WorldWideScience

Sample records for kapok fiber manufactured

  1. Development Manufacturing Method of Highly Functional Kapok Fiber Absorbent Using Irradiation

    International Nuclear Information System (INIS)

    The hydrophobic characteristic of kapok fibers was changed to hydrophilic property after NaClO2, treatments which is able to break all phenolic units especially lignin. After NaClO2 treatment, NaIO4, applied to kapok fibers for opening hexagonal polysaccharide structure, this step led to produce carbonyl groups(>C=O) on kapok fibers. In the final step, NaClO2, treatments were performed again to provide carboxyl groups(-COOH) on kapok fibers. In addition, kapok fibers after all chemical treatments were retained hollow structure which was observed by scanning electron microscopy(SEM). Kapok fibers which were obtained after chemical treatments would be a good heavy metal absorbent when these fibers applied less than in 10 mg/L standard solution. Moreover, these fibers were not detached heavy metals even added physical forces and used kapok fibers are able to reuse after detached heavy metals under pH 2-3. The degree of grafting increased as the irradiation dose increased, and are in the range 32% to 250% when the concentration of glycidyl methacrylate monomer was 50 vol. %. Based on this result, various functional groups are possible to be attached on kapok fibers used by radiation grafting technique

  2. The development of nonwoven fabric and agricultural bed soil using kapok fiber for industrial usages

    International Nuclear Information System (INIS)

    The purpose of this project is the development of nonwoven fabric using natural kapok fiber and synthetic fiber for industrial usages and the development of manufacturing techniques for nursery bed soil using kapok fiber. Research scopes include the development of agricultural bed soil using kapok fiber and nonwoven fabric using kapok fiber. Main results are as follow; the physico-chemical characterization of kapok fiber (water holding capacity, bulk density, water retention curve, viscoelastic measurement, oil adsorption capacity, analysis of essential elements, measurement of anion and cation); the physico-chemical characterization of kapok bed soil; the evidence experiment of kapok bed soil; the optimum content of kapok fiber and synthetic fiber for nonwoven fabric; establishment of the optimum radiation dose for manufacturing kapok nonwoven fabric

  3. Coated kapok fiber for removal of spilled oil

    International Nuclear Information System (INIS)

    Highlights: ► A low-cost and biodegradable oil absorbent based on kapok fiber was prepared. ► The polymer-coated kapok fiber showed higher oil sorption capacity. ► Coated kapok fiber can be reused and the absorbed oil can be easily recovered. ► Adsorption of oil is spontaneous and exothermic physisorption and chemisorption. -- Abstract: Based on raw kapok fiber, two kinds of oil absorbers with high sorption capacity were prepared by a facile solution–immersion process. The coated polymer with low surface energy and rough fiber surface play important role in the retention of oil. The as-prepared fiber can quickly absorb gasoline, diesel, soybean oil, and paraffin oil up to above 74.5%, 66.8%, 64.4% and 47.8% of oil sorption capacity of raw fiber, respectively. The absorbed oils can be easily recovered by a simple vacuum filtration and the recovered coated-fiber still can be used for several cycles without obvious loss in oil sorption capacity. The thermodynamic study indicates that the adsorption process is spontaneous and exothermic, with complex physisorption and chemisorption. The results suggest that the coated fiber can be used as a low-cost alternative for the removal of oil spilled on water surface

  4. Adsorption and adhesiveness of kapok fiber to different oils.

    Science.gov (United States)

    Dong, Ting; Xu, Guangbiao; Wang, Fumei

    2015-10-15

    Adsorption and adhesiveness of single kapok to various oils, such as diesel, vegetable oil, used motor oil and motor oil were quantitatively evaluated by size and adhesive energy distribution of adsorbed oil droplets on fiber via drop-on-fiber micro-sorption experiments based on Carroll's theory of droplet morphology. Meanwhile, another micro polyester fiber was investigated as comparison. It was found that kapok fibers exihibited low surface energy of 40.64 mN/m with highly hydrophobicity and oil wettability. It had high water contact angle up to 151, adsorbing four oils with average droplet size varying from emulsified state(0.1-25 ?m) to dispersed state (25-100 ?m). The average adhesive energies of kapok to four oils were 3.7810(-11)-9.4010(-11) J, with the highest for vegetable oil. Compared with kapok, polyester fiber adsorbed a large number of smaller oil droplets with their average size within emulsified state for its large specific surface area contributed by micro-fine of the fiber, but showed bad adhesiveness to retain the adsorbed oils with average droplet adhesive energy among 1.4910(-11)-2.2710(-11)J due to its relative higher surface energy of 59.15 mN/m. It is more suitable to be used as filter for secondary fine filtration under low inflow rate. PMID:25913676

  5. Synthesis and Characterization of Kapok Fibers and its Composites

    Directory of Open Access Journals (Sweden)

    Dillip Kumar Bisoyi

    2012-01-01

    Full Text Available Most of the developing countries are very rich in agricultural and natural fiber. Natural fibers are lignocellulosic in nature. These composites are gaining importance due to their non-carcinogenic and biodegradable in nature. The natural fiber reinforced composite are dominated over the conventional composites because of the main advantage of low cost. Polymeric materials reinforced with natural fibers provide advantages of high stiffness and strength to weight ratio as compared to conventional construction materials. Natural fiber reinforced composites have gained popularity nowadays because of their processing advantage and good technical properties. The present work includes the processing, characterization of kapok fiber reinforced epoxy composites. Keeping in this view the present study has been undertaken to develop a polymer matrix composite (epoxy matrix and kapok fiber (Reinforcement and to study its structural and electrical properties. This study is concerned to investigate the percentage of crystallinity, surface structure, dielectric constant, dielectric loss and resistivity.

  6. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites

    International Nuclear Information System (INIS)

    Highlights: ? TPCS matrix was reinforced by the low (jute) and high (kapok) absorbency cellulosic fibers. ? Water absorption of the TPCS/jute and TPCS/kapok fiber composites decreases. ? Stress and Youngs modulus of the TPCS/jute and TPCS/kapok fiber composites increase. ? Thermal degradation temperature of the TPCS/kapok fiber composite decreases. - Abstract: Since mechanical properties and water uptake of biodegradable thermoplastic cassava starch (TPCS) was still the main disadvantages for many applications. The TPCS matrix was, therefore, reinforced by two types of cellulosic fibers, i.e. jute or kapok fibers; classified as the low and high oil absorbency characteristics, respectively. The TPCS, plasticized by glycerol, was compounded by internal mixer and shaped by compression molding machine. It was found that water absorption of the TPCS/jute fiber and TPCS/kapok fiber composites was clearly reduced by the addition of the cellulosic fibers. Moreover, stress at maximum load and Youngs modulus of the composites increased significantly by the incorporation of both jute and kapok fibers. Thermal degradation temperature, determined from thermogravimetric analysis (TGA), of the TPCS matrix increased by the addition of jute fibers; however, thermal degradation temperature decreased by the addition of kapok fibers. Functional group analysis and morphology of the TPCS/jute fiber and TPCS/kapok fiber composites were also examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques

  7. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers.

    Science.gov (United States)

    Rengasamy, R S; Das, Dipayan; Karan, C Praba

    2011-02-15

    This article reports on oil sorption behavior of fiber assemblies made up of single natural and synthetic fibers as well as blend of natural and synthetic fibers when tested with high density oil and diesel oil. A series of filled fiber assemblies were prepared from 100% polypropylene, kapok, and milkweed fibers and another series of bonded structured fiber assemblies were prepared from a 70/30 blend of kapok and polypropylene fibers and a 70/30 blend of milkweed and polypropylene fibers. It was observed that the porosity of the fiber assemblies played a very important role in determining its oil sorption capacity. The polypropylene fiber assembly exhibited the highest sorption capacity (g/g) followed by the kapok and milkweed fiber assemblies at porosity diesel oil. As the kapok and milkweed fiber have low cellulose content, hence their slow degradation is an advantage in fresh and marine water applications. The good sorption capacity of kapok and milkweed fiber assemblies along with their bio-degradable nature offer great scope for structuring them into fiber assemblies with large porosity and uniform pores to have efficient oil sorbents. PMID:21146290

  8. [Kapok capsule formation and fiber development process in Yuanjiang dry-hot valley].

    Science.gov (United States)

    Zhao, Gao-juan; Ge, Luan; Ma, Huan-cheng; Yang, Jian-jun; Huang, Dong; Ping, Pan

    2014-12-01

    This study explored the capsule formation and fiber development process of kapok which is a tree in Yuanjiang dry-hot valleys (DHV) using the methods of paraffin section and scanning electron microscopy. The result showed that formation process of kapok capsule can be divided into four stages: the capsule formation within 5 days after anthesis (DAA), the capsule mass period from 5 to 35 DAA, the capsule dehydration period from 35 to 50 DAA, and the capsule bursting period after 50 DAA. The kapok fiber was developed via endocarp cells differentiation (0-2 DAA), swelling (2-5 DAA), bulging (5-10 DAA), fiber elongating (10-40 DAA), and divorcing from pericarp (40-50 DAA). During the development, the length and projection width of fiber increased as a power function, and their daily average growth rates reached .the maximums at 20 DAA. Fiber fresh mass substantially increased and then reduced, and the daily average growth rate reached the maximum in the period from 25 to 30 DAA. Fiber dry mass gradually increased and reached the maximum growth rate in the period from 20 to 25 DAA. The seed and fiber continually increased their mass after 30 DAA, but the pericarp mass declined with its dehydration and aging. Compared with cotton, it was easy to separate fiber from kapok capsule inner wall because of small adhesion power between kapok fiber and capsule inner wall. The period from 5 to 35 DAA was critical for the fiber development and growth. Therefore, water and fertilizer management should be concentrated at this stage. The capsule should be harvested at 50 DAA because the fiber began to divorce from the pericarp. PMID:25876393

  9. Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: effect of various simple pretreatment methods on sugar production.

    Science.gov (United States)

    Tye, Ying Ying; Lee, Keat Teong; Wan Abdullah, Wan Nadiah; Leh, Cheu Peng

    2012-07-01

    The importance of bioethanol currently has increased tremendously as it can reduce the total dependency on fossil-fuels, especially gasoline, in the transportation sector. In this study, Ceiba pentandra (kapok fiber) was introduced as a new resource for bioethanol production. The results of chemical composition analysis showed that the cellulose (alpha- and beta-) contents were 50.7%. The glucose composition of the fiber was 59.8%. The high glucose content indicated that kapok fiber is a potential substrate for bioethanol production. However, without a pretreatment, the kapok fiber only yielded 0.8% of reducing sugar by enzymatic hydrolysis. Thus, it is necessary to pre-treat the kapok fiber prior to hydrolysis. Taking into account environmentally friendliness, only simple pretreatments with minimum chemical or energy consumption was considered. It was interesting to see that by adopting merely water, acid and alkaline pretreatments, the yield of reducing sugar was increased to 39.1%, 85.2% and >100%, respectively. PMID:22595099

  10. Kapok oil methyl esters

    International Nuclear Information System (INIS)

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specifications in biodiesel standards and some prior results. The kinematic viscosity of kapok oil methyl esters was greater than expected, an observation traced to the elevated amounts of methyl esters with cyclic moieties. Overall, kapok oil is a potential biodiesel feedstock. The 1H and 13C NMR spectra of kapok methyl esters are reported. - Highlights: • Methyl esters of kapok oil generally acceptable as a biodiesel fuel. • Kapok oil methyl esters a fuel with elevated content of fatty acid methyl esters containing cyclic moieties. • Kinematic viscosity of kapok oil methyl esters elevated likely due to fatty ester methyl esters with cyclic moieties. • Discusses and compares present results with prior literature

  11. Potential of Ceiba pentandra (L.) Gaertn. (kapok) fiber as a resource for second generation bioethanol: parametric optimization and comparative study of various pretreatments prior enzymatic saccharification for sugar production.

    Science.gov (United States)

    Tye, Ying Ying; Lee, Keat Teong; Abdullah, Wan Nadiah Wan; Leh, Cheu Peng

    2013-07-01

    Various pretreatments on Ceiba pentandra (L.) Gaertn. (kapok) fiber prior to enzymatic hydrolysis for sugar production were optimized in this study. The optimum conditions for water, acid, and alkaline pretreatments were 170C for 45 min, 120C for 45 min in 1.0% (v/v) H2SO4 solution and 120C for 60 min in 2.0% (v/v) NaOH solution, respectively. Among the three pretreatments, the alkaline pretreatment achieved the highest total glucose yield (glucose yield calculated based on the untreated fiber) (38.5%), followed by the water (35.0%) and acid (32.8%) pretreatments. As a result, the relative effectiveness of the pretreatment methods for kapok fiber was verified as alkali>water>acid at the condition stated. PMID:23672935

  12. Modelling fiber drawing: Capillary manufacture

    OpenAIRE

    Fitt, AD; Please, CP; Furusawa, K.; Monro, TM

    2002-01-01

    Fiber drawing for capillary manufacture was presented. Microstructured fibers were produced by drawing a macroscopic preform into fiber using a drawing tower. The degree of hole closure was controlled by introducing a pressure difference between air inside and outside the capillary.

  13. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup.

    Science.gov (United States)

    Lim, Teik-Thye; Huang, Xiaofeng

    2007-01-01

    Oil sorption capacity and hydrophobic-oleophilic characteristics of an agricultural product, kapok (Ceiba pentandra), was thoroughly examined. The kapok fiber has a hollow structure with large lumen. Its performance was compared with that of a polypropylene (PP), a widely used commercial oil sorbent for oil spill cleanup. The oils investigated were diesel, hydraulic oil (AWS46), and engine oil (HD40). Reusability of the kapok after application to various oils was also evaluated. Both loose (at its natural state) and densely packed kapok assemblies were examined. Sorption capacities of the packed kapok assemblies were very much dependent on their packing densities. At 0.02gcm(-3), its oil sorption capacities were 36, 43 and 45gg(-1) for diesel, ASW46 and HD40, respectively. The values decreased to 7.9, 8.1 and 8.6gg(-1) at 0.09gcm(-3). Its sorption capacities for the three oils were significantly higher than those of PP. When the oil-saturated kapok assemblies were allowed to drain, they exhibited high oil retention ability, with less than 8% of the absorbed diesel and HD40, and 12% of the absorbed AWS46 lost even after 1h of dripping. When applied on oil-over-water baths, the kapok exhibited high selectivity for the oils over the water; almost all oils spilled could be removed with the kapok, leaving an invisible oil slick on water. After the 4th cycle of reuse, the reused kapok assembly only lost 30% of its virgin sorption capacity if packed at 0.02gcm(-3), and the loss in sorption capacity was much less at higher packing densities. The hydrophobic-oleophilic characteristics of the kapok fiber could be attributed to its waxy surface, while its large lumen contributed to its excellent oil absorbency and retention capacity. PMID:16839589

  14. Preparation of Polyacrylonitrile-Kapok Hollow Microtubes Decorated with Cu Nanoparticles

    Directory of Open Access Journals (Sweden)

    Agcaoili Apollo

    2015-01-01

    Full Text Available A novel copper (Cu nanoparticle carrier was fabricated using kapok natural microtubes as a substrate. Cu nanoparticles were grown on a thin polymer film on the surface of the kapok fibers. The polymer film was deposited on the surface of the microtube using a surfactant-assisted polymerization of acrylonitrile monomers. Cetyltrimethyl ammonium bromide (CTAB was used surfactant. The contact angle decreased from 120.5 to 0 after polyacrylonitrile coating (PAN, which suggests improved hydrophilicity of the kapok fibers. Addition of 1.5 mL acrylonitrile and 0.020 0.035 g CTAB yielded evenly coated kapok fibers. Cu nanoparticles, with diameters of 82-186 nm, were formed on the surface of the composite by reducing 0.16 M copper sulphate (CuSO4 with hydrazine (N2H4 at 70C. EDX reveals that more Cu nanoparticles formed on the surface of PAN-kapok composites with 0.035g CTAB due to thicker PAN coating.

  15. Radiation shielding fiber and its manufacturing method

    International Nuclear Information System (INIS)

    Purpose: To manufacture radiation shielding fibers of excellent shielding effects. Method: Fibers containing more than 1 mmol/g of carboxyl groups are bonded with heavy metals, or they are impregnated with an aqueous solution containing water-soluble heavy metal salts dissolved therein. Fibers as the substrate may be any of forms such as short fibers, long fibers, fiber tows, webs, threads, knitting or woven products, non-woven fabrics, etc. It is however necessary that fibers contain more than 1 mmol/g, preferably, from 2 to 7 mmol/g of carboxylic groups. Since heavy metals having radiation shielding performance are bonded to the outer layer of the fibers and the inherent performance of the fibers per se is possessed, excellent radiation shielding performance can be obtained, as well as they can be applied with spinning, knitting or weaving, stitching, etc. thus can be used for secondary fiber products such as clothings, caps, masks, curtains, carpets, cloths, etc. for use in radiation shieldings. (Kamimura, M.)

  16. Carbon fiber manufacturing via plasma technology

    Science.gov (United States)

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  17. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  18. Effects of the Composition and the Preparation Methods on Oil Sorption Capacity of Recycled Rayon Waste-Kapok Mixtures (RRWK Sorbent

    Directory of Open Access Journals (Sweden)

    Sutha Khaodhiar

    2013-06-01

    Full Text Available The aim of this study was to investigate the utilization of a recycled rayon waste-kapok mixtures as an oil sorbent for the removal of diesel, motor oil and bunker C. The effects of the kapok fibers: rayon fibers ratio and the additional of sodium sulfate on RRWK sorbents properties were investigated through series of oil sorption tests. The ASTM 726-06 method was used to determine the oil sorption capacity of the sorbents under both static and dynamic conditions. The results showed the high sorption capacity of the recycled rayon waste-kapok mixture for difference kinds of oil. Oil, which has a high viscosity, tends to have a higher oil sorption ratio. RRWK sorbents had higher oil sorption capacity than commercial polypropylene. The presence of kapok fibers in RRWK increases the hydrophobicity and oil sorption capacity of the sorbents while the presence of rayon fibers improves the strength of the sorbents. The additional of sodium sulfate during sorbent preparation increases the surface area and pore size of RRWK sorbent and thus improves the oil sorption capacity. It can be concluded that RRWK, which can be produced by utilizing industrial waste, is effective low cost, environmentally friendly oil sorbent with comparable performance to commercial products.

  19. Dissolution behavior of high strength bioresorbable glass fibers manufactured by continuous fiber drawing.

    Science.gov (United States)

    Lehtonen, Timo J; Tuominen, Jukka U; Hiekkanen, Elina

    2013-04-01

    This article describes the dissolution behavior of three silica-based resorbable glasses manufactured by an industrial-type continuous fiber drawing process yielding fibers with tensile strength of 1800-2300MPa. The results of a long-term in vitro degradation testing of the manufactured high strength bioresorbable glass fibers are presented. The degradation was performed by exposing the glass fibers to SBF and TRIS for 26 weeks at physiological conditions at 37C. All fibers showed continuous resorption throughout the study and two of the fibers revealed bioactivity by forming a calcium phosphate (CaP) layer in SBF. PMID:23537596

  20. High Power Fiber Lasers and Applications to Manufacturing

    Science.gov (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  1. Neutron shielding synthetic acrylic fiber and manufacturing method

    International Nuclear Information System (INIS)

    Upon manufacturing acryl synthetic fibers by wet spinning, rare earth metal oxides are dispersed uniformly in an organic solvent, admixed with a solution of an organic solvent of acrylonitrile copolymer and then applied with wet spinning. As the rare earth metal oxides usable herein, those having excellent neutron absorbing property such as gadolinium oxide (Gd2O3) are preferred, due to excellent dispersion stability. Organic solvents, for example, dimethyl formamide, etc. are used as the solvent. In view of the above, synthetic fibers having washing resistance, wide range for fiber fabrication conditions, and excellent neutron shielding property can be obtained. (T.M.)

  2. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  3. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  4. The manufacturing engineering of a hermetic cast fiber calorimeter

    International Nuclear Information System (INIS)

    The authors have made the first pass at designing and engineering a cast lead calorimeter with a rapidity coverage to ? = 5.5. The design preserves detector hermeticity. Plastic scintillating fibers provide a fast, hadronically compensated, high-resolution device. A lead-eutectic, which melts below the softening point of the plastic, provides an easily manufactured high Z absorber. This calorimeter, designed with the TEXAS SSC detector as a baseline, is easily scaled in size and in segmentation without major design changes

  5. 16 CFR 303.7 - Generic names and definitions for manufactured fibers.

    Science.gov (United States)

    2010-01-01

    ...Standardization ISO 2076: 1999(E), TextilesMan-made fibresGeneric names. This incorporation by reference...least 85 percent by weight of a cross-linked novolac. (s) Aramid. A manufactured fiber in which the fiber-forming...

  6. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  7. Optimization of a thermal manufacturing process: drawing of optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Cheng; Jaluria, Y. [State University of New Jersey, Piscataway, NJ (United States). Dept. of Mechanical and Aerospace Engineering

    2005-08-01

    The optimization of thermal systems and processes has received much less attention than their simulation and often lags behind optimization in other engineering areas. This paper considers the optimization of the important thermal manufacturing process involved in the drawing of optical fibers. Despite the importance of optical fibers and the need to enhance product quality and reduce costs, very little work has been done on the optimization of the process. The main aspects that arise in the optimization of such thermal processes are considered in detail in order to formulate an appropriate objective function and to determine the existence of optimal conditions. Using validated numerical models to simulate the thermal transport processes that govern the characteristics of the fiber and the production rate, the study investigates the relevant parametric space and obtains the domain in which the process is physically feasible. This is followed by an attempt to narrow the feasible region and focus on the domain that could lead to optimization. Employing standard optimization techniques, optimal conditions are determined for typical operating parameters. The study thus provides a basis for choosing optimal design conditions and for more detailed investigations on the feasibility and optimization of this complicated and important process. (author)

  8. Premixed Combustion of Kapok (ceiba pentandra) seed oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I.N.G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2014-01-01

    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (?) varie...

  9. Microwave-assisted methyl esters synthesis of Kapok (Ceiba pentandra) seed oil: parametric and optimization study

    OpenAIRE

    Awais Bokhari; Lai Fatt Chuah; Suzana Yusup; Junaid Ahmad; Muhammad Rashid Shamsuddin; Meng Kiat Teng

    2015-01-01

    The depleting fossil fuel reserves and increasing environmental concerns have continued to stimulate research into biodiesel as a green fuel alternative produced from renewable resources. In this study, Kapok (Ceiba pentandra) oil methyl ester was produced by using microwave-assisted technique. The optimum operating conditions for the microwave-assisted transesterification of Kapok seed oil including temperature, catalyst loading, methanol to oil molar ratio, and irradiation time were investi...

  10. Experimental investigation of kapok (Ceiba pentandra) oil biodiesel as an alternate fuel for diesel engine

    International Nuclear Information System (INIS)

    Highlights: Kapok (C. pentandra) oil, an indigenous source, has been used to synthesis biodiesel. A different method has been availed to extract oil from the kapok seeds. Kapok methyl ester (KME) is tested for the first time in a diesel engine. Brake thermal efficiency for B25 blend of KME is noticed to be 4% higher than diesel. Combustion and emission results for B25 blend of KME are almost comparable to diesel. - Abstract: This manuscript explores the possibility of using kapok oil as a source for biodiesel production and experimentally investigate it, KME (kapok oil methyl ester), as a diesel engine fuel. Distinctly, this manuscript is novel on the basis of adopting a different approach in extracting oil from kapok seeds and testing of the produced KME in a diesel engine, perhaps for the first time. Accordingly, kapok oil, an indigenous source, has been extracted from kapok seeds through steam treatment process followed by crushing in an expeller, which has not been considered so far by researchers. Significantly, this method is chosen with the intent to extract oil for its use in diesel engine. Typically, KME is synthesized by trans-esterification process, and the properties of it, evaluated by ASTM standard methods, are in concordance with biodiesel standards. Having ensured the feasibility of its use in diesel engine, KME is tested in a single cylinder diesel engine to appraise the performance, combustion and emission characteristics of the engine. The experimental investigation reveals that the thermal efficiency of the engine for B25 is superior to conventional diesel by 4%. In the same token, the emission and combustion results of lower blend of KME (B25), showed comparable results with diesel, making KME as one of the pertinent fuel for diesel engine

  11. Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder.

    Science.gov (United States)

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  12. New Manufacturing Method for Paper Filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus [SUNY College of Environmental Science and Forestry

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts? or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually. If the new technology could be implemented for bleaching process a total annual estimated energy savings potential of 64 trillion buts? or 11 million barrel of oil equivalent (BOE) equal to 3% of the paper industries energy demand could be realized. This could lead to a increase of renewable energy usage from 56% to close to 60% for the industry. CO{sub 2} emissions could be lowered by over 7.4 million tons annually. It is estimated that an installed system could also yield a 75 to 100% return of investment (ROI) rate for the capital equipment that need to be installed for the fiber filler composite manufacturing process.

  13. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    Science.gov (United States)

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing. PMID:26726642

  14. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    Science.gov (United States)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  15. Critical fiber length technique for composite manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Sivley, G.N.; Vandiver, T.L. [Army Missle Command, Redstone Arsenal, AL (United States); Dougherty, N.S.; Pinkleton, D.A. [Rockwell International, Huntsville, AL (United States)

    1996-12-31

    An improved injection technique for composite structures has been cooperatively developed by the U.S. Army Missile Command (MICOM) and Rockwell International (RI). This process simultaneously injects chopped fiberglass fibers and an epoxy resin matrix into a mold. Four injection techniques: (1){open_quotes}Little Willie{close_quotes} RTM system, (2) Pressure Vat system, (3) Pressure Vat system with vacuum assistance, and (4) Injection gun system, were investigated for use with a 304.8 mm x 304.8 mm x 5.08 mm (12 in x 12 in x 0.2 in) flat plaque mold. The driving factors in the process optimization included: fiber length, fiber weight, matrix viscosity, injection pressure, flow rate, and tool design. At fiber weights higher than 30 percent, the injection gun appears to have advantages over the other systems investigated. Results of an experimental investigation are reviewed in this paper. The investigation of injection techniques is the initial part of the research involved in a developing process, {open_quotes}Critical Fiber Length Technique{close_quotes}. This process will use the data collected in injection experiment along with mechanical properties derived from coupon test data to be incorporated into a composite material design code. The {open_quotes}Critical Fiber Length Technique{close_quotes} is part of a Cooperative Research and Development Agreement (CRADA) established in 1994 between MICOM and RI.

  16. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2015-10-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  17. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    OpenAIRE

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E; Petersen, Martin R

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National ...

  18. Size Classification of Chopped Carbon Fibers in the Composite Materials Manufacturing

    Directory of Open Access Journals (Sweden)

    А.S. Dovbysh

    2010-01-01

    Full Text Available Information synthesis of the learning decision support system for automation of the chopped carbon fibers size control used for the matrix filling within the manufacturing of composite materials based on polytetrafluoroethylene is considered. To improve the reliability of recognition learning algorithm with the optimization of the precision control is proposed.

  19. Highly Aligned Carbon Fiber in Polymer Composite Structures via Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tekinalp, Halil L [ORNL; Kunc, Vlastimil [ORNL; Velez-Garcia, Gregorio M [ORNL; Duty, Chad E [ORNL; Love, Lonnie J [ORNL; Naskar, Amit K [ORNL; Blue, Craig A [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructure and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. This phenomena is explained based on the changes in fiber orientation, dispersion and void formation.

  20. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement

    Science.gov (United States)

    Wu, K. Chauncey; Tatting, Brian F.; Smith, Brett H.; Stevens, Randy S.; Occhipiniti, Gina P.; Swift, Jonathan B.; Achary, David C.; Thornburgh, Robert P.

    2009-01-01

    Advanced composite shells that may offer the potential to improve the structural performance of future aircraft fuselage structures were developed under this joint NASA-industry collaborative effort. Two cylindrical shells with tailored, tow-steered layups and continuously varying fiber angle orientations were designed and built at the National Center for Advanced Manufacturing - Louisiana Partnership. The shells were fabricated from unidirectional IM7/8552 graphite-epoxy pre-preg slit tape material fiber-placed on a constant-diameter mandrel. Each shell had the same nominal 8-ply [plus or minus 45/plus or minus Theta]s layup, where the nominal fiber angle in the tow-steered plies varied continuously from 10 degrees along the crown to 45 degrees on each side, then back to 10 degrees on the keel. One shell was fabricated with all 24 tows placed during each pass of the fiber placement machine, resulting in many tow overlaps on the shell surface. The fiber placement machine's individual tow cut/restart capability was also used to manufacture a second shell with tow drops and a more uniform laminate thickness. This paper presents an overview of the detailed design and manufacturing processes for these shells, and discusses issues encountered during their fabrication and post-cure evaluation. Future plans for structural testing and analyses of the shells are also discussed.

  1. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  2. New techniques for manufacturing optical-fiber-based fiber Fabry-Perot sensors

    Science.gov (United States)

    Tuck, Christopher J.; Fernando, Gerard F.

    2002-07-01

    Optical fiber-based extrinsic Fabry-Perot interferometric (EFPI) sensors have been extensively deployed for sensing a number of measurands including temperature, strain, vibration and pressure. Their circular cross-section has made it relatively simple and attractive to embed them in advanced fibre reinforced composites (AFRCs) such as glass and carbon fibers. However, a typical construction of an EFPI consists of two optical fibers that are positioned and secured within a precision bore capillary. The relative outer diameters of the various key components are as follows: capillary = 300 micrometers ; optical fibre = 125 micrometers ; carbon and glass fibers = 8 and 14 micrometers respectively. This mismatch in relative diameters of the reinforcing and the sensor fibers can result in significant spatial distortion of the former. The location of the embedded sensing fibre in relation to the reinforcing fibre layers can also lead to the formation of resin-rich regions in the AFRC. These factors can have a detrimental effect on the compressive properties of the material. Therefore, there is significant attraction in reducing the overall diameter of the sensor. In this current paper, the feasibility of reducing the diameter of EFPI sensor design to that of the optical fibre is demonstrated via two techniques. The first technique involved the use of hydrofluoric acid to etch and create the Fabry-Perot cavity. In the second technique, the feasibility of using laser ablation to fabricate the Fabry-Perot cavity in silica and sapphire substrates is presented. The optical fibre-based Fabry-Perot cavity produced via acid etching was interrogated using white light interferometry.

  3. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    Science.gov (United States)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  4. Microwave-assisted methyl esters synthesis of Kapok (Ceiba pentandra seed oil: parametric and optimization study

    Directory of Open Access Journals (Sweden)

    Awais Bokhari

    2015-09-01

    Full Text Available The depleting fossil fuel reserves and increasing environmental concerns have continued to stimulate research into biodiesel as a green fuel alternative produced from renewable resources. In this study, Kapok (Ceiba pentandra oil methyl ester was produced by using microwave-assisted technique. The optimum operating conditions for the microwave-assisted transesterification of Kapok seed oil including temperature, catalyst loading, methanol to oil molar ratio, and irradiation time were investigated by using Response Surface Methodology (RSM based on Central Composite Design (CCD. A maximum conversion of 98.9 % was obtained under optimum conditions of 57.09 C reaction temperature, 2.15 wt% catalyst (KOH loading, oil to methanol molar ratio of 1:9.85, and reaction time of 3.29 min. Fourier Transform Infra-Red (FT-IR spectroscopy was performed to verify the conversion of the fatty acid into methyl esters. The properties of Kapok oil methyl ester produced under the optimum conditions were characterized and found in agreement with the international ASTM D 6751 and EN 14214 standards.

