WorldWideScience

Sample records for injection molding process

  1. Bubble growth in mold cavities during microcellular injection molding processes

    Bubble nucleation and growth are the key steps in polymer foam generation processes. The mechanical properties of foam polymers are closely related to the size of the bubbles created inside the material, and most existing analysis methods use a constant viscosity and surface tension to predict the size of the bubbles. Under actual situations, however, when the polymer contains gases, changes occur in the viscosity and surface tension that cause discrepancies between the estimated and observed bubble sizes. Therefore, we developed a theoretical framework to improve our bubble growth rate and size predictions, and experimentally verified our theoretical results using an injection molding machine modified to make microcellular foam products

  2. Bubble growth in mold cavities during microcellular injection molding processes

    Moon, Yong Rak [University of Toronto, Toronto (Canada); Lee, Kyoung Soo; Cha, Sung W. [Yonsei University, Seoul (Korea, Republic of)

    2009-12-15

    Bubble nucleation and growth are the key steps in polymer foam generation processes. The mechanical properties of foam polymers are closely related to the size of the bubbles created inside the material, and most existing analysis methods use a constant viscosity and surface tension to predict the size of the bubbles. Under actual situations, however, when the polymer contains gases, changes occur in the viscosity and surface tension that cause discrepancies between the estimated and observed bubble sizes. Therefore, we developed a theoretical framework to improve our bubble growth rate and size predictions, and experimentally verified our theoretical results using an injection molding machine modified to make microcellular foam products

  3. Rapid control of mold temperature during injection molding process

    Liparoti, Sara; Hunag, Tsang Min; Sorrentino, Andrea; Titomanlio, Giuseppe; Cakmak, Mukerrem

    2015-05-01

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  4. Rapid control of mold temperature during injection molding process

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  5. Observation of the polymer melt flow in injection molding process using co-injection molding technique

    Chen, S.C.; Hsu, K.F.; Huang, J.S. (Chung Yuan Univ., Chung-Li (Taiwan, Province of China). Mechanical Engineering Dept.)

    Studies of the polymer melt flow in injection molding process have been carried out by co-injection molding technique using alternating sequence of transparent and colored PMMA resin. Simulations are also developed to predict the melt front advancements for both skin and core melts. Fountain flow effect is evident in all case studies. During the packing process, the polymer melt flows significantly with the increased packing pressure due to the compressible nature of the melt and the flow concentrates around cavity location near gate area. That the polymer melt flows across the weld line around the gap center in the packing stage was also observed. Although numerical simulations show fair consistence with experimental results in both skin and core material distribution, edge effect remains to be taken into account to improve the simulation accuracy.

  6. Process and part filling control in micro injection molding

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... position was measured on the polymer μ-parts to evaluate filling behavior of the polymer melt flowing through μ-features. Experimental results obtained under different processing conditions were evaluated to correlate the process parameter levels influence on the selected responses. Results showed that the...... injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  7. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  8. RECENT METHODS FOR OPTIMIZATION OF PLASTIC INJECTION MOLDING PROCESS –A RETROSPECTIVE AND LITERATURE REVIEW

    Bharti, P.K.; M. I. Khan,; Harbinder Singh

    2010-01-01

    Injection molding has been a challenging process for many manufacturers and researchers to produce products meeting requirements at the lowest cost. Faced with global competition in injection molding industry, using the trialand- error approach to determine the process parameters for injection molding is no longer good enough. Factors that affect the quality of a molded part can be classified into four categories: part design, mold design, machineperformance and processing conditions. The par...

  9. Direct processing of continuous fibers onto injection molding machines

    Truckenmueller, F. M.

    1993-06-01

    A new injection molding process 'DIF' (Direct Incorporation of Continuous Fibers) is proposed whereby roving strands are directly incorporated into the polymer melt by using a reciprocating-screw-plasticating unit. The DIF-technology offers the possibility to substitute the relatively expensive pultrusion process which is used to produce long fiber pellets. Furthermore it can be used as a fast and flexible R&D tool. In order to improve fiber dispersion with minimum fiber breakage a new mixing non-return-valve 'LFMR' (Long Fiber Mixing Ring) was developed based on the 'Twente Mixing Ring'; Its mixing capacity and influence on processing characteristics, fiber breakage and property profile of the injection molded parts is examined and compared to a general purpose non-return-valve of the ring type. The results of fundamental mechanical and physical property investigations are presented including dispersion of fiber clusters and bundles, fiber length distribution and fiber orientation.

  10. The Elastic Mold Deformation During the Filling and Packing Stage of the Injection Molding Process

    Stefan Kleindel

    2014-03-01

    Full Text Available The accurate numerical prediction of the mold filling process of long and thin walled parts is dependent on numerous factors. This paper investigates the effect of various influencing variables on the filling pattern by means of simulation and experimental validation. It was found that mold temperature, process settings and venting conditions have little effect on the predicted filling pattern. However, in the actual case study, the filling behavior observed during the experiments was significantly different compared to the numerical prediction. A structural finite element analysis of the moving mold half showed an unacceptable large deformation of the mold plates under injection pressure. A very good correlation between simulation and experiment was attained after improving the stiffness of the mold. Therefore it can be concluded, that the elasticity of the mold may have a significant influence on the filling pattern when long and thin walled products are considered. Furthermore, it was shown, that even an apparently stiff mold can exhibit a distinct deformation during filling and packing stage.

  11. Materials processing research opportunities in powder injection molding

    German, R.M. [Penn State Univ., University Park, PA (United States)

    1995-12-31

    Materials processing is an active area with many research opportunities for advanced instrumentation, control, and modeling. Among new materials processing routes, powder injection molding (PIM) has rapidly grown from a curiosity to a viable production technique over just a few years. This manufacturing technique is applicable to all materials, and is the preferred fabrication route for many complex-shaped, high-performance components for surgical tools, computer hardware, automotive systems, consumer products, and turbine components. This presentation introduces the use of a computer controlled injection molding machine to shape powders (metal, carbide, composite, and ceramic) in a high productivity setting. After molding the organic is extracted and the powder structure is sintered to full density. Much research is needed in process modeling, control, inspection, and optimization. This presentation summarizes the basic technology and several important factors relevant to manufacturing. An important development is in minimization of molding defects via closed-loop feedback control using pressure, temperature, and optical sensors. Recent progress has occurred using in situ guided waves for ultrasonic inspection of the molded part. Neural networks are being generated to allow assessment of processing changes as required from the integrated robot, visual imaging, pressure, and ultrasonic sensors. Similar, but less refined efforts are occurring in die compaction technology. As another example, computer simulation of heat transfer is needed during sintering to understand sources of component warpage during densification. A furnace equipped with visual imaging and residual gas analysis is being used to assist in verification of such computer simulations. These tools are still in the research stage, so future integration into the manufacturing environment will bring new challenges.

  12. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm...... (see figure 1). The cavities have different surface topographies on one side, but are otherwise identical (see discussion of other contribution factors)....

  13. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  14. Modeling and flow analysis of pure nylon polymer for injection molding process

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  15. Gate design in injection molding of microfluidic components using process simulations

    Marhöfer, D. M.; Tosello, G.; Islam, A.; Hansen, H. N.

    2015-01-01

    Just as in conventional injection molding of plastics, process simulations are an effective tool in the area of micro injection molding. They are applied in order to optimize and aid the design of the micro plastic part, the mold and the actual process. Available simulation software is actually...... made for macroscopic injection molding, but by means of the correct implementation and modelling strategy it can also be applied to micro plastic parts, as it is shown in the presented work. Process simulations are applied to two microfluidic devices (a micro distributor and a micro mixer) which shall...... be manufactured by micro injection molding. One of the main goals of the simulations is the investigation of the filling of the parts. Great emphasis is also on the optimization of selected gate designs for both parts which was successfully carried out. The paper describes how the two devices were...

  16. RECENT METHODS FOR OPTIMIZATION OF PLASTIC INJECTION MOLDING PROCESS –A RETROSPECTIVE AND LITERATURE REVIEW

    P.K. Bharti

    2010-09-01

    Full Text Available Injection molding has been a challenging process for many manufacturers and researchers to produce products meeting requirements at the lowest cost. Faced with global competition in injection molding industry, using the trialand- error approach to determine the process parameters for injection molding is no longer good enough. Factors that affect the quality of a molded part can be classified into four categories: part design, mold design, machineperformance and processing conditions. The part and mold design are assumed as established and fixed. During production, quality characteristics may deviate due to drifting or shifting of processing conditions caused by machine wear, environmental change or operator fatigue. Determining optimal process parameter settings critically influences productivity, quality, and cost of production in the plastic injection molding (PIM industry. Previously, production engineers used either trial-and-error method or Taguchi’s parameter design method to determine optimal process parameter settings for PIM. However, these methods are unsuitable in present PIM because of the increasing complexity of product design and the requirement of multi-response quality characteristics. This article aims to review the recent research in designing and determining process parameters of injection molding. A number of research works based on various approaches have been performed in the domain of the parameter setting for injection molding. These approaches, including mathematical models, Taguchi method, Artificial Neural Networks (ANN,Fuzzy logic, Case Based Reasoning (CBR, Genetic Algorithms (GA, Finite Element Method(FEM,Non Linear Modeling, Response Surface Methodology, Linear Regression Analysis ,Grey Rational Analysis and Principle Component Analysis (PCA are described in this article. The strength and theweakness of individual approaches are discussed. It is then followed by conclusions and discussions of the potential research in determining process parameters for injection molding.

  17. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating. The compressibility of the substrate is modeled by the 2-domain Tait PVT equation. CV/FEM is used to solve the discretized governing equations. A computer code has been developed to predict the fill pattern of the coating and the injection pressure. A number of experiments have been conducted to verify the numerical predictions of the computer code. It has been found both numerically and experimentally that the substrate thickness plays a significant role on the IMC fill pattern.

  18. Process control and product evaluation in micro molding using a screwless/two-plunger injection unit

    Tosello, Guido; Hansen, Hans Nørgaard; Dormann, B.; Decker, C.; Guerrier, Patrick

    A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ......-injection molding was investigated using the Design of Experiments technique. Injection pressure and piston stroke speed as well as part weight and dimensions were considered as quality factors over a wide range of process parameters. Experimental results obtained under different processing conditions were...... evaluated to correlate the process parameter levels influence on the selected responses, considering both average values and standard deviations....

  19. Processing development of Si3N4 components by injection molding

    The development of complex-shaped ceramic components by powder injection molding has been considered as a promising technique by industry. In this study silicon nitride was used as a sample material for demonstrating the possibility of fabricating ceramic components by injection molding. An optimized process for the manufacture of components by injection molding will be presented. The effects of solid content, binder type, solvent and thermal debinding and effects of firing atmosphere will be discussed. Some promising physical and mechanical properties of sintered silicon nitride will be illustrated. Some prototypes will also be demonstrated. The developed technique could be extended for fabricating engine or functional components. (author)

  20. Ceramic injection molding

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author)

  1. Dimensional Accuracy Optimization of the Micro-plastic Injection Molding Process Using the Taguchi Design Method

    Chil-Chyuan KUO

    2015-07-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that are produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 μm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.

  2. Comparative analysis of different process simulation settings of a micro injection molded part featuring conformal cooling

    Marhöfer, D. M.; Tosello, G.; Hansen, H. N.

    Process simulations are applied in all fields of engineering in order to support and optimize the design and quality of products and their manufacturing processes. Micro injection molding is not an exception in this regard. Simulations enable to investigate the process and the part quality. In the...... different simulation models are established: a version including the part without the surrounding mold block, an advanced version including the mold block and conventional cooling channels, and a third version alike the second with additional conformal cooling for efficient thermal management. The....... Additionally, the analysis of the cooling channels exploiting computational fluid dynamics is introduced as helpful tool for the mold design process. It is observed that the comprehensive implementation of the actual injection molding system and conditions is highly relevant at sub-mm/micro dimensional scales...

  3. Experimental Investigation into Suitable Process Conditions for Plastic Injection Molding of Thin-Sheet Parts

    Dyi-Cheng Chen

    2014-04-01

    Full Text Available This study performs an experimental investigation into the effects of the process parameters on the surface quality of injection molded thin-sheet thermoplastic components. The investigations focus specifically on the shape, number and position of the mold gates, the injection pressure and the injection rate. It can be seen that the gravity force entering point improved filling of the cavity for the same forming time and injection pressure. Moreover, it shows the same injection pressure and packing time, the taper-shape gate yields a better surface appearance than the sheet-shape gate. The experimental results provide a useful source of reference in suitable the process conditions for the injection molding of thin-sheet plastic components.

  4. Microcellular Injection Molding Using Helium

    In comparison with conventional foaming process microcellular injection molding process has advantages such as small bubble size, the removal of sink mark, scale reliability, and weight lightening. So microcellular injection molded parts are applied to electrical product and automobile part. Conventional microcellular foaming process used carbon dioxide and nitrogen as a foaming agent. And it has been never researched and applied about microcellular injection molding process using helium. In this paper, we did a microcellular injection molding process using helium based on previous research result and made samples. From this we can certificate the possibility of microcellular continuous process using helium. Helium is lighter and faster in diffusion than carbon dioxide or nitrogen so through this technique, it can be solved the problem such as spray or labeling

  5. Scratch tests on micro-structured polymer surfaces produced by injection molding and reaction processes

    This work focuses on the mechanical behavior of micro surface structures (molded both in the injection and reaction injection processes) in scratch tests using rounded cone indenters of different sizes. The interest in polymeric micro surface structures has increased in diagnostics, mass storage or optical fields as well as in the production of miniaturized devices such as micro-electro-mechanical systems (MEMS) in which surface properties are essential. Using replication technologies like the injection molding process, such structures can be molded on a mass-production scale with low production costs at the same time. However, if the molded features are not protected, their surfaces are more sensitive compared to their unstructured surface and their functional loss is often a crucial factor. Therefore, the damage mechanisms of random and periodic structures at different length scales below 5 µm are investigated using an AFM and a SEM taking into account different materials and their structures

  6. Gate design in injection molding of microfluidic components using process simulations

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul; Hansen, Hans Nørgaard

    2015-01-01

    Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microf...

  7. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul; Hansen, Hans Nørgaard

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... of selected gate designs for both plastic parts. Subsequently, the simulation results were used to answer the question which gate design was the most appropriate with regard to the process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization of...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  8. Injection Molding of High Aspect Ratio Nanostructures

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  9. Dimensional Accuracy Optimization of the Micro-plastic Injection Molding Process Using the Taguchi Design Method

    Chil-Chyuan KUO; Hsin-You LIAO

    2015-01-01

    Plastic injection molding is an important field in manufacturing industry because there are many plastic products that are produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses...

  10. Cycle Time Reduction in Injection Molding Process by Selection of Robust Cooling Channel Design

    Muhammad Khan; S. Kamran Afaq; Nizar Ullah Khan; Saboor Ahmad

    2014-01-01

    Cycle time of a part in injection molding process is very important as the rate of production and the quality of the parts produced depend on it, whereas the cycle time of a part can be reduced by reducing the cooling time which can only be achieved by the uniform temperature distribution in the molded part which helps in quick dissipation of heat. Conformal cooling channel design is the solution to the problem which basically “conforms” to the shape of cavity in the molds. This paper describ...

  11. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  12. Injection Molding of Plastics from Agricultural Materials

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  13. Gate design in injection molding of microfluidic components using process simulations

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul; Hansen, Hans Nørgaard

    Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed for...... macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...... design with regard to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the...

  14. Powder injection molding of niobium

    Niobium and niobium-based alloys are used in a variety of high temperature applications ranging from light bulbs to rocket engines. Niobium has excellent formability and the lowest specific weight among refractory metals (Nb, Ta, Mo, W, and Re). Powder injection molding of niobium powder was investigated for efficiency of the process. The sintering of injection molded bars was conducted up to 2000 C in vacuum and low oxygen partial pressure atmosphere. This paper investigates the effect of sintering time, temperature and atmosphere on processing of pure niobium. (orig.)

  15. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  16. Two component tungsten powder injection molding An effective mass production process

    Antusch, Steffen, E-mail: steffen.antusch@kit.edu; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-04-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution.

  17. Two component tungsten powder injection molding An effective mass production process

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  18. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  19. Optimization of plastic injection molding process parameters for manufacturing a brake booster valve body

    Highlights: PIM process parameters have been optimized for a brake booster valve body. The Taguchi method and computer-aided engineering have been integrated and used. Seven key parameters of PIM process have been considered. A nearly 12% improvement have been found by using the optimal PIM process parameters. The efficient improvement can improve the safety performance of a vehicle. - Abstract: The plastic injection molding (PIM) process parameters have been investigated for manufacturing a brake booster valve body. The optimal PIM process parameters is determined with the application of computer-aided engineering integrating with the Taguchi method to improve the compressive property of the valve body. The parameters considered for optimization are the following: number of gates, gate size, molding temperature, resin temperature, switch over by volume filled, switch over by injection pressure, and curing time. An orthogonal array of L18 is created for the statistical design of experiments based on the Taguchi method. Then, Mold-Flow analyses are performed by using the designed process parameters based on the L18 orthogonal array. The signal-to-noise (S/N) ratio and the analysis of variance (ANOVA) are used to find the optimal PIM process parameters and to figure out the impact of the viscosity of resin, curing percentage, and compressive strength on a brake booster valve body. When compared with the average compression strength out of the 18 design experiments, the compression strength of the valve body produced using the optimal PIM process parameters showed a nearly 12% improvement

  20. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process

    Kwangho Shin; Youngmoo Heo; Hyungpil Park; Sungho Chang; Byungohk Rhee

    2013-01-01

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP)...

  1. Automatic polishing process of plastic injection molds on a 5-axis milling center

    Pessoles, Xavier; Tournier, Christophe

    2010-01-01

    The plastic injection mold manufacturing process includes polishing operations when surface roughness is critical or mirror effect is required to produce transparent parts. This polishing operation is mainly carried out manually by skilled workers of subcontractor companies. In this paper, we propose an automatic polishing technique on a 5-axis milling center in order to use the same means of production from machining to polishing and reduce the costs. We develop special algorithms to compute...

  2. Multi-scale filling simulation of micro-injection molding process

    This work proposes a multi-scale simulation method that can simulate filling during the micro-injection molding process. The multiscale simulation is comprised of two steps. In the first step, the macro-scale flow is analyzed using the conventional method. In the second step, the micro-scale simulation is conducted taking the slip and surface tension into consideration to investigate the filling of microcavity. Moreover, a conservative level set method is employed to accurately track the flow front. First, numerical tests have been done for circular micro-channels. The results show that slip and surface tension play important roles in the micro-regime. Second, to verify the multi-scale method, filling of a thin plate with micro-channel patterns has been simulated. The results show that the proposed multi-scale method is promising for micro-injection molding simulations

  3. Functional nanostructures on injection molded plastic

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard; Sun, Ling; Taboryski, Rafael J.

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during the...... molding process. The main advantage with this method is that surface treatments and chemical additives are avoided, which minimizes health risks and simplifies recycling. Another advantage is that the unique technology enables nanostructuring of free form molded parts. The functional surfaces can have...

  4. Process development of injection molded parts with wound fiber structures for local reinforcement

    Heinzle, V.; Huber, T.; Henning, F.; Elsner, P.

    2014-05-01

    Glass and carbon fiber reinforcements in injection molded parts have been used for many decades in combination with thermoplastics. Where short- or long-fiber pellets are used, all areas of the part are nearly equally reinforced by fibers. With local continuous-fiber reinforcements it is possible to reduce fiber usage to the most highly loaded areas of the components along the lines of flux. This method, which draws on principles applied in nature, strengthens the parts with only a slight weight increase compared to non-reinforced parts. The combination of injection molding as a process for large-scale production with the high mechanical properties of continuous-fiber-reinforcements enables the production of high-strength components at reasonable costs. The paper presents the investigation of a process development with injection molded components in combination with wound fiber structures. Fundamental experiments with tensile loaded wound fiber structures regarding to their design influences are presented. On this basis a reinforcement structure for a demonstrator was developed and examined.

  5. Investigation of process parameters for an Injection molding component for warpage and Shrinkage

    Mohammad Aashiq M1 , Arun A.P1 ,Parthiban M

    2013-04-01

    Full Text Available The purpose of the research is to explore the influence of different mold temperatures on the warpage & shrinkage of the injection molded component’s. The simulation software MOLDEX 3D was used for this study, the simulations were done by varying different mold temperatures and their corresponding warpage & shrinkage were collected. It was found that the different mold wall temperature causes the asymmetrical polymer flow in the cross-section due to which the asymmetrical structure in the parts cross-section occurs and this was observed using the flow analysis software. So it is required to assurehomogeneous mold wall temperature across the entire cavityduring the production of injection molded parts. This researchfinally concludes that warpage and shrinkage decreases for increased values of mold temperature

  6. Optimizing Injection Molding Processing Parameters for Enhanced Mechanical Performance of Oil Palm Empty Fruit Bunch High Density Polyethylene Composites

    M.S. Ramli; M.R. Abdul Latif; P.S.M. Megat-Yusoff

    2011-01-01

    This study reports on the influence of injection molding processing parameters on mechanical properties of oil palm Empty Fruit Bunch (EFB) filled High Density Poly Ethylene (HDPE). The biocomposite pellets were first prepared using an extruder with 20 wt% EFB content before being processed in an injection-molding machine for specimen fabrication. Two processing parameters were varied systematically and independently during the composite sample fabrication. The holding pressure was increased ...

  7. Modeling of the flow continuum and optimal design of control-oriented injection systems in liquid composite molding processes

    Gokce, Ali

    Several methodologies are presented in this dissertation that aim to ensure successful filling of the mold cavity consistently, during the mold filling stage of Liquid Composite Molding (LCM) processes such as Resin Transfer Molding (RTM), Vacuum Assisted Resin Transfer Molding (VARTM) and Seemann Composites Resin Infusion Molding (SCRIMP). Key parameters that affect the resin flow in the mold cavity can be divided into two main groups as continuum-related parameters and injection-related parameters. Flow continuum, which consists of all the spaces resin can reach in the mold cavity, has two major components: the porous medium, which is made up of the fiber reinforcements, and the flow channels that are introduced into the flow continuum unintentionally and offer an easy flow path to the resin. The properties that characterize the porous medium and the unintentional flow channels are continuum-related parameters. The injection-related parameters include resin injection locations (gates), resin injection conditions and air drainage locations (vents). Modeling the flow continuum is crucial in predicting the resin flow in the mold cavity. In this study, permeability, the key property of the porous medium, is predicted using the Method of Cells, a proven method to predict macroscopic properties of heterogeneous materials. Unintentional flow channels, which are also called racetracking channels, are modeled using a probabilistic approach. Injection-related parameters are the key tools to influence the resin flow in the mold cavity. In this study, Branch and Bound Search is modified for single gate optimization. Due to its pertinence to injection system design, the parameters that govern gate effectiveness in steering the resin advance are studied. A combinatorial search algorithm is proposed for vent optimization. Vent optimization and gate optimization algorithms are integrated for simultaneous gate and vent optimization. Overall, these methodologies reduce the cycle time and reject ratio of LCM processes by providing an accurate and complete model of the flow continuum and optimal control-oriented injection design solutions, increasing the profitability and feasibility of the process.

  8. Gate/Runner Optimization of Injection Molding Process Using Micro Genetic Algorithm

    A traditional mold design has been conducted by experience-based trial and error, whereby the mold designer would decide the gate locations based on the caring characteristics and its functional requirements. The paper suggests an optimal runner system in the injection molding using a global search method referred to as micro genetic algorithm(? GA). ? GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses ? GA with a commercial analysis package of injection molding(CAPA) to optimize runner system

  9. Injection molding of metal powders

    The powder Injection Moulding (PIM) process is a viable and competitive commercial technique for producing complex-shaped parts of various materials in high volumes. PIM based on a new binder system and using a Co-Cr-Mo alloy powder as a test material, has been described. The binder comprises a major fraction of polyethylene glycols (PEGs) of various molecular weights and a minor fraction of very finely dispersed poly methyl methacrylate (PMMA) incorporated in the form of an emulsion. Various processing stages of the PIM process, i.e., feedstock preparation, injection molding, de binding and sintering have been discussed. (author)

  10. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp [Department of Advanced Fibro-Science, Kyoto Institute of Technology (Japan); Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Kodama, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Yamashita, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Isogai, Y., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Furuichi, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp; Nonomura, C., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp [Toyobo Co., LTD. Research Center (Japan)

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment ?-CT. The simulation results showed a good agreement with experiment results.

  11. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results

  12. Injection molding of rubber compound influenced by injection mold surface roughness

    Staněk, Michal; Maňas, David; Maňas, Miroslav; Ovsík, Martin; Šenkeřík, Vojtěch; Škrobák, Adam

    2014-01-01

    Delivery of polymer melts into the mold cavity is the most important stage of the injection molding process. This paper shows the influence of cavity surface roughness and technological parameters on the flow length of rubber into mold cavity. The fluidity of polymers is affected by many parameters (mold design, melt temperature, injection rate and pressures) and by the flow properties of polymers. Results of the experiments carried out with selected types of rubber compounds proved a minimal...

  13. Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

    Hong Seok Park

    2014-10-01

    Full Text Available Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using nondominated sorting genetic algorithm II (NSGA II in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.

  14. Relationship between processing and mechanical properties of injection molded high molecular mass polyethylene + hydroxyapatite composites

    Reis, R.L.; Cunha, A.M.; Oliveira, M.J.; Campos, A.R. [Dept. of Polymer Engineering, University of Minho, Guimaraes (Portugal); Bevis, M.J. [Wolfson Center for Materials Processing, Brunel Univ., Uxbridge (United Kingdom)

    2001-04-01

    We apply a macromolecular-orientation approach to produce high molecular weight polyethylene (HMWPE) + hydroxyapatite (HA) ductile composites with the stiffness and strength within the range of human cortical bone. Our composites are produced with different amounts (10 to 50% by weight) of the reinforcement by two procedures: bi-axial rotating drum and twin screw extrusion (TSE). The processing is by conventional injection molding and by Scorim (shear controlled orientation in injection molding) under a wide range of processing windows. Tensile testing is performed and the corresponding performance related to the morphology evaluated by polarized light microscopy and scanning electron microscopy. The control of the processing parameters led to significant improvements of the tensile properties. Compounding by TSE and then processing by Scorim produces the maximum modulus of 7.4 GPa and the ductility as high as 19%, for the HA weight fraction of 30%. These mechanical properties match those of bone, and were obtained with much smaller amounts of HA reinforcement then has been previously reported in literature. Our PE + HA composites present the additional benefit of being ductile even for 50% HA amounts. The use Scorim is a unique way of inducing anisotropy to thick sections and to produce very stiff composites that may be used in biomedical applications with important mechanical loads. This fact, combined with the bioactive behavior of the HA phase, makes our composite usable for orthopedic load-bearing implants. (orig.)

  15. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  16. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    Marray, Tarek; Jaccquet, Philippe; Moinard-Checot, Delphine; Fabre, Agnès; Barrallier, Laurent

    2011-01-01

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  17. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  18. Optimizing Injection Molding Processing Parameters for Enhanced Mechanical Performance of Oil Palm Empty Fruit Bunch High Density Polyethylene Composites

    M.S. Ramli

    2011-01-01

    Full Text Available This study reports on the influence of injection molding processing parameters on mechanical properties of oil palm Empty Fruit Bunch (EFB filled High Density Poly Ethylene (HDPE. The biocomposite pellets were first prepared using an extruder with 20 wt% EFB content before being processed in an injection-molding machine for specimen fabrication. Two processing parameters were varied systematically and independently during the composite sample fabrication. The holding pressure was increased from 60 to 90 bars while the injection temperature was varied from 150 to 210C. The highest tensile strength of the composites was achieved at 70 bar holding pressure and 150C injection temperature. However, the highest fracture strength was achieved at 80 bars whilst maintaining the injection temperature at 150C. Flexural strength was shown to be unaffected by the varying pressure. The optimal processing parameters for highest mechanical performance were found to be at holding pressure of 80 bars and injection tempera

  19. Injection molded superhydrophobic surfaces based on microlithography and black silicon processing

    Søgaard, Emil; Andersen, Nis Korsgaard; Taboryski, Rafael; Smistrup, Kristian

    This work is concerned with the design, development, and testing of nanostructured polymer surfaces with self-cleaning properties that can be manufactured by injection molding. In particular, the superimposed micro- and nanometer length scales of the so-called Lotus effect were investigated in...

  20. Validation of precision powder injection molding process simulations using a spiral test geometry

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido; Islam, Aminul; Hansen, Hans N.; Piotter, Volker

    2015-01-01

    powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software. The...

  1. 3D-Printed molds for micro-injection molding

    Lahtinen, Sampo

    2015-01-01

    Stereolithography (SLA) 3D-printed micro-injection molds could decrease the price and lead times when compared to traditional steel molds. In addition, an increase in design freedom could be achieved. This thesis aims to study the feasibility of SLA 3D—printed injection molds in general as well as in manufacturing of patient specific trachea prostheses. Perfactory SXGA+ Mini Multi Lens SLA was utilized. Resin used was Envisiontec's HTM140V2 high temperature molding resin. Molds created we...

  2. Injection molding of high aspect ratio sub-100 nm nanostructures

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...

  3. Process and mold for molding foamed plastic articles

    A method for forming foamed plastic articles which includes the steps of closing a mold; prepressurizing the mold cavity with gas to prevent premature diffusion of blowing gas from the material injected into the cavity; injecting a short shot of molten synthetic resin material containing a blowing agent into the cavity; venting a portion of the prepressurization gas during the injection step; and venting the remaining prepressurization gas from the mold cavity to a vacuum chamber means to allow expansion of the injected foamable resin material within the mold cavity, the vacuum drawing the resin material throughout the mold cavity. In addition, the vacuum chamber is coupled to the mold cavity through plural spaced passageways so that the vacuum is drawn at various locations throughout the cavity to thereby enhance the complete filling of the cavity with the injected material as it expands. The mold is vented following the injection step automatically at the expiration of a predetermined time following the closing of a nozzle of the injection apparatus. A mold for carrying out the process includes improved gas flow means for delivering gas to and venting gas from the mold cavity. The mold also includes improved sealing means for sealing the mold to maintain it in a pressurized state as desired

  4. Injection Molding Simulation : Taking Into Account the Process History to Predict the Anisotropy in the End-Use Properties

    Silva, Luisa; Miled, Houssem; Laure, Patrice; Coupez, Thierry

    2007-05-01

    This work's context is an industrial project aiming the accurate modeling of the injection molding process. 3D numerical simulation of the different stages is considered: during processing, anisotropy of the stress state build up affects its mechanical, optical or dimensional properties, and induces warpage once the part is ejected. A first example of injection molding of reinforced thermoplastics will be treated. In this case, we will consider that during the injection step, an orientation will be induced by the flow. Furthermore, the thermoplastic matrix will pass from the liquid to the solid state, and orientation and stresses will remain frozen. Evolution of orientation or extra stress is computed using the Folgar and Tucker equation, with continuous or discontinuous approximations. Results are obtained in a 3D complex industrial part.

  5. Characterization of Micro Injection Molding Process for the Replication of Micro/Nano Features Using Bulk Metallic Glass Insert

    Zhang, Nan; Browne, David J.; Gilchrist, M.D.

    2013-01-01

    Microsytems are motivating the development of complex, net-shape products weighing a few milligrams or having micro/nano features. Such small components or micro/nano features are subject to extreme shear rates and thermal gradients in the micro injection molding process due to their large surface to volume ratio. Detailed process monitoring and characterization are desirable to create a viable manufacturing process with acceptable part quality for MEMS and Microsystems. This work covers the ...

  6. The research of UV curing injection molding

    Xie, Pengcheng; Chang, Le; Song, Le; Cai, Tianze; Ding, Yumei; Yang, Weimin

    2015-05-01

    The micro-injection molding technology and the UV (ultraviolet) curing technique are combined to bring about a new plastic forming method, UV curing injection molding. The mean weight of micro-product is an important process characteristic for UV curing injection molding as well as the surface quality of micro-features is another important process characteristic for this new plastic forming method. This research investigates three effects of processing factors on the mass-change rate of micro-product and the surface quality of micro-features. In every particular, the following two factors are considered: UV material system temperature and the packing pressure. The study revealed that as usual, the micro-products gain weight with the imported increasing UV material system temperature and the improved packing pressure. Meanwhile, the increasing packing pressure also improves the surface quality, yet, warming the UV system temperature up has no effect on the quality of the product.

  7. Dynamic of taking out molding parts at injection molding

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  8. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk Simulation Moldflow Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.

  9. Modeling and Analysis of Process Parameters for Evaluating Shrinkage Problems During Plastic Injection Molding of a DVD-ROM Cover

    Öktem, H.

    2012-01-01

    Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.

  10. Injection molding of silicon nitride

    Silicon Nitride with 9-13 vol% liquid phase, recrystallised at 1100-1400 C after sintering at 1850 C (2,5-3,5h) in a powder bed have been produced in near net shape by injection molding. During molding with a binder of polystyrene, micro wax and dispersion agents a maximum powder content of 62 vol% and 59 vol% was obtained for the the two Silicon Nitride powders (UBE, SN-ESP and HCST, S respectively). Due to microcracking during binder removal (Tmax=500 C) in atmospheric air the bending strength was low even at relative theoretical densities of 95,5%. (orig.)

  11. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.

    Iwai, Kosuke; Shih, Kuan Cheng; Lin, Xiao; Brubaker, Thomas A; Sochol, Ryan D; Lin, Liwei

    2014-10-01

    Point-of-care (POC) and disposable biomedical applications demand low-power microfluidic systems with pumping components that provide controlled pressure sources. Unfortunately, external pumps have hindered the implementation of such microfluidic systems due to limitations associated with portability and power requirements. Here, we propose and demonstrate a 'finger-powered' integrated pumping system as a modular element to provide pressure head for a variety of advanced microfluidic applications, including finger-powered on-chip microdroplet generation. By utilizing a human finger for the actuation force, electrical power sources that are typically needed to generate pressure head were obviated. Passive fluidic diodes were designed and implemented to enable distinct fluids from multiple inlet ports to be pumped using a single actuation source. Both multilayer soft lithography and injection molding processes were investigated for device fabrication and performance. Experimental results revealed that the pressure head generated from a human finger could be tuned based on the geometric characteristics of the pumping system, with a maximum observed pressure of 7.6 ± 0.1 kPa. In addition to the delivery of multiple, distinct fluids into microfluidic channels, we also employed the finger-powered pumping system to achieve the rapid formation of both water-in-oil droplets (106.9 ± 4.3 μm in diameter) and oil-in-water droplets (75.3 ± 12.6 μm in diameter) as well as the encapsulation of endothelial cells in droplets without using any external or electrical controllers. PMID:25102160

  12. Simulation and Design of a plastic injection mold

    Teklehaimanot, Samson Seged

    2012-01-01

    Injection molding is one of the most important processes in the plastic manufacturing industry. More than one-third of all plastic materials are injection molded, And the mold is one of the main components in the injection molding process. The aim of this engineering thesis is to show detailed steps on how to design a complete mold and using the simulation software to analyze the material flow and defects in the product. The product design for this project is a joint credit card and USB flash...

  13. Nanostructuring steel for injection molding tools

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  14. Wavelet Packet Decomposition to Characterize Injection Molding Tool Damage

    Tomaž Kek

    2016-02-01

    Full Text Available This paper presents measurements of acoustic emission (AE signals during the injection molding of polypropylene with new and damaged mold. The damaged injection mold has cracks induced by laser surface heat treatment. Standard test specimens were injection molded, commonly used for examining the shrinkage behavior of various thermoplastic materials. The measured AE burst signals during injection molding cycle are presented. For injection molding tool integrity prediction, different AE burst signals’ descriptors are defined. To lower computational complexity and increase performance, the feature selection method was implemented to define a feature subset in an appropriate multidimensional space to characterize the integrity of the injection molding tool and the injection molding process steps. The feature subset was used for neural network pattern recognition of AE signals during the full time of the injection molding cycle. The results confirm that acoustic emission measurement during injection molding of polymer materials is a promising technique for characterizing the integrity of molds with respect to damage, even with resonant sensors.

  15. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process.

    Sundback, Cathryn; Hadlock, Tessa; Cheney, Mack; Vacanti, Joseph

    2003-02-01

    A method to fabricate porous, biodegradable conduits using a combined injection molding, thermally induced phase transition technique was developed which produced conduits with dimensionally toleranced, longitudinally aligned channels. The geometry of the channels was designed to approximate the architecture of peripheral nerves and to support the monolayer adherence of physiologically relevant numbers of Schwann cells. The channel configuration could be varied from a single 1.35 mm diameter channel up to 100 0.08 mm diameter channels. A conduit with 100 channels has approximately 12.5 times the lumenal surface area of a single channel conduit and supports the adherence of five times the number of Schwann cells in the native peripheral nerve. In this study, poly(DL-lactide-co-glycolide) (DL-PLGA) was dissolved in acetic acid and injected into a cold mold which induced solid-liquid phase separation and, ultimately, solidification of the polymer solution. The acetic acid was removed by sublimation and the resulting foam had a macrostructure of high anisotropy. Semi-permeable skins formed on the outer and lumen diameters of the conduit as a consequence of rapid quenching. Macropores were organized into bundles of channels, up to 20 microm wide, in the DL-PLGA matrix and represented remnants of acetic acid that crystallized during solidification. PMID:12485800

  16. The evaluation of vacuum venting and variotherm process for improving the replication by injection molding of high aspect ratio micro features for biomedical application

    Sorgato, Marco; Lucchetta, Giovanni

    2015-05-01

    The aspect ratio achievable in replicating micro features is one of the most important process characteristics and it is a major manufacturing constraint in applying injection molding in a range of micro engineering applications. Vacuum venting has been reported to be an effective technique in replicating micro features by microinjection molding. High surface-to-volume ratio and reduced dimensions of micro parts promote the instantaneous drop of melt temperature and consequently lead to incomplete filling. This study aims to investigate the effects of variotherm process, cavity evacuation and their interaction on the production of a micro fluidic filter for biomedical applications. A low-viscosity polystyrene and a cyclic olefin copolymer were molded applying a combination of mold evacuation and a rapid mold temperature variation that keeps the cavity temperature above the glass transition temperature during the injection phase. The research revealed the importance of these molding technologies in enhancing part filling and the replication quality for high aspect ratio micro features.

  17. Influence of different process settings conditions on the accuracy of micro injection molding simulations: an experimental validation

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard; Reinecke, Holger; Lucchetta, Giovanni; Schoth, Andreas

    Currently available software packages exhibit poor results accuracy when performing micro injection molding (µIM) simulations. However, with an appropriate set-up of the processing conditions, the quality of results can be improved. The effects on the simulation results of different and alternati...... compared with experiments in terms of flow front position at part and micro features levels, as well as cavity injection filling time measurements....... process conditions are investigated, namely the nominal injection speed, as well as the cavity filling time and the evolution of the cavity injection pressure as experimental data. In addition, the sensitivity of the results to the quality of the rheological data is analyzed. Simulated results are...

  18. Progress in Titanium Metal Powder Injection Molding

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfieddensity, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  19. Injection molding and debinding of micro gears fabricated by micro powder injection molding

    Ni, Xin-lei; Yin, Hai-qing; Liu, Lin; Yi, Shan-jie; Qu, Xuan-hui

    2013-01-01

    Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at relatively low cost. However, scaling down to such a level produces challenges in injection molding and debinding. Micro gears were fabricated by μPIM from in-house feedstock. The effect of injection speed and injection pressure on the replication of the micro gear cavity was investigated. Solvent debinding and thermal debinding processes were discussed. The results show that micro gears can be successfully fabricated under the injection pressure of 70 MPa and the 60% injection speed. Either too low or too high injection speed can cause incomplete filling of micro gears. The same is the case with too low injection pressure. Too high injection pressure can bring cracks. Solvent debinding of micro gears was performed in a mixture of petroleum ether and ethanol. Subsequently, micro gears were successfully debound by a multistep heating schedule.

  20. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11) with a...... into a metal insert (20), the metal insert having a corresponding nanometre-sized pattern (21) from said protrusions, and thirdly, adapting the metal insert into a tool part (30) for enabling nanometre- sized patterns being formed by the tool part. The invention provides an easier and faster way of...

  1. Nanostructuring steel for injection molding tools

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and...... ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic...

  2. Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding

    Jung, Joon Tae; Lee, Bong-Kee [Chonnam National University, Gwangju (Korea, Republic of)

    2014-07-15

    In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.

  3. Surface microstructure replication in injection molding

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    In recent years, polymer components with surface microstructures have been in rising demand for applications such as lab-on-a-chip and optical components. Injection molding has proven to be a feasible and efficient way to manufacture such components. In injection molding, the mold surface topogra...

  4. True 3D Injection Molding CAE Tool for Practical Applications

    Yang, Wen-Hsien; Peng, Allen; Hsu, David C.; Chang, Rong-Yeu

    2004-06-01

    2.5D mold filling simulation is widely used and accepted in the injection molding to reduce hardware prototyping and to improve the parts design and molding process. Recently, true 3D mold filling simulation is becoming popular for its capability to providing better forecasting accuracy. Furthermore, the advancements both in the hardware and theoretical modeling make 3D simulation an affordable reality. However, a smooth integrated analysis workflow based on the model meshed with volume mesh is still seldom reported in the literature. In this paper, a true 3D simulation technique are proposed to simulate the filling, packing and cooling stages in injection molding, as well as the part warpage after ejection. All the simulations can be carried out on the same solid model, in which both cavity and mold base are meshed with volume elements of different topologies. Numerical experiments indicated the proposed tool is reliable and efficient for the true 3D simulation of injection molding.

  5. Analysis of batch-related influences on injection molding processes viewed in the context of electro plating quality demands

    Siepmann, Jens P.; Wortberg, Johannes; Heinzler, Felix A.

    2016-03-01

    The injection molding process is mandatorily influenced by the viscosity of the material. By varying the material batch the viscosity of the polymer changes. For the process and part quality the initial conditions of the material in addition to the processing parameters define the process and product quality. A high percentage of technical polymers processed in injection molding is refined in a follow-up production step, for example electro plating. Processing optimized for electro plating often requires avoiding high shear stresses by using low injection speed and pressure conditions. Therefore differences in the material charges' viscosity occur especially in the quality related low shear rate area. These differences and quality related influences can be investigated by high detail rheological analysis and process simulation based on adapted material describing models. Differences in viscosity between batches can be detected by measurements with high-pressure-capillary-rheometers or oscillatory rheometers for low shear rates. A combination of both measurement techniques is possible by the Cox-Merz-Relation. The detected differences in the rheological behavior of both charges are summarized in two material behavior describing model approaches and added to the simulation. In this paper the results of processing-simulations with standard filling parameters are presented with two ABS charges. Part quality defining quantities such as temperature, pressure and shear stress are investigated and the influence of charge variations is pointed out with respect to electro plating quality demands. Furthermore, the results of simulations with a new quality related process control are presented and compared to the standard processing.

  6. Injection molding of high aspect ratio sub-100 nm nanostructures

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual pillars. The poorly replicated structures on nickel molds with or without FDTS coatings all appeared fractured. We investigated the underlying mechanism in a macroscopic model system and found reduced wetting and strongly decreased adhesion of solidified COC droplets on nickel surfaces after coating with FDTS. Reduced adhesion forces are consistent with lowered friction that reduces the risk of fracturing the nanoscopic pillars during demolding. Optimized mold surface chemistry and associated injection molding conditions permitted the fabrication of square arrays of 40 nm wide and 107 nm high (aspect ratio >2.5) pillars on a 200 nm pitch. (paper)

  7. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  8. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes. (paper)

  9. Stability of FDTS monolayer coating on aluminum injection molding tools

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    The injection molding industry often employs prototype molds and mold inserts from melt spun (rapid solidification processing [1,2]) aluminum, especially for applications in optics [3,4], photonics [5] and microfludics. Prototypes are also used for verification of mold filling. The use of aluminum...... tools has reduced lead time (days instead of weeks) and manufacturing cost (30% of conventional mold). Moreover, for aluminum, a surface roughness (RMS) below 5 nm can be obtained with diamond machining [3,4,6]. Conventional mold coatings add cost and complexity, and coatings with thicknesses of a few...... trichloro-silane based coating deposited on aluminum or its alloys by molecular vapor deposition. We have tested the stability of this coating in challenging conditions of injection molding, an environment with high shear stress from the molten polymer, pressures up to 200 MPa, temperatures up to 250 ◦C...

  10. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels Bent

    2015-01-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At...... isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of...... replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical...

  11. Comparative Thermal Analysis of Circular and Profiled Cooling Channels for Injection Mold Tools

    A.M.A. Rani; V.R. Raghavan; K Altaf

    2011-01-01

    Injection Mold Thermal Management is a critical issue in plastic injection molding process and has major effects on production cycle times that is directly linked with cost and also has effects on part quality. For this reason, cooling system design has great significance for plastic products industry by injection molding. It is crucial not only to reduce molding cycle time but also it considerably affects the productivity and quality of the product. The cooling channels in injection molding ...

  12. Multi-height structures in injection molded polymer

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2015-01-01

    We present the fabrication process for injection molded multi-height surface structures for studies of wetting behavior. We adapt the design of super hydrophobic structures to the fabrication constrictions imposed by industrial injection molding. This is important since many super hydrophobic...... surfaces are challenging to realize by injection molding due to overhanging structures and very high aspect ratios. In the fabrication process, we introduce several unconventional steps for producing the desired shapes, using a completely random mask pattern, exploiting the diffusion limited growth rates...... of different geometries, and electroforming a nickel mold from a polymer foil. The injection-molded samples are characterized by contact angle hysteresis obtained by the tilting method. We find that the receding contact angle depends on the surface coverage of the random surface structure, while the...

