals of present and future hadron colliders call for a chain of injectors that are specially designed to provide high quality beams. However, for many reasons, not the least of which is cost, all these colliders make use of existing accelerator complexes that were not built for this new task and have therefore to be upgraded. A key issue such hadron injectors have to deal with is the preservation of transverse normalised emittance. Small transverse emittances are important because (i) the collider luminosity is proportional to N(N/e) and becomes larger for smaller emit tance; (ii) particle losses at injection into the collider are reduced, thus reducing the risk of quenching a superconducting magnet. Sources of emittance blow-up, such as mis-steering and mismatch be tween machines, space charge, instabilities and intra-beam scattering, are covered along with corrective measures. Problems common to the Tevatron, HERA-p, RHIC, LHC injector chains (the latter two in cluding heavy ion p...

  8. Microcomputer control system for the SuperHILAC third injector

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, H.D.; Magyary, S.B.; Glatz, J.; Selph, F.B.; Fahmie, M.P.; Ritchie, A.L.; Keith, S.R.; Stover, G.R.; Besse, L.J.

    1979-09-01

    A new control system using the latest technology in microcomputers will be used on the third injector at the SuperHILAC. It incorporates some new and progressive ideas in both hardware and software design. These ideas were inspired by the revolution in microprocessors. The third injector project consists of a high voltage pre-injector, a Wideroe type linear accelerator, and connecting beam lines, requiring control of 80 analog and 300 boolean devices. To solve this problem, emphasizing inexpensive, commercially available hardware, we designed a control system consisting of 20 microcomputer boards with a total of 700 kilobytes of memory. Each computer board using a 16-bit microprocessor has the computing power of a typical minicomputer. With these microcomputers operating in parallel, the programming can be greatly simplified, literally replacing software with hardware. This improves system response speed and cuts costs dramatically. An easy to use interpretive language, similar to BASIC, will allow operations personnel to write special purpose programs in addition to the compiled procedures.

  9. A Design Tool for Liquid Rocket Engine Injectors

    Science.gov (United States)

    Farmer, R.; Cheng, G.; Trinh, H.; Tucker, K.

    2000-01-01

    A practical design tool which emphasizes the analysis of flowfields near the injector face of liquid rocket engines has been developed and used to simulate preliminary configurations of NASA's Fastrac and vortex engines. This computational design tool is sufficiently detailed to predict the interactive effects of injector element impingement angles and points and the momenta of the individual orifice flows and the combusting flow which results. In order to simulate a significant number of individual orifices, a homogeneous computational fluid dynamics model was developed. To describe sub- and supercritical liquid and vapor flows, the model utilized thermal and caloric equations of state which were valid over a wide range of pressures and temperatures. The model was constructed such that the local quality of the flow was determined directly. Since both the Fastrac and vortex engines utilize RP-1/LOX propellants, a simplified hydrocarbon combustion model was devised in order to accomplish three-dimensional, multiphase flow simulations. Such a model does not identify drops or their distribution, but it does allow the recirculating flow along the injector face and into the acoustic cavity and the film coolant flow to be accurately predicted.

  10. Feasibility Study on a Neutral Beam Diagnostic Injector for TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, K. J.; Balbin, R.; Lopez-Fraguas, A.

    2003-07-01

    A diagnostic neutral beam system is proposed for the TJ-II stellarator. The main goal of installing such a system in TJ-II is to increase the signal to noise ratio and provide spatial resolution in diagnostic systems based on Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis, while also opening up new opportunities for physics studies in this magnetically confined plasma device. After outlining the unique characteristics of the TJ-II and reviewing available diagnostic injector systems, the compact system selected for TJ-II is presented together with estimates of the resulting increased signal levels Finally other important aspects are discussed, in particular its location and orientation, as well as possible solutions to avoid perturbing the TJ-II magnetic configurations in the heliac device. (Author) 31 refs.

  11. Determination of the longitudinal phase space distribution produced with the TTF photo injector

    International Nuclear Information System (INIS)

    The longitudinal phase space distribution of the beam produced with the rf photo injector of the TESLA Test Facility at DESY is mainly determined by the longitudinal laser pulse shape and the compression due to the rf acceleration field in the rf gun. The longitudinal electron distribution is measured with a high resolution streak camera using synchrotron radiation at the spectrometer dipole (E - 200 MeV). The same streak camera is used to measure the UV laser pulse shape. The longitudinal distribution of the laser and the electron beam can alternatively be determined by Fourier transform spectroscopy. The energy spread of the beam is determined by measuring the beam profile in the dispersive section using optical transition radiation. Dephasing of the superconducting accelerating cavities and variation of bunch compression parameters allow further measurements of the longitudinal phase space distribution. (authors)

  12. Simulation for a New Polarized Electron Injector (SPIN) for the S-DALINAC

    CERN Document Server

    Steiner, Bastian; Gräf, Hans Dieter; Richter, Achim; Roth, Markus; Weiland, Thomas

    2005-01-01

    The Superconducting DArmstädter LINear ACcelerator (S-DALINAC) is a 130 MeV recirculating electron accelerator serving several nuclear and radiation physics experiments. For future tasks, the 250 keV thermal electron source should be completed by a 100 keV polarized electron source. Therefore a new low energy injection concept for the S-DALINAC has to be designed. The main components of the injector are a polarized electron source, an alpha magnet, a Wien filter spin-rotator and a Mott polarimeter. In this paper we report over the first simulation and design results. For our simulations we used the TS2 and TS3 modules of the CST MAFIA (TM) programme which are PIC codes for two and three dimensions and the CST PARTICLE STUDIO (TM).

  13. Feasibility Study on a Neutral Beam Diagnostic Injector for TJ-II

    International Nuclear Information System (INIS)

    A diagnostic neutral beam system is proposed for the TJ-II stellarator. The main goal of installing such a system in TJ-II is to increase the signal to noise ratio and provide spatial resolution in diagnostic systems based on Charge Exchange Recombination Spectroscopy and Neutral Particle Analysis, while also opening up new opportunities for physics studies in this magnetically confined plasma device. After outlining the unique characteristics of the TJ-II and reviewing available diagnostic injector systems, the compact system selected for TJ-II is presented together with estimates of the resulting increased signal levels Finally other important aspects are discussed, in particular its location and orientation, as well as possible solutions to avoid perturbing the TJ-II magnetic configurations in the heliac device. (Author) 31 refs

  14. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    Science.gov (United States)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  15. Study on biodiesel heat transfer through self-temperature limit injector during vehicle cold start

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2015-01-01

    Full Text Available A type of Self-Temperature Limit-Injector (STL- injector is proposed to reduce the biodiesel consumption and emission in vehicle cold start process. The STL-injector is capable of fast raising fuel temperature, which helps improve the quality of diesel spray and its combustion efficiency. A STL-injector model is established with consideration of electro-mechanic coupling and fluid-structure interaction. A transient simulation is conducted using dynamic grid technology. The results show that STL-injector can effectively raise biodiesel temperature to 350K from 300K in 32 seconds. That is to say, adding STL-injector to existing biodiesel combustion system is an environment-friendly solution due to improving atomization and spray quality quickly.

