WorldWideScience

Sample records for high-voltage power supplies

  1. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  2. Pulsed high voltage extraction power supply

    The basic idea was to obtain a pulsed power supply up to 4 kV designated to extract the microwave from a usual magnetron. The magnetron used is a home appliance device from a microwave oven. The output power generally ranges from 200 to 800 watts, the power rate being controlled by a timer device. Practically the magnetron works at a constant filament voltage and a fixed extraction high voltage the last one being switched on/off on a pre-programmed scheme. The on/off time laps are ranging from tens seconds to few minutes. The magnetron used in our ECR ion source has a different way to furnish a lower microwave energy into the ionization chamber. The microwave energy required for the ECR ion source is much smaller ranging from 20 watts to a maximum of 100 watts. The volume of the chamber is very small and there are not possibilities for exhausting large amounts of heat. For this reason the high voltage is applied by means of a chopping device operating at 50 Hz frequency (the AC frequency). For a very few milliseconds the high voltage is turned on every period of the sinusoidal voltage. In this way the energy injected into the ion chamber is reduced to acceptable values. The only problem that occurs is the fact that this periodicity of microwave generation is found also into the extracted ion beam; the beam is obtained at a 50 Hz frequency in very intense thin pulses with a few milliseconds width. As we discussed in a previous paper we are mainly concerned with the time of flight RBS. From this point of view the obtained beam pulses are much to rare and wide. The electronic scheme proposed consists of a resonant circuitry working at 1.5 kHz frequency; a thyristor trigger device the pulses of which are less than 200 nsec wide. Three resonant cells are summed together to obtain 4000 V, enough to extract thin microwave pulses. The driving power supply for the three resonant cells is a DC 200 V. The next step was to inject the pulsed microwaves into the ECR ionization chamber. We have monitored the beam after 500 KV acceleration and detected it by means of a photomultiplier with a plastic detector on the top. The resulted ion beam pulses for protons and helium ions are very satisfactory showing a pulsed beam at 1.5 kHz with narrow particle bunches. The work is now in progress, and the goal is to narrow as much as possible the beam pulses. (authors)

  3. Modular high voltage power supply for chemical analysis

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  4. High voltage power supply development for INGA facility at IUAC

    The upcoming INGA facility requires a large number of high voltage supplies to bias detectors. Two types of NIM based high voltage supplies have been developed with unique functional facilities, which makes the biasing of large arrays very comfortable (5 kV/50 uA programmable power supplies for Germanium Detectors and 3 kV/10 mA power supplies for BGO detectors). High power multioutput Preamplifier supplies have been developed for INGA facility

  5. High-voltage power supply based on piezoelectric transformer

    Kryvoshei, Dmytro; Paerand, Yuriy

    2012-01-01

    High-voltage power supply based on piezoelectric transformer instead of traditional electromagnetic transformer is offered in the paper. The structure of the power supply is represented. The power supply operation principle is described, the diagrams that illustrate its operation are given.

  6. High current and high voltage power supplies for accelerators

    High voltage (HV) high current regulated DC power supplies are key components to accelerators using electrostatic or RF acceleration. HVDC power supplies used for biasing high power vacuum tubes in research demands continuous duty operation with good stability. In addition to regulation and ripple specifications these power supplies should have few mS order settling time and few μS, order turn OFF time. Use of intelligent control methods along with efficient power semiconductors (like, Insulated Gate Bipolar Transistor: IGBT) has enabled development of these power converters. Various topologies of controlled HVDC power supplies are discussed and future prospects are examined here. (author)

  7. Development of high voltage power supply for nuclear radiation detectors

    The purpose of this thesis is to develop a versatile NIM compatible high voltage power supply for proper operation of nuclear radiation detectors especially for those high resolution detectors such as semiconductor detectors, and proportional counters which require high voltage power supply with very low output ripple and high output stability. A driven type dc-ac inverter and a voltage multiplier are applied to convert a low de voltage to high dc voltage. The filter circuit is used to reduce the output ripple when the power supply is loaded and a close-loop voltage control circuit is used to minimize the drift in the output voltage. Adjustment of the output level for desired value is done through a three turn high precision potentiometer. Besides, micro-circuits are used in order to reduce undesirable temperature effect and at the same time to minimize size and weight of the high voltage module

  8. A New Transformer for High Voltage Charging Power Supply

    Jianming Liu; Meng Wang; Fucai Liu

    2013-01-01

    In this paper, the authers present a new high-frequency transformer for high-voltage capacitor charging power supply. They also establish a new topology structure and the charging control strategy for the charging power supply. The effects of leakage inductance and distributed capacitance by using the soft switching in the transformer were then analyzed. Finally, the different leakage inductances in the two transformers were tested. The results of the above study provide a theoratical basis f...

  9. Development of an Economic High Voltage Power Supply

    Full text: A 2000 V, 1 mA economical high voltage power supply for NaI(Tl) detector was developed. The purpose of this study was to design an electrical circuit upon local component availability for cost effective and ease maintenance. Besides, this circuit was designed to support computer interfacing for data manipulation and controls. The designed circuit showed capability of 2000 V, 1 mA high voltage power supply with ripple voltage less than 30 mVp-p and higher than 60 percent efficiency at maximum load. The linearity of high voltage adjustment in manual and automatic mode was found to be excellent with R2 = 0.9982 and 0.9997 respectively

  10. A New Transformer for High Voltage Charging Power Supply

    Jianming Liu

    2013-09-01

    Full Text Available In this paper, the authers present a new high-frequency transformer for high-voltage capacitor charging power supply. They also establish a new topology structure and the charging control strategy for the charging power supply. The effects of leakage inductance and distributed capacitance by using the soft switching in the transformer were then analyzed. Finally, the different leakage inductances in the two transformers were tested. The results of the above study provide a theoratical basis for the application of the new high frequency transformer in pulsed power supply.  

  11. DIII-D ICRF high voltage power supply regulator upgrade

    For reliable operation and component protection, of the 2 MW 30--120 MHz ICRF Amplifier System on DIII-D, it is desirable for the amplifier to respond to high VSWR conditions as rapidly as possible. This requires a rapid change in power which also means a rapid change in the high voltage power supply current demands. An analysis of the power supply's regulator dynamics was needed to verify its expected operation during such conditions. Based on this information it was found that a new regulator with a larger dynamic range and some anticipation capability would be required. This paper will discuss the system requirements, the as-delivered regulator performance, and the improved performance after installation of the new regulator system. It will also be shown how this improvement has made the amplifier perform at higher power levels more reliably

  12. High-Voltage Power Supply System for Laser Isotope Separation

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  13. E-beam high voltage switching power supply

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  14. E-beam high voltage switching power supply

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  15. Solid-state high voltage modulator and its application to rf source high voltage power supplies

    A solid-state high voltage modulator is described in which series-connected insulated-gate bipolar transistors (IGBTs) are switched at a fixed frequency by a pulse width modulation (PWM) regulator, that adjusts the pulse width to control the voltage out of an inductor-capacitor filter network. General Atomics proposed the HV power supply (HVPS) topology of multiple IGBT modulators connected to a common HVdc source for the large number of 1 MW klystrons in the linear accelerator of the Accelerator Production of Tritium project. The switching of 24 IGBTs to obtain 20 kVdc at 20 A for short pulses was successfully demonstrated. This effort was incorporated into the design of a -70 kV, 80 A, IGBT modulator, and in a short-pulse test 12 IGBTs regulated -5 kV at 50 A under PWM control. These two tests confirm the practicality of solid-state IGBT modulators to regulate high voltage at reasonable currents. Tokamaks such as ITER require large rf heating and current drive systems with multiple rf sources. A HVPS topology is presented that readily adapts to the three rf heating systems on ITER. To take advantage of the known economy of scale for power conversion equipment, a single HVdc source feeds multiple rf sources. The large power conversion equipment, which is located outside, converts the incoming utility line voltage directly to the HVdc needed for the class of rf sources connected to it, to further reduce cost. The HVdc feeds a set of IGBT modulators, one for each rf source, to independently control the voltage applied to each source, maximizing operational flexibility. Only the modulators are indoors, close to the rf sources, minimizing the use of costly near-tokamak floor space.

  16. High Voltage Power Supply Design Guide for Space

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  17. High voltage power supply with modular series resonant inverters

    Dreifuerst, Gary R. (Livermore, CA); Merritt, Bernard T. (Livermore, CA)

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  18. Study of a High Voltage Ion Engine Power Supply

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested without failure. The finished converter has been packaged suitable for use as a laboratory prototype for further testing. The finished converter is readily transportable. An article on design issues for high voltage converters for ion engines is included as an attachement.

  19. Unique Power Dense, Configurable, Robust, High-Voltage Power Supplies Project

    National Aeronautics and Space Administration — Princeton Power will develop and deliver three small, lightweight 50 W high-voltage power supplies that have a configurable output voltage range from 500 to 50...

  20. A tester for multi-channel high voltage power supply with load

    The authors will introduce a test system used for multi-channel high voltage power supply, and also briefly introduce circuit construction and circuit design, operation principle and specifications. This instrument is mainly used to test single channel or multi-channel high voltage power supply in laboratory or in open field. Especially, it is very useful for the testing of detector's bias. The maximum high voltage value tested by this instrument is 6 kV. The range of output current of high voltage power supply under test is from 100 μA to 10 mA. This instrument is portable, and of simple construction, high integration, small dimension. It can be operated with AC/DC power supply

  1. Design of full digital 50 kV electronic gun high voltage power supply

    The design of full digital electronic gun high voltage power supply based on DSP was introduced in this paper. This power supply has innovations of full digital feedback circuit and PID closed-loop control mode. The application of high frequency resonant converter circuit reduces the size of the resonant element and transformer. The current-coupling distributed high voltage transformer and rectifier circuit were employed in this power supply. By this way, the power supply efficiency is improved and the number of distributed parameters is reduced, and the rectifier circuit could work under the oil-free environment. This power supply has been used in electronic grid-control high voltage system of the irradiation accelerator. (authors)

  2. Development of high-voltage PWM power supply for electron beam bombarding furnace

    The working principle and operation characteristics of a high-voltage PWM-BUCK DC/DC converter are discussed in this paper, and a practical engineering technical route is proposed to apply the converter to high power accelerating voltage source of electron beam bombarding furnace. Compared with the traditional thyristor phase-shifted high voltage source, the application results show that the suggested power supply has the advantages of lower current harmonic, higher power factor and higher operation efficiency. (authors)

  3. Construction of control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen

    A control and instrumentation devices of high voltage power supply of double chamber plasma nitrogen have been made. This device consists of the software and hardware component. Hardware component consists of SCR phase angle controller LPC-50HDA type, T100MD1616+ PLC, high voltage transformer and voltage rectifier system. Software component used a LADDER program and TBasic serves to control of the high voltage output. The components in these devices have been tested in the double chamber plasma nitrogen. Its performance meet with the design criteria that can supply of plasma nitrogen operation voltage in the range 290 Vdc to 851 Vdc with glow discharge current 0.4 A to 1.4 A. In general it can be said that the control and instrumentation devices of high voltage power supply is ready for use at the double chamber plasma nitrogen device. (author)

  4. A photomultiplier high voltage power supply incorporating a piezoelectric ceramic transformer

    The authors describe a photomultiplier high voltage power supply in which the transformer, conventionally implemented with a magnetic core, is built with a non-magnetic piezoelectric ceramic. As this ceramic transformer leaks no flux and can suitably operate in the presence of a strong magnetic field, it is attractive for use in high energy physics experiments requiring high voltage generation under such fields. In addition, the ceramic transformer suffers low loss of power and demonstrates highly efficient energy conversion

  5. A high-voltage switching mode-power supply based on SCM

    With the requirements of the efficiency, volume size and intelligent control of the power supply for the x-ray fluorescence analysis, a high-voltage power supply based on the technique of SUM and PWM has been developed. It was designed by single ended type promoted and PID control algorithm regulator, and controlled by STC89C52 SCM. The high-voltage power supply put out 0-50 kV continuous adjustable voltage by means of the transformer and voltage multiplying rectifier, and ran steadily for long time with the small size and high efficiency. (authors)

  6. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  7. Development of high voltage DC power supplies for particle beam applications at CAT Indore

    At Center for Advanced Technology (CAT), Indore, we have an ongoing program for development of dc electron accelerators with an objective to demonstrate their range of applications and gradual induction into indigenous industries. The high voltage activities here are mainly intended to support the development of dc electron accelerators covering wide energy range. Various power supplies ranging from 15 kV to 750 kV have been developed to suit the requirements of different machines. The paper presented here describes the design and developmental aspects of these power supplies with focus on challenges faced to meet the specific requirements of the power supplies and their solutions. The schemes adopted for generation of floating power supplies for electron gun and their controls are briefly described. Since the power supplies are expected to encounter adverse conditions during their operation, a reliable protection system is essential for their safe and trouble-free operation. The protection aspects of these power supplies are also covered in this paper. Reliability and safe operation of a high voltage power supply primarily depends on integrity of its insulation system. High voltage tests are used to examine this integrity and to determine the ability of the insulation to meet its design specifications. At the end, the paper illustrates the high voltage test and measurement facilities available at CAT. (author)

  8. High-voltage power supply of ND6 portable dose rate meter

    Portable dose rate meter needs to be equipped with a set of high-voltage power supply which is supplied by batteries and has characteristic of high quality, low energy expense and small size. The author introduces application conditions and performance guide line

  9. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    C., Yong-Nong; K., Chih-Ming.