  5. 77 FR 73978 - Foreign-Trade Zone 148-Knoxville, TN, Toho Tenax America, Inc. (Carbon Fiber Manufacturing...

    Science.gov (United States)

    2012-12-12

    ...), located in Rockwood, Tennessee, with authority to manufacture carbon fiber for export and oxidized polyacrylonitrile fiber (Board Order 1868, 77 FR 69435, 11/19/2012). Board Order 1868 did not include authority to... Foreign-Trade Zones Board Foreign-Trade Zone 148--Knoxville, TN, Toho Tenax America, Inc. (Carbon...

  6. Utilization of Non -oven Jute felt - A natural Fiber as a Substitution of Wood Veneer for Manufacture of Plywood

    OpenAIRE

    Sahoo, S.C.; Mr. Amitava Sil; Mr. P.K.Khatua

    2012-01-01

    In this study the suitability of using core veneer made from renewable natural fiber i.e. Non-oven jute felt, which is the second most widely used natural fiber for manufacturing of plywood was investigated to minimize the gap between demand and supply of wood veneer. The renewable natural hard jute fibre was impregnated with phenolic resin and was used for the manufacture of plywood. Plywood of 4 mm, 6 mm, 12 mm and 18 mm thick were manufactured by using phenolic resin impregnated jute felt ...

  7. Interconnected, microporous hollow fibers for tissue engineering: commercially relevant, industry standard scale-up manufacturing.

    Science.gov (United States)

    Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-09-01

    Significant progress has been achieved in the field of tissue engineering to create functional tissue using biomimetic three-dimensional scaffolds that support cell growth, proliferation, and extracellular matrix production. However, many of these constructs are severely limited by poor nutrient diffusion throughout the tissue-engineered construct, resulting in cell death and tissue necrosis at the core. Nutrient transport can be improved by creation and use of scaffolds with hollow and microporous fibers, significantly improving permeability and nutrient diffusion. The purpose of this review is to highlight current technological advances in the fabrication of hollow fibers with interconnected pores throughout the fiber walls, with specific emphasis on developing hollow porous nonwoven fabrics for use as tissue engineering constructs via industry standard processing technologies: Spunbond processing and polymer melt extrusion. We outline current methodologies to create hollow and microporous scaffolds with the aim of translating that knowledge to the production of such fibers into nonwoven tissue engineering scaffolds via spunbond technology, a commercially relevant and viable melt extrusion manufacturing approach that allows for facile scale-up. PMID:24142629

  8. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Carcass Characteristics of Kacang Goats Fed Ration Containing MH-1 Variety of Kapok Seed Meal (Ceiba pentandra, GAERTN.)

    OpenAIRE

    T. Hidjaz; N. Djuarnani

    2014-01-01

    This research aimed to study the carcass characteristics of Kacang goats fed ration containing kapok seed meal (KSM) as a component of the concentrate. The experiment was conducted in two stages. The first stage was to find out the best variety of kapok that will be used in the second experiment; the second stage was to determine the benefits of KSM on carcass characteristics. Twenty-five, 8 months old Kacang goats with initial body weight of 11.711.08 kg, were used in this experiment. The a...

  10. Electrocoagulation pretreatment of wet-spun acrylic fibers manufacturing wastewater to improve its biodegradability.

    Science.gov (United States)

    Gong, Chenhao; Zhang, Zhongguo; Li, Haitao; Li, Duo; Wu, Baichun; Sun, Yuwei; Cheng, Yanjun

    2014-06-15

    The electrocoagulation (EC) process was used to pretreat wastewater from the manufacture of wet-spun acrylic fibers, and the effects of varying the operating parameters, including the electrode area/wastewater volume (A/V) ratio, current density, interelectrode distance and pH, on the EC treatment process were investigated. About 44% of the total organic carbon was removed using the optimal conditions in a 100 min procedure. The optimal conditions were a current density of 35.7 mA cm(-2), an A/V ratio of 0.28 cm(-1), a pH of 5, and an interelectrode distance of 0.8 cm. The biodegradability of the contaminants in the treated water was improved by the EC treatment (using the optimal conditions), increasing the five-day biological oxygen demand/chemical oxygen demand ratio to 0.35, which could improve the effectiveness of subsequent biological treatments. The improvement in the biodegradability of the contaminants in the wastewater was attributed to the removal and degradation of aromatic organic compounds, straight-chain paraffins, and other organic compounds, which we identified using gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy. The EC process was proven to be an effective alternative pretreatment for wastewater from the manufacture of wet-spun acrylic fibers, prior to biological treatments. PMID:24813666

  11. Studies on radiation resistance of fiber reinforced plastic composites featured by easiness of manufacturing, 3

    International Nuclear Information System (INIS)

    Mechanical properties of glass fiber-reinforced plastics (GFRP) irradiated at room temperature with electron beams were studied in order to characterize the radiation resistance. Mechanical properties were tested by flexural strength and interlaminar shear strength (ILSS) at room and low temperature, and flexural fatigue strength at room temperature. The GFRP used in the present study were manufactured trial with three kinds of epoxy matrices having excellent radiation resistance at room temperature and easiness of manufacturing. These composites prepared in selected curing condition were equipped with high flexural strength at low temperature, about two times at room temperature. GFRP composed of 4,4'-tetraglycidyl diamino diphenyl methane cured with 4,4'-diamino diphenyl methane showed the highest radiation resistance: the strength after irradiation up to 90 MGy were kept the initial value, that is, flexural strength of 1000 MPa at 77 K and ILSS of 70 MPa at 123 K. It was also confirmed that the flexural strength measured at 4.2 K were well agreed with the values tested at 77 K. On the effects of fiber-matrix bonding materials by using different kinds and/or amount of silane coupling agents, the pronounced difference were found in the degradation behavior but did not affect to the flexural strength of the GFRP. Flexural fatigue behavior showed rather well radiation degradation comparing with three point bending strength at room temperature. (author)

  12. CHARACTERIZATION OF CARBON FIBER EMISSIONS FROM CURRENT AND PROJECTED ACTIVITIES FOR THE MANUFACTURE AND DISPOSAL OF CARBON FIBER PRODUCTS

    Science.gov (United States)

    Composite materials formed by impregnating a carbon or graphite fiber mat with plastic binders are being used increasingly in military, aerospace, sports and automotive applications. Carbon fibers are formed primarily from synthetic fibers carbonized in the absence of oxygen. Pos...

  13. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water.

    Science.gov (United States)

    Dong, Ting; Cao, Shengbin; Xu, Guangbiao

    2016-03-15

    Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00g/g of vegetable oil and 58.50g/g of used motor oil, with high oil retention after 24h dripping. In static condition of oil interception, the two oils started to leak at around 20min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6min when the water ran at 60.35ml/s. The leakage of oils was considerably accelerated with increasing running rates. PMID:26642440

  14. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery

    Science.gov (United States)

    Krogstad, Emily A.; Woodrow, Kim A.

    2014-01-01

    Electrospun fibers containing antiretroviral drugs have recently been investigated as a new dosage form for topical microbicides against HIV-1. However, little work has been done to evaluate the scalability of the fiber platform for pharmaceutical production of medical fabrics. Scalability and cost-effectiveness are essential criteria in developing fibers as a practical platform for use as a microbicide and for translation to clinical use. To address this critical gap in the development of fiber-based vaginal dosage forms, we assessed the scale-up potential of drug-eluting fibers delivering tenofovir (TFV), a nucleotide reverse transcriptase inhibitor and lead compound for topical HIV-1 chemoprophylaxis. Here we describe the process of free-surface electrospinning to scale up production of TFV fibers, and evaluate key attributes of the finished products such as fiber morphology, drug crystallinity, and drug loading and release kinetics. Poly(vinyl alcohol) (PVA) containing up to 60 wt% TFV was successfully electrospun into fibers using a nozzle-free production-scale electrospinning instrument. Actual TFV loading in fibers increased with increasing weight percent TFV in solution, and encapsulation efficiency was improved by maintaining TFV solubility and preventing drug sedimentation during batch processing. These results define important solution and processing parameters for scale-up production of TFV drug-eluting fibers by wire electrospinning, which may have significant implications for pharmaceutical manufacturing of fiber-based medical fabrics for clinical use. PMID:25169075

  15. Design optimization, manufacture and response measurements for fast-neutron radiography converters made of scintillator and wavelength-shifting fibers

    International Nuclear Information System (INIS)

    In order to improve the image quality of fast neutron radiography, a converter made of scintillator and wavelength-shifting fibers has been developed. The appropriate parameters of the converter such as fibers arrangement, distance between fibers are optimized theoretically, and manufacture of the converter are also optimized. Fast neutron radiography experiments by 14 MeV neutrons are used to test this converter and kinds of traditional converters. The experiments results matched the calculations. The novel converter's resolution is better than 1 mm and the light output is high

  16. Design optimization, manufacture and response measurements for fast-neutron radiography converters made of scintillator and wavelength-shifting fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Wu, Yang; Cao, Chao; Huo, Heyong; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2014-10-21

    In order to improve the image quality of fast neutron radiography, a converter made of scintillator and wavelength-shifting fibers has been developed. The appropriate parameters of the converter such as fibers arrangement, distance between fibers are optimized theoretically, and manufacture of the converter are also optimized. Fast neutron radiography experiments by 14 MeV neutrons are used to test this converter and kinds of traditional converters. The experiments results matched the calculations. The novel converter's resolution is better than 1 mm and the light output is high.

  17. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process

    KAUST Repository

    Zheng, Tianlong

    2015-01-01

    This work investigated the effectiveness of a combination of microbubble-ozonation and ultraviolet (UV) irradiation for the treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under reactor condition (ozone dosage of 48 mg L-1, UV fluence rate of 90 mW cm-2, initial pH of 8.0, and reaction time of 120 min), the biodegradability (represented as BOD5/CODcr) of the wastewater improved from 0.18 to 0.47. This improvement in biodegradability is related to the degradation of alkanes, aromatic compounds, and other bio-refractory organic compounds. The combination of microbubble-ozonation and UV irradiation synergistically improved treatment efficiencies by 228%, 29%, and 142% for CODcr, UV254 removal and BOD5/CODcr respectively after 120 min reaction time, as compared with the sum efficiency of microbubble-ozonation alone and UV irradiation alone. Hydroxyl radical production in the microbubble-ozonation/UV process was about 1.8 times higher than the sum production in microbubble-ozonation alone and UV irradiation alone. The ozone decomposition rate in the combined process was about 4.1 times higher than that in microbubble-ozonation alone. The microbubble-ozonation/UV process could be a promising technique for the treatment of bio-refractory organics in the acrylic fiber manufacturing industry. © 2015 Royal Society of Chemistry.

  18. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  19. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Science.gov (United States)

    2013-09-09

    ... Foreign-Trade Zones Board Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign... comment has been given in the Federal Register (75 FR 61696, 10/6/2010; 75 FR 74002, 11/30/2010; 77 FR 73978, 12/12/2012; and 77 FR 75972, 12/26/2012) and the application has been processed pursuant to...

  20. Three-phase Coupling of Air, Droplets and Fibers for the Spray Molding Manufacturing Process of Polyurethane-Fiber-Reinforced Composites

    Science.gov (United States)

    Diffo, P.; Wulf, P.; Breuer, M.

    2011-09-01

    In the present paper the authors present a multiphase flow simulation model of the interaction of a droplet-laden air flow with flexible fibers. This highly complex flow is occurring during a manufacturing process of fiber reinforced polyurethane based composites, where the liquid plastic polyurethane (PUR) is sprayed with air assistance in a tool form or on a substrate. Simultaneously chopped fibers are laterally inserted in the polyurethane-air spray cone for wetting before the entire mixture deposits on the substrate, where it starts curing. This investigation aims to compute the statistical fiber orientation and density distribution in the final composite, which will help modeling its anisotropic material properties. It is presumed that the final position and orientation of a fiber on a substrate results from its dynamics and coupled interactions with air, PUR-droplets and other fibers within the spray cone. Therefore, we present a new approach simplifying the multiply coupled interaction of the three phases. In this paper a model of the process is built, that computes the transient, 4-way-coupled behavior of the air-liquid droplets mixture with the CFD code ANSYS Fluent and the 1-way-air- and 1-way-droplet-coupled dynamics of the fibers with an extra code called FIDYST. Two approaches for the coupling of fibers with the air-droplets-mixture are presented: One considers the mixture as a pseudo-fluid ("homogenization"), the other computes a force for each of the phases separately, wherein the average momentum transfer for the fiber-droplet collision is estimated based on the probability of local collision events.

  1. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  2. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  3. Floss release, seed fall and germination of kapok seeds (Ceiba pentandra) in an urban environment

    OpenAIRE

    Alfan A. Rija; Abubakari Said; Julius Mwita; Kuruthumu A. Mwamende

    2013-01-01

    The tropical forest kapok tree occurs widely in urban environments, dispersing thousands of floss during the fruiting season. However, its seedlings are rarely seen around human settlements, raising questions on what factorsmight be limiting its recruitment. We examined the pattern of floss release, seed fall post-dispersal and influences of watering frequency on germination ofCeiba pentandraseeds. Evening,overall, was associated with a significantlyhigher rate and quantit...

  4. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    Science.gov (United States)

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents. PMID:22629620

  5. Product stewardship and science: safe manufacture and use of fiber glass.

    Science.gov (United States)

    Hesterberg, Thomas W; Anderson, Robert; Bernstein, David M; Bunn, William B; Chase, Gerald A; Jankousky, Angela Libby; Marsh, Gary M; McClellan, Roger O

    2012-03-01

    This paper describes a proactive product stewardship program for glass fibers. That effort included epidemiological studies of workers, establishment of stringent workplace exposure limits, liaison with customers on safe use of products and, most importantly, a research program to evaluate the safety of existing glass fiber products and guide development of new even safer products. Chronic inhalation exposure bioassays were conducted with rodents and hamsters. Amosite and crocidolite asbestos produced respiratory tract cancers as did exposure to "biopersistent" synthetic vitreous fibers. "less biopersistent" glass fibers did not cause respiratory tract cancers. Corollary studies demonstrated the role of slow fiber dissolution rates and biopersistence in cancer induction. These results guided development of safer glass fiber products and have been used in Europe to regulate fibers and by IARC and NTP in classifying fibers. IARC concluded special purpose fibers and refractory ceramic fibers are "possibly carcinogenic to humans" and insulation glass wool, continuous glass filament, rock wool and slag wool are "not classifiable as to their carcinogenicity to human." The NTP's 12th report on carcinogens lists "Certain Glass Wool Fibers (Inhalable)" as "reasonably anticipated to be a human carcinogen." "Certain" in the descriptor refers to "biopersistent" glass fibers and excludes "less biopersistent" glass fibers. PMID:22266014

  6. Utilization of Non -oven Jute felt - A natural Fiber as a Substitution of Wood Veneer for Manufacture of Plywood

    Directory of Open Access Journals (Sweden)

    Mr. S.C.Sahoo

    2012-04-01

    Full Text Available In this study the suitability of using core veneer made from renewable natural fiber i.e. Non-oven jute felt, which is the second most widely used natural fiber for manufacturing of plywood was investigated to minimize the gap between demand and supply of wood veneer. The renewable natural hard jute fibre was impregnated with phenolic resin and was used for the manufacture of plywood. Plywood of 4 mm, 6 mm, 12 mm and 18 mm thick were manufactured by using phenolic resin impregnated jute felt having thickness 16mm of 1850 GSM (approx. as a core in place of the natural wood veneer. From the study, it can be inferred that PF Resin impregnated Non oven jute felt as a natural fibre can suitably replace the wooden glue core veneer to manufacture ply board up to 80% as an alternative substitute of wood. The physico-mechanical properties such as surface roughness, moisture content, density, water absorption, swelling, compressive strength, tensile strength, static bending strength, glue shear strength, of the plywood manufactured by using jute felt as core veneer with different resin dilution have been studied. Data revels that most of the physico-mechanical properties of the plywood showed satisfactory results meeting the requirement of different grades of plywood tested as per IS: 1734 - 1983. The accelerated study of the glued core after impregnation with jute felt have been carried out for three months before plywood manufacture after storing it in proper temperature and humidity. The data revealed that there is no appreciable change in bond quality and mechanical properties of the plyboard manufactured after storing the veneer up to 30 days. The study concluded that wood substituted jute composites could be an ideal solution with ever depleting forest reserves where utilization of renewable resources will be beneficiary for plywood industries to meet the challenges during scarcity of veneer by reducing the cost of imported veneer.

  7. Reduction of harmful emissions from a diesel engine fueled by kapok methyl ester using combined coating and SNCR technology

    International Nuclear Information System (INIS)

    Highlights: Thermal barrier coating was accomplished by coating the engine components with PSZ. Under-utilized kapok oil biodiesel was used as renewable fuel in a coated engine. The BTE of the engine was improved by 9% with reduced BSFC. CO, HC and smoke were reduced by 40%, 35.3% and 21.4%, respectively. After implementing SCR assembly, the NOX emission was decreased by 13.4%. - Abstract: This research work has been formulated to reduce the stinging effect of NOX emission on atmospheric environment from a coated diesel engine fueled by biodiesel. As such, in the current study, we attempted to harness the renewable source of energy from in-edible kapok oil, which is normally under-utilized despite being a viable feedstock for biodiesel synthesis. Notably, steam treatment process followed by crushing of the kapok seeds in a mechanical expeller was done to extract large quantities of kapok oil for the application of diesel engine, which is quite distinct of a method adopted herein. The conventional trans-esterification process was availed to synthesize KME (kapok methyl ester) and the physical and thermal properties of it were estimated by ASTM standard methods. Subsequently, two blends of KME with diesel such as B25 (KME 25% and diesel 75%) and B50 (KME 50% and diesel 50%) were prepared and tested in a single cylinder diesel engine with thermal barrier coating. To help realize the coating process, PSZ (partially stabilized zirconia), a pertinent coating material in respect of its poor thermal conductivity and better durability, has been chosen as the coating material to be applied on engine components by plasma spray coating technique. As an outcome of the coating study, B50 was found to show improved BTE (brake thermal efficiency) than that in an uncoated engine, with notable decrease in major emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke. However, due to reduction in heat losses and increase in in-cylinder temperature, the NOX (oxides of nitrogen) emission was expected to be increased in a coated diesel engine. Therefore, in order to reduce the NOX emission, urea based SNCR system was incorporated in the exhaust pipe and by which, NOX emission was reduced

  8. 16 CFR 303.33 - Country where textile fiber products are processed or manufactured.

    Science.gov (United States)

    2010-01-01

    ...information: (i) The manufacturing process in the foreign country and in the USA; for example: Imported...Country]/fabric made in USA or Knit in USA, assembled in [Foreign...unfinished product, the manufacturing processes as...

  9. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  10. Manufacture and characterization of an extrinsic elementary fiber-optical sensor for temperature measurement; Herstellung und Charakterisierung eines extrinsischen faseroptischen Elementarsensors zur Temperaturmessung

    Energy Technology Data Exchange (ETDEWEB)

    Trautner, Ralph [Fachhochschule Regensburg (Germany); Schmauss, Bernhard [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Hochfrequenztechnik; Shamonin, Mikhail [Fachhochschule Regensburg (Germany). Sensorik, Messtechnik und elektromagnetische Metamaterialien

    2008-07-01

    Manufacture and characterization of an elementary fiber-optical sensor for temperature measurement is presented. The prism-shaped head of the sensor consisting of indium phosphide uses the temperature dependency of the absorption edge. The dimensions of the prism require a manufacturing method bridging fine mechanics and microsystems technology. (orig.)

  11. The addition of oat fiber and natural alternative sweeteners in the manufacture of plain yogurt.

    Science.gov (United States)

    Fernndez-Garca, E; McGregor, J U; Traylor, S

    1998-03-01

    Calorie-reduced yogurts that were fortified with 1.32% oat fiber were prepared from lactose-hydrolyzed milk, alone and supplemented with 2 and 4% sucrose or with 1.6, 3.6, and 5.5% fructose. Treated samples were compared with unsweetened yogurt and with yogurts sweetened with 2, 4, and 6% sucrose. Addition of 5.5% fructose increased fermentation time by 60%, slowing down the production of lactic, pyruvic, acetic, and propionic acids and the consumption of hippuric and orotic acids. Lactose hydrolysis had an inhibitory effect on starter activity at the beginning of fermentation and a stimulatory effect at the end of fermentation. Fiber addition led to increases in concentrations of acetic and propionic acid. Lactobacilli counts were lower in samples treated with fructose. The use of hydrolyzed milk had a stimulatory effect on total bacteria and lactobacilli counts throughout the cold storage period. After 28 d of storage, lactobacilli counts were consistently higher in fiber-fortified yogurts, but total bacteria counts were lower. Apparent viscosity increased with the addition of sweetener and fiber. Lactose-hydrolyzed and fructose yogurts had the highest viscosity values. Samples sweetened with sucrose received the highest scores for flavor. Fiber addition decreased overall flavor quality. The lactose-hydrolyzed yogurts received the highest flavor scores, independent of fiber fortification. Fiber addition improved the body and texture of unsweetened yogurts but lowered overall scores for body and texture in yogurts sweetened with sucrose. PMID:9565867

  12. Crosslinked hollow fiber membranes for natural gas purification and their manufacture from novel polymers

    Science.gov (United States)

    Wallace, David William

    Recent research has developed a class of crosslinkable polymers that can be used as effective membrane separators for carbon dioxide removal from natural gas. In asymmetric hollow fiber form, these materials provide significant cost and savings over traditional amine absorption towers. This work focuses on the development of a method for forming asymmetric hollow fibers membranes from novel polymers in general, with specific application to this group of crosslinkable polymers. The majority of current hollow fiber membranes for gas separations are formed from a relatively small class of hydrophobic polymers. As new materials are discovered, it is important that they be processable into asymmetric hollow fibers, a form which allows for maximum productivity with a relatively small unit operation. A process was developed in this work to first systematically characterize novel materials, and then to apply the characterization to hollow fiber formation. The process requires a minimal amount of material, and was validated using a crosslinkable polyimide. A closely related polyimide was used to show the effectiveness of crosslinked asymmetric hollow fiber membranes for the removal of CO2 from natural gas. Fibers were spun using the process described, then crosslinked in the solid state for stabilization against CO2-induced plasticization. Initial studies of the crosslinking reaction revealed that only moderate temperatures (180C--200C) are required for stabilization. The crosslinking reaction also happened relatively quickly (less than one hour), making the process reasonable for use in high-speed fiber production. Stability was shown upon exposure to both liquid solvents and high CO2 pressures, and the fibers were shown to be effective separators, maintaining high selectivity and productivity at high pressures over time.

  13. Carbon fiber/reaction-bonded carbide matrix for composite materials - Manufacture and characterization

    International Nuclear Information System (INIS)

    The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual inter-phases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions. (authors)

  14. Manufacture of a weakly denatured collagen fiber scaffold with excellent biocompatibility and space maintenance ability

    International Nuclear Information System (INIS)

    Although collagen scaffolds have been used for regenerative medicine, they have insufficient mechanical strength. We made a weakly denatured collagen fiber scaffold from a collagen fiber suspension (physiological pH 7.4) through a process of freeze drying and denaturation with heat under low pressure (1 10?1 Pa). Heat treatment formed cross-links between the collagen fibers, providing the scaffold with sufficient mechanical strength to maintain the space for tissue regeneration in vivo. The scaffold was embedded under the back skin of a rat, and biocompatibility and space maintenance ability were examined after 2 weeks. These were evaluated by using the ratio of foreign body giant cells and thickness of the residual scaffold. A weakly denatured collagen fiber scaffold with moderate biocompatibility and space maintenance ability was made by freezing at ?10 C, followed by denaturation at 140 C for 6 h. In addition, the direction of the collagen fibers in the scaffold was adjusted by cooling the suspension only from the bottom of the container. This process increased the ratio of cells that infiltrated into the scaffold. A weakly denatured collagen fiber scaffold thus made can be used for tissue regeneration or delivery of cells or proteins to a target site. (paper)

  15. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    Science.gov (United States)

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.210(3) to 4.310(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP. PMID:26447230

  16. Large-Scale Manufacturing of Bulk Metallic Glass Sheets and Fiber Metal Laminates Project

    Data.gov (United States)

    National Aeronautics and Space Administration Liquidmetal Technologies (LMT) and the University of Southern California (USC)'s M.C. Gill Composites Center team up to develop manufacturing processes for...

  17. Properties of SBS and sisal fiber composites: ecological material for shoe manufacturing

    Scientific Electronic Library Online (English)

    Jos Carlos Krause de, Verney; Martha Fogliato Santos, Lima; Denise Maria, Lenz.

    2008-12-01

    Full Text Available The worldwide trend toward using cheap, atoxic and durable materials from renewable resources contributes to sustainable development. Thus, the investigation of the potential use of vegetal fibers as reinforcing agent in polymeric composites has gained new significance. Sisal fiber has emerged as a [...] reinforcing material for polymers used in automobile, footwear and civil industries. In this work, properties such as hardness, tensile strength and tear strength of polymer composites composed by block copolymer styrene-butadiene-styrene (SBS) and 5, 10 and 20% by weight of sisal fiber were evaluated. The influence of conventional polymer processing techniques such as single-screw and double-screw extrusion, as well as the addition of coupling agent on the composite mechanical performance was investigated. Also, the morphology and thermal stability of the composites were analyzed. The addition of 2 wt. (%) maleic anhydride as coupling agent between sisal fiber and SBS has improved the composite mechanical performance and the processing in a double-screw extruder has favored the sisal fiber distribution in the SBS matrix.

  18. Properties of SBS and sisal fiber composites: ecological material for shoe manufacturing

    Directory of Open Access Journals (Sweden)

    Jos Carlos Krause de Verney

    2008-12-01

    Full Text Available The worldwide trend toward using cheap, atoxic and durable materials from renewable resources contributes to sustainable development. Thus, the investigation of the potential use of vegetal fibers as reinforcing agent in polymeric composites has gained new significance. Sisal fiber has emerged as a reinforcing material for polymers used in automobile, footwear and civil industries. In this work, properties such as hardness, tensile strength and tear strength of polymer composites composed by block copolymer styrene-butadiene-styrene (SBS and 5, 10 and 20% by weight of sisal fiber were evaluated. The influence of conventional polymer processing techniques such as single-screw and double-screw extrusion, as well as the addition of coupling agent on the composite mechanical performance was investigated. Also, the morphology and thermal stability of the composites were analyzed. The addition of 2 wt. (% maleic anhydride as coupling agent between sisal fiber and SBS has improved the composite mechanical performance and the processing in a double-screw extruder has favored the sisal fiber distribution in the SBS matrix.

  19. Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents

    International Nuclear Information System (INIS)

    Catalyst-free biodiesel production from non-edible Ceiba pentandra (kapok) oil via supercritical methanol transesterification was demonstrated in this work. The supercritical transesterification experiments were performed in a batch reactor at temperatures of 250350 C, pressures of 1018 MPa, reaction times of 120600 s, and methanol to oil molar ratios of 15:135:1. Response surface methodology (RSM) and four-way analysis of variance (ANOVA) were applied for the design and optimization of the experiments with respect to temperature, pressure, reaction time, and molar ratio of methanol to oil simultaneously. The response (i.e., FAME yield) was fitted by a quadratic polynomial regression model using least square analysis in a five-level-four-factor central composite design (CCD). The optimum conditions were found as follows: methanol to oil molar ratio of 30:1, temperature of 322 C, pressure of 16.7 MPa, and reaction time of 476 s with FAME (fatty acid methyl ester) yield of 95.5%. The significance of the reaction parameters toward FAME yield was in the order of methanol to oil molar ratio > reaction time > pressure > temperature. - Highlights: Transesterification of non-edible kapok oil into biodiesel via a non-catalytic route. Methanol to oil molar ratio, temperature, pressure, and reaction time were optimized. Experimental design in a five-level-four-factor central composite design. Application of quadratic polynomial model for fitting the response (FAME yield)

  20. Development of a Fiber Laser Welding Equipment for the LVDT Manufacturing

    International Nuclear Information System (INIS)

    The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. A LVDT(Linear Variable Differential Transformer) can be designed to measure the pressure level and elongation during the irradiation test by using various metals and MI cables. LVDT's parts were composed of MI cables and Inconel 600 materials. Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-welding using Fiber laser is one of the key technologies to be developed to fabricate precise products of fuel irradiation test. We also have to secure micro-welding technology to perform various instrumentations for fuel irradiation test. Micro-welding technology was adopted to seal between seal tubes and MI cables with thickness of 0.15 mm. The soundness of welding area has to be confirmed to prevent fission gas of the fuel from leaking out of the fuel rods during the fuel irradiation test. In this report, fundamental data for welding technology using Fiber laser was proposed to seal Inconel 600 sheaths of LVDT instrumented capsules for the irradiation test. Moreover, It is expected that the use of fuel irradiation tests will be revitalized by the self-development of LVDT's parts using the Fiber laser welding technology

  1. Studies on radiation resistance of fiber reinforced plastic composites featured by easiness of manufacturing, 2

    International Nuclear Information System (INIS)

    Various mechanical properties were examined at room temperature and at 123 or 77 K on five kinds of glass fiber reinforced plastics (GFRP) irradiated with electron beams. Dynamic viscoelastic properties and fractography by means of scanning electron microscopy (SEM) were also measured in order to clarify degradation behavior. Considerable decrease in interlaminar shear strength (ILSS) at room temperature was observed above the absorbed dose of 60 MGy, while three-point bending strength showed no change even up to 100 MGy. On the other hand, the three-point bending strength and the ILSS at 123 K or 77 K strikingly decreased with increasing absorbed dose. The fractography reveals that debonding of glass fiber and matrix resin or the degradation of silane coupling agents plays an important role in the strength reduction at low temperature. These findings suggest that the interface between matrix and fiber loses its bondability at low temperature after electron beam irradiation, although high bond strength still remeins at room temperature. (author)

  2. Manufacture of Green-Composite Sandwich Structures with Basalt Fiber and Bioepoxy Resin

    OpenAIRE

    J. Andrs; J. A. Garca-Manrique; Hoto, R.; Torres, J.P.

    2013-01-01

    Nowadays, there is a growing interest for the use and development of materials synthesized from renewable sources in the polymer composites manufacturing industry; this applies for both matrix and reinforcement components. In the present research, a novel basalt fibre reinforced (BFR) bioepoxy green composite is proposed as an environmentally friendly alternative to traditional petroleum-derived composites. In addition, this material system was combined with cork as core material for the fabr...

  3. The Addition of Oat Fiber and Natural Alternative Sweeteners in the Manufacture of Plain Yogurt

    OpenAIRE

    Fernndez Garca, Estrella; Traylor, Sandra; McGregor, John U.