  16. Measuring the needle lift and return timing of a CRDI injector using an accelerometer

    Directory of Open Access Journals (Sweden)

    Choong Hoon Lee

    2014-10-01

    Full Text Available The needle lift and return timing of a CRDI (common rail direct injection injector were investigated using an accelerometer and the Bosch injection rate measurement method. The Bosch method was used to measure the fuel injection rate shape when fuel was injected with several patterns. An accelerometer was mounted on the outside of the injector to catch the needle lift and return timing of the injector according to the switching signal of the injector driving voltage. The accelerometer accurately caught the timing of the injector needle lift and return for a single-injection pattern, but it could not for the second or third injection when multiple injections occurred. Only the first needle lift timing of the injector was caught with the injection rate shape obtained from the Bosch method, however, this method cannot identify any other lift or return timing values after the first lift timing.

  17. Third harmonic rf cavity for transition crossing in the Main Ring

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.

    1992-08-01

    This paper reports the present status and future plans of the implementation of the transition crossing RF harmonic system at Fermilab. The test is being carried out in the Main Ring (MR) which is used as a 150 GeV injector to the Tevatron.

  18. Third harmonic rf cavity for transition crossing in the Main Ring

    International Nuclear Information System (INIS)

    This paper reports the present status and future plans of the implementation of the transition crossing RF harmonic system at Fermilab. The test is being carried out in the Main Ring (MR) which is used as a 150 GeV injector to the Tevatron

  19. Injection Performance of a Gas-Solid Injector Based on the Particle Trajectory Model

    OpenAIRE

    Daolong Yang; Jianping Li; Changlong Du; Hongxiang Jiang; Kehong Zheng

    2015-01-01

    Gas-solid injectors are widely used feeding equipment in pneumatic conveying systems. The performance of a gas-solid injector has a significant influence on the type of application it can be employed for. To determine the key factors influencing the injection performance and address clogging problems in a gas-solid injector during a pneumatic conveying process, the particle trajectory model has been utilised as a means to perform simulations. In the particle trajectory model, the gas phase is...

  20. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium

  1. Thermal-hydraulic characteristics of water jet in steam injector. 2. Heat transfer mechanism of water jet

    International Nuclear Information System (INIS)

    Characteristics of thermal-hydraulic phenomena in the steam injector were examined. Analyses by using the STAR-CD code were also performed. Direct-Contact steam condensation heat transfer on a water jet was mainly controlled by the radial heat and the momentum transport in the water jet. The heat transfer in the water jet was considerably more effective than that in the usual turbulent heat transfer in a pipe. This highly effective transport mechanism was created by local circulation in the water jet that was produced by waves on the water jet surface. (author)

  2. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (11) Visualization Study on the Start-Up of the Steam Injector

    International Nuclear Information System (INIS)

    The Steam Injector is the superior system to pump the fluid without rotating machine. Because the water column is surrounded by the saturated steam, very high heat transfer is also expected with direct condensation. The inside of the Steam Injector is very complicated. To improve the efficiency of the Steam Injector, the water column behavior inside the Injector is visualized using the Dynamic PIV system. Dynamic PIV system consists of the high-speed camera and lasers. In this study, 384 x 180 pixel resolution with 30,000 fps camera is used to visualize the flow. For the illumination CW green laser with 300 mW is applied. To view inside the Injector, relay lens system is set at the Injector wall. Very high speed water column during the starting up of Steam Injector had been clearly visualized with 30,000 fps. The wave velocity on the water column had been analyzed using PIV technique. The instability of the water column is also detected. (authors)

  3. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (5) operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. And from temperature measuring results, it is supposed that the steam temperature at the mixing nozzle is changed between about 80 degree centigrade and about 60 degree centigrade. Then from the pressure measuring results, it is confirmed that the pressure at the diffuser depends on each the throat diameter and the steam supply area. (authors)

  4. High-speed repeating hydrogen pellet injector for long-pulse magnetic confinement fusion experiments

    Science.gov (United States)

    Frattolillo, A.; Migliori, S.; Scaramuzzi, F.; Combs, S. K.; Baylor, L. R.; Foust, C. R.; Gouge, M. J.; Milora, S. L.

    1996-05-01

    The projected fueling requirements of future magnetic confinement fusion devices [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate the need for a flexible plasma fueling capability, including both gas puffing and low- and high-speed pellet injection. Conventional injectors, based on single-stage pneumatic guns or centrifuges, can reliably provide frozen pellets (1- to 6-mm-diam sizes) at speeds up to 1.3 km/s and at suitable repetition rates (1 to 10 Hz or greater). Injectors based on two-stage pneumatic guns and ``in situ'' condensation of hydrogen pellets can reliably achieve velocities over 3 km/s; however, they are not suitable for long-pulse repetitive operations. An experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way to demonstrate the feasibility of a high-speed (?2 km/s) repeating (˜1 Hz) pneumatic pellet injector for long-pulse operation. A test facility has been assembled at ORNL, combining a Frascati repeating two-stage light-gas gun and an ORNL deuterium extruder, equipped with a pellet chambering mechanism/gun barrel assembly. The main issues to be investigated were the strength of extruded deuterium ice as opposed to that produced by in situ condensation in pipe guns (hence the highest acceleration which can be given to the pellet without fracturing it), and the maximum repetition rate at which the system can operate without degradation in performance. Pellet velocities of up to 2.55 km/s have been achieved in joint experiments at ORNL. A new pressure tailoring valve was developed by the Frascati group for this application and proved to be a crucial component for good performance. Tests carried out in repeating mode, at frequencies of 0.2-0.5 Hz and speeds up to 2.2 km/s, indicate no significant degradation in performance with increasing repetition rate. Some preliminary tests using 3.7 mm pellets gave very encouraging results. The equipment and the experimental results are described in this article.

  5. High-speed repeating hydrogen pellet injector for long-pulse magnetic confinement fusion experiments

    International Nuclear Information System (INIS)

    The projected fueling requirements of future magnetic confinement fusion devices [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate the need for a flexible plasma fueling capability, including both gas puffing and low- and high-speed pellet injection. Conventional injectors, based on single-stage pneumatic guns or centrifuges, can reliably provide frozen pellets (1- to 6-mm-diam sizes) at speeds up to 1.3 km/s and at suitable repetition rates (1 to 10 Hz or greater). Injectors based on two-stage pneumatic guns and ''in situ'' condensation of hydrogen pellets can reliably achieve velocities over 3 km/s; however, they are not suitable for long-pulse repetitive operations. An experiment in collaboration between ORNL and ENEA Frascati is under way to demonstrate the feasibility of a high-speed (approx-gt 2 km/s) repeating (?1 Hz) pneumatic pellet injector for long-pulse operation. A test facility has been assembled at ORNL, combining a Frascati repeating two-stage light-gas gun and an ORNL deuterium extruder, equipped with a pellet chambering mechanism/gun barrel assembly. The main issues to be investigated were the strength of extruded deuterium ice as opposed to that produced by in situ condensation in pipe guns (hence the highest acceleration which can be given to the pellet without fracturing it), and the maximum repetition rate at which the system can operate without degradation in performance. Pellet velocities of up to 2.55 km/s have been achieved in joint experiments at ORNL. A new pressure tailoring valve was developed by the Frascati group for this application and proved to be a crucial component for good performance. Tests carried out in repeating mode, at frequencies of 0.2 endash 0.5 Hz and speeds up to 2.2 km/s, indicate no significant degradation in performance with increasing repetition rate. Some preliminary tests using 3.7 mm pellets gave very encouraging results

  6. Liquid Methane/Liquid Oxygen Injectors for Potential Future Mars Ascent Engines

    Science.gov (United States)

    Trinh, Huu Phuoc

    1999-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission would decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This paper will address the results of the liquid methane/LOX injector study conducted at MSFC. A total of four impinging injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure varied from 320 to 510 and the mixture ratio from 1.5 to 3.5, were performed. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability.