    2013-04-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The power supply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to the indispensable high-voltage inheritance in the operation of plasma [...] generator, the analysis of transformer need considering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, but also parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits a simple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with stray capacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only a precise measurement procedure but also effective design information for series-load resonant converter. The plasma discharging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit model of the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasma generator is built and the designing procedures for appropriate selections of the corresponding resonant-circuit parameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along with a 22 kHz and over 8kV output, is realized and implemented.

  10. Design and development of surge protection device for serial communication interface of high voltage power supply

    Operation of any cyclotron system, like the K-130 Room Temperature Cyclotron of VECC, requires various high voltage power supplies for its different subsystems. Typical examples are Anode Power Supply, Screen Grid Power Supply of RF Systems, Deflector Power Supply etc. These power supplies are remotely controlled and monitored from the control room. For the purpose, interfacing between these high voltage power supplies and the low-voltage communication electronics becomes critical. Depending on situations, those power supplies can become potential sources of high voltage surges. Some of the phenomena causing generation of high voltage surges are earth fault, arcing at load sides etc. The surges, if coupled to low-voltage electronics through different coupling channel by resistive and/or inductive and/or capacitive coupling, can cause disruption in operation or even failure or damage of the low voltage electronics. Therefore, Surge Protection Devices (SPDs) are needed to protect the low-voltage circuits during these scenarios. The paper illustrates the design, simulation and development of SPD for the serial communication interface of a high voltage power supply. A hybrid type SPD has been designed incorporating Gas Discharge Tube and Transient Voltage Suppressor Diodes to devise a two stage protection strategy. The components are chosen to ensure the protection of the affected equipment from surge as per IEC 61000-4-5. Further analysis has been carried out to assess and reduce the level of distortion of the communication line voltage waveforms due to inclusion of SPD during normal condition. The final circuit has been fabricated and tested for its frequency response and response to pulse train. The test results are compared with the analytical results to validate the design. (author)

  11. Design automation of switching mode high voltage power supply for nuclear instruments

    This paper presents an automation procedure for the design of switching mode high voltage power supplies, using Pc programming facility. The procedure permits the selection of a ready made or designed ferrite transformer. This selection could be achieved according to the designer desire; as the program includes complete information about ready made ferrite transformer through complete database. The procedure is based on suggested template circuit. Micro-Cap IV simulation package is used to verify the desired high voltage power supply design. Simulation results agree quite well with suggested procedure's results. Design aspects and development needed to increase automation capabilities are also discussed

  12. Power supply design for the filament of the high-voltage electron accelerator

    Zhang, Lige; Yang, Lei; Yang, Jun; Huang, Jiang; Liu, Kaifeng; Zuo, Chen

    2015-12-01

    The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.

  13. Development of an intelligent high-voltage direct-current power supply for nuclear detectors

    The operation and performances of a new type direct-current high-voltage power supply are described. The power supply with intelligent feature is controlled by a single-chip microcomputer (8031), and various kinds of output voltage can be preset. The output-voltage is monitored and regulated by the single-chip microcomputer and displayed by LED. The output voltage is stable when the load current is within the allowable limits

  14. Structure Design and Analysis of High-Voltage Power Supply for ECRH

    In order to develop a high-voltage power supply (HVPS) with high quality parameters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electrical field and potential simulations of its main devices are analyzed. Finally, relevant calculations and conclusions are given. (fusion engineering)

  15. Design of high voltage power supply of miniature X-ray tube based on resonant Royer

    Background: In recent years, X rays are widely used in various fields. With the rapid development of national economy, the demand of high quality, high reliability, and high stability miniature X-ray tube has grown rapidly. As an important core component of miniature X-ray tube, high voltage power supply has attracted wide attention. Purpose: To match miniature, the high voltage power supply should be small, lightweight, good quality, etc. Based on the basic performance requirements of existing micro-X-ray tube high voltage power supply, this paper designs an output from 0 to -30 kV adjustable miniature X-ray tube voltage DC power supply. Compared to half-bridge and full-bridge switching-mode power supply, its driving circuit is simple. With working on the linear condition, it has no switching noise. Methods: The main circuit makes use of DC power supply to provide the energy. The resonant Royer circuit supplies sine wave which drives to the high frequency transformer's primary winding with resultant sine-like high voltage appearing across the secondary winding. Then, the voltage doubling rectifying circuit would achieve further boost. In the regulator circuit, a feedback control resonant transistor base current is adopted. In order to insulate air, a silicone rubber is used for high pressure part packaging, and the output voltage is measured by the dividing voltage below -5 kV. Results: The stability of circuit is better than 0.2%/6 h and the percent of the output ripple voltage is less than 0.3%. Keeping the output voltage constant, the output current can reach 57 μA by changing the size of load resistor. This high voltage power supply based on resonant Royer can meet the requirement of miniature X-ray tube. Conclusions: The circuit can satisfy low noise, low ripple, low power and high voltage regulator power supply design. However, its efficiency is not high enough because of the linear condition. In the next design, to further reduce power consumption, we could improve the efficiency by controlling the current of resonant circuit. (authors)

  16. High-voltage power supply - 2.500 V - 4mA

    A high-voltage power supply, in a NIM two-width module, was developed to be used in nuclear measurements systems. The design utilizes the principle of DC-DC conversion. A general description of the instrument and of its circuity is presented, as well as a report of the results obtained from the tests performed to establish its characteristics

  17. Development of high-voltage and high-stability power supply for HIRFL

    The operation principle and advantages in design are described of CC-CC (constant current to constant current) switching converter used in the high-voltage power supply. Today this technology for switching converter has been used in the power electronics field. This type power supply obtains many new functions, such as CC-CV (constant current to constant voltage) automatically converting protection, by means of some additional circuits. Up to now a series of this type high-voltage power supplies have been produced. They are different in output voltage or current. And they have worked in HIRFL for a long time. Finally, the measurement methods and results of the voltage stability for long time are simultaneously described

  18. Power Supply, Energy Storage Line, and Grid Pulsers for High Voltage Gridded Klystrons

    Koontz, Roland F.

    2002-08-01

    Designs for high power, gridded klystrons are being considered for driving accelerators. These designs have high voltage DC on the klystron cathodes, with the klystron current being turned on and off with a much lower voltage grid drive pulse. Such a klystron eliminates the need for a high power pulse modulator. The modulator is replaced by a high voltage energy storage line, an RF switching line charging supply, and a small electronics package consisting of a DC grid bias supply, a fast rise and fall time grid pulser, and a klystron cathode heater power supply. This paper outlines some of the design details of such a gridded klystron support system including specifications for the energy storage cable, and the fast grid pulse driver. Such a system can be very compact and reliable with low initial cost, and excellent operating efficiency.

  19. A new VME-based high voltage power supply for large photomultiplier systems

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  20. A new VME-based high voltage power supply for large photomultiplier systems

    Neumaier, S. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Gutbrod, H.H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hubbeling, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Kolb, B.W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Purschke, M.L. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Ippolitov, M. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Manko, V. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Mgebrishvili, G. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Nijanin, A. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Sibiryak, Y. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Tsvetkov, A. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Vinogradov, A. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Barlag, C. [Muenster Univ. (Germany); Blume, C. [Muenster Univ. (Germany); Bohne, E.M. [Muenster Univ. (Germany); Bucher, D. [Muenster Univ. (Germany); Claussen, A. [Muenster Univ. (Germany); Peitzmann, T. [Muenster Univ. (Germany); Schepers, G. [Muenster Univ. (Germany); Schlagheck, H. [Muenster Univ. (Germany)

    1995-01-01

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10,080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  1. A new VME-based high voltage power supply for large photomultiplier systems

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10 080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.)

  2. A new VME-based high voltage power supply for large photomultiplier systems

    Neumaier, S. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Gutbrod, H.H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hubbeling, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Kolb, B.W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Purschke, M.L. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Ippolitov, M. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Manko, V. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Mgebrishvili, G. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Nijanin, A. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Sibiryak, Y. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Tsvetkov, A. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Vinogradov, A. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii; Barlag, C. [Muenster Univ. (Germany); Blume, C. [Muenster Univ. (Germany); Bohne, E.M. [Muenster Univ. (Germany); Bucher, D. [Muenster Univ. (Germany); Claussen, A. [Muenster Univ. (Germany); Peitzmann, T. [Muenster Univ. (Germany); Schepers, G. [Muenster Univ. (Germany); Schlagheck, H. [Muenster Univ. (Germany)

    1995-06-15

    We describe a new high voltage power supply, developed for the leadglass calorimeter of the WA98 experiment at CERN. The high voltage is produced for each of the 10 080 photomultiplier tubes of the detector individually, by the same number of active bases with on-board Greinacher voltage multipliers. The full VME-based HV controller system, which addresses each base via bus cables once per second, is miniaturized and fits into a single VME crate. The main advantages of this approach are the low heat dissipation, the considerably reduced amount of cabling and cost, as well as the high stability and low noise of the system. (orig.).