    1998-01-01

    Calorie-reduced yogurts that were fortified with 1.32% oat fiber were prepared from lactosehydrolyzed milk, alone and supplemented with 2 and 4% sucrose or with 1.6, 3.6, and 5.5% fructose. Treated samples were compared with unsweetened yogurt and with yogurts sweetened with 2, 4, and 6% sucrose. Addition of 5.5% fructose increased fermentation time by 60%, slowing down the production of lactic, pyruvic, acetic, and propionic acids and the consumption of hippuric an...

  4. Carcass Characteristics of Kacang Goats Fed Ration Containing MH-1 Variety of Kapok Seed Meal (Ceiba pentandra, GAERTN.

    Directory of Open Access Journals (Sweden)

    T. Hidjaz

    2014-04-01

    Full Text Available This research aimed to study the carcass characteristics of Kacang goats fed ration containing kapok seed meal (KSM as a component of the concentrate. The experiment was conducted in two stages. The first stage was to find out the best variety of kapok that will be used in the second experiment; the second stage was to determine the benefits of KSM on carcass characteristics. Twenty-five, 8 months old Kacang goats with initial body weight of 11.711.08 kg, were used in this experiment. The animals were housed individually based on completely randomized design (CRD with 5 treatments and 5 replications. The rations were based on forage:concentrate ratio of 50:50 dry matter basis. The ration contained concentrates, with increasing levels of KSM, i.e.: R0 (napier grass + concentrate: rice bran, coconut cake, corn, urea + 0% KSM; R5 (R0 + KSM 5%; R10 (R0 + KSM 10%; R15 (R0 + KSM 15%; and R20 (R0 + KSM 20%. Drinking water was provided ad libitum. The result of first stage showed that KSM variety of MH-1 would be used as a component of the concentrate on the second experiment. The increasing level of KSM in the rations had significant effect (P<0.05 on physical characteristics of the carcass, such as dressing percentage (44.35%, carcass length (54.006 cm, fleshing index (130.59 g/cm, plumpness of leg (87.48%, loin eye area (5.06 cm2, and percentage of carcass meat (64.69%. It is concluded that MH-1 variety of KSM can be used as a feed component up to 20 % in the goat ration.

  5. Production and application of chemical fibers with special properties for manufacturing composite materials and goods of different usage

    Science.gov (United States)

    Levit, R.

    1993-01-01

    The development of modern technologies demands the creation of new nonmetallic, fibrous materials with specific properties. The fibers and materials developed by NII 'Chimvolokno', St. Petersburg, can be divided into two groups. The first group includes heat-resistant fibers, fire-resistant fibers, thermotropic fibers, fibers for medical application, and textile structures. The second group contains refractory fibers, chemoresistant and antifriction fibers, fibers on the basis of polyvinyl alcohol, microfiltering films, and paperlike and nonwoven materials. In cooperation with NPO 'Chimvolokno' MYTITSHI, we developed and started producing heat-resistant high-strength fibers on the base of polyhetarearilin and aromatic polyimides (SVM and terlon); heat-resistant fibers on the base of polyemede (aramid); fire-retardant fibers (togilen); chemoresistant and antifriction fibers on the basis of homo and copolymers of polytetrafluoroethylene (polyfen and ftorin); and water soluble, acetylated, and high-modulus fibers from polyvinyl alcohol (vylen). Separate reports will deal with textile structures and thermotropic fibers, as well as with medical fibers. One of the groups of refractory fibers carbon fibers (CF) and the corresponding paperlike nonwoven materials are discussed in detail. Also, composite materials (CM) and their base, which is the subject of the author's research since 1968, is discussed.

  6. Study of Heat Transfer in a Kapok Material from the Convective Heat Transfer Coefficient and the Excitation Pulse of Solicitations External Climatic

    Directory of Open Access Journals (Sweden)

    M. Dieng

    2013-02-01

    Full Text Available The aim of this study is to characterize thermal insulating local material, kapok, from a study in 3 dimensions in Cartesian coordinate and in dynamic frequency regime. From a study a 3 dimensional the heat transfer through a material made of wool kapok (thermal conductivity: &lambda = 0,035 W/m/K; density: &rho = 12, 35 kg/m3; thermal diffusivity: &alpha = 17, 1.10-7 m2 /s is presented. The evolution curves of temperature versus convective heat transfer coefficient have helped highlight the importance of pulse excitation and the depth in the material. The thermal impedance is studied from representations of Nyquist and Bode diagrams allowing characterizing the thermal behavior from thermistors. The evolution of the thermal impedance with the thermal capacity of the material is presented.

  7. Polyaniline-nanotube multifunctional fiber: capabilities toward the manufacturing of smart fabric

    Science.gov (United States)

    Mottaghitalab, Vahid; Spinks, Geoffrey M.; Wallace, Gordon G.

    2004-02-01

    Smart fabrics are those with electronic devices embedded in the material structure. Metallic fibres are not compatible with a comfortable fabric and flexible fibres with electronic capabilities are desired. Polyaniline (PANi) and carbon nanotubes (CNTs) show potential for application in different electronic devices such as conductive yarn, sensor, actuator, battery, capacitor and diode. The development of fibres from these materials can be considered as potentially useful for the manufacturing of smart fabric which embedded non metallic electronic devices. This paper describes the influence of CNT addition on the electronic, mechanical of PANi-CNT composite fibre which was fabricated by a wet spinning process. PANi(EB)-nanotube (SWNT, DWNT)- dimethyl propylene urea (DMPU) composite spinning solution have been prepared by an ex-situ process. The size distribution of nanotubes has been characterized by zeta sizer. Furthermore the rheological study has been conducted for optimization of PANi/CNT weight ratio to produce solutions with suitable fluidity for spinning process. In spite of the great impact of nanotubes on the mechanical and electrical properties of PANi composite fibre, the structure of the composite is far from ideal and it can be proposed that by proper ex-situ and in-situ solution preparation and processing techniques further improvements in properties are possible.

  8. Fiber

    Science.gov (United States)

    ... we eat for food fruits, vegetables, grains, and legumes. Sometimes, a distinction is made between soluble fiber ... vegetables like green peas, broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for ...

  9. ENZYMATIC HYDROLYSIS LIGNIN DERIVED FROM CORN STOVER AS AN INTRINSTIC BINDER FOR BIO-COMPOSITES MANUFACTURE: EFFECT OF FIBER MOISTURE CONTENT AND PRESSING TEMPERATURE ON BOARDS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Guanben Du

    2011-02-01

    Full Text Available Binderless fiberboards from enzymatic hydrolysis lignin (EHL and cotton stalk fibers were prepared under various manufacturing conditions, and their physico-mechanical properties were evaluated. Full factorial experimental design was used to assess the effect of fiber moisture content and pressing temperature on boards properties. In addition, differential scanning calorimetry (DSC was used to obtain the glass transition temperature (Tg of EHL. We found that both fiber moisture content and pressing temperature had significant effects on binderless fiberboards properties. High fiber moisture content and pressing temperature are suggested to contribute to the self-bonding improvement among fibers with lignin-rich surface mainly by thermal softening enzymatic hydrolysis lignin. In this experiment, the optimized pressing temperature applied in binderless fiberboard production should be as high as 190C in accordance with the EHL Tg value of 189.4C, and the fiber moisture content should be limited to less than 20% with a higher board density of 950 kg/m3 to avoid the delamination of boards during hot pressing.

  10. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  11. Evaluation of the chemical composition of different non-woody plant fibers used for pulp and paper manufacturing

    OpenAIRE

    Marques, Gisela; Rencoret, Jorge; Gutirrez Surez, Ana; Ro Andrade, Jos Carlos del

    2010-01-01

    The chemical composition of several non-woody plant fibers (bast fibers from flax, hemp, kenaf, jute; leaf fibers from sisal, abaca and curaua; and giant reed), which are used as raw materials for pulp and papermaking, has been evaluated. Particular attention was paid to the composition of the lipophilic compounds and the structure of the lignin polymer since they are important components of the fiber that strongly influence the pulping and bleaching performances.

  12. Biodiesel Production from Kapok (Ceiba pentandra Seed Oil using Naturally Alkaline Catalyst as an Effort of Green Energy and Technology

    Directory of Open Access Journals (Sweden)

    N.A. Handayani

    2013-10-01

    Full Text Available Nowadays, energy that used to serve all the needs of community, mainly generated from fossil (conventional energy. Terrace in energy consumption is not balanced with adequate fossil fuel reserves and will be totally depleted in the near future. Indonesian Government through a Presidential Decree No. 5 year 2006 mandates an increased capacity in renewable energy production from 5 percent to 15 percent in 2025. C. pentandra seed oil has feasibility as a sustainable biodiesel feedstock in Indonesia. The aim of this paper was to investigate biodiesel production from ceiba petandra seed oil using naturally potassium hydroxide catalyst. Research designs are based on factorial design with 2 levels and 3 independent variables (temperature, reaction time and molar ratio of methanol to oil. According to data calculation, the most influential single variable is molar ratio of methanol to oil. Characterization of biodiesel products meet all the qualifications standardized by SNI 04-7182-2006. Keywords: biodiesel, kapok seed oil, c. pentandra, green technology

  13. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    Science.gov (United States)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  14. A plasma spray process for the manufacture of long-fiber reinforced Ti-6Al-4V composite monotapes

    Science.gov (United States)

    Valente, T.; Bartuli, C.

    1994-03-01

    A fabrication method for titanium matrix composite monotapes reinforced by long SiC fibers is described. The plasma spray technique, carried out in an inert atmosphere, was used to deposit the metal matrix onto previously arranged continuous fibers. Major benefits are due to a controlled operating environment (the entire process is performed in a neutral gas atmosphere) and to the high solidification rate of the melted material. The formation of deleterious brittle reaction products between the fiber and matrix is therefore limited. Plasma spraying, normally used as a coating technique, was modified to produce a long composite monotape. This required a suitable arrangement of the fiber, placed onto a cylindrical substrate, and the identification of suitable operating conditions, as described in the present work. The results of characterization tests performed on the tape, with special reference to the quality of the fiber/matrix interface, are summarized. Results of preliminary diffusion bonding experiments carried out by means of a hot pressing system are also reported.

  15. Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps.

    Science.gov (United States)

    Gutirrez, Ana; Rodrguez, Isabel M; del Ro, Jos C

    2006-03-22

    The chemical composition of lignin and lipids of bast fibers from industrial hemp (Cannabis sativa) used for high-quality paper pulp production was studied. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of fibers showed a lignin with a p-hydroxyphenyl:guaiacyl:syringyl unit (H:G:S) molar proportion of 13:53:34 (S/G ratio of 0.64). p-Hydroxycinnamic acids, namely, p-coumaric and ferulic acids, were found in only trace amounts. Among the lipids, the main compounds identified by GC/MS of the hemp fibers extracts were series of n-alkanes, free and esterified sterols and triterpenols, waxes, and long-chain n-fatty acids. Other compounds such as n-aldehydes, n-fatty alcohols, steroid hydrocarbons, and steroid and triterpenoid ketones as well as steryl glycosides were also found. PMID:16536588

  16. Recycling of Glass Fibers from Fiberglass Polyester Waste Composite for the Manufacture of Glass-Ceramic Materials

    OpenAIRE

    Maximina Romero; Francisco Jose Alguacil; Olga Rodrguez; Irene Garca-Daz; Maria Isabel Martn; Felix Antonio Lpez

    2012-01-01

    This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550? for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (?24 wt%), a gas (?8 wt%) and a solid residue (?68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were con...

  17. Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers

    OpenAIRE

    Gutirrez Surez, Ana; Ro Andrade, Jos Carlos del

    2005-01-01

    The composition of pitch deposits occurring in pulp sheets and mill circuits during soda/anthraquinone pulping and elemental chlorine-free pulp bleaching of bast fibers of industrial hemp (Cannabis sativa) has been studied. Pitch deposits were extracted with acetone, and the extracts analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Acetone extracts (15-25% of pitch deposits) were constituted by the defoamers used at the mill and by lipophilic extractives f...

  18. Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: The effects of preform rotation

    OpenAIRE

    Voyce, CJ; Fitt, AD; Monro, TM

    2008-01-01

    A method for modeling the fabrication of capillary tubes is developed that includes the effects of preform rotation, and is used to reduce or remove polarization mode dispersion and fiber birefringence. The model is solved numerically, making use of extensive experimental investigations into furnace temperature profiles and silica glass viscosities, without the use of fitting parameters. Accurate predictions of the geometry of spun capillary tubes are made and compared directly with experimen...

  19. Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers.

    Science.gov (United States)

    Gutirrez, Ana; del Ro, Jos C

    2005-09-01

    The composition of pitch deposits occurring in pulp sheets and mill circuits during soda/anthraquinone pulping and elemental chlorine-free pulp bleaching of bast fibers of industrial hemp (Cannabis sativa) was studied. Pitch deposits were extracted with acetone, and the extracts analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Acetone extracts (15-25% of pitch deposits) were constituted by the defoamers used at the mill and by lipophilic extractives from hemp fibers. Acetone-insoluble residues (75-85% of pitch deposits) were analyzed by pyrolysis-GC/MS in the presence and absence of tetramethylammonium hydroxide. These residues were constituted by salts of fatty acids (arising from hemp fibers) with calcium, magnesium, aluminum and other cations that were identified in the deposits. It was concluded that inappropriate use of defoamer together with the presence of multivalent ions seemed to be among the causes of hemp extractives deposition in the pitch problems reported here. PMID:15939271

  20. Carbon fibers

    CERN Document Server

    Park, Soo-Jin

    2014-01-01

    This book contains eight chapters that discuss the manufacturing methods, surface treatment, composite interfaces, microstructure-property relationships with underlying fundamental physical and mechanical principles, and applications of carbon fibers and their composites.Recently, carbon-based materials have received much attention for their many potential applications. The carbon fibers are very strong, stiff, and lightweight, enabling the carbon materials to deliver improved performance in several applications such as aerospace, sports, automotive, wind energy, oil and gas, infrastructure,

  1. Fireblocking Fibers

    Science.gov (United States)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  2. Low cost heat-and-pull rig for manufacturing adiabatic optical fiber tapers / Sistema de bajo costo para fabricar fibras pticas adelgazadas adiabticas

    Scientific Electronic Library Online (English)

    Yamile, Cardona Maya; Nelson, Gmez Cardona; Pedro Ignacio, Torres Trujillo.

    2014-03-01

    Full Text Available En este trabajo se reporta la fabricacin de fibras pticas adelgazadas que cumplen con el criterio de adiabaticidad, para lo cual se implement un sistema de calor-traccin de bajo costo. Nuestra configuracin se basa en la tcnica de la flama que se mueve en zigzag, para esto se utiliz una micro [...] antorcha de gas porttil de bajo costo y fcil de usar. Este sistema no requiere un control electrnico para la tasa de flujo del gas, lo que hace de nuestro sistema una alternativa atractiva, de bajo costo y trivial de implementar. La viabilidad de dicha fuente de calor se demuestra con la fabricacin de fibras pticas adelgazadas de prdida de transmisin muy baja ( Abstract in english In this paper we report the fabrication of adiabatic tapered optical fibers using a low cost heat-and-pull rig. Our setup is based on the flame-brushing technique moving in zigzag, where an inexpensive and simple portable gas micro-torch is used as heating device. Since this method does not require [...] an electronic system to control the gas flow rate, makes out taper rig an attractive alternative, low-cost, and trivial to implement. The feasibility of such a heat source is shown with the manufacture of low-loss tapers (

  3. New Developments in Tellurite Glass Fibers

    OpenAIRE

    Milanese, Daniel; Boetti, Nadia Giovanna; Mura, Emanuele; Lousteau, Joris

    2013-01-01

    Recent developments on the manufacture of tellurite glass fibers are presented. Technical issues related to glass synthesis, preform manufacturing and fiber drawing as well as prospective of commercial exploitation are discussed

  4. Fiber Singular Optics

    OpenAIRE

    Volyar, A. V.

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  5. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic

  6. Manufacturing Success

    Science.gov (United States)

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that manufacturing output in America

  7. Miniature Spinning Enzyme-Retted Flax Fibers

    Science.gov (United States)

    Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be blended with other short staple fibers, such as cotton (Gossypium barbadense L. or Gossypium hirsutum L.), processed into a yarn and then manufactured into a fabric. Manufacturing yarns with natural flax fibers has traditional...

  8. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes; Mattsson, Kent; Nielsen, Martin D.; Nikolajsen, Thomas; Skovgaard, Peter M. W.; Srensen, Mads Hoy; Denninger, Mark; Jakobsen, Christian; Simonsen, Harald R.

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 ?m single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  9. Electrohydrodynamic Printing and Manufacturing

    Science.gov (United States)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  10. ZBLAN Fiber

    Science.gov (United States)

    2004-01-01

    Marshall Space Flight Center's researchers have conducted suborbital experiments with ZBLAN, an optical material capable of transmitting 100 times more signal and information than silica fibers. The next step is to process ZBLAN in a microgravity environment to stop the formation of crystallites, small crystals caused by a chemical imbalances. Scientists want to find a way to make ZBLAN an amorphous (without an internal shape) material. Producing a material such as this will have far-reaching implications on advanced communications, medical and manufacturing technologies using lasers, and a host of other products well into the 21st century.

  11. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes; Noordegraaf, Danny; Maack, Martin D.; Alkeskjold, Thomas Tanggaard; Laurila, Marko; Nikolajsen, Thomas; Skovgaard, Peter M. W.; Sørensen, Mads Hoy; Denninger, Mark; Jakobsen, Christian; Simonsen, Harald R.

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)....

  12. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes; Mattsson, Kent; Nikolajsen, Thomas; Nielsen, Martin D.; Skovgaard, Peter M.W.; Sørensen, Mads Hoy; Denninger, Mark; Jakobsen, Christian; Simonsen, Harald R.

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  13. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes; Mattsson, Kent; Nielsen, Martin D.; Nikolajsen, Thomas; Skovgaard, Peter M. W.; Sørensen, Mads Hoy; Denninger, Mark; Jakobsen, Christian; Simonsen, Harald R.

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  14. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  15. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    OpenAIRE

    Hsu-Chih Cheng; Yue-Shiun Wu; Chih-Ta Yen; Yao-Tang Chang

    2013-01-01

    This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in th...

  16. Novel sensor and telecommunication applications of photonic crystal fibers

    OpenAIRE

    Ritari, Tuomo

    2006-01-01

    Photonic crystal fibers are novel optical waveguides containing a periodic array of air holes running along the fiber around a solid or hollow core. These fibers have recently attracted great interest in many research areas such as in nonlinear optics and measurement science as their manufacturing process allows for a high flexibility in the fiber design. Index-guiding photonic crystal fibers are commonly referred to as microstructured fibers whereas hollow-core photonic crystal fibers which ...

  17. Silica glass optical fibers. Sekiei kei hikari fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K. (Furukawa Electric Co. Ltd., Tokyo (Japan). Yokohama Lab.)

    1990-07-05

    A report is made on the structure, materials, basic characteristics and method of production of silica glass optical fibers for optical communication already put to practical use, as well as on recent optical fiber having new structures. Silica fiber consists of the core and clad made of silica glass, and various kinds of silica glasses are used for making the fibers. Standard transmission characteristics, structural dimensions, applications, etc. of the silica glass optical fibers are shown. The manufacturing processes of silica glass optical fibers can be divided into base material production process and drawing process for making the base material in fiber form, and there are 4 types of manufacturing methods. Optical fiber whose zero dispersion wave length is transferred near 1.55 {mu} m is called a dispersion shift single mode optical fiber, which can be used for large capacity and long distance transmission. Entire fluroine doped shift single mode optical fiber and hermetically coated optical fiber whose water resistance and hydrogen resistance are markedly improved are also outlined. 4 refs., 5 figs., 2 tabs.

  18. Manufacturing of Hybrid Metal Matrix Composites Used Al{sub 2} O{sub 3} Short Fiber and Al{sub 2} O{sub 3}-Ti C Composite Powder Synthesized by SHS Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H.; Maeng, D.Y.; Lee, J.H.; Won, C.W. [Chungnam National University, Taejon (Korea, Republic of)

    1999-03-01

    Metal matrix composites have been extensively studied because of their excellent characteristics for structural application. Al{sub 2} O{sub 3} and Si C have been used as a common reinforcement owing to their good mechanical properties. However the manufacturing cost of these ceramic reinforcement is expensive, so the use of the composites have been restricted to special purposes. In this study, we tested the application possibility as a reinforcement of Al{sub 2} O{sub 3}-Ti C powder synthesized by SHS(Self-propagation High-temperature Synthesis) process to Al alloy matrix composite. Also, Al{sub 2} O{sub 3} short fibers were added with the synthesized powders in order to apply to the Al matrix hybrid composites. Squeeze infiltration casting process was used to make the composite with 25 vol% of reinforcement. Microstructure and crystal structure were examined by SEM, OM and XRD, also the mechanical properties were studied by the compressive test and wear test. (author). 18 refs., 11 figs., 4 tabs.

  19. Manufacturing of Hybrid Metal Matrix Composites Used Al[sub 2] O[sub 3] Short Fiber and Al[sub 2] O[sub 3]-Ti C Composite Powder Synthesized by SHS Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H.; Maeng, D.Y.; Lee, J.H.; Won, C.W. (Chungnam National University, Taejon (Korea, Republic of))

    1999-03-01

    Metal matrix composites have been extensively studied because of their excellent characteristics for structural application. Al[sub 2] O[sub 3] and Si C have been used as a common reinforcement owing to their good mechanical properties. However the manufacturing cost of these ceramic reinforcement is expensive, so the use of the composites have been restricted to special purposes. In this study, we tested the application possibility as a reinforcement of Al[sub 2] O[sub 3]-Ti C powder synthesized by SHS(Self-propagation High-temperature Synthesis) process to Al alloy matrix composite. Also, Al[sub 2] O[sub 3] short fibers were added with the synthesized powders in order to apply to the Al matrix hybrid composites. Squeeze infiltration casting process was used to make the composite with 25 vol% of reinforcement. Microstructure and crystal structure were examined by SEM, OM and XRD, also the mechanical properties were studied by the compressive test and wear test. (author). 18 refs., 11 figs., 4 tabs.

  20. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  1. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The zero-waste utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  2. Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions

    OpenAIRE

    Alberti, M.G.; Enfedaque Diaz, Alejandro; Glvez Ruz, Jaime; Cnovas, M. F.; Osorio, I.R.

    2014-01-01

    Over the past few years, polyolefin fiber reinforced self-compacting concrete has shown high performance in both fresh and hardened state. Its fracture behavior for small deformations could be enhanced with a small amount of steel-hooked fibers, obtaining a hybrid fiber-reinforced concrete well suited for structural use. Four types of conventional fiber-reinforced concrete with steel and polyolefin fibers were produced on the basis of the same self-compacting concrete also manufactured as ref...

  3. 78 FR 16247 - Approval for Export-Only Manufacturing Authority, Foreign-Trade Zone 203, SGL Automotive Carbon...

    Science.gov (United States)

    2013-03-14

    ... Automotive Carbon Fibers, LLC, (Carbon Fiber Manufacturing), Moses Lake, Washington Pursuant to its authority... requested export-only manufacturing authority on behalf of SGL Automotive Carbon Fibers, LLC, within FTZ 203... within FTZ 203-Site 3, on behalf of SGL Automotive Carbon Fibers, LLC, as described in the...

  4. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-07-24

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing. PMID:25898070

  5. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance. If a...... micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  6. Manufacturing Aids

    Science.gov (United States)

    1983-01-01

    Contractor's work for Lewis Research Center on "thermal barrier" coatings designed to improve aircraft engine efficiency resulted in two related but separate spinoffs. The Materials and Manufacturing Technology Center of TRW, Inc. invented a robotic system for applying the coating, and in the course of that research found it necessary to develop a new, extremely accurate type of optical gage that offers multiple improvements in controlling the quality of certain manufactured parts.

  7. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad laser system. We present the latest advancements within airclad fiber technology including a new 70 ?m single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350 W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening andits origin.

  8. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nrgaard; Kusano, Yukihiro; Brndsted, Povl; Almdal, Kristoffer

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were ...

  9. Study of fiber optics standardization, reliability, and applications

    Science.gov (United States)

    1980-01-01

    The use of fiber optics in space applications is investigated. Manufacturers and users detailed the problems they were having with the use or manufacture of fiber optic components. The general consensus of all the companies/agencies interviewed is that fiber optics is a maturing technology and will definitely have a place in future NASA system designs. The use of fiber optics was found to have two main advantages - weight savings and increased bandwidth.

  10. 77 FR 69435 - Grant of Authority for Subzone Status and Partial Approval of Manufacturing Authority; Toho Tenax...

    Science.gov (United States)

    2012-11-19

    ... Authority; Toho Tenax America, Inc. (Oxidized Polyacrylonitrile Fiber and Carbon Fiber), Rockwood, TN... polyacrylonitrile fiber (OPF) and carbon fiber manufacturing and distribution facilities of Toho Tenax America, Inc... carbon fiber for export; and Whereas, at this time, the Board is unable to approve authority...

  11. Fiber alignment using electric fields in novel processing of aligned discontinuous fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Vyakarnam, M.N. [Johnson & Johnson Corporate Biomaterials Center, Somerville, NJ (United States); Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    Micro-mechanics models predict that the elastic properties of discontinuous fiber composites approach those of continuous fiber composites when the length of the reinforcements far exceeds the critical fiber length and when the fibers are aligned in the direction of the applied stress. Short fiber composites are typically limited to low performance applications due to the problems in processing long fibers at high volume fractions with controlled fiber orientation. To overcome this performance limitation, a novel approach has been developed where the advances in polymer powder processing of composites is coupled with the phenomenon of fiber alignment in electro-magnetic fields to process aligned discontinuous fiber composites. Starting with fibers of lengths greater than critical fiber length, the Aligned Discontinuous Fiber (ADF) composite process in its general form consists of three unit operations: controlling fiber alignment using electric fields in air; dry polymer powder impregnation of fibers; and compression molding of the flexible aligned discontinuous fiber mat into a composite. This dry, solvent free approach offers tremendous scope for fast fiber alignment in air, resulting in a rapid manufacturing technique for high performance, micro-structure controlled, short fiber composites with a high degree of automation. In this brief communication, the parameters that affect the orientation of fibers in electric fields in the ADF process are reported.

  12. 76 FR 1599 - Foreign-Trade Zone 203-Moses Lake, Washington; Application for Manufacturing Authority, SGL...

    Science.gov (United States)

    2011-01-11

    ... Authority, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber Manufacturing), Moses Lake, WA An application... Carbon Fibers, LLC (SGL Automotive), located in Moses Lake, Washington. The application was submitted... of carbon fiber, all of which will be exported for the exclusive use of BMW Group in its new...

  13. Manufacturing Today

    OpenAIRE

    Kelly, Susan

    2010-01-01

    Curated by Cristina Ricupero and Will Bradley 'Manufacturing Today' is conceived as a five year research project and exhibition based in Norway but created, in collaboration between art academies in Norway, Finland, Lithuania and the UK. This research is publicly manifested in formal workshop sessions, a symposium, a publication, an exhibition and a series of commissions, all in an effort to address the question of how art and art education might resist instrumentalisation by the art mark...

  14. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  15. Design of Natural Fiber Composites Chemical Container Using Resin Flow Simulation of VARTML Process

    OpenAIRE

    Changduk Kong; Hyunbum Park; Haseung Lee; Jounghwan Lee

    2014-01-01

    In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered up fibers enclosed by a rigid mold tool under vacuum. In this work, the...

  16. Chrysotile asbestos exposure in the manufacturing of thermal insulating boards.

    Science.gov (United States)

    Bhagia, L J; Vyas, J B; Shaikh, M I; Dodia, S L

    2010-08-01

    Exposure to asbestos fibers has been extensively studied in milling, mining of asbestos fibers, and in industries manufacturing asbestos-cement sheets, pipes, etc. However, very few studies have been reported in asbestos textiles, brake lining workers, and insulation products. In the present investigation, chrysotile exposure monitoring was carried out in a small thermal insulating boards manufacturing facility. Twenty-eight samples were analyzed from various locations like feeding of raw materials, weighing, pressing, machine grinding, and hand finishing of final products. Twenty-five percent of the samples were found to be above ACGIH TLV of 0.1 fibers per milliliter. However, mean fiber concentrations were found to be lower than 0.1 fibers per milliliter, except for the process of feeding of raw materials where the mean fiber concentration was 0.1087+/-0.0631 fibers per milliliter. PMID:19626449

  17. Photosensitivity, chemical composition gratings and optical fiber based components

    OpenAIRE

    Fokine, Michael

    2002-01-01

    The different topics of this thesis include high-temperaturestable fiber Bragg gratings, photosensitivity and fiber basedcomponents. Fiber Bragg gratings (FBG) are wavelength dispersiverefractive index structures manufactured through UV exposure ofoptical fibers. Their applications range from WDM filters,dispersion compensators and fiber laser resonators fortelecommunication applications to different types of point ordistributed sensors for a variety of applications. One aim of this thesis ha...

  18. Fiber coupler end face wavefront surface metrology

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.; Marcus, Michael A.

    2015-09-01

    Despite significant technological advances in the field of fiber optic communications, one area remains surprisingly `low-tech': fiber termination. In many instances it involves manual labor and subjective visual inspection. At the same time, high quality fiber connections are one of the most critical parameters in constructing an efficient communication link. The shape and finish of the fiber end faces determines the efficiency of a connection comprised of coupled fiber end faces. The importance of fiber end face quality becomes even more critical for fiber connection arrays and for in the field applications. In this article we propose and demonstrate a quantitative inspection method for the fiber connectors using reflected wavefront technology. The manufactured and polished fiber tip is illuminated by a collimated light from a microscope objective. The reflected light is collected by the objective and is directed to a Shack-Hartmann wavefront sensor. A set of lenses is used to create the image of the fiber tip on the surface of the sensor. The wavefront is analyzed by the sensor, and the measured parameters are used to obtain surface properties of the fiber tip, and estimate connection loss. For example, defocus components in the reflected light indicate the presence of bow in the fiber end face. This inspection method provides a contact-free approach for quantitative inspection of fiber end faces and for estimating the connection loss, and can potentially be integrated into a feedback system for automated inspection and polishing of fiber tips and fiber tip arrays.

  19. Small Business Innovations (Fiber Optics)

    Science.gov (United States)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  20. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Cheng

    2013-05-01

    Full Text Available This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning and a fiber Bragg grating (FBG to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.

  1. Manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  2. Manufacturing technology

    Science.gov (United States)

    Leonard, J. A.; Floyd, H. L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high-voltage varistors. A selective laser sintering process automates wax casting pattern fabrication. Numerical modeling improves the performance of a photoresist stripper (a simulation on a Cray supercomputer reveals the path of a uniform plasma). Improved mathematical models will help make the dream of low-cost ceramic composites come true.