  7. PC-based control of a high-voltage injector

    International Nuclear Information System (INIS)

    The stability of high voltage injectors is one of the major problems in any accelerator system. Most of the troubles encountered in the normal operation of an accelerator are connected with the ion source and associated high voltage platforms, regardless of the source or high voltage generator type. The quality of the ion beam injected in the accelerator strongly depends on the power supplies used in the injector and on the ability to control the non-electrical parameters (gas-flow, temperature, etc.). A wide used method in controlling is based on optical links between high-voltage platform and computer, the adjustments being more or less automated. Although the method mentioned above can be still useful in injector control, a different approach is presented in this work, i.e., the computer itself is placed inside the high-voltage terminal. Only one optical link is still necessary to connect this computer with an user-friendly host at ground potential. Requirements: - varying and monitoring the filament current; - gas flow control in the ion source; - reading the vacuum values; - current and voltage control for the anodic, magnet, extraction, suppression and lens' sources. Even in the high voltage terminal there are compartments with different voltages regardless the floating ground. In our injector the extraction voltage is applied on the top of the ion source including the filament and the anodic voltage. The extraction voltage is of maximum 30 kV. In this situation a second optical link is required to transfer the control for the anodic and magnet source power supply assuming the dedicated computer on the floating ground. One PC is placed inside the high voltage terminal and one PC outside the injector. The optical link (more precisely two optical wires) connects the serial ports. The inside computer is equipped with two multipurpose ADC/DAC and digital I/O card. They permit to read or output DC levels ranging between 0 to 10 volts or TTL signals. The filament current control was realized by a stepping motor that rotates a variable resistor through an insulating stick. Two hundred motor steps per complete rotation assumes a very good resolution in driving the filament current between 0 Amps and maximum 40 Amps. The gas flow control is realized by a stepping motor that drives a needle valve. The flow gas can be varied in very small steps. The vacuum read-out is performed by two gauges, Penning and Pirani, providing a 0 to 10 V analog signal. The DC voltages are input to two ADC channels. The current and voltage source control is performed by ADC and DAC channels that drive/read the source output. The outside computer presents an user friendly interface by a Visual Basic program. It permits to vary all the mentioned quantities and reports periodically (at every two seconds) the output values. The user drives the program only with the mouse, having complete control all over the electric hardware inside the injector. A fast reset function is also provided in case of severe malfunction. (author)

  8. Using one-dimensional modeling to analyse the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Detailed injection system model

    International Nuclear Information System (INIS)

    Highlights: ? One-dimensional model of a solenoid injection system has been developed in AmeSim. ? Complete characterization of the injector elements has been carried out. ? Experimental mass flow rate results have been used for validating the model widely. - Abstract: A combined experimental and computational investigation has been performed in order to evaluate the influence of physical properties of biodiesel on the injection process in a common-direct injection system with second generation solenoid injectors. For that purpose, after a complete characterization of the system, which involved mechanical and hydraulic characterization, a one-dimensional model has been obtained and extensively validated. Simulations have then been performed with a standard diesel and a 100% rape methyl ester (RME) biodiesel which allowed a comparison and analysis of the dynamic response of the injector to be done. Different injection strategies involving main injection and main plus post-injection have been used to explore the impact of the use of biodiesel on the performance and stability of solenoid injectors. As far as the dynamic response of the injector is concerned, the results obtained have clearly shown that the use of biodiesel affects the dynamic response of the needle, especially at low injection pressures. The behavior of the system under multi-injection strategies (main plus post-injection) has been also evaluated determining for different operating conditions (injection pressures and backpressures) the minimum dwell time between injections to assure a stable behavior in the injection process (mass flow rate). Important differences have been found between biodiesel and standard diesel in this critical parameter at low injection pressures, becoming less important at high injection pressure. Finally, a modification on the injector hardware has been proposed in order to compensate these differences.

  9. IONS FOR LHC STATUS OF THE INJECTOR CHAIN

    CERN Document Server

    Manglunki, Django; Borburgh, J; Carli, C; Chanel, M; Dumas, L; Fowler, T; Gourber-Pace, M; Hancock, S; Hourican, M; Jowett, John M; Küchler, D; Mahner, E; Martini, M; Maury, S; Pasinelli, S; Raich, U; Rey, A; Royer, J-P; Scrivens, R; Sermeus, L; Tranquille, G; Vallet, J L; Vandorpe, B

    2007-01-01

    The LHC will, in addition to proton runs, be operated with Pb ions and provide collisions at energies of 5.5 TeV per nucleon pair, i.e. more than 1.1 PeV per event, to experiments. The transformation of CERN's ion injector complex (Linac3-LEIR-PS-SPS) to allow collision of ions in LHC in 2008 is well under way. The status of these modifications and the latest results of commissioning will be presented. The remaining challenges are reviewed.

  10. Amplitude and phase stability studies in a DC superconducting injector

    Science.gov (United States)

    Wang, Fang; Lin, Lin; Zhang, He; Hao, Jian-Kui; Zhang, Bao-Cheng; Liu, Ke-Xin

    2011-09-01

    The DC superconducting injector will be used in the PKU-THz facility which consists of a DC-gun and a 3+1/2-cell superconducting cavity. The cavity must accelerate the electron beam to 5.82 MeV which is susceptible to perturbations because of its narrow bandwidth. In this paper, the sources and influences of the perturbations in the 3+1/2-cell cavity are discussed. It is shown that the control system is essential for the cavity. The design of a feedback based digital RF low level control system for the 3+1/2-cell cavity is accomplished.

  11. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  12. Status of data archive system at KEK injector linac

    International Nuclear Information System (INIS)

    In the KEK injector linac, the control system utilizes the Channel Archiver based on EPICS framework developed at SNS for storing a lot of device information, and it has stably works well for daily beam operation. However, the index file of Channel Archiver has been often broken. If the file size of archived data is getting larger, the consumed time to correct the broken index information takes much longer time than one day. For this reason, we evaluate CSS-based Archiver system originally developed at DESY as a candidate of new archive system. In this paper, we present the status of the new archive systems in detail. (author)

  13. Control System for the NSTX Lithium Pellet Injector

    Energy Technology Data Exchange (ETDEWEB)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  14. FEL injector control system on the base of EPICS

    OpenAIRE

    Salikova, T. V.; Kondakov, A. A.; Kurkin, G.Ya.(Budker Institute of Nuclear Physics, 11, Akademika Lavrentieva Prospect, Novosibirsk, 630090, Russia); Oreshkov, A. D.; Scheglov, M. A.; Tribendis, A. G.