  13. Validation of three-dimensional micro injection molding simulation accuracy

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must be......Data analysis and simulations on micro-molding experiments have been conducted. Micro molding simulations have been executed taking into account actual processing conditions implementation in the software. Various aspects of the simulation set-up have been considered in order to improve the...... simulation accuracy (i.e. decrease deviations from experimental values): injection speed profile, cavity injection pressure, melt and mold temperatures, three-dimensional mesh parameters, and material rheological characterization. Quality factors investigated for the quantitative comparisons were: short shot...

  14. Injection molding integration of theory and modeling methods

    Zheng, Rong; Fan, Xi-Jun

    2011-01-01

    This practical volume covers the fundamental principles and numerical methods related to modeling the injection molding process. It addresses the cutting edge of our understanding of simulation technologies, without losing sight of useful classical approaches.

  15. CENTRAL CONVEYING & AUTO FEEDING SYSTEMS FOR AN INJECTION MOLDING SHOP

    Sanjeev Kumar

    2011-08-01

    Full Text Available Nowadays injection molding is probably the most important method of Processing of consumer and industrial goods, and is performed everywhere in the world. The developing of injection molding becomes a competition from day to day. This Process now integrated with computer control make the production better in quality and Better quantity. The trends of producing a plastics product in injection molding industries are recently changing from traditional method to using the FEA analysis. For injection molding industries, time and cost is very important aspects to consider because these two aspectswill directly related to the profits at a company. The next issue toconsider, to get the best parameter for the injection molding process, plastics has been waste. Through the experiment, operator will use large amount of plastics material to get the possibly parameters to setup the machine.To produce the parts with better quality and quantity these molding defects are the major obstacles in achieving the targets with quality & quantity. Various defects like Short shot, colour streaks and low productivity rates are associated with the material mixing and feeding as molded plastics are often a blend of two or more materials. Colors (master batch and other additives are often mixed (blended with the raw plastic material prior to the molding process in molding plants. So it is very necessary to work out auto blending and auto feeding of plasticgranules to the machine hopper. This paper will cover the studyof automatic blending unit & central conveying system for plasticgranule feeding to machine & will help in optimizing the injection molding process.

  16. Injection molding tools with micro/nano-meter pattern

    2011-01-01

    The present invention relates to methods for embedded a micrometer and/or nanometer pattern into an injection molding tool. In a first main aspect, a micro/nanometer structured imprinting device is applied in, or on, an active surface so as to transfer the micro/nanometer patterned structure to t...... preparations or remounting of the tool before performing the molding process....

  17. Innovative use of wood-plastic-composites (WPC) as a core material in the sandwich injection molding process

    Moritzer, Elmar; Martin, Yannick

    2016-03-01

    The demand for materials based on renewable raw materials has risen steadily in recent years. With society's increasing interest for climate protection and sustainability, natural-based materials such as wood-plastic-composites (WPC) have gained market share thanks to their positive reputation. Due to advantages over unreinforced plastics such as cost reduction and weight savings it is possible to use WPC in a wide area of application. Additionally, an increase in mechanical properties such as rigidity and strength is achieved by the fibers compared to unreinforced polymers. The combination of plastic and wood combines the positive properties of both components in an innovative material. Despite the many positive properties of wood-plastic-composite, there are also negative characteristics that prevent the use of WPC in many product areas, such as automotive interiors. In particular, increased water intake, which may result in swelling of near-surface particles, increased odor emissions, poor surface textures and distortion of the components are unacceptable for many applications. The sandwich injection molding process can improve this situation by eliminating the negative properties of WPC by enclosing it with a pure polymer. In this case, a layered structure of skin and core material is produced, wherein the core component is completely enclosed by the skin component. The suitability of WPC as the core component in the sandwich injection molding has not yet been investigated. In this study the possibilities and limitations of the use of WPC are presented. The consideration of different fiber types, fiber contents, skin materials and its effect on the filling behavior are the focus of the presented analysis.

  18. Injection molding simulation with variothermal mold temperature control of highly filled polyphenylene sulfide

    Birkholz, A.; Tschiersky, M.; Wortberg, J.

    2015-05-01

    For the installation of a fuel cell stack to convert chemical energy into electricity it is common to apply bipolar plates to separate and distribute reaction gases and cooling agents. For reducing manufacturing costs of bipolar plates a fully automated injection molding process is examined. The high performance thermoplastic matrix material, polyphenylene sulfide (PPS), defies against the chemical setting and the operation temperature up to 200 °C. To adjust also high electrical and thermal conductivity, PPS is highly filled with various carbon fillers up to an amount of 65 percentage by volume. In the first step two different structural plates (one-sided) with three different gate heights and molds are designed according to the characteristics of a bipolar plate. To cope with the approach that this plate should be producible on standard injection molding machines with variothermal mold temperature control, injection molding simulation is used. Additionally, the simulation should allow to formulate a quality prediction model, which is transferrable to bipolar plates. Obviously, the basis for a precise simulation output is an accurate description of the material properties and behavior of the highly filled compound. This, the design of the structural plate and mold and the optimization via simulation is presented, as well. The influence of the injection molding process parameters, e.g. injection time, cycle times, packing pressure, mold temperature, and melt temperature on the form filling have been simulated to determine optimal process conditions. With the aid of the simulation and the variothermal mold temperature control it was possible to reduce the required melt temperature below the decomposition temperature of PPS. Thereby, hazardous decomposition products as hydrogen sulfide are obviated. Thus, the health of the processor, the longevity of the injection molding machine as well as the material and product properties can be protected.

  19. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    Hayashi, Hidetomo; Mori, Tomoki [Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, Hisakata 2-12-1, Tempaku, Nagoya 468-8511 (Japan); Okamoto, Masami, E-mail: okamoto@toyota-ti.ac.jp [Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, Hisakata 2-12-1, Tempaku, Nagoya 468-8511 (Japan); Yamasaki, Satoshi; Hayami, Hiroshi [Polymer Materials Technology R and D Department Electronics and Materials R and D Laboratories, Sumitomo Electric Industries, Ltd., Shimaya, Konohana-ku, 1-1-3, Osaka, 554-0024 (Japan)

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  20. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  1. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    Calaon, M.; Tosello, G.; Garnaes, J.; Hansen, H. N.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts with...... the two different molding technologies. Focus of the experimental work was the assessment of the IM and ICM processes capabilities to replicate different channels widths (240 nm, 440 nm and 1040 nm) at different positions from the gate based on the deviations of their dimensions from the corresponding...

  2. Design, analysis and simulation in injection in-mold labeling

    Patcharee Larpsuriyakul

    2009-01-01

    Years ago, the production of packaging with the injection-IML has been established. This procedure concept ranks nowadays among the most modern technologies in the area of the plastic packaging. With this manufacturing technique, label and packaging, both are of the same polymer materials, become inseparably connected during the injection molding process. Since thermal conductivity of the polymeric label material is clearly smaller than that of the metal mold wall, thermal induced warpage of ...

  3. Preparation and Characterization of Copper Feedstock for Metal Injection Molding

    Mohd. Afian Omar; O. MAMAT; Ahmad, F.; G. Goudah

    2010-01-01

    Powder loading is one of the most critical factors which have important influence on metal injection molding processes. In this study, four different loading feedstocks were prepared from gas atomized copper powder with wax-based binders. Mixes of four feedstocks with 2 Vol. % incremental powders loading from 55% to 61 Vol. % were carried out in a Z-blade mixer. The injection molding was carried out at low pressure. A combination of solvent and thermal debinding was used for binder removal fr...

  4. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.; Kunc, Vlastimil; Frame, Barbara; Norris, Robert E.; Phelps, Jay; Tucker III, Charles L.; Jin, Xiaoshi; Wang, Jin

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into a structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.

  5. Two component micro injection molding for MID fabrication

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector, but...... recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  6. Injection molding of bushes made of tribological PEEK composites

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  7. Residual stress distribution in injection molded parts

    P. Postawa

    2006-08-01

    Full Text Available Purpose: The paper presents the results of the investigations of influence of the amorphous polystyrene (PSprocessing on the diversity of the internal stresses observed in the injection moulded piece.Design/methodology/approach: For the tests, the standardized mould piece designed for the investigations ofthe processing shrinkage of thermoplastics materials has been used. The samples have been prepared using theDesign of Experiment (DoE theory.The state of internal stresses has been analysed by means of photoelastic method (used stress viewer equipmenton the basis of the layout and size of the isochromatics (fields with the same colour, which determine the mouldpieces areas where the same value for the difference of main tensions. In the article the results of investigationsof influence of 5 chosen processing parameters such as injection temperature Tw, mould temperature Tf,clamping pressure pd, cooling time tch and the injection speed vw on the changes in isochromatics layout as adeterminant for diversity of internal stresses in injection moulded pieces have been presented.Findings: The performed investigations of the influence of injection conditions on the state of internal stressesreached for injection mould pieces were to determine the parameters of injection at which the achieved state ofthe stresses in the mould piece (described by the difference of main tensions will show the lowest values.Practical implications: Effects of examinations of influence of processing conditions on residual stress ininjection molded parts (presented in the article could find practical application in polymer industry, both smalland large enterprises.Originality/value: New approach to fast estimation of value of residual stresses were present in the paper.

  8. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Yossathorn Tanetrungroj; Jutarat Prachayawarakorn

    2015-01-01

    In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS) were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on n...

  9. CAE for Injection Molding — Past, Present and the Future

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE tools will eventually be integrated into an Enterprise Resources Planning (ERP) system as the trend of enterprise globalization continues.

  10. A Recurrent Neural Network for Warpage Prediction in Injection Molding

    A. Alvarado-Iniesta; D.J. Valles-Rosales; J.L. García-Alcaraz; A. Maldonado-Macias

    2012-01-01

    Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in product...

  11. Injection molded self-cleaning surfaces

    Søgaard, Emil

    because the use of potentially toxic self-cleaning coatings is used worldwide in a larger and larger scale. In this context, the work in this PhD project could be seen as a scientific effort towards reducing toxic compounds in manufactured plastic parts by developing injecting molded surfaces that are......This PhD thesis concerns the development of superhydrophobic surfaces fabricated by injection molding. Today, injection molding is the prevalent production method for consumer plastic products. However, concerns regarding the environmental impact of a plastic production are increasing, especially...... superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano- and...

  12. Residual stresses in injection molded shape memory polymer parts

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  13. Injection molding of iPP samples in controlled conditions and resulting morphology

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy

  14. Investigating the Influence of Different Process Parameters on Shrinkage of Injection-Molded Parts

    A. R. Jafarian; M. Shakeri

    2005-01-01

    Different models have been proposed to investigate the effects of various process parameters on shrinkage of plastic parts, which in most cases the effect of each parameter is obtained by changing one factor at a time. In this research, a simple flat model has been used and a simulation code has been developed. Then, through this simulation code, the effects of different process parameters have been investigated. This code was run for a typical thermoplastic (polycarb...

  15. Investigating the Influence of Different Process Parameters on Shrinkage of Injection-Molded Parts

    A. R. Jafarian

    2005-01-01

    Full Text Available Different models have been proposed to investigate the effects of various process parameters on shrinkage of plastic parts, which in most cases the effect of each parameter is obtained by changing one factor at a time. In this research, a simple flat model has been used and a simulation code has been developed. Then, through this simulation code, the effects of different process parameters have been investigated. This code was run for a typical thermoplastic (polycarbonate and finally, a Design Of Experiments (DOE approach was used to study the effects of multiple variables on shrinkage simultaneously.

  16. Experimental validation of viscous and viscoelastic simulations of micro injection molding process

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni; Hansen, Hans Nørgaard; Schoth, Andreas

    commercially available software packages. Simulation results are then compared with the experimental µIM process. Validation parameters for the comparison are the flow front position during filling of the micro cavity. They are respectively obtained by applying the short-shots method and the flow...

  17. Influence of process parameters on the weld lines of a micro injection molded component

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard; Lucchetta, Giovanni

    2007-01-01

    The insufficient entanglement of the molecular chains and the stress amplification at the v-notch of a weld line compromise the mechanical strength of a plastic product, also in the micro scale. To investigate the influence of process parameters on the weld lines formation, a special micro cavity...... was designed and manufactured by µEDM (Electro Discharge Machining). Weld lines were quantitatively characterized both in the two-dimensional (direction and position) and three-dimensional range (surface topography characterization). Results showed that shape and position of weld lines are mainly...

  18. Two-component co-injection and transfer molding and gas-assisted injection molding of polymers: Simulation and experiment

    Li, Chengtao

    Two-component molding is a novel process for manufacturing polymer products with a sandwich structure or a hollow structure. Typically, two different materials are injected or transferred into a mold sequentially or simultaneously. The skin is generally a prime polymer with required surface and bulk properties for intended use. The core can be solid, foam or gas. Obtaining a uniform encapsulated structure is difficult and there are no science-based rules for optimization of process setup. Thus, a physical model and process simulations have been developed based on the kinematics and dynamics of a moving interface, and Hele-Shaw approximation. The model has incorporated temperature and shear rate dependences of viscosity of both skin and core component into the transient interface evolution. Based on the developed model, simulations have been carried out to study flow rate controlled simultaneous co-injection molding of thermoplastics, pressure-controlled sequential transfer molding of rubber compounds, and gas-assisted injection molding (GAIM). The simulation results were compared with the experimental data, and in general, good agreement was found between the predicted and experimentally measured interface distribution in moldings. For simultaneous co-injection molding, it is found that material pairs with a broad range of viscosities may be utilized. Breakthrough phenomena are mainly determined by the volume of melt of initial single phase injection and rheological properties of material combinations. When the core has a lower viscosity than the skin, or the volume of initial injection of skin melt is smaller, breakthrough is very likely. However, the breakthrough can be eliminated by controlling injection rate of the skin and core melts. For sequential transfer molding, it is found that the rubber distribution in moldings are dominated by the rheological properties of components and the volume fraction transferred, but independent of the gate pressure. When the core rubber has a lower viscosity than the skin rubber, the core front exhibits more block-shape penetration into the skin rubber. The penetration length of the core into the skin increases with an increase of the volume fraction transferred. For GAIM, it is found that the shot size, injection speed and gas injection delay time have the strongest effect on the gas penetration. A lower injection speed and a longer gas injection delay time lead to a smaller bubble diameter and longer gas penetration. A smaller shot size results in a longer gas penetration, eventually leading to a blow through of the gas.

  19. Molding process for imidazopyrrolone polymers

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  20. Precision replication of co-molded meso and micro optics through injection molding

    Gill, David Dennis

    The objective of the research is to extend the limits of current optical production techniques for complex, thermally-stable, precise optical components produced in large volume. Injection molding is a high volume process, but is not well understood on this scale. Additionally, polymer can be formed into complex and intricate shapes, but the high coefficient of thermal expansion has prevented the widespread use of polymer for precision optics. For injection molding to become a viable process for the production of meso and micro optics, it is necessary for these challenges to be addressed. The goals of this research address the aforementioned challenges on two fronts (1) injection molding of polymer lenses, and (2) molding of polymer elements directly onto stable substrates. The first is through an increased understanding of the injection molding process in the replication of micro optics. Precision molds were produced with optical features of varying size, shape, step height, and aspect ratio. These features included spherical and fresnel lenses, blaze diffraction grating, and wedding cake. The pitch of the features was as small as 10mum and step heights as small as 1.25mum. A screening design of experiment was performed to discover the molding factors (process variables) with the greatest effect on the replication of micro optics. These experiments showed mold temperature and screw rotation speed to have the greatest effects on the accurate replication of meso and micro optics. The second challenge, the thermal instability of polymer lenses, has been addressed through research of the co-molding these optics directly onto thermally stable substrates. Challenges included the modification of properties at the polymer-substrate interface, the large mismatch in coefficients of thermal expansion between the polymer and the substrate, and mold design factors for using a brittle substrate material in the mold. In the experiments, interface adhesion was found to be increased through the use of organofunctional silanes, and co-molding experiments revealed that acrylic lenses had the best adhesion to specially cleaned soda lime glass.

  1. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively. PMID:26479615

  2. Effect of reprocessing cycles on the degradation of polypropylene copolymer filled with talc or montmorillonite during injection molding process

    Demori, R.; Mauler, R. S., E-mail: raquel.mauler@ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, 91501-970 (Brazil); Ashton, E.; Weschenfelder, V. F.; Cândido, L. H. A.; Kindlein, W. [Laboratory of Design LDSM, Federal University of Rio Grande do Sul, UFRGS (Brazil)

    2015-05-22

    Mechanical recycling of polymeric materials is a favorable technique resulting in economic and environmental benefits, especially in the case of polymers with a high production volume as the polypropylene copolymer (PP). However, recycling by reprocessing techniques can lead to thermal, mechanical or thermo-oxidative degradation that can affect the structure of the polymer and subsequently the material properties. PP filled with montmorillonite (MMT) or talc are widely produced and studied, however, its degradation reactions by reprocessing cycles are poorly studied so far. In this study, the effects of reprocessing cycles in the structure and in the properties of the PP/MMT and PP/Talc were evaluated. The samples were mixed with 5% talc or MMT Cloisite C15A in a twin-screw extrusion. After extrusion, this filled material was submitted to five reprocessing cycles through an injection molding process. In order to evaluate the changes induced by reprocessing techniques, the samples were characterized by DSC, FT-IR, Izod impact and tensile strength tests. The study showed that Young modulus, elongation at brake and Izod impact were not affected by reprocessing cycles, except when using talc. In this case, the elongation at brake reduced until the fourth cycle, showing rigidity increase. The DSC results showed that melting and crystallization temperature were not affected. A comparison of FT-IR spectra of the reprocessed indicated that in both samples, between the first and the fifth cycle, no noticeable change has occurred. Thus, there is no evidence of thermo oxidative degradation. In general, these results suggest that PP reprocessing cycles using MMT or talc does not change the material properties until the fifth cycle.

  3. Effect of reprocessing cycles on the degradation of polypropylene copolymer filled with talc or montmorillonite during injection molding process

    Mechanical recycling of polymeric materials is a favorable technique resulting in economic and environmental benefits, especially in the case of polymers with a high production volume as the polypropylene copolymer (PP). However, recycling by reprocessing techniques can lead to thermal, mechanical or thermo-oxidative degradation that can affect the structure of the polymer and subsequently the material properties. PP filled with montmorillonite (MMT) or talc are widely produced and studied, however, its degradation reactions by reprocessing cycles are poorly studied so far. In this study, the effects of reprocessing cycles in the structure and in the properties of the PP/MMT and PP/Talc were evaluated. The samples were mixed with 5% talc or MMT Cloisite C15A in a twin-screw extrusion. After extrusion, this filled material was submitted to five reprocessing cycles through an injection molding process. In order to evaluate the changes induced by reprocessing techniques, the samples were characterized by DSC, FT-IR, Izod impact and tensile strength tests. The study showed that Young modulus, elongation at brake and Izod impact were not affected by reprocessing cycles, except when using talc. In this case, the elongation at brake reduced until the fourth cycle, showing rigidity increase. The DSC results showed that melting and crystallization temperature were not affected. A comparison of FT-IR spectra of the reprocessed indicated that in both samples, between the first and the fifth cycle, no noticeable change has occurred. Thus, there is no evidence of thermo oxidative degradation. In general, these results suggest that PP reprocessing cycles using MMT or talc does not change the material properties until the fifth cycle

  4. Residual stresses in injection molded products

    Jansen, K. M. B.

    2015-12-01

    During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature and pressure histories during molding. Precise excimer laser layer removal measurements were performed to verify the predicted residual stress distributions. In addition, detailed shrinkage and warpage measurements on a large series of polymers and for different molding conditions were performed and are shown to compare well with the model predictions.

  5. Modelling and monitoring in injection molding

    Thyregod, Peter

    2001-01-01

    . >From analysis of quality measurements from a longer period of manufacturing, it was found that differences in cavities was that source of variation with greatest influence on the lenght of the molded parts. The other large contribution to the lenght varation was the different machine settings. Samples......This thesis is concerned with the application of statistical methods in quality improvement of injection molded parts. The methods described are illustrated with data from the manufacturing of parts for a medical device. The emphasis has been on the variation between cavities in multi-cavity molds...... is for continuous control by attributes, and it is an alternative to the batch oriented approach mostly used. The procedure is especially efficient for quality requirements of very low proportion non-conformities. For the proposed charts the ARL function is derived. It is shown that in the case where...

  6. Injection molding of coarse 316L stainless steel powder

    Metal injection molding (MIM) process using 316L stainless steel powder of 45 μm was investigated. The binder system consists of a major fraction of palm stearins and minor fraction of polyethylene with a powder loading of 65 vol. %. The rheological behaviour of the feedstock was determined using Capillary Rheometer. The feedstock then injected using vertical injection molding machine into the tensile test bar. Then molded parts were de bound and sintered in vacuum at temperature of 1360 degree Celsius. The results show that the viscosity of the feedstock decreased with the temperature increased. The best sintered density achieved was about 7.5 g/cm3 with the tensile strength of more than 460 MPa. The properties of the sintered specimens could be increased with the increasing of sintering temperature. (author)

  7. Analysis of Cavity Pressure and Warpage of Polyoxymethylene Thin Walled Injection Molded Parts: Experiments and Simulations

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2014-01-01

    , melt and mold temperatures, material rheological and pvT characterization. Factors investigated for comparisons were: injection pressure profile, short shots length, flow pattern, and warpage. A reliable molding experimental database was obtained, accurate simulations were conducted and a number of...... conclusions concerning improvements to simulation accuracy are presented regarding: pvT data, mesh, short shots, cavity pressure for process control validation as well as molding machine geometry modelling. Eventually, a methodology for improved molding simulations of cavity injection pressure, filling...

  8. Orientation of Carbon Fibers in Copper matrix Produced by Powder Injection Molding

    Irfan Shirazi M.

    2014-07-01

    Full Text Available Fiber orientation is a big challenge in short fiber reinforced composites. Powder injection molding (PIM process has some intrinsic fiber alignment associated with it. During PIM process fibers in skin region of moldings are aligned as these regions experience higher shear flow caused by the mold walls. Fibers in the core region remain randomly aligned as these regions are far from mold walls and experience lesser shear flow. In this study short carbon fiber (CF reinforced copper matrix composite was developed by PIM process. Two copper composite feedstock formulations were prepared having 5 vol% and 10 vol% CFs and a wax based binder system. Fiber orientation was controlled during injection molding by using a modified mold that has a diverging sprue. The sprue creates converging flow when feedstock enters into the mold cavity. Fiber orientation was analysed after molding using FESEM. The orientation of fibers can be controlled by controlling flow of feedstock into the mold.

  9. Initial verification of an induction heating set-up for injection molding

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano; Tang, Peter T.; Ravn, Christian

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured by...... induction heating system process is an efficient way for improving the filling of the cavity....

  10. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  11. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard; Ravn, C.; Islam, Aminul

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  12. A Recurrent Neural Network for Warpage Prediction in Injection Molding

    A. Alvarado-Iniesta

    2012-11-01

    Full Text Available Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in products manufactured through injection molding. Five process parameters areemployed for being considered to be critical and have a great impact on the warpage of plastic components. Thisstudy used the finite element analysis software Moldflow to simulate the injection molding process to collect data inorder to train and test the recurrent neural network. Recurrent neural networks were used to understand the dynamicsof the process and due to their memorization ability, warpage values might be predicted accurately. Results show thedesigned network works well in prediction tasks, overcoming those predictions generated by feedforward neuralnetworks.

  13. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    zgn, zgr [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Glsoy, H. zkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Y?lmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); F?nd?k, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. The maximum sintered density achieved this study was 97.3% at 1290 C for 3 hours. Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (?? and ??) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  14. The application of fuzzy theory for the control of weld line positions in injection-molded part.

    Chen, Mei-Yung; Tzeng, Huan-Wen; Chen, Yi-Cheng; Chen, Shia-Chung

    2008-01-01

    This research proposes the fuzzy theory for the control of weld lines in plastic injection molding. The weld line occurs as a result of geometrical changes in molded parts in the injection molding process. The weld line is one of the defects present in plastic injection-molded parts; the line affects the quality of parts as well as the strength of the products. In the present study, fuzzy theory was applied in the design of injection molding. First, expert experiences were transformed into IF approximately THEN approximately rules to establish the knowledge base for developing fuzzy inference rules. The rules were then used to adjust the molding parameters, which in turn were applied to control the weld line position in the injection molding process. The results indicate that fuzzy theory exhibited favorable applicability in the control of the weld line as well as decreased the simulation time, thereby accelerating the design process of injection molding. PMID:17880963

  15. Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions

    In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition

  16. Comparison of two setups for induction heating in injection molding

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano; Guerrier, Patrick; Tang, Peter Torben

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness, ...

  17. Evaluation of stability for monolayer injection molding tools coating

    Cech, Jiri; Taboryski, Rafael J.

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been col...

  18. Foaming morphology control of microcellular injection molded parts with gas counter pressure and dynamic mold temperature control

    Shiu, Tai-Yi; Huang, Chao-Tsai; Chang, Rong-Yu; Hwang, Shyh-Shin

    2014-05-01

    Microcellular injection molding process is a promising solution for products with special requirements such as weight reduction, extra thin wall, high dimensional stability, clamping force reduction, etc. Despite microcellular foaming application used in reciprocating screw injection molding machine was built more than a decade, some limitations, such as poor surface quality or poor foaming control, confine the usage of this technology. Earlier CAE simulation tool for microcellular injection molding was not successful due to insufficient physical and computational considerations, limited by complicated bubble growth mechanism; so that, an economic and efficient tool for examining foaming quality of injection foaming product was lack. In this study, a recent developed three-dimensional simulation tool is used to predict injection foaming process. Predictions are carried out with commodity polypropylene and polystyrene with nitrogen and carbon dioxide supercritical fluids (SCFs). Comparisons of simulations between microcellular injection molding with and without counter pressure are discussed to provide insights into the correlation of surface quality and cell size distribution near the surface of product. Furthermore, comparisons between simulation predictions and experimental results of molding process, which is featured with dynamic mold temperature and gas counter pressure, are given for understanding quality improvement by controlling foaming morphology, and benefit of industrial application.

  19. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Hakan GÜRÜN; Ahmet ÖZDEMİR; ACAR, Tunahan

    2009-01-01

    The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement int...

  20. Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites

    Highlights: • Development of polymer/clay nanocomposites. • Compatibility of ABS and montmorillonite nanoclay and composition capability of them. • Effect of nanoclay content and process parameters on the mechanical properties of nanocomposite. • Analyzing the distribution of nanoclay layers using XRD test. • Dependency of tensile strength and hardness to the nanoclay content and processing conditions. - Abstract: Polymer–clay nanocomposites have attracted considerable interest over recent years due to their dramatic improved mechanical properties. In the present study, compatibility of Acrylonitrile Butadiene Styrene (ABS) and organically modified montmorillonite nanoclay (Cloisite 30B) and composition capability of them are investigated. Polymethylmethacrylate (PMMA) in varying amount (0, 2, and 4 wt%) is used as the compatibilizer. In order to produce nanocomposite parts, the material is first compounded using a twin-screw extruder and then injected into a mold. The effect of the nanoclay percentage and processing parameters on the tensile strength and hardness of nanocomposite parts is also explored using Taguchi Design of Experiments method. Nanoclay content (in three levels: 0, 2 and 4 wt%), melt temperature (in three levels: 190, 200 and 210 °C), holding pressure (in three levels: 80, 105 and 130 MPa) and holding pressure time (in three levels: 1, 2.5 and 4 s) are considered as the variable parameters. Moreover, distribution of nanoclay layers is analyzed using Wide Angle X-ray Diffraction (XRD) test. XRD results displayed that with the presence of PMMA, nanoclay in ABS matrix is compounded in more exfoliated and less intercalated dispersion mode. Adding PMMA also leads to a remarkable increase in the fluidity of the melt during injection molding process. Results also illustrated that nanocomposites with medium loading level (i.e. 2%) of nanoclay have the highest tensile strength, while the highest hardness number belongs to nanocomposites with 4 wt% nanoclay. Obtained results also indicated that injection temperature has the most important effect on tensile strength and hardness of ABS–clay nanocomposites

  1. Preparation and Characterization of Copper Feedstock for Metal Injection Molding

    Mohd. Afian Omar

    2010-01-01

    Full Text Available Powder loading is one of the most critical factors which have important influence on metal injection molding processes. In this study, four different loading feedstocks were prepared from gas atomized copper powder with wax-based binders. Mixes of four feedstocks with 2 Vol. % incremental powders loading from 55% to 61 Vol. % were carried out in a Z-blade mixer. The injection molding was carried out at low pressure. A combination of solvent and thermal debinding was used for binder removal from the samples and then the sintering process take place in argon gas at 900°C. It was observed that the feedstock containing 59 Vol. % of copper produce a free defect samples which was selected as the optimum feedstock.

  2. Morphology and mechanical properties of injection molded poly(ethylene terephtalate)

    Viana, J. C.; Alves, N.M.; Mano, J.F

    2004-01-01

    This work reports on the relationships between processing, the morphology and the mechanical properties of an injection molded poly(ethylene terephthalate), PET. Specimens were injection molded with different mold temperatures of 30°C, 50°C, 80°C, 100°C, 120°C, 150°C, while maintaining constant the other operative processing parameters. The thermomechanical environment imposed during processing was estimated by computer simulations of the mold-filling phase, which allow the cal...

  3. A new insight into foaming mechanisms in injection molding via a novel visualization mold

    V. Shaayegan

    2016-06-01

    Full Text Available The complex mechanisms of bubble nucleation and dynamics in foam injection molding have not been uncovered despite many previous efforts due to the non-steady stop-and-flow nature of injection molding and the non-uniform temperature and pressure distributions in the mold. To this end, a new visualization mold was designed and manufactured for the direct observation of bubble nucleation and growth/collapse in foam injection molding. A reflective prism was incorporated into the stationary part of the injection mold with which the nucleation and growth behaviors of bubbles were successfully observed. The mechanisms of bubble nucleation in low- and high-pressure foam injection molding, with and without the application of gas-counter pressure, was investigated. We identified how the inherently non-uniform cell structure is developed in low-pressure foam injection molding with gate-nucleated bubbles, and when and how cell nucleation occurs in high-pressure foam injection molding with a more uniform pressure drop.

  4. Comparison of injection molding and injection/compression molding for the replication of microstructure

    Hong, Seokkwan; Hwang, Jeongho; Kang, Jeongjin; Yoon, Kyunghwan

    2015-11-01

    Because of increasing interest in the functional surfaces including micro- or nano-patterns, the mass production of such surfaces has been actively researched. Both conventional injection molding (CIM) and injection/compression molding (ICM) of micro-patterns were investigated in the present study. The molding subject is a multi-scale structure that consists of a macro-scale thin plate and micro-scale patterns formed regularly on its surface. The transcription ratios of micro pattern made by CIM and ICM for different flow length were experimentally measured, and the origin of the obtained results was identified through numerical analysis. It was found that the cavity pressure and polymer temperature are the most important factors for micro-pattern filling; in particular, the polymer temperature is the key factor determining the transcription ratio. It was also found that the difference in CIM and ICM micro-pattern transcription ratios originates from the differences in the cavity pressure history if other molding conditions are the same.

  5. Smart plastic functionalization by nanoimprint and injection molding

    Zalkovskij, Maksim; Thamdrup, Lasse Højlund; Smistrup, Kristian; Andén, Thomas; Johansson, Alicia C.; Mikkelsen, Niels Jørgen; Madsen, Morten Hannibal; Garnæs, Jørgen; Kristiansen, Tommy Tungelund; Diemer, Mads; Døssing, Michael; Minzari, Daniel; Tang, Peter Torben; Kristensen, Anders; Taboryski, Rafael J.; Essendrop, Søren; Nielsen, Theodor; Bilenberg, Brian

    2015-01-01

    pattern. With this approach, we demonstrate the transfer of down to 140 nm wide holes on large areas with good structure fidelity on an injection molding steel insert. The durability of the sub-micrometer structures on the inserts have been investigated by running two production series of 102,000 and 73......,000 injection molded parts, respectively, on two different inserts and inspecting the inserts before and after the production series and the molded parts during the production series....

  6. Research in manufacturing of micro-structured injection molded polymer parts

    Lucyshyn, Thomas; Struklec, Tobias; Burgsteiner, Martin; Graninger, Georg; Holzer, Clemens

    2015-12-01

    An overview of current research results is given for the topic of injection molding of micro-structured polymer parts regarding filling behavior and demolding process of micro-structures as well as the production of micro-structures on curved surfaces. In order to better understand how micro-structures are formed during the filling stage of injection molding, a study was performed on a test part with micro-channels placed parallely and perpendicularly to flow direction. Short shots with a highly fluent Polypropylene grade were injection molded with the melt front stopping in the structure fields. The melt and mold temperature, the injection rate as well as the use of a variotherm heating system were varied in a systematic Design of Experiments. The shape of the flow front was investigated with the optical measurement system Alicona InfiniteFocus. The data gained was analyzed with Matlab scripts and provided the needed distance to completely fill the structures as a reference value. The next topic covers the demolding step, which is a crucial process step in injection molding of micro-structured parts as the successfully replicated structures often get destroyed in the following demolding step. In order to evaluate the influence of the four aspects polymer, mold surface (coatings), structure (geometry and placement) and process settings on the demolding behavior, an injection mold with integrated measurement system was built, which makes it possible to measure the demolding force respectively a demolding energy under process conditions. These values can be used to quantitatively compare the impact of the above mentioned influencing factors on demolding. Finally, a concept to produce micro-structures on curved surfaces with injection molding is shown: A flat metal premaster structure is used to produce an elastomeric polymer (dimethylsiloxane) master in a casting process. This master is fixed in a conventional injection mold and a thermoplastic polymer is replicated on this master in an injection molding process.

  7. Injection-compression and co-injection moldings of amorphous polymers: Viscoelastic simulation and experiment

    Kim, Nam Hyung

    Injection-compression molding (ICM) and co-injection molding have gained increasing importance in manufacturing of polymer products. Scientific understanding of these processes is presently limited and no attempts have been made to simulate co-injection molding using a viscoelastic model. In addressing this issue, the present study provides results of comprehensive viscoelastic simulations and experimental investigations of the residual stresses and birefringence in center-gated disk moldings of amorphous polymers obtained by ICM and sequential co-injection molding (SCIM) at various processing conditions. The governing equations for viscoelastic simulation of ICM and SCIM processes were derived using a nonlinear viscoelastic model. The equations were solved using a hybrid control volume/finite element/finite difference method. In general, residual stresses and birefringence in moldings arise from the flow- and thermally-induced contributions. To consider the thermal contribution, simulations and experimental study of birefringence in freely quenched multi-layered plates were carried out. The flow- and thermally-induced stresses were simulated using nonlinear and linear viscoelastic theories, respectively. The overall residual birefringence in moldings was obtained by summation of the flow- and thermally-induced birefringence contributions calculated using the stress-optical rule and photoviscoelastic constitutive equation, respectively. The numerical results were found to be in fair agreement with experimental data on the distribution of residual birefringence, Deltan, and average transverse birefringence, , of the ICM made from polycarbonate (PC) and polystyrene (PS). It was found that the melt temperature and compression stroke strongly affected the residual birefringence in ICM, while the mold temperature had less effect. The numerical and experimental results of the gapwise distribution of the residual birefringence, Delta n, and interface of the SCIM were obtained at various processing conditions and various combinations of multi-layers of PC, PS and PMMA. It was found that the melt temperature strongly affected the birefringence and interface distribution, while the mold temperature had less effect. In addition, the interface was strongly affected by the volume of injected skin melt. Numerical results were found to be in a fair agreement with experimental data.

  8. Fast prototyping of injection molded polymer microfluidic chips

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC) without any signs of failure or release. The key parameters to avoid mold failure are maximum adhesion strength of the epoxy to the nickel insert and minimum interfacial energy of the epoxy pattern to the molded polymer. Optimal molding of microstructures with vertical sidewalls was found for nickel inserts pre-coated by silicon oxide before applying the structured epoxy, followed by coating of the epoxy by a fluorocarbon layer prior to injection molding. Further improvements in the mold stability were observed after homogeneous coating of the patterned epoxy by a second reflowed layer of epoxy, likely due to the resulting reduction in sidewall steepness. We employed the latter method for injection molding bondable polymer microfluidic chips with integrated conducting polymer electrode arrays that permitted the culture and on-chip analysis of cell spreading by impedance spectroscopy

  9. Metal injection molding of titanium for medical and aerospace applications

    Scharvogel, Matthias; Winkelmueller, Wendelin

    2011-02-01

    Mixing of titanium powder and thermoplastic binders creates a feedstock that is injection molded similar to plastic, has a chemical and thermal debinding process, and then is sintered to form a net-shape or near-net shape part. TiJet Medizintechnik GmbH (TiJet) developed and uses its own feedstock and powder processing technology to achieve desired mechanical properties. This paper explains the theory of the process and the possibilities that result from the development of this new powder processing technology, such as new alloys, design possibilities, etc. Discussed will be the microstructure, chemical composition, and mechanical properties of the manufactured parts.

  10. Binder Removal from Powder Injection Molded 316L Stainless Steel

    M.A. Omar

    2011-01-01

    Full Text Available This study reports the results of preparation of 316L stainless steel polymer based injection molded feed stock, rheology of feed stock and injection molding. The plastic binder was extracted from molded samples. The binder extraction was carried out in two steps: by solvent and thermal techniques. The results showed that feed stock prepared was suitable for injection molding and this was confirmed by rheology data measured by using capillary rheometer. The test samples were injection molded without physical defects. Paraffin Wax (major binder was extracted by using solvent extraction for 300 min. The thermal debinding was performed four different heating rates rage 1-7C min-1. The SEM results showed that the PW was completely extracted from the test samples after 300 min.

  11. Comparative Thermal Analysis of Circular and Profiled Cooling Channels for Injection Mold Tools

    A.M.A. Rani

    2011-01-01

    Full Text Available Injection Mold Thermal Management is a critical issue in plastic injection molding process and has major effects on production cycle times that is directly linked with cost and also has effects on part quality. For this reason, cooling system design has great significance for plastic products industry by injection molding. It is crucial not only to reduce molding cycle time but also it considerably affects the productivity and quality of the product. The cooling channels in injection molding have circular cross section due to the conventional manufacturing technique of drilling. In Rapid Prototyping and Tooling techniques of fabricating conformal cooling channels, the channel cross section is again circular. In circular channel, there can be a problem that the distance from the edges of channel to the cavity is not constant and it is variable even for conformal channels. This can give problem of not having even heat dissipation. In this study, injection mold designing and thermal simulations were performed and comparison is presented between molds having cooling channels of circular cross section with mold with profiled cross section channels. Thermal analysis and simulations can effectively predict the performance of circular channels as compared to profiled channels. Some concepts are also presented for the manufacturing of molds with circular and profiled channels with the use of metal filled epoxies.

  12. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow

  13. Optimizing the Filling Time and Gate of the Injection Mold on Plastic Air Intake Manifold of Engines

    Shiqiang Zhang

    2013-01-01

    Full Text Available In order to acquire the best filling time, Mold trial is made by setting different injection time, or Mold flow software is used to analyze data recorded by computer. Whether doing successive trials or being simulated point by point, is very tedious. A new method is put forward-seeking the minimum of curve being simulated by Lagrange interpolation. The minimum of the curve is the best filling time. This method can improve the efficiency of the simulation analysis. The software Mold flow provides the possibility to simulate the flow processes of plastic air intake manifold with different gate location and number of injection mold and to predict the position of air traps and weld lines. The location and number of the gate in injection mold are determined by comparing analysis results and avoid mold adjustment and mold repairing. Finished injection mold of plastic air intake manifold on basis of simulation is perfect.

  14. Analysis of cavity pressure and warpage of polyoxymethylene thin walled injection molded parts: Experiments and simulations

    Guerrier, P.; Tosello, G.; Hattel, J. H.

    2015-05-01

    Process analysis and simulations on molding experiments of 3D thin shell parts have been conducted. Moldings were carried out with polyoxymethylene (POM). The moldings were performed with cavity pressure sensors in order to compare experimental process results with simulations. The warpage was characterized by measuring distances using a tactile coordinate measuring machine (CMM). Molding simulations have been executed taking into account actual processing conditions. Various aspects have been considered in the simulation: machine barrel geometry, injection speed profiles, cavity injection pressure, melt and mold temperatures, material rheological and pvT characterization. Factors investigated for comparisons were: injection pressure profile, short shots length, flow pattern, and warpage. A reliable molding experimental database was obtained, accurate simulations were conducted and a number of conclusions concerning improvements to simulation accuracy are presented regarding: pvT data, mesh, short shots, cavity pressure for process control validation as well as molding machine geometry modelling. Eventually, a methodology for improved molding simulations of cavity injection pressure, filling pattern and warpage was established.

  15. Replication of diffractive optical elements by injection molding

    Carvalho, E. J.; Braga, Edmundo S.; Cescato, Lucila H. D.

    2004-10-01

    In this paper we describe the replication processes of DOE carried out at the Diffractive Optics Laboratory/UNICAMP for replicating DOE. In particular we present the results obtained in the replication by injection molding of microlens array, diffraction gratings and polarizing elements. The measurements of the geometric dimensions of the DOE masters, the nickel shims and the replicated structures were accomplished by perfilometry, AFM and SEM microscopy. The optical properties of both the DOE masters and their replicas were evaluated by measuring of the diffraction efficiency as a function of the incident wavelength, for orthogonal polarizations.

  16. Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding

    Kalima, V.; Pietarinen, J.; Siitonen, S.; Immonen, J.; Suvanto, M.; Kuittinen, M.; Mnkknen, K.; Pakkanen, T. T.

    2007-10-01

    Small plastic components with sub-micron and micron gratings for diffractive optics were prepared by micro-injection molding. The aim of the work was to improve the filling of binary diffractive gratings with high aspect ratio by varying the molding parameters. Tests were made under conventional processing conditions with four transparent thermoplastics: polycarbonate (PC), cyclo-olefin polymer (COP), styrene-acrylonitrile copolymer (SAN), and hexafluoropropylene-tetrafluoroethylene-ethylene terpolymer (HFP-TFE-Et). Melt and mold temperatures were kept as recommended by the manufacturer. Other molding parameters (injection speed, shot size, vacuum, holding pressure, and injection plunger diameter) were varied, and their effect on the profile of the gratings was measured by atomic force microscopy. The filling of the gratings (500 nm and 1000 nm) was clearly affected by injection speed, shot size, and injection piston diameter, but the most significant factor was the type of material. Replication fidelity was highest with PC and lowest with SAN.

  17. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  18. A Review of Effects of Molding Methods, Mold Thickness and Other Processing Parameters on Fiber Orientation in Polymer Composites

    Ahmed N. Oumer

    2013-01-01

    Full Text Available In injection molded fiber reinforced composites, the mechanical and physical properties of the final product are highly dependent on the patterns of fibers alignment. The orientation of the fibers can be influenced by many factors such as molding methods, materials used, geometry of the part and other processing parameters. Thus, there is considerable interest in studying the factors that affect the fiber orientation, hence the properties of the final product. This study presented a general review on the effects of these factors on fiber orientation in injection molded fiber-reinforced polymer composites. The fiber orientation of a part made by conventional injection molding is compared with those produced by injection-compression and push-pull injection techniques. Effects of injection speed, type of flow and mold thickness on fiber orientation are also discussed. Hence, this review could assist in decisions regarding the design of composite products.

  19. Ion channel recordings on an injection-molded polymer chip

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnæs, Jørgen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-01-01

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made...... injection-molded polymer device were in good agreement with data obtained from the commercial system....

  20. Residual stress distribution in injection molded parts

    P. Postawa; Kwiatkowski, D.

    2006-01-01

    Purpose: The paper presents the results of the investigations of influence of the amorphous polystyrene (PS)processing on the diversity of the internal stresses observed in the injection moulded piece.Design/methodology/approach: For the tests, the standardized mould piece designed for the investigations ofthe processing shrinkage of thermoplastics materials has been used. The samples have been prepared using theDesign of Experiment (DoE) theory.The state of internal stresses has been analyse...

  1. Modeling injection molding of net-shape active ceramic components.

    Baer, Tomas (Gram Inc.); Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of representative Newtonian viscosity is dependent on the amount of heating of the initially room temperature mold. An early 3D transient model shows that the initial design of the distributor is sub-optimal. However, these simulations take several months to run on 4 processors of an HP workstation using a preconditioner/solver combination of ILUT/GMRES with fill factors of 3 and PSPG stabilization. Therefore, several modifications to the distributor geometry and orientations of the vents and molds have been investigated using much faster 3D steady-state simulations. The pressure distribution for these steady-state calculations is examined for three different distributor designs to see if this can indicate which geometry has the superior design. The second modification, with a longer distributor, is shown to have flatter, more monotonic isobars perpendicular to the flow direction indicating a better filling process. The effects of the distributor modifications, as well as effects of the mold orientation, have also been examined with laboratory experiments in which the flow of a viscous Newtonian oil entering transparent molds is recorded visually. Here, the flow front is flatter and voids are reduced for the second geometry compared to the original geometry. A horizontal orientation, as opposed to the planned vertical orientation, results in fewer voids. Recently, the Navier-Stokes equations have been stabilized with the Dohrman-Bochev PSPP stabilization method, allowing us to calculate transient 3D simulations with computational times on the order of days instead of months. Validation simulations are performed and compared to the experiments. Many of the trends of the experiments are captured by the level set modeling, though quantitative agreement is lacking mainly due to the high value of the gas phase viscosity necessary for numerical stability, though physically unrealistic. More correct trends are predicted for the vertical model than the horizontal model, which is serendipitous as the actual mold is held in a vertical geometry. The full, transient mold filling calculations indicate that the flow front is flatter and voids may be reduced for the second geometry compared to the original geometry. The validated model is used to predict mold filling for the actual process with the material properties for the PZT paste, the original distributor geometry, and the mold in a vertical orientation. This calculation shows that voids may be trapped at the four corners of the mold opposite the distributor.