  3. Development of high voltage power supply for the KSTAR 170 GHz ECH and CD system

    Highlights: A 3.6 MW (?66 kV/55 A) gyrotron power supply system was developed for the 170 GHz ECH system in KSTAR. The main power supply includes a total of 32 PSM based HV power supply modules. The voltage regulation of individual HV power module and LV power module is 3 kV and 0.5 kV, respectively. The gyrotron is protected by means of a fast solid-state switch (MOS-FET). The HV switching system can turn off the 60 kV to the cathode within 3 ?s in the event of gyrotron faults. -- Abstract: A 3.6 MW (66 kV/55 A) DC power supply system was developed for the 170 GHz EC H and CD system in KSTAR. The power supply system consists of a cathode power supply (CPS), an anode power supply (APS) and a body power supply (BPS). The cathode power supply is capable of supplying a maximum voltage of ?66 kV and a current of 55 A to the cathode with respect to the collector using pulse step modulation (PSM). The high voltage switching system for the cathode is made by a fast MOS-FET solid-state switch which can turn off the high voltage to the cathode within 3 ?s in the occurrence of gyrotron faults. The APS is a voltage divider system consisting of a fixed resistor and zener diode units with the capability of 60 kV stand-off voltage. The anode voltage with respect to the cathode is controlled in a range of 060 kV by turning the MOS-FET switches connected in parallel to each zener diode on and off. For high frequency current modulation of the gyrotron, the parallel discharge switch is introduced between the cathode and anode in order to clamp the charged voltage in the stray capacitance. The BPS is a DC power supply with the capability of 50 kV/160 mA. The nominal operation parameter of BPS was 23 kV and 10 mA, respectively, and the voltage output is regulated with a stability of 0.025% of the rated voltage. The series MOS-FET solid-state switch is used for on/off modulation in the body voltage sychronizing with anode voltage. The parallel discharge switch is also introduced between the body and collector for high frequency RF modulation. This paper describes the key features of the high voltage power supply system of the KSTAR 170 GHz gyrotron as well as the test results of the power supply

  4. A new VME based high voltage power supply for large experiments

    A new VME based high voltage power supply has been developed for the D OE experiment at Fermilab. There are three types of supplies delivering up to ±5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs

  5. Low-Frequency High-Voltage Power Supply for Non-Thermal Plasma Generation

    Full text: An economical 50-watts low-frequency high-voltage power supply with suitable performance for nonthermal atmospheric plasma generation has been developed. A neon transformer has been employed in conjunction with a sine-wave driving circuit whose frequency and output voltage can be varied. It is found from the performance test that the maximum voltage and current of 28 kV pp and 5 m A (rms), respectively, can be achieved. This power supply can be utilized for a dielectric barrier discharge plasma source, of both the coaxial and the parallel-plate types at frequency range between 100 Hz to 750 Hz

  6. Optimization of a high voltage power supply for a nitrogen laser

    In the present paper the optimization of a high voltage switching power supply for a compact TEA nitrogen laser is described. Taking as criterion the recovering of the charging voltage in a 95% of the maximal voltage, the relationships between the recovering rate coefficient, the recovering time and the maximal repetition frequency were obtained. Using an experimental set-up the power supply optimal values of turns in the primary transformer coil Np=35 and excitation pulse frequency fexc=25.5 kHz was determined

  7. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H0 beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies

  8. High voltage power supplies for the neutral beam injectors of the stellarator TJ-II

    Alonso, J. E-mail: gozalo@ciemat.es; Liniers, M.; Martinez Laso, L.; Jauregi, E.; Lucia, C.; Valcarcel, F

    2001-10-01

    Neutral beam injection will be available for the second experimental phase of TJ-II. Two injectors, set in co-counter configuration, will inject into the plasma two 40 keV H{sup 0} beams, each of up to 1 MW. The two high voltage power supplies to feed the acceleration grids of the injectors, described in this paper, are of the transformer-rectifier type, taking their primary energy from a pulsed flywheel generator, and are coupled to the acceleration grids through a switching device. This environment effectively sets the main operation limits and protection requirements of the power supplies.

  9. Ultra-long-pulse microwave negative high voltage power supply with fast protection

    Two 1.4 MW high voltage power supply (HVPS) modules with 3-5 s pulse duration have been developed for LHCD experiment in the HT-7 tokamak. The power source consists of a pulsed generator and the electric circuit. Duration of the ultra-long-pulse is controlled by switching-on dc relay immediately and switching-off ac contactor after a given time, and the fast protection is executed by a crowbar. Due to the soft starting of the power source, the problem of overvoltage induced by dc relay switching-on has been solved. Each power supply module outputs a rated power (-35 kV, 40 A) on the dummy load. With the klystrons connected as the load of the power supply modules, LHCD experiments have been conducted successfully in the HT-7 tokamak

  10. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, fr = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, fr = 300 Hz, C = 100 nF. (Author)

  11. Measurement system for high voltage pulse power supply on HL-2A

    A measurement system for the high voltage pulse power supply on HL-2A has been developed. It adopts the voltage divider based on high-frequency inductance-free glaze film resistor along with the fiber isolation technology based on voltage-frequency conversion. Moreover, a DSP chip is used in the fiber transmission, to realize A/D conversion, simplifying the circuit, enhancing the data transmission speed and anti-jamming ability of the system. The system has been applied to long-pulse (5 s) discharge experiments on HL-2A. The experimental results show that, the system realizes the potential isolation for power supply, and the measured voltage waveforms reflect the supply output faithfully, providing real-time voltage data for the feedback and protection system of the supply. (authors)

  12. A Marx generator based high voltage high current pulsed power supply with variable pulse width

    A high voltage pulse power supply using Marx generator with solid-state switches is proposed in this paper. An IGBT based 10 stage Marx bank generator has been designed and developed. A -10 kV /100 A high voltage pulse with a variable pulse width from 100 μS to 1 ms yielding a peak power of 1 mega watt was generated. The 10 cell generator is assembled over a FRP structure where each cell consists of a charging IGBT, a discharging IGBT, a capacitor and a freewheeling diode. The modular design proposed allows cascading of similar structures to generate higher voltages. A unique compact scheme based on pulse transformer is used to drive both the charging and the discharging IGBTs. Two numbers of pulse transformers (one for charging pulse and another for discharging pulse) were designed and developed. Both pulse transformers have a single primary and multiple numbers of secondaries, one for each cell with required high voltage isolation. They are excited with high frequency inverters to generate isolated control supply and firing pulse for IGBT switching. The paper discusses the design and construction of the Marx generator and its operation. (author)

  13. Study on the characters of high voltage charging power supply system for diagnostics neutral beam on HT-7 Tokamak

    A high voltage power supply system has been developed for the diagnostic neutral beam on the HT-7 experimental Tokamak, and the over-voltage phenomenon of storage capacitor was founded in the experiment. In order to analyse and resolve this problem, the structure and principle of high voltage power supply is described and the primary high voltage charging power supply system is introduced in detail. The phenomenon of over-voltage on the capacitors is also studied with circuit model, and the conclusion is obtained that the leakage inductance is the mA in reason which causes the over-voltage on the capacitors. (authors)

  14. Low-noise high-voltage DC power supply for nanopositioning applications

    Belussi, Cristian H; Fasano, Yanina

    2014-01-01

    Nanopositioning techniques currently applied to characterize physical properties of materials interesting for applications at the microscopic scale rely on high-voltage electronic control circuits that should have the lowest possible noise level. Here we introduce a simple, flexible, and custom-built power supply circuit that can provide +375\\,V with a noise level below 10\\,ppm. The flexibility of the circuit comes from its topology based on discrete MOSFET components that can be suitable replaced in order to change the polarity as well as the output voltage and current.

  15. Adaptive control strategy for ECRH negative high-voltage power supply based on CMAC neural network

    In order to solve the problem that the negative high-voltage power supply in an electron cyclotron resonance heating (ECRH) system can not satisfy the requirements because of the nonlinearity and sensitivity, the direct inverse model control strategy was proposed by using cerebellar model articulation controller(CMAC) for better control, and experiments were carried out to study the system performances with CMAC tracing dynamic signals. The results show that this strategy is strong in self-learning and self-adaptation and easy to be realized. (authors)

  16. 100 kV repetition-rate high-voltage pulsed power supply

    To study the characteristics of gaseous discharge in spark gap, a high-voltage pulsed power supply has been designed, whose output voltage amplitude varies between 30?100 kV and repetition-rate varies from 1 Hz to 5 kHz. Adopting the principle of resonant charging, the power supply transfers energy from the primary source of 10 kV DC to the secondary energy storage capacitor that is charged at least to 18 kV. The hydrogen thyratron conducts under the action of optical trigger signal. Then the current flows through the pulse transformer, and voltage is raises from 18 kV to the peak of 100 kV. The output pulse is a negative voltage one with an pulse width of at least 200 ns. and fall time less than 90 ns. the device can continuously run for no less than 1 min without additional cooling system. (authors)

  17. Distributed diagnostic system for tokamaks high-voltage power supply section

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Juszczyk, B.; Zienkiewicz, P.

    2015-09-01

    This paper describes recently developed system for diagnostics of high-voltage power supply section of tokamaks'. Such system is necessary for real-time monitoring of high-voltage power supply section with ability to perform automatic and fast decisions related to protection system. The system is distributed, allowing data acquisition of components installed away from the systems' controller. Remote communication is based on fiber links. Main processing units are FPGA circuits. The system can pass-through analog and digital signals from local to remote or remote to local locations. In the main FPGA unit, independent user developed algorithms can be implemented. The system structure is based on the uTCA standard. The micro TCA crate controller is implemented as PC unit in AMC standard. Communication is based on gigabit transceivers providing low-latency of data transmission. The system is working with specialized diagnostics and control software. The graphical user interface is provided for the end user. Several tests were made in term of data latency, proper signal transmission and system control.

  18. The Application of MSVC Reactive Power Compensation Device to the High Voltage Power Supply of Coal Mine

    Zhenbao Zhu; Rui Tian

    2009-01-01

    Through the introduction and technical comparative analysis of the SVC reactive power compensation device of the magnetic controlled reactor (MCR) type (it is abbreviated as MSVC), this article measures the working condition of the electrical power distribution system for the Zhaizhen colliery, and confirm the application project of MSVC in the high voltage power supply of Zhaizhen colliery. This device has many obvious advantages such as small output harmonic, low power consumption, maintena...

  19. A timing detector with pulsed high-voltage power supply for mass measurements at CSRe

    Accuracy of nuclear mass measurements in storage rings depends critically on the accuracy with which the revolution times of stored ions can be obtained. In such experiments, micro-channel plates (MCP) are used as timing detectors. Due to large phase space of injected secondary beams, a large number of ions cannot be stored in the ring and is lost within the first few revolutions. However, these ions interact with the detector and can saturate the MCP and thus deteriorate its performance. In order to eliminate such effects, a fast, pulsed high-voltage power supply (PHVPS) has been employed which keeps the detector switched-off during the first few revolutions. The new detector setup was taken into operation at the Experimental Cooler-Storage-Ring CSRe in Lanzhou and resulted in a significant improvement of the detector amplitude and efficiency characteristics

  20. Past and future upgrades of the gyrotron high voltage cathode power supplies at the Forschungszentrum Karlsruhe

    The high voltage/high power DC-cathode power supply for the Gyrotron Test Facility at the Forschungszentrum in Karlsruhe consists of a 12-pulse thyristor star-point-controller, a 130 kV capacitor-bank followed by a tetrode regulator. Originally designed for 80 kV/30 A CW (continous-wave) operation, its operating regime has been extended in line with gyrotron development to pulses of 65 kV/45 A/3 min and more recently to 65 kV/80 A/10 s without any changes to the main load bearing components (thyristors, transformers or power tetrode). This allows testing of gyrotrons in the 0.5 MW (CW), 1 MW (3 min) and 2 MW (10 s) output power range. The paper describes the system, its operation and some critical aspects of the last upgrade, such as the issue of harmonics in the 20 kV distribution mains-grid, the dynamic response of the thyristor-controller and the avoidance of microwave parasitic oscillations in the high power tetrode (a CQK-200-4, developed by ABB, Switzerland and now produced by Thales Electron Devices, France). Finally, an outlook is given on the extension-plans of the FZK Gyrotron Test Facility, namely to procure a Pulse-Step-Modulator (PSM) cathode power supply for 100 kV/100 A capable of CW operation for the development and testing of gyrotrons for fusion reactors (i.e. DEMO), with up to 4 MW CW output power. Some of the advantages and disadvantages of a PSM versus an analogue regulator system are being discussed.

  1. All solid state high voltage power supply for neutral beam sources

    The conceptual design of a high frequency solid state, high power, high voltage, power system that reacts fast enough to be compatible with the requirements of a neutral beam source is presented. The system offers the potential of significant advantages over conventional power line frequency systems; such as high reliability, long life, relatively little maintenance requirements, compact size and modular design

  2. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet. PMID:24880391

  3. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  4. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet

  5. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  6. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    Sharma, P.K., E-mail: pramod@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Kazarian, F.; Garibaldi, P.; Gassman, T. [ITER Organization, CS 90 046, 13067 Saint-Paul-Les-Durance (France); Artaud, J.F. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Belo, J. [Associacao Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal); Berger-By, G.; Bernard, J.M.; Cara, Ph. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy); Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2011-10-15

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  7. Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines

    Wei Wang

    2016-03-01

    Full Text Available Overhead high voltage power line (HVPL online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.