    2001-01-01

    The control system of the 1.5 MeV FEL injector is built on the base of ported EPICS. It uses low-cost hardware: personal computers with the processor Intel x86 and CAMAC equipment produced by our institute. At present time, the distributed control system includes one Pentium at OPerator Interface (OPI) level and two IOC (Input Output Controllers) under supervision of the real time operating system LynxOS/x86 at the low-level. Each IOC is used for monitoring of autonomous par...

  15. Remote maintenance of FED neutral-beam injectors

    International Nuclear Information System (INIS)

    The FED Remote Maintenance Equipment Workshop was held to establish the characteristics of major remote equipment items, and this was done during the first session which was held in January, 1981. A list of general purpose and special purpose equipment was established. The second session, held in March, developed more detailed concepts for maintenance of specific reactor components. The details of an investigation into neutral beam injector remote handling are presented herein. The baseline concept for FED auxiliary heating uses radio frequency waves: electron cyclotron resonance heating for plasma formation and ion cyclotron resonance heating for additional heating to ignition temperature. The alternate concept uses neutral beam injection for ignition heating

  16. Considerations on collective ion acceleration as an intense ion injector

    International Nuclear Information System (INIS)

    A virtual cathode collective acceleration configuration is examined for use as a pulsed, intense ion injector. Numerical calculations of the collective acceleration have shown peak ion energies of several times that of the electron beam energy. This is consistent with a variety of experiments. The late time behavior is to accelerate ions to lower energies but at a higher current. This is characteristic of a reflex ion triode, which produces an ion beam largely charged but not current neutralized. Dynamic neutralization must be achieved if accelerator applications requiring transport and focusing are to be realized. Representative applications have been simulated and are discussed. 10 refs., 6 figs

  17. Passive heat removal system with injector-condenser

    International Nuclear Information System (INIS)

    The system described in this paper is a passive system for decay heat removal from WWERs. It operates off the secondary side of the steam generators (SG). Steam is taken from the SG to operate a passive injector pump which causes secondary fluid to be pumped through a heat exchanger. Variants pass either water or steam from the SG through the heat exchanger. There is a passive initiation scheme. The programme for experimental and theoretical validation of the system is described. (author). 8 figs

  18. PICs in the injector complex - what are we talking about?

    CERN Document Server

    Hanke, K

    2014-01-01

    This presentation will identify PIC activities for the LHC injector chain, and point out borderline cases to pure consolidation and upgrade. The most important PIC items will be listed for each LIU project (PSB, PS, SPS) and categorized by a) the risk if not performed and b) the implications of doing them. This will in particular address the consequences on performance, schedule, reliability, commissioning time, operational complexity etc. The additional cost of PICs with regard to pure consolidation will be estimated and possible time lines for the implementation of the PICs will be discussed. In this context, it will be evaluated if the PICs can be implemented over several machine stops.

  19. An electron gun for high brightness FEL injector

    International Nuclear Information System (INIS)

    The design and performance of an electron gun with high repetition rate, intensive beam current for CIAE-FEL injector is presented in this paper. Tested results are as follows: pulse beam current is 5.8 A, pulse width (FWHM) is 2.2 ns and pulse repetition rate is 2.16 MHz. In order to lower the trigger pulse voltage and make it operate at the high repetition rate, the cathode-grid assembly a with distance of 0.15 mm between cathode and grid was used

  20. The ALICE Energy Recovery Linac - Project overview and injector performance

    International Nuclear Information System (INIS)

    The ALICE accelerator (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory is a 35 MeV ERL. The electron beam drives an infra-red free-electron laser (FEL) and THz light sources, but can also be used to generate X-rays through Compton back-scattering (CBS). ALICE also acts as the injector for the EMMA NS-FFAG machine. This paper will outline the project status and milestones achieved thus far, focussing on the status and performance of the photoinjector gun and the injection line.

  1. Microtron-injector for booster synchrotron of SR facility

    International Nuclear Information System (INIS)

    This paper describes the design features of a 20 MeV, 30 mA microtron to be used as injector to the 700 MeV booster synchrotron of synchrotron radiation (SR) facility. The microtron was designed and developed at Centre for Advanced Technology (CAT). All the components and systems were made indigenously except microwave components such as a 5.0 MW klystron and circulators which were imported. The paper also highlights the microtron development project at CAT. (author). 1 fig

  2. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  3. Initial measurement of impurity production and hydrogen energy distribution from neutral beam injectors

    International Nuclear Information System (INIS)

    Impurity production and hydrogen energy distributions for neutral beam injectors (NBI) developed by the Plasma Technology Section of Oak Ridge National Laboratory's (ORNL) Fusion Energy Division have been measured by exposing silicon samples to beam pulses and analyzing them by nuclear microanalysis and secondary ion mass spectrometry (SIMS) techniques. From the three major energy components arising from the formation of H+, H+2, and H+3 in the ion source only the full-energy component (40 keV) is easily separated in the depth analysis, but the E/2 and E/3 components overlap, mainly because of range straggling. Analysis by SIMS is used to determine the depth profiles of the implanted hydrogen, and the three energy components are determined from this depth profile. Nuclear microanalysis is used to analyze for heavy impurities. Initial results have shown that oxygen is the major atomic impurity and is present at levels of 1.5 x 10-3 O/H. Carbon is the next most abundant impurity, and copper is at or below the sensitivity of the analysis technique. The neutral hydrogen species power distribution deduced from the implant profiles results in relative abundances of 67:17:16 for the energy components E:E/2:E/3, respectively. These data do not agree with three other independent measurements at ORNL and Princeton Plasma Physics Laboratory that are in general agreement with each other and yield a neutral hydrogen species power distribution of 80:13:7. At present this discrepancy is unaccounted for, but migration effects due to heating of the Si crystal are under investigation. The present technique can be easily applied to study other neutral beam injectors on test stands or on plasma devices. (orig.)

  4. Injector test stand ITS-2 for two-stage ion sources development

    International Nuclear Information System (INIS)

    ITS-2 is an injector test stand for developing ion sources and beam line hardwares used in neutral beam injector of JT-60. It is capable of testing two-stage ion sources up to 40A at 80 - 100 kV for 0.5 sec. (auth.)

  5. The new Denso common rail diesel solenoid injector; Der neue Diesel-Magnetventil-Injektor von Denso

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Shuichi; Date, Kenji; Taguchi, Tooru [Denso Corporation, Kariya (Japan). Diesel Injection Engineering Div.; Herrmann, Olaf Erik [Denso International Europe, Wegberg (Germany). Team Advanced Diesel Engine Management System

    2013-02-01

    The new G4S injector from Denso with a three-way valve function improves hydraulic efficiency, thus cutting fuel consumption by around 1 %. A 75 % reduction in moving masses results in significantly improved hydraulics. Due to its minimised leakage, the injector has considerably lower fuel cooling requirements and is significantly more robust in dealing with variations in diesel fuel qualities. (orig.)

  6. Criteria for Optimum Mixture - Ratio Distribution Using Several Types of Impinging-Stream Injector Elements

    Science.gov (United States)

    Elverum, G. W., Jr.; Morey, T. F.

    1959-01-01

    Empirical correlations are given relating the mixture-ratio distributions produced by various configurations of impinging-stream injectors and the ratios of density, velocity, and orifice cross-sectional area of the two fluids being mixed. Injector-element designs studied are two-on-one, two-on-two, and four-on-one.