  2. Residual orientation in micro-injection molded parts

    The residual orientation following micro-injection molding of small rectangular plates with linear polyethylene has been examined using small-angle neutron scattering, and small- and wide-angle X-ray scattering. The effect of changing the molding conditions has been examined, and the residual chain orientation has been compared to the residual orientation of the crystallites as a function of position in the sample. This study has found that, for micromoldings, the orientation of the crystallites decreases with increasing injection speed and increasing mold thickness. The combined data suggest that the majority of the orientation present comes from oriented crystal growth rather than residual chain orientation.

  3. Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert

    The development of MEMS and microsystems needs a reliable mass production process to fabricate micro components with micro/nano-scale features. In our study, we used the micro injection molding process to replicate micro/nano-scale channels and ridges from a bulk metallic glass (BMG) cavity insert. High-density polyethylene was used as the molding material and the design of experiment approach was adopted to systematically and statistically investigate the relationship between machine parameters, real process conditions and replication quality. The peak cavity pressure and temperature were selected as process characteristic values to describe the real process conditions that the material experienced during the filling process. The experiments revealed that the replication of ridges, including feature edge, profile and filling height, was sensitive to the flow direction; cavity pressure and temperature both increased with holding pressure and mold temperature; replication quality can be improved by increasing cavity pressure and temperature within a certain range. The replication quality of micro/nano features is tightly related to the thermomechanical history of material experienced during the molding process. In addition, the longevity and roughness of the BMG insert were also evaluated based on the number of injection molding cycles. (paper)

  4. 42CrMo4 steel produced by metal injection molding

    Domínguez Pérez, Jonatan

    2013-01-01

    MIM (Metal Injection Molding) is the more attractive alternative compared with the classical powder metallurgy. The process combines the advantage of powder metallurgy (more independence of material sampling) and the plastic injection molding (more independence of shape design). Advantages in mechanical properties are given by an higher density and the regular microstructure with controllable grain size and also from totally closed porosity with rounded shape of pores. The aim of this work...

  5. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  6. Effect of injection-molding-induced residual stress on microchannel deformation irregularity during thermal bonding

    Micro injection molding offers a promising approach to rapidly produce thermoplastic microfluidic substrates in large volumes. Many research works have been focused on the replication fidelity of microstructures by injection molding. However, there has not been any investigation on the effect of molded-in residual stress on microchannel deformation during the subsequent thermal bonding process. These effects could be important, because the residual stress developed due to anisotropic polymer flow orientation and inhomogeneous cooling may lead to abnormal microchannel distortion. In the direct thermal bonding process, asymmetric cross-sectional distortion was observed in well-formed microchannels aligned perpendicular to the polymer melt injection direction. This asymmetric distortion is attributed to the residual stress introduced into the substrates during molding, particularly in the surface region where microchannels are molded. Design of experiment on injection molding was carried out to reduce the residual stress in order to achieve the lowest microchannel deformation irregularity, which is a new term defined in this study. The direct thermal bonding was utilized as a feasible non-destructive indirectly quantitative method to evaluate the effect of residual stress around microchannel regarding deformation irregularity. The dominant molding parameters with positive effects were found to be melt temperature, mold temperature as well as cooling time after packing. The presence of the residual stress was also demonstrated through photoelastic stress analysis in terms of phase retardation. With improved molding condition, the absolute retardation difference around microchannels aligned parallel and perpendicular to the molding direction could be tuned to the same level, which indicates that the molded-in residual stresses have been moderated. (paper)

  7. Design of Multimodel based MPC and IMC control schemes applied to injection molding machine

    Kanaga Lakshmi

    2014-03-01

    Full Text Available Good control of plastic melt temperature for injection molding is very important in reducing operator setup time, ensuring product quality, and preventing thermal degradation of the melt. The controllability and set points of barrel temperature also depend on the precise monitoring and control of plastic melt temperature. Motivated by the practical temperature control of injection molding, this paper proposes MPC and IMC based control scheme. A robust system identification and control methodology is developed which uses canonical varieties analysis for identification and model predictive control for regulation. The injection molding process consists of three zones and the mathematical model for each of the zone is different. The control output for each zone controller is assigned a weight based on the computed probability of each model and the resulting action is the weighted average of the control moves of the individual zone controllers.   Keywords: Injection-Molding Machine (IMM, IMC Control, Temperature Control.

  8. Fabrication of microstructures with extreme structural heights by vacuum reaction injection molding and electroforming

    Development work has resulted in a vacuum reaction injection molding (RIM) process which allows to fabricate plastic microstructures having minimum lateral dimensions in the micrometer range and structural heights of several hundred micrometers. The plastic structures generated by this method on an electrically conductive gate plate can be used directly as templates for the production of metallic microstructures through electroforming. The mold inserts for the molding tools used in the RIM process are fabricated by synchrotron radiation lithography and electroforming on an electrically conductive base plate. Particularly stable mold inserts made of one single material with extremely plane surfaces are obtained by electrodeposition of metal such that it stands by several millimeters over the resist structures generated by lithography. The mold insert produced in this way is separated from the base plate and the resist structures are subsequently removed. The molding tests were performed at a purpose developed vacuum RIM apparatus. Methacrylate base casting resins were used with an internal mold release agent added in order to reduce the adhesion of the produced part on the mold insert. By the example of fabrication of separation nozzle structures with minimum lateral dimensions of about 3 ?m and a maximum structural height of 310 ?m it has been demonstrated that molding can be performed at 100% yield and that service lives of the mold inserts can be achieved which are adequate for mass production. (orig./HP)

  9. Metal Injection Molding (MIM of Magnesium and Its Alloys

    Martin Wolff

    2016-05-01

    Full Text Available Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in further technical fields. This study focusses on the performance of MIM-processing of magnesium alloy powders. It includes Mg-specific development of powder blending, feedstock preparation, injection molding, solvent and thermal debinding and final sintering. Even though Mg is a highly oxygen-affine material forming a stable oxide layer on each particle surface, the material can be sintered to nearly dense parts, providing mechanical properties matching those of as cast material. An ultimate tensile strength of 142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa and 8% elongation at fracture could be achieved using novel organic polymer binders for the feedstock preparation. Thus, first implant demonstrator parts could be successfully produced by the MIM technique.

  10. Correlation between Molding Conditions and Foam Morphology in Microcellular Injection Molding

    Yamada, Takehiro; Murata, Yasuhiko; Yokoi, Hidetoshi

    In this study, a quantitative analysis of foam cell distribution at the cross section of products in microcellular injection molding was conducted concerning the relationship between the mold conditions and laminar morphology. The following results were obtained; (1) The morphology consists of a surface layer (Skin layer I) with silver streaks, a layer (Skin layer II) with no cells inside, and a foam layer (Core layers I, II, III) with many cells of different size. (2) The morphology changes depending on the molding conditions and cavity position. (3) The core layer domain decreases from the gate to the distal end. (4) Injection conditions greatly affect the thickness of Skin layer II. (5) Maximum filling pressure in the mold affects mainly the core layer of the foam morphology.

  11. Experimental and numerical analysis of the temperature distribution of injection molded products using protruding microprobes

    Liu, Shih-Jung; Ho, Chia-Wei

    2011-05-01

    Injection molding has been one of the most important polymer processing methods for manufacturing plastic parts. In the process, the temperature is an important parameter that influences process features such as cycle times, crystallization rates, degree of crystallinity, melt flow properties, and molded product qualities. This study aims to, experimentally and numerically, examine the three-dimensional temperature distribution along the melt flow path of injection molded parts. A special experimental set-up, which includes an injection mold equipped with protruding microprobes for guiding embedded thermocouples, was designed and built to measure the temperature field along the flow path, i.e., inside the runner and the cavity, of injection molded products. The experimental results suggested that the disturbance induced by the probes remained negligible and precise temperature profiles could be measured at various positions inside the cavity. A significant increase of melt temperature was found to result from the viscous dissipation of the polymeric materials in the runner. Additionally, a commercially available code was employed to simulate and predict the temperature variation in injection molded parts. It was shown that the numerical simulation predicted better the temperature distributions inside the cavity than those along the runner.

  12. POWDER INJECTION MOLDING OF SIC FOR THERMAL MANAGEMENT V

    Valmikanathan Onbattuvelli

    2012-06-01

    Full Text Available Silicon carbide (SiC exhibits many functional properties that are relevant to applications in electronics, aerospace, defense and automotive industries. However, the successful translation of these properties into final applications lies in the net-shaping of ceramics into fully dense microstructures. Increasing the packing density of the starting powders is one effective route to achieve high sintered density and dimensional precision. The present paper presents an in-depth study on the effects of nanoparticle addition on the powder injection molding process (PIM of SiC powder-polymer mixtures. In particular, bimodal mixtures of nanoscale and sub-micrometer particles are found to have significantly increased powder packing characteristics (solids loading in the powder-polymer mixtures. The influence of nanoparticle addition on the multi-step PIM process is examined. The above results provide new perspectives which could impact a wide range of materials, powder processing techniques and applications.

  13. Process for Making Ceramic Mold

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    2001-01-01

    An improved process for slip casting molds that can be more economically automated and that also exhibits greater dimensional stability is disclosed. The process involves subjecting an investment pattern, preferably made from wax, to successive cycles of wet-dipping in a slurry of colloidal, silica-based binder and dry powder-coating, or stuccoing with plaster of Paris or calcium sulfate mixtures to produce a multi-layer shell over the pattern. The invention as claimed entails applying a primary and a secondary coating to the investment pattern. At least two wet-dipping on in a primary slurry and dry-stuccoing cycles provide the primary coating, and an additional two wet-dippings and dry-stuccoing cycles provide the secondary, or back-up, coating. The primary and secondary coatings produce a multi-layered shell pattern. The multi-layered shell pattern is placed in a furnace first to cure and harden, and then to vaporize the investment pattern, leaving a detailed, high precision shell mold.

  14. Advancements on the simulation of the micro injection moulding process

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard; Islam, Aminul

    2013-01-01

    Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities ...

  15. A comparative study of Ni-Ti and Ni-Ti-Cu shape memory alloy processed by plasma melting and injection molding

    Highlights: → There is only one paper in the literature that uses the PSPP process to fabricate shape memory alloys (SMA). → Two specific mechanical assemblies have been developed to measure force generated by SMA small strips. → A relationship between hardness and force generated by the studied Ni-Ti SMA was first established. → A more focused and specific comparison was still necessary to clarify the effect of copper in Ni-Ti. -- Abstract: Shape memory alloys (SMA) are smart materials that present potential applications in such diverse areas as aeronautics, automotive, electronics, biomedicine and others. This work aimed at comparing some physical and functional properties of a Ni-Ti-Cu and equiatomic Ni-Ti SMA. Therefore, Ni-50Ti and Ni-50Ti-5Cu (at.%) were manufactured using plasma melting followed by injection in metallic mold, named Plasma Skull Push-Pull (PSPP) process. Afterwards, samples of both Ni-Ti based SMA were annealed at 1113 K during 2400 s and water quenched. The obtained specimens were analyzed by optical microscopy, microhardness, differential scanning calorimetry, electrical resistance as a function of temperature, and force generation tests. The results showed that Ni-Ti alloy presented higher levels of hardness and lower generated recover forces during heating when compared to the Ni-Ti-Cu SMA. Moreover, the Ni-Ti alloy holds hysteresis larger than the Ni-Ti-Cu SMA as a result of the presence of the R-phase transformation. There was also a better stability under thermal cycling of NiTiCu SMA compared with the equiatomic NiTi.

  16. Fatigue failure properties of injection molded superalloy compacts

    Superalloys have been used especially for aerospace and atomic energy applications because of their excellent attributes of high corrosion and oxidation resistance, and high temperature strength. A Inconel 718 is one of representative Ni-base superalloys. However, it is not easy to produce the complicate shaped parts with low cost due to their poor workability. In this study, Metal Injection Molding (MIN) process, one of near net-shape powder forming, has been applied to fabricate the Inconel 718 alloy compacts using type of powder; gas and water atomized powders. By optimizing the MIM process, their obtained relative density was near full density (98 - 99%). However, the fatigue strength of heat treated sintered Inconel 718 compacts showed 65% of heat treated wrought materials due to the remained pores. The effect of remained pores on fatigue strength was discussed by the prediction equation of endurance limit considering the inclusion. (author)

  17. Applications of thin carbon coatings and films in injection molding

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness and 71wt.% to 79wt.% in the nanopaper itself after resin infusion) and high conductivity of the nanopaper. Instead of premixing nanoparticles with IMC coating, nanopapers enable the use of low viscosity IMC without CB coating to impregnate the CNF network in order to reach high electrical conductivity and EMI shielding values. (Abstract shortened by UMI.).

  18. Caracterización del aluminio para la fabricación de insertos de moldes de inyección de plásticos. // Aluminium alloys behaviour used in the manufacturing of cavities in molds for plastic injection process.

    H. González Zulueta

    2008-09-01

    Full Text Available Se describe una investigación experimental realizada para estudiar el comportamiento en condiciones reales de insertospara cavidades fabricados con dos aleaciones de aluminio diferentes. Se fabricaron 1000 piezas (probetas para ensayo deplásticos de polipropileno, empleando un molde de diseño normalizado con insertos para la cavidad correspondiente,fabricados con cada una de las aleaciones a ensayar. Cada 250 piezas producidas, tanto las cavidades como la piezaelaborada fueron medidas en zonas previamente seleccionadas y estos resultados se emplearon para caracterizar elcomportamiento de las aleaciones ensayadas. Las condiciones de presión y temperatura del proceso de inyección seseleccionaron atendiendo a los requerimientos industriales que corresponden al plástico utilizado.Palabras claves: Moldes, cavidades, aluminio, experimento, inyección de plástico.__________________________________________________________________________Abstract:The behaviour of cavities in molds for plastic injection, manufactured with two different aluminium alloys under realconditions is described by experimental investigation. 1000 pieces (probes for testing mechanical properties of plastics wereproduced from polypropylene, using a normalized designed mold with specially manufactured cavities and the two testedalloys. For the produced pieces, the dimension (width of the cavities and the elaborated pieces were measured in previouslyselected areas, these results were used to characterize the behaviour of the tested alloys. The conditions of pressure andtemperature for the injection process were selected according to the industrial requirements for the plastic used in theinvestigation.Key words: Mold, cavity, aluminium, experiment.

  19. Three dimensional modeling of metal powder injection molding

    In this work, a three-dimensional transient finite element flow analysis code is used to solve powder injection molding problems. Free surface, non-isothermal flow solutions are obtained by solving the momentum, mass and energy equations. An additional transport equation is solved for the front tracking function indicating the flow front position. The flow of 17-4 stainless steel powder with a water-soluble binder is simulated in a thick three-dimensional part with a diaphragm gate. The compound used is very sensitive to thermal effects because of its high thermal diffusivity and highly sensitive temperature dependence of the viscosity. The simulation predicted several unusual experimentally observed flow patterns: bypass flow (flow external and/or internal to the initial annular flow) and nonuniform flow (nonaxisymmetric flow in a preferred direction through the diaphragm gate). The work considers the effect of filling time, melt/mold temperature, inertia, yield stress, and wall slip on flow patterns, in order to identify the processing conditions that separate regions of uniform and nonuniform flow. (author)

  20. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B.; Pötschke, P.

    2015-05-01

    A combination of high dielectric permittivity (ɛ') and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ɛ' and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ɛ' and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube's arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ɛ'=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ɛ'=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  1. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B. [Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada M5S 3G8 (Canada); Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  2. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications

  3. The shrinkage behavior and surface topographical investigation for micro metal injection molding

    Islam, A.; Giannekas, N.; Marhfer, D. M.; Tosello, G.; Hansen, H. N.

    2015-05-01

    Metal injection molding (MIM) is a near net shape manufacturing technology that can produce highly complex and dimensionally stable parts for high end engineering applications. Despite the recent growth and industrial interest, micro metal molding is yet to be the field of extensive research especially when it is compared with micro molding of thermoplastics. The current paper presents a thorough investigation on the process of metal injection molding where it systematically characterizes the effects of important process conditions on the shrinkage and surface quality of molded parts with micro features. Effects of geometrical factors like feature dimensions and distance from the gate on the replication quality are studied. The influence of process conditions on the achievable roughness for the final metal parts is discussed based on the experimental findings. The test geometry is characterized by 2D surface structures containing thin ribs of different aspect ratios and thicknesses in the sub-mm dimensional range. The test parts were molded from Catamold 316L with a conventional injection molding machine. Afterwards, the parts were de-binded and sintered to produce the final test samples. Among the different process parameters studied, the melt temperature was the most influential parameters for better replication and dimensional stability of the final part. The results presented in the paper clearly show that the shrinkage in metal part is not uniform in the micro scale. It depends on the feature dimensions and also on the process conditions. A thin section of the part exhibits higher relative shrinkage compared with a thicker section. Based on these findings, it can be concluded that a micro part molded by MIM process will have higher relative shrinkage compared to a macro part made with the same process.

  4. Multiple Performance Optimization for the Best Metal Injection Molding Green Compact

    M.R. Harun

    2011-01-01

    Full Text Available This study presents and demonstrates the effectiveness of optimizing multiple quality characteristics of the injection molding of the MIM green compacts via Taguchi method-based Grey analysis. The modified algorithm adopted here was successfully used for both detraining the optimum setting of the process parameters and for combining multiple quality characteristics into one integrated numerical value called Grey relational grade. The significant molding parameters were identified as (1 Injection Pressure (2 Injection Temperature (3 Powder Loading (4 Mold Temperature (5 Holding Pressure and (6 Injection Speed. In addition, the multiple quality characteristics required are: (1 less defects (2 strong and (3 denser compact. The result concluded that the powder loading (C is very significant for the combination of the quality characteristics.

  5. Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding

    Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin

    2015-12-01

    A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.

  6. The Shrinkage Behavior and Surface Topographical Investigation for Micro Metal Injection Molding

    Islam, Aminul; Giannekas, Nikolaos; Marhfer, David Maximilian; Tosello, Guido; Hansen, Hans Nrgaard

    2014-01-01

    especially when it is compared with micro molding of thermoplastics. The current paper presents a thorough investigation on the process of metal injection molding where it systematically characterizes the effects of important process conditions on the shrinkage and surface quality of molded parts with micro....... Among the different process parameters studied, the melt temperature was the most influential parameters for better replication and dimensional stability of the final part. The results presented in the paper clearly show that the shrinkage in metal part is not uniform in the micro scale. It depends on...... the feature dimensions and also on the process conditions. A thin section of the part exhibits higher relative shrinkage compared with a thicker section. Based on these findings, it can be concluded that a micro part molded by MIM process will have higher relative shrinkage compared to a macro part...

  7. Fiber-Based, Injection-Molded Optofluidic Systems

    Matteucci, Marco; Triches, Marco; Nava, Giovanni; Kristensen, Anders; Pollard, Mark R.; Berg-Sørensen, Kirstine; Taboryski, Rafael J.

    2015-01-01

    We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow pre...

  8. Fast prototyping of injection molded polymer microfluidic chips

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    , likely due to the resulting reduction in sidewall steepness. We employed the latter method for injection molding bondable polymer microfluidic chips with integrated conducting polymer electrode arrays that permitted the culture and on-chip analysis of cell spreading by impedance spectroscopy....

  9. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    Jafar Gharechahi

    2014-08-01

    Full Text Available Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques.SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05.After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes.Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  10. Simulation and measurement of optical aberrations of injection molded progressive addition lenses.

    Li, Likai; Raasch, Thomas W; Yi, Allen Y

    2013-08-20

    Injection molding is an important mass-production tool in the optical industry. In this research our aim is to develop a process of combining ultraprecision diamond turning and injection molding to create a unique low-cost manufacturing process for progressive addition lenses (PALs). In industry, it is a well-known fact that refractive index variation and geometric deformation of injection molded lenses due to the rheological properties of polymers will distort their optical performance. To address this problem, we developed a method for determining the optical aberrations of the injection molded PALs. This method involves reconstructing the wavefront pattern in the presence of uneven refractive index distribution and surface warpage using a finite element method. In addition to numerical modeling, a measurement system based on a Shack-Hartmann wavefront sensor was used to verify the modeling results. The measured spherocylindrical powers and aberrations of the PALs were in good agreement with the model. Consequently, the optical aberrations of injection molded PALs were successfully predicted by finite element modeling. In summary, it was demonstrated in this study that numerically based optimization for PAL manufacturing is feasible. PMID:24085007

  11. Effects of Process Parameters on Replication Accuracy of Microinjection Molded Cyclic Olefins Copolymers Parts

    Lin, Hsuan-Liang; Chen, Chun-Sheng; Lee, Ruey-Tsung; Chen, Shia-Chung; Chien, Rean-Der; Jeng, Ming-Chang; Hwang, Jiun-Ren

    2013-04-01

    In this study, the effects of various processing parameters of microinjection molding on the replication accuracy of the micro featured fluidic platform used for DNA/RNA tests are investigated. LIGA-like processes were utilized to prepare a silicon-based SU-8 photoresist, followed by electroforming to make a Ni-Co-based stamp. A cyclic olefin copolymer (COC) was used as the injection molding material. The molding parameters associated with the replication accuracy of micro channel parts were investigated. It was found that for microinjection molded devices, the replication accuracies of the imprint width and depth increase with increasing of mold temperature, melt temperature, injection velocity, and packing pressure.

  12. Effects of adding injection-compression to rapid heat cycle molding on the structure of a light guide plate

    Hong, Seokkwan; Min, Inki; Yoon, Kyunghwan; Kang, Jeongjin

    2014-01-01

    This study investigates the effects of adding injection-compression to rapid heat cycle molding (RHCM) (rapid heat cycle injection-compression molding (RICM)) on the physical quality and optical anisotropy of a molded light guide plate (LGP). Transcription ratio of microstructure, uniformity of part thickness and birefringence were experimentally evaluated on a 7 inch LGP of nominal thickness of 1.12 mm (including a microstructure array of 30 µm diameter and 14 µm height). The designed mold was equipped with rapid heating and compressing facilities and a microstructured nickel stamper was fabricated by UV LIGA process. In addition, to investigate the efficacy of RICM, experiments involving conventional injection molding (CIM), ICM, and RHCM were conducted in parallel with RICM using the same mold. RHCM and RICM yielded excellent transcription ratios for the microstructure, while CIM and RICM provided high thickness uniformity and low birefringence. Thus, RICM obtains high transcription ratio of microstructure, uniform thickness and low birefringence.

  13. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order to...... enable the optimization of the IHAIM process for nano-pattern replication, it is necessary to develop robust methods for quantitative characterization of the replicated nano-patterns. For this purpose, three different approaches for quantitative characterization of random nano-patterns are applied and...

  14. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  15. FPGA-based multiprocessor system for injection molding control.

    Muoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A

    2012-01-01

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036

  16. FPGA-Based Multiprocessor System for Injection Molding Control

    Roque A. Osornio-Rios

    2012-10-01

    Full Text Available The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

  17. Hot mold casting process of ancient East India and Bangladesh

    Barnali Mandal; Prasanta Kumar Datta

    2010-01-01

    Ancient casting process for production of brass or bronze utensils and icons were made in hot molds using clay molded investment casting or piece mold process, as presumed by archaeologists. Piece mold process is still traditionally practiced in many parts of Eastern India and Bangladesh along with investment casting process. Incidentally, Bengal artisans are more accustomed to piece mold process unlike tribal artisans who practiced investment casting process. This piece mold casting process ...

  18. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    Giboz, Julien; Copponnex, Thierry; Ml, Patrice

    2009-02-01

    The skin-core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (?part) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin-core' morphology is present for the macropart, the ?part exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities.

  19. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    The skin–core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin–core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities

  20. Cooling effects study by considering a turbulence model in injection molding

    Hsu, Fu-Hung; Wu, Bo-Han; Huang, Chao-Tsai; Chang, Rong-Yeu

    2014-05-01

    Cooling stage is critical in injection molding process. A well designed cooling system can effectively shorten cycle time and improve product quality. Three-dimensional cooling analysis has been embedded in injection molding simulation which provides a useful tool for cooling system design validation. However, the current simulation tool is not perfect yet since it does not consider turbulent flow and pipe surface roughness effect. In the current study, a latest simulation tool was applied which can predict the turbulent flow effect on cooling. Two cooling systems (conventional and conformal) were simulated and compared to each other. Turbulence model and surface roughness effects were also studied. The simulation results show a good agreement with experimental data which is helpful at the design stage of an injection molding cooling system.

  1. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Yoshizumi, F.; Funatsu, A.; Yazawa, H. [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  2. Influence of Mold Surface Treatments on Flow of Polymer in Injection Moulding. Application to Weldlines

    Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.

    2007-04-01

    Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.

  3. Net shaping of tungsten components by micro powder injection molding

    For future fusion power plants, a He-cooled Divertor design has been developed by the Forschungszentrum Karlsruhe. The Divertor as one of the plasma facing components has to withstand high heat loads of 10 MW/m2 as well as sputtering due to ion impact on the surface of the Divertor. Tungsten is considered the most promising material to be used for this application. Because of the high hardness of tungsten, fabrication of these parts by standard shaping technologies for steels such as milling is, depending on the component, either difficult or even impossible. The objective of this work is the adoption of tungsten on powder injection moulding (PIM) as a widely used mass production method for net shaping of micro structured ceramic and metal parts. It is well known that for design accuracy and good surface quality as well as high sinter activity the particle size of powders applied to micro PIM should be as small as possible while the powder content of the feedstock should be as high as possible but at least 50 vol.%. In case of tungsten, industrial available powders are usually highly agglomerated. In order to provide a homogeneous feedstock with a solid load above 50 vol.%, powders applied to PIM have to be deagglomerated. Depending on the grain size, tungsten shows different kinds of agglomeration states. Ultra fine grain sizes below 1 μm build sponge like agglomerates, while bigger grain sizes result in agglomerates being built of individually grown crystals. It was found that pre-milling of powders with a grain size of 0,7 μm FSSS has nearly no effect on the resulting viscosity whereas in case of 3 μm FSSS deagglomeration drastically improves the viscosity and the processability of the feedstock. For further improvement of the feedstock, in this paper grain size dependent variations of the solid load shall be discussed to define an optimised grain size for Micro PIM of tungsten components. For initial PIM experiments, a first feedstock based on a tungsten powder with a grain size of 2,5 μm FSSS and a solid load of 55 vol.% was developed and a microstructured cavity for a gear housing as well as Slot Arrays with 24 Slots were injection molded. Further on, tensile test bars and charpy-test specimens were replicated to provide mechanical data of tungsten samples being prepared by PIM. By debinding and sintering of injection molded tungsten parts, a density of 96% and a residual carbon content <0,003 wt.% was achieved. (author)

  4. Evaluation of W-Cu metal matrix composites produced by powder injection molding and liquid infiltration

    The near net shape processing of tungsten-copper metal matrix composites by powder injection molding and liquid copper infiltration was studied in this paper. In this technique, powder injection molded bimetallic components were produced. The component was debinded and subsequently heated to an elevated temperature. This facilitated the sintering of the high melting point metal and the liquidation of the lower melting point for infiltration into the preform of the former. Feasibility of this method in the manufacture of tungsten-copper metal matrix composites with high percentage copper, up to 38 wt.%, was demonstrated and mechanical properties were evaluated in this study

  5. Injection molding micro patterns with high aspect ratio using a polymeric flexible stamper

    2011-11-01

    Full Text Available Poor filling occurs during the injection molding process of micro- or nano- scale patterns mainly because the hot polymer melt rapidly cools and its skin quickly solidifies upon contact with the mold surface. In this study, it is proposed to use Polyethylene terephthalate (PET film coated with patterned polyurethane acrylate (PUA as an effective thermal barrier. It can significantly hinder heat transfer into the mold during the molding process and thus may keep the melt viscosity low for longer duration. As a result, the replication would be improved not only during the filling phase but also during the packing phase. In order to verify the validity of the use of polymeric stamper, the melt-film interface temperature was evaluated by numerical simulation. Experimental results indicated that patterns possessing widths within the range of one to tens of micrometers and a height of approximately 10 µm were successfully filled and demolded.

  6. Measurement of solidification and melting behavior of resin in injection molding and detection of flaws molded parts by using ultrasonic waves

    Injection molding of thermoplastics is widely used in many industries. However, it is not so easy to design the mold and to determine the optimal injection conditions. Therefore, a number of CAR mold design software packages for simulating the injection molding process have been developed. In order to confirm the results obtained from CAE, it is necessary to compare the numerical results with the experimental ones. In practice, the filling behavior has been observed with an optical visualization technique, but the solidification behavior of melted resin filled into the cavity has not yet been observed. It has been indirectly detected by measuring the pressure in the mold cavity. On the other hand, the melting behavior of solid resin in the barrel of an infection molding machine has influence on the quality of a molded part. Therefore, it is important to observe the melting behavior of solid resin in the barrel. In this study a method for measuring the solidification behavior in the cavity and the melting behavior in the barrel have been developed by using ultrasonic waves. Moreover, a method of detecting a flaw or a different material included in the molded part has been developed by using ultrasonic waves. Especially, a flaw close to the surface of the molded part can be detected by separating the flaw echo from the surface echo of the molded part. It was determined that the thickness of the solid layer of the melted resin filled into the cavity can be measured by using ultrasonic waves. The melting behavior of the resin on the barrel surface can be observed by measuring the amplitude of the reflected echo on the interface between the barrel and resin. Moreover, the flaw close to the surface of the molded part can be detected by using the ultrasonic waves.

  7. Modeling morphology evolution during injection molding of thermoplastic polymers

    Pantani, R.; De Santis, F.; Speranza, V.; Titomanlio, G.

    2015-05-01

    The effect of temperature, pressure and flow on relaxation time (or spectrum), crystallization time, nucleation density and rate, spherulite growth rate, the interrelation among these quantities and the distributions of deformation rate and cooling time during the process all together determine the morphology distribution in the final object. A simple model linking all these quantities was developed to describe morphology evolution during polymer processing. The effect of flow on nucleation density and growth rate of an isotactic polypropylene (iPP) is described on the basis of a molecular stretch parameter and the stretch evolution is described by a simple nonlinear Maxwell model, whose relaxation time, in its turn, is determined by the molecular stretch and, obviously, temperature pressure and crystallinity [1]. The model is applied to the description of morphology evolution during the injection molding process of a very accurately characterized iPP as far as rheology, quiescent crystallization and effect of flow on nucleation and spherulitic growth rates. Main characteristics of final morphology are reproduced by the simulations.

  8. Metal Injection Molding (MIM of NdFeB Magnets

    Hartwig T.

    2014-07-01

    Full Text Available Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.

  9. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  10. Single Performance Optimization of Micro Metal Injection Molding for the Highest Green Strength by Using Taguchi Method

    M.H.I Ibrahim

    2010-06-01

    Full Text Available Micro metal injection molding is drawing attention recently as one the most cost effective processes in powder metallurgy to produce small-scale intricate part and competitive cost for mass production of micro components where it is greatly influenced by injection parameter. Thus, this paper investigated the optimization of highest green strength which plays an important characteristic in determining the successful of micro MIM. Stainless steel SS 316L was used with composite binder, which consists of PEG and PMMA while SA works as a surfactant. Feedstock with 61.5% with several injection parameters were optimized which highly significant through screening experiment such as injection pressure(A, injection temperature(B, mold temperature(C, injection time(D and holding time(E. Besides that, interaction effects between injection pressure, injection temperature and mold temperature were also considered to optimize in the Taguchis orthogonal array. Analysis of variance (ANOVA in terms of signal-to-noise ratio (S/N-larger is better for green strength was also presented in this paper. Result shows that interaction between injection temperature and mold temperature (BxC give highest significant factor followed by interaction between injection pressure and injection temperature (AxB. Single factor that also contributes to significant optimization are mold temperature(C, injection time (D and injection pressure (A. Overall, this study shows that Taguchi method would be among the best method to solve the problem with minimum number of trials.

  11. An in-mold packaging process for plastic fluidic devices.

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes. PMID:21446432

  12. Pressureless sintering behavior of injection molded alumina ceramics

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  13. Foam injection molding of poly(lactic acid) with physical blowing agents

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  14. Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend

    Microcellular polypropylene/waste ground rubber tire powder blend processing was performed on an injection-molding machine with a chemical foaming agent. The molded samples produced based on the design of experiments (DOE) matrices were subjected to tensile testing and scanning electron microscope (SEM) analyses. Molding conditions and waste ground rubber tire (WGRT) powder have been found to have profound effects on the cell structures and mechanical properties of polypropylene (PP) and waste ground rubber tire powder composite samples. The result shows that microcellular PP/WGRT blend samples exhibit smaller cell size and higher cell density compare with polypropylene resin. Among the molding parameters studied, chemical foaming agent weight percentage has the most significant effect on cell size, cell density, and tensile strength. The results also suggest that tensile strength of microcellular PP/WGRT composites is sensitive to weight reduction, and skin thickness.

  15. Reinforcement and structure development in injection molding of bone-analogue composites

    Sousa, R. A.; Reis, R.L.; Cunha, A.M.; Bevis, M. J.

    2002-01-01

    Composites of high density polyethylene (HDPE) with hydroxyapatite (HA—the main inorganic constituent of human bone) were produced by extrusion compounding and subsequent injection molding. Shear controlled orientation in injection molding (SCORIM) was used deliberately to induce a strong anisotropic character in the composite materials. Bi-composite moldings featuring a sandwich like morphology were also produced by mono-sandwich injection molding. These composites combine ...

  16. Integrated mold/surface-micromachining process

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  17. A Simulation Study of Conformal Cooling Channels in Plastic Injection Molding

    Omar A. Mohamed, S.H. Masood, Abul Saifullah

    2013-09-01

    Full Text Available In injection molding process, the cooling channel performance is one of the most crucial factors because it has significant effect on both production rate and the quality of the plastic part. In order to reduce the cycle time, and control the uniform distribution of temperature, it is necessary to create conformal cooling channels, which conform to the shape of the mold cavity and core. This paper presents a simulation study of different types of cooling channels in an injection molded plastic part and compares the performance in terms of time to ejectiontemperature, shrinkage, temperature profile, and part warpage to determine which configuration is more appropriate to provide uniform cooling with minimum cycle time. Autodesk Moldflow Insight (AMI simulation software is used to examine the results of the cooling channels performance.

  18. Powder Injection Molding of Ceria-Stabilized, Zirconia-Toughened Mullite Parts for UAV Engine Components

    Martin, Renee; Vick, Michael; Enneti, Ravi K.; Atre, Sundar V.

    2013-11-01

    Powder injection molding (PIM) of ceria-stabilized, zirconia-toughened mullite composites were investigated in the present article with the goal of obtaining performance enhancement in complex geometries for energy and transportation applications. A powder-polymer mixture (feedstock) was developed and characterized to determine its suitability for fabricating complex components using the PIM process. Test specimens were injection molded and subsequently debound and sintered. The sintered properties indicated suitable properties for engine component applications used in unmanned aerial vehicles (UAVs). The measured feedstock properties were used in computer simulations to assess the mold-filling behavior for a miniature turbine stator. The results from the measurements of rheological and thermal properties of the feedstock combined with the sintered properties of the ceria-stabilized, zirconia-toughened mullite strongly indicate the potential for enhancing the performance of complex geometries used in demanding operating conditions in UAV engines.

  19. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have, in...

  20. Carbon Nanotubes Reinforced Copper Matrix Nanocomposites via Metal Injection Molding Technique

    Norani M. Mohamed

    2012-01-01

    Full Text Available New thermal management solutions are required to provide cost-effective means of dissipating heat from next generation microelectronic devices. In this paper, fabrication of heat sink nanocomposite made of copper reinforced by multiwalled carbon nanotubes up to 10 Vol. % using metal injection molding technique is presented. A mixture of Cu-MWNTs was compounded using internal mixer machine for homogenous dispersion of the solid powder in the binder. To ensure a flow able feedstock during injection molding process, different binder systems and their Cu-MWNTs feedstocks were examined using capillary rheometer machine. In order to avoid binder degradation, TGA test was carried out. The TGA results showed that the processing temperature such as mixing and injection molding should be lower than 170°C. The injection molding was carried out at low pressure. A combination of solvent and thermal debinding was used for binder removal, and then the samples were isothermally sintered at different sintering temperatures (900-1050°C in argon atmosphere. The results showed that the sintered samples experienced an isotropic shrinkage around 17% with relatively homogeneous dispersion of MWNTs in the copper matrix which is expected to enhance the physical and mechanical properties of the final product.

  1. A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

    Saha, Biswajit; Toh, Wei Quan; Liu, Erjia; Beng Tor, Shu; Hardt, David E.; Lee, Junghoon

    2016-01-01

    Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes.

  2. Computational simulation and experimental analysis of the mold-filling process in µPIM

    The micro powder injection molding technique has developed in recent years to be a unique method to fabricate miniature components in the large scale. In this paper numerical simulation of the mold filling of a micro-sized cylinder and gearwheel on a substrate was carried out with the ANSYS CFX software. The feedstock consisted of 56 vol% of carbonyl iron powder and a thermoplastic binder. The simulation results found that inhomogeneity greatly influences the shape precision of the molded micro-sized parts, and the gears located far from the gate exhibited better morphology than those near the gate. A difference in shape accuracy was found in different regions of a molded compact due to the variation of the state of the mold filling and the heat exchange between the feedstock and the die wall. The experimental data testified to the validity of the numerical simulation of the mold-filling process in micro powder injection molding.

  3. New Design and Injection Molding Analysis of a Low Smoke Zero Halogen Cable Trunk

    Xiaoxun Zhang; Fang Ma; Xia Li

    2012-01-01

    The traditional production process of a cable trunk is plastic extrusion with PVC or other halogen containing materials. However, they have many disadvantages such as easy burning, producing toxic gases and smokes. A low smoke zero halogen (LSZH) cable trunk was designed and developed in the present study and the injection molding process was adopted to produce the LSZH cable trunk. Numerical simulations were applied to investigate the effects of the important process parameters on the warpag...

  4. Aplicao de redes Neuro Fuzzy ao processamento de peas automotivas por meio de injeo de polmeros / Application of neurofuzzy networks for the processing of automotive parts by polymer injection molding

    Carlos de Oliveira, Affonso; Renato Jos, Sassi.

    2015-03-01

    Full Text Available O processamento de peas automotivas por meio de injeo de polmeros envolve vrios fenmenos fsicos que ocorrem simultaneamente e que possuem carter no linear e multivarivel. Softwares comerciais podem ser utilizados na previso dos parmetros do processo, o que pode ser caro e invivel. Pode- [...] se determinar os parmetros de forma analtica, mas o tratamento desse problema requer a aplicao de teorias clssicas dos fenmenos de transporte, de difcil equacionamento. As redes NeuroFuzzy so aplicveis a esse problema porque renem a capacidade de aprender das redes neurais artificiais com a capacidade da lgica Fuzzy de transformar variveis lingusticas em regras. Neste trabalho combinou-se uma rede neural artificial Multilayer Perceptron e uma rede neural artificial Radial Basis Function lgica Fuzzy para construir-se um modelo de inferncia que previu o tempo de ciclo de processos de injeo de polmeros. Os resultados obtidos confirmam as redes NeuroFuzzy como opo para esse tipo de problema. Abstract in english The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify thes [...] e parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.

  5. Aplicao de redes Neuro Fuzzy ao processamento de peas automotivas por meio de injeo de polmeros / Application of neurofuzzy networks for the processing of automotive parts by polymer injection molding

    Carlos de Oliveira, Affonso; Renato Jos, Sassi.

    Full Text Available O processamento de peas automotivas por meio de injeo de polmeros envolve vrios fenmenos fsicos que ocorrem simultaneamente e que possuem carter no linear e multivarivel. Softwares comerciais podem ser utilizados na previso dos parmetros do processo, o que pode ser caro e invivel. Pode- [...] se determinar os parmetros de forma analtica, mas o tratamento desse problema requer a aplicao de teorias clssicas dos fenmenos de transporte, de difcil equacionamento. As redes NeuroFuzzy so aplicveis a esse problema porque renem a capacidade de aprender das redes neurais artificiais com a capacidade da lgica Fuzzy de transformar variveis lingusticas em regras. Neste trabalho combinou-se uma rede neural artificial Multilayer Perceptron e uma rede neural artificial Radial Basis Function lgica Fuzzy para construir-se um modelo de inferncia que previu o tempo de ciclo de processos de injeo de polmeros. Os resultados obtidos confirmam as redes NeuroFuzzy como opo para esse tipo de problema. Abstract in english The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify thes [...] e parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.

  6. Influence of the local morphology on the surface tension of injection molded polypropylene

    Gomes, M.; Pontes, A. J.; Viana, J. C.

    2014-05-01

    In this work, we investigate the development of the morphology of an injection molding polypropylene under the local thermomechanical environment imposed during processing, and its effect on the contact angle and, hence, on the surface tension of the moldings. Melt and mold temperatures were varied in two levels. The local thermomechanical environment was characterized by mold filling computational simulations that allow the calculation of thermomechanical variables (e.g., local temperatures, shear stresses) and indices (related to the local morphology development). In order to investigate the structural hierarchy variations of the moldings in the thickness direction, samples from skin to core were used. The molecular orientation and degree of crystallinity were determined as function of the thickness, as well as the contact angle. The variations of the degree of crystallinity were assessed by differential scanning calorimetry. The level of molecular orientation was evaluated by birefringence measurements. The contact angles were measured in deionized water by sessile drop (needle in) method at room temperature, to determine the wettability of the samples. The contact angles were found to vary along the molding thickness in the skin, transition and core layers. These variations are related to the local morphologies developed. Results suggest that water contact angle increases with the level of molecular orientation and for finer microstructures.

  7. A Study on the Sensitivity and Optimization for Gate Location in Injection Mold Filling

    A manufacturing process design methodology is presented to optimize the gate location in injection molding. The design methodology employs polymer process modeling, design sensitivity analysis, and numerical optimization. To solve the design problem, design sensitivities are used with numerical optimization. A new method to apply inlet boundary condition is presented to locate the gate arbitrarily on the mold and the gate pressure is evaluated from the result pressure field with efficiency. The sensitivities are evaluated with respect to gate locations. During the optimization, a method to measure distance on the curved surface in the unit of element is introduced to keep the gate inside the mold. The method developed in this study is applied to some geometries of application and the optimal location is obtained effectively

  8. A study of magneto-crystalline alignment in sintered barium hexaferrite fabricated by powder injection molding

    Barium hexaferrite permanent magnets were produced by powder injection molding. Starting barium hexaferrite powder was prepared from a Fe2O3 and BaCO3 powder mixture by calcination followed by milling. The feedstock for powder injection molding was prepared by mixing barium hexaferrite powder with a low viscosity binder. Magnetic alignment was achieved by applying a high intensity magnetic field to the melted feedstock during the injection process. Green samples (with and without magnetic alignment) were subjected to solvent debinding and subsequent thermal debinding followed by sintering. Sintering conditions were optimized in order to achieve a maximum energy product value. Magneto-crystalline aligning in barium hexaferrite was studied on both green and sintered samples using X-ray diffraction, scanning electron microscope (SEM) and magnetic measurements (hysteresisgraphs). All measurements were made both in a parallel and perpendicular direction to the aligning magnetic field. The obtained results confirmed magneto-crystalline alignment

  9. Effect of Rheological Parameters on Curing Rate during NBR Injection Molding

    Kyas, Kamil; Staněk, Michal; Maňas, David; Škrobák, Adam

    2013-01-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newton...

  10. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  11. Correlation between Rheotens measurements and reinforcement of polymer nanocomposites in the injection molding compounder

    Battisti, Markus G.; Friesenbichler, Walter; Duretek, Ivica; Guttmann, Peter

    2015-04-01

    The evaluation of the effectiveness of reinforcement of polymers and polymer nanocomposites(PNCs), in particular the improvement of Young's modulus, is made by performing standardized tensile tests. Structural and morphological characterizations typically are investigated using expensive techniques like transmission electron microscopy (TEM), X- ray scattering and sometimes also rheological analyses (rotational rheometry). The objective of this study is to generate faster and economically advantageous data to verify the quality of the produced PNC-compound in an on-line measurement system. Subsequently injection molded parts are processed by using the Injection Molding Compounder (PNC-IMC) by only one plasticizing process. In comparison to the conventional compounding process, where the compound has to be pelletized and fed into the injection molding machine for the second plasticizing process, injection molding compounding combines these two processing steps. This paper shows first results and problems with the implementation of the Rheotens equipment into the concept of the IMC. Different processing techniques and various processing conditions were compared and the occurring effects were detected both with tensile testing and extensional melt rheology. Both, the increase of the Young's modulus by using layered silicates as nanofillersis compared to the virgin polypropylene and the correlation of the level of melt strength with Rheotens measurements is shown. These results give a good overview on both the possibilities and the limitations of the material pre-tests by the use of extensional rheology in the concept of the IMC for producing PNCs. Further studies to enable a fast and efficient way of estimating the level of reinforcement in PNCs by means of Rheotens measurements will be carried out towards industrial usability. Furthermore the verification of exfoliation and intercalation of the layered silicates in the polymer matrix using small angle X- ray scattering is planned.