  8. Characterization of Variable High Voltage D. C. Power Supply Designed and Constructed for Low Pressure Gas Discharge

    A.M. Abdelbagi; N. A. Almuslet

    2011-01-01

    In this work we characterized a variable high voltage DC power supply, designed and constructed for low pressure gas discharge, suitable for laser pumping and plasma production. A homemade transformer was performed to obtain maximum output voltage of 30 KV and current variation of 100 mA which is required for laser production and plasma creation. A mixture of CO2, N2 and He was tested with different pressures and variable flow rates for discharge evaluation and parameters validation. The peak...

  9. Improvement for the TRIP rate of klystron high-voltage power supplies in J-PARC linac

    The number of faults of high voltage power supplies for 324MHz-klystron has been increased since summer maintenance in 2012. Investigating the causes of its faults, it was found that the primary one is anode discharge of klystrons. Electro-magnetic and radiation noises were arisen from anode discharge and they strongly influenced with the disoperation of NIM components such as trigger fanout modules generating trigger pulses both 150kV-semiconductor switch and sample hold modules. This report describes the causes of break down for HVDC power supplies and the noise measure of trigger fanout module. (author)

  10. Study on Power Supply System by Using CT in High-Voltage Transmission Lines

    He Zhi-Min

    2013-10-01

    Full Text Available In online monitoring of the transmission line, its power supply is one of the key issues. This study presents a device using special transformer which can induce power to supply the high side circuitry. The front-end of the protection device includes output-power-control circuitry, which can take output-power limited to a small range. At the back side it contains rechargeable lithium batteries. By using the reasonable control strategy, it can provide a stable output-power at the transmission line current ranging from 40 to 1500A. And in the larger current the fever of transformer is not serious. Experiments show that the power supply system has the high reliability and efficiency.

  11. Analysis of crowbar action of high voltage DC power supply in the LHD ICRF system

    Ion Cyclotron Range of Frequency (ICRF) heating will be applied to the Large Helical Device (LHD) at the 2nd experimental campaign in 1998. The LHD ICRF system is characterised by its high power (up to 12 MW at final stage) and steady state operation for more than 30 minutes. One of the main R and D items was a high power and steady state transmitter. The RF transmitter system having a wide frequency range from 25 to 95 MHz was designed and fabricated. This report describes the analysis of the DC power supply that contains the crowbar circuit protecting the tetrode from the arcing inside the tube. The DC power supply of the transmitter is fed from the commercial AC electric line which also supply the power to the LHD helical and poloidal coil power supplies. The voltage drop of the commercial line when the ICRF crowbar action happened is the serious problem for all experimental system. This paper analyses the crowbar effect on the commercial line with and without leakage transformer between the step-up transformer of transmitter and the commercial line. (author)

  12. MAGY: An innovative high voltage-low current power supply for gyrotron

    From the electrical point of view, the body and the anode of high power gyrotrons behave as capacitive loads. A highly dynamic power supply is, therefore, hard to achieve. The MAGY concept (Modulator for the Anode of a triode type GYrotron) embodies an innovative solution to manage the capacitive current ensuring a very low ripple on the output voltage. It consists of a series of independent, bi-directional and regulated DC sources. Compared to existing topologies, this solution requires a smaller number of power modules. It avoids internal high frequency modulation and simultaneously offers high resolution of the output voltage and a wide range of operating scenarios.

  13. A novel high-frequency multiphase crowbarless high-voltage dc power supply

    A novel topology based on high frequency switching resonant immittance converters (RICs) is proposed in this paper. The principle of operation, design, simulation and experimental results on a - 20 kV, 1 A dc prototype power supply, that uses a three-phase RIC operating with 120° phase shift involving switching at 25 kHz and a dc-dc step down converter with energy recovery snubber in the front-end, is presented. (author)

  14. Integrated high voltage power supply utilizing burst mode control and its performance impact on dielectric electro active polymer actuators

    Andersen, Thomas; Rødgaard, Martin Schøler; Andersen, Michael A. E.; Thomsen, Ole Cornelius; Lorenzen, K. P.; Mangeot, C.; Steenstrup, A. R.

    Through resent years new high performing Dielectric Electro Active Polymers (DEAP) have emerged. To fully utilize the potential of DEAPs a driver with high voltage output is needed. In this paper a piezoelectric transformer based power supply for driving DEAP actuators is developed, utilizing a...... translates to small strain-force ripples. Nevertheless the driver demonstrates good capabilities of following an input reference signal, as well as having the size to fit inside a 110 mm x 32 mm cylindrical InLastor Push actuator, forming a “low voltage” DEAP actuator....

  15. Electrical Power Supply to Offshore Oil Installations by High Voltage Direct Current Transmission

    Myhre, Joergen Chr.

    2001-07-01

    This study was initiated to investigate if it could be feasible to supply offshore oil installations in the North Sea with electrical power from land. A prestudy of alternative converter topologies indicated that the most promising solution would be to investigate a conventional system with reduced synchronous compensator rating. The study starts with a summary of the state of power supply to offshore installations today, and a short review of classical HVDC transmission. It goes on to analyse how a passive network without sources influences the inverter. The transmission, with its current controlled rectifier and large inductance, is simulated as a current source. Under these circumstances the analysis shows that the network frequency has to adapt in order to keep the active and reactive power balance until the controllers are able to react. The concept of firing angle for a thyristor is limited in a system with variable frequency, the actual control parameter is the firing delay time. Sensitivity analysis showed some astonishing consequences. The frequency rises both by an increase in the active and in the reactive load. The voltage falls by an increase in the active load, but rises by an increase in the inductive load. Two different control principles for the system of inverter, synchronous compensator and load are defined. The first takes the reference for the firing delay time from the fundamental voltage at the point of common coupling. The second takes the reference for the firing delay time from the simulated EMF of the synchronous compensator. Of these, the second is the more stable and should be chosen as the basis for a possible control system. Two simulation tools are applied. The first is a quasi-phasor model running on Matlab with Simulink. The other is a time domain model in KREAN. The time domain model is primarily used for the verification of the quasi-phasor model, and shows that quasi-phasors is still a valuable tool for making a quick analysis of the main features when the details of the transients are of less importance. The study indicates that power supply by HVDC transmission from land to offshore oil installations could be technically feasible, even without the large synchronous compensators normally required. It has been shown that in a network only supplied by an inverter, variations of active and reactive loads have significant influence on both voltage and frequency. Particularly it should be noted that the frequency shows a positive sensitivity to increases in load. This could make the system intrinsically unstable in the case of a frequency dependent load such as motors. It was not a part of the study to optimize controllers, but even with simple controllers it was possible to keep the frequency within limits given by norms and regulations, but the voltages were dynamically outside the limits, though not very far. These voltage overswings take place in the first few instances after a disturbance, so it takes unrealistically fast controllers to handle them. They are partly due to the model, where the land based rectifier and the DC reactors are simulated by a constant current source, but partly they have to be handled by overdimensioning of the system. The simulations indicate that it should be technically possible to supply an oil platform with electrical power from land by means of HVDC transmission with small synchronous compensators. Whether this is financially feasible has not been investigated. Neither has it been considered whether the necessary equipment can actually be installed on an oil platform. Recently both ABB and Siemens have presented solutions for HVDC transmission in the lower and medium power range based on voltage source converters based on IGBTs. Fully controllable voltage source HVDC converters have properties that may be better suited than conventional line commutated current source thyristor inverters, to supply weak or passive networks, such as offshore oil installations, with electrical power. But they also have some disadvantages, and a complete technical and financial comparison must be performed in order to decide about any potential project. (author)

  16. Power-supply system for high-voltage electron guns with grid control

    A power-supply system for electron guns with grid control is described which consists of a source of accelerating voltage between 20 and 180 kV with a current of 100 mA and a control circuit for an electron gun that contains a pulse generator having an output voltage of up to 5 kV for pulse durations of 2, 10, 50 and 90 microseconds. The output pulses of the generator are synchronized with a certain phase of the cathode heater current of the gun, and they can be repeated at a frequency between 100 and 0.4 Hz. The system is reliable and resistant to the overloads associated with breakdowns in the gun

  17. Design and construction of a variable high voltage DC power supply for Tandem ion source (Paper No. CP 8)

    This paper discusses the design approach and status of a amplitude modulated, fixed drive, dc to dc converter principle and voltage multiplier principle adopted for generation of a high voltage. High frequency operation has resulted in smaller magnetics and smaller filters capacitance. Specially tailored base drive circuits and snubber circuits have resulted in reduction in switching transistor losses and hence improvement in efficiency of converter. Both constant voltage and constant current mode operation with fast acting overload and short circuit protection alongwith polarity reversal arrangement has made this supply extremely suitable for tandem ion source application. Normally this power supply is operated in constant voltage mode and once the set current limit is exceeded it goes automatically into the constant current mode. Output voltage and current are continuously adjustable from 0-30 kV and 0-8 mA respectively. (author). 4 refs., 4 f igs

  18. Development of cast resin multisecondary 1600kVA transformer for Regulated High Voltage Power Supply- A prototype

    Regulated High Voltage Power Supplies (RHVPS) are commonly used in high-energy particle accelerators. RHVPS is a modular power supply in which kV level modules (40 or 80) are cascaded to generate desired level of voltage/power. One of the most challenging tasks involved is to provide input power to number of rectifier modules with required isolation (inter-winding and winding to ground). This is accomplished by deploying multi-secondary (large numbers, say 40 secondaries) transformers. This RHVPS concept was realized for the first time in the country with development of oil filled multi-secondary transformer. A pair of 3.3MVA, 11kV/ (940Vx40) has been successfully demonstrated, isolation of 6kVDC (inter-winding) and 160kVDC (all secondary to ground) tested. The next generation power supplies are unitized with indoor installations. This has created the demand for dry type multi-secondary transformers in compliance with safety regulations. This paper presents manufacturing issues and testing of the prototype resin cast coil. On the manufactured prototype, inter-winding isolation is tested up to 6kVDC and 125kVDC with respect to ground.