  3. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  4. Method of manufacturing fibrous hemostatic bandages

    Science.gov (United States)

    Larsen, Gustavo; Spretz, Ruben; Velarde-Ortiz, Raffet

    2012-09-04

    A method of manufacturing a sturdy and pliable fibrous hemostatic dressing by making fibers that maximally expose surface area per unit weight of active ingredients as a means for aiding in the clot forming process and as a means of minimizing waste of active ingredients. The method uses a rotating object to spin off a liquid biocompatible fiber precursor, which is added at its center. Fibers formed then deposit on a collector located at a distance from the rotating object creating a fiber layer on the collector. An electrical potential difference is maintained between the rotating disk and the collector. Then, a liquid procoagulation species is introduced at the center of the rotating disk such that it spins off the rotating disk and coats the fibers.

  5. Fiber optic combiner and duplicator

    Science.gov (United States)

    1979-01-01

    The investigation of the possible development of two optical devices, one to take two images as inputs and to present their arithmetic sum as a single output, the other to take one image as input and present two identical images as outputs is described. Significant engineering time was invested in establishing precision fiber optics drawing capabilities, real time monitoring of the fiber size and exact measuring of fiber optics ribbons. Various assembly procedures and tooling designs were investigated and prototype models were built and evaluated that established technical assurance that the device was feasible and could be fabricated. Although the interleaver specification in its entirety was not achieved, the techniques developed in the course of the program improved the quality of images transmitted by fiber optic arrays by at least an order of magnitude. These techniques are already being applied to the manufacture of precise fiber optic components.

  6. Radiation treatment of natural fibers

    International Nuclear Information System (INIS)

    The properties of fibers of henequen are improved by gamma irradiation in presence of methylmethacrylate. This natural fiber is mainly used for the manufacture of threads, rugs, ropes, sacs, etc. so some of its properties, like tenacity, water repellency etc. are important in order to maintain the quality of the products. The fibers received a treatment before and after the gamma irradiation to a dose up to 0.245 Mrad. The studies include an analysis of several conditions like dose, dose rate, monomer concentration, etc. Tenacity of the treated fibers increases about 40 per cent with respect to the untreated ones, and also the repellency to water. Studies of the structure by optical and electron microscopy show that the improvements are due to deep inclusion of the polymer in the fiber. (author)

  7. Fabrication and Mechanical Performance Investigation of Sisal and Sugarcane Fibers

    Directory of Open Access Journals (Sweden)

    T.E.Narentharan*

    2014-11-01

    Full Text Available Natural fibers, such as sisal, flax and jute, possess good reinforcing capability when properly compounded with polymers. These fibers are relatively inexpensive, originate from renewable resources and possess favorable values of specific strength and specific modulus. Thermoplastic polymers have a shorter cycle time as well as reprocessability despite problems with high viscosities and poor fiber wetting. The renewability of natural fibers and the recyclability of thermoplastic polymers provide an attractive ecofriendly quality to the resulting natural fiberreinforced thermoplastic composite materials. Common methods for manufacturing natural fiber-reinforced thermoplastic composites, injection moulding and extrusion, tend to degrade the fibers during processing. Development of a simple manufacturing technique for sisal fiber, sugarcane baggage-reinforced polypropylene composites, that minimizes fiber degradation and can be used in developing countries, is the main objective of this study. Combination of sisal and sugarcane baggage fibers possesses good reinforcing capability when properly compounded with polymers.

  8. Photovoltaic fiber

    International Nuclear Information System (INIS)

    The optoelectronically active optical fiber is demonstrated in this work. This fiber consists of dye sensitized solar cell (DSC) structure deposited on claddingless optical fiber. Both silica and plastic optical fibers are used as a substrate. Such a fiber converts light modes propagating in the modified cladding into electrical signal. DSC structure consisting of ZnO:Al transparent current collector layer, TiO2 photoelectrode sensitized with ruthenium dye, gelatinized iodine electrolyte, and carbon-based counter electrode was deposited layer by layer on top of the optical fiber. Current density-voltage curves of photovoltaic (PV) fibers of different diameters are presented. Maximum obtained short circuit current, Isc, was 26 nA/cm2 and maximum open circuit voltage, Voc, was 0.44 V. The fabrication issues and applications of the PV fiber are discussed in the article

  9. Turbine Manufacture

    Science.gov (United States)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  10. Porous-core honeycomb bandgap THz fiber

    OpenAIRE

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd; Bang, Ole

    2011-01-01

    In this Letter we propose a novel (to our knowledge) porous-core honeycomb bandgap design. The holes of the porous core are the same size as the holes in the surrounding cladding, thereby giving the proposed fiber important manufacturing benefits. The fiber is shown to have a 0:35-THz-wide fundamental bandgap centered at 1:05 THz. The calculated minimum loss of the fiber is 0:25 dB=cm.

  11. Fiber Bragg grating arrays for high resolution manometry

    Science.gov (United States)

    Becker, Martin; Rothhardt, Manfred; Voigt, Sebastian; Teubner, Andreas; Lpke, Thomas; Thieroff, Christoph; Chojetzki, Christoph; Bartelt, Hartmut

    2009-10-01

    We demonstrate the application of a fiber Bragg grating based sensor system as a distributed pressure sensing catheter for the human esophagus. It allows space-time resolved measurements of the peristaltic waves of the gullet. The sensor system comprises 30 fiber-optic pressure sensors in a single fiber with a spatial distance below 10 mm each. The sensors are fiber Bragg gratings that are manufactured during the drawing process of the fiber and therefore show enhanced mechanical stability compared to fiber Bragg gratings with local recoating. A well designed soft plastic coating wand will be used to convert local pressure variations into strain variations of the optical fiber core.

  12. Fiber Metal Laminates Made by the VARTM Process

    Science.gov (United States)

    Jensen, Brian J.; Cano, Roberto J.; Hales, Stephen J.; Alexa, Joel A.; Weiser, Erik S.; Loos, Alfred; Johnson, W.S.

    2009-01-01

    Fiber metal laminates (FMLs) are multi-component materials utilizing metals, fibers and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Established FMLs like GLARE utilize aluminum foils, glass fibers and epoxy matrices and are manufactured using an autoclave. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed at the NASA Langley Research Center (LaRC). A description of these processes and the resulting FMLs are presented.

  13. Advanced Technology Composite Fuselage - Manufacturing

    Science.gov (United States)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  14. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-01-01

    Full Text Available To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.

  15. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    OpenAIRE

    Nikoloz M. Chikhradze; Marquis, Fernand D.S.; Guram S. Abashidze

    2015-01-01

    The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass) fibers and strengthened by various nanopowders (oxides, carbides, borides) are presented. The hybrid fiber-reinforced composites (HFRC) were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of ...

  16. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  17. Carbon fiber resin matrix interphase: effect of carbon fiber surface treatment on composite performance

    International Nuclear Information System (INIS)

    Carbon fibers are supplied by various manufacturers with a predetermined level of surface treatment and matrix compatible sizings. Surface treatment of the carbon fiber increases the active oxygen content, the polarity and the total free surface energy of the fiber surface. This study is directed toward determining the effect of varying carbon fiber surface treatment on the composite performance of thermoset matrix resins. The effect of varying fiber surface treatment on performance of a promising proprietary sizing is also presented. 6 references, 11 figures

  18. 78 FR 16247 - Approval for Export-Only Manufacturing Authority, Foreign-Trade Zone 203, SGL Automotive Carbon...

    Science.gov (United States)

    2013-03-14

    ...Authority, Foreign-Trade Zone 203, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber...manufacturing authority on behalf of SGL Automotive Carbon Fibers, LLC, within FTZ 203-Site...FTZ 203-Site 3, on behalf of SGL Automotive Carbon Fibers, LLC, as described...

  19. 76 FR 30908 - Foreign-Trade Zone 203-Moses Lake, Washington, Export-Only Manufacturing Authority, SGL...

    Science.gov (United States)

    2011-05-27

    ... Authority, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber); Notice of Temporary Approval On January 4...-Trade Zone (FTZ) 203, requesting authority on behalf of SGL Automotive Carbon Fibers, LLC (SGL) to manufacture carbon fiber under FTZ procedures solely for export within Site 3 of FTZ 203 in Moses...

  20. Cement composites reinforced by short curaua fibers

    Scientific Electronic Library Online (English)

    A., d' Almeida; R., Toledo Filho; J., Melo Filho.

    Full Text Available The development of an eco-friendly material that could reduce CO emission and that could aggregate value to a natural fiber, setting man at the countryside and raising the income of populations from poor regions is a challenge. Lignocellulosic fibers are cheap and are a readily available reinforcem [...] ent, requiring only a low degree of industrialization for their processing. The main drawback of using cement composites reinforced with lignocellulosic fibers is that the fibers can be mineralized inside the alkaline environment. In this work, Portland cement was partially replaced by metakaolinite in order to produce a matrix free from calcium hydroxide, avoiding thus the problem of fiber mineralization. Cement composites reinforced with 2, 4 and 6% of short curaua fibers, were manufactured. The composites were submitted to four pointing bending tests in order to determine their mechanical behavior. The results obtained were compared with those found for cement composites reinforced with sisal fibers.

  1. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  2. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  3. Embedded sensors in layered manufacturing

    Science.gov (United States)

    Li, Xiaochun

    Layered Manufacturing can be applied to build ``smart'' parts with sensors, integrated circuits, and actuators placed within the component. Embedded sensors can be used to gain data for validating or improving designs during the prototype stage or to obtain information on the performance and structural integrity of components in service. Techniques for embedding fiber optic sensors in metals, polymers, and ceramics have been investigated. Embedding optical fibers into metals is especially challenging because engineering alloys tend to exhibit high melting temperatures. In the present research an embedding sequence was developed capable of embedding fiber sensors into parts made of metal alloys with high melting temperatures. Fiber Bragg Grating (FBG) sensors were selected as the most promising sensor candidate. The embedded FBG sensors were characterized for temperature and strain measurements. The embedded FBG sensors in nickel and stainless steel provided high sensitivity, good accuracy, and high temperature capacity for temperature measurements. Temperature sensitivity approximately 100% higher than that of bare FBGs was demonstrated. For strain measurements, the sensors embedded in metal and polyurethane yielded high sensitivity, accuracy, and linearity. The sensitivity of the embedded FBGs was in good agreement with that of bare FBGs. Moreover, a decoupling technique for embedded FBG sensors was developed to separate temperature and strain effects. The embedded FBG sensors were used to monitor the accumulation of residual stresses during the laser- assisted Layered Manufacturing, to measure the strain field in layered materials, to measure pressure, and to monitor temperature and strain simultaneously. New techniques have been developed for temperature and strain measurements of rotating components with FBG sensors embedded or attached to the surface. Tunable laser diodes were incorporated into the sensing system for monitoring the Bragg grating wavelength, and thus the temperature or strain was determined. The non-contact sensing system provides a new sensing tool that is superior to slip rings. Moreover, the new techniques provide a new health monitoring methodology for rotating structures, especially those exposed to hostile environments, such as blades in gas turbine engines. For laser-assisted Layered Manufacturing, residual stresses caused by the temperature gradient and material property mismatches result in part inaccuracy, warpage, or even delamination. Thus, material issues have been investigated, and a new class of metal matrix composites of INVAR and TiC were designed and fabricated. The materials can reduce deformation caused by residual stresses and improve mechanical properties significantly compared to other materials used in Layered Manufacturing.

  4. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    OpenAIRE

    Hwang-Hee Kim; Chun-Soo Kim; Ji-Hong Jeon; Chan-Gi Park

    2016-01-01

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and s...

  5. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    Science.gov (United States)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  6. Optimization of laser fibers for high pump light absorption

    Science.gov (United States)

    Bierlich, Jörg; Kobelke, Jens; Jetschke, Sylvia; Grimm, Stephan; Unger, Sonja; Schuster, Kay

    2014-03-01

    For the implementation of novel fiber laser concepts, such as extra-large mode area (X-LMA) fiber lasers or multi-core fiber lasers alternative manufacturing processes for highly-doped silica glasses and the laser fibers fabricated from it are required. For efficient laser operation a high absorption of pump power in the active fiber core is a necessary condition. To increase the pump light absorption the fiber development aimed at the preparation of laser-active and adapted passive single-large core fibers up to multi-core structures with 7 large cores showing broken circular fiber symmetry. The optimization of the optical fibers which will be shown in detail is based on the combination of several innovative manufacturing methods such as the powder sintering technology (REPUSIL), the preform preparation by stack-and-draw technique and the fiber drawing process. The described procedure is particularly suitable to produce multifilament glass preforms resp. laser fibers with large cores in which the radial and lateral indices of refraction can be adjusted homogeneously and reproducibly. Due to the realized increase of the laser-active core volume in these fibers the pump light absorption could be considerably increased and the resulting shorter fiber length allows the use of fibers with a moderate attenuation. The results concerning the characterization of materials science and the optical aspects e. g. the dopant concentration distributions and related refractive index profiles as well attenuation and pump absorption spectra will be presented.

  7. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  8. Porous metal fiber components - POMFICO

    Energy Technology Data Exchange (ETDEWEB)

    Baur, H.; Lempenauer, K.; Hartweg, M. [DaimlerChrysler AG, Ulm (Germany); Stephani, G.; Andersen, O. [Fraunhofer Inst. fuer Angewandte Materialforschung, IFAM Dresden (Germany); Delverdier, O. [ATECA (France)

    2000-07-01

    Today's catalytic converters for passenger vehicles consist of massive carrier material with catalytic active coatings out of noble metals. For these type of converters there is a demand for specific improvements with respect to thermal mass, exhaust gas system arrangement and coating [1]. Within the EU-funded project 'POMFICO' BE-5095 one object is the development of a new class of catalytic converters based on a catalytic active carrier materials with manufacturing designed properties. The materials consist of thin metallic fibers and semi-products, e.g. mats and fleeces, with high porosity, low structural density and high temperature resistance. In contrary to conventional converters these fiber converters can be implemented throughout the whole exhaust gas system and guarantee a continuous conversion. In the first stage of the project there is main focus on manufacturing and characterizing of metallic fibers with specific chemical compositions and geometries. The characterization of the catalytic activity, as well as mechanical, physical and technological properties enables the designing and manufacturing of prototypes. The suitability of metallic fiber converters will be determined by vehicle testing of prototypes. (orig.)

  9. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  10. Fiber-reinforced syntactic foams

    Science.gov (United States)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach to produce ultralight sandwich core materials was explored in which towpreg (fiber bundles impregnated with resin) were configured to produce 3D pyramidal truss structures. The composite truss structures were subsequently filled with foam to improve resistance to buckling. Mechanical properties of the foam-filled truss structures were measured and contrasted with analytical predictions based on simple truss theory. Results indicated that combination of foams and carbon fiber truss structures had synergistic effects that enhanced the capacity to carry compressive and shear loads.

  11. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  12. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nrgaard; Kusano, Yukihiro

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant.

  13. Fiber Optic Sensing: Prototype Results

    Science.gov (United States)

    Ortiz Martin, Jesus; Gonzalez Torres, Jose

    2015-09-01

    Airbus DS Crisa has been developing an interrogator of Fiber Bragg Grating sensors [1], aimed at measuring, mainly, temperature and strain by means of fiber optic links. This activity, funded by Airbus DS Crisa, ESA and HBM Fibersensing, finalizes with the manufacturing of a prototype. The present paper describes in detail the main outcomes of the testing activities of this prototype. At the moment of writing the paper all the functional tests have been concluded. The environmental tests, thermal and mechanical, will be conducted with the FOS interrogator forming part of the RTU2015, described in [2].

  14. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed by...... identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...

  15. Robots in manufacturing

    OpenAIRE

    Sanz Monge, Carlos

    2011-01-01

    Manufacturing is a wide concept, as the use of Robots in Manufacturing is. In a general way, we call manufacturing to the use of machines, tools and labor produce goods for use or sell. Actually, must be taken into account, then manufacturing covers also every process, although unproductive, that have any influence in the production. Every move of material, layout planning or quality control task has important effects in the cycle of manufacturing as well as the most basic process of the fiel...

  16. Radiation resistance characteristics of image fibers

    International Nuclear Information System (INIS)

    The application of optical fibers and image fibers to the maintenance and inspection systems for nuclear power plants is actively investigated. Multi-picture elements and small size are required for image fibers because the resolution, flexibility and environmental endurance as well as transmittance are required for them. The authors acknowledged the dependence of the radiation resistance characteristics of image fibers on their core diameter by experiment and considered the cause. Pure quartz core, doped clad image fibers, whose core diameter/image fiber outside diameter ratio was the same, were selected, but their outside diameter was changed to 1.3, 1.4 and 1.8 mm. Their transmission loss increase was measured at 0.7 ?m wavelength, 1.2 x 105 R/h dose rate, and the number of picture elements being 12,000. As the outside diamter was larger, the increase of loss by irradiation was smaller. Since image fiber materials and manufacturing conditions also seemed to be the causes, three elemental fibers with different core diameter were fabricated into a single image fiber (three-section fiber) to make the material and manufacturing condition same, and this image fiber was irradiated at 1.2 x 105 R/h up to total 8.6 x 106 R. The change of transmittance or the deterioration was smaller in the larger core diameter fiber. The transmission loss was calculated numerically based on the past theoretical analysis. In comparison of the calculated results with the experimental results, the dependence of radiation characteristics on core diameter seemed to be mainly caused by the increase of loss in the clad due to ?-ray irradiation. (Wakatsuki, Y)

  17. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration NASA supports the Advanced Manufacturing National Program Office (AMNPO).Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  18. Industrial applications of fiber optic sensing

    Science.gov (United States)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  19. Effect of fiber content on the mechanical properties of glass fiber-phenolic matrix composite

    International Nuclear Information System (INIS)

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts related to aerospace and electronic industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make components/articles of new designs. In the present work, Thermosetting Phenolic plastic was reinforced with E-glass fiber, in different fiber-to-resin ratios to produce composites of different compositions. Mechanical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  20. Effect of fiber content on the properties of glass fiber-phenolic matrix composite

    International Nuclear Information System (INIS)

    Glass fiber-Phenolic matrix composite is used for the manufacturing of parts /components related to electronic and aerospace industry due to its high strength, dimensional stability and excellent electrical insulation properties. The evaluation of this composite material is necessary prior to make parts/components of new designs. In the present research, thermosetting phenolic plastic was reinforced with E-glass fiber in different fiber-to-resin ratios to produce composites of different compositions. Mechanical and electrical properties of these composite materials were evaluated with reference to the effect of fiber content variation in phenolic resin. (author)

  1. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  2. Assessment of fiber optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  3. Manufacturing Strategy, Capabilities and Performance

    OpenAIRE

    Hallgren, Mattias

    2007-01-01

    This dissertation addresses the topic of manufacturing strategy, especially the manufacturing capabilities and operational performance of manufacturing plants. Manufacturing strategy research aims at providing a structured decision making approach to improve the economics of manufacturing and to make companies more competitive. The overall objective of this thesis is to investigate how manufacturing companies make use of different manufacturing practices or bundles of manufacturing practices ...

  4. Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite

    DEFF Research Database (Denmark)

    Plackett, David; Torgilsson, R.; Lgstrup Andersen, T.

    2002-01-01

    A rapid press consolidation technique was used to produce composites from two types of air-laid wood fiber mat, incorporating either mechanically refined or bleached chemi-thermomechanically refined Norway Spruce [Picea abies (L.) Karst] and a bicomponent polymer fiber. The manufacturing technique involved pre-compression, contact heating to the process temperature under vacuum and then rapid transfer to the press for consolidation and cooling. Composites were tested to determine response to wat...

  5. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along with the...... trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  6. Carbon Fiber Biocompatibility for Implants

    Science.gov (United States)

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  7. The Effects of Fiber Inclusion on Pet Food Sensory Characteristics and Palatability

    OpenAIRE

    Kadri Koppel; Mariana Monti; Michael Gibson; Sajid Alavi; Brizio Di Donfrancesco; Aulus Cavalieri Carciofi

    2015-01-01

    The objectives of this study were to determine (a) the influence of fiber on the sensory characteristics of dry dog foods; (b) differences of coated and uncoated kibbles for aroma and flavor characteristics; (c) palatability of these dry dog foods; and (d) potential associations between palatability and sensory attributes. A total of eight fiber treatments were manufactured: a control (no fiber addition), guava fiber (3%, 6%, and 12%), sugar cane fiber (9%; large and small particle size), and...

  8. Calibration artefact for the microscale with high aspect ratio: The fiber gauge

    DEFF Research Database (Denmark)

    Marinello, Francesco; Savio, Enrico; Carmignato, Simone; De Chiffre, Leonardo

    2008-01-01

    The paper presents a new concept of micro-artefact, the fiber gauge, consisting of a set of optical fibers sticking out from a flat surface. The fibers are arranged as a regular array of different height cylinders, with aspect ratios up to 20:1. The artefact is produced taking advantage of optical fibers manufacturing technology, featuring relatively high geometrical accuracy, combined with very good mechanical properties. The fiber gauge can be applied to calibration of most contact or non-cont...

  9. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    International Nuclear Information System (INIS)

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffreys equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160?, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated

  10. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi [Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato [Research Center, Toyobo Co., LTD, 2-1-1 Katata, Otsu, Shiga 520-0292 (Japan)

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffreys equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160?, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  11. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Science.gov (United States)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160?, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  12. Carbon fibers from SRC pitch

    Science.gov (United States)

    Greskovich, Eugene J. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  13. METHOD FOR MEASURING CARBON FIBER EMISSIONS FROM STATIONARY SOURCES

    Science.gov (United States)

    Carbon fibers are highly conductive, lightweight and of small dimensions. When released as emissions from production, manufacturing, processing and disposal sources they may become airborne and disperse over wide areas. If they settle onto electronic or electrical components they...

  14. Robust, Low Loss Approach for Fiber to Waveguide Coupling Project

    Data.gov (United States)

    National Aeronautics and Space Administration This NASA Phase I SBIR effort proposes to establish the feasibility of significantly improving coupling at fiber to waveguide interfaces for the manufacture of low...

  15. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  16. Mechanically induced long period fiber gratings on single mode tapered optical fiber for structure sensing applications

    Science.gov (United States)

    Pulido-Navarro, Mara. G.; Marrujo-Garca, Sigifredo; lvarez-Chvez, Jos A.; Velzquez-Gonzlez, Jess S.; Martnez-Pin, Fernando; Escamilla-Ambrosio, Ponciano J.

    2015-08-01

    The modal characteristics of tapered single mode optical fibers and its strain sensing characteristics by using mechanically induced long period fiber gratings are presented in this work. Both Long Period Fiber Gratings (LPFG) and fiber tapers are fiber devices that couple light from the core fiber into the fiber cladding modes. The mechanical LPFG is made up of two plates, one flat and the other grooved. For this experiment the grooved plate was done on an acrylic slab with the help of a computer numerical control machine. The manufacturing of the tapered fiber is accomplished by applying heat using an oxygen-propane flame burner and stretching the fiber, which protective coating has been removed. Then, a polymer-tube-package is added in order to make the sensor sufficiently stiff for the tests. The mechanical induced LPFG is accomplished by putting the tapered fiber in between the two plates, so the taper acquires the form of the grooved plate slots. Using a laser beam the transmission spectrum showed a large peak transmission attenuation of around -20 dB. The resultant attenuation peak wavelength in the transmission spectrum shifts with changes in tension showing a strain sensitivity of 2pm/??. This reveals an improvement on the sensitivity for structure monitoring applications compared with the use of a standard optical fiber. In addition to the experimental work, the supporting theory and numerical simulation analysis are also included.

  17. Design for Additive Manufacturing

    OpenAIRE

    Bertran Comellas, Martí

    2012-01-01

    This Thesis, Design for Additive Manufacturing, has been mainly focused on the design process and the considerations to be taken into account when designing parts for Additive Manufacturing. It starts with an introduction to Additive Manufacturing, the different technologies and processes are described to let the readers understand their operating principle, materials used and their strengths and weaknesses. The applications of Additive manufacturing are also explained in the introductory ...

  18. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  19. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern......: • Manufacturing strategies pursued and implemented between 2010 and 2012. • Performance improvements achieved during that period. • Actual manufacturing practices and performances as well as competitive priorities in 2012. • Manufacturing strategies pursued for the years 2010-2012....

  20. Rapid Manufactured Textiles

    OpenAIRE

    Bingham, Guy; Hague, Richard; Tuck, Christopher John; Long, Andrew; Crookston, Jonathan Josiah; Sherburn, Martin

    2006-01-01

    Abstract Rapid Manufacturing (RM) is increasingly becoming a viable manufacturing process due to dramatic advantages that are achievable in the area of design complexity. Through the exploration of the design freedom afforded by RM, this paper introduces the concept and novel research area of RM textiles. The paper highlights the design and manufacturing possibilities applied to textiles when considering additive manufacturing techniques, the current limitations of conventional Com...

  1. Fiber Optics Technician. Curriculum Research Project. Final Report.

    Science.gov (United States)

    Whittington, Herschel K.

    A study examined the role of technicians in the fiber optics industry and determined those elements that should be included in a comprehensive curriculum to prepare fiber optics technicians for employment in the Texas labor market. First the current literature, including the ERIC database and equipment manufacturers' journals were reviewed. After

  2. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4-5 % range.

  3. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  4. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    OpenAIRE

    Fiala, P.; P. Drexler

    2008-01-01

    Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chos...

  5. Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape

    Science.gov (United States)

    Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.

    2003-01-01

    A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.

  6. Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Mone, Christopher; Chung, Donald; Elgqvist, Emma; Das, Sujit; Mann, Margaret; Gossett, Scott

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber. This booklet summarizes key findings of CEMAC work to date, describes CEMAC's research methodology, and describes work to come.

  7. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  8. 75 FR 104 - Manufacturing & Services' Sustainable Manufacturing Initiative; Update

    Science.gov (United States)

    2010-01-04

    ... Sustainable Business Clearinghouse design and operability is complete. Accessed here, www.manufacturing.gov... International Trade Administration Manufacturing & Services' Sustainable Manufacturing Initiative; Update ACTION: Notice and request for input on proposed new areas of work for the Sustainable Manufacturing...

  9. Interphase properties of carbon fiber-vinyl ester composites

    Energy Technology Data Exchange (ETDEWEB)

    Rich, M.J.; Weitzsacker, C.W.; Xie, M.; Corbin, S.; Drzal, L.T. [Michigan State Univ., East Lansing, MI (United States)

    1997-12-31

    The decline in price of carbon fibers gives an economic incentive to reconsider the use of these reinforcements in markets previously deemed too expensive, such as the automotive industry. Additionally, it would be advantageous if carbon fibers could be immediately used with polymers and manufacturing methods currently used for the production of fiberglass composites, and thus minimize development and startup costs. Of particular interest is the use of carbon fibers in vinyl esters manufactured by resin transfer molding, a leading manufacturing technology for the production of large and complex shaped composite parts. However, carbon fiber-vinyl ester composites have inferior mechanical properties as a result of poor bonding between fiber and matrix. The objective of this program was to evaluate the physical and chemical mechanisms currently thought responsible for adhesion in order to improve the performance of carbon fiber-vinyl ester composites. The effect of carbon fiber surface treatment on fiber chemistry and topography was evaluated to uncover the fundamental mechanisms governing carbon fiber to vinyl ester adhesion.

  10. Design of Natural Fiber Composites Chemical Container Using Resin Flow Simulation of VARTML Process

    Directory of Open Access Journals (Sweden)

    Changduk Kong

    2014-08-01

    Full Text Available In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed

  11. Fiber optic systems in the UV region

    Science.gov (United States)

    Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.

    2000-05-01

    Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.

  12. Permeability characterization of stitched carbon fiber preforms by fiber optic sensors

    OpenAIRE

    Antonucci, V.; Esposito, M.(INFN Sezione di Napoli, Napoli, Italy); M. R. Ricciardi; M. Raffone; Zarrelli, M.; Giordano, M.

    2011-01-01

    The in-plane and through thickness permeability of unidirectional stitched carbon fiber preforms have been determined through vacuum infusion tests. The impregnation of various dry preforms with different stitching characteristics has been monitored by fiber optic sensors that have been stitched together with the dry tow to manufacture the dry preform. The experimental infusion times have been fitted by a numerical procedure based on Finite Element (FE) processing simulations. A good agreemen...

  13. TAPERING OF POLYMER OPTICAL FIBERS FOR COMPOUND PARABOLIC CONCENTRATOR FIBER TIP FABRICATION

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Nielsen, Kristian; Aasmul, Sren; Rasmussen, Henrik K.; Bang, Ole

    2015-01-01

    We propose a process for Polymer Optical Fiber (POF) Compound Parabolic Compound (CPC) tip manufacturing using a heat and pull fiber tapering technique. The POF, locally heated above its glass transition temperature, is parabolically tapered down in diameter, after which it is cut to the desired output diameter and finally polished to obtain the special CPC tip. The physical mechanism responsible for giving a CPC shape to the POF tip is also investigated. The fabrication process is shown to be s...

  14. Glass Fibers for Printed Circuit Boards

    Science.gov (United States)

    Longobardo, Anthony V.

    Fiberglass imparts numerous positive benefits to modern printed circuit boards. Reinforced laminate composites have an excellent cost-performance relationship that makes sense for most applications. At the leading edge of the technology, new glass fibers with improved properties, in combination with the best resin systems available, are able to meet very challenging performance, cost, and regulatory demands while remaining manufacturable.

  15. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard; Sigmund, Ole

    to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting....../sintering (SLM/S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element...... (FE) discretization. The distribution of the material in the unit cell is optimized according to a given objective (e.g. maximum bulk modulus or minimum Poisson’s ratio) and some given constraints (e.g. isotropy) using topology optimization. The manufacturability is achieved using various filtering...

  16. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    Science.gov (United States)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 ?m core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 ?m, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  17. Microelectronics manufacturing diagnostics handbook

    CERN Document Server

    Landzberg, Abraham

    2012-01-01

    Foreword; Preface; Author's biographies; Acknowledgments; Introduction; Manufacturing yield; Problem diagnosis; Manufacturing defect classification system; Product dimensional metrology and pattern defect inspection; Process and tool monitoring; Contamination monitoring; Repair and rework; Test sites and vehicles for yield and process monitoring; In-line electrical test; Traceability; Failure analysis of semiconductor devices; Materials and chemical analysis of electronic devices; Modeling for manufacturing diagnostics; Artificial intelligence techniques for analysis: expert systems an

  18. Manufacturing knowledge management strategy

    OpenAIRE

    Shaw, Duncan; Edwards, John

    2006-01-01

    Abstract The study sought to understand the components of knowledge management strategy from the perspective of staff in UK manufacturing organisations. To analyse this topic we took an empirical approach and collaborated with two manufacturing organisations. Our main finding centres on the key components of a knowledge management strategy, and the relationships between it and manufacturing strategy and corporate strategy. Other findings include: the nature of knowledge in manufact...

  19. Cloud agile manufacturing

    OpenAIRE

    Maci Prez, Francisco; Bern Martnez, Jos Vicente; Marcos Jorquera, Diego; Lorenzo Fonseca, Iren; Ferrndiz Colmeiro, Antonio

    2012-01-01

    This paper proposes a new manufacturing paradigm, we call Cloud Agile Manufacturing, and whose principal objective is to offer industrial production systems as a service. Thus users can access any functionality available in the cloud of manufacturing (process design, production, management, business integration, factories virtualization, etc.) without knowledge or at least without having to be experts in managing the required resources. The proposal takes advantage of many of the benefits...