  12. Advancements on the simulation of the micro injection moulding process

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard; Islam, Aminul

    2013-01-01

    Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...... injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new...

  13. Injection molding of nanopatterned surfaces in the sub-micrometer range with induction heating aid

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano; Calaon, Matteo; Tang, Peter Torben; Ravn, Christian

    Replication of sub-micrometer structures by injection molding leads to special requirements for the mold in order to ensure proper replica and acceptable cycle time. This paper investigates the applicability of induction heating embedded into the mold for the improvement of nanopattern replicatio...

  14. Anisotropic injection molding of strontium ferrite powder using a PP/PEG binder system

    In this study, new binder system for anisotropic injection molding of Sr-ferrite was developed and a process for injection molding of Sr-ferrite was optimized. The developed binder system is composed of 30 vol% PP, 60 vol% PEG-20 000 and 10 vol% PEG-4000. The extraction by water was applied to remove the major binder components PEGs and the minor binder component, PP, was subsequently burned out in air. Behaviors of extraction and thermal debinding with time and debinding atmosphere and variations of the magnetic properties with sintering temperature were studied. The sintered magnets made by PIM process showed residual carbon content of 230 ppm and a maximum energy product of 4.2 MGOe

  15. Investigation of Rheological Behavior of Low Pressure Injection Molded Stainless Steel Feedstocks

    Muhammad Aslam; Faiz Ahmad; Puteri Sri Melor Binti Megat Yusoff; Khurram Altaf; Mohd. Afian Omar; H. P. S. Abdul Khalil; M. Rafi Raza

    2016-01-01

    The purpose of this research is to investigate the influence of different powder loadings of 316L stainless steel (SS) powders on rheological behavior of feedstocks required for low pressure powder injection molding (L-PIM) process. The main idea consists in development of various formulations by varying 316L SS powder contents in feedstocks and evaluating the temperature sensitivity of feedstock via flow behavior index and activation energy. For this purpose, the irregular shape, spherical s...

  16. Analysis of Incomplete Filling Defect for Injection-Molded Air Cleaner Cover Using Moldflow Simulation

    Hyeyoung Shin; Eun-Soo Park

    2013-01-01

    A large-sized cover part for air cleaner was injection molded with ABS resin, and its incomplete filling defect was analyzed using commercial Moldflow software. To investigate the effect of processing temperature on incomplete filling defect, tensile properties, weight loss, and phase separation behavior of ABS resin were evaluated. The tensile properties of dumbbell samples were not changed up to 250C and decreased significantly thereafter. SEM micrographs indicated no significant changes i...

  17. Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding

    Antusch, S.; Armstrong, D.E.J.; Britton, T. B.; Commin, L.; Gibson, J.S.K.L.; Greuner, H.; Hoffmann, J.; Knabl, W.; Pintsuk, G.; Rieth, M.; Roberts, S. G.; Weingaertner, T.

    2015-01-01

    Abstract The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass produ...

  18. Dynamic penetration behavior of core-material in multi-cavity co-injection molding

    Huang, Chao-Tsai CT; Yang, Jackie; Chang, Rong-Yeu

    2015-12-01

    Co-Injection Molding and multi-cavity molding are very common processes for plastic manufacturing. These two systems are sometimes combined and applied to some structure products. The core penetration and flow balance control problems are very difficult to manage. The inside mechanism of co-injection multi-cavity system is not fully figured out yet. In this study, we have focused on the penetration phenomena of core-material in a co-injection multi-cavity molding. The dynamic penetration behavior of core is very sensitive to injection flow rate and skin/core ratio. The longest core penetration has been shown to change dramatically from one runner to the other. In addition, the core penetration behavior will display imbalance at the end of filling. The more core ratio it is, the longer core penetration flows through runner to cavity. However, due to the multi-cavity geometrical structure, the balance of the core penetration for multi-cavity is still challenging. Finally, the simulation is validated with some literature. The results showed that both simulation and experiment are in a good agreement in trend

  19. Color measurement of plastics - From compounding via pelletizing, up to injection molding and extrusion

    Botos, J.; Murail, N.; Heidemeyer, P.; Kretschmer, K.; Ulmer, B.; Zentgraf, T.; Bastian, M.; Hochrein, T.

    2014-05-01

    The typical offline color measurement on injection molded or pressed specimens is a very expensive and time-consuming process. In order to optimize the productivity and quality, it is desirable to measure the color already during the production. Therefore several systems have been developed to monitor the color e.g. on melts, strands, pellets, the extrudate or injection molded part already during the process. Different kinds of inline, online and atline methods with their respective advantages and disadvantages will be compared. The criteria are e.g. the testing time, which ranges from real-time to some minutes, the required calibration procedure, the spectral resolution and the final measuring precision. The latter ranges between 0.05 to 0.5 in the CIE L*a*b* system depending on the particular measurement system. Due to the high temperatures in typical plastics processes thermochromism of polymers and dyes has to be taken into account. This effect can influence the color value in the magnitude of some 10% and is barely understood so far. Different suitable methods to compensate thermochromic effects during compounding or injection molding by using calibration curves or artificial neural networks are presented. Furthermore it is even possible to control the color during extrusion and compounding almost in real-time. The goal is a specific developed software for adjusting the color recipe automatically with the final objective of a closed-loop control.

  20. Optimization and evaluation of metal injection molding by using X-ray tomography

    6061 aluminum alloy and 316L stainless steel green bodies were obtained by using different injection parameters (injection pressure, speed and temperature). After injection process, the green bodies were scanned by X-ray tomography. The projection and reconstruction images show the different kinds of defects obtained by the improper injection parameters. Then, 3D rendering of the Al alloy green bodies was used to demonstrate the spatial morphology characteristics of the serious defects. Based on the scanned and calculated results, it is convenient to obtain the proper injection parameters for the Al alloy. Then, reasons of the defect formation were discussed. During mold filling, the serious defects mainly formed in the case of low injection temperature and high injection speed. According to the gray value distribution of projection image, a threshold gray value was obtained to evaluate whether the quality of green body can meet the desired standard. The proper injection parameters of 316L stainless steel can be obtained efficiently by using the method of analyzing the Al alloy injection. - Highlights: • Different types of defects in green bodies were scanned by using X-ray tomography. • Reasons of the defect formation were discussed. • Optimization of the injection parameters can be simplified greatly by the way of X-ray tomography. • Evaluation standard of the injection process can be obtained by using the gray value distribution of projection image

  1. Injection Molding Parameter Optimization of Titanium Alloy Powder Mix with Palm Stearin and Polyethylene for Multiple Performance Using Grey Relational Analysis

    K.R. Jamaludin

    2011-01-01

    Full Text Available This paper outlines the optimization the process of injection molding parameters for feedstock of titanium alloy powder and palm stearin binder using grey relational analysis method. A Grey Relational Grade (GRG obtained from the Grey Relational Analysis (GRA is used to solve the injection molding operations with the multiple performance characteristic. The L27 (313 of orthogonal array of Taguchi method were performed. Defects, strength and density are important characteristics in determine the quality of the green part. Using these characteristics, the injection pressure, injection temperature, powder loading, mold temperature, holding pressure and injection speed are optimized in the study. From the analysis of variance (ANOVA, the injection temperature has the highest contribution to the quality of green part followed by injection pressure, powder loading, mold temperature, injection rate and holding pressure.

  2. On the Injection Molding of Nanostructured Polymer Surfaces

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent; Gadegaard, Nikolaj

    2006-01-01

    ranged from 310 to 3100 rim. All the pillars were 220 nm high. The nickel-shim was used as a surface-template during injection molding of polycarbonate. Secondly, a nickel shim, with a surface pattern consisted of a squared sine with a period of 700 nm and amplitude of 450 nm, was mounted on, and it was...... in good thermal contact with the upper plate in a hot-press. Polycarbonate/polystyrene was melted on the lower plate while the temperature of the shim was kept below the glass transition temperature. The upper plate was lowered until the shim was in contact with the melt. Experiments were carried out...... with a clean shim and a shim coated with a monolayer of fluorocarbonsilane. As a result of the surface coating, the amplitude of the replicated grating decreased from about 350 nm in polycarbonate and 100 nm in polystyrene to less than 10 nm. The experiments strongly suggest that the possibility to...

  3. Microcellular foam injection molding with cellulose nanofibers (CNFs)

    Ohshima, Masahiro; Kubota, Masaya; Ishihara, Shota; Hikima, Yuta; Sato, Akihiro; Sekiguchi, Takafumi

    2016-03-01

    Cellulose nanofibers (CNFs) nanocomposites polypropylene foams are prepared by microcellular foam injection molding with core-back operation. The modified CNFs were blended with isotactic-polypropylene (i-PP) at different CNFs weight percentages and foamed to investigate the effect of CNFs on cell morphology. CNFs in i-PP increased the elastic modulus and induced a strain hardening behavior. CNFs also shifted the crystallization temperature of i-PP to higher temperature and enhanced crystallization. With these changes in rheological and thermal properties, CNFs could reduce the cell size and increase the cell density of the foams. By adjusting the core-back timing i.e., foaming temperature, the closed cell and the nano-fibrillated open cellular structure could be produced. The flexural modulus and bending strength of foams were measured by three point flexural tester. The flexural modulus and bending strength were increased as the CNFs content in i-PP was increased at any foam expansion ratio.

  4. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder

    Hausnerová, B.; Marcaníková, L.; Filip, P; Sáha, P.

    2011-01-01

    Analyses crucial to optimize powder injection molding of feedstock based on aluminium oxide powder and multicomponent polymeric binder are provided with the aim to obtain defect-free, high density parts.As the critical step of the process is the flow of highly filled (60 vol.%) compound into a mold cavity, rheological properties supplemented by thermal and pressure-volume-temperature characteristics are measured and described.Upon shear deformation the feedstock undergoes structural changes, ...

  5. Imprinted and injection-molded nano-structured optical surfaces

    Christiansen, Alexander B.; Højlund-Nielsen, Emil; Clausen, Jeppe; Caringal, Gideon P.; Mortensen, N. Asger; Kristensen, Anders

    2013-09-01

    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are well- known examples used for inspiration for such biomimetic research. In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of Black Silicon (BSi) random nanostructure surfaces. The optical transmission at normal incidence is measured for wavelengths from 400 nm to 900 nm. For samples with optimized nanostructures, the reflectance is reduced by 50 % compared to samples with planar surfaces. The specular and diffusive reflection of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed.

  6. Characterization Of Metal Injection Molding (MIM Feedstock Based On Water Soluble Binder System

    Norhamidi Muhamad

    2008-08-01

    Full Text Available Metal Injection Molding (MIM is a new manufacturing technique especially to produce small and complex precision parts. Characterization of feedstock is one of the important tasks in order to evaluate the homogeneity level of the feedstock prepared and to control the quality of the parts during injection molding process. This paper attempts to investigate the characteristics of the MIM feedstock by performing rheological test using the feedstock consisted of 316L stainless steel powder with a mean particle size of 12 micrometer and a major fraction of water soluble binder system known as polyethylene glycol (PEG. Three different weight percentage of PEG at 65, 75, and 85 respectively were used during the investigation. The viscosity of MIM feedstock at different temperatures and shear rates were measured and evaluated. Results show that increasing the PEG content would decrease the viscosity of the feedstock. The rheological properties of the feedstock showed that the proposed method of mixing is adequate to produce a homogeneous feedstock that is favorable for injection molding process.

  7. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders; Larsen, Niels Bent

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  8. Mold design

    This book introduce the history injection mold, development of plastic industry and production of mold, development property of synthetic resins industry, prospect mold technology, structure and design injection mold with summary for injection mold and mold design for under cut mold goods, design for main part of mold goods design for main part of mold like platen, locate ring, runner and side core pin, sprue, runner and gate, ejector device, plan for strength of mold, faulty of mold like short shot and flow mark, kinds and property of synthetic resins, molder and function and injection terms.

  9. In-mold sensor concept to calculate process-specific rheological properties

    Pacher, G. A.; Berger, G. R.; Friesenbichler, W.; Gruber, D. P.; Macher, J.

    2014-05-01

    To gain extended knowledge on the flow behavior of polymer melts during filling phase of the injection molding process, an injection mold featuring complex sensor technology was developed. Three triple-combined FOS MTPS408 cavity sensors (FOS Messtechnik GmbH) are aligned along the flow path of a plate-shaped cavity. Each sensor features an infrared detector, a type K thermocouple, and a piezo-electric pressure detector. This configuration enables the local and transient recording of melt temperature, mold temperature and cavity pressure near gate, part center and end of part simultaneously. Averaged melt velocities are determined by evaluating the differing times of the rising edges of the infrared sensors. Local melt velocities and viscosities are calculated at each sensor position by evaluation of the gradients of temperature and pressure. Moreover, the used injection mold is equipped with RHCM technologies to additionally influence the mold surface temperature and hence the filling of the cavity. The specimens are plate-shaped parts having cut-outs and ribs similar to geometries found in numerous industrial applications such as cover panels. The application of this in-mold sensor concept provides novel possibilities for the systematic in-line analysis and evaluation of process-parameters in injection molding. Further studies will be carried out to connect the process-specific properties to the specimen morphology; aiming at controlling morphology by adjusting process parameters.

  10. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); England, Roger [Cummins, Inc, Knoxville, TN (United States)

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offers an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.

  11. Investigation of sample preparation on the moldability of ceramic injection molding feedstocks

    Ide, Jared

    Ceramic injection molding is a desirable option for those who are looking to make ceramic parts with complex geometries. Formulating the feedstock needed to produce ideal parts is a difficult process. In this research a series of feedstock blends will be evaluated for moldability. This was done by investigating their viscosity, and how certain components affect the overall ability to flow. These feedstocks varied waxes, surfactants, and solids loading. A capillary rheometer was used to characterize some of the materials, which led to one batch being selected for molding trials. The parts were sintered and further refinements were made to the feedstock. Solids loading was increased from 77.5% to 82%, which required different ratios of organics to flow. Finally, the ceramic powders were treated to lower their specific surface area before being compounded, which resulted in materials that would process easily through an extruder and exhibit properties suitable for CIM.

  12. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  13. Development of Defects Free Stainless Steel Parts Using Powder Injection Molding

    M.A. Omar

    2013-01-01

    Full Text Available Austenitic 316L Stainless Steel (SS is widely used in aerospace, automotive, sports and medical industries due to its mechanical properties and corrosion resistance. Defects free molding of parts depends upon the features of feedstock. In powder injection molding, feedstock preparation is critical step and any deficiency at this stage cannot be retrieve in latter steps. The objective of this research work is to optimize solid loading for defects free injection molded parts. During the present research work five formulations having solid loading 60-71 vol% were prepared by using multi component binder system. The degradation temperature of feedstocks was determined by using Thermogravimetric analysis (TGA and flow behavior through rheometer. Homogeneity of the feedstock was verified by using Scanning Electron Microscopy (SEM. Finally, injection molding was done and it was found that the feedstocks having solid loading up to 69 vol% were successfully injection molded and components were without physical defects.

  14. Modeling of the injection of loaded thermoplastic mixtures with application in metal injection molding

    The study is focussed on the modeling and numerical simulation of the loaded thermoplastic mixtures currently used in metal injection molding. Due to the fact that the mixture is highly concentrated in metallic powders, the models based on the homogenization theory and using an equivalent viscosity are no longer suitable. So a biphasic formulation has been developed to describe the flow of such mixtures. An interaction term between powder and thermoplastic fluid polymer accounts for segregation or debinding effects. In this type of the problem, the solid phase fraction is a key fields variable. The associated equations are solved separately for each phase taking into account interactions and coupling effects. A general solver in 2D and 3D has been developed that account propagation of fluid front by the extension to biphasic cases of the VOF method. For solving the velocity/pressure problem the fractional step method has been extended to the biphasic cases. Numerical simulations have been compared to the experimental results obtained by a using multiple cavity with pressure and temperature sensors. Comparisons between numerical simulation results and experiments show good agreements in terms of pressure and temperature evolutions during molding. It is also demonstrated that the numerical results are accurate and sensitive to variation of the injection molding marameters. (author)

  15. Optimization of Micro Metal Injection Molding By Using Grey Relational Grade

    Micro metal injection molding (μMIM) which is a variant of MIM process is a promising method towards near net-shape of metallic micro components of complex geometry. In this paper, μMIM is applied to produce 316L stainless steel micro components. Due to highly stringent characteristic of μMIM properties, the study has been emphasized on optimization of process parameter where Taguchi method associated with Grey Relational Analysis (GRA) will be implemented as it represents novel approach towards investigation of multiple performance characteristics. Basic idea of GRA is to find a grey relational grade (GRG) which can be used for the optimization conversion from multi objectives case which are density and strength to a single objective case. After considering the form 'the larger the better', results show that the injection time(D) is the most significant followed by injection pressure(A), holding time(E), mold temperature(C) and injection temperature(B). Analysis of variance (ANOVA) is also employed to strengthen the significant of each parameter involved in this study.

  16. Effect of rheological parameters on curing rate during NBR injection molding

    Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam

    2013-04-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.

  17. The manufactoring of a two–layered injection mold by welding

    A. Košnik; Tušek, J.; Kosec, L.; Muhič, T.

    2011-01-01

    The article presents the technology of deposit cladding different materials, using the injection molds for thermoplastic as a case study. The aim of the study is to surface weld to the working surface of the mold a different material with corresponding physical properties. Steel (1.1141) and a copper alloy were used as the base, onto which different materials were surface-welded. Tungsten inert gas (TIG) welding was employed to make molds inserts. An analysis of cross-sectioned specimens was ...

  18. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated

  19. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi [Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato [Research Center, Toyobo Co., LTD, 2-1-1 Katata, Otsu, Shiga 520-0292 (Japan)

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  20. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  1. Reaction injection molding and direct covalent bonding of OSTE+ polymer microfluidic devices

    Sandström, N.; Shafagh, R. Z.; Vastesson, A.; Carlborg, C. F.; van der Wijngaart, W.; Haraldsson, T.

    2015-07-01

    In this article, we present OSTE+RIM, a novel reaction injection molding (RIM) process that combines the merits of off-stoichiometric thiol-ene epoxy (OSTE+) thermosetting polymers with the fabrication of high quality microstructured parts. The process relies on the dual polymerization reactions of OSTE+ polymers, where the first curing step is used in OSTE+RIM for molding intermediately polymerized parts with well-defined shapes and reactive surface chemistries. In the facile back-end processing, the replicated parts are directly and covalently bonded and become fully polymerized using the second curing step, generating complete microfluidic devices. To achieve unprecedented rapid processing, high replication fidelity and low residual stress, OSTE+RIM uniquely incorporates temperature stabilization and shrinkage compensation of the OSTE+ polymerization during molding. Two different OSTE+ formulations were characterized and used for the OSTE+RIM fabrication of optically transparent, warp-free and natively hydrophilic microscopy glass slide format microfluidic demonstrator devices, featuring a storage modulus of 2.3 GPa and tolerating pressures of at least 4 bars.

  2. Numerical modeling of magnetic induction and heating in injection molding tools

    Guerrier, Patrick; Hattel, Jesper Henri

    2013-01-01

    the temperatures as close as possible to the cavity surface, by means of an integrated induction heating system in the injection molding tool, to improve the fluidity of the polymer melt hereby ensuring that the polymer melt will continue to flow until the mold cavity is completely filled. The...

  3. Development of an injection molded ethylene-vinyl acetate copolymer (EVA) intravaginal insert for the delivery of progesterone to cattle.

    Cappadoro, A J; Luna, J A

    2015-07-01

    The purpose of this study was to develop a new injection-molded intravaginal insert manufactured from ethylene-vinyl acetate containing progesterone for a 7-day insertion period in cattle. The manufacturing process resulted in a reduction in the residual drug compared to the silicone insert available while still maintaining biological performance. PMID:26022232

  4. Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments

    Metal injection molding (MIM) is a near net shape manufacturing method that allows for the production of components of small to moderate size and complex shape. MIM is a cost-effective and flexible manufacturing technique that provides a large innovative potential over existing methods for the industry of implantable devices. Commercially pure titanium (CP-Ti) samples were machined to the same shape as a composite feedstock with titanium and polyoxymethylene, and these metals were injected, debinded and sintered to assess comparative biological properties. Moreover, we treated MIM-Ti parts with BIOCOAT, BIODIZE and BIOCER, three different anodic oxidation techniques that treat titanium using acid, alkaline and anion enriched electrolytes, respectively. Cytocompatibility as well as morphological and chemical features of surfaces was comparatively assessed on each sample, and the results revealed that MIM-Ti compared to CP-Ti demonstrated a specific surface topography with a higher roughness. MIM-Ti and BIOCER samples significantly enhanced cell proliferation, cell adhesion and cell differentiation compared to CP-Ti. Interestingly, in the anodization post-treatment established in this study, we demonstrated the ability to improve osseointegration through anionic modification treatment. The excellent biological response we observed with MIM parts using the injection molding process represents a promising manufacturing method for the future implantable devices in direct contact with bones. - Highlights: ? Metal injection molding technique gives titanium a specific surface roughness. It enhances the biological response. ? Anodic oxidation method adds Ca, P, and Mg ions on the surface, promoting the cell adhesion. ? Cytocompatibility analyses show an increased cell adhesion and proliferation on MIM-Ti compared to pure titanium.

  5. Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments

    Demangel, Clemence; Auzene, Delphine [CRITT-MDTS, ZHT du Moulin Leblanc, 3, Bd Jean Delautre 08000 Charleville-Mezieres (France); Vayssade, Muriel [Universite de Technologie de Compiegne, UMR 7338 Biomecanique-Bioingenierie, BP 20529 60205 Compiegne Cedex (France); Duval, Jean-Luc, E-mail: jean-luc.duval@utc.fr [Universite de Technologie de Compiegne, UMR 7338 Biomecanique-Bioingenierie, BP 20529 60205 Compiegne Cedex (France); Vigneron, Pascale; Nagel, Marie-Daniele [Universite de Technologie de Compiegne, UMR 7338 Biomecanique-Bioingenierie, BP 20529 60205 Compiegne Cedex (France); Puippe, Jean-Claude [Steiger Galvanotechnique, Route de Pra de Plan, 18 CH-1618 Chatel-St-Denis (Switzerland)

    2012-10-01

    Metal injection molding (MIM) is a near net shape manufacturing method that allows for the production of components of small to moderate size and complex shape. MIM is a cost-effective and flexible manufacturing technique that provides a large innovative potential over existing methods for the industry of implantable devices. Commercially pure titanium (CP-Ti) samples were machined to the same shape as a composite feedstock with titanium and polyoxymethylene, and these metals were injected, debinded and sintered to assess comparative biological properties. Moreover, we treated MIM-Ti parts with BIOCOAT Registered-Sign , BIODIZE Registered-Sign and BIOCER Registered-Sign , three different anodic oxidation techniques that treat titanium using acid, alkaline and anion enriched electrolytes, respectively. Cytocompatibility as well as morphological and chemical features of surfaces was comparatively assessed on each sample, and the results revealed that MIM-Ti compared to CP-Ti demonstrated a specific surface topography with a higher roughness. MIM-Ti and BIOCER Registered-Sign samples significantly enhanced cell proliferation, cell adhesion and cell differentiation compared to CP-Ti. Interestingly, in the anodization post-treatment established in this study, we demonstrated the ability to improve osseointegration through anionic modification treatment. The excellent biological response we observed with MIM parts using the injection molding process represents a promising manufacturing method for the future implantable devices in direct contact with bones. - Highlights: Black-Right-Pointing-Pointer Metal injection molding technique gives titanium a specific surface roughness. It enhances the biological response. Black-Right-Pointing-Pointer Anodic oxidation method adds Ca, P, and Mg ions on the surface, promoting the cell adhesion. Black-Right-Pointing-Pointer Cytocompatibility analyses show an increased cell adhesion and proliferation on MIM-Ti compared to pure titanium.

  6. Optimization of injection molding parameters for poly(styrene-isobutylene-styrene) block copolymer

    Fittipaldi, Mauro; Garcia, Carla; Rodriguez, Luis A.; Grace, Landon R.

    2016-03-01

    Poly(styrene-isobutylene-styrene) (SIBS) is a widely used thermoplastic elastomer in bioimplantable devices due to its inherent stability in vivo. However, the properties of the material are highly dependent on the fabrication conditions, molecular weight, and styrene content. An optimization method for injection molding is herein proposed which can be applied to varying SIBS formulations in order to maximize ultimate tensile strength, which is critical to certain load-bearing implantable applications. The number of injection molded samples required to ascertain the optimum conditions for maximum ultimate tensile strength is limited in order to minimize experimental time and effort. Injection molding parameters including nozzle temperature (three levels: 218, 246, and 274 °C), mold temperature (three levels: 50, 85, and 120 °C), injection speed (three levels: slow, medium and fast) and holding pressure time (three levels: 2, 6, and 10 seconds) were varied to fabricate dumbbell specimens for tensile testing. A three-level L9 Taguchi method utilizing orthogonal arrays was used in order to rank the importance of the different injection molding parameters and to find an optimal parameter setting to maximize the ultimate tensile strength of the thermoplastic elastomer. Based on the Taguchi design results, a Response Surface Methodology (RSM) was applied in order to build a model to predict the tensile strength of the material at different injection parameters. Finally, the model was optimized to find the injection molding parameters providing maximum ultimate tensile strength. Subsequently, the theoretically-optimum injection molding parameters were used to fabricate additional dumbbell specimens. The experimentally-determined ultimate tensile strength of these samples was found to be in close agreement (1.2%) with the theoretical results, successfully demonstrating the suitability of the Taguchi Method and RSM for optimizing injection molding parameters of SIBS.

  7. Fabrication and characterization of injection molded multi level nano and microfluidic systems

    Matteucci, Marco; Christiansen, Thomas Lehrmann; Tanzi, Simone; Østergaard, Peter Friis; Larsen, Simon Tylsgaard; Taboryski, Rafael

    2013-01-01

    We here present a method for fabrication of multi-level all-polymer chips by means of silicon dry etching, electroplating and injection molding. This method was used for successful fabrication of microfluidic chips for applications in the fields of electrochemistry, cell trapping and DNA elongation....... These chips incorporate channel depths in the range between 100nm and 100μm and depth to width aspect ratios between 1/200 and 2. Optimization of the sealing process of all-polymer COC microfluidic chips by means of thermal bonding is also presented. The latter includes comparing the bonding strength of...

  8. Short-term and long-term behavior of PP-polymer nanocomposites produced by injection molding compounding

    Battisti, M. G.; Guttmann, P.; Chitu, L.; Friesenbichler, W.

    2015-05-01

    There are only few investigations considering the impact of nanoscale fillers on the mechanical und thermo-mechanical properties of polymers. Particularly there is a lack of results regarding long term creep behavior of Polypropylene-based polymer nanocomposites (PNCs). Therefore, the objective of this study is to determine the influence of nanofiller content on the mechanical and thermo-mechanical behavior of Polypropylene-based PNCs. Processing of the test specimens was carried out using the Polymer NanoComposite Injection Molding Compounder (PNC-IMC). In comparison to the conventional compounding process, in which the compound must be pelletized and fed into the injection molding machine for the second plasticizing process, injection molding compounding combines these two processing steps. Material compounding and subsequent injection molding are done directly with only one plasticizing process, using a heated melt pipe and a melt accumulator for melt transfer from the compounder to the injection molding machine. The PNCs were produced in the 3-in-1 process at the PNC-IMC, where all components (polymer, compatibilizer, nanofiller) were added simultaneously into the compounder. Furthermore, the polymer melt was treated using elongational flow generating devices for better intercalation and exfoliation of the nanofillers. Tensile tests were made to characterize the short-term-mechanical properties. Tensile creep tests show the influence of nanofillers on the long-term-creep-performance and dynamic mechanical tests (DMA) were performed to investigate the thermo-mechanical behavior. Both, the improvements in the mechanical and thermo-mechanical properties in comparison to the pure polypropylene are shown and give an excellent overview of possibilities and limitations of the PNCs. Further research will focus on the detailed understanding of the different mechanisms of property improvement of layered silicates in polymer. By using small angle X-ray scattering exfoliation and intercalation of the layered silicates in the polymer matrix will be verified.

  9. CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods.

    Huang, Fu-Chun; Chen, Yih-Far; Lee, Gwo-Bin

    2007-04-01

    This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips. PMID:17311242

  10. Design of Multimodel based MPC and IMC control schemes applied to injection molding machine

    Kanaga Lakshmi; D.Manamalli; M. Mohamed Rafiq

    2014-01-01

    Good control of plastic melt temperature for injection molding is very important in reducing operator setup time, ensuring product quality, and preventing thermal degradation of the melt. The controllability and set points of barrel temperature also depend on the precise monitoring and control of plastic melt temperature. Motivated by the practical temperature control of injection molding, this paper proposes MPC and IMC based control scheme. A robust system identification and control methodo...

  11. Birefringence, anisotropic shrinkage and luminance in injection molded light-guide plate: Modeling and experiment

    Lin, Tsui-Hsun

    Liquid crystal displays (LCDs) with edge-lit backlight system have been widely used in industry due to several advantages over traditional cathode-ray tubes (CRTs). The main component of the backlight system is the light-guide plate (LGP) which is designed to provide the highest possible degree of light concentration and luminance efficiency. However, the relationship between processing conditions in manufacturing and their optical performance have not been established. In addressing this issue, LGP moldings were made of optical grade polycarbonates (PCs) of low and high viscosity and a polystyrene (PS). The theoretical and experimental studies on the effect of the processing conditions on the anisotropic shrinkage, residual stresses and birefringence, and resulting luminance in the injection molded V-groove LGPs were carried out. The stress-optical coefficient and relaxation modulus functions of polymers were obtained by specially designed rheo-optical instrument. These functions were incorporated to the linear viscoelastic and photoviscoelastic constitutive equations to predict the thermal birefringence in constrained, freely quenched plates and LGP moldings. The flow-induced birefringence and anisotropic shrinkage of LGPs were simulated by using a combination of a CV/FEM/FDM technique, a nonlinear viscoelastic constitutive equation, and orientation functions. The residual normal and transverse birefringence in LGPs along with shrinkages were measured. The predicted total birefringence was obtained by a summation of the predicted flow- and thermally-induced birefringence. Numerical results were compared with measurements at various processing conditions indicating a good agreement in the anisotropic shrinkage and a fair agreement in the residual birefringence. The luminance as a function of a viewing angle on the injection molded LGPs at various molding conditions was measured by means of the device that was built for this purpose. Strong effects from the processing conditions on optical performance were found. The results indicated that the LGPs made of low viscosity PC exhibited the best light concentration and the highest luminance while LGPs made of PS showed the lowest optical performance. Also, it was found that the luminance of LGPs showed a strong correlation with the depth of melt filling of the V-grooves and some correlation with the frozen-in birefringence.

  12. Mold temperature measurement for glass-pressing processes

    The largest use of radiation thermometers within Corning Glass Works is for mold temperature measurement for the glass-pressing process. Pressing television panels at today's high quality would be very difficult without a mold temperature measurement system and the computer manipulation of the quality control data to supervise the mold temperature control loop. The most critical part of a television panel is the inside surface curvature. The ideal surface is usually defined as a spherical surface. The tolerance for a normal TV panel is +-0.30 mm (+-0.012 in.). High resolution display panels are more critical, having a dimensional tolerance only one half as large as TV panels. Panel curvature is a direct (but negative) function of mold temperature. Every 10C increase in mold temperature results in the panel center being 0.025 mm (0.001 in.) shorter (flatter). Random dimensional variations within a panel take up most of the dimensional tolerance. The result is that each mold is controlled to its own individual temperature set point, +-10C. Hot panel and cold panel curvature measurements are correlated by a process computer and used to update the mold temperature set points. The same computer adjusts the mold cooling air to maintain the required mold temperatures. From the temperature measurement standpoint, the significant problem is the changing emissivity of the mold surface when the mold is new or reconditioned. The selection of a radiation thermometer with a short wavelength was an obvious choice to minimize the effect of emissivity variations

  13. Injection molding of nickel based 625 superalloy: Sintering, heat treatment, microstructure and mechanical properties

    Oezguen, Oezguer [Bingol University, Technical Sciences Vocational School, 12000 Bingol (Turkey); Sakarya University, Graduate School of Applied and Natural Sciences, 54187 Sakarya (Turkey); Oezkan Guelsoy, H., E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yilmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Findik, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Sintering, microstructural and mechanical properties of injection molded nickel based 625 superalloy were studied. Black-Right-Pointing-Pointer The maximum sintered density achieved this study was 98.3% at 1300 Degree-Sign C for 3 h. Black-Right-Pointing-Pointer Tensile strength of 674 MPa, elongation of 40.6% and hardness of 303 HV were achieved for sintered and heat treated conditions. - Abstract: This study concerns determination of optimum sintering and thermal process parameters for Ni-based alloy 625 superalloy formed by the method of powder injection molding (PIM). Samples, formed from the feedstock by mixing the prealloyed 625 powder with a multi-component binding system, are made subject to sintering at different temperatures following the debinding process. Samples that are sintered under such conditions giving way to the highest relative density (3 h at 1300 Degree-Sign C), are aged after they have been subject to solution treated thermal process. Sintered, solution treated and aged samples have been subjected to microstructural analysis and mechanical test. Mechanical tests such as hardness measurement and tensile test as well as microstructural characterization such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis all have shown that the aging thermal process increases strength of the material. However, it is observed that alloy 625 produced by the method of PIM is at such level to compete with the characteristics of cast alloy 625.

  14. Injection molding of nickel based 625 superalloy: Sintering, heat treatment, microstructure and mechanical properties

    Highlights: ► Sintering, microstructural and mechanical properties of injection molded nickel based 625 superalloy were studied. ► The maximum sintered density achieved this study was 98.3% at 1300 °C for 3 h. ► Tensile strength of 674 MPa, elongation of 40.6% and hardness of 303 HV were achieved for sintered and heat treated conditions. - Abstract: This study concerns determination of optimum sintering and thermal process parameters for Ni-based alloy 625 superalloy formed by the method of powder injection molding (PIM). Samples, formed from the feedstock by mixing the prealloyed 625 powder with a multi-component binding system, are made subject to sintering at different temperatures following the debinding process. Samples that are sintered under such conditions giving way to the highest relative density (3 h at 1300 °C), are aged after they have been subject to solution treated thermal process. Sintered, solution treated and aged samples have been subjected to microstructural analysis and mechanical test. Mechanical tests such as hardness measurement and tensile test as well as microstructural characterization such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis all have shown that the aging thermal process increases strength of the material. However, it is observed that alloy 625 produced by the method of PIM is at such level to compete with the characteristics of cast alloy 625.

  15. High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding.

    Dang, Fuquan; Tabata, Osamu; Kurokawa, Masaya; Ewis, Ashraf A; Zhang, Lihua; Yamaoka, Yoshihisa; Shinohara, Shouji; Shinohara, Yasuo; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-04-01

    We have developed a novel technique for mass production of microfabricated capillary array electrophoresis (mu-CAE) plastic chips for high-speed, high-throughput genetic analysis. The mu-CAE chips, containing 10 individual separation channels of 50-microm width, 50-microm depth, and a 100-microm lane-to-lane spacing at the detection region and a sacrificial channel network, were fabricated on a poly(methyl methacrylate) substrate by injection molding and then bonded manually using a pressure-sensitive sealing tape within several seconds at room temperature. The conditions for injection molding and bonding were carefully characterized to yield mu-CAE chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to monitor simultaneously the separation in a 10-channel array with laser-induced fluorescence detection. High-performance electrophoretic separations of phiX174 HaeIII DNA restriction fragments and PCR products related to the human beta-globin gene and SP-B gene (the surfactant protein B) have been demonstrated on mu-CAE plastic chips using a methylcellulose sieving matrix in individual channels. The current work demonstrated greatly simplified the fabrication process as well as a detection scheme for mu-CAE chips and will bring the low-cost mass production and application of mu-CAE plastic chips for genetic analysis. PMID:15801748

  16. Numerical Simulation of the Flow Behavior and Breakthrough Phenomenon in Co-Injection Molding

    Ilinca, Florin; Hétu, Jean-François

    2007-05-01

    A study of the flow behavior during sequential co-injection molding is shown using a three-dimensional finite element flow analysis code. Solutions of the non-Newtonian, non-isothermal melt flow are obtained by solving the momentum, continuity and energy equations. Two additional transport equations are solved for tracking polymer/air and skin/core polymers interfaces. The co-injection model is integrated into the NRC's 3D injection molding software. Solutions are shown for the filling of a spiral-flow mould for which experimental measurements are available. The numerical approach predicts the core advance stage during which the core flow front catches up on the skin flow front and the core expansion phase when the flow fronts of core and skin materials advance together without breakthrough. The breakthrough phenomenon is also predicted. The predicted flow front behavior is compared to the experimental observations for various skin/core melt temperature and skin/core viscosity ratio. Simulation results are in good agreement with experimental data and indicate correctly the trends in solution change when processing parameters are changing.

  17. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    Arlø, Uffe Rolf; Kjær, Erik Michael

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out with a...... polystyrene part, process parameters at typical levels and a rough spark eroded mould surface with Ra=12.6 micro meters....

  18. Measuring mechanical stresses on inserts during injection molding

    Heinle, Martina; Drummer, Dietmar

    2015-01-01

    ssembly molding presents an interesting approach to innovative product solutions. Here, individual components can be simultaneously positioned, affixed, and provided with a casing. However, while overmolding elements in the mold cavity with hot polymer melt, high mechanical loads occur on, in some cases, very sensitive components such as electronic devices. For the design of such systems, it is important to know these stresses, the influences on their quantities, and mathematical options for ...

  19. Optimization of injection molded parts by using ANN-PSO approach

    R. Spina

    2006-02-01

    Full Text Available Purpose: The aim of the work was the optimization of injection molded product warpage by using an integrated environment.Design/methodology/approach: The approach implemented took advantages of the Finite Element (FE Analysis to simulate component fabrication and investigate the main causes of defects. A FE model was initially designed and then reinforced by integrating Artificial Neural Network to predict main filling and packing results and Particle Swarm Approach to optimize injection molding process parameters automatically.Findings: This research has confirmed that the evaluation of the FE simulation results through the Artificial Neural Network system was an efficient method for the assessment of the influence of process parameter variation on part manufacturability, suggesting possible adjustments to improve part quality.Research limitations/implications: Future researches will be addressed to the extension of analysis to large thin components and different classes of materials with the aim to improve the proposed approach.Originality/value: The originality of the work was related to the possibility of analyzing component fabrication at the design stage and use results in the manufacturing stage. In this way, design, fabrication and process control were strictly links.

  20. Enteric-coating of pulsatile-release HPC capsules prepared by injection molding.

    Macchi, E; Zema, L; Maroni, A; Gazzaniga, A; Felton, L A

    2015-04-01

    Capsular devices based on hydroxypropyl cellulose (Klucel LF) intended for pulsatile release were prepared by injection molding (IM). In the present work, the possibility of exploiting such capsules for the development of colonic delivery systems based on a time-dependent approach was evaluated. For this purpose, it was necessary to demonstrate the ability of molded cores to undergo a coating process and that coated systems yield the desired performance (gastric resistance). Although no information was available on the coating of IM substrates, some issues relevant to that of commercially-available capsules are known. Thus, preliminary studies were conducted on molded disks for screening purposes prior to the spray-coating of HPC capsular cores with Eudragit L 30 D 55. The ability of the polymeric suspension to wet the substrate, spread, start penetrating and initiate hydration/swelling, as well as to provide a gastroresistant barrier was demonstrated. The coating of prototype HPC capsules was carried out successfully, leading to coated systems with good technological properties and able to withstand the acidic medium with no need for sealing at the cap/body joint. Such systems maintained the original pulsatile release performance after dissolution of the enteric film in pH 6.8 fluid. Therefore, they appeared potentially suitable for the development of a colon delivery platform based on a time-dependent approach. PMID:25585355

  1. Injection Molding Parameter Optimization of Titanium Alloy Powder Mix with Palm Stearin and Polyethylene for Multiple Performance Using Grey Relational Analysis

    K.R. Jamaludin; M. Ruzi; A.K. Ariffin; N. Muhamad; N.H. Mohamad Nor; A. Sufizar

    2011-01-01

    This paper outlines the optimization the process of injection molding parameters for feedstock of titanium alloy powder and palm stearin binder using grey relational analysis method. A Grey Relational Grade (GRG) obtained from the Grey Relational Analysis (GRA) is used to solve the injection molding operations with the multiple performance characteristic. The L27 (313) of orthogonal array of Taguchi method were performed. Defects, strength and density are important characteristics in determin...

  2. MECHANICAL PROPERTIES OF INJECTION-MOLDED FOAMED WHEAT STRAW FILLED HDPE BIOCOMPOSITES: THE EFFECTS OF FILLER LOADING AND COUPLING AGENT CONTENTS

    Fatih Mengeloglu; Kadir Karaku?

    2012-01-01

    This study investigated the effect of filler loading and coupling agent contents on the densities and mechanical properties of injection-molded foamed biocomposites. Biocomposite pellets were manufactured using wheat straw flour, maleic anhydrite grafted polyethylene (MAPE), paraffin wax, and high-density polyethylene (HDPE) with an extrusion process. Pellets and the chemical foaming agent (azodicarbonamide) were dry-mixed and foamed in an injection-molding machine. Densities and mechanical p...

  3. Aplicação das técnicas de planejamento e análise de experimentos no processo de injeção plástica Application design of experiments in the injection molding process

    Edwin V. Cardoza Galdamez

    2004-04-01

    Full Text Available Experimentos industriais são realizados pelas empresas com o intuito de melhorar o desempenho dos produtos e os processos de fabricação. Nesse sentido, este trabalho tem por objetivo estudar e aplicar as técnicas de planejamento e análise de experimentos na melhoria da qualidade industrial. Especificamente são aplicadas as técnicas de planejamento Fatorial Fracionado 2k-p, Metodologia de Superfície de Resposta e Análise de Variância, em um processo de moldagem por injeção plástica. Com essa pesquisa experimental foi possível identificar os níveis ótimos de regulagem e os parâmetros mais importantes da injeção plástica: temperatura da máquina e pressão de injeção. Para finalizar é avaliado o procedimento de implementação das técnicas de experimentação e as dificuldades práticas encontradas na empresa.Industrial experiments are made by companies in order to improve the quality characteristics of products and production processes. In this sense, the objective of this paper is to study and apply the design of experiments in the industrial quality improvement. In addition, as a part of the objective, an application of the techniques of design Fractional Factorial 2k-p, Analysis of Variance and Response Surface Methodology is done. It is focused in an injection molding process applied by a company, that makes and trades plastic products for the civil construction. Using this experimental study, the most important parameters of plastic injection are identified: machine temperature and injection pressure. At the same time, the optimal levels of adjustment of these parameters are determined. From this study, it is evaluated both the implantation procedures of the designs of experiments as well as the difficulties faced. Also, this study tries to contribute to the university-company relationship.

  4. Influence of the polypropylene structure on the replication of nanostructures by injection molding

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2015-11-01

    In this paper, an experimental study of replication by injection molding of sub-micrometer features is presented. Two polypropylenes with different melt flow rates (MFR) were used throughout this study. The used removable mold insert was textured with a femtosecond laser. Replication of these periodic structures, called ripples, is thus investigated. Despite different MFR, we show that the viscosities of the two polymers at the investigated temperatures and injection shear rates are similar. The reproducibility of the injected molded samples and the texture of the mold were analyzed. We propose a specific methodology to quantify the reproducibility quality replicas. The latter introduces morphological parameters such as anisotropy rate, power density, etc. A difference between the two replicas was noticeable. Based on rheological analysis, the viscosity was ruled out as the origin of this difference. Other properties were identified as the source such as the chain length and the stress relaxation time. Their impact on the replication quality was investigated and found interesting.

  5. Reduccin del Tiempo de Ciclo de Inyeccin de Termoplsticos con el uso de Moldes con Tratamiento Superficial por Nitruracin / Cycle Time Reduction of Thermoplastic Injection using Nitriding Treatment Surface Molds

    Emerson J, Corazza; Carlos M, Sacchelli; Cintia, Marangoni.

    Full Text Available Se presenta un estudio sobre la transferencia de calor en un molde, comparando los ensayos de inyeccin utilizando moldes con y sin tratamiento superficial de nitruracin. Simulaciones del proceso se realizaron con el uso de Asistencia Computacional a Ingeniera (CAE) para determinar los parmetros [...] iniciales que se aplicaron en los ensayos reales en moldes instrumentados de acero P20 (con y sin tratamientos), inyectados con el polmero poliestireno cristal. Los resultados indicaron una reduccin del tiempo de enfriamiento y del tiempo de proceso en el molde con el tratamiento, debido a una mejora en la conductividad trmica. Abstract in english A study on the heat transfer in a mold, comparing experimental injection tests using a mold with and without surface treatment (nitriding) is presented. Process simulations were carried out using Computer Aided Engineering tools (CAE) for the estimation of the initial parameters to be applied in the [...] tests in instrumented P20 steel injection molds with the polymer crystal polystyrene. Results indicated a reduction of cooling time and of the time of the process in the mold with treatment, due to an increase of the thermal conductivity.