  19. Switching mode high voltage DC regulated power supply for inflector of cyclotron along with on-line beam current measurement

    For the Inflector of K-130 cyclotron at V.E.C. Centre, Kolkata, a dc regulated power supply (15 kV, 10 ma, 0.1% regulation) with CV/CC mode of operation is designed and fabricated which is running round-the-clock for more then two years. Based on same technique, several other high voltage and high current type of dc regulated Switching- Mode-Power Supplies (SMPS), have been fabricated for VEC Centre and for other institutions also, such as SINP Calcutta, NPL New Delhi etc. This Power Supply uses Pulse-Width-Modulation (Pm) technique in which two similar square-wave pulses but opposite in phase are used for DC-to-Ac converter at very high frequency. By the process of switching, the power dissipation in the regulating elements is minimum which makes it highly efficient. The advantage of operating at higher switching frequency is to reduce the size of transformer and filter capacitors which makes it cheaper

  20. High voltage power supply systems for electron beam and plasma technologies. Its new element base

    Transforming technique and high voltage technique supplementing each other more and more unite in indivisible constructions of modern apparatuses and systems and applicated in modern technologies providing its high efficiency. Specially worked out, ecologically clean, inertial, inflammable perfluororganic liquid is used in elements and electronic apparatuses simultaneously as insulating and cooling media. This liquid is highly fluid, fills tiny cavities in construction elements and in the places of high concentration of losses, where maximum local overheating of active parts or apparatus constructions takes place, it transforms to boiling state with highly intensive taking off of heat energy from cooled surface point. For instance, being cooled by mentioned perfluororganic liquid, copper wire can conduct current to 50 A/mm2 density, but in ordinary conditions of transformers, reactors and busses, current density can reach only few Amperes. Possibility of considerable increasing of current density, that is reached by means of intensive cooling, provided by worked out liquid, and taking into account its incredibly high insulating features (liquid has electric strength to 50 KV/mm) allows to provide optimum heat regime of active parts of transformers. reactors, condenser, semiconductor devices, resistors, construction elements and electrotechnical apparatus in general. Particularly high effect of decreasing of weight and dimensions characteristics of elements and electrotechnical apparatus in general can be reached under working out of special constructions of each element and apparatus details, adapted to use of mentioned liquid as insulating and cooling media

  1. Development of control system for multi-converter high voltage power supply using programmable SoC

    Multi-converter based High Voltage Power Supplies (HVPSs) find application in multi-megawatt accelerators, RF systems. Control system for HVPS must be a combination of superior parallel processing, real time performance, fast computation and versatile connectivity. The hardware platform is expected to be robust, easily scalable for future developments without any cost overhead. Typical HVPS control mechanism involves communication, generation of precise control signals/pulses for few hundred Nos of chopper and closed loop control in microsecond range for regulated output. Such kind of requirements can be met with Zynq All Programmable SoC, which is a combination of Dual core ARM Cortex A-9 Processing System (PS) and Xilinx 7 series FPGA based Programmable Logic (PL). Deterministic functions of power supply control system such as generation of control signals with precise inter-channel delay of nanosecond range and communication with individual chopper at 100kbps can be implemented on PL. PS should implement corrective tasks based on field feedback received from individual chopper, user interface and OS management that allows to take full advantage of system capabilities. PS and PL are connected with on-chip AXI-4 interface with low latency and higher bandwidth through 9 AXI ports. Typically PS boots first, this ensures secure booting and prevents external environment from tampering PL. This paper describes development of control system on Zynq All Programmable SoC for HVPS. (author)

  2. Development of an amorphous surge blocker for a high voltage acceleration power supply of the neutral beam injectors

    An amorphous surge blocker for a high voltage acceleration power supply for the neutral beam injectors has been developed. Since the saturation magnetic flux density of the amorphous core is higher than that of the ferrite core, the surge blocker made of amorphous cores can be reduced in size appreciably compared to the conventional ferrite surge blocker. A 350 kV, 0.05 volt-second amorphous surge blocker was designed, fabricated and tested. The amorphous core was made by winding an amorphous tape with a film for the layer insulation and was heat-treated to recover the magnetic characteristics. The core is molded by epoxy resin and installed in a FRP insulator tube filled with SF6 gas for the insulation. The volt-second measured was higher than the designed value and the electrical breakdown along the cores and between layers was not observed. This test result shows that the amorphous surge blocker is applicable for a dc acceleration power supply for high energy neutral beam injectors. (author)

  3. A -50 kV electron gun high voltage pulse power supply with 50 kW peak power for electron accelerators

    An electron gun being developed at RRCAT requires a high voltage (HV) pulse power supply of -50 kV with peak power of 50 kW for acceleration of thermionically generated electrons from cathode of the electron gun. A single switch forward converter is used to energize a step up HV pulse transformer to generate the required high voltage pulse. An RCD clamp circuit is used on primary side of the pulse transformer to clamp the reverse voltage across the primary as well as secondary of the transformer. The design parameters, simulation and experimental results of the power supply and details of resin cast HV transformer are presented in this paper. (author)

  4. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results

  5. A 10 kV, 1 A DC power supply based on three-phase, pulse-width-modulated resonant immittance converter using diode split high voltage transformer

    High voltage (HV) dc power supplies are required for various applications such as electrostatic accelerators, electron guns, klystrons, modulators, vacuum pumps, beam diagnostic devices, pulsed power supplies, etc. Design of a HV power supplies is complex because of non-negligible effect of circuit parasitic components, e.g. high leakage inductance and winding capacitance associated with the transformer. A new family of resonant converter (RC), known as resonant immittance converters (RICs) proposed in are considered to be suitable for a high voltage dc and capacitor charging power supplies because they act as a current source thereby making them inherently safe against arcing or short-circuits. Further, the gainful utilization of transformer parasitic components, high efficiency even under the part-load condition, easy parallel operation add to their usefulness. Phase-staggered operation of paralleled converters reduce the ripple amplitude and increase the ripple frequency, thereby reducing the filter capacitor. Thus the stored energy in the power converter is reduced, which can eliminate the crowbar circuits. Application feasibility of multi-phase RICs as crowbar-less power supplies was reported in. This paper reports further advancements in this area which have been incorporated in the power converter and tested with a 10 kV, 1A prototype

  6. High voltage photovoltaic power converter

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  7. Improved Model of New Six-Phase High Voltage Power Supply for Industrial Microwave Generators with A Single Magnetron By Phase

    BOUBKAR BAHANI

    2014-10-01

    Full Text Available This original work treats the feasibility study of new type of high voltage power supply with a character six-phase for a magnetron 800 Watts-2450 MHz per phase for industrial microwave generators. The design of this new power supply uses a new sex identical single-phase high voltage transformer with magnetic leakage flux, coupled in star. Each single phase supply a cells which multiples the voltage, stabilizes the current and supplies in its turn a single magnetron. The π equivalent model of the transformer is developed, taking into account the saturation phenomenon and the stabilization process of each magnetron current. This model is based on the determination of the analytical expressions of its non-linear inductances, that can be determined from the establishment of the B(H magnetization curve of the used material (SF19. This new power supply presents a multiple benefits in terms of reducing of weight, volume, electrical wiring and cost during of the implementation and maintenance of such a new device. The simulation results, upbraided by Matlab-SIMULINK code, are in good agreement with those found by experimental measurement for one magnetron, while respecting the conditions recommended by the manufacturer of magnetron: Ipeak<1.2 A, Imean≈ 300 mA.

  8. THE SYSTEM OF CONTACT SYSTEM POWER SUPPLY OF DC NETWORK WITH A LONGITUDINAL LINE OF HIGH VOLTAGE

    Yu. P. Honcharov

    2008-02-01

    Full Text Available The power supply system of a contact network using a longitudinal line with points of communication without transformer is considered. The approach allowing to facilitate power filters and the way of switching of in-series connected semiconductor switches with fixing a voltage on them are offered.

  9. THE SYSTEM OF CONTACT SYSTEM POWER SUPPLY OF DC NETWORK WITH A LONGITUDINAL LINE OF HIGH VOLTAGE

    Yu. P. Honcharov; M. V. Panasenko; V. M. Kozachok; Zamaruiev, V. V.; V. V. Ivakhno; S. Yu. Kryvosheiev; O. I. Semenenko

    2008-01-01

    The power supply system of a contact network using a longitudinal line with points of communication without transformer is considered. The approach allowing to facilitate power filters and the way of switching of in-series connected semiconductor switches with fixing a voltage on them are offered.

  10. Analysis and design of a high-current, high-voltage accurate power supply for the APS storage ring

    There are 81 dipole magnets contained in the storage ring at the Advanced Photon Source (APS). These magnets are connected in series and are energized by only one 12-phase power supply. The eighty-first magnet is located in a temperature-controlled room with an NMR probe to monitor the magnetic field in the magnet and provide a reference signal for correction of the field drift due to aging of the components. The current in the magnets will be held at 497 A. The required current stability of the power supply is ±30 ppM, the current reproducibility is ±50 ppM, and the current ripple is ±400 ppM. The voltage required to maintain such a current in the magnets is about 1700 V. Different schemes for regulating current in the magnets are studied. Pspice software is used to simulate the behavior and the design of such a power supply under different conditions. The pros and cons of each scheme will be given and the proper power and regulating scheme will be selected

  11. Performance of a Remote High Voltage Power Supply for the Phase II Upgrade of the ATLAS Tile Calorimeter

    Vazeille, Francois; The ATLAS collaboration

    2015-01-01

    The experience gained in the working of the present High Voltage system of the Tile calorimeter of the ATLAS detector and the new HL-LHC constraints, in particular the increase of the radiation, lead to the proposal of moving the embedded regulation system to be a remote system in the counting room, by adding easily new functionalities. This system is using the same regulation scheme as the current one and distributes the individual High Voltage settings with multi-conductor cables. The tests show that it reaches the same performance in terms of regulation stability and noise, with a permanent access to the electronics.

  12. Performance of a remote High Voltage power supply for the Phase II upgrade of the ATLAS Tile Calorimeter

    Vazeille, F.

    2016-02-01

    The experience gained in the operation of the present High Voltage system of the Tile calorimeter in the ATLAS detector and the new HL-LHC constraints, in particular the increase of the radiation, lead to the proposal of changing the currently embedded regulation system to be a remote system in the counting room, by adding easily new functionalities. The system described in this note is using the same regulation scheme as the current one and distributes the individual High Voltage settings with 100 m long multi-conductor cables. The tests show that it reaches the same good performance in terms of regulation stability and noise, while allowing a permanent access to the electronics.

  13. Low power, scalable multichannel high voltage controller

    Stamps, James Frederick; Crocker, Robert Ward; Yee, Daniel Dadwa; Dils, David Wright

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  14. High-voltage-powered transistorized preamplifier

    One of the problems that is frequently met in the field of nuclear electronics is that of coupling the signal from a high-impedance pulse-type radiation detector to a low-impedance transmission line. Radiation detectors and their associated counting equipment are often separated by a considerable distance and some efficient means of transmitting the signal from the detector to the counting system must be provided. In practice, a low-impedance coaxial cable is used for the transmission line and a cathode-follower or emitter-follower circuit is used to achieve the required impedance match. This paper describes a unique emitter-follower circuit that has been utilized very successfully at the University of Washington. The emitter-follower circuit is unique in that power for the transistor circuit is derived from the high voltage that is supplied to the radiation detector. The two pnp alloy-junction transistors employed in the preamplifier yield.a voltage gain of unity over a dynamic range of from 1 mV to 5 V. Stabilization of the operating voltage for the emitter-follower circuit is provided by a small zener diode. The current drain of a typical remote-scintillation detector employing the circuit ranges from 0.35 to 0.65 mA when the high voltage is supplied to the scintillation detector is varied from 800 to 1 500 V. The unit will drive 500 ft of 52-? coaxial line with a 25% loss in pulse amplitude and has been used with remotely operated scintillation-type detectors and BF3-type neutron detectors with excellent results. (author)

  15. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  16. 130 kV 130 A high voltage switching mode power supply for neutral beam injectors-Control issues and algorithms

    The company JEMA has delivered to the Joint European Torus (JET facility in Culham) two high voltage switching mode power supplies (HVSMPS) each rated 130 kVdc and 130 A. One HVSMPS feeds the grids of two PINI loads. This paper describes the main control issues and the algorithms developed for the project. The most demanding requirements from the control point of view is an absolute accuracy of 1300 V and the possibility of performing up to 255 re-applications of the high voltage during a 20 s pulse. Keeping the output voltage ripple to the specified tolerance has been a major achievement of the control system. Since the output stage is formed of several modules (120) connected in series, their stray capacitance to ground significantly influences the individual contribution of each single module to the global output voltage. Two complementary techniques have been used to balance the effects of the stray capacities. The fast re-applications requirement has a significant impact on the intermediate dc link. This section is composed of a capacity of 0.83 F, which feeds the 120 invertor modules. The dc link is fed by a 12 pulse SCR rectifier, whose matching transformers are connected to the 36 kV grid. Every re-application and every voltage shutdown supposes a quasi-instantaneous power step of 17 MW. Fast open loop algorithms have been implemented in order to keep the dc link voltage within acceptable margins. Moreover, the HVSMPS output characteristics have to be maintained during the rapid and important voltage fluctuations of the 36 kV mains (28-37 kV). The general control system is based on a Simatic S7 PLC, and a SCADA user interface. Up to 1000 signals are acquired. The control system has shown to be also a useful tool to allow for a rapid and accurate identification of faults and their origin