  20. Polyimide Fibers

    Science.gov (United States)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1998-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and end- capped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340 C. to 360 C. and at heights of 100.5 inches. 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi, and a mean elongation in the range of 14 to 103%.

  1. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  2. Fiber Lasers V : Technology, Systems, and Applications

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser systems require specially designed fibers with large cores and good power handling capabilities requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad laser system. We present the latest advancements within airclad fiber technology including a new 70 ?m single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350 W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening andits origin.

  3. Fiber bragg gratings in polymer optical fibers

    OpenAIRE

    Harbach, Nico Grard

    2008-01-01

    Polymer optical fibers (POF) have received increased attention in recent years in the fields of data communication and sensing applications. The lower cost and higher flexibility are the main advantages of POF compared to silica fibers and make them interesting candidates for Fiber Bragg grating (FBG) sensor applications. FBG are convenient measurement devices for strain and temperature measurements, as they can be multiplexed within one fiber yielding a sensor array and the fiber can be embe...

  4. Controlling Fiber Morphology in Simultaneous Centrifugal Spinning and Photopolymerization

    Science.gov (United States)

    Fang, Yichen; Dulaney, Austin; Ellison, Christopher

    2015-03-01

    Current synthetic fiber manufacturing technologies use either solvent or heat to transform a solid preformed polymer into a liquid before applying a force to draw the liquid into fiber. While the use of solvent poses concerns regarding process safety and environmental impact, the use of heat may also lead to polymer degradation and excessive energy consumption. To address these critical challenges, here we present an alternative fiber manufacturing method that encompasses extruding a monomer solution through an orifice, drawing it using centrifugal Forcespinning and polymerizing the monomer jet into solid fiber in flight using UV initiated thiol-ene chemistry. This method not only negates the use of both heat and solvent, but also produces fibers that are highly crosslinked, mechanically robust, and thermally stable. In this process, the balance between curing kinetics, fiber flight time, and solution viscoelasticity is essential. Studies were conducted to quantitatively investigate the effect of these factors on fiber formation and morphology. An operating diagram was developed to show how the intricate interplay of these factors led to the formation of smooth fibers and other undesirable fiber defects, such as beads-on-string, fused fibers, and droplets.

  5. Dental fiber-post resin base material: a review.

    Science.gov (United States)

    Lamichhane, Aashwini; Xu, Chun; Zhang, Fu-Qiang

    2014-02-01

    Teeth that have short clinical crown, which are not alone enough to support the definitive restoration can be best treated using the post and core system. The advantages of fiber post over conventional metallic post materials have led to its wide acceptance. In addition to that the combination of aesthetic and mechanical benefits of fiber post has provided it with a rise in the field of dentistry. Also the results obtained from some clinical trials have encouraged the clinicians to use the fiber posts confidently. Fiber posts are manufactured from pre-stretched fibers impregnated within a resin matrix. The fibers could that be of carbon, glass/silica, and quartz, whereas Epoxy and bis-GMA are the most widely used resin bases. But recently studies are also found to be going on for polyimide as possible material for the fiber post resin base as a substitute for the conventional materials. PMID:24605208

  6. Permeability characterization of stitched carbon fiber preforms by fiber optic sensors

    Directory of Open Access Journals (Sweden)

    V. Antonucci

    2011-12-01

    Full Text Available The in-plane and through thickness permeability of unidirectional stitched carbon fiber preforms have been determined through vacuum infusion tests. The impregnation of various dry preforms with different stitching characteristics has been monitored by fiber optic sensors that have been stitched together with the dry tow to manufacture the dry preform. The experimental infusion times have been fitted by a numerical procedure based on Finite Element (FE processing simulations. A good agreement between the numerical and experimental infusion times has been found demonstrating the potentiality of the fiber sensor system as suitable tool to evaluate impregnation times and permeability characteristics.

  7. Advanced stabilization of PAN fibers for fabrication of carbon fibers by e-beam irradiation

    International Nuclear Information System (INIS)

    In recent years, the carbon fiber industry has been growing rapidly to meet the demand from efferent industries such as aerospace, military, turbine blades, light weight cylinders and pressure vessels. Generally, carbon fibers are manufactured by a controlled pyrolysis of stabilized precursor fiber such as polyacrylonitrile (PAN). In the stabilization step, the linear PAN molecules are first converted to cyclic structure. However, cyclization is a very complicated process and there are still differences of opinion on the reaction mechanisms. Photo-induced crosslinking and stabilization of PAN via ion beam, X-ray, gamma ray and UV irradiation has been reported in the literature. However, the process required a long stabilization time. In this work, a new and highly effective method of pretreatment PAN precursor fiber was described. The effect of the e-beam on the stabilization process of the fibers was investigated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD) measurement

  8. Manufacturing and ISO 9000

    International Nuclear Information System (INIS)

    This paper reports on ISO 9000 or ANSI Q 90 which is here and American manufacturing is now behind the rest of our counterparts. As people have had to change to metric system, so shall this change occur, if the manufacturing in the U.S. wants to participate in the global market

  9. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  10. Effect of Fiber Surface Structure on Absorption Properties of Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    QIAN Xin, ZHI Jian-Hai, WANG Xue-Fei, ZHANG Yong-Gang, YANG Jian-Xing

    2013-02-01

    Full Text Available Carbon fibers with different surface structures were obtained through changing the treatment intensities in the process of electrochemical oxidation, and then oxidized carbon fibers were used as reinforcements to manufacture carbon fiber/epoxy composites. The relationship between fiber surface structure and the moisture absorption of carbon fiber/epoxy composites after hygrothermal aging treatment was studied. Results show that a significant increase happen to the surface activity of carbon fiber after electrochemical oxidation, and there is also a large extent of elevation in the relative content of oxygen-containing functional groups especially OH group which increases from 18.62% to 34.84%. The moisture absorption mechanism of carbon fiber/epoxy composites varies with the change of hygrothermal aging conditions. Temperature is considered to be a leading factor in the moisture absorption process. Results also indicate that the higher the surface activity of carbon fiber, the greater composite materials get the equilibrium moisture content. There is an obvious decline in the ILSS values of carbon fiber/epoxy composites with the increase of moisture uptake content.

  11. Fiber optics and their applications in nuclear power plants

    International Nuclear Information System (INIS)

    Naturally, technical innovation and advanced technology give large impact also to the technical field of atomic energy, and the examples are the introduction of computers and optical information transmission and processing technology into atomic energy facilities. Combined with the development of radiation-resistant optical fibers, the optical information technology has been introduced into all aspects of atomic energy field. The information transmission using optical fibers is advantageous because of wide band, small loss, the immunity to crosstalk and electromagnetic induction effects, small size and low price. The structure of optical fibers, the transmission loss in optical fibers, the manufacturing method for optical fibers, the coating structure for optical fibers, optical cable structure, the new optical fibers developed recently such as optical fiber image guides, constant polarization fibers and infrared fibers, the merits of using optical fibers for signal transmission, atomic energy facilities and image transmission, the present status of the research on radiation-resistant fibers, and the application to nuclear power stations, reprocessing plants, FBRs, fusion reactors and others are described. (Kako, I.)

  12. Micromechanical Numeric Investigation of Fiber Bonds in 3D Network Structures.

    OpenAIRE

    AZ?ZO?LU, YA?IZ

    2014-01-01

    In manufacturing of paper and paperboard, optimized fiber usage has crucial importance for process efficiency and profitability. Dry strength of paper is one of the important quality criteria, which can be improved by adding dry strength additive that affect fiber to fiber bonding. This study is using the micromechanical simulations which assist interpretation of the experimental results concerning the effect of strength additives. A finite element model for 3D dry fiber network was construct...

  13. Heat pipe manufacturing study

    Science.gov (United States)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  14. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization....

  15. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  16. Thermophysical ESEM Characterization of Carbon Fibers

    Science.gov (United States)

    Sue, Jiwoong; Ochoa, Ozden O.; Effinger, Michael R.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Coefficients of thermal expansion (CTE) of carbon fibers create residual stresses in aggressive manufacturing and service environments. In this effort, environmental scanning electron microscope (ESEM) is used for in situ observations of a carbon fiber cross-section up to 1000 C in order to evaluate the much neglected transverse CTE. The perimeter of fiber cross-section is calculated with the Scion image processing program from images that were taken at every 100 C increments. CTE values are calculated by linear regression of the strain data based on the perimeter changes. Furthermore, through SEM, WDS and TEM observations, we are in the process of bringing an interactive rationale between CTE, crystallinity and surface roughness of carbon fibers.

  17. Additive Manufacturing of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.

  18. 77 FR 75972 - Foreign-Trade Zone 148-Knoxville, Tennessee, Toho Tenax America, Inc., Subzone 148C (Carbon Fiber...

    Science.gov (United States)

    2012-12-26

    ... 148C (Carbon Fiber Manufacturing Authority); Extension of Comment Period on New Evidence The comment... preliminary recommendation not to authorize TTA to manufacture carbon fiber for the U.S. market at this time... comment (77 FR 73978, 12/12/2012). Rebuttal comments may be submitted during the subsequent 15-day...

  19. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  20. Manufacture of disposal canisters

    Energy Technology Data Exchange (ETDEWEB)

    Nolvi, L.

    2009-12-15

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  1. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.

  2. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  3. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    The increasing complexity of business environments and the pressure for organizations on delivering new products faster while maintaining the superior quality of their products, has forced manufacturing organizations to rethink their operations. Managers responsible for manufacturing ramp-up need...... to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the...

  4. Continuous fiber ceramic composites for energy related applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-07

    The US Department of Energy has established the Continuous Fiber Ceramic Composites (CFCC) program to develop technology for the manufacture of CFCC`s for use in industrial applications where a reduction in energy usage or emissions could be realized. As part of this program, the Dow Chemical Company explored the manufacture of a fiber reinforced/self reinforced silicon nitride for use in industrial chemical processing. In Dow`s program, CFCC manufacturing technology was developed around traditional, cost effective, tape casting routes. Formulations were developed and coupled with unique processing procedures which enabled the manufacture of tubular green laminates of the dimension needed for the application. An evaluation of the effect of various fibers and fiber coatings on the properties of a fiber reinforced composites was also conducted. Results indicated that fiber coatings could provide composites exhibiting non-catastrophic failure and substantially improved toughness. However, an evaluation of these materials in industrial process environments showed that the material system chosen by Dow did not provide the required performance improvements to make replacement of current metallic components with CFCC components economically viable.

  5. Manufacturing high temperature thermocouples

    International Nuclear Information System (INIS)

    Emphasis is put upon the main difficulties encountered in manufacturing high temperature thermocouples. Solutions found for welding are presented with some results concerning the cleaning process used for the tubes

  6. Many Manufactured Nanosats Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To achieve the capability to affordably produce scores of nano-spacecraft for envisioned constellation missions, a new manufacturing process is needed to reduce the...

  7. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  8. Review of Manufacturing Intelligence

    OpenAIRE

    Stokey, Richard

    1990-01-01

    "Manufacturing Intelligence (Addison Wesley, Reading, Massachusetts, 1988, 352 pages, $43.25, ISBN 0-201-13576-0) by Paul Kenneth Wright and David Alan Bourne develops principles for the design of intelligent machine tools.

  9. Manufacturing parabolic mirrors

    CERN Multimedia

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  10. Advanced manufacturing technology in China

    CERN Document Server

    Wang, Fei-Yue

    2012-01-01

    Drawing framework for socio-economic development in China, this volume focuses on long-range plans for technological accomplishments in the field of advanced manufacturing. Topics include green transformation resources and manufacturing processes, intelligent manufacturing, and more.

  11. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ...to, the candidate's proven experience in promoting, developing and marketing programs in support of manufacturing...applicant's manufacturing-related experience, including any manufacturing trade policy experience. 3. The applicant's...

  12. 77 FR 2275 - Manufacturing Council

    Science.gov (United States)

    2012-01-17

    ...each candidate's proven experience in promoting, developing and marketing programs in support of manufacturing industries, proven experience in job creation in the manufacturing...applicant's manufacturing-related experience, including any...

  13. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ...include the candidate's proven experience in promoting, developing and marketing programs in support of manufacturing...applicant's manufacturing-related experience, including any manufacturing trade policy experience. 3. The applicant's...

  14. 75 FR 12507 - Manufacturing Council

    Science.gov (United States)

    2010-03-16

    ...members include candidates' proven experience in developing and marketing programs in support of manufacturing...applicant's manufacturing-related experience, including any manufacturing trade policy experience. 3. The applicant's...

  15. 76 FR 33244 - Manufacturing Council

    Science.gov (United States)

    2011-06-08

    ...include the candidate's proven experience in promoting, developing and marketing programs in support of manufacturing...applicant's manufacturing-related experience, including any manufacturing trade policy experience. 2. The applicant's...

  16. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ...members include candidates' proven experience in developing and marketing programs in support of manufacturing...applicant's manufacturing-related experience, including any manufacturing trade policy experience. 3. The applicant's...

  17. Integrating manufacturing process capabilities

    OpenAIRE

    Rafolls Llusa, Ana

    2011-01-01

    Manufacturing processs costs models are key buiding blocks for developing component family template cost models and whole engine cost models in Rolls-Royce. THe process cost models should be generic and be driven by relevant process variables. EDM (Electro Discharge Machining) ias a key process in manufacturing of film cooling holes for Turbine Blades and NGV's. Development of this process cost model will be done by interfacing with the manufactoring process owner and turbine cooling community.

  18. Manufacturing of laboratory equipments

    International Nuclear Information System (INIS)

    A design of an automatic machine to manufacture components as well as an automatic system for assembly were developed. The designs and system developed are as follows: a) Designs of automatic tack welder in the process of CANDU fuel fabrication. b) Cam design for plug manufacturing lathe. c) Design, mold and fabrication of tool machine for the components of CANDU fuel bundle. d) Service another division

  19. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness losses) during wet/dry cycling. SCMs have been found to be effective in mitigating composite degradation through several processes, including a reduction in the calcium hydroxide content, stabilization of monosulfate by maintaining pore solution pH, and a decrease in ettringite reprecipitation accomplished by increased binding of aluminum in calcium aluminate phases and calcium in the calcium silicate hydrate (C-S-H) phase.

  20. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.

    Science.gov (United States)

    Teul, Florence; Miao, Yun-Gen; Sohn, Bong-Hee; Kim, Young-Soo; Hull, J Joe; Fraser, Malcolm J; Lewis, Randolph V; Jarvis, Donald L

    2012-01-17

    The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk proteins integrated in an extremely stable manner. Furthermore, these composite fibers were, on average, tougher than the parental silkworm silk fibers and as tough as native dragline spider silk fibers. These results demonstrate that silkworms can be engineered to manufacture composite silk fibers containing stably integrated spider silk protein sequences, which significantly improve the overall mechanical properties of the parental silkworm silk fibers. PMID:22215590

  1. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55 for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  2. Method of making a continuous ceramic fiber composite hot gas filter

    Science.gov (United States)

    Hill, Charles A. (Lynchburg, VA); Wagner, Richard A. (Lynchburg, VA); Komoroski, Ronald G. (Lynchburg, VA); Gunter, Greg A. (Lynchburg, VA); Barringer, Eric A. (Lynchburg, VA); Goettler, Richard W. (Lynchburg, VA)

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  3. Development of self-sensing BFRP bars with distributed optic fiber sensors

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  4. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight structures has enormous potential for space vehicles applications as the reduction of weight from metallic structures add to vehicle performance, reduce...

  5. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  6. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D; Hansen, Theis Peter; Riishede, Jesper; Hougaard, Kristian G.; Sørensen, T; Larsen, T T; Mortensen, N A; Broeng, Jes; Jensen, Jesper Bevensee; Bjarklev, Anders Overgaard

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  7. Manufacturing strategy issues in selected Indian manufacturing industry

    OpenAIRE

    Mahender Singh; P C Basak; Rajbir Singh

    2013-01-01

    This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler), tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT), integrated information systems (IIS), and advanced ma...

  8. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan (Knoxville, TN); Muhs, Jeffrey D. (Lenior City, TN)

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  9. National Center for Manufacturing Sciences: Environmentally conscious manufacturing

    Science.gov (United States)

    Vinton, Clare

    1995-01-01

    The purpose of this presentation is to share the results and some of the thinking of the Environmentally Conscious Manufacturing - Strategic Initiative Group (ECM-SIG) at the National Center for Manufacturing Sciences (NCMS). NCMS is a consortium of more than 185 North American Manufacturing organizations comprised of about 75 percent for profit manufacturing companies and about 25 percent nonprofit organizations that support manufacturing activities. NCMS conducts collaborative R&D programs designed to improve global competitiveness of its members and other North American manufacturers to address common issues that are important to manufacturing industries. NCMS is an industry driven organization whose agenda is established by industry with input from appropriate government agencies.

  10. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM/S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization. The distribution of the material in the unit cell is optimized according to a given objective (e.g. maximum bulk modulus or minimum Poissons ratio) and some given constraints (e.g. isotropy) using topology optimization. The manufacturability is achieved using various filtering techniques together with a stochastic approach, where the mean performance of several slightly different designs is optimized. In most cases this assures a minimum length scale for the intermediate design, and thereby manufacturability is achieved. Furthermore, the study will look at how "negative" aspects of the manufacturing method can be exploited to achieve exotic material properties. An example of this is how the SLM/S causes softer regions in the structure due to insufficient heating of the metal powder. If the goal is to design a material, which to some degree is compliant, such as negative Poissons ratio material, softer regions are desirable. Another example is closedcell materials, e.g. maximum bulk modulus material, where the cells will be filled by metal powder if manufactured using SLM/S. This is considered as a drawback, because it makes the structure heavier. However, it also drastically increases the damping ratio of the structure, which is beneficial in many applications.

  11. Influence of fiber type, fiber mat orientation, and process time on the properties of a wood fiber/polymer composite

    DEFF Research Database (Denmark)

    Plackett, David; Torgilsson, R.

    2002-01-01

    A rapid press consolidation technique was used to produce composites from two types of air-laid wood fiber mat, incorporating either mechanically refined or bleached chemi-thermomechanically refined Norway Spruce [Picea abies (L.) Karst] and a bicomponent polymer fiber. The manufacturing technique involved pre-compression, contact heating to the process temperature under vacuum and then rapid transfer to the press for consolidation and cooling. Composites were tested to determine response to water or water vapor, porosity, fiber volume fraction and tensile properties. The composites absorbed water rapidly and showed changes in thickness with fluctuations in relative humidity. Porosity was higher in composites containing mechanically refined (MDF) fibers than in composites containing bleached chemi-thermomechanically refined (CTMP) fibers. Tensile test results suggessted that fiber wetting by the polymer matrix had been maximized within a five-minute heating time. Results also indicated that had been maximizedwithin a five-minute heating time. Results also indicated that porosity was not the key determinant of tensile properties in the composites.

  12. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  13. Experimental holey fibers

    Science.gov (United States)

    Wojcik, Jan; Janoszczyk, Barbara; Poturaj, Krzysztof; Makara, Mariusz; Mergo, Pawel; Walewski, Aleksander

    2003-04-01

    A technology of a new kind of optical fibers called 'holey fibers' (HF) has been developed in the past several years. Differences of coefficients between the core and the cladding occurs because in the clading area there are many parallel holes along all the fiber length. This study presents the method of preparation of HF fibers which is used in our laboratory. The strucutre of the fibers and their spectral attenuation as well as further possibilities of modification of their construction.

  14. Fiber optic monitoring device

    Science.gov (United States)

    Samborsky, James K. (605 Groves Blvd., N. Augusta, SC 29841)

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  15. Pressure sensitivity analysis of fiber Bragg grating sensors

    Science.gov (United States)

    Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex

    2014-09-01

    Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).

  16. Manufacturing Renaissance: Return of manufacturing to western countries

    OpenAIRE

    Kianian, Babak; Larsson, Tobias; Tavassoli, Mohammad

    2013-01-01

    Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers behind this new phenomenon and delves more deeply into the driver that centers on the new manufacturing technologies such as Additive Manufacturing (AM) and 3D Printing. Next, this paper will make the case that the location of manufacturing will be in west, relying on the established theory that has ...

  17. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  18. Thulium fiber laser lithotripsy

    Science.gov (United States)

    Scott, Nicholas J.; Cilip, Christopher M.; Fried, Nathaniel M.

    2009-02-01

    Complications during laser lithotripsy include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by the Holmium:YAG laser (? = 2120 nm) multimode beam profile. This study exploits the Thulium fiber laser (? = 1908 nm) beam profile for higher power transmission through smaller fibers. Thulium fiber laser radiation with 1-ms pulse duration, pulse rates of 10-30 Hz, and 70-?m-diameter spot was coupled into silica fibers with 100, 150, and 200 ?m core diameters. Fiber transmission, bending, and endoscope irrigation tests were performed. Damage thresholds for 100, 150, 200 ?m fibers averaged 40 W, 60 W, and > 80 W. Irrigation rates measured 35, 26, and 15 ml/min for no fiber, 100, and 200 ?m fibers. Thulium fiber laser energy of 70-mJ delivered at 20 Hz through a 100 ?m fiber resulted in vaporization and fragmentation rates of 10 and 60 mg/min for uric acid stones. The Thulium fiber laser beam profile provides higher laser power through smaller fibers than the Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility.

  19. Environmentally sound manufacturing

    Science.gov (United States)

    Caddy, Larry A.; Bowman, Ross; Richards, Rex A.

    1994-01-01

    The NASA/Thiokol/industry team has developed and started implementation of an environmentally sound manufacturing plan for the continued production of solid rocket motors. They have worked with other industry representatives and the U.S. Environmental Protection Agency to prepare a comprehensive plan to eliminate all ozone depleting chemicals from manufacturing processes and to reduce the use of other hazardous materials used to produce the space shuttle reusable solid rocket motors. The team used a classical approach for problem solving combined with a creative synthesis of new approaches to attack this problem. As our ability to gather data on the state of the Earth's environmental health increases, environmentally sound manufacturing must become an integral part of the business decision making process.

  20. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  1. Reconfigurable manufacturing system: an overview

    OpenAIRE

    Malhotra V; Raj T; Arora A

    2009-01-01

    This paper presents the review of Reconfigurable manufacturing system. That aims at achievingcost effective and rapid system changes needed, by incorporating principle of modularity, integrability andscalability as this new manufacturing system. Reconfigurable manufacturing system promises customizedflexibility in a short time, while the other manufacturing system provides generalized flexibility designed foranticipation variations.This paper shows the definition and background of reconfigura...

  2. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council.... manufacturing industry to fill five vacant positions on the Manufacturing Council (Council). The purpose of...

  3. Information modeling of manufacturing processes

    OpenAIRE

    Nielssen, Johan

    2003-01-01

    The innovation process is an important process for our primemotor of welfare, manufacturing. During this process, theprerequisites for manufacturing are set. To set the bestpossible prerequisites consideration about products,manufacturing processes, and manufacturing resources must bemade concurrently, which also means involving several differentdisciplines in a collaborative effort. As a consequence of involving different disciplines, thecommunication of engineering information may be hinder...

  4. Blowable glass fiber thermal insulation product

    International Nuclear Information System (INIS)

    A process and apparatus for manufacturing a blowable glass fiber insulation product is disclosed. The product resulting from the process and apparatus is also disclosed. This process includes the steps of cutting unbonded glass fiber matting and lengths of twisted glass fiber yarn raw material into predetermined relatively large size pieces. The pieces are mixed together and the mixture is fluffed to decrease its density. The mixture is then hammermilled into relatively smaller size pieces suitable for use as blowable insulation. In accordance with the apparatus according to this invention, a cutter cuts glass fiber matting and lengths of twisted glass fiber yarn into relatively large size pieces which are mixed and then fluffed and further cut in a fluffer. A hammermill is used for reducing the mixture into relatively smaller size pieces suitable for use as blowable insulation. The blowable insulation product comprises loose, irregularly formed and separate clumps of glass fiber material approximately one inch (215 cm.) in diameter and having a density of 1 lb./cu./ft. (16 kg./cu./m.) and has a thermal resistance value of 3.3 per inch (2.5 cm.) of thickness

  5. Wood versus plant fibers: Similarities and differences in composite applications

    DEFF Research Database (Denmark)

    Madsen, Bo; Gamstedt, E. Kristofer

    2013-01-01

    The work on cellulose fiber composites is typically strictly divided into two separated research fields depending on the fiber origin, that is, from wood and from annual plants, representing the two different industries of forest and agriculture, respectively. The present paper evaluates in parallel wood fibers and plant fibers to highlight their similarities and differences regarding their use as reinforcement in composites and to enable mutual transfer of knowledge and technology between the two research fields. The paper gives an introduction to the morphology, chemistry, and ultrastructure of the fibers, the modeling of the mechanical properties of the fibers, the fiber preforms available for manufacturing of composites, the typical mechanical properties of the composites, the modeling of the mechanical properties with focus on composites having a random fiber orientation and a non-negligible porosity content, and finally, the moisture sensitivity of the composites. The performance of wood and plant fibercomposites is compared to the synthetic glass and carbon fibers conventionally used for composites, and advantages and disadvantages of the different fibers are discussed. 2013 Bo Madsen and E. Kristofer Gamstedt.

  6. Flexibility in fuel manufacturing

    International Nuclear Information System (INIS)

    From its inception Exxon Nuclear has produced both BWR and PWR fuels. This is reflected in a product line that, to date, includes over 20 fuel designs. These range from 6x6 design at one end of the spectrum to the recently introduced 17x17 design. The benefits offered include close tailoring of the fuel design to match the customer's requirements, and the ability to rapidly introduce product changes, such as the axial blanket design, with a minimal impact on manufacturing. This flexibility places a number of demands on the manufacturing organization. Close interfaces must be established, and maintained, between the marketing, product design, manufacturing, purchasing and quality organizations, and the information flows must be immediate and accurate. Production schedules must be well planned and must be maintained or revised to reflect changing circumstances. Finally, the manufacturing facilities must be designed to allow rapid switchover between product designs with minor tooling changes and/or rerouting of product flows to alternate work stations. Among the tools used to manage the flow of information and to maintain the tight integration necessary between the various manufacturing, engineering and quality organizations is a commercially available, computerized planning and tracking system, AMAPS. A real-time production data collection system has been designed which gathers data from each production work station for use by the shop floor control module of AMAPS. Accuracy of input to the system is improved through extensive use of bar codes to gather information on the product as it moves through and between work stations. This computerized preparation of material tracing has an impact on direct manufacturing records, quality control records, nuclear material records and accounting and inventory records. This is of benefit to both Exxon Nuclear and its customers

  7. Fiber Optics Physics and Technology

    CERN Document Server

    Mitschke, Fedor

    2010-01-01

    Telephone, telefax, email and internet -- the key ingredient of the inner workings is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data-carrying capacity optical fiber lines beat other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul. This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful prope...

  8. Time for a forum on terms used for textile fibers

    OpenAIRE

    Zawistoski, P. S.

    2012-01-01

    The advances in manufactured fibers and textiles have garnered interest and excitement of textile artists and consumers alike for a myriad of reasons, including health, environmental, and fashion. The chemical and molecular nature of these advances, however leads to confusion and misunderstanding of the new fibers in the materials. This is exacerbated by the current climate of distrust for chemical words and desire for "green" products and the unregulated (mis)information and marketing on the...

  9. Continuous Basalt Fiber as Reinforcement Material in Polyester Resin

    OpenAIRE

    Jn lafur Erlendsson 1973

    2013-01-01

    The industry is always striving to find new and better materials to manufacture new or improved products. Within this context, energy conservation, corrosion, sustainability and other environmental issues are important factors in product development. Basalt fibers are a natural material, produced from igneous rock which can provide high strength relative to weight. Research has also shown that basalt fibers have many other advantageous qualities. This thesis describes an applied research p...

  10. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2013-11-26

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  11. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Care; Pedersen, David Bue; Simonsen, R.B.; Erschens, D.N.; Lilbk, M.F.; Eskildsen, Lars; Rottwitt, Karsten; Hansen, Hans Nrgaard

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of th...

  12. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  13. Photovoltaic Manufacturing Technology

    Science.gov (United States)

    Easoz, J. R.; Herlocher, R. H.

    1991-12-01

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  14. Laser in manufacturing

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape". Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds an

  15. Boron carbide manufacturing process

    International Nuclear Information System (INIS)

    The invention relates to the manufacture of boron carbide powder. It is well known that boron carbide, formula B4C, has many industrial applications because of its hardness. It is thus used in powder form as an abrasive, especially for lapping and polishing hard metals and carbides, whereas in the pressed and sintered condition it is very suitable for manufacturing parts subjected to a high rate of wear, e.g., sanding nozzles, dies, or bearings. Other applications exist in the nuclear field, when the B 10 isotope, which is a neutron absorber, is present

  16. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2012-12-10

    ...systems and distributed control systems used in manufacturing, mining and utilities in the United States, the Government-owned...Patent No. 7,460,740: Intensity Modulated Fiber Optic Static Pressure Sensor System, Navy Case No....

  17. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2013-03-20

    ...systems and distributed control systems used in manufacturing, mining and utilities in the United States, the Government-owned...Patent No. 7,460,740: Intensity Modulated Fiber Optic Static Pressure Sensor System, Navy Case No....

  18. OEM fiber laser rangefinder for long-distance measurement

    Science.gov (United States)

    Corman, Alexandre; Chiquet, Frdric; Avisse, Thomas; Le Flohic, Marc

    2015-05-01

    SensUp designs and manufactures electro-optical systems based on laser technology, in particular from fiber lasers. Indeed, that kind of source enables us to get a significant peak power with huge repetition rates at the same time, thus combining some characteristics of the two main technologies on the telemetry field today: laser diodes and solid-state lasers. The OEM (Original Equipment Manufacturer) fiber Laser RangeFinder (LRF) set out below, aims to fit the SWaP (Size Weight and Power) requirements of military markets, and might turn out to be a real alternative to other technologies usually used in range finding systems.

  19. Computational Techniques in Manufacturing Technology

    OpenAIRE

    J. Mdl; ?ermk, J; M. Vrabec

    2000-01-01

    Manufacturing processes are complex and therefore difficult to plan by software. The present state in computational techniques in manufacturing technology as well as software applications at the Department of Manufacturing Technology of CTU in Prague are discussed in this article. Computational techniques may help to solve many manufacturing problems as such programs in the field of process planning have been developed. However, due to the complexity of manufacturing processes, complete plann...

  20. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Srensen, Mads Peter; Bischoff, Svend

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrdinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrdinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  1. Cost analysis of advanced turbine blade manufacturing processes

    Science.gov (United States)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  2. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report Alloy Development for High Burnup Cladding. Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  3. Drug development and manufacturing

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  4. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while th...... and dilemmas to be addressed when transferring manufacturing units....

  5. Reusing Old Manufacturing Buildings

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.