  6. Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications

    Wolff, M.; Schaper, J. G.; Suckert, M. R.; Dahms, M.; Ebel, T.; Willumeit-Römer, R.; Klassen, T.

    2016-04-01

    Metal injection molding (MIM) has a high potential for the economic near-net-shape mass production of small-sized and complex-shaped parts. The motivation for launching Mg into the MIM processing chain for manufacturing biodegradable medical implants is related to its compatibility with human bone and its degradation in a non-toxic matter. It has been recognized that the load-bearing capacity of MIM Mg parts is superior to that of biodegradable polymeric components. However, the choice of appropriate polymeric binder components and alloying elements enabling defect-free injection molding and sintering is a major challenge for the use of MIM Mg parts. This study considered the full processing chain for MIM of Mg-Ca alloys to achieve ultimate tensile strength of up to 141 MPa with tensile yield strength of 73 MPa, elongation at fracture Af of 7% and a Young's modulus of 38 GPa. To achieve these mechanical properties, a thermal debinding study was performed to determine optimal furnace and atmosphere conditions, sintering temperature, heating rates, sintering time and pressure.

  7. Experimental Study of Fiber Length and Orientation in Injection Molded Natural Fiber/Starch Acetate Composites

    Peltola, Heidi; Madsen, Bo; Joffe, Roberts; Nättinen, Kalle

    2011-01-01

    Composite compounds based on triethyl citrate plasticized starch acetate and hemp and flax fibers were prepared by melt processing. Plasticizer contents from 20 to 35 wt% and fiber contents of 10 and 40 wt% were used. The compounded composites were injection molded to tensile test specimens. The...... effect of processing, melt viscosity and fiber type on the fiber length was investigated. The lengths of fully processed fibers were determined by dissolving the matrix and measuring the length of the remaining fibers by microscope analysis. A clear reductive effect of the processing on the fiber length...... to remain longer and fibrillate more than flax fibers, leading to higher aspect ratio. Thus, the reinforcement efficiency of hemp fibers by the processing was improved, in contrast with flax fibers. In addition, the analysis of fiber dispersion and orientation showed a good dispersion of fibers in...

  8. Crystallization kinetics and morphology of PBT/MMT and PTT/MMT nanocomposites during injection molding

    This work had as main objective to study the crystallization of nanocomposites of poly(butylene terephthalate) (PBT) and poly(trimethylene terephthalate) (PTT) with a montmorillonite nanoclay (MMT) using an on-line optical monitoring system during the injection molding and to characterize the morphologies of the injection samples by polarized light optical microscopy (PLOM), wide angle X-ray diffraction (WAXS) and differential scanning calorimetry (DSC). The optical system allowed to analyze the crystallization process by the changes of the optical properties during the solidification of the materials. It was concluded that the MMT lamellae accelerated the overall crystallization of the polymers. By PLOM, it was observed that the nanoclay caused qualitative changes on the morphology of the PTT (polymer with slow crystallization kinetics). The crystallinity indexes were not affected by the addition of the MMT; however, by WAXS it was shown that the nanocomposites had a higher orientation degree. (author)

  9. Improved molding process ensures plastic parts of higher tensile strength

    Heier, W. C.

    1968-01-01

    Single molding process ensures that plastic parts /of a given mechanical design/ produced from a conventional thermosetting molding compound will have a maximum tensile strength. The process can also be used for other thermosetting compounds to produce parts with improved physical properties.

  10. Effect of injection molded micro-structured polystyrene surfaces on proliferation of MC3T3-E1 cells

    G. Lucchetta

    2015-04-01

    Full Text Available In this work, osteoinductive micro-pillared polystyrene surfaces were mass-produced for bone replacement applications, by means of the micro injection molding process. Firstly, the molding process parameters were optimized with a two-level, three-factor central composite face-centered plan to increase the quality of polystyrene micro pillars replication and to maximize the pillars height uniformity over the molded part. Secondly, osteoblastic MC3T3-E1 cells adhesion and proliferation on the replicated substrates were assessed as a function of micro topography parameters, such as pillars diameter, aspect ratio and spacing. Cell morphology and proliferation were evaluated through MTS test after 1, 3 and 7 days from seeding. The experimental results showed that cells adhesion and proliferation is more positively promoted on micro-pillared surfaces compared to flat surfaces, but no correlations were observed between cell proliferation and pillar diameter and spacing.

  11. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  12. Microcellular injection molding and particulate leaching of thermoplastic polyurethane (TPU) scaffolds

    Mi, Hao-Yang; Jing, Xin; Turng, Lih-Sheng; Peng, Xiang-Fang

    2014-05-01

    Microcellular injection moldingand particulate leaching methods were combined to fabricate porousand interconnectedthermoplastic polyurethane (TPU) tissue engineering scaffolds. Water soluble polyvinyl alcohol (PVOH) and sodium chloride (NaCl) were used as porogens to improve the porosity and interconnectivity, as well as the hydrophilicity, of the scaffolds. The effect of each factor-namely, PVOH, NaCl, and microcellular injection molding-on scaffold morphology was investigated. It was found that the microcellular injection molding processwas effectiveatproducing high pore density and porosity. The addition of PVOH decreasedthe pore diameter and increasedthe pore density. Furthermore, scaffolds with NaCl and PVOH porogens hadbetter interconnectivity. The residual PVOH improved the hydrophilicity of the scaffold.

  13. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    Research highlights: → PP/CNFs and PP/TiO2 composites with relative high loading fractions (10, 20, 30 and 35 wt%) were fabricated by inner melt mixing process. Micro tensile test samples were formed by injection molding combined with variotherm process for all composites. → The morphological properties of all nano composites were characterized by WXRD, whose results imply the adding nano fillers did not change the crystal form of PP, but the crystallites size and distance between lattices of crystals were changed with various nano fillers and loading fractions. → DSC analysis show that due to the nucleating function of nano fillers, the peak temperature of crystallization was increased and the peak temperature of crystallization melting was decreased by adding the nanofillers. → The flow ability of nano composites was tested by high pressure single capillary rheometer and the results demonstrate that nano fillers increased the viscosity of PP matrix. → Based on these significant information and analysis foundation of the nano filled composites, the micro weld line samples were formed by injection molding process and characterized by tensile test method. From the achieved results, it can be found that in general, for functional nano filled polymer composites, the mechanical property of micro weld lines were obviously influenced by nano fillers' shape and loading fractions. → The E modulus of micro weld line was increased due to loading CNFs in PP matrix, while the elongation of the micro tensile samples with weld line is considerably decreased comparing with those of unfilled PP samples. The detrimental tensile strength of micro weld lines were observed when CNFs contents increasing, except for at a 10 wt%. → For TiO2 nano particles filled PP, due to the poor dispersion of nano particles, at low loading fraction of 10 wt%, the E modulus and tensile strength of micro weld lines were decreased by filling nano particles, but when the loading fraction is increased to 30%, the E modulus and tensile strength of micro weld line were increased again compared with the low loading level. → Finally, an empirical prediction equation for micro injection molded weld line strength of nano PP composites was proposed for higher nano filler loading fraction than 10 wt%. - Abstract: The nano filled functional polymer materials have been widely processed with micro injection molding technology for micro electromechanical systems (MEMS) fabrication. As the unfavorable defect in micro injection molding parts, weld line brings reduced mechanical and physical properties, especially for nano filled composites. In this study, polypropylene (PP) was compounded respectively with carbon nano fibers (CNFs) and TiO2 nano particles at various weight fractions (10, 20, 30, 35 wt%) through co-screws internal mixing. The morphological, thermal and rheological properties of nano composites were characterized by wider angle X-ray diffraction (WXRD), different scanning calorimeter (DSC) and high pressure capillary rheometer. Additionally, under the constant setting of injection molding process parameters in injection molding machine, micro tensile samples with weld lines for each nano filled PP composite were produced. The tensile tests were served as the characterizing method for weld line mechanical properties. The results show that when the CNFs is filled higher than 10 wt%, the tensile strength of samples with weld lines made of nano composites become lower than neat PP. While the raising CNFs content contributes to the improved E modulus of micro injection molded weld lines. Additionally, with the increasing fraction of CNFs in PP, the weld line area's elongation percent is decreased. Whereas for case of TiO2, the 10 wt% is the threshold for micro injection molded weld line tensile strength turning from decrease trend to increase. The same as CNFs, elongation of micro weld line samples were in general lower than neat PP as well, due to the addition of TiO2 nano particles.

  14. Properties of injection molding used pulverized iron powders. Hasai teppun wo mochiita shashutsu seikei no seishitsu

    Horiguchi, H.; Terakawa, T.; Baba, H. (Yoshikawa Kogyo Co. Ltd., Kita-Kyushu (Japan)); Takane, K. (Gauss Co. Ltd., Hyogo (Japan))

    1991-09-25

    The production technique of fine iron powders by pig-iron pulverization was developed as a method to produce cheaply and en mass iron-base material for metallic injection molding and a method was also developed to make platy irregularly-shaped powders, peculiar to products of pulverization, spherical. In this report, injection molding was conducted using irregularly-shaped iron powders as pulverized and spherically made iron powders, and the difference between them and their application possibility to injection molding were studied. Then utilizing the features of this pulverization method by which carbon steel powders of any size could be obtained, carbon steel of C=0.7% was experimentally produced. The obtained results are also mentioned. From the above injection molding, the followings were revealed: By applying to them a treatment of making them spherical, their fluidity was improved and consumption of binder became less, thereby it was proved that they were fit for injection molding. of the treatment of making them spherical, the relative density of 95% or more of the sintered compact was obtained, and their tensile strength as well as elongation was both good. In case when the oxygen content of the compact before sintering was high, preliminary reduction was effective for compacting and by appropriate preliminary reduction, high carbon steel products could be obtained from the above pulverized iron powders. 3 refs., 15 figs., 4 tabs.

  15. Uni- and biaxial impact behavior of double-gated nanoclay-reinforced polypropylene injection moldings

    Pettarin, Valeria; Viau, Gastn; Fasce, L.; J.C. Viana; A. J. Pontes; Frontini, P. M.; Pouzada, A. S.

    2013-01-01

    Polypopylene/nanoclay three-dimensional parts were produced without intermediate steps by direct injection molding to explore the influence of flow features and nanoclay incorporation in their impact performance. The nanocomposite was obtained by direct compounding of commercial PP with nanoclay masterbatch. The as-molded morphology was analyzed by X-ray and TEM analyses in terms of skin-core structure and nanoclay particle dispersion. The nanoclay particles induced...

  16. Aplikasi Rekayasa Mutu untuk Mengurangi Cacat pada Mesin Injection Molding

    Glenn Eko Yulianto

    1999-01-01

    Full Text Available The imperfect combustion process will be a problem in the development effort of diesel engine's performance. Nonhomogen air-fuel mixing process is one of the factors which cause the imperfect combustion. By heating up the diesel fuel up to a certain temperature before it goes through the high pressure injection pump will lower its density and viscosity. Therefore, when injected in the combustion chamber, it will formed smaller droplets of fuel spray which result in a more homogenious air-fuel mixture. Also by using higher temperature will make the diesel fuel easier to ignite in order to compensate the limited time which is available in high speed operating conditions. Diesel fuel heating can improve the combustion process to increase the power and decrease the fuel consumption optimally. Abstract in Bahasa Indonesia : Tidak sempurnanya proses pembakaran merupakan masalah yang akan dijumpai dalam usaha peningkatan kinerja motor diesel. Proses pencampuran udara dan bahan bakar yang kurang baik menjadi salah satu faktor penyebab ketidak sempurnaan tersebut. Dengan melakukan pemanasan terhadap solar sampai temperatur tertentu sebelum masuk ke dalam pompa tekanan tinggi akan menyebabkan penurunan density dan viskositas solar, sehingga bila diinjeksikan ke dalam ruang bakar akan membentuk butiran kabut bahan bakar yang lebih halus yang akan menyebabkan proses pencampuran bahan bakar dan udara menjadi lebih homogen. Disamping itu, dengan temperatur yang lebih tinggi akan membuat solar menjadi lebih mudah terbakar sehingga dapat mengimbangi singkatnya waktu yang tersedia untuk pembakaran pada putaran tinggi. Pemanasan solar dapat dipergunakan sebagai salah satu cara untuk menyempurnakan proses pembakaran sehingga dihasilkan peningkatan daya dan penurunan konsumsi bahan bakar yang optimal. Kata kunci : peningkatan daya, penurunan konsumsi bahan bakar, motor diesel, proses pembakaran

  17. INVESTIGATION OF THE INFLUENCE OF MOLD ROTATIONAL SPEED ON THE CAST WALL THICKNESS IN THE ROTATIONAL MOLDING PROCESS

    Tomasz Jachowicz

    2013-09-01

    Full Text Available This paper presents the rotational molding process. The general principles of this polymer processing technology have been described. The main applications have been introduced and leading advantages and typical disadvantages of rotational molding process have been discussed. Based on the conducted experimental tests, the influence of changing one selected technological parameter, which characterized rotational molding process, on selected geometrical features of the polymer cast has been determined. Rotational molds speed around axes was changed and a thickness of cast walls has been measured. Laboratory test stand, processing properties of polymer, also test program and experimental test methodology have been described.

  18. Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering

    Yang, Xian-feng; Yang, Jiang-hong; Xu, Xie-wen; Liu, Qi-cheng; Xie, Zhi-peng; Liu, Wei

    2015-06-01

    The ceramic injection molding technique was used in the gas-pressure sintering of ultra-fine Si3N4 powder. The feedstock's flowability, debinding rate, defect evolution, and microstructural evolution during production were explored. The results show that the solid volume loading of less than 50vol% and the surfactant mass fraction of 6wt% result in a perfect flowability of feedstock; this feedstock is suitable for injection molding. When the debinding time is 8 h at 40°C, approximately 50% of the wax can be solvent debinded. Defects detected during the preparation are traced to improper injection parameters, mold design, debinding parameters, residual stress, or inhomogeneous composition distribution in the green body. The bulk density, Vickers hardness, and fracture toughness of the gas-pressure-sintered Si3N4 ceramic reach 3.2 g/cm3, 16.5 GPa, and 7.2 MPa·m1/2, respectively.

  19. A wide variety of injection molding technologies is now applicable to small series and mass production

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail

  20. A wide variety of injection molding technologies is now applicable to small series and mass production

    Bloß, P.; Jüttner, G.; Jacob, S.; Löser, C.; Michaelis, J.; Krajewsky, P.

    2014-05-01

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process "all" thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  1. A wide variety of injection molding technologies is now applicable to small series and mass production

    Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Löser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  2. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  3. Injection Molding of Titanium Alloy Implant For Biomedical Application Using Novel Binder System Based on Palm Oil Derivatives

    R. Ibrahim; M. Azmirruddin; Jabir, M; Ismail, M.R.; M. Muhamad; R. Awang; Muhamad, S.

    2010-01-01

    Problem statement: Titanium alloy (Ti6Al4V) has been widely used as an implant for biomedical application. In this study, the implant had been fabricated using high technology of Powder Injection Molding (PIM) process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Approach: Through PIM, the binder system is one of the most important criteria in order to successfully fabricate the implants...

  4. Three Dimensional Numerical Simulation Of Gas-Assisted And Co-Injection Molding

    Ilinca, Florin; Hétu, Jean-François

    2004-06-01

    This paper presents an overview of the results obtained at the Industrial Materials Institute (IMI) on the numerical simulation of the gas-assisted injection molding and co-injection molding. For this work, the IMI's three-dimensional (3D) finite element flow analysis code was used. Non-Newtonian, non-isothermal flow solutions are obtained by solving the momentum, mass and energy equations. Two additional transport equations are solved to track polymer/air and skin/core materials interfaces. Solutions are shown for various part geometries. The final shape and depth of the core material is predicted and numerical results compare well with experimental data.

  5. Intelligent process development of foam molding for the Thermal Protection System (TPS) of the space shuttle external tank

    Bharwani, S. S.; Walls, J. T.; Jackson, M. E.

    1987-01-01

    A knowledge based system to assist process engineers in evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protection system of the Space Shuttle external tank (ET) is discussed. The Reaction Injection Molding- Process Development Advisor (RIM-PDA) is a coupled system which takes advantage of both symbolic and numeric processing techniques. This system will aid the process engineer in identifying a startup set of mold schedules and in refining the mold schedules to remedy specific process problems diagnosed by the system.

  6. Solving depressions formed during production of plastic molding

    J. Dobránsky; Baron, P.; M. Kočiško; Běhálek, L.; E. Vojnová

    2015-01-01

    This article deals with improvement of design properties of molded plastic parts. It can be achieved by modifying construction of metal injection mold and optimization of parameters in injection process. The subject of our examination was depressions formed on molded plastic parts which are inacceptable in the process of approval. The problem which has arisen was solved in two phases. The first phase consisted in alteration of injection mold design – enlargement of injection molding gate. In ...

  7. Mejora de la etapa de llenado en moldes de inyeccin de plstico usando vibracin / Improvement Performance of the Filling Step in Injection Mold through Vibration

    J.P., Bentez-Rangel; L.A., Morales-Hernndez; M., Trejo-Hernndez.

    2012-12-01

    Full Text Available El presente trabajo muestra la mejora de flujo que tiene la etapa de llenado del proceso de inyeccin de plsticos, debida a la excitacin del polmero a travs de vibracin. Dicho proceso, puede resumirse en tres etapas principales que son: el llenado, el empaquetado y el enfriamiento. El proceso d [...] e llenado es el paso en el que se pueden cambiar una gran cantidad de propiedades, tanto mecnicas como estticas del producto terminado. El objetivo de esta investigacin es mostrar que el llenado del molde mejora adicionando vibracin, sin tener que agregar aditivos qumicos. Para ello, se llev a cabo el diseo y fabricacin de un molde experimental, en el cual se acondicion un mecanismo de vibracin que permiti demostrar las ventajas de la vibracin en dicho proceso. Adems, se propuso una metodologa heurstica para la elaboracin de las pruebas que revel una mejora en el llenado con frecuencias cercanas a los 3 Hz. Abstract in english This paper shows the flow improvement in the filling step of the polymer injection process due to the polymer excitation though vibration. This process can be split up into three main steps: filling, pocking and cooling. Several mechanical and aesthetic properties of the finished product can be chan [...] ged in the filling step. The objective of this investigation is to demonstrate the improvement in the filling mold under vibration without adding chemical products. To reach this result, an experimental mold was designed and manufactured in which a vibration device was coupled; it was possible to demonstrate the vibration advantage through this process. Moreover, a heuristic methodology was proposed for the experiment which shows an improvement in the filling process with frequencies close to 3 Hz.

  8. Localized rapid heating process for precision chalcogenide glass molding

    Li, Hui; He, Peng; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2015-10-01

    Precision glass molding is an important process for high volume optical fabrication. However, conventional glass molding is a bulk heating process that usually requires a long thermal cycle, where molding assembly and other mechanical parts are heated and cooled together. This often causes low efficiency and other heating and cooling related problems, such as large thermal expansion in both the molds and molded optics. To cope with this issue, we developed a localized rapid heating process to effectively heat only very small part of the glass. This localized rapid heating study utilized a fused silica wafer coated with a thin graphene layer to heat only the surface of the glass. The graphene coating functions as an electrical resistant heater when a power source was applied across the thin film coating, generating heat on and near the coating. The feasibility of this process was validated by both experiments and numerical simulation. To demonstrate the advantages of the localized rapid heating, both localized rapid heating process and bulk heating process were performed and carefully compared. The uniformity and quality of the molded sample by localized rapid heating process was also demonstrated. In summary, localized rapid heating process by using graphene coated fused silica wafer was characterized and can be readily implemented in replication of micro scale chalcogenide glasses. A fused silica wafer coated with a thin graphene layer was utilized for localized rapid heating only the surface of the glass. The graphene coating functions as an electrical resistant heater when a power source was applied across the thin film coating, generating high temperature on and near the coating. This process is fast and efficient since only interested areas are heated without affecting the entire glass substrate or the mold assembly. The uniformity and quality of the molded sample by localized rapid heating process was demonstrated by comparing both localized rapid heating process and conventional bulk heating process.

  9. Chemical vapor deposition and analysis of thermally insulating ZrO2 layers on injection molds

    High quality injection molding requires a precise control of cooling rates. Thermal barrier coating (TBC) of zirconia with a thickness of 20-40 μm on polished stainless steel molds could provide the necessary insulating effect. This paper presents results of zirconia deposition on stainless steel substrates using chemical vapor deposition (CVD) aiming to provide the process parameters for the deposition of uniform zirconia films with such a thickness. The deposition was performed with zirconium (IV) acetylacetonate (Zr(C5H7O2)4) as precursor and synthetic air as co-reactant, which allows deposition at temperatures below 600 C. The experiments were carried out in a hot-wall reactor at pressures between 7.5 mbar and 500 mbar and in a temperature range from 450 C to 600 C. Important growth parameters were characterized and growth rates between 1 and 2.5 μm/h were achieved. Thick and well adhering zirconia layers of 38 μm could be produced on steel within 40 h. The transient heat transfer rate upon contact with a hot surface was also evaluated experimentally with the thickest coatings. These exhibit a good TBC performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Hot mold casting process of ancient East India and Bangladesh

    Barnali Mandal

    2010-05-01

    Full Text Available Ancient casting process for production of brass or bronze utensils and icons were made in hot molds using clay molded investment casting or piece mold process, as presumed by archaeologists. Piece mold process is still traditionally practiced in many parts of Eastern India and Bangladesh along with investment casting process. Incidentally, Bengal artisans are more accustomed to piece mold process unlike tribal artisans who practiced investment casting process. This piece mold casting process has been reconstructed to get the idea of metal characteristics in order to investigate ancient casting process of Bengal and Bangladesh. The characterization of ancient archaeo-metal products come to a type of cast Cu-Sn-Zn-Pb type quaternary alloy produced by a slow freezing process. Though these alloys physically differ from the traditional cast alloy of binary Cu-Zn type brass, the physical characteristics are similar to the binary cast alloy character. This investigation throws light on the similarity of the production processes by which ancient artisans probably produced cast metal products.

  11. Process-induced damage evolution and management in resin transfer molding of composite panels

    Kuan, Yean-Der

    2000-10-01

    Woven fiber composites made by resin transfer molding process are currently used as the primary and secondary load bearing structures in automotive and aircraft industries. A variety of defects could be evolved during the injection stage and the curing stage of the process. Improper injection conditions or unsound tool design would result in process induced damage in the form of dry spots, incomplete filling, or displacement of the fiber. In the curing stage, the process parameters of heating and cooling rates, and the temperature level at each element of the curing cycle have direct effects on the development of internal residual stresses, and shape distortion due to warpage. The work in this dissertation aims at developing numerical models to predict, characterize, and minimize process-induced damage during both the injection stage and curing stage in RTM process for woven-fiber composites. A control volume technique based on the finite difference method is used to characterize the flow behavior in resin transfer molding (RTM) of composite structures. Resin flow through fiber mats is modeled as a two-phase flow through porous media. Experimental results on flow behavior of EPON 826 epoxy resin into irregular mold cavity with fiberglass mats agree well with the present numerical simulation. Parametric analysis of several case studies using developed model illustrates the effectiveness of the flow model in investigating the flow pattern, mold filling time, dry spots formulation, and pressure distribution inside the mold. A numerical model describing the evolution of process-induced damage during curing in molded composite panels was developed. The effects of thermo-mechanical and thermo-chemical responses of the material on the evolution of damage during resin transfer molding of the panels are quantified. The developed numerical model in conjunction with an optimization module based on Simulated Annealing (SA) scheme form a useful tool for conducting a parametric design analysis for characterization and management of process-induced damage in composite panels. Experimental investigation of resin transfer molding of composite panels made of epoxy resin (EPON 826) and eight-harness graphite fiber mats, indicates that low cure temperature, moderate heating rate and high rate of cooling after cure would minimize damage during curing. Furthermore the experimental measurements are in agreement with the degree of damage predicted by the numerical models and hence verifying the effectiveness of these models. The models and methods developed in the present work are of broader applicability to process design and optimization of resin transfer molding of composite structures.

  12. Mold

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  13. PP-polymer nanocomposites with improved mechanical properties using elongational flow devices at the injection molding compounder

    Battisti, M. G.; Friesenbichler, W.

    2014-05-01

    Numerous researches have been done in the field of improving PP by adding nanofillers. Consistently good scientific results and positive industrial feedback were reached; however, the industrial interest is still low due to the high technological and financial risks and too less benefit. Our experiments, using the worldwide unique Polymer NanoComposite Injection Molding Compounder (PNC-IMC) which combines the two processing steps of compounding and injection molding, showed an impressive increase of both mechanical and thermal properties, but more or less in the same range than in other publications. Thus we tried to improve the materials by using elongational flow generating devices for better intercalation and exfoliation of nanofillers in the polymer melt. This paper will give an overview on our first investigations, carried out on both a high pressure capillary rheometer (HPCR) and the injection molding machine (IMM) focusing on the mechanical properties. The PNCs were produced at the PNC-IMC with the 3in1 process. After the treatment in the HPCR the material was crushed, plates were prepared using a hydraulic vacuum press and tensile bars were milled, respectively tensile bars were produced with the IMM. The Young's modulus was successfully slightly improved. Thus future research will focus on both, the mechanism of improvement and the implementation of several of these devices into the PNC-IMC.

  14. All-in-polymer injection molded device for single cell capture using multilevel silicon master fabrication

    Tanzi, S.; Larsen, S.T.; Matteucci, M.; Taboryski, R.

    This work demonstrates a novel all-in-polymer device for single cell capture applicable for biological recordings. The chip is injection molded and comprises a "cornered" (non planar) aperture. It has been demonstrated how cornered apertures are straightforward to mold in PDMS [1,2]. In this study...... we demonstrate cornered apertures made in a thermoplastic polymer. One of the advantages of cornered apertures is the ease of microscopy under a standard inverted optical microscope, when using transparent materials. After the part is injection molded, the sealing of the chip is performed by thermal...... bonding to a polymer foil, so the complete device results from only two parts. It differs from similar devices in the novel material and fabrication platform that enables high reproducibility and inexpensive mass production. Optimization of the fabrication scheme has been carried out in order to avoid...

  15. Study on manufacture of 2:17 Sm-Co magnets by powder injection molding

    Manufacture of 2:17 Sm-Co magnets by powder injection molding was investigated. The binder of thermoplastic polymer was selected as the wax-based system including paraffin wax, stearic acid and high density polyethylene. Before mixing with paraffin wax and high density polyethylene, the powder of 5-8 μm was coated by stearic acid. The molding compacts were obtained under 200 without deficits. Solvent debinding and thermal debinding were combined to remove the binder. The basic magnetic characteristics of the specimen were of the same level as those by powder metallurgy technique, which indicated that to fabricate 2:17 Sm-Co magnets by powder injection molding was feasible. (orig.)

  16. Solving depressions formed during production of plastic molding

    J. Dobránsky

    2015-07-01

    Full Text Available This article deals with improvement of design properties of molded plastic parts. It can be achieved by modifying construction of metal injection mold and optimization of parameters in injection process. The subject of our examination was depressions formed on molded plastic parts which are inacceptable in the process of approval. The problem which has arisen was solved in two phases. The first phase consisted in alteration of injection mold design – enlargement of injection molding gate. In the second phase, we have changed the location of injection molding gate. After performing constructional modifications, new molded plastic parts were manufactured and assessed.

  17. Micro Injection Molding of Thin Walled Geometries with Induction Heating System

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano; Grev, Nathaniel Ryan; Tang, Peter Torben

    2014-01-01

    moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios of...... small structures. ABS was used as material and different combinations of injection velocity, pressure and mold temperature were tested. The replicated test objects were measured by means of an optical CMM machine. On the basis of the experimental investigation the efficacy of the embedded induction...... heating system with respect to improvement of replication quality, reduction of injection pressure and injection velocity as well as reduction of cycle time has been verified....

  18. Thermal properties of extruded/injection-molded poly(lactic acid) and biobased composites

    In order to determine the degree of compatibility between PLA and different biomaterials (fibers), PLA was compounded with sugar beet pulp and apple fibers. Fibers were added at 85:15 and 70:30 PLA:Fiber. The composites were blended by extrusion followed by injection molding. Differential Scannin...

  19. THERMAL PROPERTIES OF EXTRUDED-INJECTION MOLDED POLY (LACTIC ACID) AND FIBER BLENDS

    In order to determine the degree of compatibility between PLA and different bio-materials (fibers), PLA was blended with sugar beet pulp, apple, cuphea, lasquerella, and milkweed fibers. Fibers were added at 85:15 and 70:30 PLA:Fiber. The composites were dry blended, extruded and injection molded....

  20. Injection molding of micro pillars on vertical side walls using polyether-ether-ketone (PEEK)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2016-01-01

    CrN, TiN and TiB2 respectively, the remaining one was not coated as a reference. The effect of coating was compared via the morphology of the micropillars on the polymer parts. 4000 injection molding cycles were repeated. The roughness of the coated surface was measured. The reasons for the demolding...

  1. Optimization of injection molded parts by using ANN-PSO approach

    R. Spina

    2006-01-01

    Purpose: The aim of the work was the optimization of injection molded product warpage by using an integrated environment.Design/methodology/approach: The approach implemented took advantages of the Finite Element (FE) Analysis to simulate component fabrication and investigate the main causes of defects. A FE model was initially designed and then reinforced by integrating Artificial Neural Network to predict main filling and packing results and Particle Swarm Approach to optimize injection mol...

  2. Environmental impact estimation of mold making process

    KONG, DAEYOUNG

    2013-01-01

    Increasing concern of environmental sustainability regarding depletion of natural resources and resulting negative environmental impact has triggered various movements to address these issues. Various regulations about product life cycle have been made and applied to industries. As a result, how to evaluate the environmental impact and how to improve current technologies has become an important issue to product developers. Molds and dies are very generally used manufacturing tools and indispe...

  3. Precision compression molding process of low Tg glass aspheric lenses

    Ma, Tao; Yu, Jingchi

    2009-05-01

    Precision Glass Molding Process is adopted for mass production of aspheric lenses, micro-lens array, diffractive optical elements and free-form lenses which are difficult to be manufactured by using conventional methods. In this research, high order aspheric lenses with 6th item are molded using the glass material P-SK57 which is characterized by a low glass transition temperature (Tg) 493°C and thermal expansion coefficient (TEC) 8.9×10-6. Some of the molding conditions are as follow: 1) the molding temperature is 565°C, 2) the pressure force is kept at 4KN for 90 seconds and 3) the lens is cooling at an annealing velocity of 1.5~2°C /s to a release temperature of 180°C. The total molding cycle time is about 16 minutes. Molded aspheric lenses are measured with a Taylorsurf contact profilometer and a Zygo Newview white-light interferometer. As a result, the shape accuracy of molded lenses is less than 0.5um (PV) and surface finish quality is less than 2nm.

  4. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  5. Progress in modeling long glass and carbon fiber breakage during injection molding

    Chen, Hongyu; Cieslinski, Mark; Baird, Donald G.

    2015-05-01

    This work is concerned with the modeling of in-machine fiber breakage during injection molding. A lab-scale single screw extruder is used to evaluate fiber breakage in the screw. Our experiments show that as the initial glass fiber pellets length is reduced relative to the channel width, the overall percent of breakage is reduced. We believe that the ratio of initial pellet length to the screw channel width, or diameter, is an important parameter determining the percent of fiber breakage. Data have been fit using an exponential decay model with a kinetic decay constant and a critical length value. This empirical model has been tested on an injection molding machine with a screw 1.6 times larger than that of our single screw extruder. The predicted average fiber length leaving the nozzle shows reasonable agreement with the measured value. For the injection molded end-gated-plaque produced by the same machine, additional fiber breakage has been observed in the runner. A hydrodynamic force based breakage model is combined with mold filling simulation to simulate the fiber breakage in the runner. For carbon fibers, similar breakage trends were observed in the single screw extruder indicating the applicability of our empirical model to carbon fiber.

  6. Application of thermographic temperature measurements in injection molding and blow molding of plastics

    Prystay, Mark; Wang, Hao; Garcia-Rejon, Andres

    1996-03-01

    Infrared thermal analysis is used to characterize and optimize injection moulding and blow moulding of plastic parts colored with 2 - 4% carbon black. Thermographic and ultrasonic data show that during injection moulding shrinkage of the plastic in the mould creates a gap between the part and mould which produces a thermal contact resistance thereby reducing the cooling efficiency of the mould. The effect of shrinkage was minimized by using high packing pressures. Thermal analysis of blow moulding provides evidence of a 'skin' on the surface of the parison which affects the wetting of the part and mould. A high blow rate is required to maintain a parison that wets the mould surface well to promote the transfer of heat out of the part. In addition, under fixed operating conditions. The temperature field on thin walled parts can be used to obtain on-line thickness distributions and measure blow ratios. Results of the study have been applied to the analysis of automotive parts.

  7. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Wang, Jin; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-08-15

    This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66 (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to support part molding. 12) Toyota and Magna discussed with PNNL on tool modification for molding the complex part. Toyota sent the CAD files of the complex part to PNNL to build ASMI models of the part for mold filling analysis to provide guidance to tooling and part molding.

  8. Progress in simulating semi-flexible glass fiber orientation in an injection molded end-gated plaque

    Cieslinski, Mark J.; Meyer, Kevin J.; Baird, Donald G.

    2014-05-01

    The use of long fiber reinforced thermoplastics has gained increasing interest as a means to enhance a part's mechanical properties created through traditional melt processing techniques. Injection molding creates a complex microstructure to develop caused by flow field within the mold. Accurate predictions of fiber orientation can allow for mold design to be tailored to achieve a desired microstructure and mechanical properties. Simulations utilize the Bead-Rod orientation model adapted for concentrated suspensions to account for semi-flexible fibers by representing a fiber as two adjoined vectors that are free to rotate around the connecting point. This work uses orientation model parameters extracted from orientation data taken along the center plane at the transition between the gate and plaque. The entire mold cavity is simulated under non-isothermal conditions including the entry region to the plaque and the fountain flow behavior at the advancing front. Simulations of the semi-flexible model are compared to the Strain Reduction Factor (SRF) model developed for rigid fibers following the same simulation procedure. Predictions are compared to experimental data measured along and away from the plane of symmetry. Improvement in orientation predictions are obtained from the Bead-Rod model which greatly out performs the rigid fiber model away from the center plane.

  9. The manufactoring of a two–layered injection mold by welding

    A. Košnik

    2011-10-01

    Full Text Available The article presents the technology of deposit cladding different materials, using the injection molds for thermoplastic as a case study. The aim of the study is to surface weld to the working surface of the mold a different material with corresponding physical properties. Steel (1.1141 and a copper alloy were used as the base, onto which different materials were surface-welded. Tungsten inert gas (TIG welding was employed to make molds inserts. An analysis of cross-sectioned specimens was made by optical microscopy, and chemical and hardness profiles were measured too. The thermal conductivity of base and cladded layer was also tested. Finally, a thermal fatigue test was employed to investigate the thermal fatigue properties of such surfaces.

  10. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.

    Wu, Linbo; Jing, Dianying; Ding, Jiandong

    2006-01-01

    A "room-temperature" injection molding approach combined with particulate leaching (RTIM/PL) has been, for the first time, developed in this work to fabricate three-dimensional porous scaffolds composed of biodegradable polyesters for tissue engineering. In this approach, a "wet" composite of particulate/polymer/solvent was used in processing, and thus the injection was not performed at melting state. Appropriate viscosity and flowability were facilely obtained at a certain solvent content so that the composite was able to be injected into a mould under low pressure at room temperature, which was very beneficial for avoiding thermal degradation of polyesters. As a demonstration, tubular and ear-shaped porous scaffolds were fabricated from biodegradable poly(D,L-lactide-co-glycolide) (PLGA) by this technology. Porosities of the resulting scaffolds were as high as 94%. The pores were well interconnected. Besides the well-known characteristics of injection molding to be suitable for automatization of a fabrication process with high repeatability and precision, this RTIM/PL approach is much suitable for tailoring highly porous foams with its advantages flexible for shaping complicated scaffolds, free of thermal degradation and high-pressure machine, etc. PMID:16098580

  11. Unique opportunities in powder injection molding of refractory and hard materials

    Powder injection molding (PIM) is a relatively new manufacturing process for the creation of complicated net-shapes outside the range usually possible via powder metallurgy technologies. This new process is now in production at more than 550 sites around the world. Although a small industry, PIM will soon pass $1 billion dollars (USA) in annual sales. This presentation overviews the PIM process, some of the new developments and some of the successes that have occurred with both refractory metals and hard metals. Example applications are seen in medical and dental devices, industrial components, wristwatches, jet engines, firearms, automotive components, and even hand tools. To help establish the novel growth opportunities, PIM is compared to other fabrication routes to better understand the design features arising with this new approach, providing a compelling case for substantial opportunities in the refractory and hard materials. Illustrations are provided of several components in production. New opportunities abound for the technology, since it eliminates the shape complexity barrier associated with die compaction and the cost of machining associated with complicated or dimensionally precise components. Further, a relative cost advantage exists for refractory and hard materials because PIM can use the same powders at the same prices as employed in alternative processes. Future successes will occur by early identification of candidate materials and designs. Early examples include tungsten heavy alloy components now reaching production rates of six million per month. (author)

  12. Imprinted and injection-molded nano-structured optical surfaces

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik; Caringal, Gideon Peter; Mortensen, N. Asger; Kristensen, Anders

    2013-01-01

    of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx......Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are wellknown examples used for inspiration for such biomimetic research. In this....... 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed....

  13. Application of Rapid Prototyping and Wire Arc Spray to the Fabrication of Injection Mold Tools (MSFC Center Director's Discretionary Fund)

    Cooper, K. G.

    2000-01-01

    Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.

  14. Optimizing the Filling Time and Gate of the Injection Mold on Plastic Air Intake Manifold of Engines

    Shiqiang Zhang

    2013-01-01

    In order to acquire the best filling time, Mold trial is made by setting different injection time, or Mold flow software is used to analyze data recorded by computer. Whether doing successive trials or being simulated point by point, is very tedious. A new method is put forward-seeking the minimum of curve being simulated by Lagrange interpolation. The minimum of the curve is the best filling time. This method can improve the efficiency of the simulation analysis. The software Mold flow...

  15. Studies on the injection molding of polyvinyl chloride: Analysis of viscous heating and degradation in simple geometries

    Garcia, Jose Luis

    2000-10-01

    In injection molding processes, computer aided engineering (CAE) allows processors to evaluate different process parameters in order to achieve complete filling of a cavity and, in some cases, it predicts shrinkage and warpage. However, because commercial computational packages are used to design complex geometries, detail in the thickness direction is limited. Approximations in the thickness direction lead to the solution of a 2½-D problem instead of a 3-D problem. These simplifications drastically reduce computational times and memory requirements. However, these approximations hinder the ability to predict thermal and/or mechanical degradation. The goal of this study was to determine the degree of degradation during PVC injection molding and to compare the results with a computational model. Instead of analyzing degradation in complex geometries, the computational analysis and injection molding trials were performed on typical sections found in complex geometries, such as flow in a tube, flow in a rectangular channel, and radial flow. This simplification reduces the flow problem to a 1-D problem and allows one to develop a computational model with a higher level of detail in the thickness direction, essential for the determination of degradation. Two different geometries were examined in this study: a spiral mold, in order to approximate the rectangular channel, and a center gated plate for the radial flow. Injection speed, melt temperature, and shot size were varied. Parts varying in degree of degradation, from no to severe degradation, were produced to determine possible transition points. Furthermore, two different PVC materials were used, low and high viscosity, M3800 and M4200, respectively (The Geon Company, Avon Lake, OH), to correlate the degree of degradation with the viscous heating observed during injection. It was found that a good agreement between experimental and computational results was obtained only if the reaction was assumed to be more thermally sensitive than found in literature. The results from this study show that, during injection, the activation energy for degradation was 65 kcal/mol, compared to 17--30 kcal/mol found in literature for quiescent systems.

  16. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Fourth FY 2015 Quarterly Report

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Wollan, Eric J.; Roland, Dale; Gandhi, Umesh N.; Mori, Steven; Lambert, Gregory; Baird, Donald G.; Wang, Jin; Costa, Franco; Tucker III, Charles L.

    2015-11-13

    During the last quarter of FY 2015, the following technical progress has been made toward project milestones: 1) PlastiComp used the PlastiComp direct in-line (D-LFT) Pushtrusion system to injection mold 40 30wt% LCF/PP parts with ribs, 40 30wt% LCF/PP parts without ribs, 10 30wt% LCF/PA66 parts with ribs, and 35 30wt% LCF/PA66 parts without ribs. In addition, purge materials from the injection molding nozzle were obtained for fiber length analysis, and molding parameters were sent to PNNL for process modeling. 2) Magna cut samples at four selected locations (named A, B, C and D) from the non-ribbed Magna-molded parts based on a plan discussed with PNNL and the team and shipped these samples to Virginia Tech for fiber orientation and length measurements. 3) Virginia Tech started fiber orientation and length measurements for the samples taken from the complex parts using Virginia Tech’s established procedure. 4) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, reviewed process datasheets and performed preliminary analyses of these complex parts using the actual molding parameters received from Magna and PlastiComp to compare predicted to experimental mold filling patterns. 5) Autodesk assisted PNNL in developing the workflow to use Moldflow fiber orientation and length results in ABAQUS® simulations. 6) Autodesk advised the team on the practicality and difficulty of material viscosity characterization from the D-LFT process. 7) PNNL developed a procedure to import fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS® model for structural analyses of the complex part for later weight reduction study. 8) In discussion with PNNL and Magna, Toyota developed mechanical test setups and built fixtures for three-point bending and torsion tests of the complex parts. 9) Toyota built a finite element model for the complex parts subjected to torsion loading. 10) PNNL built the 3D ABAQUS® model of the complex ribbed part subjected to 3-point bending. 11) University of Illinois (Prof. C.L. Tucker) advised the team on fiber orientation and fiber length measurement options, modeling issues as well as interpretation of data.

  17. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano; Hattel, Jesper Henri

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear...

  18. Development of step for light duty truck by using injection molding of long-fiber reinforced thermoplastics; Chosen`i kyoka jushi no shashutsu keisei ni yoru truck yo step no kaihatsu

    Togo, A.; Yamamura, H.; Yamaguchi, M. [Mitsubishi Motor Corp., Tokyo (Japan); Yoshino, K. [Kawasaki Steel Corp. Tokyo (Japan)

    1997-10-01

    The new step for light duty truck was developed by injection molding of glass long-fiber reinforced polypropylene. Feature of the step is good surface appearance and no post processings, compared with the conventional one press molded with a glass fiber reinforced polypropylene sheet (Stampable sheet). 3 refs., 14 figs., 6 tabs.

  19. Research cooperation project on the development of easy injection molding control technology for engineering plastics; Engineering plastic no seikei joken kan`i settei gijutsu ni kansuru kenkyu kyoryoku jigyo seika hokokusho

    NONE

    1997-03-01

    In order to enhance the industries which supply assembly parts to Japan`s assembly industries in Thailand, research cooperation project on the plastic parts production technology has started. For the research cooperation, the mold design is effectively conducted using simulation technique of CAE (computer aided engineering), and an international easy injection molding control system is made using the molding support software for injection molding machines. In FY 1996, actual situations of plastic parts and assembly industries in Thailand have been investigated through the cooperation with the counterpart of Thailand. Demand and supply of engineering plastics, receive and inspection of parts, and current circumstances of molding processing makers in Thailand have been grasped. Based on the results of this investigation, proposal of basic plan, time schedule, and delivery plan of molding machines and testing equipment have been discussed, to make the basic plan. 18 refs., 4 figs., 23 tabs.

  20. Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique

    Dong Kwon Park

    2013-09-01

    Full Text Available Background The forehead, which occupies about one third of the face, is one of the majordeterminants of a feminine or masculine look. Various methods have been used for the augmentationof the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate(MMA is the most appropriate material for augmentation of the forehead, and we have usedan injection-molding technique with MMA to achieve satisfactory results.Methods Under local anesthesia with intravenous (IV sedation, an incision was made onthe scalp and a meticulous and delicate subperiosteal dissection was then performed. MMAmonomers and polymers were mixed, the dough was injected into the space created, andmanual molding was performed along with direct inspection. This surgery was indicated forpatients who wanted to correct an unattractive appearance by forehead augmentation. Everypatient in this study visited our clinics 3 months after surgery to evaluate the results. Wejudged the postoperative results in terms of re-operation rates caused by the dissatisfactionof the patients and complications.Results During a 13-year period, 516 patients underwent forehead augmentation with MMA.With the injection-molding technique, the inner surface of the MMA implant is positionedclose to the underlying frontal bone, which minimizes the gap between the implant and bone.The borders of the implant should be tapered sufficiently until no longer palpable or visible.Only 28 patients (5.4% underwent a re-operation due to an undesirable postoperative appearance.Conclusions The injection-molding technique using MMA is a simple, safe, and ideal methodfor the augmentation of the forehead.

  1. Carbon Nanotubes Reinforced Copper Matrix Nanocomposites via Metal Injection Molding Technique

    Mohamed, Norani M.; Faiz Ahmad; Ali S. Muhsan; Putri S.M.BT M. Yusoff; M.R. Raza

    2012-01-01

    New thermal management solutions are required to provide cost-effective means of dissipating heat from next generation microelectronic devices. In this paper, fabrication of heat sink nanocomposite made of copper reinforced by multiwalled carbon nanotubes up to 10 Vol. % using metal injection molding technique is presented. A mixture of Cu-MWNTs was compounded using internal mixer machine for homogenous dispersion of the solid powder in the binder. To ensure a flow able feedstock during...