  17. Medium and high voltage power cables market in Europe

    This note gives an overview of the European market for medium and high voltage power cables. In this text, emphasis is placed on suppliers and important European clients; there is also a brief review of the different techniques for cable laying and utilization in Europe. This not has mainly been drafted from informations supplied by EUROPACABLE

  18. High voltage surge protection system for gun power supplies of 3 MeV, 30 kW DC electron beam accelerator

    A 3 MeV, 30 kW dc industrial electron beam Accelerator is being developed at EBC, Kharghar, Navi Mumbai. The electron gun located at 3 MV terminal requires remotely controlled floating power supplies for filament and anode. As the control electronics operate at low voltages of the order of 15 V, they are vulnerable for conducted and radiated noise from high voltage column discharges. The sensitive electronic components should be protected from common mode and differential mode HV surges. To minimize the surge voltages to safe operating limits of electronic components used, various methods were incorporated and tested in simulated and actual conditions. This surge protection scheme has been installed at 3 MV dome and gun supplies were operated at 1.2 MeV level. They have been withstanding several HV sparks and discharges in the Accelerator with nitrogen gas at 6 kg/cm2. The techniques such as spark gaps, electrostatic screen, surge limiting inductors, cascaded filters, isolation amplifiers, single point grounding and electromagnetic shielding have been described in this paper. (author)

  19. Experiment and operation of a LHCD-35 kV/2.8 MW/1000 s high-voltage power supply on HT-7 tokamak

    A-35 kV/2.8 MW/1000s high-voltage power supply (HVPS) for HT-7 superconducting tokamak has been built successfully. The HVPS is scheduled to run on a 2.45 GHz/1 MW lower hybrid current drive (LHCD) system of HT-7 superconducting tokamak before the set-up of HT-7 superconducting tokamak in 2003. The HVPS has a series of advantages such as good steady and dynamic response, logical computer program controlling the HVPS without any fault, operational panel and experimental board for data acquisition, which both are grounded distinctively in a normative way to protect the main body of HVPS along with its attached equipment from dangers. Electric power cables and other control cables are disposed reasonably, to prevent signals from magnetic interference and ensure the precision of signal transfer. The author introduced the experiment and operation of a 35 kV/2.8 MW/1000 s HVPS for 2.45 GHz/1 MW LHCD system. The reliability and feasibility of the HVPS has been demonstrated in comparison with experimental results of original design and simulation data

  20. Combined resonant tank capacitance and pulse frequency modulation control for ZCS-SR inverter-fed high voltage DC power supply

    Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.

  1. Combined resonant tank capacitance and pulse frequency modulation control for ZCS-SR inverter-fed high voltage DC power supply

    Lee, S S; Iqbal, S; Kamarol, M, E-mail: shahidsidu@hotmail.com [School of Electrical and Electronics Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2011-09-15

    Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.

  2. High voltage superconducting switch for power application

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  3. Advanced High Voltage Power Device Concepts

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  4. High Voltage Power Transmission for Wind Energy

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  5. High voltage generator for the power supply of photomultipliers in the time of flight system of Alpha Magnetic Spectrometer-2 experiment

    In this report, the behaviour of the first prototype high voltage generator (HVG) that might be used in the time of flight (TOF) system for the AMS-2 experiment is described. The system receives a positive continuous voltage about 100-120 V as input, and it provides a programmable negative continuous voltage from -1600 to -2400 V as output, versus a total load of 50 MΩ. The most important aspect is the absence of a transformer which usually is used in the step-up DC-DC converters. In the TOF system of alpha magnetic spectrometer (AMS)-2 experiment there is a big magnetic field, higher than 2 kG, that does not allow to use a transformer, therefore this prompted us to use the Cockroft-Walton system. The power consumption is about 300 mW and the peak-to-peak high frequency ripple is lower than 0.3% of the output high voltage. We also estimated the reliability of the HVG and we obtained a failure probability lower than 0.5% after three years of continuous functioning. Besides, in this report, much importance was given to the calculation of a simple model of the system to estimate the stability margins

  6. Alba high voltage splitter - power distribution to ion pumps

    High Voltage Splitter (HVS) is an equipment designed in Alba that allows a high voltage (HV) distribution (up to +7 kV) from one ion pump controller up to eight ion pumps. Using it, the total number of high voltage power supplies needed in Alba's vacuum installation has decreased significantly. The current drawn by each splitter channel is measured independently inside a range from 10 nA up to 10 mA with 5% accuracy, those measurements are a base for vacuum pressure calculations. A relation, current-pressure depends mostly on the ion pump type, so different tools providing the full calibration flexibility have been implemented. Splitter settings, status and recorded data are accessible over a 10/100 Base-T Ethernet network, nevertheless a local (manual) control was implemented mostly for service purposes. The device supports also additional functions as a HV cable interlock, pressure interlock output cooperating with the facility's Equipment Protection System (EPS), programmable pressure warnings/alarms and automatic calibration process based on an external current source. This paper describes the project, functionality, implementation, installation and operation as a part of the vacuum system at Alba. (authors)

  7. Developments of high voltage pulse power systems

    The facilities built at the Plasma Physics Section of the Bhabha Atomic Research Centre, Bombay (India), include charging power supplies upto 300 KV DC, capacitor energy banks upto 6 KJ and pulse forming Marx generator upto 600 KV. The work on the construction of 25 KJ capacitor energy bank and 600 KV transformer is in progress. The activities built around these facilities include an exploding wire system, a flash X-ray generator and a magnetic field flux concentrator. The exploding wire system is used presently for generation of shockwaves. The high dose rate (108 R/Sec.) flash X-ray generator has been successfully employed for dynamic radiographs. Magnetic fields of 200-300 kG generated by the flux concentrator are being used for magnetoforming and cold weld studies. An experimental scheme for the generation of relativistic electron beam of 600 KeV is under fabrication and experiments have been planned for the study of transport of beam and beam interactions with solids, gases and plasma. (K.B.)

  8. Construction of a 625 VA-300 kV high voltage isolated transformer (HVIT) as filament power supply of electron source of EBM latex

    The 625 VA-300 kV HVIT as filament power supply of electron source in EBM latex, has been constructed. The transformer has an input voltage of 220 V AC, an output voltage 25V-AC/25 A where the isolation between input and output can resist the voltage difference of 330 kV. Based on detail design, the specification of the constructed transformer are as the following: the bobbin uses Teflon (PTFE), core of transformer use soft iron Fe-Si with 0,5 mm thickness, premier coils use 2,5 mm Cu wire with 264 turns, and secondary coils use 4 mm Cu wire with 33 turns. The test result shows that the transformer has a good performance and fulfil the requirement of the filament power supply of electron source at EBM latex. (author)

  9. Bipolar high voltage pulse power generator

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    Monterey, 2005, s. 44. [IEEE International Pulsed Power Conference/15th./. Portola Plaza Hotel, Monterey, CA, USA (US), 13.06.2005-17.06.2005] R&D Projects: GA AV ČR KSK2043105 Keywords : bipolar * pulse power generator * corona discharge Subject RIV: BL - Plasma and Gas Discharge Physics

  10. Controlled Compact High Voltage Power Lines

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  11. Bipolar high voltage pulse power generator

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    Monterey : IEEE, 2007 - (Maenchen, J.; Schamiloglu, E.), s. 1061-1064 ISBN 0-7803-9190-X. [IEEE International Pulsed Power Conference/15th./. Portola Plaza Hotel, Monterey (US), 13.06.2005-17.06.2005] R&D Projects: GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z20430508 Keywords : bipolar * pulse power generator * corona discharge Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Living and Working Safely Around High-Voltage Power Lines.

    United States. Bonneville Power Administration.

    2001-06-01

    High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

  13. Innovation of High Voltage Supply Adjustment Device on Diagnostic X-Ray Machine

    Innovation of high voltage supply adjustment device on diagnostic x-ray machine has been carried out. The innovation is conducted by utilizing an electronic circuit as a high voltage adjustment device. Usually a diagnostic x-ray machine utilizes a transformer or an auto-transformer as a high voltage supply adjustment device. A high power diagnostic x-ray machine needs a high power transformer which has big physical dimension. Therefore a box control where the transformer is located has to have big physical dimension. Besides, the price of the transformer is expensive and hardly found in local markets. In this innovation, the transformer is replaced by an electronic circuit. The main component of the electronic circuit is Triac BTA-40. As adjustment device, the triac is controlled by a variable resistor which is coupled by a stepper motor. A step movement of stepper motor varies a value of resistor. The resistor value determines the triac gate voltage. Furthermore the triac will open according to the value of electrical current flowing to the gate. When the gate is open, electrical voltage and current will flow from cathode to anode of the triac. The value of these electrical voltage and current depend on gate open condition. Then this triac output voltage is feed to diagnostic x-ray machine high voltage supply. Therefore the high voltage value of diagnostic x-ray machine is adjusted by the output voltage of the electronic circuit. By using this electronic circuit, the physical dimension of diagnostic x-ray machine box control and the price of the equipment can be reduced. (author)

  14. High voltage, magnetically switched pulsed power systems

    The principles of magnetic switching are briefly described. Then the results of experiments on the following substantive topics for magnetic switching are presented: material properties and how they relate to switch performance, risetime limitations, and core insulation. Magnetic switching is then evaluated from a system perspective. An idealized pulse power system with 200 kJ or stored energy and a 40 ns output pulse is examined. The multi-megavolt electrical insulation requirements impose limitations on the switches. The cost of the magnetically switched system exceeds the cost of the conventional superpower generator system by up to 75%. The potential for reliability, reproducibility, and repetitive pulse capability must be evaluated for each application to offset the increased cost

  15. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  16. Solid-state high voltage, DC power distribution and control

    Gaudreau, M P J; Hawkey, T J; Kempkes, M A; Mulvaney, J M; Ver Planck, P

    1999-01-01

    Future high voltage, high power systems in the early stages of planning include U.S. large accelerator programs such as the Next Linear Collider (NLC), Spallation Neutron Source (SNS), and international systems at DESY, CERN and KEK. There are also many nuclear fusion and multi-megawatt systems proposed for construction or upgrade. Each of these programs faces the challenge of distributing and controlling the high power required by tens to hundreds of RF amplifier tubes (e.g., klystrons) cost effectively. In this paper, we present a new approach for distributing and modulating power based upon recent technological developments in high voltage, high power, solid state switching. DTI's development of fast, high voltage, opening and closing solid state switches enable, for the first time at high voltage, a nearly lossless "DC transformer". With this DC transformer (i.e., down converter or buck regulator), it is now possible to distribute unregulated high voltage DC power in a large facility, and regulate and con...

  17. Multiple high voltage output DC-to-DC power converter

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  18. An integrated CMOS high voltage supply for lab-on-a-chip systems.

    Behnam, M; Kaigala, G V; Khorasani, M; Marshall, P; Backhouse, C J; Elliott, D G

    2008-09-01

    Electrophoresis is a mainstay of lab-on-a-chip (LOC) implementations of molecular biology procedures and is the basis of many medical diagnostics. High voltage (HV) power supplies are necessary in electrophoresis instruments and are a significant part of the overall system cost. This cost of instrumentation is a significant impediment to making LOC technologies more widely available. We believe one approach to overcoming this problem is to use microelectronic technology (complementary metal-oxide semiconductor, CMOS) to generate and control the HV. We present a CMOS-based chip (3 mm x 2.9 mm) that generates high voltages (hundreds of volts), switches HV outputs, and is powered by a 5 V input supply (total power of 28 mW) while being controlled using a standard computer serial interface. Microchip electrophoresis with laser induced fluorescence (LIF) detection is implemented using this HV CMOS chip. With the other advancements made in the LOC community (e.g. micro-fluidic and optical devices), these CMOS chips may ultimately enable 'true' LOC solutions where essentially all the microfluidics, photonics and electronics are on a single chip. PMID:18818808

  19. Electric Power Generation and Storage Using a High Voltage Approach

    Bolund, Bjrn

    2006-01-01

    Production and consumption of electricity have grown enormously during the last century. No mater what the primary source of energy is, almost all generation of electricity comes from conversion of a rotational movement in a generator. The aim of this thesis is to see how high voltage technology influence production and storage of electricity. Power flow in the generators used to convert mechanical movement to electric energy is analyzed using Poyntings vector. The impact of new generator te...