  6. Manufacturing process optimization.

    Czech Academy of Sciences Publication Activity Database

    Slavk, Jan; Simeonov, Simeon

    Brno : MT FSI VUT, 1999 - (Kratochvl, C.; Ehrenberger, Z.; Kotek, V.), s. 167-172 ISBN 80-214-0604-6. - (0). [International conference Mechatronics and robotics '99 /2./. Brno (CZ), 06.09.1999-08.09.1999] R&D Projects: GA ?R GA101/98/0972 Keywords : modelling * manufacturing process Subject RIV: JD - Computer Applications, Robotics

  7. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  8. Illinois Manufacturing Technology Curriculum.

    Science.gov (United States)

    Cliffe, Roger; And Others

    This manufacturing technology curriculum involves students in learning problem-solving, communication, team building, quality control, safety, math, science, and technical skills. The document begins with a section on implementation, which gives background information on the purposes and development of the curriculum, explains its rationale,

  9. Manufacturing and Merchandising Careers

    Science.gov (United States)

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company

  10. NOVEL USE OF WASTE KERATIN AND COTTON LINTER FIBERS FOR PROTOTYPE TISSUE PAPERS AND THEIR EVALUATION

    OpenAIRE

    Bo Shi; Tom G. Shannon; Ellen Pelky

    2010-01-01

    Corporate environmental sustainability calls for sustainable product manufacturing with less creation of waste material or increased reuse of waste materials. One example is the use of keratin fiber from the poultry industry and cotton linter from the textile industry for paper and tissue manufacturing. In this paper, the feasibility of using these waste fibers to make paper was demonstrated in handsheets. The properties of these handsheets were compared to the properties of handsheets made w...

  11. A pilot-scale nonwoven roll goods manufacturing process reduces microbial burden to pharmacopeia acceptance levels for nonsterile hygiene applications

    Science.gov (United States)

    A total of seven source fiber types were selected for use in the manufacturing of nonwoven roll goods: polyester; polypropylene; rayon; greige cotton from two sources; mechanically cleaned greige cotton; and scoured and bleached cotton. The microbial burden of each source fiber was measured as a pr...

  12. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    possibilities, the thesis will attempot to offer a proof of concept, rather than an in-depth analysis, thus reflecting the present state of the art within the area of micro-structured fibers. Another important sub-class of micro-structured fibers is photonic bandgap fibers. Photonic bandgap fibers are far more......-structured fibers that guide light by simple index effects. However, photonic bandgap fibers offer more radical possibilities, such as core regions with an effective index that is lower than the surrounding effective cladding index one may guide light in air- and dispersion qualities that differ from both those of...

  13. Fibers as carriers of microbial particles

    Directory of Open Access Journals (Sweden)

    Rafa? L. Grny

    2015-08-01

    Full Text Available Background: The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. Material and Methods: The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp, synthetic (polyamide, polyester, polyacrylonitrile, polypropylene and semi-synthetic (viscose fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Results: Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair, sheaf packing and septated surface (e.g., flax, hemp or present as twisted ribbons with corrugated surface (cotton were able to carry up to 9105 cfu/g aerobic bacteria, 3.4104 cfu/g anaerobic bacteria and 6.3104 cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. Conclusions: As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. Med Pr 2015;66(4:511523

  14. Lunar preform manufacturing

    Science.gov (United States)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  15. Fundamentals of Digital Manufacturing Science

    CERN Document Server

    Zhou, Zude; Chen, Dejun

    2012-01-01

    The manufacturing industry will reap significant benefits from encouraging the development of digital manufacturing science and technology. Digital Manufacturing Science uses theorems, illustrations and tables to introduce the definition, theory architecture, main content, and key technologies of digital manufacturing science. Readers will be able to develop an in-depth understanding of the emergence and the development, the theoretical background, and the techniques and methods of digital manufacturing science. Furthermore, they will also be able to use the basic theories and key technologies described in Digital Manufacturing Science to solve practical engineering problems in modern manufacturing processes. Digital Manufacturing Science is aimed at advanced undergraduate and postgraduate students, academic researchers and researchers in the manufacturing industry. It allows readers to integrate the theories and technologies described with their own research works, and to propose new ideas and new methods to...

  16. Single Fiber Star Couplers. [optical waveguides for spacecraft communication

    Science.gov (United States)

    Asawa, C. K.

    1979-01-01

    An ion exchange process was developed and used in the fabrication of state-of-the-art planar star couplers for distribution of optical radiation between optical fibers. An 8 x 8 planar transmission star coupler was packaged for evaluation purposes with sixteen fiber connectors and sixteen pigtails. Likewise a transmission star coupler and an eight-port reflection star coupler with eight-fiber ribbons rigidly attached to these couplers, and a planar coupler with silicon guides and a parallel channel guide with pigtails were also fabricated. Optical measurements of the transmission star couplers are included with a description of the manufacturing process.

  17. Electrical anisotropy in multiscale nanotube/fiber hybrid composites

    International Nuclear Information System (INIS)

    This letter reports an experimental and theoretical study on the electrical properties of carbon nanotube/glass fiber composites. Experimental measurements on unidirectional glass fiber composites with nanotubes dispersed in the polymer matrix show a high degree of anisotropy. The composites, manufactured with a vacuum infusion technique, do not show any significant process-induced anisotropy. Theoretical modeling reveals that the microstructure of the fiber composite plays a dominant role in the electrical behavior due to alteration of percolating paths in the carbon nanotube network.

  18. Electrical anisotropy in multiscale nanotube/fiber hybrid composites

    Science.gov (United States)

    Thostenson, Erik T.; Gangloff, John J.; Li, Chunyu; Byun, Joon-Hyung

    2009-08-01

    This letter reports an experimental and theoretical study on the electrical properties of carbon nanotube/glass fiber composites. Experimental measurements on unidirectional glass fiber composites with nanotubes dispersed in the polymer matrix show a high degree of anisotropy. The composites, manufactured with a vacuum infusion technique, do not show any significant process-induced anisotropy. Theoretical modeling reveals that the microstructure of the fiber composite plays a dominant role in the electrical behavior due to alteration of percolating paths in the carbon nanotube network.

  19. Templated growth of II-VI semiconductor optical fiber devices and steps towards infrared fiber lasers

    Science.gov (United States)

    Sazio, Pier J. A.; Sparks, Justin R.; He, Rongrui; Krishnamurthi, Mahesh; Fitzgibbons, Thomas C.; Chaudhuri, Subhasis; Baril, Neil F.; Peacock, Anna C.; Healy, Noel; Gopalan, Venkatraman; Badding, John V.

    2015-02-01

    ZnSe and other zinc chalcogenide semiconductor materials can be doped with divalent transition metal ions to create a mid-IR laser gain medium with active function in the wavelength range 2 - 5 microns and potentially beyond using frequency conversion. As a step towards fiberized laser devices, we have manufactured ZnSe semiconductor fiber waveguides with low (less than 1dB/cm at 1550nm) optical losses, as well as more complex ternary alloys with ZnSxSe(1-x) stoichiometry to potentially allow for annular heterostructures with effective and low order mode corecladding waveguiding.

  20. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P. (Knoxville, TN); McLaughlin, Jerry C. (Oak Ridge, TN); Lowden, Richard A. (Powell, TN)

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  1. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  2. Radiation curing of composites for vehicle component and vehicle manufacture

    International Nuclear Information System (INIS)

    Some traditional uses of metals in vehicle component and vehicle manufacture, such as steel (specific gravity 7.8) or aluminum (specific gravity 2.7), can be replaced by carbon-fiber composites (specific gravity 1.6) to provide significant weight savings while maintaining structural integrity. The aerospace and aircraft industries have adopted this approach. The auto or motor vehicle industries have explored the use of composites, but have been reluctant to widely adopt this technology because of concerns over manufacturing processes. A typical steel auto body weighing ? 750 kilos would weigh only ? 155 kilos if replaced with carbon-fiber composites. Structural members, as the vehicle chassis, could also be fabricated out of carbon-fiber composites. With only 20% of the body weight, smaller, lower horse-power and more fuel efficient engines could be used to power such vehicles. Commercial aircraft manufacturers that have adopted carbon-fiber structures in lieu of aluminum (a 40% weight savings) estimate a 20% savings in fuel costs for large planes. These are still made with conventional materials being used for motors, tires, interiors, and the like. A fuel efficient auto now running at ? 10 kilometers/liter would more than double its fuel efficiency given the nearly 80% weight savings attainable by use of carbon-fiber composites just for the vehicle body. As with aircraft, conventional systems for propulsion (motors), braking, tires and interiors could still be used. Radiation curing can simplify the manufacture of carbon-fiber composite vehicle components. Highly penetrating X-rays derived from high current, high energy electron beam (EB) accelerators can be used to cure structural composites while they are constrained within inexpensive molds; thus reducing cure cycles, eliminating heat transfer concerns and concerns over potentially hazardous emissions during the curing process. Since X-rays can penetrate mold walls, the curing process is quite versatile, enabling diverse components with varying designs to be cured using a common X-ray source or multiple parts of the same design could be cured at once. Since the energy output of an EB unit can be tightly controlled, EB processing itself can be used to produce 'B' staged fiber-reinforced composite materials for sheet molding (SMC) and prepregs. Such materials can significantly reduce the time-to-cure should alternative energy sources or even subsequent X-ray curing be used. In the EB mode, SMC materials can be made in excess of 100 meters/minute. The matrix systems are proprietary formulations based on common radiation responsive materials used in a variety of radiation curing applications. (author)

  3. Effects of wood fiber surface chemistry on strength of wood-plastic composites

    Science.gov (United States)

    Migneault, Sbastien; Koubaa, Ahmed; Perr, Patrick; Riedl, Bernard

    2015-07-01

    Because wood-plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same conclusions were found with FTIR where WPC strength decreases as lignin peaks intensity increases. Esterification reaction of fibers with MAPE occurs on polar sites of carbohydrates, such as hydroxyls (Osbnd H). Thus, fibers with carbohydrates-rich surface, such as cellulose pulp, produced stronger WPC samples. Other factors such as mechanical interlocking and fiber morphology interfered with the effects of fiber surface chemistry.

  4. Design and manufacturing of thin composite tape springs

    OpenAIRE

    Ekelw, Jakob

    2014-01-01

    A manufacturing method for tape springs in a deployment system for a nano satellite was developed. The system relies on composite tape springs for deployment force and post deployment structural integrity, and has been proposed and used in several previous nano satellites. The tape spring was made of preimpregnated glass fiber weave. Initial test verifying the tape springs functions have been made and proven successful. The tape springs have also been tested in an engineering model of the sat...

  5. Mechanical properties of carbon fiber composites for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.; Grulke, E. [Univ. of Kentucky, Lexington, KY (United States)

    1996-10-01

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The friction factor for flow through the composites can be correlated using the fiber Reynolds number, and is affected by the composite bulk density.

  6. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2008-12-01

    Full Text Available Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method was proved considering to the sensitivity improvement.

  7. Characterization of new natural cellulosic fiber from Cissus quadrangularis root.

    Science.gov (United States)

    Indran, S; Raj, R Edwin; Sreenivasan, V S

    2014-09-22

    Fiber reinforced polymer composites are replacing many metallic structures due to its high specific strength and modulus. However commonly used man-made E-glass fibers are hazardous for health and carcinogenic by nature. Comprehensive characterization of Cissus quadrangularis root fiber such as anatomical study, chemical analysis, physical analysis, FTIR, XRD, SEM analysis and thermo gravimetric analysis are done. The results are very encouraging for its application in fiber industries, composite manufacturing, etc. Due to its light weight and the presence of high cellulose content (77.17%) with very little wax (0.14%) provide high specific strength and good bonding properties. The flaky honeycomb outer surface and low microfibril angle revealed through electron microscopy contributes for its high modulus. The thermo gravimetric analysis indicates better thermal stability of the fiber up to 230C, which is well within the polymerization process temperature. PMID:24906775

  8. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem.

    Science.gov (United States)

    Indran, S; Raj, R Edwin

    2015-03-01

    Polymer composite has contributed tremendously for energy efficient technologies in automotive and aero industries. Environmental and health concerns related to the carcinogenic nature of artificial fiber in polymer composite needs a retrofit. Eco friendly natural cellulosic fiber extract from the stem of Cissus quadrangularis plant is extensively characterized to consider as a viable alternative for man-made hazardous fibers. Anatomical study, chemical analysis, physical analysis, FTIR, XRD, SEM analysis and thermo gravimetric analysis were done to establish the certainty of using them as reinforcement fiber. Its light weight and the presence of high cellulose content (82.73%) with very little wax (0.18%) provide high specific strength and good bonding properties in composite manufacturing. The flaky honeycomb outer surface revealed through electron microscopy contributes for high modulus in CQ stem fiber and thermo gravimetric analysis ensures thermal stability up to 270 C, which is within the polymerization process temperature. PMID:25498651

  9. Evaluation on Decomposition granularity of Manufacturing Task in Manufacturing Grid

    Directory of Open Access Journals (Sweden)

    Jihong Wang

    2013-02-01

    Full Text Available Task decomposition is on of the most important activities for manufacturing task planning in Manufacturing Grid. Many achievements in the methods to decompose manufacturing tasks have been obtained. But as for the decomposition granularity, the study and research are rare. Referring to the principle of strong cohesion and weak coupling in the software engineering field, the decomposition model of manufacturing task is built up, in which a manufacturing task is decomposed into different subtasks, and each subtask is composed of various processing events. On the basis of the model, the constraint among processing events within the subtasks is analyzed. Then the evaluation index on decomposition granularity of manufacturing task is put forward based on several definitions and evaluation steps for the decomposition granularity of manufacturing task are listed. Finally, examples to illustrate the idea of the paper are given. We hope the work of the paper can promote the study and application for Manufacturing Grid further.

  10. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  11. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  12. Influence of moisture absorption on properties of fiber reinforced polyamide 6 composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Lgstrup Andersen, Tom; Lystrup, Aage

    2011-01-01

    A state-of-the art study of thermoplastic polymer matrix materials for fiber composites has identified polyamide 6 (PA6) as a potential candidate thermoplastic polymer relevant for manufacturing large composite structures like wind turbine blades. The mechanical properties of PA6 are highly sensitive to moisture, and if PA6 is used as matrix material in a fiber composite, the properties of the fiber composite will depend on the moisture content of the material. At standard condition (23 C and 5...

  13. Processing and properties of natural fibers reinforced thermoplastic and thermosseting composites

    OpenAIRE

    Silva, J. F; Nunes, J. P.; Duro, A. C.; Castro, B. F.

    2013-01-01

    In this work, three different natural fibers were studied and characterized, using optical and SEM microscopy. Woven fabrics of those reinforcement fibers were used to reinforce polyester and epoxy matrices and produce composite plates by vacum lay-up. Also, using an experimental piston blender equipment, long fiber reinforced PLA (LFT) composites were manufactured by hot compression molding. All different obtained composite plates were submitted to mechanical testing in order to determin...

  14. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    OpenAIRE

    Jossano Saldanha Marcuzzo; Choyu Otani; Heitor Aguiar Polidoro; Satika Otani

    2013-01-01

    Activated carbon fibers (ACFs) are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF) which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN). In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carboni...

  15. Kinetic Study of Resin-Curing on Carbon Fiber/Epoxy Resin Composites by Microwave Irradiation

    OpenAIRE

    Daisuke Shimamoto; Yusuke Imai, Yuji Hotta

    2014-01-01

    Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite that was composed of discontinuous carbon fibers of 130 ?m or 3 mm were investigated. The mechanical properties of carbon fiber/epoxy resin composite cured by microwave irradiation for 20 min at 120C were si...

  16. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  17. Nanocomposite fiber reinforced mortars

    OpenAIRE

    Coppola, Bartolomeo; Di Maio, Luciano; Courard, Luc; Scarfato, Paola; Incarnato, Loredana

    2014-01-01

    The use of fibers to reinforce a brittle material is an extensively studied application. In the field of cementitious materials a wide range of fibers have been investigated, from natural to synthetic fiber (wood, cellulose, carbon, glass, polypropylene) in order to achieve several purposes. Nowadays there is a continuing effort to take advantage of recent advances in nanotechnology, in the polymer and fiber industry. Nanoclays are some of the most affordable materials that have shown promis...

  18. Advanced Fibers for Composites

    International Nuclear Information System (INIS)

    This paper reviews high performance fibers used in the production of textile composites. Techniques used to produce preform using these fibers are discussed. The properties of fibers such as kevlar, spectra, glass, carbon and ceramic are presented. The paper also discusses densification or consolidation techniques used to produce composites from each fiber. Finally, the paper compares the properties of Carbon/Epoxy composites with that of 6061 aluminum. 3 figs., 4 tabs

  19. Rayleigh fiber optics gyroscope

    OpenAIRE

    Kung, A; Budin, J.; Thvenaz, Luc; Robert, P. A.

    1997-01-01

    A novel kind of fiber-optic gyroscope based on Rayleigh backscattering in a fiber-ring resonator is presented in this letter. Information on the rotation rate is obtained from the composed response of the fiber ring to an optical time-domain reflectometry (OTDR) instrument. The developed model based on the coherence properties of the Rayleigh scattering yields a polarization-insensitive and low-cost gyroscope

  20. Additive Manufactured Material

    OpenAIRE

    Ek, Kristofer

    2014-01-01

    This project treats Additive Manufacturing (AM) for metallic material and the question if it is suitable to be used in the aeronautics industry. AM is a relatively new production method where objects are built up layer by layer from a computer model. The art of AM allows in many cases more design freedoms that enables production of more weight optimized and functional articles. Other advantages are material savings and shorter lead times which have a large economic value. An extensive literat...

  1. Flexible manufacturing field trial

    OpenAIRE

    Cruz, Nuno; Gomes, Ricardo

    2009-01-01

    Within the European project R-Fieldbus (http://www.hurray.isep.ipp.pt/activities/rfieldbus/), an industrial manufacturing field trial was developed. This field trial was conceived as a demonstration test bed for the technologies developed during the project. Because the R-Fieldbus field trial included prototype hardware devices, the purpose of this equipment changed and since the conclusion of the project, several new technologies also emerged, therefore an update of the field trial was requi...

  2. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications,and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  3. Array fiber welding on micro optical glass substrates for chip-to-fiber coupling

    Science.gov (United States)

    Schrder, Henning; Neitz, Marcel; Brusberg, Lars; Queiser, Marco; Arndt-Staufenbiel, Norbert; Lang, K.-D.

    2014-03-01

    High bandwidth parallel optical transceivers are highly demanded for optical interconnects in data centers and in high performance computing. Such transceivers are composed of VCSEL- and photodiode components which have to be fiber coupled, and the appropriate driving and amplifying circuitry. For high density fiber optical connectors lens arrays for improved coupling efficiency have to be used. We propose an advantageous adhesive free method to interconnect optical fibers with such kind of lens arrays. Common approaches using adhesive bonding have high challenges in terms of yield, reliability and optical performance. We introduce our novel fiber welding approach for joining directly fused silica fibers on borosilicate glass substrates with integrated micro optics, e.g. lenses and lens arrays. It is a thermal process with a precise heat input by CO2-laser processing, which is combinable with sequential passive or active alignment of each single fiber to the substrate causing flexibility and highest coupling efficiencies. Since the fiber is accessed only from one side, a two dimensional high-density fiber array can be realized. The manufacturing time of such an interconnection is very short. Due to the adhesive free interface high power transmission is enabled and the occurrence of polymer caused misalignment and degradation are prevented. The paper presents current results in thin glass-based opto-electronic packaging. In particular our laboratory setup for array fiber welding and experimental results of such connections will be discussed and compared to UV-adhesive joining. Also further investigation, for example optical characterization and reliability tests are included. Finally a machine concept, which is under development, will be discussed.

  4. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO2, MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  5. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  6. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin; Weirich, Johannes; Lyngs, Jens K.; Noordegraaf, Danny; Petersen, Sidsel Rbner; Johansen, Mette Marie; Hansen, Kristian Rymann; Lgsgaard, Jesper; Maack, Martin D.

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of yb-doped amplifiers.

  7. Mineral Fiber Toxicology

    Science.gov (United States)

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  8. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin; Weirich, Johannes; Lyngs, Jens K.; Noordegraaf, Danny; Petersen, Sidsel Rbner; Johansen, Mette Marie; Hansen, Kristian Rymann; Lgsgaard, Jesper; Maack, Martin D.

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of...

  9. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On March 16, 2010, the Department of Commerce's International Trade Administration published a notice in the Federal Register (75 FR 12507) soliciting applications for membership...

  10. 77 FR 66179 - Manufacturing Council

    Science.gov (United States)

    2012-11-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... manufacturing council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade Administration published a notice in the Federal Register (77 FR 56811) soliciting applications for...

  11. 77 FR 69794 - Manufacturing Council

    Science.gov (United States)

    2012-11-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade Administration (ITA) published a notice in the Federal Register (77 FR 56811) soliciting applications...

  12. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On November 23, 2010, the Department of Commerce's International Trade Administration published a notice in the Federal Register (75 FR 71417) soliciting applications to fill...

  13. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing Addresses regulatory and economic issues surrounding green manufacturing Details new supply chains that need to be in place before going green Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  14. 77 FR 66179 - Manufacturing Council

    Science.gov (United States)

    2012-11-02

    ...the candidate's proven experience in promoting, developing and marketing programs in support of manufacturing...submissions any interest in and experience relevant to the work of...manufacturing-related experience, including any...

  15. 77 FR 56811 - Manufacturing Council

    Science.gov (United States)

    2012-09-14

    ...the candidate's proven experience in promoting, developing and marketing programs in support of manufacturing...submissions any interest in and experience relevant to the work of...manufacturing-related experience, including any...

  16. 77 FR 69794 - Manufacturing Council

    Science.gov (United States)

    2012-11-21

    ...the candidate's proven experience in promoting, developing and marketing programs in support of manufacturing...submissions any interest in and experience relevant to the work of...manufacturing-related experience, including any...

  17. Additive Manufacturing for Large Products

    OpenAIRE

    Leirvåg, Roar Nelissen

    2013-01-01

    This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the foundry Oshaug Metall AS. Their products consist of propellers and other large products cast in Nickel-Aluminium Bronze. This report looks at three approaches and applications for additive manufacturing at the foundry. These are additively manufactured pattern, sand mold and end metal parts. The available \\emph{State...

  18. Design for Manufacturing of Composite Structures for Commercial Aircraft : The Development of a DFM strategy at SAAB Aerostructures

    OpenAIRE

    Andersson, Frida; Hagqvist, Astrid; Sundin, Erik; Björkman, Mats

    2014-01-01

    Within the aircraft industry, the use of composite materials such as carbon fiber reinforced plastics (CFRPs) is steadily increasing, especially in structural parts. Manufacturability needs to be considered in aircraft design to ensure a cost-effective manufacturing process. The aim of this paper is to describe the development of a new strategy for how SAAB Aerostructures addressing manufacturability issues during the development of airframe composite structures. Through literature review, be...

  19. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  20. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne; Madsen, Erik Skov; Bogers, Marcel

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs...... manufacturing solutions, which are required to increase their competitiveness and assure sustainable growth....

  1. 76 FR 33244 - Manufacturing Council

    Science.gov (United States)

    2011-06-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity To Apply for Membership on the Manufacturing Council... Manufacturing Council (Council). The purpose of the Council is to advise the Secretary of Commerce on...

  2. 77 FR 56811 - Manufacturing Council

    Science.gov (United States)

    2012-09-14

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council... ] Manufacturing Council (Council) for a two-year term to begin in fall 2012. The purpose of the Council is...

  3. 77 FR 2275 - Manufacturing Council

    Science.gov (United States)

    2012-01-17

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an opportunity to apply for membership on the Manufacturing Council... Manufacturing Council (Council). The purpose of the Council is to advise the Secretary of Commerce on...

  4. Decision Guidance for Sustainable Manufacturing

    Science.gov (United States)

    Shao, Guodong

    2013-01-01

    Sustainable manufacturing has significant impacts on a company's business performance and competitiveness in today's world. A growing number of manufacturing industries are initiating efforts to address sustainability issues; however, to achieve a higher level of sustainability, manufacturers need methodologies for formally describing, analyzing,

  5. Manufacturing development of pultruded composite panels

    Science.gov (United States)

    Meade, L. E.

    1989-01-01

    The weight savings potential, of graphite-epoxy composites for secondary and medium primary aircraft structures, was demonstrated. One of the greatest challenges facing the aircraft industry is to reduce the acquisition costs for composite structures to a level below that of metal structures. The pultrusion process, wherein reinforcing fibers, after being passed through a resin bath are drawn through a die to form and cure the desired cross-section, is an automated low cost manufacturing process for composite structures. The Lockheed Aeronautical Systems Company (LASC) Composites Development Center designed, characterizated materials for, fabricated and tested a stiffened cover concept compatible with the continuous pultrusion process. The procedures used and the results obtained are presented.

  6. Coated Fiber Neutron Detector Test

    Energy Technology Data Exchange (ETDEWEB)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  7. MONITORING TECHNIQUES FOR CARBON FIBER EMISSIONS: EVALUATION A

    Science.gov (United States)

    An investigation was carried out of methods and techniques applicable to the detection and monitoring of carbon fibers as they are emitted in processes involving their manufacture or their use. The specific activities of these programs were: (a) to perform a detailed literature s...

  8. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    Science.gov (United States)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  9. Fiber Accelerating Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  10. Nonlinear Fiber Optics

    Science.gov (United States)

    Agrawal, Govind P.

    Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field of nonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use of optical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and cross-phase modulation and four-wave mixing [4]. By 1989, the field of nonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

  11. Fiber optic vibration sensor

    Science.gov (United States)

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  12. Radiation curing of composites for vehicle component and vehicle manufacture

    International Nuclear Information System (INIS)

    Some ordinary uses of metals in vehicle components and vehicle manufacture, such as steel (specific gravity 7.8) or aluminum (specific gravity 2.7), can be replaced by carbon fiber composites (specific gravity 1.6) to provide significant weight savings while still maintaining structural integrity. The aircraft and aerospace industries have adopted this concept. The motor vehicle industry is using composite materials for some nonstructural components in automobiles, but have been reluctant to widely adopt this technology because of concerns about thermal curing times and other issues in high-volume manufacturing processes. A typical steel auto body weighing ?750 kilograms would weigh only ?155 kilograms if replaced with carbon fiber composites. Structural members, such as the vehicle chassis and body frame, could also be made out of carbon fiber composites. With only 20% of the typical body weight, smaller, lighter, less powerful and more fuel efficient engines could be used in such vehicles. Commercial aircraft manufacturers have adopted large carbon fiber structures in lieu of aluminum for a 40% weight reduction and estimate a 20% savings in fuel costs for large planes. These aircraft still use conventional materials for motors, tires and interior components. The fuel efficiency of an automobile could be doubled with an 80% weight reduction. As with aircraft, conventional motors, tires and interior components could be used in automobiles. Radiation curing can simplify the manufacture of carbon fiber composites. Penetrating X-rays generated with high-energy, high-power electron beam (EB) accelerators can cure structural composites while they are constrained within inexpensive molds; thus reducing cure times, eliminating heat transfer concerns and potentially hazardous volatile emissions during the curing process. Since X-rays can penetrate mold walls, the curing process is quite versatile, enabling diverse components with varying designs to be cured using a common X-ray generator or multiple parts of the same design could be cured at the same time. Since the power output of an EB accelerator can be tightly controlled, EB processing can be used to produce 'B' staged, fiber-reinforced composite materials for sheet molding compounds (SMC) and prepregs. Such materials can significantly reduce the time-to-cure should alternative energy sources or subsequent X-ray curing be used. In the EB mode, SMC materials can be made at more than 100 meters per minute. The polymeric matrix systems are proprietary formulations based on common radiation responsive materials which are used in a variety of radiation curing applications. (author)

  13. Metal Additive Manufacturing: A Review

    Science.gov (United States)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  14. Concepts in syngas manufacture

    CERN Document Server

    Rostrup-Nielsen, Jens

    2011-01-01

    This book provides a general overview of syngas technologies as well as an in-depth analysis of the steam reforming process. Syngas is a mixture of hydrogen and carbon oxides which can be made from hydrocarbons, coal and biomass. It is an important intermediate in the chemical industry for manufacture of ammonia, methanol and other petrochemicals as well as hydrogen for refineries and fuel cells. Syngas is playing a growing role in the energy sector, because it can be converted into a number of important energy carriers and fuels. Syngas catalysis creates new options and flexibility in the com

  15. Manufacturing halal in Malaysia

    DEFF Research Database (Denmark)

    Fischer, Johan

    2016-01-01

    decades, Malaysia has become a world leader in the global expansion of halal markets. This has come about in large part because the state and government of Malaysia have taken on the role of halal-certifying authority within the country. In effect, it has certified, standardized and bureaucratized halal...... production, trade and consumption. Based on fieldwork in Malaysia, this article explores how manufacturing companies understand and practise halal certification, standards and technoscience. I argue that while existing studies of halal overwhelmingly explore micro-social aspects such as the everyday...

  16. Manufacturing Consent revisited

    OpenAIRE

    Burawoy, Michael

    2012-01-01

    Cet article prsente rapidement Manufacturing Consent publi en 1979 dans lequel la direction dAllis Chalmer organisait la discipline du travail ouvrier par la coercition et par le consentement, en particulier travers ltablissement des quotas de production qui fondait une sorte de jeu social entre ouvriers (the game of making out). Lauteur revient sur la mthode ethnographique utilise alors pour la critiquer et il propose de la remplacer par ltude de cas largie (the extented cas...

  17. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  18. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  19. A fiber-optic cure monitoring technique with accuracy improvement of distorted embedded sensors

    Science.gov (United States)

    Sampath, Umesh; Kim, Hyunjin; Kim, Dae-gil; Song, Minho

    2015-07-01

    A fiber-optic epoxy cure monitoring technique for efficient wind turbine blade manufacturing and monitoring is presented. To optimize manufacturing cycle, fiber-optic sensors are embedded in composite materials of wind turbine blades. The reflection spectra of the sensors indicate the onset of gelification and the completion of epoxy curing. After manufacturing process, the same sensors are utilized for in-field condition monitoring. Because of residual stresses and strain gradients from the curing process, the embedded sensors may experience distortions in reflection spectra, resulting in measurement errors. We applied a Gaussian curve-fitting algorithm to the distorted spectra, which substantially improved the measurement accuracy.

  20. Stacked macro fiber piezoelectric composite generator for a spinal fusion implant

    Science.gov (United States)

    Tobaben, Eric J.; Goetzinger, Nathan C.; Domann, John P.; Barrett-Gonzalez, Ronald; Arnold, Paul M.; Friis, Elizabeth A.

    2015-01-01

    A manufacturing method was developed to create a piezoelectric 3-layer stacked, macro fiber composite generator operating in d33 mode to promote bone growth in spinal fusion surgeries. A specimen of 9 17 9 mm thick was constructed from 800 ?m diameter PZT fibers and medical grade epoxy. Electromechanical testing was performed at three stages of manufacturing to determine the influence of these processes on power generation. An average peak power of over 335 ?W was generated in the heat-treated specimen during simulated human body loads. The work provides insights into manufacturing methods for lowered source impedance power generation for a variety of applications.

  1. Development, manufacturing and alignment of 2 M diameter mirror for PRONAOS

    Science.gov (United States)

    Hofbauer, F.; Duran, M.; Luquet, Ph.