  2. Electroforming of Tool Inserts for Injection Molding of Optical or Microfluidic Components

    Tang, Peter Torben; Christensen, Thomas R.; Jensen, Martin F.

    2004-01-01

    With a rapidly increasing international interest in “Lab-on-a-chip”-systems as well as affordable polymer optics, the combination of electroforming and injection molding offers an attractive fabrication solution. Miniaturized analysis systems can be used for medical, security (anti terror...... monitoring) and environmental (waste water monitoring) applications. Optical components in polymer materials can be used for consumer electronics and for sensor systems. The presentation will include the complete fabrication scheme for tool inserts based on machining and electroforming. Electroforming...

  3. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  4. Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding.

    Kobayashi, Masanori; Oka, Masanori

    2004-01-01

    We have developed a hip hemi-arthroplasty using polyvinyl alcohol-hydrogel (PVA-H) as the treatment for hip joint disorders in which the lesion is limited to the joint surface. In previous studies, we characterized the biocompatibility and the mechanical properties of PVA-H as an arthroplasty material. To fix PVA-H firmly to the bone, we have devised an implant composed of PVA-H and porous titanium fiber mesh (TFM). However, because of poor infiltration of the PVA solution into the pores of the TFM when using the low temperature crystallization method, the strength of the PVA-H-TFM interface was insufficient. Consequently, the infiltration method was improved by adopting high-pressure injection molding. With this improved method, the bonding strength of the interface increased remarkably. However, as this injection molding requires high temperature, various mechanical properties of the PVA-H might change with this treatment in comparison with the previous method. The purpose of this study was to investigate the effect of high temperature treatment on the mechanical properties of PVA-H as artificial articular cartilage, the tensile test and friction test were performed about new PVA-H. The results showed no significant mechanical deterioration of the PVA-H. This certified that the injection-molding method did not induce the change of the mechanical properties of PVA-H and indicated the potential of hemi-arthroplasty using PVA-H by this method in the future. PMID:15255523

  5. Prediction of fiber orientation in injection-molded parts using three-dimensional simulations

    Wang, Jin; Cook, Peter; Bakharev, Alex; Costa, Franco; Astbury, David

    2016-03-01

    The Folgar-Tucker (F-T) model is widely used in most commercial software packages and research programs to predict the fiber orientation distribution in injection-molded fiber-reinforced composites. However, experimental measurements reveal that the F-T model normally results in much higher fiber alignment than observed because it tends to over-predict the orientation kinetics. The Reduced Strain Closure (RSC) model was developed, based on the F-T model, to capture the slow orientation kinetics in an objective fashion. Previous studies demonstrate that t he RSC model yields good agreement of fiber orientation with experimental measurements in shell element simulations using the Hele-Shaw flow approximation. This paper focuses on the RSC model in three-dimensional finite element simulations. The fiber orientation predictions were compared to the orientation measurements in a number of injection-molded parts of various shapes and dimensions and molded with various injection speeds. The RSC model is able to capture the orientation distribution through the part thickness and the average orientation trends along the flow length without the need to tailor the inlet orientation condition to pre-existing data.

  6. Moldagem por injeo da PA 6.6 em moldes de estereolitografia metalizados com Ni-P pelo processo electroless Injection molding of PA 6.6 in stereolithography moulds coated with electroless Ni-P

    Diovani C. Lencina

    2007-06-01

    Full Text Available A fabricao de moldes por tcnicas de prototipagem rpida, como a estereolitografia (SL, considerada uma importante tecnologia no auxlio ao desenvolvimento de produtos de plstico moldados por injeo. Embora esta tecnologia se mostre vantajosa, a vida til dos moldes pode ser bastante reduzida em decorrncia, por exemplo, de forte adeso entre o polmero injetado e o material do molde SL. Neste trabalho investigado o uso da tcnica de recobrimento metlico com Ni-P por deposio electroless sobre moldes de injeo, fabricados por SL com a resina DSM SOMOS 7110. Foram comparados resultados de moldagem de PA6.6 em moldes fabricados com e sem recobrimento metlico evidenciando a possibilidade de utilizar a tcnica de metalizao como alternativa para a moldagem deste material em moldes SL, uma vez que a vida til foi superior.Manufacturing of moulds by rapid prototyping processes, such as stereolithography (SL, is considered an important technology to aid the development of injection moulding plastic products. Although this technology shows significant advantages, the lifetime of moulds may be drastically be reduced due to strong adhesion between the injected polymer and the material of the SL mould. This work investigates the use of Ni-P metal coating obtained by electroless deposition on SL moulds manufactured with the resin DSM SOMOS 7110. Specimens of PA6.6 have been injected into SL moulds manufactured with and without metal coating. The results showed that the electroless metal coating process can be an appropriate alternative to allow moulding of small series of PA6.6 parts in SL moulds.

  7. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices

    Østergaard, Peter Friis; Matteucci, Marco; Reisner, Walter; Taboryski, Rafael

    2013-01-01

    /or requirement of specialized facilities/skill-sets. In this article we show that nanochannel-based mapping can be performed in all polymer chips fabricated via injection molding: a fabrication process so inexpensive that the devices can be considered disposable. Fluorescent intensity variations can be obtained...... from molecules extended in the polymer nanochannels via chemical counterstaining against YOYO-1. In particular, we demonstrate that the counterstaining induced fluorescent intensity variations to a large degree appear to be proportional to the theoretically computed sequence-maps of both local AT and...

  8. Evaluation of Micro-drilling Technologies for Metal Injection Molded 420 Stainless Steel

    Silverman, David Elion

    Metal injection molded (MIM) 420 stainless steel is a commonly used material for high-value products such as fuel injector nozzles. However, the trade-offs involved in using different micro-drilling processes on this material are not well-documented in literature. This thesis presents a micro-drilling study of MIM 420 stainless steel using four candidate processes, viz., micro-electrical discharge drilling (micro-EDD), ultrasonically-assisted micro-EDD, micro-mechanical drilling (micro-MD) and ultrasonically-assisted micro-MD. The micro-EDD results shows that the use of ultrasonic vibrations significantly improves the overall process time, spark erosion efficiency and material removal rate of the process. However, this improvement comes at the expense of increased tool wear and surface roughness, especially while machining under high discharge energy conditions. The micro-MD results show that the use of ultrasonic vibrations is beneficial in lowering the thrust force, drilling torque and tool-wear at chipload values greater than the minimum chip thickness of the material. However, the ultrasonic vibrations do not have a notable effect on the surface roughness or on the size of the exit burrs. The results obtained from this study have been used to develop a Likert-type comparison scale to enable application-specific selection of micro-drilling processes for MIM 420 stainless steel. Finally, the benefits of using the ultrasonically-assisted micro-EDD process seen during the laboratory tests at Rensselaer were observed to carry over to the production environment of our NYSERDA funded industrial sponsor.

  9. Structural scheme optimization design for the stationary platen of a precision plastic injection molding machine

    Ren, Bin; Zhang, Shuyou; Tan, Jianrong

    2014-07-01

    The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improving depends on the design quality of the stationary platen. Compared with the parametric design of stationary platen, structural scheme design could obtain the optimization model with double objectives and multi-constraints. In this paper, a SE-160 precision plastic injection molding machine with 1600 kN clamping force is selected as the subject in the case study. During the motion of mold closing and opening, the stationary platen of SE-160 is subjected to a cyclic loading, which would cause the fatigue rupture of the tie bars in periodically long term operations. In order to reduce the deflection of the stationary platen, the FEA method is introduced to optimize the structure of the stationary platen. Firstly, an optimal topology model is established by variable density method. Then, structural topology optimizations of the stationary platen are done with the removable material from 50%, 60% to 70%. Secondly, the other two recommended optimization schemes are given and compared with the original structure. The result of performances comparison shows that the scheme II of the platen is the best one. By choosing the best alternative, the volume and the local maximal stress of the platen could be decreased, corresponding to cost-saving material and better mechanical properties. This paper proposes a structural optimization design scheme, which can save the material as well as improve the clamping precision of the precision plastic injection molding machine.

  10. Microstructure and Mechanical Performance Analysis of Metal-injection-molded Fe-2Ni Sintered Components

    Lin, Kuan-Hong; Hsieh, Yu-Chan; Lin, Shun-Tian

    2011-01-01

    The influence of iron powders and heat treating processes on the microstructure, mechanical properties, wear properties and fracture modes of the metal injection molded Fe-2Ni (wt.%) components were investigated in this work. Experimental results indicated that the components using BASF-OS grade carbonyl iron powder showed a finer grains and lower residual carbon content than that using BASF-OM grade carbonyl iron powder. It was observed that the hardness and wear-resistance of the carburized and quenched OS-grade components decreased as the tempering temperature was higher. On the other hand, BASF-OM grade carbonyl iron powder sintered components maintained original carbon contents and lower hardness than that of BASF OS-grade specimen. Dramatic fluctuations of friction forces were observed on the BASF-OS grade and BASF-OM grade components, which were tempered between 100-150 C and 300 C, respectively. It was believed that such phenomena were caused by the difference of wear modes and had detrimental effects on the life time of components.

  11. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Hausnerova, Berenika; Sanetrnik, Daniel [Dept. of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nm. T.G. Masaryka 5555, 760 01 Zln, Czech Republic and Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovc (Czech Republic); Paravanova, Gordana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcrnou 3685, 760 01 Zln (Czech Republic)

    2014-05-15

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  12. Eliminating weldlines of an injection-molded part with the aid of high-frequency induction heating

    High-frequency induction is an efficient way to heat mold surface by non-contact electromagnetic induction. It has been recently applied to injection molding because of its capability to heat and cool mold surface rapidly. This study applies high-frequency induction heating to eliminate weldlines in an injection-molded plastic part. To eliminate or reduce weldlines, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through 3 s of induction heating, the maximum temperature of 143 .deg. C is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than 60 .deg. C. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated. The weldline on the heated region is almost eliminated, from which we can obtain the good surface appearance of the part

  13. Injection Molding of Titanium Alloy Implant For Biomedical Application Using Novel Binder System Based on Palm Oil Derivatives

    R. Ibrahim

    2010-01-01

    Full Text Available Problem statement: Titanium alloy (Ti6Al4V has been widely used as an implant for biomedical application. In this study, the implant had been fabricated using high technology of Powder Injection Molding (PIM process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Approach: Through PIM, the binder system is one of the most important criteria in order to successfully fabricate the implants. Even though, the binder system is a temporary, but failure in the selection and removal of the binder system will affect on the final properties of the sintered parts. Therefore, the binder system based on palm oil derivative which is palm stearin had been formulated and developed to replace the conventional binder system. Results: The rheological studies of the mixture between the powder and binders system had been determined properly in order to be successful during injection into injection molding machine. After molding, the binder held the particles in place. The binder system had to be removed completely through debinding step. During debinding step, solvent debinding and thermal pyrolysis had been used to remove completely of the binder system. The debound part was then sintered to give the required physical and mechanical properties. The in vitro biocompatibility also was tested using Neutral Red (NR and mouse fibroblast cell lines L-929 for the direct contact assay. Conclusion: The results showed that the properties of the final sintered parts fulfill the Standard Metal Powder Industries Federation (MPIF 35 for PIM parts except for tensile strength and elongation due to the formation of titanium carbide. The in vitro biocompatibility on the extraction using mouse fibroblast cell line L-929 by means of NR assays showed non toxic for the sintered specimen titanium alloy parts.

  14. Development of production technology by metallic powder injection molding for TiAl-type intermetallic compound with high efficiency

    Since a TiAl-type intermetallic compound has an excellent high temperature strength and corrosion resistance, in addition to light weight, it is expected to be applicable to the engine parts. However, it is difficult for TiAI to produce a part with a complex shape, and considerable cost will be required. In this study, it was tried to develop a technology for producing TiAl products with high density and high efficiency by using metal powder injection molding (MIM) process. Several kinds of TiAI alloy powders made by the self-propagating high temperature synthesis process were mixed with an organic binder, kneaded and then injection-molded into tensile specimens. These compacts were subjected to the treatment for removing the binder and sintering, resulted in a relative density as high as 97 %. By room and high temperature tensile tests, it was found that, Ti-47.4Al-2.6Cr (at%) has the strength and ductility as those of the conventional processed materials. (author)

  15. Hybrid tooling technologies for injection molded and hot embossed polymeric microfluidic devices

    Becker, Holger; Beckert, Erik; Grtner, Claudia

    2010-02-01

    The growing complexity of microfluidic devices is currently leading to an increased dimensional scale dynamics, i.e. the range of sizes of features on the microfluidic device is steadily increasing, from centimeter-sized features like reservoirs over millimeter-sized features like fluidic connections and micrometer-sized features like microchannels to nanometersized features like surface textures. In order manufacture these devices with polymer replication technologies like injection molding and hot embossing, molding tools (masters) have to be fabricated which contain the same structural dynamic range. Often, this is not possible using a single tooling technology. We therefore present examples of such tools which have been fabricated using two techniques on the same master structure, namely precision mechanical machining, single-point diamond turning (SPDT) and stereolithography.

  16. Optimization of injection molding process parameters by a hybrid of artificial neural network and artificial bee colony algorithm / Optimizacin de los parmetros del proceso de inyeccin de plsticos a travs de un hbrido de redes neuronales artificiales y el algoritmo de la colonia artificial de abejas

    Alejandro, Alvarado Iniesta; Jorge L., Garca Alcaraz; ManuelIvn, Rodrguez Borbn.

    2013-06-01

    Full Text Available Este estudio presenta un hbrido de redes neuronales artificiales con el algoritmo de la colonia artificial de abejas para optimizar los parmetros del proceso de inyeccin de plsticos con el objetivo de minimizar la deformacin en productos plsticos. Una red neuronal de propagacin hacia adelante [...] es empleada para obtener una relacin matemtica entre los parmetros del proceso y el objetivo a optimizar. El algoritmo de la colonia artificial de abejas es usado para encontrar el conjunto ptimo de valores de los parmetros que resultaran en la solucin ptima. Un caso experimental es presentado acoplando simulaciones de Moldflow junto con los esquemas mencionados con el fin de validar el enfoque propuesto. La temperatura del plstico, temperatura del molde, presin de empaque, tiempo de empaque, y tiempo de enfriamiento son consideradas como las variables de diseo. Los resultados revelan que el enfoque propuesto puede eficientemente apoyar a ingenieros a determinar los parmetros ptimos y alcanzar ventajas competitivas en trminos de calidad y costos. Abstract in english This paper presents a hybrid of artificial neural networks and artificial bee colony algorithm to optimize the process parameters in injection molding with the aim of minimize warpage of plastic products. A feedforward neural network is employed to obtain a mathematical relationship between the proc [...] ess parameters and the optimization goal. Artificial bee colony algorithm is used to find the optimal set of process parameters values that would result in the optimal solution. An experimental case is presented by coupling Moldflow simulations along with the intelligent schemes in order to validate the proposed approach. Melt temperature, mold temperature, packing pressure, packing time, and cooling time are considered as the design variables. Results revealed the proposed approach can efficiently support engineers to determine the optimal process parameters and achieve competitive advantages in terms of quality and costs.

  17. Influence of the injection-molding parameters on the cellular structure and thermo-mechanical properties of ethylene-propylene block copolymer foams

    Gómez Gómez, Jaime Francisco; Arencón Osuna, David; Sánchez Soto, Miguel; Martínez Benasat, Antonio

    2013-01-01

    Microcellular injection-molding technology is capable of producing lightweight polymeric products. The foam morphology is determined by the injection-molding parameters, and it has been observed that depending on the parameter variations, the cell structure may exhibit substantial morphological differences through the entire section along the melt flow direction of the injected part. The effects of varying injection-molding parameters on foam morphology and thermal mechanical p...

  18. Feature-based non-manifold modeling system to integrate design and analysis of injection molding products

    Current CAE systems used for both the simulation of the injection molding process and the structural analysis of plastic parts accept solid models as geometric input. However, abstract models composed of sheets and wireframes are still used by CAE systems to carry out more analyses more efficiently. Therefore, to obtain an adequate abstract model, designers often have to simplify and idealize a detailed model of a part to a specific level of detail and/or abstraction. For such a process, we developed a feature-based design system based on a non-manifold modeling kernel supporting feature-based multi-resolution and multi-abstraction modeling capabilities. In this system, the geometric models for the CAD and CAE systems are merged into a single master model in a non-manifold topological representation, and then, for a given level of detail and abstraction, a simplified solid or non-manifold model is extracted immediately for an analysis. For a design change, the design and analysis models are modified simultaneously. As a result, this feature based design system is able to provide a more integrated environment for the design and analysis of plastic injection molding parts

  19. "Surface Transfer/Rear Shrinkage" in Injection Molding-The Mechanism and Possibility of Application to Practical Use

    Iwami, Hiroyuki; Fukuoka, Masayoshi; Saito, Takushi; Hamada, Hiroyuki

    In injection molding, the basic method of upgrading the surface quality in molded articles has remained undeveloped. This paper proposed a technique for obtaining sinkmark-free moldings with fine surface under low injection pressure, instead of conventional shrinkage-compensation molding under high pressure. The technique is based on controlling the amount of heat-discharge originated from the difference in contact thermal resistance between a molten polymer/the cavity surface and the melt/the core surface. The temperature difference arising between both of the resin surfaces by controlling the heat discharge, acts as a driving force to move the resin to the lower cavity side from the higher core side. This results in compensating cooling shrinkage only on the cavity side. A pair mold having different surface roughness was firstly used. Its cavity surface was mirror-polished and core surface was blasted. Secondly the following combination of the mold surfaces was tried as expected to be more effective; the wettable and insulating cavity surface, treated with SiO2/the repellent and insulating core surface, treated with teflon-dispersed Ni-plating. The both of the experiments gave us useful information for understanding the idea of new molding technique named "surface transfer/rear shrinkage." In this report we discussed the generation mechanism of the phenomenon and the possibility of developing an effective mold system for practical use.

  20. Análise do desenvolvimento morfológico da blenda polimérica PBT/ABS durante as etapas de mistura por extrusão e moldagem por injeção Analysis of the morphological development of PBT/ABS blends during the extrusion and injection molding processes

    Edson N. Ito

    2004-06-01

    Full Text Available O enfoque principal deste trabalho foi observar o desenvolvimento da morfologia de fases da blenda binária PBT/ABS e desta blenda compatibilizada pela adição de um copolímero acrílico reativo, durante a etapa de mistura por extrusão e de moldagem por injeção. A evolução da morfologia das blendas, durante a etapa de mistura, foi analisada através do uso de amostras coletadas de uma extrusora de rosca dupla co-rotacional, com acessório especialmente projetado para coleta in line. A morfologia observada nas amostras obtidas por injeção foi realizada utilizando amostras retiradas de corpos de prova moldados. As amostras obtidas por extrusão e por moldagem por injeção foram posteriormente preparadas através de crio-ultramicrotomia e observadas através de microscopia eletrônica de transmissão (TEM. Uma "Função Dispersão" foi desenvolvida neste trabalho para comparar as diversas morfologias sob diferentes condições de processamento e de compatibilização. A adição de compatibilizante favorece a formação de uma morfologia de domínios de ABS dispersos em PBT, ao longo do canhão da extrusora, e previne satisfatoriamente o fenômeno de coalescência destes domínios durante o processo de moldagem por injeção. A função dispersão foi utilizada principalmente para mostrar a tendência da evolução morfológica e mostrou um bom desempenho para tal.The aim of this work was to observe the development of the phase morphology of the PBT/ABS blends during their extrusion mixing and injection molding steps. The evolution of the blend morphology during the mixing stage was analyzed using a specially designed co-rotational twin-screw extruder with a collecting device located along the barrel. Blend samples were collected in-line along the length of the extruder barrel during the blending process. Blend morphology was also observed from specimens molded through injection molding. All the samples were observed by transmission electron microscopy (TEM. They were prepared by cryo-ultramicrotomy and the rubbery phase of the ABS contained in the blends was stained with osmium tetroxide (OsO4. A special function was established and is proposed to analyze the blend morphology trends through image analysis. In binary blends, the ABS phase showed better dispersion after the mixture passed through the extruder die. However, a coalescence phenomenon was observed during the next molding step. Compatibilized PBT/ABS blends showed better dispersion than binary blends, even after injection molding. The special function used to quantify the dispersion throughout the mixing and molding steps showed an excellent performance.

  1. Transferability of glass lens molding

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  2. In-line polariscopic checking of plastic molded-injected lenses: preliminary results

    Arasa, J.; Mayershofer, D.; Romero, J.

    2015-05-01

    Plastic injection molded lenses have improved its performance and, nowadays, are as usual as glass lenses in image forming devices. However, the manufacturing process induces the surface generation and the material transformation in the same stage. Moreover, the process also includes an annealing stage to remove the internal stress with temperature cycles but only works up to a certain level and not beyond, leaving relevant traces for high values. During the manufacturing process of a plastic lens, a liquid-solid phase transformation occurs, and in this transition not all the volume of the lens achieves the same density. This change of density is translated into a local change of refractive index that can be expressed as a retardation phase plane using the Jones Matrix notation. The detection and measurement of the value of the retardation of the phase plane is thus the clue to manufacture good and controlled quality plastic lenses. We have tested an in-line polariscopic arrangement to obtain a 2D map of the tension distribution in the bulk of the lens. This test is performed in the first 30 seconds after the injection molding process for two main reasons: first the stress values are still high because the lenses do not have enough time to relax the internal tensions and obtain the final shape, and second, we can remove the wrong lenses in the first moments and introduce only the good lenses in the annealing stage. The proposed instrument is based in a transmission polariscopic arrangement. A collimated light beam is used to illuminate the sample, once the light crosses the sample, it is collected with an afocal system and the image is recorded in a CMOS sensor. Selecting an afocal system to capture the image is a useful decision because the lateral magnification can be maintained when small changes in the sample position are introduced. However the produced lenses can vary their focal lengths from on series to another. To avoid problems with the change of the focal length, the lens is introduced in a matching index and the polariscopic measurement is done. The proposed polariscopic arrangement uses two lineal polarizers, one acting as polarizer and the other acting as analyzer. This system instead of using one lineal polarizer and a lineal polarizer with an extra lambda/4 plate provides us an extra degree of freedom, enabling the possibility to put a certain degree of polarization in a well determined position of the lens, in our case the center of this lens. The aim of this study is to select the minimum number of sets polarizer-analyzer and the right wavelengths to obtain a sure selection of the right lens. The preliminary results show that use two different wavelengths 470 & 627 nm is a good option to obtain a robust image. The second free variables that must be adjusted to obtain good values is the minimum number of set polarizer-analyzer necessary to obtain confident results. In our first tests it seems that recording only at 0, 15, 30 and 45 degrees is enough to get good results. Mathematica description and first results for a PMMA lens are presented, however the number of measurements must be diminished to obtain an easy in-line implementation

  3. Microstructural study of duplex stainless steels obtained by powder injection molding

    Sotomayor, M.E., E-mail: msotomay@ing.uc3m.es [Materials Science and Engineering Department, Carlos III University of Madrid, Avda. Universidad 30, 28911 Legans (Spain); Kloe, R. de, E-mail: rene.de.kloe@ametek.nl [EDAX B. V., PO Box 4144, 5004 JC Tilburg (Netherlands); Levenfeld, B., E-mail: bll@ing.uc3m.es [Materials Science and Engineering Department, Carlos III University of Madrid, Avda. Universidad 30, 28911 Legans (Spain); Vrez, A., E-mail: alvar@ing.uc3m.es [Materials Science and Engineering Department, Carlos III University of Madrid, Avda. Universidad 30, 28911 Legans (Spain)

    2014-03-15

    Highlights: The microstructural evolution of sintered PIM duplex stainless steels was studied. A destabilization of austenite occurs after sintering at high temperature. Electron backscatter diffraction (EBSD) revealed a remaining of 0.5% of austenite. Ferrite content was also determined employing a magnetic method. -- Abstract: This experimental work is focused on the study of microstructural evolution during sintering of duplex stainless steels (DSS) obtained by powder injection molding (PIM). Ferritic 430L and austenitic 316L stainless steel powders were previously premixed in a 50/50 volume ratio and afterward they were sintered in low vacuum at different temperatures for 1 h. Microstructural analysis of sintered samples was conducted by means of scanning electron microscopy (SEM) and a compositional analysis of the alloying elements along different phases was performed by energy dispersive analysis of X-rays (EDS). Phase transformations were evaluated by X-ray diffraction (XRD) experiments, and the magnetic phase content was measured with a ferritoscope. The intensity of the main austenite diffraction peak decreases as sintering temperature increases to finally disappear in the sample sintered at 1100 C. This destabilization of the austenite is probably related to a high Nickel diffusion detected from austenite to ferrite particles. Moreover, electron backscatter diffraction (EBSD) data were collected to quantify microstructural properties. Several EBSD pattern maps were acquired in order to define the amount of austenite phase. Due to the advantages of this technique a 0.5% of austenite could be detected after sintering at 1200 C. After sintering process, the austenite content in sintered duplex stainless steels obtained through this processing route was lower than expected. Finally, Bain mechanism was proposed as an explanation to this phase transformation takes place. EBSD technique has been proved to be the most suitable to monitor the microstructure of sintered DSS.

  4. Microstructural study of duplex stainless steels obtained by powder injection molding

    Highlights: • The microstructural evolution of sintered PIM duplex stainless steels was studied. • A destabilization of austenite occurs after sintering at high temperature. • Electron backscatter diffraction (EBSD) revealed a remaining of 0.5% of austenite. • Ferrite content was also determined employing a magnetic method. -- Abstract: This experimental work is focused on the study of microstructural evolution during sintering of duplex stainless steels (DSS) obtained by powder injection molding (PIM). Ferritic 430L and austenitic 316L stainless steel powders were previously premixed in a 50/50 volume ratio and afterward they were sintered in low vacuum at different temperatures for 1 h. Microstructural analysis of sintered samples was conducted by means of scanning electron microscopy (SEM) and a compositional analysis of the alloying elements along different phases was performed by energy dispersive analysis of X-rays (EDS). Phase transformations were evaluated by X-ray diffraction (XRD) experiments, and the magnetic phase content was measured with a ferritoscope. The intensity of the main austenite diffraction peak decreases as sintering temperature increases to finally disappear in the sample sintered at 1100 °C. This destabilization of the austenite is probably related to a high Nickel diffusion detected from austenite to ferrite particles. Moreover, electron backscatter diffraction (EBSD) data were collected to quantify microstructural properties. Several EBSD pattern maps were acquired in order to define the amount of austenite phase. Due to the advantages of this technique a 0.5% of austenite could be detected after sintering at 1200 °C. After sintering process, the austenite content in sintered duplex stainless steels obtained through this processing route was lower than expected. Finally, Bain mechanism was proposed as an explanation to this phase transformation takes place. EBSD technique has been proved to be the most suitable to monitor the microstructure of sintered DSS

  5. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    Duty, Chad E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Groh, Bill [Radio Systems Corporation, Knoxville, TN (United States)

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  6. Rotational Molding Process Technician. Instructional Program Package.

    El Paso Community Coll., TX.

    This curriculum package contains materials developed through a partnership of the Association of Rotational Molders, El Paso Community College (Texas), and the College of DuPage (Illinois). The materials, which were developed during a 2-day DACUM (Developing a Curriculum) process, are based on national skill standards and designed for

  7. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria; Jepsen, Søren Terpager; Sørensen, Henrik Schiøtt; Utko, Pawel; Selmeczi, Dávid; Hansen, Thomas Steen; Larsen, Niels Bent; Rozlosnik, Noemi; Taboryski, Rafael Jozef

    2010-01-01

    cells in suspension is presented. The working principle of the electroporation device is based on a focusing of the electric field by means of a constriction in the flow channel for the cells. We demonstrate the use of AC voltage for electroporation by applying a 1 kHz, +/- 50 V square pulse train to......We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological...

  8. Ball Pad Mold Electromagnetic Forming Process for Aluminium Alloy Sheet

    Wang, Wen-ping; Wu, Xiang-Dong; Wan, Min; Chen, Xiao-wei; Xiong, Wei-Ren

    2014-01-01

    In order to meet requirements of lightweight technology in the field of aerospace, the new forming technology for aluminium alloy skin parts and integral panel are brought to more attention. Based on the principle of electromagnetic forming (EMF) and energy distribution, a new electromagnetic forming process using ball as pad mold for aluminium alloy sheet forming was suggested and test apparatus was designed. The new method was verified by the finite element simulation and exp...

  9. Versatile Molding Process for Tough Cellulose Hydrogel Materials

    Mutsumi Kimura; Yoshie Shinohara; Junko Takizawa; Sixiao Ren; Kento Sagisaka; Yudeng Lin; Yoshiyuki Hattori; Hinestroza, Juan P.

    2015-01-01

    Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded in the spinning of cellulose hydrogel fibers through a dry jet-wet spinning process. The mechanical p...

  10. Implementation of Molding Constraints in Topology Optimization

    Marx, S.; Kristensen, Anders Schmidt

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  11. Effect of Fe3P addition on magnetic properties and microstructure of injection molded iron

    Ma, Jidong; Qin, Mingli; Tian, Lusha; Zhang, Lin; Khan, Dil Faraz; Ding, Xiangying; Qu, Xuanhui; Zhang, Houan

    2016-01-01

    Phosphorus powder was used to improve the performance of iron based alloy products fabricated by metal injection molding. Seven kinds of Fe-xP soft magnetic alloys were formed using carbonyl iron powder and Phosphorus powder as raw materials where x=0-1.2 wt% with 0.2 wt% increment. Samples were sintered in hydrogen atmosphere at the temperature range of 1100-1450 °C for varied times. The effects of sintering temperature and time on the density, microstructure and magnetic properties like magnetic induction, maximum permeability and coercive force of the alloys were examined. The results demonstrated that better magnetic performances of the injection molded Fe-xP alloy is due to increased density of the sintered compacts because of formation of liquid phase at low temperature. For Fe-0.8%P alloy, optimum density 7.84 g/cm3 (relative density 99%) and magnetic induction (B6000) 1.77 T, maximum permeability 17,100 were obtained at sintering temperature 1420 °C while the coercive force was 21 A/m respectively.

  12. High numerical aperture injection-molded miniature objective for fiber-optic confocal reflectance microscopy

    Chidley, Matthew Douglas

    This dissertation presents the design of a miniature injection-molded objective lens for a fiber-optic confocal reflectance microscope. This is part of an effort to demonstrate the ability to fabricate low cost, high performance biomedical optics for high resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to enable large-scale clinical screening and detection of early cancers and pre-cancerous lesions. This five lens plastic objective has been tested as a stand-alone optical system and has been coupled to a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. An optical-bench testing system was constructed to allow interactive alignment during testing. The modulation transfer function (MTF) of the miniature objective lens is determined using the slanted-edge method. A custom MATLAB program, edgeMTF, was written to collect, analyze, and record test data. An estimated Strehl ratio of 0.64 and an MTF value of 0.70, at the fiber-optic bundle Nyquist frequency, have been obtained. The main performance limitations of the miniature objective are mechanical alignment and flow-induced birefringence. Annealing and experimental injection molding runs were conducted in effort to reduce birefringence.

  13. Verification of a three-dimensional resin transfer molding process simulation model

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  14. Reducción del Tiempo de Ciclo de Inyección de Termoplásticos con el uso de Moldes con Tratamiento Superficial por Nitruración Cycle Time Reduction of Thermoplastic Injection using Nitriding Treatment Surface Molds

    Emerson J Corazza

    2012-01-01

    Full Text Available Se presenta un estudio sobre la transferencia de calor en un molde, comparando los ensayos de inyección utilizando moldes con y sin tratamiento superficial de nitruración. Simulaciones del proceso se realizaron con el uso de Asistencia Computacional a Ingeniería (CAE para determinar los parámetros iniciales que se aplicaron en los ensayos reales en moldes instrumentados de acero P20 (con y sin tratamientos, inyectados con el polímero poliestireno cristal. Los resultados indicaron una reducción del tiempo de enfriamiento y del tiempo de proceso en el molde con el tratamiento, debido a una mejora en la conductividad térmica.A study on the heat transfer in a mold, comparing experimental injection tests using a mold with and without surface treatment (nitriding is presented. Process simulations were carried out using Computer Aided Engineering tools (CAE for the estimation of the initial parameters to be applied in the tests in instrumented P20 steel injection molds with the polymer crystal polystyrene. Results indicated a reduction of cooling time and of the time of the process in the mold with treatment, due to an increase of the thermal conductivity.

  15. Solidification behavior of high-density polyethylene (HDPE) during injection molding: Correlation between crystallization kinetics and thermal gradient field

    Yang, Bin; Deng, Yan-Li; Li, Gui-Jing; Miao, Ji-Bin; Xia, Ru; Qian, Jia-Sheng; Chen, Peng; Liu, Jing-Wang

    2015-07-01

    This work mainly investigated the effect of thermal field on the crystallization kinetics of high-density polyethylene (HDPE) during injection molding (IM) process. The thickness X = 0.4 was found to be a crucial location heavily influenced by thermal conduction. The temperature decay tended to be stable, with limited variation of the crystallization rate when X > 0.4. It was observed that the crystallization rate was in good proportion to the cooling rate (ϕ). Our experimental finding showed that the consequence of relative crystallinity (χ) was in agreement with that of the secondary temperature difference (STD). This study is practically significant to the further investigation on the relationship among “processing-structure-property” of polymeric materials.

  16. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    Albert, Benedikt; Vlkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 C to 1100 C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 m. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  17. Chemical vapor deposition and analysis of thermally insulating ZrO{sub 2} layers on injection molds

    Atakan, Burak; Khlopyanova, Victoria; Mausberg, Simon; Kandzia, Adrian; Pflitsch, Christian [Thermodynamik (IVG) and Cenide, Universitaet Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Mumme, Frank [Kunststoff-Institut Luedenscheid, Karolinenstrasse 8, 58507 Luedenscheid (Germany)

    2015-07-15

    High quality injection molding requires a precise control of cooling rates. Thermal barrier coating (TBC) of zirconia with a thickness of 20-40 ?m on polished stainless steel molds could provide the necessary insulating effect. This paper presents results of zirconia deposition on stainless steel substrates using chemical vapor deposition (CVD) aiming to provide the process parameters for the deposition of uniform zirconia films with such a thickness. The deposition was performed with zirconium (IV) acetylacetonate (Zr(C{sub 5}H{sub 7}O{sub 2}){sub 4}) as precursor and synthetic air as co-reactant, which allows deposition at temperatures below 600 C. The experiments were carried out in a hot-wall reactor at pressures between 7.5 mbar and 500 mbar and in a temperature range from 450 C to 600 C. Important growth parameters were characterized and growth rates between 1 and 2.5 ?m/h were achieved. Thick and well adhering zirconia layers of 38 ?m could be produced on steel within 40 h. The transient heat transfer rate upon contact with a hot surface was also evaluated experimentally with the thickest coatings. These exhibit a good TBC performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Numerical Study on the Impact of Additives on Shrinkage of Injection Molded Polypropylene

    Zheng, R.; Hadinata, C.; Kennedy, P. K.

    2008-07-01

    In this work we present a numerical study on the flow-induced crystallization in injection molding and investigate the influence of colorants on the crystallization kinetics and anisotropic shrinkage of the solidifying polymer. A commercially available isotactic polypropylene (iPP) was used as the base material, while two types of blue colorants, Cu-Phthalocyanine and Sodium Alumino Sulpho Silicate-which we denote by P and U, respectively—were used as additives. A flow-induced crystalhzation kinetics model based on the Kolmogoroff-Avrami and the Hoffman-Lauritzen equations, taking into acccount the flow-enhanced nucleation, is used to simulate experiments for the iPP with and without colorants. The accelerating effect of flow on the crystallization kinetics was found for both U-colored and P-colored materials, though sensitivity of the P-colored material to the shear rate was much higher than the U-colored material. For each P- and U-colored material and the virgin material, twenty-eight moldings were produced. Shrinkage was measured for comparison with numerical solutions. Results showed that the predictions are in agreement with experiments. It is also found that, while the influence of both P- and U-type colorants on the shrinkage parallel to the flow direction appeared practically neghgible, the P colorant increased the shrinkage transverse to the flow direction significantly, and therefore warpage problems will be more Ukely encountered with this colorant than the uncolored materials or U-colored materials.

  19. Development of injection molding used kucha-ceramics. Kucha nendo wo mochiita shashutsu seikei gijutsu no kaihatsu

    Fukumoto, I.; Mekaru, S.; Koja, M. (University of The Ryukyus, Okinawa (Japan). Faculty of Engineering); Teruya, Z. (Industrial Research Institute of Okinawa Prefecture, Okinawa (Japan))

    1993-09-01

    Properties of Kucha-clay were studied as material for injection molding. After the mixtures of the clay and binders were heated at 423 K for 6 hours, those were crushed to prepare pellets for injection molding, and after injection molding and degreasing, the molded pellets were sintered in temperature range of 1,273-1,448 K for 1-2 hours. As a result, polyethylene (PE) offered excellent properties as binder, and the mixed binder composed of PE, ethylene vinylacetate copolymer (EVA), paraffin wax and zinc stearin allowed to keep the molded pellets in shape. Linear low-density PE (LLDPE) could also reduce a binder content by 15wt% as compared with other binders. The hardness of products increased with sintering temperature, in particular, sharply at 1,373 K or more, accompanying shrinkage at 1,373 K or less and expansion at 1,373 K or more. The bending strength was higher in LLDPE than LDPE showing the maximum value of 108 MPa at 1,373 K. 5 refs., 15 figs., 3 tabs.

  20. Qualification Methods of Al2O3 Injection Molding Raw Materials

    Egész, Á.; Gömze, L. A.

    2015-04-01

    For producing ceramic arc tube parts (plugs), there are used two different major components for producing injection molding raw material (feedstock): high purity alumina powder as the main component, and an organic paraffin wax as a binder material. It is expressly important to know the material, physical and chemical properties of these components, since mainly these have effect on the homogenity of feedstock, and therefore on the quality of end product. In this research, both of the main components and the moldable raw material was investigated by visual, physical, and thermal methods. As most important and main statement, the researchers found that the dynamic viscosity of raw material depends more on the applied temperature, than on the deformation speed gradient. Applied analitycal methods were laser granulometry, sieve analysis, differential thermal analysis and rheology analysis.

  1. High quality ion channels recordings on an injection molded polymer chip

    Tanzi, Simone

    , or in recent years using consumable microfluidic chips of high costs. The patch clamping method is widely used both in fundamental studies of electrophysiology of living cells and tissue and in drug discovery. The findings of this work will allow direct recordings of ion channel activity to be made......In this thesis we demonstrate high quality recordings of the ion channel activity across the cell membrane in a biological cell by employing the so called patch clamping technique on an injection molded polymer microfluidic device. Such recordings are traditionally made using glass micropipettes...... form high resistance seals in the GOhm range, the so called gigaseals, is demonstrated with a success rate of 15%. The devices were functionally tested with Human Embryonice Kidney (HEK) cells expressing voltage-gated sodium channels and benchmarked against a commercial state-of-the-art system for...

  2. Microstructure and magnetic properties of Fe-50%Ni alloy fabricated by powder injection molding

    Ma, Jidong; Qin, Mingli; Zhang, Lin; Zhang, Ruijie; Qu, Xuanhui

    2013-03-01

    Fe-50%Ni soft magnetic alloys were produced by powder injection molding using carbonyl iron and carbonyl nickel as raw materials. The effects of sintering temperature and time on the microstructure and magnetic properties of the alloys were investigated. The results indicate that the magnetic properties are dependent on the microstructure. The densification and grain size of the alloys increase with increasing sintering temperature and time, facilitating the enhancement of permeability and saturation induction, as well as the decrease of coercive force. In the case of the sintering temperature of 1360 C for 10 h, the relative density of 97% and grain size of 200 ?m were obtained, and the maximum permeability of 43,541, saturation induction of 1.48 T and coercive force of 6.8 A/m were achieved. Further elongation of sintering time did not bring about any increase of densification and grain size.

  3. Research on properties of carbon black/polypropylene composites by dynamic injection molding

    Wu, Ming-Chun; He, Guang-Jian; Huang, Zhao-Xia; Zhou, Li-Ying; He, He-Zhi

    2016-03-01

    Polymer composites filled with conductive carbon black (CB) are gaining popularity for electromagnetic shielding applications. Dynamic injection molding method was adopted to study the influences of vibration force field on electrical properties of polypropylene/CB composites. The results showed that the percolation phenomenon of conductivity of composites occurred at 15wt% and the calculated SE was positive correlated with the variation trend of conductivity. The calculated SE of composite was more than 30dB at a CB concentration of 30wt%, which could obtain good shielding effects. The result could offer optimum vibration parameters for producing electromagnetic shielding composites by respectively changing the amplitudes and frequencies of the vibration force field.

  4. Injection-molded Sm-Fe-N anisotropic magnets using unsaturated polyester resin

    New injection-molding technology has been developed using an unsaturated polyester (UP) resin in order to produce bonded Sm-Fe-N anisotropic magnets. Sheet magnets of 50 mm x 20 mm x 0.36 mm are successfully made within a cycle time of 90 s. Magnetic properties obtained are almost the same as those obtained in column magnets of φ10 mm x 7 mm. Typical data of magnetic properties are as follows: B r = 0.72 T, H CJ = 796 kA/m and (BH)max 94.7 kJ/m3. The density is 4.79 Mg/m3. The degree of orientation of (0 0 6) is 5.31 calculated using the Wilson formula from X-ray diffraction result. Ring magnets of 7.4 mm x 3.2 mm x 0.3 mm are easily made from sheet magnets

  5. INJECTION MOLDING AND STRUCTURAL ANALYSIS IN METAL TO PLASTIC CONVERSION OF BOLTED FLANGE JOINT BY CAE

    Marian Blaško

    2014-12-01

    Full Text Available Many metal parts in various applications are being replaced by plastic parts. There are several reasons for that depending on actual application - minimize part cost, enhance corrosion resistance, integrating more components into one part etc. Most important steps of metal to plastic conversion are material selection and design of plastic part. Plastic part has to withstand the same load as metal part. To fulfill this requirement fiber reinforced engineering plastics are often used. Also it is convenient to substitute heavy wall sections with ribbed structure to increase load-carrying ability of part and decrease cycle time, eliminate voids, sink marks etc. Mechanical properties of such part could be highly affected by fiber orientation. Results of fiber orientation from injection molding filling analysis can be used in stress analysis for better prediction of part response to mechanical load. Such coupled analysis is performed here in this case study on bolted flange joint.

  6. Oxide Formation In Metal Injection Molding Of 316L Stainless Steel

    Jang Jin Man

    2015-06-01

    Full Text Available The effects of sintering condition and powder size on the microstructure of MIMed parts were investigated using water-atomized 316L stainless steel powder. The 316L stainless steel feedstock was injected into micro mold with micro features of various shapes and dimensions. The green parts were debound and pre-sintered at 800°C in hydrogen atmosphere and then sintered at 1300°C and 1350°C in argon atmosphere of 5torr and 760torr, respectively. The oxide particles were formed and distributed homogeneously inside the sample except for the outermost region regardless of sintering condition and powder size. The width of layer without oxide particles are increased with decrease of sintering atmosphere pressure and powder size. The fine oxides act as the obstacle on grain growth and the high sintering temperature causes severe grain growth in micro features due to larger amount of heat gain than that in macro ones.

  7. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    degaard Andresen, Kristian; Hansen, Morten; Matschuk, Maria; Terpager Jepsen, Sren; Schitt Srensen, Henrik; Utko, Pawel; Selmeczi, Dvid; Hansen, Thomas S.; Larsen, Niels B.; Rozlosnik, Noemi; Taboryski, Rafael

    2010-05-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological cells in suspension is presented. The working principle of the electroporation device is based on a focusing of the electric field by means of a constriction in the flow channel for the cells. We demonstrate the use of AC voltage for electroporation by applying a 1 kHz, 50 V square pulse train to the electrodes and show delivery of polynucleotide fluorescent dye in 46% of human acute monocytic leukemia cells passing the constriction.

  8. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological cells in suspension is presented. The working principle of the electroporation device is based on a focusing of the electric field by means of a constriction in the flow channel for the cells. We demonstrate the use of AC voltage for electroporation by applying a 1 kHz, 50 V square pulse train to the electrodes and show delivery of polynucleotide fluorescent dye in 46% of human acute monocytic leukemia cells passing the constriction.

  9. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.

    Ahn, H K; Huda, M S; Smith, M C; Mulbry, W; Schmidt, W F; Reeves, J B

    2011-04-01

    The biodegradability of three types of bioplastic pots was evaluated by measuring carbon dioxide produced from lab-scale compost reactors containing mixtures of pot fragments and compost inoculum held at 58 C for 60 days. Biodegradability of pot type A (composed of 100% polylactic acid (PLA)) was very low (13 3%) compared to literature values for other PLA materials. Near infrared spectroscopy (NIRS) results suggest that the PLA undergoes chemical structural changes during polymer extrusion and injection molding. These changes may be the basis of the low biodegradability value. Biodegradability of pot types B (containing 5% poultry feather, 80% PLA, 15% starch), and C (containing 50% poultry feather, 25% urea, 25% glycerol), were 53 2% and 39 3%, respectively. More than 85% of the total biodegradation of these bioplastics occurred within 38 days. NIRS results revealed that poultry feather was not degraded during composting. PMID:21320772

  10. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding.

    Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J

    2008-07-01

    This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs. PMID:18593357

  11. Development of homogeneous filling method of particulate materials into compression mold for nuclear fuel process

    In order to improve the production technology of mixed oxide of plutonium and uranium (MOX) pellets for Fast Breeder Reactor (FBR), the applicability of particle simulation to optimize mold-filling process, instead of trial and error experiments, was investigated. The mold-filling simulation was prepared employing large scale Distinct Element Method (DEM), which has been developed in powder technology. The DEM simulation was conducted using physical properties of tungsten trioxide (WO3) granules, which are model of MOX granules, and compared with results of mold-filling experiments with WO3 granules. The simulation could well represent the mold-filling behavior, and estimate the degree of segregation in the mold. It was found that the segregation in feeding container and the flow behavior of granules filled into the mold influences much on the packed structure of granules in the mold. The DEM is expected to be a powerful tool to optimize MOX fuel production process. (author)

  12. CONVERSION OF WIND POWER TO HYDROGEN FUEL: DESIGN OF AN ALTERNATIVE ENERGY SYSTEM FOR AN INJECTION MOLDING FACILITY

    Injection molding plants are large consumers of electricity. At its current level of operations, Harbec Plastics (Ontario, NY) uses about 2,000,000 kilowatt-hours of electricity per year. Based on the US average fuel mix, approximately 1.5 pounds of CO2

  13. Thermal Properties of Extruded Injection-Molded Polycaprolactone/Gluten Bioblends Characterized by TGA, DSC, SEM and Infrared Photoacoustic Spectroscopy

    In order to determine the degree of compatibility between Polycaprolactone resin (PCL) and vital wheat gluten (VG), PCL was compounded with VG at 90:10, 80:20, 70:30, 60:40, 50:50, and 30:70. The composites were blended by extrusion followed by injection molding. Thermal, morphological, and struct...

  14. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water-soluble polymer binder

    Hausnerová, B.; Marcaníková, L.; Filip, Petr; Sáha, P.

    2011-01-01

    Roč. 51, č. 7 (2011), s. 1376-1382. ISSN 0032-3888 R&D Projects: GA ČR GA103/08/1307 Institutional research plan: CEZ:AV0Z20600510 Keywords : powder injection molding * viscosity * thermogravimetric analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.302, year: 2011

  15. Research of thermal response simulation and mold structure optimization for rapid heat cycle molding processes, respectively, with steam heating and electric heating

    The dynamic mold temperature control system is the key of rapid heat cycle molding (RHCM) technology because it significantly affects the stability of the process, productivity and the quality of the final polymer part. For this reason, the approaches and techniques for dynamic mold temperature control were discussed in this study and two different dynamic mold temperature control methods, respectively, with steam heating and electric heating were found to be very feasible in mass production. The methods and principles of mold design for the two RHCM technologies were also discussed and then several different kinds of mold structures were designed. By constructing the corresponding thermal response analytical models for these RHCM molds, the temperature responses of the molding systems in the heating and cooling process of RHCM were simulated and studied. The effects of the mold design parameters such as the insulation layer between mold plate and mold inert, and mold material, on thermal response efficiency and temperature uniformity of the two RHCM processes were analyzed based on the simulation results. The results show that the insulation layer can increase the upper limit temperature of RHCM with steam heating and improve the heating speed of RHCM with electric heating. It can also greatly decrease the energy consumption of the two RHCM processes. The heating efficiency of RHCM with steam heating can be effectively improved by increasing the thermal conductivity of the cavity/core material, while the situation is diametrically opposite for RHCM with electric heating. Therefore, we acquired an optimized mold design principle and method for RHCM with steam heating and electric heating, respectively. Finally, a new electric heating mold with a cooling plate was proposed to enhance the cooling efficiency. The thermal response of this new electric heating mold was also simulated. The simulation results show that the cooling plate can significantly improve the cooling and heating efficiency.

  16. MECHANICAL PROPERTIES OF INJECTION-MOLDED FOAMED WHEAT STRAW FILLED HDPE BIOCOMPOSITES: THE EFFECTS OF FILLER LOADING AND COUPLING AGENT CONTENTS

    Fatih Mengeloglu,

    2012-06-01

    Full Text Available This study investigated the effect of filler loading and coupling agent contents on the densities and mechanical properties of injection-molded foamed biocomposites. Biocomposite pellets were manufactured using wheat straw flour, maleic anhydrite grafted polyethylene (MAPE, paraffin wax, and high-density polyethylene (HDPE with an extrusion process. Pellets and the chemical foaming agent (azodicarbonamide were dry-mixed and foamed in an injection-molding machine. Densities and mechanical properties of the foamed biocomposites samples were measured and analyzed using central composite design (CCD. The results showed that both filler loading and coupling agent contents affected the density and mechanical properties of foamed biocomposites. Densities in the range of 0.57 to 0.81 gr cm-3 were achieved. Best results were obtained when less than 20% wheat straw flour and 1% coupling agent content were used. The flexural modulus and tensile modulus of foamed biocomposites were improved with increasing filler loading. However, flexural strength, tensile strength, elongation at break, and impact strength values were diminished. The tensile strength of the biocomposites was positively affected by CA contents, but other mechanical properties were not affected by it. Overall, injection molded foamed biocomposites with moderate mechanical properties were produced.

  17. Modeling of process-induced residual stresses and resin flow behavior in resin transfer molded composites with woven fiber mats

    Golestanian, Hossein

    This research focuses on modeling Resin Transfer Molding process for manufacture of composite parts with woven fiber mats. Models are developed to determine cure dependent stiffness matrices for composites manufactured with two types of woven fiber mats. Five-harness carbon and eight-harness fiberglass mats with EPON 826 resin composites are considered. The models presented here take into account important material/process parameters with emphasis on; (1) The effects of cure-dependent resin mechanical properties, (2) Fiber undulation due to the weave of the fiber fill and warp bundles, and (3) Resin interaction with the fiber bundles at a microscopic scale. Cure-dependent mechanical properties were then used in numerical models to determine residual stresses and deformation in the composite parts. The complete cure cycle was modeled in these analyses. Also the cool down stage after the composite cure was analyzed. The effect of 5% resin shrinkage on residual stresses and deformations was also investigated. In the second part of the study, Finite Element models were developed to simulate mold filling in RTM processes. Resin flow in the fiber mats was modeled as flow through porous media. Physical models were also developed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids of 50 and 100 centistoke viscosities as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeabilities were determined experimentally for both types of reinforcements. Comparison of experimental and numerical resin front positions indicated the importance of edge effects in resin flow behavior in small cavities. The resin front positions agreed well for the rectangular mold geometry.

  18. Versatile Molding Process for Tough Cellulose Hydrogel Materials

    Kimura, Mutsumi; Shinohara, Yoshie; Takizawa, Junko; Ren, Sixiao; Sagisaka, Kento; Lin, Yudeng; Hattori, Yoshiyuki; Hinestroza, Juan P.

    2015-11-01

    Shape-persistent and tough cellulose hydrogels were fabricated by a stepwise solvent exchange from a homogeneous ionic liquid solution of cellulose exposure to methanol vapor. The cellulose hydrogels maintain their shapes under changing temperature, pH, and solvents. The micrometer-scale patterns on the mold were precisely transferred onto the surface of cellulose hydrogels. We also succeeded in the spinning of cellulose hydrogel fibers through a dry jet-wet spinning process. The mechanical property of regenerated cellulose fibers improved by the drawing of cellulose hydrogel fibers during the spinning process. This approach for the fabrication of tough cellulose hydrogels is a major advance in the fabrication of cellulose-based structures with defined shapes.

  19. Simulação do processo de injeção de polipropileno isotático (iPP utilizando um modelo de cinética de cristalização quiescente Simulation of injection molding process of isotactic polypropylene (iPP using a quiescent crystallization kinetics model

    Marcos A d'Ávila

    1997-12-01

    Full Text Available Este trabalho concentrou-se na simulação das fases de preenchimento e resfriamento do processo de injeção do polipropileno isotático. Foi utilizado um modelo matemático baseado nas equações de conservação onde foi considerada a cinética de cristalização quiescente como termo fonte na equação da energia. Os parâmetros do modelo de cinética de cristalização, assim como os do modelo de viscosidade, foram obtidos experimentalmente. Para a solução das equações governantes foi utilizado o método dos volumes finitos. Como resultados foram obtidos os campos de temperatura, pressão, velocidade, taxa de cisalhamento e cristalinidade em diferentes condições de processamento.This work is concerned with the simulation of the filling and cooling stages of the injection molding process of an isotactic polypropylene (iPP. A mathematical model based on the conservation equations was used. A crystallization kinetics model was considered as a source term in the energy equation. The parameters of the crystallization kinetics model, as well as the viscosity model, were obtained by experimental techniques. For the solution of the governing equations the finite volume method was employed. Temperature, pressure, velocity, shear rate and crystalinity profiles under different processing conditions were obtained.

  20. Index change of chalcogenide materials from precision glass molding processes

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  1. Determinao da reduo da resistncia trao em corpos de prova com Weld Line / Determination of reduction of the weld line strength in injection molded

    R.P., Bom; A.F., Kalin.

    2008-06-01

    Full Text Available Neste trabalho objetivou-se determinar a reduo da resistncia trao de corpos de prova com linhas de solda. Os corpos de prova ASTM foram moldados pelo processo de injeo com diferentes temperaturas de plastificao (180 C a 280 C). O material utilizado foi o polmero termoplstico Polystyro [...] l 158 K da Basf. Este estudo relaciona as linhas de solda em produtos moldados por injeo com a reduo da resistncia mecnica devido a fragilizao na regio da linha de solda. Para o desenvolvimento deste trabalho foi projetado e desenvolvido um molde de injeo com uma cavidade em forma de corpo de prova com canal de ataque pelas extremidades. Desta forma no momento da juno dos fluxos obtm-se uma linha de solda no centro do corpo de prova. Os parmetros do processo de injeo foram determinados a partir de um aplicativo comercial. A temperatura do molde e o tempo de injeo permaneceram constantes. O tempo de solidificao do material foi determinado analiticamente, considerando-se o centro do corpo de prova como referncia. Foram injetados dez corpos de prova em cada uma das temperaturas. Foi observada de forma clara a existncia de linhas de juno no centro da pea e as condies de processo utilizadas no permitiram a formao de linha de solda fria. Aps a realizao dos ensaios de trao, foi determinado que a tenso de ruptura decresce nas seguintes condies: com a diminuio da temperatura de injeo e do tempo de solidificao e com o aumento da trinca. A ruptura sempre ocorreu na linha de solda. Abstract in english In this paper, the purpose is to determine the weld line strength in injection molded samples. The ASTM standard dogbone-shaped samples were molded over a range of melt temperatures (180 C up to 280 C). The plastic used was a commercial grade of polystyrene (PS), BASF Polystyrol 158K. This study l [...] inks weld lines in parts by injection molding with mechanical strength reduction due to embrittling effect in weld-line region. A single-cavity mold double-gated was used to generate ASTM D638 Type I tensile specimens. The double-gated and runner allow the parts to be molded with weld line. The injection process parameters were determined by imputing resin, machine and geometry information into a CAE software package. The mold temperature and fill time were maintaining the same. The frozen time was determined by analytic equation, which considers the center of the thickness as reference. For each melt temperature 10 samples were tested. The weld line was clearly noted in the centre of the samples and the process condition set avoided the cold weld line. By the strength tests were possible to realize that lower the injection temperature lower the frozen time and higher the length of the crack. Then low injection temperature leads to low maximum strength. The fracture always occurs in the weld line.

  2. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process

    Beatriz de Cássia Martins Salomão; Chalana Muller; Hudson Couto do Amparo; Gláucia Maria Falcão de Aragão

    2014-01-01

    Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macro...

  3. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering

    In this study, poly(ε-caprolactone) (PCL)/sodium chloride (NaCl), PCL/poly(ethylene oxide) (PEO)/NaCl and PCL/PEO/NaCl/hydroxyapatite (HA) composites were injection molded and characterized. The water soluble and sacrificial polymer, PEO, and NaCl particulates in the composites were leached by deionized water to produce porous and interconnected microstructures. The effect of leaching time on porosity, and residual contents of NaCl and NaCl/HA, as well as the effect of HA addition on mechanical properties was investigated. In addition, the biocompatibility was observed via seeding human mesenchymal stem cells (hMSCs) on PCL and PCL/HA scaffolds. The results showed that the leaching time depends on the spatial distribution of sacrificial PEO phase and NaCl particulates. The addition of HA has significantly improved the elastic (E′) and loss moduli (E″) of PCL/HA scaffolds. Human MSCs were observed to have attached and proliferated on both PCL and PCL/HA scaffolds. Taken together, the molded PCL and PCL/HA scaffolds could be good candidates as tissue engineering scaffolds. Additionally, injection molding would be a potential and high throughput technology to fabricate tissue scaffolds. - Highlights: ►PCL/NaCl, PCL/PEO/NaCl and PCL/PEO/NaCl/HA composites were injection molded. ►Leaching time depends on the distribution of PEO phase and NaCl particulates. ►The elastic and loss moduli of PCL/HA scaffolds have significantly improved. ►Human hMSCs have attached, survived and proliferated well on PCL and PCL/HA scaffolds. ►Molded PCL and PCL/HA scaffolds could be good candidates for tissue engineering.

  4. Foam injection molding of polypropylene/stainless steel fiber composites for efficient EMI shielding

    Ameli, A.; Nofar, M.; Saniei, M.; Wang, S.; Park, C. B.

    2016-03-01

    Lightweight polypropylene/stainless-steel fiber (PP-SSF) composites with 15-35% density reduction were fabricated using foam injection molding and supercritical carbon dioxide (CO2). The electrical percolation threshold, through-plane electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of the PP-SSF composite foams were characterized and compared against the solid samples. The effects of the plasticizing gas and the void fraction on fiber breakage and orientation were also investigated. Microstructure characterization showed that the presence of dissolved CO2 decreased fiber breakage by about 30%, and together with foaming action, contributed to less preferential orientation of fibers. Consequently, the percolation threshold decreased up to four folds from 0.85 to 0.21 vol.% as the void fraction increased from 0 to 35%. The specific EMI SE was also significantly enhanced. A maximum specific EMI SE of 75 dB.g-1cm3 was achieved in PP-1.1 vol.% SSF composite foams, which was highly superior to 38 dB.g-1cm3 of the solid PP-1.0 vol.% SSF composites. The results reveal that light and efficient products with a lower fiber content can be developed by foam for EMI shielding applications.

  5. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.

    2015-12-01

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

  6. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    Beyerlein, K. R.; Heymann, M.; Kirian, R. [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Adriano, L.; Bajt, S., E-mail: sasa.bajt@desy.de [Photon Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Knoška, J. [Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg (Germany); Wilde, F. [Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht (Germany); Chapman, H. N. [Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg (Germany); Centre for Ultrafast Imaging, Notkestraße 85, 22607 Hamburg (Germany)

    2015-12-15

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

  7. Model and simulation for melt flow in micro-injection molding based on the PTT model

    Unsteady viscoelastic flows were studied using the finite element method in this work. The Phan-ThienTanner (PTT) model was used to represent the rheological behavior of viscoelastic fluids. To effectively describe the microscale effects, the slip boundary condition and surface tension were added to the mathematical model for melt flow in micro-injection molding. The new variational equation of pressure, including the viscoelastic parameters and slip boundary condition, was generalized using integration by parts. A computer code based on the finite element method and finite difference method was developed to solve the melt flow problem. Numerical simulation revealed that the melt viscoelasticity plays an important role in the prediction of melt pressure, temperature at the gate and the succeeding melt front advancement in the cavity. Using the viscoelastic model one can also control the rapid increase in simulated pressure, temperature, and reduce the filling difference among different cavities. The short shot experiments of micro-motor shaft showed that the predicted melt front from the viscoelastic model is in fair agreement with the corresponding experimental results

  8. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    Suplicz, A.; Szabo, F.; Kovacs, J.G., E-mail: kovacs@pt.bme.hu

    2013-12-20

    Highlights: BN, talc and TiO{sub 2} in 30 vol% were compounded with polypropylene matrix. According to the DSC measurements, the fillers are good nucleating agents. The thermal conductivity of the fillers influences the cooling rate of the melt. The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO{sub 2})) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly.

  9. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery.

    Beyerlein, K R; Adriano, L; Heymann, M; Kirian, R; Knoka, J; Wilde, F; Chapman, H N; Bajt, S

    2015-12-01

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background. PMID:26724070

  10. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    Zhao, Dapeng, E-mail: dpzhao@hotmail.com [College of Biology, Hunan University, 410082 Changsha (China); Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany); Chang, Keke [RWTH Aachen University, Materials Chemistry, D-52056 Aachen (Germany); Ebel, Thomas [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany); Nie, Hemin [College of Biology, Hunan University, 410082 Changsha (China); Willumeit, Regine; Pyczak, Florian [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, D-21502 Geesthacht (Germany)

    2015-08-15

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiC{sub x} only precipitate in the cooling step during sintering. • The TiC{sub x} hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility.

  11. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial

    Highlights: • The sintering of the MIM Ti–Nb alloy consists of three steps. • The Nb particles act as diffusion barriers during sintering. • The TiCx only precipitate in the cooling step during sintering. • The TiCx hardly influence the sintering process of MIM Ti–Nb alloy. • The MIM Ti–Nb alloy exhibits high strength, low Young’s modulus but poor ductility. - Abstract: Sintering behavior, microstructure and mechanical properties of a Ti–16Nb alloy processed by metal injection molding (MIM) technology using elemental powders were investigated in this work by optical microscopy, X-ray diffraction (XRD), dilatometer, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). It was found that from 700 °C to 1500 °C the homogenization and densification process of MIM Ti–16Nb alloy consisted of three steps, i.e., Ti-diffusion-controlled step, Ti–Nb-diffusion step and matrix-diffusion step. Titanium carbide formation was observed in the samples sintered at 1300 °C and 1500 °C, but not in the ones sintered at 900 °C and 1100 °C. The MIM Ti–16Nb specimens sintered at 1500 °C exhibited a good combination of high tensile strength and low Young’s modulus. However, the titanium carbide particles led to poor ductility

  12. Rubber molds for investment casting

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  13. Wireless accelerometer network for process monitoring during mold forming in lost foam casting

    Whelan, Matthew J.; Janoyan, Kerop D.

    2006-03-01

    Lost Foam Casting (LFC) enables the production of complex castings while offering the advantages of consolidation of components, reduced machining, and recirculation of the casting mold material. In the process, a replica of the desired product is produced of blown polystyrene, coated in refractory slurry, and cast in a dense, unbonded sand mold. In order for the unbonded sand mold to fill into pattern holes and to provide sufficient confining force to prevent the advancing molten front from penetrating beyond the mold boundaries, the sand mold is produced by an overhead raining and flask vibration schedule that encourages fluidization and subsequent densification. The amplitude, frequency, and duration of the flask vibration as well as the rate of sand filling are critical parameters in achieving quality castings. Currently, many foundries use an often-lengthy trial-and-error process for determining an acceptable raining and vibration schedule for each specific mold and rely heavily on simple measurements and operator experience to control the mold making process on the foundry line. This study focuses on developing a wireless sensor network of accelerometers to monitor vibrational characteristics of the casting flask during the mold making stage of LFC. Transformations in the vibrational characteristics of the flask can provide a "signature" for indicating the condition of the unbonded sand mold. Additionally, the wireless nature of the sensor nodes enables the technology to travel across the foundry floor during the casting cycle eliminating the necessity of routine placement and setup.

  14. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Wendy C. Crone; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize the...

  15. Silane based coating of aluminium mold

    2013-01-01

    A method of preparing an aluminum mold for injection molding is provided, the method comprises the steps of providing an aluminum mold having a least one surface, subjecting the at least one surface to a gas or liquid phase silane to thereby form an anti-stiction coating, the anti-stiction coating...... comprising a chemically bonded monolayer of silane compounds on the at least one surface wherein the silane is a halogenated silane. The at least one surface coated with the anti-stiction coating may be configured to withstand an injection molding process at a pressure above 100 MPa. Furthermore, a mold...... having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding of...

  16. RESEARCH ON THE CONTENT AND FILLER TYPE ON INJECTION SHRINKAGE

    Tomasz Jachowicz; Ivan Gajdo; Volodymyr Krasinskyi

    2014-01-01

    The paper presents the phenomenon of injection shrinkage. The definition of shrinkage and shrinkage types are presented. The main factors affecting shrinkage value of injection-molded part are discussed. Based on the experimental tests conducted using injection-molded parts made from polypropylene filled with glass fiber and talc, the dependence of injection-molded part shrinkage on filler content and selected parameters of the injection molding process has been determined.

  17. RESEARCH ON THE CONTENT AND FILLER TYPE ON INJECTION SHRINKAGE

    Tomasz Jachowicz

    2014-09-01

    Full Text Available The paper presents the phenomenon of injection shrinkage. The definition of shrinkage and shrinkage types are presented. The main factors affecting shrinkage value of injection-molded part are discussed. Based on the experimental tests conducted using injection-molded parts made from polypropylene filled with glass fiber and talc, the dependence of injection-molded part shrinkage on filler content and selected parameters of the injection molding process has been determined.

  18. Development of a compression molding process for three-dimensional tailored free-form glass optics.

    Yi, Allen Y; Huang, Chunning; Klocke, Fritz; Brecher, Christian; Pongs, Guido; Winterschladen, Markus; Demmer, Axel; Lange, Sven; Bergs, Thomas; Merz, Michael; Niehaus, Frank

    2006-09-01

    Because of the limitation of manufacturing capability, free-form glass optics cannot be produced in a large volume using traditional processes such as grinding, lapping, and polishing. Very recently compression molding of glass optics became a viable manufacturing process for the high-volume production of precision glass optical components. An ultraprecision diamond-turning machine retrofitted with a fast tool servo was used to fabricate a free-form optical mold on a nickel-plated surface. A nonuniform rational B-spline trajectory generator was developed to calculate the computer numerical control machine tool path. A specially formulated glass with low transition temperature (Tg) was used, since the nickel alloy mold cannot withstand the high temperatures required for regular optical glasses. We describe the details of this process, from optical surface geometry, mold making, molding experiment, to lens measurement. PMID:16912790

  19. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene

    Highlights: ► Recycled high density polyethylene and isotactic polypropylene blends have been prepared by melt compounding. ► Thermal study showed that iPP is not well dispersed into the rHDPE matrix. ► Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/ipp blends. - Abstract: Polymer blending has become an important field in polymer research and especially in the area of recycling. In this research the target was to reduce the polymer waste problem. Therefore, recycled high density polyethylene (rHDPE) and virgin isotactic polypropylene (vPP) blends containing upto 30 wt% of vPP have been prepared by melt compounding method using injection molding at 220 °C. The thermal properties, thermal degradation and the mechanical properties of the polymer blends were studied using differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and tensile testing method. DSC study shows that in all the blends there are two melting peaks, one around the melting temperature of rHDPE and another one around the melting point of vPP, indicating that vPP is not well dispersed into the rHDPE matrix. The changes in the heat of fusion for the rHDPE/iPP polymer blends versus vPP content suggests that incorporating vPP affects the crystallinity of the system. TGA analysis of the polymer blends shows that parts of rHDPE with 95/5 upto 80/20 of vPP are mostly stable composition which brings about valuable stabilization to the rHDPE. Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/vpp blends

  20. Injection Molding Parameter Optimization of Ti-6Al-4V Powder Mix With Palm Stearin and Polyethylene for Highest Green Strength Using Taguchi Method

    Nor, N. H. Mohamad; Muhamad, N.; Ruzi, M.; Ahmad, S.; Ibrahim, M. H. I.; Jamaludin, K. R.

    2011-01-01

    Taguchi method of L27 (313) orthogonal array is used in this paper as a tool in optimization of Metal injection molding (MIM) parameters for the highest green strength. Parameters optimized are the injection pressure, injection temperature, powder loading, mold temperature, holding pressure and injection speed. Besides those, interaction of the injection pressure, injection temperature and powder loading were studied. The metal powder of Ti-6Al-4V is mixed with binder 60wt% of palm stearin and 40wt% of polyethylene successfully injected at optimum parameter condition: 350 bar of injection pressure, 140° C of injection temperature, 65vol% of powder loading, 50° C of mold temperature, 600 bar of holding pressure, and 10 ccm/s of the injection rate. Analysis of variance (ANOVA) for the best signal to noise ratio (S/N) presents the contribution of the parameters to the quality characteristic (green strength). Results show that the mold temperature has highest significant percentage (27.59%) followed by powder loading (15.44%) and injection pressure (12.30%). Nevertheless, the analysis of variance does not show any contribution from interaction.

  1. Permeability Tests of Fiber Fabrics in the Vacuum Assisted Resin Transfer Molding Process

    Changchun, Wang; Guanghui, Bai; Yang, Wang; Boming, Zhang; Lijian, Pan

    2015-08-01

    A special device is designed to measure the in-plane and through-thickness permeability of a preform for the vacuum assisted resin transfer molding (VARTM) process. The device is composed of pressure control module, aluminum experimental platform, thickness test module, and pressure test module, which is controlled by a computer. Two kinds of experiments were conducted for carbon fiber noncrimp biaxial fabrics to verify the reliability of the new device based on constant pressure injection. The two experiments are composed of: (1) testing of in-plane permeability for 1, 5, 10 and 20 layers with the method of the line injection by comparing the two conventional methods; (2) testing of the through-thickness permeability for the laminate denoted as [45] 20 with the central injection method. The results show: (1) the in-plane permeability decrease with the increase of layer number and the permeability for 20 layers is only 62 % of the one layer; (2) the in-plane permeability is an order of magnitude greater than through-thickness permeability based on experimental results of laminate denoted as [45] 20. A good agreement obtained between the device and two comparison methods proves the validity of the device.

  2. Flow injection systems for process analytical chemistry

    Lukkari, Ingrid

    1995-01-01

    Flow injection systems have great potential for sample handling and analysis in process analytical chemistry. The flexibility and versatility of flow injection manifolds can he utilized in specific applications of sample conditioning and analysis. An overview of various flow injection methods, including flow reversals, double injection, and sequential injection is given, as well as different clean-up methods, such as gas diffusion, solid phase extraction, dialysis, and solvent extraction. Cal...

  3. Moldagem por injeo de ps cermicos: remoo da parafina e do polipropileno utilizados como veculo orgnico Ceramic injection molding: removal of pafafin and polypropylene used as organic binder

    Ricardo V. B. Oliveira

    2004-09-01

    Full Text Available A moldagem por injeo de ps cermicos tem se tornado um processo altamente atrativo por aliar a versatilidade e a produtividade da moldagem por injeo convencional s propriedades inerentes aos materiais cermicos. A remoo do ligante, usado como veculo orgnico nesse processo, uma das etapas crticas para a produo de peas cermicas sem defeitos. Neste trabalho avaliou-se a influncia da geometria das peas injetadas na remoo do ligante, tanto por imerso em solvente como por decomposio trmica. Alumina em p foi misturada fisicamente a um ligante composto por polipropileno [PP], parafina [PW] e cido esterico [AE]. As peas com diferentes geometrias foram mantidas imersas em hexano, secas sob vcuo e acompanhada a variao de massa devido solubilizao do PW e AE. A determinao da porosidade das peas, realizada por meio das isotermas de adsoro/desoro de nitrognio, mostrou um aumento de porosidade de 0,5% volume para aproximadamente 20% volume aps a imerso em solvente. A remoo trmica do PP remanescente produziu hidrocarbonetos alifticos e compostos insaturados, determinados e quantificados por espectroscopia de infravermelho, que permearam a estrutura porosa da pea. A geometria das peas tem grande influncia na remoo do ligante, podendo afetar no s a qualidade do produto final, mas tambm as etapas subseqentes do processo.Powder injection molding [PIM] has become highly attractive as it combines the versatility and productivity of conventional injection molding processes with the intrinsic properties of metallic and ceramic materials. The removal of organic binder, used as vehicles during the process, is one of the most critical stages in the production of ceramic devices in this process. In this work, the influence from the geometry of the injected part on the removal of the organic binder was evaluated for both solvent immersion and thermal degradation processes. Alumina powder was mixed with an organic binder, comprising polypropylene [PP], paraffin wax [PW] and stearic acid [SA], and injection molded in different geometries. Immersion of ceramic parts in hexane induced the solubilization of PW and SA, confirmed by weight variation. Parts porosity, determined through nitrogen adsorption isotherm, showed an increase from 0.5 v% before immersion to ca. 20 v% after immersion. PP burnout produced aliphatic hydrocarbons and unsaturated compounds that flow through a porous structure produced in early stages of this process. Parts geometry plays an important role in binder removal, affecting the quality of the sintered part as well as the remaining stages of the process.

  4. Low-pressure low-temperature molding process

    Bowman, E. L.

    1977-01-01

    Use of expanding rubber mandrel allows for bonding of graphite/epoxy laminated parts in oven instead of expensive autoclave. Heavy-duty two-piece aluminum mold limits deflection. Manipulation of resin contact by precise control of mandrel-generated pressure eliminates complex bleeder system.

  5. Tool steel quality and surface finishing of plastic molds

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  6. Simulation of Stress Distribution near Weld Line in the Viscoelastic Melt Mold Filling Process

    Fang Wang; Jie Ouyang; Binxin Yang

    2013-01-01

    Simulations of interface evolution and stress distribution near weld line in the viscoelastic melt mold filling process are achieved according to the viscoelastic-Newtonian two-phase model. The finite volume methods on nonstaggered grids are used to solve the model. The level set method is used to capture the melt interface. The interface evolution of the viscoelastic melt in the mold filling process with an insert in is captured accurately and compared with the result obtained in the experim...

  7. Application of Artificial Vision in flow redirection during filling of Liquid Composite Molding processes

    Monts, N.; Sanchez, F.; Garca, J. A.; Falc, A.; Tornero, J.; Chinesta, F.

    2007-04-01

    The control techniques applied in Liquid Composite Molding processes have been extensively worked out by many different research groups abroad. In this work, the original use of artificial vision technology in order to redirect the flow path during mold filling appears as a major objective of online control strategy. In this study, a process performance index developed in a previous work is used to define the mold gate opening sequence. The Vacuum Assisted Resin Transfer Molding (VARTM) and Vacuum Assisted Resin Infusion (VARI) have been selected as the main processes of study. The expert system will make use of numerical simulation in order to obtain a previous physical understanding of the flow behaviour in different manufacturing conditions. Some examples of the installation are presented and discussed.

  8. Predictive engineering tools for injection-molded long-carbon-fiber thermoplastic composites - FY 2015 third quarterly report

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mori, Steven [MAGNA Exteriors and Interiors Corp. Aurora, ON (Canada); Gandhi, Umesh N. [Toyota Research Institute North America, Ann Arbor, MI (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States); Tucker, III, Charles L. [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2015-07-01

    During the third quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Magna oversaw the tool build and prepared the molding plan for the complex part of Phase II. 2) PlastiComp hosted a visit by Magna and Toyota on April 23rd to finalize the molding scope and schedule. The plan for molding trials including selection of molding parameters for both LFT and D-LFT for the U-shape complex part was established. 3) Toyota shipped the U-shape complex part tool to Magna on May 28th, 2015. 4) Plasticomp provided 30wt% LCF/PP and 30wt% LCF/PA66 compounded pellets to Magna for molding the complex part. 5) Magna performed preliminary molding trials on June 2nd, 2015 to validate wall thickness, fill profile, tool temperature and shot size requirements for the complex part. 6) Magna performed the first complex part run on June 16th and 17th, 2015 at Magna’s Composite Centre of Excellence in Concord, ON, Canada. Dale Roland of Plasticomp, and Umesh Gandhi of Toyota also attended the molding. 7) Magna discussed and finalized the plan with PNNL and the team for cutting samples from molded parts at selected locations for fiber orientation and length measurements. 8) Magna provided the computer-aided design (CAD) files of the complex parts with and without ribs to PNNL and Autodesk to build the corresponding ASMI models for injection molding simulations. Magna also provided the actual parameters used. 9) Plasticomp’s provided knowledge and experience of molding LCF materials essential to the successful molding of the parts including optimization of fill speed, tool temperatures, and plasticizing conditions for the 30wt% LCF/PP and 30wt% LCF/PA66 materials in both rib and non-rib versions. 10) Magna molded additional parts for evaluation of mechanical property testing including torsional stiffness on June 29th and 30th, 2015 at Magna’s Composite Center of Excellence. 11) Toyota began preparation for the torsion test of the specimens. Preparation of a computer-aided engineering (CAE) model to predict the performance is in progress. 12) Autodesk fixed an error in the implementation of the proper orthogonal decomposition (POD) calculation of fiber length that had caused the ASMI solution to crash and provided an updated build of ASMI containing the fix. 13)Autodesk reviewed and provided feedback for the complex part molding and measurement locations. 14) Autodesk provided support to set up the workflow for ASMI-ABAQUS® analysis, and provided a fix and workaround for a bug in the ASMI-ABAQUS® output command. 15) Autodesk helped build ASMI analysis models for the complex parts with and without ribs. 16) Autodesk worked on improving the orientation prediction accuracy in the shearing layer for 3D meshes based on comparison to measured data of the plaque moldings. 17) PNNL installed a new ASMI version received from Autodesk and performed comparative analyses to assess mid-plane versus 3D fiber length predictions using the full fiber length model and the reduced-order model (ROM) using POD. 18) PNNL presented the project scope, accomplishments, significant results and future plans to DOE and the USCAR Materials Tech Team on June 3rd, 2015. 19) PNNL discussed the cutting of samples from molded parts and finalized a plan with Magna and the team suggesting the sample size, locations and number of samples per location. 20) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, and preliminary analyses of the part with ribs were conducted using the actual molding parameters received from Magna. 21) PNNL worked on a procedure to extract fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS model. This procedure is essential to import ASMI fiber orientation and length to a 3D ABAQUS model of the part allowing future part structural analysis for weight reduction study.

  9. Desenvolvimento de liga sinterizada de nquel por moldagem de ps por injeo / Development of sintered nickel alloy by powder injection molding

    Moiss Luiz, Parucker; Aloisio Nelmo, Klein; Roberto, Binder.

    2014-09-01

    Full Text Available A moldagem de ps por injeo um processo de fabricao de elevada produtividade que possibilita obter componentes de geometria complexa, estreita preciso dimensional e boas propriedades mecnicas. Neste processo, uma mistura de uma determinada quantidade de ps e ligantes orgnicos (polmeros, c [...] eras e leos) obtida por meio de uma massa de injeo (feedstock) o qual tem caractersticas reolgicas adequadas para promover a injeo desta massa em uma cavidade de um molde. A produo de ligas de nquel por meio deste processo uma alternativa para produo de produtos que requerem aplicaes avanadas onde se exige resistncia a corroso e oxidao, resistncia mecnica a altas temperaturas e baixo coeficiente de atrito. Neste trabalho apresentamos um estudo das propriedades microestruturais e mecnicas de uma liga de nquel (Ni-Fe-Cr-P) processada via moldagem de ps por injeo, utilizando ps de nquel carbonila com e sem a presena de fase lquida durante a sinterizao. Os resultados foram comparados com a mesma liga processada por compactao de ps. Os resultados demonstraram a necessidade de maior quantidade de matria orgnica para o desenvolvimento da massa de injeo (feedstock: 15% m/m de polmero) para os tipos de ps metlicos utilizados (nquel carbonila do tipo INCO 123) se comparado ao feedstock de ligas comerciais que normalmente utilizam uma quantidade menor de matria orgnica (feedstock: 9% m/m de polmero). A maior quantidade de matria orgnica necessria para a preparao do feedstock deve-se a morfologia dos ps empregados (superficie rugosa - tipo spiky) que promove reteno de carbono durante o processo de extrao, ocasionando a necessidade de otimizao do ciclo de extrao trmica e sinterizao. Ciclos mais lentos e a baixa temperatura promoveram a total retirada dos ligantes. A liga de Ni-Fe-Cr-P injetada apresentou contrao de aproximadamente 50%, alm de elevado teor de poros quando comparado ao material compactado, o que influenciou as propriedades mecnicas e dureza aparente do material. Abstract in english The powder injection molding is a manufacturing process that allows high productivity to obtain complex geometry components, dimensional accuracy and good mechanical properties. In this process, a mixture of a quantity of powders and organic binders (polymers, waxes, oils) is obtained through inject [...] ion of a mass (feedstock) which has rheological properties suitable for promoting the injection of this mass in a cavity of a mold. The production of nickel alloy by this process is an alternative to production of products that require advanced applications, which require resistance to corrosion and oxidation, mechanical strength at high temperatures and low coefficient of friction. This paper we present the study of the microstructural and mechanical properties of a nickel alloy (Ni-Fe-Cr-P) processed by powder injection molding, using carbonyl nickel powders with and without the presence of liquid phase during sintering. The results are compared with the alloy processed by powder compaction. The results demonstrate the need for increased amount of organic matter for developing the injection mass (feedstock: 15 wt.% polymer) for the types of metallic powders used (nickel INCO type 123 carbonyl) compared to commercial alloy feedstock typically use a smaller amount of organic matter (feedstock: 9 wt.% polymer). The largest quantity of organic matter needed for the preparation of the feedstock due to the morphology of the powders used (spiky) which promoted carbon retention during the extraction process, resulting in the need to optimize the extraction cycle and thermal sintering. Slower cycles and low temperature promoted the complete extraction of the ligands. The Ni-Fe-Cr-P alloy injected showed shrinkage of approximately 50%, and high levels of pores as compared to the compacted material, which influenced the mechanical properties and apparent hardness of the material.

  10. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  11. Efeito do processamento em misturas de alumina/ligantes orgânicos usadas na moldagem por injeção em baixa pressão Effect of processing variables in alumina/organic binders mixtures used in low-pressure injection molding

    P . A. Ourique

    2013-03-01

    Full Text Available A moldagem por injeção em baixa pressão (MIBP é uma técnica que já vem sendo empregada na produção de peças cerâmicas com formas e geometrias complexas. A homogeneidade da mistura de ligantes orgânicos e pós cerâmicos é um fator determinante que deve ser controlado para minimizar a formação de imperfeições no processamento de feedstocks para MIBP. Defeitos típicos de processamento por MIBP, como bolhas de ar e aglomerados, geram gradientes de densidade nas misturas que, após conformação, possuem poucas possibilidades de remoção. Essas imperfeições comprometem o desempenho dos produtos obtidos por essa técnica. Este trabalho está focado na avaliação dessas heterogeneidades e como elas podem ser correlacionadas com a variação da densidade aparente e com o comportamento reológico dessas misturas. Para tanto, aluminas submicrométricas, como recebida e desaglomerada, foram adicionadas a uma mistura fundida de ligantes a base de parafinas, ceras e aditivos e processada em dois tipos diferentes de misturadores, com e sem o auxílio de vácuo. Foi observada a presença de aglomerados existentes na alumina como recebida, possivelmente gerados durante a etapa de calcinação. Também foi observado que o tipo de misturador e a aplicação ou não de vácuo durante a etapa final do processamento têm grande influência no tempo de mistura necessário para reduzir a viscosidade do feedstock para a injeção.The low-pressure injection molding (LPIM is a technique already being used in the production of ceramic parts with complex shapes and geometries. The homogeneity of the mixture of organic binder and ceramic powder is a determining factor which must be controlled to minimize defects formation while feedstock processing to LPIM. Typical defects of LPIM processing, such as air bubbles and agglomerates, generate density gradients in the mixtures, which, after shaping, have little possibility of removal. These imperfections compromise the performance of the products obtained by this technique. This work is focused on the evaluation of these inhomogeneities and how they can be correlated with density variation and the rheological behavior of these mixtures. Therefore, submicrometer aluminas, as received and deagglomerated, were added to a molten mixture of paraffin based binders, waxes and additives and processed in two different mixers, with and without vacuum. The presence of alumina agglomerates was observed in the powder as received, possibly generated during the calcination step. It was also observed that the type of mixer and vacuum application or not during the final processing step, has a major influence on the mixing time required to reduce the viscosity of the feedstock for injection.

  12. Vacuum-assisted resin transfer molding (VARTM) model development, verification, and process analysis

    Sayre, Jay Randall

    2000-12-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.

  13. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  14. Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process

    Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions to fabrication challenges associated with chip sealing and demolding of polymer high-volume replication methods. UV-assisted thermal bonding was found to ensure a strong seal of the microstructures in the molded part without altering the geometry of the channels. In the DNA stretching device, a low aspect ratio nanoslit (1/200) connecting two larger micro-channels was used to stretch a 168.5 kbp DNA molecule, while in the other device single-HeLa cells were captured against a micro-aperture connecting two larger microfluidic channels. Different dry etching processes have been investigated for the master origination of the cell-capture device. The combination of a modified Bosch process and an isotropic polysilicon etch was found to ensure the ease of demolding by resulting in slightly positively tapered sidewalls with negligible undercut at the mask interface. (paper)

  15. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Fourth Quarterly Report

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathur, Raj N. [PlastiComp, Inc., Winona, MN (United States); Kijewski, Seth A. [Purdue Univ., West Lafayette, IN (United States); Sangid, Michael D. [Purdue Univ., West Lafayette, IN (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Jin, Xiaoshi [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Gandhi, Umesh N. [MAGNA Exteriors and Interiors Corp, Aurora, ON (Canada); Mori, Steven [Univ. of Illinois, Champaign, IL (United States); Tucker, III, Charles L.

    2014-09-30

    During the last quarter of FY 2014, the following technical progress has been made toward project milestones: 1) Autodesk, Inc. (Autodesk) has implemented a new fiber length distribution (FLD) model based on an unbreakable length assumption with Reduced Order Modeling (ROM) by the Proper Orthogonal Decomposition (POD) approach in the mid-plane, dual-domain and 3D solvers. 2) Autodesk improved the ASMI 3D solver for fiber orientation prediction using the anisotropic rotary diffusion (ARD) – reduced strain closure (RSC) model. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on numerical simulation of fiber orientation and fiber length. 4) PlastiComp, Inc. (PlastiComp) suggested to Purdue University a procedure for fiber separation using an inert-gas atmosphere in the burn-off furnace. 5) Purdue University (Purdue) hosted a face-to-face project review meeting at Purdue University on August 6-7, 2014. 6) Purdue conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP edged-gated, slow-fill 50wt% LCF/PP edge-gated, and slow-fill 50wt% LCF/PP center-gated plaques, and delivered the orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. 7) PNNL conducted ASMI mid-plane analyses for the above PlastiComp plaques and compared the predicted fiber orientations with the measured data provided by Purdue at Locations A, B, and C on these plaques. 8) PNNL planned the project review meeting (August 6-7, 2014) with Purdue. 9) PNNL performed ASMI analyses for the Toyota complex parts with and without ribs, having different wall thicknesses, and using the PlastiComp 50wt% LCF/PP, 50wt% LCF/PA66, 30wt% LCF/PP, and 30wt% LCF/PA66 materials to provide guidance for tool design and modifications needed for molding these parts. 10) Magna Exteriors and Interiors Corp. (Magna) molded plaques from the 50% LCF/PP and 50% LCF/PA66 materials received from Plasticomp in order to extract machine purgings (purge materials) from Magna’s 200-Ton Injection Molding machine targeted to mold the complex part. 11) Toyota and Magna discussed with PNNL tool modification for molding the complex part.

  16. Fabrication of microlens arrays by a rolling process with soft polydimethylsiloxane molds

    Hu, Chia-Nying; Hsieh, Hsin-Ta; Su, Guo-Dung John

    2011-06-01

    In this paper, we present a new roll-to-roll method to fabricate visible light transparent microlens arrays on a glass substrate by using soft and cost-effective polydimethylsiloxane (PDMS) molds. First, we fabricated microlens array master molds by photoresist thermal reflow processes on silicon substrates. We then transferred the pattern to PDMS molds by a spin coater. After making the PDMS molds, we used a two-wheel roll-to-roll printing machine to replicate ultraviolet resin microlens arrays on glass substrates. The PDMS molds can be made easily at a low cost compared with traditional electroplating metal molds. We studied the quality of microlens arrays that were replicated by different rolling pressures of 20, 200 and 500 N cm-2. We also identified the relation between the pressure and the shape of the microlens arrays. The results showed that the best yield rate and replication performance were achieved with a pressure of approximately 200 N cm-2 and 4 min of ultraviolet light exposure.

  17. The Effect of Dewaxing and Burnout Temperature in Block Mold Process for Copper Alloy Casting

    S.Z. Mohd Nor

    2015-10-01

    Full Text Available The main objective of this research is to investigate the effect of dewaxing and burnout temperature on the quality of copper alloy casting produced by a low cost block mold that has been developed. In the molding process, two types of silica sand which contains 97.9% silica (SiO2 and 97.2% silica have been used as a refractory material with POP served as a binder. Several mold formulations contained 15-40% plaster of paris (POP, 60-85% silica sand and 35% water had been developed and each formulation had been tested in the process of copper alloy casting. In the dewaxing process, the temperature of 170oC was found appropriate to be used as an initial mold heating temperature and complete wax burnout was effectively achieved with the temperature of 750oC for 5 hours. The insufficient burnout process has produced a defect casting with carbon residue, appeared as a black stain on the surface of the casting. Meanwhile, rapid initial heating had prevented the wax from flowing out smoothly thus, eroded the surface of the mold cavities. This has resulted in deteriorated cavity surface, hence a rough surface of the casting.

  18. Innovations in molding technologies for microfabrication

    Benzler, Tobias; Piotter, Volker; Hanemann, Thomas; Mueller, K.; Norajitra, Prachai; Ruprecht, Robert; Hausselt, Juergen H.