  20. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  1. 30 CFR 75.812 - Movement of high-voltage power centers and portable transformers; permit.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement of high-voltage power centers and... Underground High-Voltage Distribution § 75.812 Movement of high-voltage power centers and portable transformers; permit. Power centers and portable transformers shall be deenergized before they are moved...

  2. Environmental impacts of high voltage power lines and stations

    Environmental pollution due to high voltage power lines and stations (over 400 kV) shows up in several ways: high frequency (radio and TV range) radio waves; sound pollution (noises); various direct and indirect effects on living beings; aestethic pollution. The indirect effects of electromagnetic field may result in inducing high electric potential to earth insulated objects as cars, shelters and farming equipment, fencing, etc. which on human touch lead to discharge currents which only disappear by interrupting the contact. At high currents, due to muscle contraction, the man often cannot release the touched object, hence serious or even lethal accidents may happen. In depth analysis of such phenomena is possible by separating the electric and magnetic field effects. We shall concentrate on the electric field since the magnetic field effects are much less significant. 6 refs

  3. High-Voltage, Low-Power BNC Feedthrough Terminator

    Bearden, Douglas

    2012-01-01

    This innovation is a high-voltage, lowpower BNC (Bayonet Neill-Concelman) feedthrough that enables the user to terminate an instrumentation cable properly while connected to a high voltage, without the use of a voltage divider. This feedthrough is low power, which will not load the source, and will properly terminate the instrumentation cable to the instrumentation, even if the cable impedance is not constant. The Space Shuttle Program had a requirement to measure voltage transients on the orbiter bus through the Ground Lightning Measurement System (GLMS). This measurement has a bandwidth requirement of 1 MHz. The GLMS voltage measurement is connected to the orbiter through a DC panel. The DC panel is connected to the bus through a nonuniform cable that is approximately 75 ft (approximately equal to 23 m) long. A 15-ft (approximately equal to 5-m), 50-ohm triaxial cable is connected between the DC panel and the digitizer. Based on calculations and simulations, cable resonances and reflections due to mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. A voltage divider at the DC panel, and terminating the 50-ohm cable properly, would eliminate this issue. Due to implementation issues, an alternative design was needed to terminate the cable properly without the use of a voltage divider. Analysis shows how the cable resonances and reflections due to the mismatched impedances of the cable connecting the orbiter bus and the digitizer causes the output not to reflect accurately what is on the bus. After simulating a dampening circuit located at the digitizer, simulations were performed to show how the cable resonances were dampened and the accuracy was improved significantly. Test cables built to verify simulations were accurate. Since the dampening circuit is low power, it can be packaged in a BNC feedthrough.

  4. Programmable manipulator for control of high-voltage supply of counters of multichannel detector

    A manipulator is described for automatic fine control of the high-voltage supply of the counters of an 800-channel total-absorption Cerenkov spectrometer. The manipulator is equipped with a programmable control system and operates on-line with an HP-2100A computer. It performs operations successively; on the average, 5 sec per counter are consumed

  5. 30 CFR 75.812-2 - High-voltage power centers and transformers; record of examination.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage power centers and transformers; record of examination. 75.812-2 Section 75.812-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... High-Voltage Distribution § 75.812-2 High-voltage power centers and transformers; record of...

  6. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26–100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators. (semiconductor integrated circuits)

  7. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

    Yuan, Wang; Xu, Zhang; Ming, Liu; Peng, Li; Hongda, Chen

    2014-10-01

    This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators.

  8. High Power, High Voltage Electric Power System for Electric Propulsion

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  9. A high power high voltage dc/dc converter for space applications

    Weinberg, A.; Schreuders, J.

    The design details of a modular dc/dc converter used to power the main anode supply of a mercury ion motor are presented. This motor, the RIT-35 built by M.B.B. Germany, is used as the propulsion unit of a future Asteroid Gravity Optical and Radar Analysis (AGORA) mission. This paper shows the design selected to cope with the high voltage, high power conversion for space applications and the requirement to operate from an unregulated solar array with a voltage excursion of from 150 volts beginning-of-mission (BOM) to 240 volts end-of-mission (EOM).

  10. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Vijith Vijayakumaran Nair

    2015-06-01

    Full Text Available In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommodates voltages as high as 30 V and comprises a high-voltage semi-active rectifier, a voltage reference generator and a series regulator. Further, a battery management circuit that enables safe and reliable implant battery charging based on analog control is proposed and realized. The power receiver is fabricated in 0.35-μm high-voltage Bipolar-CMOS-DMOStechnology based on the LOCOS0.35-μm CMOS process. Measurement results indicate 83.5% power conversion efficiency for a rectifier at 2.1 mA load current. The low drop-out regulator based on the current buffer compensation and buffer impedance attenuation scheme operates with low quiescent current, reduces the power consumption and provides good stability. The topology also provides good power supply rejection, which is adequate for the design application. Measurement results indicate regulator output of 4 ± 0.03 V for input from 5 to 30 V and 10 ± 0.05 V output for input from 11 to 30 V with load current 0.01–100 mA. The charger circuit manages the charging of the Li-ion battery through all if the typical stages of the Li-ion battery charging profile.

  11. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Prechanon Kumkratug

    2010-01-01

    Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into ...

  12. Spatial and temporal instabilities in high voltage power devices

    Milady, Saeed

    2010-01-29

    Dynamic avalanche can occur during the turn-off process of high voltage bipolar devices, e.g. IGBTs and p{sup +}n{sup -}n{sup +} power diodes, that may result in spatial instabilities of the homogeneous current density distribution across the device and the formation of current filaments. Filaments may cause the destruction of the device, mainly because of the high local temperatures. The first part of this work is dedicated to the current filament behavior. The positive feedback mechanisms caused by the transient current flow through the gate capacitance of an IGBT operating under short circuit conditions may result in oscillations and temporal instabilities of the IGBT current. The oscillations may cause electromagnetic interference (EMI). Furthermore, the positive feedback mechanism may accelerate the over-heating of the device and result in a thermal run-away. This is the subject of the second part of this work. In the first part of this work using the device simulation results of power diodes the underlying physical mechanisms of the filament dynamic is investigated. Simulation results of diode structures with evenly distributed doping inhomogeneities show that, the filament motion gets smoother as the distance between the inhomogeneities decreases. Hopping to faraway inhomogeneities turns into the hopping to neighboring ones and finally a smooth motion. In homogeneous structures the slow inhibitory effect of the electron-hole plasma extraction and the fast activation, due to hole current flowing along the filament, result in a smooth filament motion. An analytical model for the filament velocity under isothermal conditions is presented that can reproduce the simulation data satisfactorily. The influence of the boundary conditions on the filament behavior is discussed. The positive beveled edge termination prohibits a long stay of the filament at the edge reducing the risk of filament pinning. Self-heating effects may turn the initially electrically triggered avalanche filament into a thermally one. In contrast to the avalanche induced filaments, the thermally generated filaments are pinned because of the self-heating leading in the destruction of the device by thermal run-away. In the second part of this work the transient behavior of the IGBT under short-circuit operations is considered. A simple small-signal model shows that, even without considering stray inductances or the interaction of parallel devices, oscillations and unstable behavior of the IGBT current are possible. The criteria for oscillation and their dependence on parameters of the device and external circuit are derived. The apparent negative gate capacitance is the result of the current feedback through the Miller capacitance. For the proposed model instability occurs only if the input capacitance becomes negative. The stable operation range can be determined using the AC small-signal device simulation results (frequency-domain analysis under small-signal conditions). These results can be considered as design criteria to avoid instabilities.

  13. High-voltage circuits for power management on 65 nm CMOS

    Pashmineh, S.; Killat, D.

    2015-11-01

    This paper presents two high-voltage circuits used in power management, a switching driver for buck converter with optimized on-resistance and a low dropout (LDO) voltage regulator with 2-stacked pMOS pass devices. The circuit design is based on stacked MOSFETs, thus the circuits are technology independent. High-voltage drivers with stacked devices suffer from slow switching characteristics. In this paper, a new concept to adjust gate voltages of stacked transistors is introduced for reduction of on-resistance. According to the theory, a circuit is proposed that drives 2 stacked transistors of a driver. Simulation results show a reduction of the on-resistance between 27 and 86 % and a reduction of rise and fall times between 16 and 83 % with a load capacitance of 150 pF at various supply voltages, compared to previous work. The concept can be applied to each high-voltage driver that is based on a number (N) of stacked transistors. The high voltage compatibility of the low drop-out voltage regulator (LDO) is established by a 2-stacked pMOS transistors as pass device controlled by two regulators: an error amplifier and a 2nd amplifier adjusting the division of the voltages between the two pass transistors. A high GBW and good DC accuracy in line and load regulation is achieved by using 3-stage error amplifiers. To improve stability, two feedback loops are utilized. In this paper, the 2.5 V I/O transistors of the TSMC 65 nm CMOS technology are used for the circuit design.

  14. A new high-voltage level-shifting circuit for half-bridge power ICs

    In order to reduce the chip area and improve the reliability of HVICs, a new high-voltage level-shifting circuit with an integrated low-voltage power supply, two PMOS active resistors and a current mirror is proposed. The integrated low-voltage power supply not only provides energy for the level-shifting circuit and the logic circuit, but also provides voltage signals for the gates and sources of the PMOS active resistors to ensure that they are normally-on. The normally-on PMOS transistors do not, therefore, need to be fabricated in the depletion process. The current mirror ensures that the level-shifting circuit has a constant current, which can reduce the process error of the high-voltage devices of the circuit. Moreover, an improved RS trigger is also proposed to improve the reliability of the circuit. The proposed level-shifting circuit is analyzed and confirmed by simulation with MEDICI, and the simulation results show that the function is achieved well. (semiconductor integrated circuits)

  15. ac/dc pulse power conversion from high voltage network to JET loads

    The overall ac/dc conversion equipment for the Joint European Torus (JET) experiment has a pulse power rating of about 1 GW, making it one of the largest dc installations in the world. Considering that the peak power of various loads do not coincide and assuming that one Flywheel-Motor-Generator will be used for the poloidal field load, the remaining power to be supplied from the mains is about 500 MW. A high voltage (e.g., 400 kV) interconnected network of large generating capacity and with an appropriate (500 MW) pulse load capability is available at several prospective JET sites. The maximum values allowed for reactive power, voltage drop and distortion are fixed by the local Electricity Authority and play major roles for the layout and design of the JET static power supply system. This paper deals with the design philosophy of the Toroidal Field power supply and the problems concerning the step down transformer, the filtering of harmonics and the interference between loads

  16. A Study on Maximum Wind Power Penetration Limit in Island Power System Considering High-Voltage Direct Current Interconnections

    Minhan Yoon

    2015-12-01

    Full Text Available The variability and uncontrollability of wind power increases the difficulty for a power system operator to implement a wind power system with a high penetration rate. These are more serious factors to consider in small and isolated power systems since the system has small operating reserves and inertia to secure frequency and voltage. Typically, this difficulty can be reduced by interconnection with another robust power system using a controllable transmission system such as a high-voltage direct current (HVDC system. However, the reliability and stability constraints of a power system has to be performed according to the HVDC system implementation. In this paper, the method for calculation of maximum wind power penetration in an island supplied by a HVDC power system is presented, and the operational strategy of a HVDC system is proposed to secure the power system reliability and stability. The case study is performed for the Jeju Island power system in the Korean smart grid demonstration area.