    1991-10-01

    The application of carbon fiber reinforced plastic to the design and manufacturing of lightweight mirrors for the 2 m primary mirror of the telescope PRONAOS is illustrated. The telescope is to be used for the performance of balloon-borne infrared astronomy. Seven 60 deg segments for the primary mirror of the telescope, with a total accuracy of less than 3 micrometers rms were designed and manufactured. The final alignment of the mirror is also described.

  2. Method of manufacturing of details from composite materials impregnation solution binding

    Directory of Open Access Journals (Sweden)

    ?.?. ?????

    2009-03-01

    Full Text Available Among a good deal of ways of part manufacturing from composite materials using of infusion methods of impregnation of a fiber reinforcement on/into the mold very increasing now. For eliminating this gap and piling up a knowledge about peculiarities of a process of infusion impregnation under vacuum bag and part manufacturing with infusion ways a method of part making of impregnation by solution of licensed resin on the mold under a vacuum bag is offered.

  3. Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment

    International Nuclear Information System (INIS)

    Highlights: • Coir-polypropylene biocomposites were manufactured using hot press technique. • OH groups in raw coir cellulose were converted to OH−Cr groups during treatment. • SEM indicates improved interfacial adhesion between coir and PP upon treatment. • Chemically treated composites yielded the best set of mechanical properties. - Abstract: In preparing polymer–matrix composites, natural fibers are widely used as “reinforcing agents” because of their biodegradable characteristic. In present research, coir fiber reinforced polypropylene biocomposites were manufactured using hot press method. In order to increase the compatibility between the coir fiber and polypropylene matrix, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate salt in acidic media. Both raw and treated coir at different fiber loading (10, 15 and 20 wt%) were utilized during composite manufacturing. During chemical treatment, hydrophilic –OH groups in the raw coir cellulose were converted to hydrophobic –OH−Cr groups. Microstructural analysis and mechanical tests were conducted. Scanning electron microscopic analysis indicates improvement in interfacial adhesion between the coir and polypropylene matrix upon treatment. Chemically treated specimens yielded the best set of mechanical properties. On the basis of fiber loading, 20% fiber reinforced composites had the optimum set of mechanical properties among all composites manufactured

  4. OPINION: Safe exponential manufacturing

    Science.gov (United States)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  5. Magnet cable manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Royet, J.

    1990-10-01

    The cable is the heart of a superconducting accelerator magnet. Since the initial development of the Rutherford Cable more than twenty years ago, many improvements in manufacturing techniques have increased the current carrying capacity. When the Tevatron cable was specified fifteen years ago the current carrying capacity was 1800 A/mm{sup 2} at a field of 5.3T. During the intervening years it has been increased to 3000 A/mm{sup 2}. These improvements were due to refinements in the fabrication of the strands and the formation of the cable from the strands. The metallurgists were able to impart significant gains in performance by improving the homogeneity of the conductor. The engineers and technicians who designed and built the modern cabling machines made an enormous contribution by significantly reducing the degradation of wire performance that occurs when the wire was cabled. The fact that these gains were made while increasing the speed of cabling is one of the technological advances that made accelerators like the SSC possible. This article describes the cabling machines that were built to manufacture the cable for the full scale SSC prototype magnets and the low beta quadrupoles for the Fermilab Tevatron. This article also presents a compendium of the knowledge that was gained in the struggle to make high performance cable to exacting dimensional standards and at the throughput needed for the SSC. The material is an important part of the technology transfer from the Department of energy Laboratories to Industry.

  6. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    International Nuclear Information System (INIS)

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified

  7. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structuresincluding helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applicationswill be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  8. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  9. Additive Manufacturing Technology Potential: A Cleaner Manufacturing Alternative

    OpenAIRE

    Kianian, Babak; LARSSON, Tobias

    2015-01-01

    This paper focuses on an emerging manufacturing technology called Additive Manufacturing (AM) and its potential to become a more efficient and cleaner manufacturing alternative. This work is built around selected case companies, where the benefit of AM compared to other more traditional technologies is studied through the comparison of resource consumption. The resource consumption is defined as raw materials and energy input. The scope of this work is the application of AM in the scale model...

  10. WHAT HAPPENS TO CELLULOSIC FIBERS DURING PAPERMAKING AND RECYCLING? A REVIEW

    Directory of Open Access Journals (Sweden)

    Orlando J. Rojas

    2007-11-01

    Full Text Available Both reversible and irreversible changes take place as cellulosic fibers are manufactured into paper products one or more times. This review considers both physical and chemical changes. It is proposed that by understanding these changes one can make better use of cellulosic fibers at various stages of their life cycles, achieving a broad range of paper performance characteristics. Some of the changes that occur as a result of recycling are inherent to the fibers themselves. Other changes may result from the presence of various contaminants associated with the fibers as a result of manufacturing processes and uses. The former category includes an expected loss of swelling ability and decreased wet-flexibility, especially after kraft fibers are dried. The latter category includes effects of inks, de-inking agents, stickies, and additives used during previous cycles of papermaking.

  11. Capillary stretching of fibers

    Science.gov (United States)

    Duprat, C.; Protiere, S.

    2015-09-01

    We study the interaction of a finite volume of liquid with two parallel thin flexible fibers. A tension along the fibers is imposed and may be varied. We report two morphologies, i.e. two types of wet adhesion: a weak capillary adhesion, where a liquid drop bridges the fibers, and a strong elastocapillary adhesion where the liquid is spread between two collapsed fibers. We show that geometry, capillarity and stretching are the key parameters at play. We describe the collapse and detachment of the fibers as a function of two nondimensional parameters, arising from the geometry of the system and a balance between capillary and stretching energies. In addition, we show that the morphology, thus the capillary adhesion, can be controlled by changing the tension within the fibers.

  12. 75 FR 38078 - Manufacturing and Services' Manufacture America Initiative and Events

    Science.gov (United States)

    2010-07-01

    ... International Trade Administration Manufacturing and Services' Manufacture America Initiative and Events ACTION... manufacturing. SUMMARY: The International Trade Administration's Manufacturing and Services Unit is launching a... government agencies as well as universities. To address these challenges, the Manufacturing and...

  13. KERATIN FIBER-POLYMER COMPOSITES

    Science.gov (United States)

    Short-fiber reinforced composites are made from keratin fibers and polyethylene (PE) and polypropylene (PP). The keratin fibers are obtained from poultry feathers. It is shown that PE and PP are reinforced by the keratin fibers. There is good compatibility between the polymer and fiber without th...

  14. Manufacturing firsts in physics

    International Nuclear Information System (INIS)

    First collisions at particle accelerators tend to be carefully managed public-relations exercises rather than scientifically important events. Many newspapers reported about first collisions on the initial operation of the relativistic heavy ion collider (RHIC) at the Brookhaven National Laboratory in the USA. The problem is that the detectors were not ready to record such events. This procedure happened also at other accelerators. The first moments in science- as in other human endeavours- are often manufactured, defined by social and political forces. The working practice, values and interests of science administrators, politicians and scientists are usually so far apart that they are effectively quite different cultures. In this one artifice, these groups have found finally an opportunity that jointly satisfies their need without requiring any group to compromise. This opportunity may well be a, ah, first. (U.K.)

  15. Environmentally Conscious Manufacturing (ECM)

    International Nuclear Information System (INIS)

    The Kansas City Plant (KCP) is operated for the Department of Energy (DOE) as the Kansas City Division of Allied-Signal Inc. The KCP produces and procures non-nuclear electrical, electronic, electromechanical, plastic, and metal components for nuclear weapons. Environmental goals at the KCP are to clean up, maintain, and operate the governmental facilities in the most environmentally advantageous manner consistent with regulations. New environmental technologies that are developed by the design laboratories and the KCP are incorporated into the DOE manufacturing facilities, and information is shared with the outside industry through meetings, publications, and seminars. This booklet presents current projects on solvent waste streams, polymer waste streams, plating waste streams, and miscellaneous waste stream minimization projects

  16. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  17. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  18. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  19. Natural fiber reinforced concrete

    OpenAIRE

    Torgal, Fernando Pacheco; Jalali, Said

    2011-01-01

    The construction industry is responsible for the depletion of large amounts of non-renewable resources. This activity generates not only millions of tons of mineral wastes but also carbon dioxide gas emissions. More building materials based on renewable resources such as vegetable fibers are needed. This chapter discusses the utilization of natural fibers for concrete reinforcement. It includes fiber characteristics, properties and the description of the treatments that improve their perfo...

  20. Multimaterial fiber sensors

    OpenAIRE

    Sorin, Fabien; Fink, Yoel

    2010-01-01

    Recent discoveries have enabled the integration of metals, insulators and semiconductors structures into extended length of polymer fibers. This has heralded a novel path and platform towards sensing of different physical quantities such as temperature, chemicals, acoustic waves, and optical signals. The challenges and opportunities associated with this new class of fiber devices will be presented. In particular, we will discuss the materials and fabrication approach of multimaterial fibers. ...

  1. Oriented Fiber Filter Media

    OpenAIRE

    Bharadwaj, R.; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  2. Fiber optic micro accelerometer

    Science.gov (United States)

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  3. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (? (app)) and slip coefficient (?) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (?). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers, information is hardly available in this area. In this study, bond characteristics of deformed reinforcing steel bars embedded in SFRSCC is investigated secondly.

  4. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model. Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues.

  5. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites

    International Nuclear Information System (INIS)

    Highlights: ? Novel basalt fiber-reinforced biodegradable poly(butylene succinate) composites have been successfully fabricated with various fiber loadings. ? The tensile and flexural properties of the PBS matrix resin are improved significantly by increasing the fiber loading in the composites. ? The impact strength of the BF/PBS composite decreases with the addition fibers primarily and increases with increasing fiber loading due to energy dissipation when the fibers are pulled out. ? Heat deflection temperature tests clearly show that the HDT of the basalt fiber reinforced PBS composites is significantly higher than the HDT of the PBS resin. - Abstract: Basalt fiber (BF) reinforced poly(butylene succinate) (PBS) composites have been fabricated with different fiber contents by a injection molding method and their tensile, flexural and impact properties, as well as thermal stability have been investigated. The tensile and flexural properties of the PBS matrix resin are improved markedly by increasing the fiber contents in the composites. The values are relatively higher than the natural fiber/PP systems reported earlier by other research groups. The heat deflection temperature (HDT) and Vicat softening temperature (VST) of the composites are significantly higher than those of the neat PBS resin. Scanning electron microscopy (SEM) conducted on the fracture surfaces of the composites reveals superior interfacial linkage between the basalt fibers and PBS matrix. The results suggest that the BF/PBS composites may be a potential candidate of PP or PP composites to manufacturing some daily commodities to solve the white pollution in environmental management.

  6. Using startup of steady shear flow in a sliding plate rheometer to determine material parameters for the purpose of predicting long fiber orientation

    OpenAIRE

    Ortman, K.; Baird, D; Wapperom, P; Whittington, A.

    2012-01-01

    The properties of long glass fiber reinforced parts, such as those manufactured by means of injection molding and compression molding, are highly dependent on the fiber orientation generated during processing. A sliding plate rheometer was used to understand the transient stress and orientation development of concentrated long glass fibers during the startup of steady shear flow. An orientation model and stress tensor combination, based on semiflexible fibers, was assessed in its ability to p...

  7. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  8. Electrospinning of nanocomposite fibers

    Science.gov (United States)

    Krikorian, Vahik

    2005-03-01

    Physical properties of a novel biocompatible nanocomposite fiber are investigated. The fibers are fabricated by incorporation of organically modified clay in a fiber electrospinning process. Commercially available Montmorillonite type organoclays with different extent of miscibility with the polymer matrix are employed to study the effect of organic modifier/matrix interactions. The nanocomposite fibers are prepared by electrospinning a suspension of organoclay/dichloromethane with poly(L-lactic acid), PLLA, a widely used biodegradable synthetic polyester. Effect of clay incorporation on fiber diameter, crystallinity and mechanical properties are studied. A high degree of birefringence in polarized light microscopy suggested that the polymer chains in as-spun fibers are highly aligned. However, wide angle x-ray scattering (WAXS) data revealed no crystalline peaks in as-spun fibers. Annealing the samples above the glass transition temperature induces high degree of crystallinity. Based on Scanning electron microscopy (SEM), spun fibers are highly porous, which may be beneficial in biomedical applications, membranes, and reinforcement matrices. Transmission electron microscopy (TEM) data show the ordering of silicate platelets along the fiber axis, consistent with the d-spacings obtained from WAXS. Cold crystallization behavior of as spun nanofibers studied via in-situ Fourier Transform Infrared spectroscopy (FTIR) will also be presented.

  9. ZBLAN, Silica Fiber Comparison

    Science.gov (United States)

    1998-01-01

    This graph depicts the increased signal quality possible with optical fibers made from ZBLAN, a family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium) as compared to silica fibers. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. In the graph, a line closer to the black theoretical maximum line is better. Photo credit: NASA/Marshall Space Flight Center

  10. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  11. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    OpenAIRE

    Teul, Florence; Miao, Yun-Gen; Sohn, Bong-Hee; Kim, Young-Soo; Hull, J. Joe; Fraser, Malcolm J; Lewis, Randolph V; Jarvis, Donald L.

    2012-01-01

    The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials t...

  12. Low-coherence interferometric measurements of optical losses in autoclave cured composite samples with embedded optical fibers

    Science.gov (United States)

    Di Sante, Raffaella; Bastianini, Filippo; Donati, Lorenzo

    2013-05-01

    In this work a high-performance optical low-coherence reflectometer (OLCR) has been used to estimate the optical losses in optical fibers and fiber Bragg grating sensors embedded into CFRP material samples. An ASE tunable narrowband light source coupled to a Michelson interferometer allowed the high spatial resolution localization of both the concentrated and the distributed loss for different fiber coatings and type. In particular, acrylate- and polyimidecoated fibers and bend-insensitive fibers were tested. By using the OLCR it was possible to locate and identify the sources of optical loss introduced by the CFRP manufacturing process, therefore obtaining useful information on the efficiency of the embedding process.

  13. New strategic roles of manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2008-01-01

    This paper aims to view manufacturing from a new angle, and tries to look beyond fit, focus and trade-offs, approaches which may no longer be sufficient for long-term competitive success. Four cases from different industries are described and used to illustrate and discuss the possibility of manufacturing playing new strategic roles. Backward, forward and lateral interactive support are suggested to explicate how manufacturing can realize its new strategic roles. Finally, four new strategic role...

  14. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  15. A Review of Additive Manufacturing

    OpenAIRE

    Wong, Kaufui V.; Aldo Hernandez

    2012-01-01

    Additive manufacturing processes take the information from a computer-aided design (CAD) file that is later converted to a stereolithography (STL) file. In this process, the drawing made in the CAD software is approximated by triangles and sliced containing the information of each layer that is going to be printed. There is a discussion of the relevant additive manufacturing processes and their applications. The aerospace industry employs them because of the possibility of manufacturing light...

  16. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  17. A manufacturing cell controller architecture

    OpenAIRE

    Quintas, Antnio; Leito, Paulo

    1997-01-01

    Worldwide competition among enterprises has lead to new needs in the area of manufacturing to answer for price, quality and delivery time. The improvement of productivity and flexibility in manufacturing systems by the introduction of new concepts and technologies, and by the appropriate integration of the different resources, may constitute a key factor for the solution towards the success. This paper describes the specification and implementation of a Manufacturing Cell Controller integrate...

  18. The evolution of manufacturing SPECIES

    OpenAIRE

    Baldwin, James Scott; Rose-Anderssen, Christen; RIDGWAY, Keith; Bttinger, Fabian; Michen, Marcus; Agyapong-Kodua, Kwabena; Brencsics, Ivan; Nemeth, Istvan; Krain, Roland

    2013-01-01

    This research aims to develop hierarchical and cladistic classifications of manufacturing system evolution, incorporating evolving and interacting product, process and production system features. The objectives then are to systematically organise manufacturing systems and their characteristics in classifications Forty-six candidate species of manufacturing systems have been identified and organised in a 4th generation hierarchical classification with 14 'genera', 6 'families' 3 'orders' and 1...

  19. Method of manufacturing powder particles :

    OpenAIRE

    Borra, J.P.D.

    2002-01-01

    The invention relates to a method of manufacturing a dry powder particle, preferably using electro-hydrodynamic spraying, wherein two oppositely charged aerosol streams are contacted. The invention allows for the manufacture of powders having various, controllable compositions and shapes. In particular the method according to the invention may be used to perform physical and chemical reactions and allows for the manufacture of powders not previously obtainable. In addition, the invention rela...

  20. Mechanical properties of carbon fiber composites for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.; Grulke, E.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States)

    1996-12-31

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The pressure drop of air through the composites correlated with the gas velocity, and showed a dependence on sample density.

  1. All-solid microstructured fiber with flat normal chromatic dispersion.

    Science.gov (United States)

    Martynkien, Tadeusz; Pysz, Dariusz; St?pie?, Ryszard; Buczy?ski, Ryszard

    2014-04-15

    We present a new approach for the development of all-solid microstructured fiber with flat all-normal dispersion in the broadband range of 1550-2500nm. The use of two soft glasses gives additional degrees of freedom in the design of microstructured fibers. As a result, we have designed and developed a fiber optimized for supercontinuum generation with 1550nm pulsed lasers in the all-normal dispersion regime within an infrared range, beyond the fused silica glass limit. The measurement of the chromatic dispersion of the manufactured fibers was performed with a white light interferometric method in the spectral range 900-1650nm. We demonstrate very good agreement between the full vector finite element simulations and the measurement results. PMID:24978988

  2. Natural-fiber-reinforced polymer composites in automotive applications

    Science.gov (United States)

    Holbery, James; Houston, Dan

    2006-11-01

    In the past decade, natural-fiber composites with thermoplastic and thermoset matrices have been embraced by European car manufacturers and suppliers for door panels, seat backs, headliners, package trays, dashboards, and interior parts. Natural fibers such as kenaf, hemp, flax, jute, and sisal offer such benefits as reductions in weight, cost, and CO2, less reliance on foreign oil sources, and recyclability. However, several major technical considerations must be addressed before the engineering, scientific, and commercial communities gain the confidence to enable wide-scale acceptance, particularly in exterior parts where a Class A surface finish is required. Challenges include the homogenization of the fiber's properties and a full understanding of the degree of polymerization and crystallization, adhesion between the fiber and matrix, moisture repellence, and flame-retardant properties, to name but a few.

  3. Production of carbon fibers from Castilla's crude oil deasphalted bottoms

    International Nuclear Information System (INIS)

    Obtaining raw materials for the manufacturing of carbon fibers from Castilla's crude-oil deasphalted bottoms was achieved through thermal treatments carried out in inert atmosphere, at temperatures ranging from 573 k to 673 k. the deasphalted bottoms displayed isotropic characteristics. deasphalted bottoms and thermally-treated fractions were characterized using elemental and thermo-gravimetric analyses, the softening point was also defined. The thermal treatment increases the C/H ratio, which is reflected in the softening temperatures. Thermally treated fractions showed excellent behavior in the threading process and the obtained fibers were stabilized through air-driven oxidation. Once the fibers were stabilized, they were carbonized in inert atmosphere, at 1073 k and 1273 k. results showed that when this raw material is processed, it has a performance rating of over 65%, and produces compact. Infusible structures that may be classified as general use carbon fibers

  4. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Care; Pedersen, David Bue; Simonsen, R.B.; Erschens, D.N.; Lilbk, M.F.; Eskildsen, Lars; Rottwitt, Karsten; Hansen, Hans Nrgaard

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape of the...... obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...... focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0 to 360 in relation to the fiber, the full profile of the laser beam is...

  5. Applications of monolithic fiber interferometers and actively controlled fibers

    OpenAIRE

    Rugeland, Patrik

    2013-01-01

    The objective of this thesis was to develop applications of monolithic fiber devices and actively controlled fibers. A special twin-core fiber known as a Gemini fiber was used to construct equal arm-length fiber interferometers, impervious to temperature and mechanical perturbations. A broadband add/drop multiplexer was constructed by inscribing fiber Bragg gratings in the arms of a Gemini Mach-Zehnder interferometer. A broadband interferometric nanosecond switch was constructed from a micr...

  6. Technology of Manufacturing Enzyme Preparations

    International Science & Technology Center (ISTC)

    Development and Optimization of Technological Processes for Manufacturing Enzyme Preparations, Including Alpha-Amylase, Glucoamylase, Cellulase, Xylanase, Pectate Lyase, Beta-Galactosidase, Lipase, Phytase

  7. Fiber composite materials with integrated piezoceramic plates

    Science.gov (United States)

    Krajenski, Volker; Mook, Gerhard; Wierach, Peter; Hanselka, Holger

    2000-08-01

    In contrast to conventional lightweight material like aluminum or titanium, fiber composites offer the possibility to integrate functional elements directly into the material. Thus, multifunctional materials are developed which have the ability to serve more than the load-carrying function. As there is extensive work on the field of integration of thin piezoceramic platse and foils into carbon fiber reinforced polymeres, this will be focused on in this paper. First, the design of an active carbon fiber composite with integrated piezoceramic is shown. Different fiber layups and connecting methods to supply the piezoceramic are discussed. A sophisticated processing technology for active composite materials, the so-called DP-RTM (Differential Pressure - Resin Transfer Moulding), is presented. Various damage mechanisms may reduce or even destroy the sensing and actuaing capabilities of the piezoceramic material. Therefore the capability of high resolution non-destructive methods to evaluate manufacturing defects as well as defects resulting from mechanical overload is presented. Finally two applications are discussed in more detail to demonstrate the potential of the active composite material. Representing static applications an active composite plate is shown which has an infinite bending stiffness up to a certain load. A second active composite plate is used for active noise control.

  8. Fabrication and measurements of plastic scintillating fibers

    International Nuclear Information System (INIS)

    Sixty kilometers of plastic scintillating fibers, 1 mm in diameter, have been manufactured using a preform/tube technology. The fibers consist of a polystyrene core surrounded by a polymethylmethacrylate cladding. The fabrication method is described and evaluated both qualitatively and quantitatively. A great effort has been made in order to measure the optical properties of the polymer at the different steps of the production. The global process efficiency is not more than 40% due to the yield of the polymerization process. Using a ternary blue scintillator, the mean light yield for a minimum ionizing particle, passing through a 1 mm diameter fiber at a distance of 1 m, is 5.40.6 photoelectrons. The mean attenuation length fitted between 0.5 and 2.0 m is 1.90.2 m. Some specific experiments that give independent measurements of core and interface losses are also reported. The principal cause of light loss is due to the lack of transparency of the polystyrene which leads to a spectral shift in fiber emission. This absorption already appears in the preform rods indicating that the purification and the polymerization process are of great importance. The attenuation length related to core losses is measured at the level of 3 m. The interface losses are about 10-5-10-4 per reflection leading to an equivalent attenuation length of 7 m

  9. SPIRou @ CFHT: fiber links and pupil slicer

    Science.gov (United States)

    Micheau, Yoan; Bouchy, Franois; Pepe, Francesco; Chazelas, Bruno; Kouach, Driss; Pars, Laurent; Donati, Jean-Franois; Barrick, Gregory; Rabou, Patrick; Thibault, Simon; Saddlemyer, Leslie; Perruchot, Sandrine; Delfosse, Xavier; Striebig, Nicolas; Gallou, Grard; Loop, David; Pazder, John

    2012-09-01

    SPIRou is a near-IR (0.98-2.35?m), echelle spectropolarimeter / high precision velocimeter being designed as a next-generation instrument for the 3.6m Canada-France-Hawaii Telescope on Mauna Kea, Hawaii, with the main goal of detecting Earth-like planets around low mass stars and magnetic fields of forming stars. The unique scientific and technical capabilities of SPIRou are described in a series of seven companion papers. In this paper, the fiber links which connects the polarimeter unit to the cryogenic spectrograph unit (35 meter apart) are described. The pupil slicer which forms a slit compatible with the spectrograph entrance specifications is also discussed in this paper. Some challenging aspects are presented. In particular this paper will focus on the manufacturing of 35 meter fibers with a very low loss attenuation (< 13dB/km) in the non-usual fiber spectral domain from 0.98 ?m to 2.35 ?m. Other aspects as the scrambling performance of the fiber links to reach high accuracy radial velocity measurements (1m/s) and the design of the pupil slicer exposed at a cryogenic and vacuum environment will be discussed.

  10. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  11. Removal of interfering substances in mechanical pulp manufacturing - EKY 09

    Energy Technology Data Exchange (ETDEWEB)

    Matula, J.; Savolainen, P. [Ahlstrom Machinery Corporation, PM Approach Systems, Karhula (Finland)

    1999-07-01

    Complete text of publication follows: Ahlstrom Machinery and UPM-Kymmene started a research project about two years ago in order to develop a concept, which could with improved efficiency remove interfering substances from mechanical pulp used for paper manufacturing, and decrease fiber losses that take place with present washing systems. As a result paper machine runnability will improve as well as the quality of the end product. The existing process conditions will be utilised and the water consumption will not increase. The interfering substances of pulp are being transferred to filtrate by washing the pulp in the optimum location of the pulp manufacturing process. To minimize the fiber losses fibers are recovered from the filtrate of the washer and returned back to the process. Fiberfree filtrate is further being handled in order to separate interfering substances from the filtrate, which could be returned back to the process. This Hot Washing concept has been tested for a year so far and results are promising.

  12. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination theory, finite element method, and Castigliano's method in unidirectional tension and compression, but are less accurate for the more bond-dependent flexural and shear properties. With the acknowledged NFRP matrix bonding issues, the over-prediction of these theoretical models indicates that the flexural stiffness of the kenaf composite may be increased by up to 40% if a better bond between the fiber and matrix can be obtained. The sustainability of NFRPs was examined from two perspectives: environmental and socioeconomic. While the kenaf fibers themselves possess excellent sustainability characteristics, costing less while possessing a lesser environmental impact than the glass fibers, the vinyl ester resin used in the composites is environmentally hazardous and inflated the cost and embodied energy of the composite SIPs. Consistent throughout all the designs was a correlation between the respective costs of the raw materials and the respective environmental impacts. The socioeconomic study looked at the sustainability of natural fiber reinforced composite materials as housing materials in developing countries. A literature study on the country of Bangladesh, where the fibers in this study were grown, showed that the jute and kenaf market would benefit from the introduction of a value-added product like natural fiber composites. The high rate of homeless and inadequately housed in Bangladesh, as well as in the US and throughout the rest of the world, could be somewhat alleviated if a new, affordable, and durable material were introduced. While this study found that natural fiber composites possess sufficient mechanical properties to be adopted as primary structural members, the two major remaining hurdles needing to be overcome before natural fiber composites can be adopted as housing materials are the cost and sustainability of the resin system and the moisture resistance/durability of the fibers. (Abstract shortened by UMI.)

  13. Soliton mode fiber direction couplers

    Directory of Open Access Journals (Sweden)

    T. L. Andrushko

    1987-12-01

    Full Text Available The possibility of working towards fiber couplers in the nonlinear regime. The results can be used in the design of the main lines on the optical fibers and fiber optic sensors to create physical quantities.

  14. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  15. Melt extraction of gold fibers and precious metal doped fibers and preparation of porous gold fiber structures: Presentation held at the International Gold Conference 2003 - New Industrial Applications of Gold. Vancouver, Canada, September 28-October 1, 2003

    OpenAIRE

    Andersen, O; Kostmann, C.; Stephani, G.

    2003-01-01

    Crucible melt extraction yields short metal fibers with eqivalent diameters as low as 50 m from almost arbitrary metals and alloys. Highly porous components can be made from such fibers by suitable deposition and sintering methods. This technology is being developed at the Dresden based Department of Powder Metallurgy and Composite Materials of the Fraunhofer Institute for Manufacturing and Advanced Materials (IFAM) and has been applied to gold alloys and iron-base alloys containing small ad...

  16. A Manufacturing Informatics Framework for Manufacturing Sustainability Assessment. In : Re-engineering Manufacturing for Sustainability, Springer

    OpenAIRE

    ZHAO, Yaoyao Fiona; Perry, Nicolas; ANDRIANKAJA, Hery

    2013-01-01

    Manufacturing firms that wish to improve their environmental performance of their product, process, and systems are faced with a complex task because manufacturing systems are very complex and they come in many forms and life expectancies. To achieve desired product functionalities, different design and material can be selected; thus the corresponding manufacturing processes are also changed accordingly. There is direct need of assessment tools to monitor and estim...

  17. Photonic bandgap fiber bundle spectrometer

    OpenAIRE

    Hang, Qu; Ung, Bora; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our...

  18. Ply-based Optimization of Laminated Composite Shell Structures under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2012-01-01

    This work concerns a new ply-based parameterization for performing simultaneous material selection and topology optimization of fiber reinforced laminated composite structures while ensuring that a series of different manufacturing constraints are fulfilled. The material selection can either be......) with an additional constraint on the maximum allowable amount mass....

  19. Improving the Value Chain of Biofuel Manufacturing Operations by Enhancing Coproduct Transportation and Logistics

    Science.gov (United States)

    Biofuels, including corn-based ethanol, can partially meet the increasing demand for transportation fuels. The production of ethanol in the U.S. has dramatically increased; so too has the quantity of manufacturing coproducts. These nonfermentable residues (i.e., proteins, fibers, oils) are sold as...

  20. NOVEL USE OF WASTE KERATIN AND COTTON LINTER FIBERS FOR PROTOTYPE TISSUE PAPERS AND THEIR EVALUATION

    Directory of Open Access Journals (Sweden)

    Bo Shi

    2010-05-01

    Full Text Available Corporate environmental sustainability calls for sustainable product manufacturing with less creation of waste material or increased reuse of waste materials. One example is the use of keratin fiber from the poultry industry and cotton linter from the textile industry for paper and tissue manufacturing. In this paper, the feasibility of using these waste fibers to make paper was demonstrated in handsheets. The properties of these handsheets were compared to the properties of handsheets made with standard bleached eucalyptus tropical hardwood fibers. A blend of cotton linter and keratin fibers at 80/20 and 60/40 ratios showed a 59% and 73% improvement in sheet bulk, respectively, compared to eucalyptus handsheets. Similarly, air permeability of the cotton / keratin fiber handsheets improved 414% and 336%, respectively, versus the eucalyptus. However, the tensile index of the cotton and keratin fiber blends was lower than the eucalyptus sheets. There was no remarkable difference in water absorbency up to 20% keratin fiber. Above 20% of keratin fibers the water absorbency started to decrease, which is likely attributable to the hydrophobic nature of the protein-based keratin fiber.

  1. Quartz fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, N. [Iowa Univ., Iowa City, IA (United States); Doulas, S. [Boston Univ., MA (United States); Ganel, O. [Texas Tech Univ., Lubbock, TX (United States); Gershtein, Y. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Gavrilov, V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Kolosov, V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Kuleshov, S. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Litvinsev, D. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Merlo, J.-P. [Boston Univ., MA (United States); Onel, Y. [Iowa Univ., Iowa City, IA (United States); Osborne, D. [Boston Univ., MA (United States); Rosowsky, A. [Boston Univ., MA (United States); Stolin, V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Sulak, L. [Boston Univ., MA (United States); Sullivan, J. [Boston Univ., MA (United States); Ulyanov, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Wigmans, R. [Texas Tech Univ., Lubbock, TX (United States); Winn, D. [Fairfield Univ., CT (United States)

    1996-09-21

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.).