  7. Linac4, a New Injector for the CERN PS Booster

    CERN Document Server

    Garoby, R; Gerigk, F; Hanke, K; Lombardi, A; Pasini, M; Rossi, C; Sargsyan, E; Vretenar, M

    2006-01-01

    The first bottle-neck towards higher beam brightness in the LHC injector chain is due to space charge induced tune spread at injection into the CERN PS Booster (PSB). A new injector called Linac4 is proposed to remove this limitation. Using RF cavities at 352 and 704 MHz, it will replace the present 50 MeV proton Linac2, and deliver a 160 MeV, 40 mA H- beam. The higher injection energy will reduce space charge effects by a factor of 2, and charge exchange will drastically reduce the beam losses at injection. Operation will be simplified and the beam brightness required for the LHC ultimate luminosity should be obtained at PS ejection. Moreover, for the needs of non-LHC physics experiments like ISOLDE, the number of protons per pulse from the PSB will increase by a significant factor. This new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios. It is also designed to become the low energy part of a future 3.5 GeV, multi-megawatt superconducting linac (SPL). The present desig...

  8. Energy-Spread-Feedback System for the KEKB Injector Linac

    CERN Document Server

    Satoh, Masanori; Suwada, Tsuyoshi

    2005-01-01

    New energy-spread feedback system using nondestructive energy-spread monitors have been developed in order to control and stabilize the energy spreads of single-bunch electron and positron beams in the KEKB injector linac. The well-controlled feedback systems of the injector linac are successfully working in dairy operation not only for keeping the injection rate higher along with the beam-orbit and energy feedback systems but also for reducing a background level to the high-energy B-factory experiment. The energy spreads of the injection beams are well stabilized within 0.2%, 0.5% and 0.3% for the electron beam, the positron beam, and the high-current primary electron beam for positron production, respectively, through the energy-spread feedback system under the nominal operation condition. In this paper, we will report in detail the energy-spread feedback system using the nondestructive energy-spread monitors with multi-strip-line electrodes and their performance in the KEKB operation.

  9. Racetrack microtron: injector for compact SR light source 'AURORA'

    International Nuclear Information System (INIS)

    A 150-MeV pulsed racetrack microtron (RTM) has been developed as an injector of a 650 MeV compact superconducting storage ring. Compared with conventional injectors such as linac and synchrotron, the RTM has some advantages of better beam quality, smaller machine size, leas RF power dissipation, etc. The first version of the RTM was completed and succeeded in first beam acceleration in April 1989. The concept of this RTM originates from that of the University of Wisconsin, but the difference which must be stressed in that the flight aperture of the linac is changed from vertically elongated bore to cylindrical one. The second version of the RTM was designed and completed in October 1990 to increase the output beam intensity which had been limited to the level of 10 ?A in the previous version. The effect of remodeling is so remarkable that the designed value of 5 mA output beam is readily stand by for the injection to the storage ring in a short preparing time. (author)

  10. NSLS-II injector commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, B.; Blum, E.; Bassi, B.; Bengtsson, J.; Blednykh, A.; Buda, S.; Cheng, W.; Choi, J.; Cuppolo, J.; D Alsace, R.; Davidsaver, M.; DeLong, J.; Doom, L.; Durfee, d.; fliller, R.; Fulkerson, M.; Ganetis, G.; Gao, F.; Gardner, C.; Guo, W.; Heese, R.; Hidaka, Y.; Hu, Y.; Johanson, M.; Kosciuk, B.; Kowalski, S.; Dramer, S.; Krinsky, S.; Li, Y.; Louie, W.; Maggipinto, M.; Marino, P.; Mead, J.; Oliva, G.; Padrazo, D.; Pedersen, K.; Podobedov, B.; Rainer, R.; Rose, J.; Santana, M.; Seletskiy, S.; Shaftan, T.; Singh, O.; Singh, P.; Smalyuk, V.; Smith, R.; Summers, T.; Tagger, J.; Tian, Y.; Wahl, W.; Wang, G.; Weiner, G.; Willeke, F.; Yang, L.; Yang, X.; Zeitler, E.; Zitvogel, E.; Zuhoski, P.

    2015-05-03

    The injector for the National Synchrotron Light Source II (NSLS-II) storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle in a train of bunches up to 300 ns long. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC, this has proven to be more than sufficient for storage ring commissioning and operation. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of linac and booster operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.

  11. Development of repetitive type pellet injector with improved thermal insulation

    International Nuclear Information System (INIS)

    In this report a repetitive type pellet injector has been developed and some improvements of thermal insulation are evaluated. The injector is an extruder type and its cylindrically shaped pellets have a 2 mm diameter and 2 mm length, and a maximum velocity of 1.6 km/s. A single shot test showed that most of the excessive thermal energy for the cryogenic block comes from the propellant gas itself. A push-pull type fast-opening/closing valve has been developed for gas reduction. The opening and closing times are both within 0.8 ms, and the gas release is cut in half compared with the case using a usual valve. A double-layered tube is used for connection between the valve and cryogenic block, and it can stop most of the thermal flow from the propellant gas. For repetitive operation, in addition to thermal conduction of the propellant gas, thermal conduction from the external field becomes responsible. Polyimide tubes were used for the insulation inside the block and, with a vacuum tank of 0.7m3, the steady-state condition of solid hydrogen is achieved for the repetition rate of 1Hz and more than a 10 s operation time can be achieved for 5 Hz. This would be raised to 10 Hz with a larger pumping speed of about 5000 m3/s

  12. A control system upgrade of the spear synchrotron and injector

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, R.; Howry, S.; Wermelskirchen, C.; Yang, J.

    1995-11-01

    The SPEAR electron synchrotron is an old and venerable facility with a history of great physics. When this storage ring was converted to serve as a full-time synchrotron light source, it was evident that the facility was due for an overhaul of its control system. Outdated hardware interfaces, custom operator interfaces, and the control computer itself were replaced with off-the-shelf distributed intelligent controllers and networked X-workstations. However, almost all applications and control functions were retained by simply rewriting the layer of software closest to each new device. The success of this upgrade prompted us to do a similar upgrade of our Injector system. Although the Injector was already running an X-windows based control system, it was non-networked and Q-bus based. By using the same Ethernet based controllers that were used at SPEAR, we were able to integrate the two systems into one that resembles the ``standard model`` for control systems, and at the same time preserve the applications software that has been developed over the years on both systems.

  13. Cavitation Inside High-Pressure Optically Transparent Fuel Injector Nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2015-12-01

    Nozzle-orifice flow and cavitation have an important effect on primary breakup of sprays. For this reason, a number of studies in recent years have used injectors with optically transparent nozzles so that orifice flow cavitation can be examined directly. Many of these studies use injection pressures scaled down from realistic injection pressures used in modern fuel injectors, and so the geometry must be scaled up so that the Reynolds number can be matched with the industrial applications of interest. A relatively small number of studies have shown results at or near the injection pressures used in real systems. Unfortunately, neither the specifics of the design of the optical nozzle nor the design methodology used is explained in detail in these papers. Here, a methodology demonstrating how to prevent failure of a finished design made from commonly used optically transparent materials will be explained in detail, and a description of a new design for transparent nozzles which minimizes size and cost will be shown. The design methodology combines Finite Element Analysis with relevant materials science to evaluate the potential for failure of the finished assembly. Finally, test results imaging a cavitating flow at elevated pressures are presented.