    1999-08-01

    Micromolding is a key technology for the economic production of components for microsystems. It is applied in several manufacturing techniques including the LIGA process. Especially MicroInjection Molding allows cost-effective large-scale production of components for many applications to be used in microsystems technology. Using special molding machines, lateral dimensions in the micrometer range, structural details down to 200nm and maximum aspect ratios of more than 20 are achieved. Examples for applications are PSU-made housings for microfluidic systems or microcomponents made of PMMA for cardiac catheters. PC or LCP are appropriate materials for interconnection devices in microoptics and electronics. Other examples are injection molded lost plastic molds for electroforming or electroless plating of metal microstructures. An important economic factor is the optimization of the molding process and tool using different simulation techniques. Recently, novel techniques for manufacturing metal or ceramic microstructures were developed by adapting Powder Injection Molding to microtechnologies. Using commercially available feedstocks, microstructures were made of metals or ceramics. Rapid manufacturing of microcomponents is achieved by the so-called Photomolding process using reactive polymer resins as photocurable material and e.g. mold inserts fabricated by laser ablation. The addition of micro- or nanosized ceramics to the resin allows the molding of filled composite with enhanced mechanical properties. Subsequent debindering and sintering steps yield the pure ceramic microcomponents.

  19. Mold Simulator Study of the Initial Solidification of Molten Steel in Continuous Casting Mold. Part I: Experiment Process and Measurement

    Zhang, Haihui; Wang, Wanlin; Ma, Fanjun; Zhou, Lejn

    2015-10-01

    A mold simulator has been successfully used to study the initial solidification behavior of the molten low carbon steel. Coupled with 2D-IHCD calculation and PSD analysis, the variations of the responding temperatures and heat fluxes, as well as the relationship between shell surface profile, heat flux, shell thickness, mold level fluctuation, and the infiltrated slag film, were investigated in this article. The results suggested that the mold high-frequency temperatures and heat fluxes above liquid steel level vary with the oscillation of the mold, and show an opposite variation pattern as those below the shell tip. The formed shell surface profile is directly correlated to the variation of high-frequency heat fluxes, where the formation of oscillation mark is associated with a sudden increase of the heat flux during negative strip time. Mold level fluctuation contributes to the formation of the extra oscillation marks. The growth of shell thickness follows the square root law, and the instantaneous solidification factor is large near the shell tip and becomes small in the area where the deep shell surface depression is formed. The thickness of the slag film in between mold and shell is in the range of 1.4 to 2.46 mm, and the crystallization of mold flux in mold/shell gap is dynamic.

  20. Effect of low doses beta irradiation on micromechanical properties of surface layer of injection molded polypropylene composite

    Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin

    2015-09-01

    The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.

  1. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  2. Applying simulation to optimize plastic molded optical parts

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  3. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.

    2011-07-01

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.

  4. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT. To sense Lamb waves a high speed, high precision sensing technique is required to acquire data from embedded FBGs due to the high velocities and small strain amplitudes of these guided waves. A technique based on a filter consisting of a tunable FBG was developed. Since this filter is not dependant on moving parts, tests executed with this filter concluded with the detection of Lamb waves, removing the influence of temperature and operational strains. A damage detection algorithm was developed to detect and localize cracks and delaminations.

  5. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    Mi, Hao-Yang [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou (China); Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Salick, Max R. [Department of Engineering Physics, University of Wisconsin–Madison, WI (United States); Jing, Xin [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou (China); Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States); Jacques, Brianna R. [Department of Biology, University of Wisconsin–River Falls, WI (United States); Crone, Wendy C. [Department of Engineering Physics, University of Wisconsin–Madison, WI (United States); Peng, Xiang-Fang, E-mail: pmxfpeng@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou (China); Turng, Lih-Sheng, E-mail: turng@engr.wisc.edu [Department of Mechanical Engineering, University of Wisconsin–Madison, WI (United States)

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. - Highlights: • Microcellular injection molding was used to fabricate tissue engineering scaffolds. • TPU/PLA tissue engineering scaffolds with tunable properties were fabricated. • Multiple test methods were used to characterize the scaffolds. • The biocompatibility of the scaffolds was confirmed by fibroblast cell culture. • Scaffolds produced have the potential to be used in multiple tissue applications.

  6. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. - Highlights: • Microcellular injection molding was used to fabricate tissue engineering scaffolds. • TPU/PLA tissue engineering scaffolds with tunable properties were fabricated. • Multiple test methods were used to characterize the scaffolds. • The biocompatibility of the scaffolds was confirmed by fibroblast cell culture. • Scaffolds produced have the potential to be used in multiple tissue applications

  7. Influencing Factors for the Microstructure and Mechanical Properties of Micro Porous Titanium Manufactured by Metal Injection Molding

    Zhen Lu

    2016-04-01

    Full Text Available Porous titanium is a new structural and functional material. It is widely used in many fields since it integrates the properties of biomaterials with those of metallic foam. A new technology that combines both the preparation and forming of porous materials has been proposed in this paper. Moreover, a new solder was developed that could be employed in the joining of porous materials. Influencing factors for microstructure and mechanical properties of the parent material and joint interface are identified. Metal injection molding (MIM technology was used for fabricating porous materials. The feedstock for injection molding of porous titanium powders was prepared from titanium powders and a polymer-based binder system. In addition, the proportion of powder loading and binders was optimized. Through MIM technology, a porous titanium filter cartridge was prepared. For the purpose of investigating the thermal debinding technology of the filter cartridge, effects of the sintering temperature on the porosity, morphology of micropores and mechanical properties were analyzed. It could be found that when the sintering temperature increased, the relative density, bending and compression strength of the components also increased. Moreover, the porosity reached 32.28% when the sintering temperature was 1000 °C. The microstructure morphology indicated that micropores connected with each other. Meanwhile, the strength of the components was relatively high, i.e., the bending and compression strength was 65 and 60 MPa, respectively. By investigating the joining technology of porous filter cartridges, the ideal components of the solder and pressure were determined. Further research revealed that the micropore structure of the joint interface is the same as that of the parent material, and that the bending strength of the joint interface is 40 MPa.

  8. Simulative design and process optimization of the two-stage stretch-blow molding process

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress

  9. Simulative design and process optimization of the two-stage stretch-blow molding process

    Hopmann, Ch.; Rasche, S.; Windeck, C.

    2015-05-01

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.

  10. Simulative design and process optimization of the two-stage stretch-blow molding process

    Hopmann, Ch.; Rasche, S.; Windeck, C. [Institute of Plastics Processing at RWTH Aachen University (IKV) Pontstraße 49, 52062 Aachen (Germany)

    2015-05-22

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.

  11. Evolução da morfologia de fases de blendas PA6/AES em extrusora de dupla rosca e moldagem por injeção Evolution of phase morphology of PA6/AES blends during the twin screw extrusion and injection molding processes

    Adriane Bassani

    2005-07-01

    Full Text Available A evolução da morfologia de fases em blendas não reativas e reativas de poliamida-6 com copolímero de acrilonitrila/EPDM/estireno (AES em uma extrusora de rosca dupla co-rotacional foi investigada. A evolução da morfologia de fases ao longo da extrusora de rosca dupla foi monitorada através da coleta de pequenas amostras em válvulas no barril da extrusora e caracterização por microscopia eletrônica de transmissão (MET. Foram utilizados como compatibilizantes reativos os copolímeros metacrilato de metila-co-anidrido maleico (MMA-MA e metacrilato de metila-co-metacrilato de glicidila (MMA-GMA. Os grupos anidrido maleico e epóxi nos copolímeros podem reagir com os grupos finais de cadeia da poliamida durante o processamento no estado fundido e melhorar a interação na interfase do sistema PA6/AES. A blenda PA6/AES não compatibilizada apresentou uma morfologia grosseira de fases onde a fase AES não está bem dispersa na matriz de PA6 devido à falta de interações adequadas entre os componentes da blenda. A adição do compatibilizante MMA-GMA não proporcionou boa dispersão de fases e não melhorou as propriedades mecânicas da blenda, provavelmente porque as possíveis reações no sistema são lentas e podem não ocorrer na extrusora. Por outro lado, a blenda compatibilizada com o copolímero MMA-MA apresentou uma excelente resistência ao impacto à temperatura ambiente e uma diminuição na temperatura de transição dúctil-frágil. As partículas de AES apresentam-se muito mais refinadas e sofrem uma redução significativa em seu tamanho já no início do processo de extrusão. A morfologia observada nas amostras injetadas apresentou uma boa correlação com as propriedades mecânicas obtidas.The evolution of phase morphology in non-reactive vs reactive blends with polyamide and ethylene-propylene-diene elastomer grafted with styrene-acrylonitrile copolymer (AES in a co-rotating twin-screw extruder was investigated. The morphological evolution of these blends along a twin-screw extruder was monitored by quickly collecting small samples from the melt at specific extruder barrel locations and characterizing them with a transmission electron microscope (TEM. The copolymers methyl methacrylate-co-maleic anhydride (MMA-MA and methyl methacrylate-co-glycidyl methacrylate (MMA-GMA were used as compatibilizing agents. The maleic anhydride and the epoxy groups of the copolymers can react with the polyamide end groups during melt processing and improve the interphase interaction in the PA6/AES system. The uncompatibilized blends showed a coarse phase morphology where the AES phase is not well dispersed in the PA6 matrix due to lack of adequate interaction between the components. The addition of MMA-GMA compatibilizer neither promoted good phase dispersion or improved the mechanical properties of the blends, probably because the possible reactions are very slow and may not occur inside the extruder. On the other hand, the addition of the MMA-MA copolymer promotes better impact strength and good phase dispersion in the blend. The AES particles undergo significant reduction in the first stages of the mixture inside the extruder. The morphology observed for the injection molded specimens was correlated with the mechanical properties.

  12. Influence of process parameters on the weld lines formation in rapid heat cycle molding

    Fiorotto, Marco; Lucchetta, Giovanni

    2011-05-01

    The insufficient entanglement of the molecular chains at the v-notch of a weld line impairs the mechanical strength and the surface quality of a plastic product. The rapid heat cycle molding technology (RHCM) has been recently used to enhance surface appearance of the parts, by thermally cycling the mold surface temperature. The mold temperature is the key of RHCM technology because it significantly affects productivity, energy efficiency and the quality of the final polymer part. In this work the influence of mold temperature on the weld lines depth and roughness were studied. Three different materials were tested. To investigate the influence of process parameters, a special mold insert was designed and manufactured. Weld lines geometry and roughness were quantitatively characterized by means of a profilometer. Experimental results show that is possible to increase the temperature to 10° C lower than the glass transition to obtain a high-gloss parts without weld lines with a significant reduction of cycle time and energy consumption.

  13. Extruded/injection-molded composites containing unripe plantain flour, ethylene vinyl-alcohol and glycerol: Evaluation of color, mechanical property and biodegradability

    Extruded/injection-molded composites were produced from plantain flour blended with ethylene vinyl-alcohol (EVA) and glycerol. Scanning electron microscopy showed composites had a smooth surface and excellent compatibility between plantain flour, EVA and glycerol. The impact of increased plantain fl...

  14. Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process

    Tanzi, Simone; Østergaard, Peter Friis; Matteucci, Marco; Christiansen, Thomas Lehrmann; Cech, Jiri; Marie, Rodolphe; Taboryski, Rafael J.

    2012-01-01

    Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions to...... fabrication challenges associated with chip sealing and demolding of polymer high-volume replication methods. UV-assisted thermal bonding was found to ensure a strong seal of the microstructures in the molded part without altering the geometry of the channels. In the DNA stretching device, a low aspect ratio...

  15. Visual analysis of silver-streak generation process by glass-inserted mold. Glass insert kanagata ni yoru silver steak seisei katei no kaiseki

    Murata, Y.; Yokoi, H. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science); Nagaya, M. (Fanuc Ltd., Yamanashi (Japan)); Nagami, S. (Mitui Petrochemical Industries, Ltd., Tokyo (Japan)); Watanabe, H. (Munekata Co. Ltd., Osaka (Japan))

    1993-06-01

    Silver-streak generation process in injection molding is discussed using a glass-inserted mold. Flow behavior of resin in a mold was photoed by using a high-speed video system. Surface shapes at silver-streak generated locations were observed using an electron microscope and a tool microscope. The following matters were verified: The silver-streaks can be divided into three kinds consisting of one that is formed at a moment when air bubbles having flown in resin from behind catch up its flow tip and make a fountain-flow; another that is formed from single large air bubble on one side or both sides of a formed product; and still another that is generated radially from a large number of fine air bubbles. These distinctions do not depend upon air-bubble generation causing substances. It was also found that, in the result of observation using a visualized heating cylinder, air bubbles generated in the heating cylinder once disappear as a result of risen cylinder internal pressure at an injection, and reappear as a result of decreased pressure in the mold. 7 refs., 9 figs., 2 tabs.

  16. High solid loading aqueous base metal/ceramic feedstock for injection molding

    Behi, Mohammad

    2001-07-01

    Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.

  17. Processing integral-skin polyolefin foams in single-charge rotational foam molding

    Pop-Iliev, Remon

    This thesis focuses on establishing the scientific and engineering foundations for gaining a fundamental understanding of the mechanisms and critical parameters governing the processing of integral-skin low-density polyolefin foams in rotational foam molding. The presented research is particularly intended to broaden the knowledge in the field of manufacturing adjacent, but clearly distinct, layers of non-cellular and cellular structures, consisting of identical or compatible plastic grades, using a single-charge processing concept. Although this technology is beneficial for the efficacy of the molding process and the structural homogeneity of the moldings, its optimization raised a fairly large number of fundamental issues that had to be resolved through further research. In this context, an attempt has been made to establish rigorous, experimentally validated, theoretical models that describe the phenomena identified as the fundamental challenges of this technology. The major contributions of this thesis include: (i) optimization of the single-charge rotational foam molding process for the manufacture of both PE/PE and PE/PP integral-skin cellular composites, (ii) development of a two-step oven temperature profile that prevents the foamable resins invading the solid skin layer and ensures that skin formation always completes prior to the activation of the foamable resin, (iii) fundamental study of the adherence behavior of powders and foamable pellets to a high-temperature rotating mold wall, (iv) fundamental study of the lifespan of CBA-blown bubbles in non-pressurized non-isothermal polymer melts using hot-stage optical microscopy and digital imaging, (v) development of a detailed theoretical model involving diffusion, surface tension, and viscosity to simulate the observed foaming mechanism, and (vi) fundamental study of the rotofoamablility of polyolefin resins using both dry blending and melt compounding based methods and characterization of rheological and thermal properties.

  18. An Approach to Rib Design of Injection Molded Product Using Finite Element and Taguchi Method

    Tian-Syung Lan; Min-Chie Chiu; Long-Jyi Yeh

    2008-01-01

    In this study, not only Taguchi Method but also ANSYS in providing an economical and effective advance to the optimum design of the rib for a plastic injected product are introduced. The analytical model of a rectangular thermoplastic Acrylonitrile Butadiene Styrene (ABS) plastic cover with rib of given thickness (2.8 mm) was selected and constructed based on design experiences and the dimensions as well as the width of the rib were selected as the control factors for Taguchi Method. The defl...

  19. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process

    Beatriz de Cássia Martins Salomão

    2014-01-01

    Full Text Available Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37ºC, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  20. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process.

    de Cássia Martins Salomão, Beatriz; Muller, Chalana; do Amparo, Hudson Couto; de Aragão, Gláucia Maria Falcão

    2014-01-01

    Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production. PMID:24948913

  1. Interface conditions of two-shot molded parts

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at [Polymer Competence Center Leoben GmbH, 8700 Leoben (Austria); Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at [Department of Polymer Engineering and Science, Chair of Materials Science and Testing of Polymers, Montanuniversitaet Leoben, 8700 Leoben (Austria); Lucyshyn, Thomas, E-mail: thomas.lucyshyn@unileoben.ac.at, E-mail: guenter.langecker@unileoben.ac.at; Langecker, Guenter Ruediger, E-mail: thomas.lucyshyn@unileoben.ac.at, E-mail: guenter.langecker@unileoben.ac.at; Holzer, Clemens, E-mail: clemens.holzer@unileoben.ac.at [Department of Polymer Engineering and Science, Chair of Polymer Processing, Montanuniversitaet Leoben, 8700 Leoben (Austria)

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes, a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.

  2. Interface conditions of two-shot molded parts

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes, a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved

  3. Vented compression molding

    Mccree, J. O.; Erwin, L.

    1982-01-01

    A new process, vented compression molding, is developed for molding low density particulates, such as ablative materials used in the Space Shuttle. This process is a modification of standard compression molding that uses a perforated surface as the molding surface. An excess of material is used to fill the mold cavity and this material is forced through the openings in the surface of the mold as the mold closes. This process creates frictional forces, which can be determined approximately by Mohr-Coulomb yield criterion, generating the pressure that compacts the material. The pressure in the mold is shown to be governed by the geometry of the openings and the mechanical properties of the particulate, and not by the displacement or the volume of the mold. It is determined that this uncoupling of the pressure-displacement relationship allows uniform material distribution and compaction without requiring large-scale flow of the particulates.

  4. An Approach to Rib Design of Injection Molded Product Using Finite Element and Taguchi Method

    Tian-Syung Lan

    2008-01-01

    Full Text Available In this study, not only Taguchi Method but also ANSYS in providing an economical and effective advance to the optimum design of the rib for a plastic injected product are introduced. The analytical model of a rectangular thermoplastic Acrylonitrile Butadiene Styrene (ABS plastic cover with rib of given thickness (2.8 mm was selected and constructed based on design experiences and the dimensions as well as the width of the rib were selected as the control factors for Taguchi Method. The deflection under a constant force of 150 Newton at the back centre of the cover was defined as quality characteristic. Additionally, the deformation experiment on a fixed thin beam was compared with the analytical result from ANSYS to verify the reliability of structure analysis from associated parameter setup and boundary condition operation. The L9(34 orthogonal array from Taguchi Method was moreover arranged to establish nine sets of finite element analysis models. Through Taguchi Method, the optimum design parameters were furthermore received from minimum deformation at back centre of the plastic cover analyzed by ANSYS. It is shown that the optimum structural parameters of a plastic rib can surely be effectively found with the integration of both Taguchi Method and ANSYS. Therefore, an Expert System of optimum design for various shapes of ribs can then be constructed through this study. This study exactly contributes a novel technique to the rib design for plastic injection industry in minimizing the development period of a new product.

  5. Influence of injection molding on the electrical properties of polyamide 12 filled with multi-walled carbon nanotubes

    VERSAVAUD, Sophie; Regnier, Gilles; Gouadec, Gwnal; Vincent, Michel

    2014-01-01

    Microinjection-molded and compression-molded polyamide (PA12) matrix composites filled with 0.67, 1.33, 2 and 4 wt% multi-walled carbon nanotubes (MWNTs) were prepared from twin-screw extruded pellets. The compression molded samples have an electrical percolation threshold close to 1.2 wt%. Coupled rheological and electrical measurements show that their electrical properties start decreasing as soon as shear begins and are partially restored during flow, suggesting successively breakage and r...

  6. Technologies of bearings systems production from composite materials by polyester resin injection into the closed mold

    Аnatoliy M. Turenko

    2014-12-01

    Full Text Available An analysis of modern technologies for manufacturing components and bearing systems made of composite materials has been conducted. These technologies are based on the polyester resin injection method and do not require high financial costs in manufacturing. The proposed method, due to the low cost of tooling, is convenient to produce a wide range of items made of composite materials, both in large-scale and single-piece production. Composite materials are intensively used in automotive industry, especially for motor racing vehicles’ parts. These technologies allow to solve the problem of creating ultra-light assemblies for modern car bodies, energy-absorbing passive safety elements and other high-loaded parts. They provide better strength and weight characteristics and better specific energy-output ratio of passive safety elements, as compared to conventional materials (metals and plastics. Considering the above, the most appropriate technology for the automotive industry has been assessed with that choice substantiation.

  7. Replication of nano/micro-scale features using bulk metallic glass mold prepared by femtosecond laser and imprint processes

    This study describes the replication of nano/micro-scale features using a Pd40Ni40P20 bulk metallic glass (BMG) mold prepared using a femtosecond laser and nanoimprinting process. The use of the beam shaper feature of the femtosecond laser enabled the rapid fabrication of periodic nanostripes over an area of ∼5 × 4 mm2 on the BMG mold following a single pulse of irradiation. The ablation pitch of the nanostructure irradiated with 100 mW of femtosecond laser power was determined to be 175.8 nm. The imprinting results demonstrate the applicability of Pd-based BMG in the replication of mold features ranging from 100 µm to 90 nm. Additionally, Pd-based BMG can itself be used as a mold to transfer features onto Au-based BMG and polydimethylsiloxane, where the results could be used to ascertain the workability of BMG for molding in a nano/micro-imprint process. (paper)

  8. Plane-compression properties of microcellular injected polypropylene using gas counter pressure and core-back expansion process

    Reglero Ruiz, José Antonio; VINCENT, Michel; Billon, Noëlle

    2015-01-01

    Microcellular Polypropylene (PP) was obtained using Chemical Blowing Agents (CBA) in a injection process combined with Gas Counter Pressure (GCP) and core-back expansion molding. Two different types of PP, neat and charged, were mixed with a fixed proportion of CBA and injected into a plate, obtaining structural foams with a foamed core and solid outer skins. After, the plate morphology is analyzed to evaluate the main morphological parameters, such as cell size and thickness of the outer ski...

  9. AKUMULASI LISTRIK STATIS PADA GELAS PLASTIK PRODUKSI MESIN INJECTION MOLDING: PENGARUH KELEMBABAN UDARA, TEMPERATUR, DAN BAHAN ADITIF

    Ratnawati Ratnawati

    2014-12-01

    Full Text Available Akumulasi listrik statis pada gelas polipropilena hasil produksi mesin injection molding dapat menyebabkan gelas memiliki gaya elektrostatik dan tidak dapat turun secara gravitasi. Masalah ini menghambat aplikasi gelas pada mesin pengisian air minum dalam kemasan (AMDK. Penelitian ini bertujuan untuk mengetahui pengaruh kelembaban udara, temperatur, dan penambahan bahan aditif TiO2 terhadap potensial listrik permukaan gelas polipropilena. Hasil penelitian menunjukkan bahwa potensial listrik permukaan dipengaruhi oleh kelembaban udara ruang produksi, temperatur, dan penambahan TiO2. Potensial listrik permukaan semakin kecil dengan naiknya kelembaban udara. Setelah kelembaban mencapai 68% potensial listrik permukaan cenderung konstan. Ditinjau dari beda potensial (DV antara permukaan dua gelas, kelembaban optimum adalah 67-68%, yang ditandai dengan beda potensial yang paling rendah. Beda potensial ? 5,2 kV menyebabkan gelas cepat turun, beda potensial 5,2 kV < DV ? 6,7 kV menyebabkan gelas turun dengan lambat, dan DV ? 6,7 kV menyebabkan gelas sangat lambat turun atau menempel. Potensial listrik turun dengan naiknya temperatur. Potensial listrik statis permukaan hanya sedikit turun akibat penambahan 0,75% berat TiO2. Hasil penelitian ini juga menunjukkan bahwa penggunaan gelas dengan potensial listrik permukaan rendah dapat menaikkan kecepatan mesin pengisian AMDK menjadi 220-250 rpm dan 140-160 rpm, masing-masing untuk mesin pengisian gelas 180 ml dan 225 ml.

  10. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2015-02-01

    This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. PMID:25448075

  11. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.

    Zhao, Haibin; Zhao, Guoqun

    2016-01-01

    In view of their complementary properties, blending polylactide (PLA) with poly (ε-caprolactone) (PCL) becomes a good choice to improve PLA's properties without compromising its biodegradability. A series of blends of biodegradable PLA and PCL with different mass fraction were prepared by melt mixing. Standard tensile bars were produced by both conventional and microcellular injection molding to study their mechanical and thermal properties. With the increase in PCL content, the blend showed decreased tensile strength and modulus; however, elongation was dramatically increased. With the addition of PCL, the failure mode changed from brittle fracture of the neat PLA to ductile fracture of the blend as demonstrated by tensile test. Various theoretical models based on dispersion and interface adhesion were used to predict the Young's modulus and the results shows the experimental data are consistent with the predictions of the foam model and Kerner-Uemura-Takayangi model. The thermal behavior of the blends was investigated by DSC and TGA. The melting temperature and the degree of crystallinity of PCL in the PLA/PCL did not significantly change with the PCL content increasing in the whole range of blends composition. PMID:26313249

  12. Effect of low doses beta irradiation on micromechanical properties of surface layer of injection molded polypropylene composite

    The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used. - Highlights: • Low doses of beta radiation significantly increase the hardness of surface layer. • Low doses of beta radiation significantly increase the stiffness surface layer. • Low doses of beta radiation significantly reduce creep of surface layer. • Beta radiation reduces the relative distribution of hydroxyl and carbonyl groups. • Low doses of beta radiation reduce the crystallinity and crystal size

  13. 2:17-type SmCo magnets prepared by powder injection molding using a water-based binder

    2:17-type SmCo permanent magnets by powder injection molding using a water-based binder have been studied. The water-based binder is methylcellulose solution, which consists of deionized water and methylcellulose. When the solution concentration is 0.5 wt%, the carbon content of the sintered magnets is below 0.1 wt% and the magnets have better magnetic properties. The magnetic properties and density of the sintered magnets can be increased through pre-sintering in vacuum (10-3 Pa) at 1200 deg. C. However, the Sm content of the magnets loses obviously in pre-sintering for a long period. The appropriate pre-sintering duration is 20-40 min. The magnetic properties of the magnets are: Br=0.97 T, Hcj=871 kA/m, BHmax=157 kJ/m3. The structure of the magnet consists of the matrix phases (2:17 phases) and the precipitate phases (1:5 phases)

  14. ALCI process - Arbed Lance coal injection

    Goedert, J.; Klein, H.; Henrion, R.; Liesch, J.F.

    1986-02-01

    In the ALCI process, coal is injected into a converter through the top lance. By careful design, high thermal efficiency has been achieved, enabling scrap melting rates of up to 7 kg per kg of carbon to be obtained. This paper gives results of plants in Luxembourg and Japan. 2 references.

  15. Replication of optical microlens arrays using photoresist coated molds

    Chakrabarti, Maumita; Dam-Hansen, Carsten; Stubager, Jørgen; Pedersen, T. F.; Pedersen, Henrik Chresten

    2016-01-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating with...... the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after the...... photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from...

  16. Mold production for polymer optics

    Boerret, Rainer; Raab, Jonas; Speich, Marco

    2014-09-01

    The fields of application for polymer optics are huge and thus the need for polymer optics is steadily growing. Most polymer optics are produced in high numbers by injection molding. Therefore molds and dies that fulfill special requirements are needed. Polishing is usually the last process in the common process chain for production of molds for polymer optics. Usually this process step is done manually by experienced polishers. Due to the small number of skilled professionals and health problems because of the monotonous work the idea was to support or probably supersede manual polishing. Polishing using an industrial robot as movement system enables totally new possibilities in automated polishing. This work focuses on the surface generation with a newly designed polishing setup and on the code generation for the robot movement. The process starts on ground surfaces and with different tools and polishing agents surfaces that fulfill the requirements for injection molding of optics can be achieved. To achieve this the attention has to be focused not only on the process itself but also on tool path generation. A proprietary software developed in the Centre for Optical Technologies in Aalen University allows the tool path generation on almost any surface. This allows the usage of the newly developed polishing processes on different surfaces and enables an easy adaption. Details of process and software development will be presented as well as results from different polishing tests on different surfaces.

  17. Constante de mola de molas cerâmicas injetadas a baixa pressão Spring constant of low-pressure injection molded ceramic springs

    R. A. Barbieri

    2011-12-01

    Full Text Available A dificuldade de usinagem de peças cerâmicas já sinterizadas é muito grande, principalmente devido à dureza e fragilidade destes materiais, o que implica em altos custos de produção. Por isso, grandes esforços tem sido feitos no sentido de melhorar os processos de conformação a verde existentes, ou criar novos processos que permitam a obtenção de peças cada vez mais próximas do formato final desejado. Produzir peças cerâmicas com formatos complexos, livres de defeitos, é uma tarefa que implica em grandes dificuldades. Molas cerâmicas possuem formatos extremamente difíceis de serem moldados e, conseqüentemente, atualmente são produzidas comercialmente molas cerâmicas pelo processo de usinagem, geralmente a um custo elevado. Uma alternativa para a produção de molas cerâmicas é a moldagem por injeção em baixa pressão. Para o desenvolvimento de molas cerâmicas para aplicações tecnológicas, é necessário, além de obter peças íntegras e livres de defeitos, aferir algumas de suas propriedades, como a constante de mola. Uma vez que estas molas encontram aplicação em altas temperaturas, torna-se imprescindível realizar a medida da resistência imposta pela mola à deformação elástica em diferentes temperaturas. Para tanto, este trabalho propõem a montagem de um sistema para a medição da constante de mola de molas cerâmicas injetadas a baixa pressão, tanto à temperatura ambiente como em altas temperaturas, usando o método dinâmico da excitação por impulso para medir a frequência de vibração da mola suspensa no interior de um forno. Para ilustrar a aplicação desta técnica são apresentados resultados obtidos para uma mola helicoidal de alumina, da temperatura ambiente até 1100 ºC.The machining of sintered ceramic parts is a difficult process, mainly due to the hardness and brittleness of these materials, which implies in high production costs. Therefore, great efforts have been made to improve the forming processes of green ceramics, or create new processes to obtain the near net shape parts. The production of ceramic parts with complex shapes, free of defects, is a task that involves great difficulties. Ceramic springs exhibits shapes extremely difficult to be molded and therefore are currently commercially produced mainly by machining, a process which is difficult and expensive. An alternative for the production of ceramic springs is by low-pressure injection molding. For the development of ceramic springs for technological applications, it is required in addition to getting parts intact and free of defects, to measure some of its properties, including the spring constant. Since these springs are usually applied at high temperatures, it becomes important to carry out the measurement of resistance imposed by the spring to elastic deformation at different temperatures. Accordingly, in this work we describe the assembly of an experiment for the measurement of the spring constant of low-pressure injection molded ceramic springs, both at ambient temperature and at high temperatures, using the dynamic impulse excitation method to measure the frequency of vibration of a suspended spring inside a furnace. Results are presented for a helical spring of alumina from room temperature to1100 ºC to illustrate the application of this technique.

  18. Morphological analysis of microcellular PP produced in a core-back injection process using chemical blowing agents and gas counter pressure

    Reglero Ruiz, José Antonio; Vincent, Michel; Agassant, Jean-François; Claverie, Aurore; Huck, Sébastien

    2015-01-01

    A complete experimental analysis of the microcellular injection process using Chemical Blowing Agents (CBA) with Gas Counter Pressure (GCP) and core-back expansion is presented. Three different types of polypropylene, neat and charged, were mixed with two different CBAs and injected into a plate mold with varying process parameters. First, an exhaustive cartographical mapping of the plate morphology is analyzed. In a second step, the relation between injection parameters and the resulting mor...

  19. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.; Mathur, Raj N.; Sangid, Michael D.; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-02-19

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussed to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.

  20. Hybrid tooling technologies and standardization for the manufacturing of inserts for micro injection molding

    Tosello, Guido; Fillon, Bertrand; Azcarate, Sabino; Schoth, Andreas; Mattsson, Lars; Griffiths, Christian; Staemmler, Lutz; Bolt, Pieter J.

    2007-01-01

    . A metrological approach was applied to standardize the employed tooling processes (micro milling, µEDM, laser micromachining, electrochemical µ-milling). The micro tools were then tested with different polymers (PP, PP + nano fillers, PC, COC). The paper provides a comparison of these technologies...

  1. Thermal stresses in chemically hardening elastic media with application to the molding process

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  2. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing. PMID:26726642

  3. Multidisciplinary design and optimization of a plastic injection mold using an integrated design and engineering environment

    Van Dijk, R.E.C.; d’Ippolito, R.; Tosi, G.; La Rocca, G.

    2011-01-01

    In order to remain competitive with respect to low-cost overseas markets, domestic moldmakers will have to increase the productivity of their engineers and maintain high quality standard, while dealing with the problem of an aging workforce. To increase the competitiveness of the European automotive industry, the concept of and Integrated Design and Engineering Environment (IDEE) has been developed within the 6th framework European project Pegasus - Integrated engineering processing & materia...

  4. Influência do desempenho térmico de moldes fabricados com compósito epóxi/alumínio nas propriedades de pp moldado por injeção Thermal behavior of epoxy/aluminum rapid tooling composite during injection molding of polypropylene

    Gean V. Salmoria

    2008-09-01

    Full Text Available O surgimento das tecnologias de prototipagem rápida (RP e de ferramental rápido (RT tem despertado interesse da indústria de moldes de injeção. O vazamento de termofixos com cargas metálicas possibilita a construção de moldes usando materiais compósitos, os quais apresentam maior resistência que os utilizados por outras técnicas RT. Neste trabalho foi estudado o comportamento térmico de moldes fabricados em epóxi/alumínio durante a injeção de polipropileno através de avaliações da estrutura e de propriedades mecânicas utilizando difração de raio X e ensaios de dureza e de tração. Os corpos-de-prova injetados no molde em compósito epóxi/alumínio apresentaram pequenas diferenças no grau de cristalinidade das superfícies analisadas e propriedades mecânicas semelhantes aos corpos-de-prova injetados em molde de aço. O estudo mostrou um razoável desempenho térmico do molde compósito durante a injeção de polipropileno evidenciando a viabilidade de utilização destes moldes na produção de pequenas séries de protótipos e de produtos neste termoplástico.rapid prototyping (RP and rapid tooling (RT technologies are gaining increasing importance in the injection molding industry. Casting of resin/metal composites allows the construction of molds with greater resistance than those manufactured by other RT techniques such as Stereolithography. In this work, the thermal behavior of molds manufactured in epoxy/aluminum during the injection molding of polypropylene specimens was investigated. Structural and mechanical characterization of the molded specimens included X ray analysis, hardness and tensile testing. The samples presented small differences in the degree of crystallinity and similar mechanical properties in comparison with samples injected into steel molds. This study showed a reasonable thermal performance of the epoxy/aluminum mold during the injection molding of polypropylene, thus demonstrating the viability of using these molds to produce a few number of prototypes or products with this thermoplastic.

  5. Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process

    Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.

    2001-01-01

    The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.

  6. Optimization of the replica molding process of PDMS using pennate diatoms

    Hlbikov, D.; Lus, A. T.; Vach, V.; Ector, L.; Hoffmann, L.; Choquet, P.

    2012-11-01

    Biomimetic fabrication of nanostructured materials has recently attracted the attention of researchers as a cost-effective and easily applicable method of nanotexturing. Different techniques and materials have been used in order to replicate natural patterns, among which polydimethylsiloxane (PDMS Sylgard 184) was recently used to replicate the micro- and nanoscale patterns from centric diatoms. In this paper, we test the reproducibility and precision of this approach using various morphologically different diatom species trying to optimize the molding parameters. The optimization process is focused on immobilization of diatoms on the glass support, which serves as a master for templating, as well as on the parameters of PDMS fabrication such as the ratio of the curing agent and elastomer, use of vacuum, curing time and temperature. The results indicate that higher ratios of curing agent and elastomer, longer curing time and lower temperature are the most favorable conditions to obtain negative diatom replicas of good quality with features of 50 nm. Although this method can give very precise results producing high-resolution molds with all micro- and nanostructures replicated, we revealed some limitations regarding the size and morphology of the species used. These results indicate that large round and flat diatom species seem to be more suitable for the cast molding.

  7. Optimization of the replica molding process of PDMS using pennate diatoms

    Biomimetic fabrication of nanostructured materials has recently attracted the attention of researchers as a cost-effective and easily applicable method of nanotexturing. Different techniques and materials have been used in order to replicate natural patterns, among which polydimethylsiloxane (PDMS Sylgard 184®) was recently used to replicate the micro- and nanoscale patterns from centric diatoms. In this paper, we test the reproducibility and precision of this approach using various morphologically different diatom species trying to optimize the molding parameters. The optimization process is focused on immobilization of diatoms on the glass support, which serves as a master for templating, as well as on the parameters of PDMS fabrication such as the ratio of the curing agent and elastomer, use of vacuum, curing time and temperature. The results indicate that higher ratios of curing agent and elastomer, longer curing time and lower temperature are the most favorable conditions to obtain negative diatom replicas of good quality with features of 50 nm. Although this method can give very precise results producing high-resolution molds with all micro- and nanostructures replicated, we revealed some limitations regarding the size and morphology of the species used. These results indicate that large round and flat diatom species seem to be more suitable for the cast molding. (paper)

  8. Injection molding WPC

    S:t Clair Renard, Carl

    2011-01-01

    The use of wood-plastic composites, WPC, in commercial products is today limited. Current WPC products on the market are to a large extent limited to extruded products. There are strong reasons to increase the use of WPC. WPC can be manufactured from used plastic that otherwise cannot be recycled. This paper gives a brief description of the manufacturing of WPC, including wood filler treatment, the role of coupling agents and compounding. It describes the machinery used for producing WPC, and...

  9. Compaction Behavior and Part Thickness Variation in Vacuum Infusion Molding Process

    Yang, Jinshui; Xiao, Jiayu; Zeng, Jingcheng; Jiang, Dazhi; Peng, Chaoyi

    2012-06-01

    In vacuum infusion molding process (VIMP), it is difficult to manufacture a composite part with small dimensional tolerance, since the upper mold for the process is flexible. In this study, the static and cyclic compaction responses of five kinds of fabrics were experimentally studied under real VIMP conditions, with the effects of compaction pressure, compaction time, compaction cycle and number of the fabric layers. The static and cyclic compaction responses of the all fabrics follow different power law models and the resulting fiber volume fraction and relaxation factor increase with the number of layers. Although the resulting fiber volume fraction increases with the layer numbers, change of the fiber volume fraction of the composite parts with 10 layers to 100 layers of the all fabrics is less than 2.5%. The thickness of the composite part was monitored and measured using micrometer gauges, and the effects of processing parameters on the final thickness of part was investigated. The part thickness varies as a function of spatial coordinates and time during pre-filling, filling and post-filling stages in VIMP. The variation and the final value of the part thickness would be significantly affected by the processing parameters. Statistical results show that the final part thickness is equivalent to the thickness of the dry preform under the 0.08 MPa vacuum compaction pressure in VIMP. The difference between the fiber volume fraction of the final part and that of the dry preform is 2% ~ 5.7%.

  10. Effects of self-blood on the molding process of polymethyl methacrylate bone cement

    Guo Yingjun; Nie Lin; Zhang Wen; Mu Qing

    2014-01-01

    【Abstract】Objective:To evaluate whether the self-blood has influence on the molding process of polymethyl methacrylate (PMMA) bone cement, and to make sure whether it is valuable for the clinical practice. Methods:An in vitro study was performed to evaluate the prolonging-effect of self-blood on PMMA bone cement. The effect of prolonging was evaluated by the dough time (TD) and operable time (TO). Moreover, hardness test, squeezing value test and peak temperature test were also...

  11. The fabrication and processing of 3-D woven composites using resin transfer molding

    Lamattina, Bruce; Parvizi-Majidi, Azar

    Angle-interlock weaving and resin transfer molding (RTM) are used to produce fabric Carbon/Epoxy composites. Three-dimensional weave geometries allow for the interlocking of multiple layers of yarn with through-the-thickness yarns. These composites exhibit increased impact and delamination resistance over traditional two-dimensional fabric composites. The weave parameters that affect preform geometry or fiber architecture are discussed. Microstructural changes of the preform and the composite are monitored during the preform preparation and consolidation stages. Various weave geometries are produced with part thicknesses up to 4.76 mm. RTM tool design and process parameters such as pressure, temperature, and viscosity are presented.

  12. Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials

    Clobes, Jason Kenneth

    Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the surface charge of the small clay particles upon AO treatment.

  13. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  14. Energy-Saving Effect of the Add-on Energy Recovery System for Electric Motor Drive Systems in the Injection Molding Machine

    Takahashi, Keisuke; Hiraki, Eiji; Tanaka, Toshihiko

    The regenerative energy from the motor drive systems used in the injection molding is consumed by resistors connected to the DC bus of the inverters. Recently the recovery systems of the regenerative energy with a bi-directional DC-DC converter and capacitors have been developed. In this paper a new control strategy of the EDLC based energy recovery system is proposed. The basic principle of the proposed control strategy and the power losses consumed in the energy recovery system are discussed in detail. The validity and practicability are confirmed by digital computer simulation.

  15. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  16. Finite Element Analysis Of Reciprocating Screw For Injection Moulding Machine

    VIKAS.R.RAJORIA, PROF.P.K.JADHAO

    2013-01-01

    Injection moulding machine is the most commonly used manufacturing process for the fabrication of plastic parts. The plastic being melted in injection molding machine and then injected into the mould. The barrel contains reciprocating screw for injecting the material into the mould and the material is also melted into the barrel. This project deals with, the solution of problem occurred for reciprocating screw of Injection molding machine. It identifies and solves the problem by using the mod...

  17. An Empirical Model for Resin Viscosity During Cure in Vacuum Infusion Molding Process

    Yang, Jinshui; Xiao, Jiayu; Zeng, Jingcheng; Peng, Chaoyi; Feng, Xuebin; Hou, Binbin

    2012-06-01

    The rheological behaviors of a low viscosity epoxy resin system (RIMR135/RIMH137) for vacuum infusion molding process (VIMP) were studied with viscosity experiments. And an empirical model has been developed to predict the viscosity of the resin system during curing at low extents of cure, which is of significance during the mould filling stage in VIMP. Good agreement is observed between the experimental data and the model predicted viscosity. The processing windows of the resin system for VIMP can be predicted by the proposed models. The results show that the optimum processing temperature range of RIMR135/RIMH137 epoxy resin system for VIMP is from 25C to 45C, at which the resin system can maintain the viscosity less than 500 mPas for 75 min at least.

  18. Internal stresses analysis in telectroformed nickel shells for thermoplastics injection mold core (rapid tooling); Analisis de las tensiones internas en las cascaras de niquel electroconformadas que se utilizan como inserto de un molde de inyeccion de termoplasticos (rapid tooling)

    Monzon, M. D.; Marrero, M. D.; Benitez, A. N.; Hernandez, P. M.

    2005-07-01

    This study deals with a research field started at the LFI (Laboratorio de Fabricacion Integrada) of the ULPGC (Universidad de Las Palmas de Gran Canaria). Its aim is to analyse and propose improvements in the electroformed nickel cores manufacture. The main application of these cores is to be used as plastic injection molds. It has been considered an important part of this study taking under consideration internal stresses that appear in the nickel electroformed core. These stresses play a determinant role towards reaching a dimensional and resistant quality standard of the shells, which will be later transformed into cores. The investigation includes not only a theoretic study but also an experimental one. the testing method has the remarkable advantage of a wide industrial application because of its simplicity, low cost and reproducibility of the electrolytic bath actual conditions. (Author) 7 refs.

  19. Selected methods of modelling of polymer during the injection moulding process

    J. Koszkul

    2007-09-01

    Full Text Available Purpose: The purpose of present paper was presenting chosen results of investigations on polymer flow during mould cavity filling phase of injection process. Advancement in the simulation software make possible to model more phenomena occurring during polymer flow in injection molding process.Design/methodology/approach: The results of computer simulations of injection process have been compared with the results of video recording for the plastic flow during filling phase. For the simulating investigations a professional computer software Moldflow Plastics Insight ver. 6.1. has been employed. A specialized injection mould which enables observation and registration of the plastic flow during processing has been employed. The mould enables direct monitoring of the course of phenomena inside the mould cavity in two planes. To record the flow, a digital video camera has been employed. As an example the issue of stream flow (jeting have been described.Findings: The results of the investigations enabled documenting of specific phenomena which occur during plastics or their composites injection process. The registered video sequences have been compared with the results of numerical calculations and then it was estimated to what degree the computer simulation of injection process may be useful in practice.Research limitations/implications: The camera enabled to register the flows with the rate of 25 fps. This reduced the scope of the investigations, since at higher plastic flow speeds the registered image became less clear. The investigations were performed on a wide scale, however, only chosen results have been presented.Practical implications: Deep understanding of the phenomena which occur during filling the injection mould may lead to more effective design of the processing tools and shortening of the time for implementation and production time.Originality/value: The transparent sight-glasses have been used, made of a material called Zerodur® which is characterized by the coefficient of thermal expansion close to zero.

  20. Effects of (Cr,Fe)2B borides on hardness in powder-injection-molded product fabricated with Fe-based alloy powders

    In the present study, a powder injection molding (PIM) product containing (Cr,Fe)2B borides was fabricated with Fe-based alloy powders, and its microstructure and hardness were investigated in relation with volume fraction of (Cr,Fe)2B. In the Fe-based alloys designed by the thermodynamic calculation, the volume fractions of (Cr,Fe)2B increased with increasing (XCr+XB) value, and were well matched with those obtained from the thermodynamic calculation. The hardness of the Fe-based alloys linearly increased with increasing volume fraction of (Cr,Fe)2B. When Fe-based alloy powders were injection-molded and sintered at 1165 °C, a densified microstructure with almost no pores was obtained. In the sintered microstructure, 56 vol% of (Cr,Fe)2B borides, together with a few pores (porosity; 0.5%), were relatively homogeneously distributed in the tempered martensite matrix, which resulted in the very high hardness over 600 VHN. Such a high hardness suggested that the present Fe-based alloy powders could be readily adopted for fabricating PIM products or for replacing conventional stainless steel PIM products.