  2. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a nerve for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the fiber-optic nerve system in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  3. Super capacitor with fibers

    Science.gov (United States)

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  4. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...

  5. Intelligent modelling in manufacturing

    Directory of Open Access Journals (Sweden)

    J. Balic

    2007-09-01

    Full Text Available Purpose: Modeling of production systems is very important and makes optimization of complicated relation in production system possible. The purpose of this paper is introducing artificial techniques, like Genetic Algorithms in modeling and optimization of job shop scheduling in production environment and in programming of CNC machine tools.Design/methodology/approach: Conventional methods are not suitable for solving such complicated problems. Therefore Artificial Intelligent method was used. We apply Genetic Algorithm method. Genetic Algorithms are computation methods owing their power in particular to autonomous mechanisms in biological evolution, such as selection, “survival of the fittest” (competition, and recombination.Findings: In example solutions are developed for an optimization problem of job shop scheduling by natural selection. Thus no explicit knowledge was required about how to create a good solution: the evolutionary algorithm itself implicitly builds up knowledge about good solutions, and autonomously absorbs knowledge. CNC machining time was significant shorter by using GA method for NC programming.Research limitations/implications: The system was developed for PC and tested in simulation process. It needs to be tested more in detail in the real manufacturing environment.Practical implications: It is suitable for small and medium-sized companies. Human errors are avoid or at lover level. It is important for engineers in job – shops.Originality/value: The present paper is a contribution to more intelligent systems in production environment. It used genetic based methods to solve engineering problem.

  6. Precision manufacturing using LIGA

    International Nuclear Information System (INIS)

    Our objective is the fabrication of small high-precision parts using LIGA, which can be used in a variety of industrial applications. LIGA is a combination of deep x-ray lithography, electroplating, and replication processes that enables the fabrication of microstructures with vertical dimensions several millimeters high, lateral dimensions in the micrometer range, and submicron tolerances. On beamline 10.3.2, at the Advanced Light Source (ALS), the Center for X-ray Optics (CXRO) has built an end station suitable for LIGA. The ALS is an excellent source of radiation for this application. The CXRO, in close collaboration with Sandia National Laboratory and the Jet Propulsion Laboratory, has developed the other essential process steps of mask making, resist development, x-ray exposure, and electroplating. This technology provides a powerful tool for mass production and miniaturization of mechanical systems into a dimensional regime not accessible by traditional manufacturing operations. We will present several applications that exploit the characteristics of the LIGA process: the fabrication of magnetic laminations for a high precision stepping motor; miniature octopole lens for advanced e-beam lithography; high-aspect-ratio x-ray collimating grids for astronomy; and microscopic tumblers for nuclear security. copyright 1996 American Institute of Physics

  7. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  8. Fiber-Reinforced Reactive Nano-Epoxy Composites

    Science.gov (United States)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  9. Solar array manufacturing industry simulation

    Science.gov (United States)

    Chamberlain, R. G.; Firnett, P. J.; Kleine, B.

    1980-01-01

    Solar Array Manufacturing Industry Simulation (SAMIS) program is a standardized model of industry to manufacture silicon solar modules for use in electricity generation. Model is used to develop financial reports that detail requirements, including amounts and prices for materials, labor, facilities, and equipment required by companies.

  10. 75 FR 12507 - Manufacturing Council

    Science.gov (United States)

    2010-03-16

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an opportunity to apply for membership on the Manufacturing Council. SUMMARY: The Department of Commerce is currently seeking applications for membership on the...

  11. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from

  12. DFM for manufacturers and designers

    Science.gov (United States)

    Hurat, Philippe; Cote, Michel

    2005-11-01

    At 90nm and 65nm, the semiconductor industry is condemned to use 193nm steppers and an overwhelming amount of resolution enhancement techniques (RET). Even when using the best RET solution available, some designs are more amenable to manufacturing than others and their initial yield or startup yield is higher. Design for manufacturing (DFM) has been a hotly discussed topic in both electronic design automation (EDA) and manufacturing communities, and to date much debate remains regarding its precise definition, let alone the solution. However, it is rather intuitive that, whatever the solution is, DFM needs to simultaneously satisfy several objectives in terms of optimizing yield, manufacturing cost and manufacturing friendliness; being transparent to the designer; protecting manufacturing intellectual property (IP); and having a sensible implementation. In this paper, we will describe a suitable technology that satisfies the data information sharing to ensure that both designers and manufacturers fulfill the expected initial and volume yield expectations. We describe how this technology may be applied pre- and post-tapeout to fulfill both designer and manufactures requirements.

  13. Manufacturing best practices and performance

    DEFF Research Database (Denmark)

    Szász, Levente; Demeter, Krisztina; Boer, Harry

    2014-01-01

    the International Manufacturing Strategy Survey (IMSS V). The IMSS V database includes data from 725 plants from manufacturing and assembly industries covering 21 different (host) countries. The Global Competitiveness Report of the World Economic Forum is used to operationalize country characteristics...

  14. Product Development in Agile Manufacturing

    OpenAIRE

    R.V.Mahajan1 , P.R.Bodade

    2013-01-01

    With the rapidly intensifying market competition, shortening product lifecycles and increased customer demands, industrialists worldwide are developing newer production methodologies and business strategies to remain in competition. Lean and agile are the business strategies gaining preference these days. Normally, these strategies concentrate on various activities occurring inside and outside of the enterprise. Up gradation from traditional manufacturing to agile manufacturing is generally a...

  15. Compound droplets on fibers

    CERN Document Server

    Weyer, Floriane; Htzer, Johannes; Berghoff, Marco; Dreesen, Laurent; Nestler, Britta; Vandewalle, Nicolas

    2015-01-01

    Droplets on fibers have been extensively studied in the recent years. Although the equilibrium shapes of simple droplets on fibers are well established, the situation becomes more complex for compound fluidic systems. Through experimental and numerical investigations, we show herein that compound droplets can be formed on fibers and that they adopt specific geometries. We focus on the various contact lines formed at the meeting of the different phases and we study their equilibrium state. It appears that, depending on the surface tensions, the triple contact lines can remain separate or merge together and form quadruple lines. The nature of the contact lines influences the behavior of the compound droplets on fibers. Indeed, both experimental and numerical results show that, during the detachment process, depending on whether the contact lines are triple or quadruple, the characteristic length is the inner droplet radius or the fiber radius.

  16. Fluorescent fiber diagnostics

    Science.gov (United States)

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  17. Woven fiber optics.

    Science.gov (United States)

    Schmidt, A C; Courtney-Pratt, J S; Ross, E A

    1975-02-01

    In this paper we describe how the art of weaving can be applied to fiber optics in order to produce precisely controlled reproducible image guides and image dissectors. As examples of the types of device for which woven fiber optics are applicable, we describe a 3:1 interleaver for use with a cathode-ray tube to produce color images, and a high speed alpha numeric output device. The techniques of weaving fiber optics are discussed in sufficient detail in order to allow for further work. Although, in principle, one might be able to weave glass optical fibers, all the work described here made use of plastic optical fibers 0.25 mm in diameter. PMID:20134880

  18. Compound Droplets on Fibers.

    Science.gov (United States)

    Weyer, Floriane; Ben Said, Marouen; Htzer, Johannes; Berghoff, Marco; Dreesen, Laurent; Nestler, Britta; Vandewalle, Nicolas

    2015-07-21

    Droplets on fibers have been extensively studied in the recent years. Although the equilibrium shapes of simple droplets on fibers are well established, the situation becomes more complex for compound fluidic systems. Through experimental and numerical investigations, we show herein that compound droplets can be formed on fibers and that they adopt specific geometries. We focus on the various contact lines formed at the meeting of the different phases and we study their equilibrium state. It appears that, depending on the surface tensions, the triple contact lines can remain separate or merge together and form quadruple lines. The nature of the contact lines influences the behavior of the compound droplets on fibers. Indeed, both experimental and numerical results show that, during the detachment process, depending on whether the contact lines are triple or quadruple, the characteristic length is the inner droplet radius or the fiber radius. PMID:26090699

  19. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J. (Livermore, CA); Davis, Donald T. (Livermore, CA)

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  20. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core......Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations, but the...

  1. Collaborative Network Learning in Manufacturing

    Directory of Open Access Journals (Sweden)

    Wee Hock Quik

    2014-12-01

    Full Text Available This study aims to investigate the antecedents of collaborative networked learning (CNL, to develop an integrative CNL framework and to bridge the gap between theory and praxis in manufacturing. It provides a holistic perspective of CNL within the complexity of the manufacturing environment, including empirical investigation using survey questionnaires. The findings and discussions draw upon socio-technical systems (STS theory, and present the theoretical context and interpretations through the lens of manufacturing employees. Results of the study show the existence of significant positive influences of organizational support, promotive interactions, positive interdependence, internal-external learning, perceived effectiveness and perceived usefulness of CNL among manufacturing employees. The study offers a basis for empirical validity for measuring CNL in organizational learning, knowledge and information sharing in manufacturing.

  2. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic of...... creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from a...... manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...

  3. Development of high performance refractory fibers with enhanced insulating properties and longer service lifetimes: Phase 2, Improved refractory fiber and industrial benefit development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yifang; Curtis, J.M.; DePoorter, G.L.; Martin, P.C.; Munoz, D.R. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering

    1995-05-01

    This is Phase II of a three-phase study for the development of high performance refractory fibers with enhanced insulating properties and longer service lifetimes, for use in the aluminum, glass, cement, and iron and steel industries. Fiberization of 24 out of 25 compositions in the Al{sub 2}O{sub 3}-Si0{sub 2}-Zr0{sub 2} system were achieved. These 24 and three existing fiber compositions were evaluated: The shrinkage and the crystalline and vitreous phases were determined vs heat treatment time and temperature. Four theoretical models were developed: Shrinkage, devitrification kinetics, density change, and fiberization. Although some of the fibers formed during Phase II had properties as good as the reference ASZ fiber, no fiber had a significantly improved performance. This work, although not entirely successful, did produce significant benefits to refractory insulating fiber manufacturers and users: Mechanisms of both linear and thickness shrinkage for vitreous refractory fibers were determined, devitrification kinetics were quantified and used in models to predict shrinkage during service, and the mechanism of fiber formation in the melt spinning process was studied.

  4. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent.

    Science.gov (United States)

    Abdullah, M A; Rahmah, Anisa Ur; Man, Z

    2010-05-15

    Ceiba pentandra (L.) Gaertn (kapok) is a natural sorbent that exhibits excellent hydrophobic-oleophilic characteristics. The effect of packing density, the oil types and solvent treatment on the sorption characteristics of kapok was studied in a batch system. Oil sorption capacity, retention capacity, entrapment stability and kapok reusability were evaluated. Based on SEM and FTIR analyses, kapok fiber was shown to be a lignocellulosic material with hydrophobic waxy coating over the hollow structures. Higher packing density at 0.08 g/ml showed lower sorption capacity, but higher percentage of dynamic oil retention, with only 1% of oil drained out from the test cell. Kapok remained stable after fifteen cycles of reuse with only 30% of sorption capacity reduction. The oil entrapment stability at 0.08 g/ml packing was high with more than 90% of diesel and used engine oil retained after horizontal shaking. After 8h of chloroform and alkali treatment, 2.1% and 26.3% reduction in sorption capacity were observed, respectively, as compared to the raw kapok. The rigid hollow structure was reduced to flattened-like structure after alkali treatment, though no major structural difference was observed after chloroform treatment. Malaysian kapok has shown great potential as an effective natural oil sorbent, owing to high sorption and retention capacity, structural stability and high reusability. PMID:20060641

  5. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  6. ISS Fiber Optic Failure Investigation Root Cause Report

    Science.gov (United States)

    Leidecker, Henning; Plante, Jeannette

    2000-01-01

    In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.

  7. Developing engineering model Cobra fiber positioners for the Subaru Telescope's prime focus spectrometer

    Science.gov (United States)

    Fisher, Charles; Morantz, Chaz; Braun, David; Seiffert, Michael; Aghazarian, Hrand; Partos, Eamon; King, Matthew; Hovland, Larry E.; Schwochert, Mark; Kaluzny, Joel; Capocasale, Christopher; Houck, Andrew; Gross, Johannes; Reiley, Daniel; Mao, Peter; Riddle, Reed; Bui, Khanh; Henderson, David; Haran, Todd; Culhane, Robert; Piazza, Daniele; Walkama, Eric

    2014-07-01

    The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to within 5?m of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM) version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber positioner. The requirements, design, assembly techniques, development testing, design qualification and performance evaluation of EM Cobra fiber positioners are described here. Also discussed is the use of the EM build and test campaign to validate the plans for full-scale production of 2550 Cobra fiber positioners scheduled to begin in late-2014.

  8. Additive Manufacturing and Characterization of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.

  9. Beryllium Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

  10. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [University of Arizona

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. • Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). • Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  11. Cellulosic fibers and nonwovens from solutions: Processing and properties

    Science.gov (United States)

    Dahiya, Atul

    Cellulose is a renewable and bio-based material source extracted from wood that has the potential to generate value added products such as composites, fibers, and nonwoven textiles. This research was focused on the potential of cellulose as the raw material for fiber spinning and melt blowing of nonwovens. The cellulose was dissolved in two different benign solvents: the amine oxide 4-N-methyl morpholine oxide monohydrate (NMMOH2O) (lyocell process); and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C 4MIM]Cl). The solvents have essentially no vapor pressure and are biologically degradable, making them environmentally advantageous for manufacturing processes. The objectives of this research were to: (1) characterize solutions of NMMO and [C4MIM]Cl; (2) develop processing techniques to melt blow nonwoven webs from cellulose using NMMO as a solvent; (3) electrospin cellulosic fibers from the [C4MIM]Cl solvent; (4) spin cellulosic single fibers from the [C4MIM]Cl solvent. Different concentration solutions of cellulose in NMMO and [C4MIM]Cl were initially characterized rheologically and thermally to understand their behavior under different conditions of stress, strain, and temperature. Results were used to determine processing conditions and concentrations for the melt blowing, fiber spinning, and electrospinning experiments. The cellulosic nonwoven webs and fibers were characterized for their physical and optical properties such as tensile strength, water absorbency, fiber diameter, and fiber surface. Thermal properties were also measured by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Lyocell webs were successfully melt blown from the 14% cellulose solution. Basis weights of the webs were 27, 79, and 141 g/m2 and thicknesses ranged from 0.3-0.9 mm, depending on die temperatures and die to collector distance. The average fiber diameter achieved was 2.3 microns. The 6% lyocell solutions exhibited poor spinability and did not form nonwoven webs. The electrospun nonwoven webs obtained were evaluated for fiber diameter and surface/web structure using scanning electron microscopy (SEM). The fibers obtained were in the range of 17-25 microns and the fiber surfaces and shapes varied with spinning conditions. A capillary rheometer was used to spin single fibers from [C 4MIM]Cl. Circular fibers in diameter ranging from 12-84 microns were obtained.

  12. Incorporation of waste and fiber kaolin caroa panels in Medium Density Fiberboard - MDF

    International Nuclear Information System (INIS)

    Medium-density panels are composites molded under high temperature and pressure which have physical and mechanical properties similar to those of solid wood. Their composition includes eucalyptus grandis fibers and pinus elliotii fibers, but other fibers can be used such as caroa fibers. The goal of this work was to manufacture panels which kaolin waste and caroa fibers and compare their physical, chemical and mechanical of these panels with a others. Both residue and the fibers were characterized by: differential thermal analysis, thermal gravimetric analysis and Xray diffraction. Through the process of pressing the test specimens were fabricated, test samples were evaluated by three point bending, internal bond, water absorption and swelling in thickness. The samples have low levels of thickness swelling, flexural strength and higher tensile and absorption content relative to commercial MDF. (author)

  13. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Scientific Electronic Library Online (English)

    Jossano Saldanha, Marcuzzo; Choyu, Otani; Heitor Aguiar, Polidoro; Satika, Otani.

    2013-02-01

    Full Text Available Activated carbon fibers (ACFs) are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF) which receive an additional activation process and [...] can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN). In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  14. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    Energy Technology Data Exchange (ETDEWEB)

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  15. Fabrication of multiple parallel suspended-core optical fibers by sheet-stacking

    Science.gov (United States)

    Shi, Jindan; Feng, Xian; Lian, Zhenggang; White, Nicholas; Loh, Wei H.; Poletti, Francesco; Horak, Peter

    2014-08-01

    We demonstrate the fabrication of a novel type of optical fibers with multiple parallel air-suspended cores by the sheet-stacking method. Using this technique we have constructed optical fibers with up to 10 parallel micron-size suspended cores. No extra scattering loss from the fabrication process was observed in a fabricated dual air-suspended core fiber. The sheet-stacking method opens the way towards using a wide range of optical glasses for manufacturing multiple parallel suspended-core specialty optical fibers with novel optical functionalities such as dispersion tunability. Fusion splicing has also been successfully used to connect such a multiple core fiber with a conventional silica fiber.

  16. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  17. Optimization of Connector Position Offset for Bandwidth Enhancement of a Multimode Optical Fiber Link

    Science.gov (United States)

    Rawat, Banmali

    2000-01-01

    The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.

  18. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  19. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2013-02-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  20. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2012-01-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  1. Fiber-optical systems in physical experiment technique. Part 1

    International Nuclear Information System (INIS)

    Analysis of fiber-optic systems (FOS) application in modern physical experiment automatization systems mainly oriented to functional monitoring electrophysical installations (EPI), beams, plasma, targets diagnostics as well as experiment environment investigation is considering. Questions of the FOS functioning in high and low pressure; high and cryogenic temperature; pulsed, SHF and radiational fields, high potentials are discussed. Attention is attached to designing, manufacturing and servicing FOS, their metrological support. There are functioning concepts of FOS, and modern component base: fiber and optical cabels, connectors, and couplers, spectral devices, optical sources and photodetectors, transmitter and receiver devices. 191 refs.; 19 figs.; 9 tabs

  2. Mechanical integrity of dye-sensitized photovoltaic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ramier, J.; Plummer, C.J.G.; Leterrier, Y.; Maanson, J.-A.E. [Laboratoire de Technologie des Composites et Polymeres (LTC), Ecole Polytechnique Federale de Lausanne (EPFL) Station 12, CH 1015 Lausanne (Switzerland); Eckert, B.; Gaudiana, R. [KONARKA Technologies AG, 116 John Street, Lowell, MA 01852 (United States)

    2008-02-15

    The development of photovoltaic (PV) devices based on dye-sensitized TiO{sub 2}-coated Ti fibers has opened up exciting possibilities for novel PV textile applications. The cohesion and adhesion of the TiO{sub 2} layer are identified as crucial factors in maintaining PV efficiency during textile manufacture and weaving operations. The present work describes a systematic investigation of the corresponding damage mechanisms and their influence on the overall PV fiber performance during mechanical deformation. The results confirm that with proper control of the tension of the weft and in the warp, high PV efficiency woven textures are feasible using this technology. (author)

  3. Ship Effect Measurements With Fiber Optic Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  4. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  5. Curvilinear fiber optimization tools for aeroelastic design of composite wings

    Science.gov (United States)

    Haddadpour, H.; Zamani, Z.

    2012-08-01

    The aeroelastic design of composite wings modeled as thin-walled beams is investigated through the use of curvilinear fiber. The structural model considers non-classical effects such as transverse shear, warping restraint, rotary inertia, nonuniform torsional model and also aerodynamic loads based on Wagner's function. In this paper, a linear spanwise variation of the fiber orientation resulting in a variable-stiffness structure is used to optimize the wing for maximum aeroelastic instability speed purpose, while manufacturing constraints are incorporated. Numerical results indicate improvements of aeroelastic stability of variable-stiffness wings over conventional, constant-stiffness ones.

  6. ICPOES and SEM-EDX analysis of metal fibers

    International Nuclear Information System (INIS)

    Full text: Composition of metal fiber is important because it influences mechanical, chemical and physical properties of materials. Metal fibers are present in clothing but also in different composites used for manufacturing concrete, strings, airplanes, space crafts and other items. In this work results of direct analysis of solid samples by scanning electron microscope with an energy dispersive x-ray analysis system (SEM-EDX) and results obtained by inductively coupled plasma optical emission spectroscopy (ICPOES) after solid samples dissolution in acidic solutions are presented. ICPOES offered lower LOD and better precision, while SEM-EDX provided important information about the sample layer compositions. (author)

  7. SERIAL SECTIONS THROUGH A CONTINUOUS FIBER-REINFORCED POLYMER COMPOSITE

    Directory of Open Access Journals (Sweden)

    Laurent Bizet

    2011-05-01

    Full Text Available The microstructure of a unidirectional glass-fiber composite material is described seeking especially for the influence of the stitching perpendicular to the reinforcement. Serial cuts are performed through the composite and the microstructure is quantified using global parameters and linear morphological analysis. A key result is that the stitching induces variations in fibers spacing within the yarns and in the matrix volume between the yarns. This can affect noticeably the flow of the resin during the manufacturing process and also the mechanical properties of the composite.

  8. Characterisation of pulsed Carbon fiber illuminators for FIR instrument calibration

    CERN Document Server

    Henrot-Versill, S; Couchot, F

    2007-01-01

    We manufactured pulsed illuminators emitting in the far infrared for the Planck-HFI bolometric instrument ground calibrations. Specific measurements have been conducted on these light sources, based on Carbon fibers, to understand and predict their properties. We present a modelisation of the temperature dependence of the thermal conductivity and the calorific capacitance of the fibers. A comparison between simulations and bolometer data is given, that shows the coherence of our model. Their small time constants, their stability and their emission spectrum pointing in the submm range make these illuminators a very usefull tool for calibrating FIR instruments.

  9. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    Science.gov (United States)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  10. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more than 50% of the total budget each year through 1998. A newly emerging activity is the commercial development of doped optical fibers which can be pumped by laser diodes to provide amplification of the communication signals. This technology is newly emerging and will be developed for commercial interests in the United States by Galileo Electro-optical Incorporated in Sturbridge, MA on a license from British Telecom. Long repeaterless communication links provide the biggest stimulus for this technology. As an example of the of the revenues involved in the optical fiber communications 3 industry, the current trade journal lists that for the fiscal years, 1991 - 1994, 185 separate undersea links were established. In addition, another 105 links are planned through 1998. The distribution of revenues involved in the undersea installations is roughly $8.5 billion through 1993 and another $13 billion planned through 1998. A large portion of the future activity (34%) is planned for Southeast Asia and the Pacific Region. Other examples of the commercial utility of optical fiber networks is given in a recent scientific symposium in which the outlook for HMFG infrared fiber was determined to be very bright.Another area of interest lies in the use of fiber optics for laser surgery delivery systems.

  11. Fiber optic hydrogen sensor

    Science.gov (United States)

    Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  12. Fiber optic spanner

    Science.gov (United States)

    Black, Bryan; Mohanty, Samarendra

    2011-10-01

    Rotation is a fundamental function in nano/biotechnology and is being useful in a host of applications such as pumping of fluid flow in microfluidic channels for transport of micro/nano samples. Further, controlled rotation of single cell or microscopic object is useful for tomographic imaging. Though conventional microscope objective based laser spanners (based on transfer of spin or orbital angular momentum) have been used in the past, they are limited by the short working distance of the microscope objective. Here, we demonstrate development of a fiber optic spanner for rotation of microscopic objects using single-mode fiber optics. Fiber-optic trapping and simultaneous rotation of pin-wheel structure around axis perpendicular to fiber-optic axis was achieved using the fiber optic spanner. By adjusting the laser beam power, rotation speed of the trapped object and thus the microfluidic flow could be controlled. Since this method does not require special optical or structural properties of the sample to be rotated, three-dimensional rotation of a spherical cell could also be controlled. Further, using the fiber optic spanner, array of red blood cells could be assembled and actuated to generate vortex motion. Fiber optical trapping and spinning will enable physical and spectroscopic analysis of microscopic objects in solution and also find potential applications in lab- on-a-chip devices.

  13. Fiber mode converter incorporated fiber ring-down strain sensor

    Science.gov (United States)

    Qiu, Huiye; Qiu, Yishen; Chen, Zhihao; Fu, Baoyu; Li, Gaoming

    2007-07-01

    We present a fiber mode converter incorporated fiber-loop ring-down system for strain measurement. The sensing system consists of a fiber mode converter and a typical fiber-loop ring-down system including a pulsed VCSEL laser diode at 850 nm, multimode fiber couplers, multimode fiber loop, photo-receiver and high-speed data acquisition and signal processing. The bending multimode fiber-loop ring-down strain sensor is demonstrated with a resolution of 0.28 μ\\Vegr over a range of 767 μ\\Vegr.

  14. EDF's surveillance on fuel manufacturing

    International Nuclear Information System (INIS)

    EDF has 58 PWR reactors requiring an annual supply of approximately 2,300 fuel assemblies. The issues of safety and reliability are important concerning the fuel given the risk of generic manufacturing issues. Being a nuclear power operator, EDF is responsible for the safety of the fuel being used in their vessels. EDF is subject to a French law which requires in particular the surveillance of the manufacture of the components involved in safety. This law is in some way an opportunity. It permits the entities involved to have an influence on the quality of components supplied which is an important condition to exercise an operational responsibility. EDF has applied for 30 years surveillance of the manufacturing processes of suppliers of fuel assemblies and contracts have specific clauses in order to organize this surveillance. In order to focus the surveillance on important matters, critical characteristics of the fuel have been determined between EDF and the suppliers to ensure the safety requirements. Activities related to the manufacturing and having an influence on these characteristics are subject to the surveillance required by regulation authorities. In order to obtain fuel assemblies that fulfill the safety requirements, EDF considers that several aspects need to be treated correctly: - The clear and sufficient definition of the components that constitutes the assembly (technical file: drawings and specifications), a definition which takes into account as far as possible the critical characteristics. - The demonstration of the efficiency, in terms of results, of complex manufacturing or controls steps (equipment qualification) included in the global manufacturing process (efficiency which depends on parameters that need to be defined and determined). - The definition of manufacturing processes (manufacturing quality plan) and the demonstration of their efficiency (qualification of manufacturing processes) to produce components that meet safety requirements (efficiency which depends on parameters that need to be defined and determined). - The relevancy of the justifications of usability of non-conforming products, taking into account the fact that any manufacturing process can normally produce some from time to time. - The continuous improvement of the manufacturing processes which are in fact not always as robust as expected to segregate non-conforming products (abnormal manufacturing event). The first three aspects contribute to obtain in a complementary way components that meet all the safety requirements given the fact that those requirements sometimes cannot be guaranteed for economic reasons by means of direct controls but only indirectly by the fulfillment of specific parameters. EDF surveys consequently: - The definition of the requirements in the technical file. - The initial qualifications of complex equipment, and subsequently during the manufacturing, the compliance with the parameters that guarantee the validity of the results of this equipment. - The initial qualification of the manufacturing processes, and subsequently during the manufacturing, the compliance within the parameters that need to be applied in order for the components to meet the safety requirements. The fourth aspect strongly involves EDF, given its responsibility as operator. The justification of usability when they have an impact on safety cannot be handled unilaterally by a supplier. - EDF surveys that the justification of usability of non-conform products are submitted for validation when the non-conformity has an impact on safety. - EDF verifies the relevancy of those justifications. The last aspect deals with the feedback needed for the continuous improvement of the robustness of the manufacturing processes. EDF asks its suppliers to declare the abnormal manufacturing events detected at the plants given the fact that non-conform products may have been supplied without knowing. According to this: - EDF discuss and validate the corrective actions proposed by suppliers to secure their manufacturing processes when abnormal events ha

  15. Automated fiber pigtailing technology

    Science.gov (United States)

    Strand, O. T.; Lowry, M. E.; Lu, S. Y.; Nelson, D. C.; Nikkel, D. J.; Pocha, M. D.; Young, K. D.

    1994-02-01

    The high cost of optoelectronic (OE) devices is due mainly to the labor-intensive packaging process. Manually pigtailing such devices as single-mode laser diodes and modulators is very time consuming with poor quality control. The Photonics Program and the Engineering Research Division at LLNL are addressing several issues associated with automatically packaging OE devices. A furry automated system must include high-precision fiber alignment, fiber attachment techniques, in-situ quality control, and parts handling and feeding. This paper will present on-going work at LLNL in the areas of automated fiber alignment and fiber attachment. For the fiber alignment, we are building an automated fiber pigtailing machine (AFPM) which combines computer vision and object recognition algorithms with active feedback to perform sub-micron alignments of single-mode fibers to modulators and laser diodes. We expect to perform sub-micron alignments in less than five minutes with this technology. For fiber attachment, we are building various geometries of silicon microbenches which include on-board heaters to solder metal-coated fibers and other components in place; these designs are completely compatible with an automated process of OE packaging. We have manually attached a laser diode, a thermistor, and a thermo-electric heater to one of our microbenches in less than 15 minutes using the on-board heaters for solder reflow; an automated process could perform this same exercise in only a few minutes. Automated packaging techniques such as these will help lower the costs of OE devices.

  16. Kinetics of stress fibers

    International Nuclear Information System (INIS)

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good quantitative agreement with experiment

  17. 75 FR 104 - Manufacturing & Services' Sustainable Manufacturing Initiative; Update

    Science.gov (United States)

    2010-01-04

    ...input on proposed new areas of work for the Sustainable Manufacturing...deal of constructive feedback from individual U.S. firms at its October 8...identify possible areas of future SMI work. Individual participants indicated that...

  18. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure gages at the mandrel-composite interface. Cylinders were hoop wound with tensions ranging from 13-34 N. An analytical model was developed to calculate change in stress due to relaxation during winding. Although compressive circumferential stresses occurred throughout each of the cylinders, the magnitude was fairly low.

  19. Random Fiber Laser

    CERN Document Server

    de Matos, Christiano J S; Brito-Silva, Antnio M; Gmez, M A Martinez; Gomes, Anderson S L; de Arajo, Cid B

    2007-01-01

    We investigate the effects of two dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250nm rutile (TiO2) particles in a Rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber (PCF) generating the first random fiber laser and a novel quasi-one-dimensional RL geometry. Comparison with similar systems in bulk format shows that the random fiber laser presents an efficiency that is at least two orders of magnitude higher.

  20. Fiber System Testing

    Science.gov (United States)

    Chipman, John D.

    1985-02-01

    Measurement methods used in normal installation or maintenance activities cn optical fiber communication systems are reviewed. Measurements discussed include fiber cable continuity, attenuation, bandwidth/dispersibn, optical time domain reflectometry, power penalty, bit error rate, optical margin, and eye degradation. Test methods described are based upon current Electronic Industries Association (EIA) draft standards. Advantages and disadvantages of various testing techniques used within laboratory and field environments are addressed. Indepth details and special considerations are presented on the topics of fiber cable attenuation, bandwidth, and optical time domain reflectometry for singlemode and multimode fielded systems. Problems with field environments are highlighted and field tests are related to EIA standard factory tests.