  14. Performance of the PHIN High Charge Photo Injector

    CERN Document Server

    Petrarca, M; Doebert, S; Dabrowski, A; Divall, M; Fedoseev, V; Lebas, N; Lefevre, T; Losito, R; Egger, D; Mete, O

    2010-01-01

    The high charge PHIN photo injector is studied at CERN as an electron source for the CLIC Test Facility (CTF3) drive beam as an alternative to the present thermionic gun. The objective of PHIN is to demonstrate the feasibility of a laser-based electron source for CLIC. The photo injector operates with a 2.5 cell, 3 GHz RF gun using a Cs2Te photocathode illuminated by UV laser pulses generated by amplifying and frequency quadrupling the signal from a Nd:YLF oscillator running at 1.5GHz. The challenge is to generate a beam structure of 1908 micro bunches with 2.33nC per micro bunch at 1.5GHz leading to a high integrated train charge of 4446nC and nominal beam energy of 5.5MeV with current stability below 1%. In this paper we report and discuss the time resolved transverse and longitudinal beam parameters measurements. The performance of the photo cathodes made at CERN with a peak quantum efficiency of 18 % is shown as well. Laser pointing and amplitude stability results are discussed taking into account correla...

  15. Developments of repetitive pneumatic pipe-gun pellet injector

    International Nuclear Information System (INIS)

    A pellet injector of repetitive pneumatic pipe-gun type has been designed for advanced plasma fueling applications. This new concept is estimated to be able to reduce the time for pellet formation by an in situ technique from 3 -5 minutes to 2 - 10 seconds. The basic idea of the new approach to pellet formation is to supply a hydrogen isotope pellet through a copper porous unit into a pipe-gun-type barrel. Two modes are possible: (1) to push liquid hydrogen isotope through a porous unit and re-freezing inside of the barrel, (2) to push solid hydrogen isotope through a porous unit to the inside of the barrel. This principle provides a continuous injection of an unlimited amount of pellets. For demonstration of the proof-of-principle, several experiments have been carried out. Hydrogen pellets of 3 mm in diameter and 3 to 10 mm in length were accelerated to 1.2 km/s at a rate of 1 pellet per 10 - 34 s with a manually controlled injector operation. (author)

  16. Heavy ion upgrade of the Bevatron local injector

    International Nuclear Information System (INIS)

    A new heavy ion injector system for the Bevatron, consisting of a PIG ion source, an RFQ linac, and two Alvarez linacs, is nearing completion. It will make available to the Bevatron a source of ions up to mass 40 independent of the SuperHILAC, enhancing the operational flexibility of the Bevalac complex. The RFQ accelerator, made operational in mid 1983, accelerates ions with q/A greater than or equal to 0.14 to 200 keV/n. The RFQ is followed by a new 200 MHz Alvarez linac operating in the 2?lambda mode which further accelerates the ions to 800 keV/n. This linac is followed by a foil stripper and a portion of the old injector linac, rebuilt to accelerate beams with q/A greater than or equal to 0.35 to 5 MeV/n in the 2?lambda mode. Details are given of the configuration, equipment modifications, and project status

  17. The neutral particles injectors RIG for fusion reactors

    International Nuclear Information System (INIS)

    One of the major problems in fusion torus-machines is the heating of the hydrogen plasma up to the temperature of thermonuclear burn. The injection of intense, high-energy neutral beams into the torus plasma seems to be an effective and promising method. The injector system enforces upon the beam source a couple of basic, qualitatively and quantitatively significant requirements. In the course of a 7-yrs research program, which has been supported by the DFG, the Giessen University developed a family of radio-frequency injection generators RIG. Contrary to all other sources, the German system works with an electrodeless rf-annular discharge. By omitting all discharge electrodes, filaments, etc., the related lifetime problems are eliminated from the outset. Also, both the mechanical assembly and the electronic supply are very simple. In addition, the comparison of the measured performance data favours the RIG-Sources: beam density up to 280 mA/cm2, ion beam yield more than 1 A/kW, proton fraction exceeding 85%, impurities less than 1%, uniform beam profile across 75% of the source diam. and discharge plasma formation time less than 40 ?sec. The actually largest Giessen injector source, RIG 20, is planned to be operated at the ASDEX-Tokamak of the MPI-Garching. (orig.)

  18. F-18 production with the TOP linac injector

    Science.gov (United States)

    Cianfarani, Cesidio; Cisbani, Evaristo; Orlandi, Gianluca; Frullani, Salvatore; Picardi, Luigi; Ronsivalle, Concetta

    2006-06-01

    ENEA and ISS (Italian National Institute of Health), are collaborating to develop a dedicated proton medical accelerator, TOP (Oncological Therapy with Protons) linac, consisting of a sequence of three pulsed linear accelerators. The 7 MeV injector can be used in three operating modes: Protontherapy and Radiobiology Mode—injecting low current proton beam into the TOP linac accelerating sections; Radioisotope Mode—generating an intense proton beam (8-10 mA, 50-100 ?s, 30-100 Hz) to produce the positron-emitting radionuclide F18 for PET analyses. In the high current mode, at the exit of the injector the beam is guided through a magnetic quadrupoles channel to a target composed by a thin chamber (0.5 mm thick and 1 in. diameter) containing water enriched with O18. Production yield as well as total activity similar to these achieved with higher energy cyclotrons have been obtained. Environmental doses measured give indications on the shielding required for operation under current radioprotection regulations. Improvements are foreseen to optimize the production yield, the useful beam current and to better characterize gamma and neutron dose rates in the different operational modes.

  19. A control system upgrade of the spear synchrotron and injector

    International Nuclear Information System (INIS)

    The SPEAR electron synchrotron is an old and venerable facility with a history of great physics. When this storage ring was converted to serve as a full-time synchrotron light source, it was evident that the facility was due for an overhaul of its control system. Outdated hardware interfaces, custom operator interfaces, and the control computer itself were replaced with off-the-shelf distributed intelligent controllers and networked X-workstations. However, almost all applications and control functions were retained by simply rewriting the layer of software closest to each new device. The success of this upgrade prompted us to do a similar upgrade of our Injector system. Although the Injector was already running an X-windows based control system, it was non-networked and Q-bus based. By using the same Ethernet based controllers that were used at SPEAR, we were able to integrate the two systems into one that resembles the ''standard model'' for control systems, and at the same time preserve the applications software that has been developed over the years on both systems

  20. Power and gas flow models for monoenergetic neutral beam injectors

    International Nuclear Information System (INIS)

    Large, ignition tokamak reactors (ITR, EPR, and beyond will require supplemental heating to achieve ignition. In the earlier machines, at least, this heating will probably be provided by monoenergetic neutral beams. These beams, with energies greater than or equal to 150 keV, will most likely be derived from D+ or D- ions produced by direct extraction ion sources. A positive ion source will be followed by a bending magnet, a neutralizer, and a second bending magnet. The first magnet will remove molecular ions, and the second one atomic ions. Direct convertors will be used to recover energy from unused molecular and atomic ions. The first bending magnet may be omitted if D- ion sources are used. Models have been developed for power and gas flow in injectors which employ direct extraction D+ or D- ion sources. The power flow model accounts explicitly for all beam losses in terms of line densities of gas along paths traversed by ions and neutrals and cross sections for dissociation and charge-changing collisions. The gas flow model uses the results of power flow calculations and known gas flows from sources and neutralizers to determine gas loads and pumping requirements in various parts of the injector

  1. Neutral beam injector research and development work in the USA

    International Nuclear Information System (INIS)

    We describe neutral beam injector research and development at the Brookhaven National Laboratory, Lawrence Berkeley and Lawrence Livermore Laboratories, and Oak Ridge National Laboratory. All neutral beam systems for present and near-term applications are based on the acceleration and neutralization of positive ions. The research and development is carried out at LBL/LLL and ORNL. Present emphasis at LBL/LLL is on 80 to 120 kV systems for the mirror program and for the TFTR and D III tokamaks. Present emphasis at ORNL is on 40 to 80 kV systems for the PLT, ISX, and PDX, and 80 to 200 kV systems for LPTT and TNS tokamaks. Injectors for the future experiments and reactors may operate at energies of 200 keV or higher, especially for mirror machine applications, where positive-ion-based efficiencies will be very low, assuming no energy recovery. Research on negative-ion-based systems with potentially high efficiencies is carried out at BNL and at LBL/LLL and ORNL. The first demonstration of a high-power neutral beam based on negative ions is planned for 1980

  2. CFD-Based Design Optimization for Single Element Rocket Injector

    Science.gov (United States)

    Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei

    2003-01-01

    To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.

  3. Development of a six-pellet injector for HELIOTRON E

    International Nuclear Information System (INIS)

    A pneumatic six-pellet injector has been developed for plasma fueling applications for HELIOTRON E. The cryogenic mechanism consists of two cryogenic housings cooled by liquid helium and a pellet production disk with six holes and the shaft assembly. Frozen hydrogen pellets are formed in the disk holes. The disk is rotated from the pellet production zone to the shooting position. The pellets are propelled by high pressure hydrogen or helium gas (at pressures of up to 100 bars) from 0.52 m gun barrels. Pellet velocity and firing intervals are variable for each shot. Pellet size can be changed by replacing the pellet production disk and the gun barrels. One example of a combination of six pellet holes is three groups of two pellets, each group having a diameter of 1.2 mm, 1.5 mm or 2.0 mm and all pellets having a thickness of 1 mm. Pellet velocity ranges from 400 m/s to 1400 m/s. The time interval between each pellet firing can be changed from 0 ms to more than 100 ms. More than 90% of the pellet shots are successful in operation. One cycle presently lasts 10 minutes. Recently, a six-pellet injector has been installed on HELIOTRON E. (author). 3 refs, 7 figs, 1 tab

  4. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    Science.gov (United States)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  5. The control system for the multiple-pellet injector on the Joint European Torus

    International Nuclear Information System (INIS)

    A stand-alone control and data acquisition system for the Oak Ridge National Laboratory (ORNL) multiple-pellet injector installed on the Joint European Torus (JET) has been designed and installed with the injector. This system, which is based on a MicroVAX II computer and a programmable logic controller (PLC), is an upgrade of previous systems designed for ORNL pellet injectors installed on other fusion experiments. The primary control system upgrades are in the user interface, in the automation of sequential injector operation, and in the analysis of the transient data acquired for each pellet fired. The system is integrated into the JET CODAS environment through CAMAC communications modules with customized communications software. Routine operation of the injector is automated and requires no operator intervention. Details of the hardware and software design and the operation of the system are presented in this paper. 4 refs., 3 figs

  6. Atomization and combustion characteristics of antimisting fuels using JT8D and air-boost injectors

    Science.gov (United States)

    Kennedy, J. B.; Florentino, A. J.

    1986-01-01

    The atomization levels of antimisting fuels are presently determined for a JT8D fuel injector, a low emission airblast JT8D injector, and an air-boost injector, at operating conditions simulating engine operating conditions. The effects of the use of antimisting kerosene (AMK) on component performance are also studied in the case of an in-service JT8D engine. The use of the AMK fuel causes a decline in the quality of the spray, most notably as a large increase in the Sauter mean diameter for all three injector types. In addition, the idle patternation data obtained indicate that the low emission injector fuel distribution changed from a hollow cone Jet A spray having no fuel at its center to a semihollow spray cone in the case of AMK; this change could disrupt the combustor primary zone recirculation pattern.

  7. Transient Tolerant Automated Control System for the LEDA 75kV Injector

    International Nuclear Information System (INIS)

    The Low-Energy Demonstration Accelerator (LEDA) injector is designed to inject 75-keV, 110-mA, proton beams into the LEDA RFQ. The injector operation has been automated to provide long term, high availability operation using the Experimental Physics and Industrial Control System (EPICS). Automated recovery from spark-downs demands reliable spark detection and sequence execution by the injector controller. Reliable computer control in the high-energy transient environment required transient suppression and isolation of hundreds of analog and binary data lines connecting the EPICS computer controller to the injector and it's power supplies and diagnostics. A transient suppression design based on measured and modeled spark transient parameters provides robust injector operation. This paper describes the control system hardware and software design, implementation and operational performance

  8. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  9. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water increases. (authors)

  10. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Lazar

    2012-10-15

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  11. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    International Nuclear Information System (INIS)

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  12. Beam dynamics and optics studies for the LHC injectors upgrade

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called PS2, which has been proposed to replace the existing CERN Proton Synchrotron (PS) in the LHC injector chain. Two lattice options are presented, the baseline racetrack lattice and the alternative option based on a threefold symmetry. They are compared with respect to their tuning flexibility as well as their linear and nonlinear properties. The effect of machine imperfections on the dynamic aperture is studied in detailed tracking simulations. The direct impact of the transition energy and the phase slip factor on the performance of an operating synchrotron is described in the second part of this thesis. The intensity thresholds for the instabilities, that are presently limiting the performance of the LHC-type proton beams in the Super Proton Synchrotron (SPS), scale linearly with the slip factor. A new optics for the SPS is presented, which provides lower transition energy and thereby a three times higher slip factor at injection energy. The resulting increase of the intensity threshold for the transverse mode coupling instability at injection is demonstrated in experimental and simulation studies. Furthermore, numerical simulations show that the electron cloud density at which bunches become unstable is twice higher in the new optics. In addition to that, the expected improvement of longitudinal beam stability at higher energies is confirmed by a series of measurements. Finally, a reduction of the incoherent space charge tune shift by about 15% is achieved due to the larger dispersion function in the arcs, which helps minimizing incoherent emittance growth at the injection plateau for high brightness beams. Since fall 2012, the new optics is being successfully used for LHC filling in routine operation providing improved beam characteristics compared to the nominal SPS optics.(author)

  13. Finding a solution to internal diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, Robert; Quigley, Robert; Panesar, Avtar; Payne, James [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim; Stevens, Andrew [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Internal diesel injector deposits (IDIDs) have caused widespread problems in the automotive industry since around 2005. Modem injectors that have been precisely engineered to operate highly controlled injection strategies are experiencing problems in the field due to deposits that have formed on their critical moving parts, such as the needle and control valve. Problems range from rough idling to a failure to start, when the moving parts become stuck. Early studies showed that the composition of these deposits is variable. In some cases the deposit contained noticeable amounts of sodium carboxylate; these are now generally referred to as 'sodium soaps'. In other incidences the dominant chemical functionality observed was an amide group, and hence these deposits are referred to as 'amide lacquers'. A combination of both types has been observed in many cases and other metals, like calcium, have also been detected. Further studies have shown that the sodium soap type can be formed from specific types of corrosion inhibitors. The source of the amide lacquers is less certain, but there are indications that they originate from specific fuel additives that contain critical levels of low molecular weight species. This paper broadly explores this area of high interest. It will report results on the analysis of deposits and the conditions needed to reproduce both types of IDID in bench engine testing. It will also investigate the types of contaminants that are likely to form IDIDs and explore difference in chemical structure that can lead to pro-fouling, non-fouling and anti-fouling behaviour. It will then show that a deposit control additive, specifically designed to control nozzle tip deposits in modem direct injection diesels, is equally effective in controlling IDIDs; both in terms of prevention and removal. Since IDIDS are formed from multiple sources, some of which are difficult to control in today' s market, the use of a broadly acting fuel additive is a more reliable way of avoiding the issues associated with this new form of injector deposit. (orig.)

  14. Charged current quasi-elastic neutrino analysis at MINERνA

    International Nuclear Information System (INIS)

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator

  15. The MINERνA data acquisition system and infrastructure

    International Nuclear Information System (INIS)

    MINERνA (Main INjector ExpeRiment ν-A) is a new few-GeV neutrino cross-section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERνA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERνA data acquisition system (DAQ) including the readout electronics, software, and computing architecture.

  16. The MINER{nu}A data acquisition system and infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Perdue, G.N., E-mail: perdue@fnal.gov [University of Rochester, Rochester, NY 14610 (United States); Bagby, L.; Baldin, B.; Gingu, C.; Olsen, J.; Rubinov, P. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Schulte, E.C. [Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Bradford, R. [University of Rochester, Rochester, NY 14610 (United States); Brooks, W.K. [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680 Casilla 110-V Valparaiso (Chile); Caicedo, D.A.M.; Castromonte, C.M. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, RJ 22290-180 (Brazil); Chvojka, J. [University of Rochester, Rochester, NY 14610 (United States); Motta, H. da [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, RJ 22290-180 (Brazil); Danko, I. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Devan, J. [Department of Physics, College of William and Mary, Williamsburg, VA 23187 (United States); Eberly, B. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Felix, J. [Universidad de Guanajuato, Lascurain de Retana No. 5, Col. Centro. Guanajuato 37150, Guanajuato (Mexico); Fields, L. [Northwestern University, Evanston, IL 60208 (United States); Fiorentini, G.A. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, RJ 22290-180 (Brazil); and others

    2012-12-01

    MINER{nu}A (Main INjector ExpeRiment {nu}-A) is a new few-GeV neutrino cross-section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINER{nu}A employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINER{nu}A data acquisition system (DAQ) including the readout electronics, software, and computing architecture.

  17. What factors affect the carriage of epinephrine auto-injectors by teenagers?

    Directory of Open Access Journals (Sweden)

    Macadam Clare

    2012-02-01

    Full Text Available Abstract Background Teenagers with allergies are at particular risk of severe and fatal reactions, but epinephrine auto-injectors are not always carried as prescribed. We investigated barriers to carriage. Methods Patients aged 12-18 years old under a specialist allergy clinic, who had previously been prescribed an auto-injector were invited to participate. Semi-structured interviews explored the factors that positively or negatively impacted on carriage. Results Twenty teenagers with food or venom allergies were interviewed. Only two patients had used their auto-injector in the community, although several had been treated for severe reactions in hospital. Most teenagers made complex risk assessments to determine whether to carry the auto-injector. Most but not all decisions were rational and were at least partially informed by knowledge. Factors affecting carriage included location, who else would be present, the attitudes of others and physical features of the auto-injector. Teenagers made frequent risk assessments when deciding whether to carry their auto-injectors, and generally wanted to remain safe. Their decisions were complex, multi-faceted and highly individualised. Conclusions Rather than aiming for 100% carriage of auto-injectors, which remains an ambitious ideal, personalised education packages should aim to empower teenagers to make and act upon informed risk assessments.

  18. Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    An experimental study of two real multi-hole Diesel injectors is performed under current DI Diesel engine operating conditions. The aim of the investigation is to study the influence of injector technology on the flow at the nozzle exit and to analyse its effect on the spray in evaporative conditions and combustion development. The injectors used are two of the most common technologies used nowadays: solenoid and piezoelectric. The nozzles for both injectors are very similar since the objective of the work is the understanding of the influence of the injector technology on spray characteristics for a given nozzle geometry. In the first part of the study, experimental measurements of hydraulic characterization have been analyzed for both systems. Analysis of spray behaviour in evaporative conditions and combustion development will be carried out in the second part of the work. Important differences between both injectors have been observed, especially in their transient opening and closing of the needle, leading to a more efficient air-fuel mixing and combustion processes for the piezoelectric actuated injector. (author)

  19. Thermal Calculations Of Input Coupler For Erl Injector

    CERN Document Server

    Sobenin, N P; Bogdanovich, B Yu; Kaminsky, V I; Krasnov, A A; Lalayan, M V; Veshcherevich, V G; Zavadtsev, A A; Zavadtsev, D A

    2004-01-01

    The thermal calculation results of input coupler for ERL injector cavities are presented [1]. A twin coaxial coupler of TTF-3 type was chosen for 2×75 kW RF power transfer. TTF-3 coupler was intended for high pulse and not high average power transmission, so there were revisings proposed in its design. New coupler configuration provides thermal leakage not more than 0.2 W at temperature 2.0K, 2 W at the temperature 4,0K and 50 W at temperature 80K. Construction revising was made at "cold" and "warm" bellows. In particularly, bellows separating was proposed to install additional heat sink. Coupler configuration with "warm" window of choke type was examined. It provides mechanical uncoupling of input waveguide and ceramic insulator. Electrodynamics simulations were carried out by MicroWaveStudio and HFSS codes, thermal analysis was maid using ANSYS.

  20. Scleral fixation of one piece intraocular lens by injector implantation

    Directory of Open Access Journals (Sweden)

    Ertugrul Can

    2014-01-01

    Full Text Available Aim of Study: With an ab-interno technique of transscleral suturing of current one-piece posterior chamber intraocular lenses (PC IOLs by injector implantation in the absence of capsular support, we aimed to demonstrate the possibility of the implantation of one-piece acrylic PC IOLs that might be produced in the future for only scleral fixation through small clear corneal incision. Materials and Methods: Case report and literature review. Results: This procedure has been performed in eight aphakic eyes with four different types of IOLs. Good centration was achieved with minimal technical effort. All patients had well-centered and stable lenses postoperatively during 9-18 months follow-up. Conclusion: We managed to decrease the risks of surgical trauma and intricate surgical maneuvers requirement. With this technique, excessive fluid leakage and consecutive hypotony can be minimized.