  17. High voltage ignition of high pressure microwave powered UV light sources

    Frank, J.D.; Cekic, M.; Wood, C.H. [Fusion U.V. Curing Systems Corp., Gaithersburg, MD (United States)

    1997-12-31

    Industrial microwave powered (electrodeless) light sources have been limited to quiescent pressures of {approximately}300 Torr of buffer gas and metal-halide fills. The predominant reason for such restrictions has been the inability to microwave ignite the plasma due to the collisionality of higher pressure fills and/or the electronegativity of halide bulb chemistries. Commercially interesting bulb fills require electric fields for ionization that are often large multiples of the breakdown voltage for air. Many auxiliary ignition methods are evaluated for efficiency and practicality before the choice of a high-voltage system with a retractable external electrode. The scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to its operating point (T{sub e} {approx} 0.5 eV). This process is currently being used in a new generation of lamps, which are using multi-atmospheric excimer laser chemistries and pressure and constituent enhanced metal-halide systems. At the present time, production prototypes produce over 900 W of radiation in a 30 nm band, centered at 308 nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce over 1 kW of radiation in 30 nm wide bands, centered about the wavelength of interest.

  18. Monitoring of high voltage supply using the Controller Area Network protocol

    Luz, Igo Amauri dos S.; Farias, Paulo Cesar M.A.; Guedes, Germano P. [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil)

    2011-07-01

    Full text: In recent years, experimental physics has made great progress in the investigation of the phenomenology of neutrinos, with significant contribution from experiments using nuclear reactors as source of particles. In this context, The Neutrinos Angra Project proposes the use of an anti-neutrinos detector with ability to monitor parameters related to the activity of nuclear reactors. One of the tasks defined in the project is the development of a system to control and to monitor the high voltage supply units used by the photomultiplier tubes (PMTs) of the detector. The solution proposed in this work is based on the use of microcontrollers, from Microchip PIC family to adjust the operating point of the high voltage supply units and to acquire the current and output voltage data. Analysis of these data allows the effective control of the gain of the PMTs and to identify anomalous operational conditions. In this work is proposed the study of the Controller Area Network (CAN) protocol and the implementation of a laboratory network to reproduce the typical operations of data acquisition and information transfer between the nodes. The development of this network is divided in two stages. The first part consisted of the setup of a CAN network, using the PIC18F2680 microcontroller, which has the CAN protocol internally implemented. This network serves as a reduced model of the final system, allowing simulation of typical situations of data acquisition and transmission between the nodes and a computer. In the second part of the work, the PIC18F4550 microcontroller was associated with the external CAN controller MCP2515 to develop a CAN/USB converter. This converter provides a new communication channel between network nodes and the computer, in addition to the RS232 interface. (author)

  19. Offshore Power Transmission :Submarine high voltage transmission alternatives

    Ulsund, Ragnar

    2009-01-01

    Offshore power transmission is becoming an increasingly important issue. To moderate climate change, world leaders have set environmental goals that will be very difficult to reach without renewable power production and the removal of production units with high emissions. Wind power and electrification have been the focus in this report. Plans for the expensive wind power are already moving offshore. This report has made an attempt at suggesting a guideline for well-suited transmissio...

  20. High Voltage Power Converter for Large Wind Turbine

    Sztykiel, Michal

    2014-01-01

    The increasing penetration of the wind energy has resulted in newly planned installations of offshore wind turbines. In order to minimize installation, material and transportation costs of the offshore wind power plants, large multi-MW wind turbine systems are being preferably employed and developed, which allow high power generation of each single unit. Nevertheless, further increase in the power ratings of the newly emerging turbines becomes a major concern related to the operating voltage ...

  1. High Voltage Power Converter for Large Wind Turbine

    Sztykiel, Michal

    parts. Due to limited voltage level of the generator insulation system (15 kV) along with the increasing grid integration requirements, special care has been made over the search for optimal full-scale power converter circuitry, which additionally has to compensate voltage differences between the......The increasing penetration of the wind energy has resulted in newly planned installations of offshore wind turbines. In order to minimize installation, material and transportation costs of the offshore wind power plants, large multi-MW wind turbine systems are being preferably employed and...... developed, which allow high power generation of each single unit. Nevertheless, further increase in the power ratings of the newly emerging turbines becomes a major concern related to the operating voltage level. In order to accommodate larger powers, presently employed low voltage (690 V) systems already...

  2. High Power, High Voltage FETs in Linear Applications: A User's Perspective

    N. Greenough, E. Fredd, S. DePasquale

    2009-09-21

    The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

  3. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into the existing power flow program based on fast decoupled method. The presented method was tested on the multimachine power system. Results: The transmission line loss of the system with and without HVDC was compared. Conclusion: From the simulation results, the HVDC can reduce transmission line loss of power system.

  4. Review on partial discharge detection techniques related to high voltage power equipment using different sensors

    Yaacob, M. M.; Alsaedi, M. A.; Rashed, J. R.; Dakhil, A. M.; Atyah, S. F.

    2014-12-01

    When operating an equipment or a power system at the high voltage, problems associated with partial discharge (PD) can be tracked down to electromagnetic emission, acoustic emission or chemical reactions such as the formation of ozone and nitrous oxide gases. The high voltage equipment and high voltage installation owners have come to terms with the need for conditions monitoring the process of PD in the equipments such as power transformers, gas insulated substations (GIS), and cable installations. This paper reviews the available PD detection methods (involving high voltage equipment) such as electrical detection, chemical detection, acoustic detection, and optical detection. Advantages and disadvantages of each method have been explored and compared. The review suggests that optical detection techniques provide many advantages in the consideration of accuracy and suitability for the applications when compared to other techniques.

  5. Concept for a high voltage solar array with integral power conditioning.

    Wiener, P.; Rasmussen, R.

    1972-01-01

    Description of a general case solution that synthesizes a high voltage solar array system from a switchable building block concept which makes possible system optimization for specific load requirements. A specific optimized solution is demonstrated, with performance estimates relating array area, weight, and power. Significant technology problems peculiar to a high-voltage switchable solar array design are discussed, along with special requirements anticipated during a hardware development effort.

  6. Power loss for high-voltage solar-cell arrays

    Parker, L. W.

    1979-01-01

    Electric field particle collection and power loss are calculated in program written in FORTRAN IV for use on UNIVAC 1100/40 computer. Program incorporates positive and negative and negative charge flows and balance between positive and negative flows is performed by iteration.

  7. Hybrid voltage divider used for high voltage pulsed power measurement

    The principle and structure of a hybrid voltage divider are proposed and the calibration and experimental testing are carried out. The ideal response conditions of the divider are analyzed by using the simplified divider model, the attenuation characteristic of two-stage voltage dividing is discussed, and then an error control method is presented. Through load calibration, the pulsed voltage frequency response of the divider can be greater than 2.9 MHz with the largest pulse width of 40 μs, the attenuation ratio (or the attenuation coefficient) of 2. 60 kV/V and the measurement error of less than 5%. The divider has the merits of low cost, easy fabrication, and being capable of ns-to μs-level pulsed voltage measurement, and it can be applied to laboratory- scale pulsed power measurement. (authors)

  8. Overview of power converter designs feasible for high voltage transformer-less wind turbine

    Sztykiel, Michal

    Many leading wind turbine manufacturers are pushing forward in variable-speed wind turbines, often exceeding 5 MW. Therefore, novel designs and concepts for optimal high power wind turbines appeared. One of the most promising concepts is the high voltage (10-35 kV) transformer-less topology. High...... voltage design enables low power losses and elimination of bulky step-up transformer from the wind turbine system. However, new challenges appear for such topology, which have to be properly identified and successfully overcome. This paper presents possible concept for transformer-less wind turbine...... topology along with an overview of most promising candidates for optimal full-scale power converter design. Study is carried with proposed and justified high voltage wind turbine application along with selection of existing and most promising multilevel power converter topologies, which could be...

  9. High voltage regulator for power modulation of a gyrotron with voltage depressed collector

    Modulated electron cyclotron resonance absorption of millimetre waves (EHF) is used as a diagnostic tool for heat transport in fusion plasmas and envisaged for MHD mode stabilisation. The EHF output power of a gyrotron is modulated for the generation of heat waves whose propagation through the plasma is a measure for the heat conductivity. Recently gyrotrons were developed in which the electron beam is decelerated after EHF-emission by a voltage depressed collector (VDC). By this mean, the efficiency of EHF generation in gyrotrons is improved from values of typically 30% to values above 50%. For such tubes, the high voltage supply for acceleration has to drive only a leakage current, whereas the beam current can be delivered by a power source with less voltage stability. This paper describes the development of a programmable acceleration voltage source for power modulation of such an advanced 140 GHz / 800 kW VDC-gyrotron used for ECRH on the W7-AS Stellarator. (authors)

  10. Residential Distance to High-voltage Power Lines and Risk of Neurodegenerative Diseases

    Frei, Patrizia; Poulsen, Aslak Harbo; Mezei, Gabor; Pedersen, Camilla; Cronberg Salem, Lise; Johansen, Christoffer; Röösli, Martin; Schüz, Joachim

    2013-01-01

    The aim of this study was to investigate the possible association between residential distance to high-voltage power lines and neurodegenerative diseases, especially Alzheimer's disease. A Swiss study previously found increased risk of Alzheimer's disease for people living within 50 m of a power ...

  11. An Integrated Chip High-Voltage Power Receiver for Wireless Biomedical Implants

    Vijith Vijayakumaran Nair; Jun Rim Choi

    2015-01-01

    In near-field wireless-powered biomedical implants, the receiver voltage largely overrides the compliance of low-voltage power receiver systems. To limit the induced voltage, generally, low-voltage topologies utilize limiter circuits, voltage clippers or shunt regulators, which are power-inefficient methods. In order to overcome the voltage limitation and improve power efficiency, we propose an integrated chip high-voltage power receiver based on the step down approach. The topology accommoda...

  12. 30 CFR 75.704 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding frames of stationary high-voltage...-UNDERGROUND COAL MINES Grounding § 75.704 Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all stationary high-voltage equipment receiving...

  13. Evaluation of high temperature dielectric films for high voltage power electronic applications

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.

  14. Insulation co-ordination in high-voltage electric power systems

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  15. Integrated high-voltage inductive power and data-recovery front end dedicated to implantable devices.

    Mounaim, F; Sawan, M

    2011-06-01

    In near-field electromagnetic links, the inductive voltage is usually much larger than the compliance of low-voltage integrated-circuit (IC) technologies used for the implementation of implantable devices. Thus most integrated power-recovery approaches limit the induced signal to low voltages with inefficient shunt regulation or voltage clipping. In this paper, we propose using high-voltage (HV) complementary metal-oxide semiconductor technology to fully integrate the inductive power and data-recovery front end while adopting a step-down approach where the inductive voltage is left free up to 20 or 50 V. The advantage is that excessive inductive power will translate to an additional charge that can be stored in a capacitor, instead of shunting to ground excessive current with voltage limiters. We report the design of two consecutive HV custom ICs-IC1 and IC2-fabricated in DALSA semiconductor C08G and C08E technologies, respectively, with a total silicon area (including pads) of 4 and 9 mm(2), respectively. Both ICs include HV rectification and regulation; however, IC2 includes two enhanced rectifier designs, a voltage-doubler, and a bridge rectifier, as well as data recovery. Postlayout simulations show that both IC2 rectifiers achieve more than 90% power efficiency at a 1-mA load and provide enough room for 12-V regulation at a 3-mA load and a maximum-available inductive power of 50 mW only. Successful measurement results show that HV regulators provide a stable 3.3- to 12-V supply from an unregulated input up to 50 or 20 V for IC1 and IC2, respectively, with performance that matches simulation results. PMID:23851479

  16. Analysis and treatment for high voltage bushings of electric auxiliary boiler of nuclear power plant

    The structure and theory of the two high pressure discharged steam electrode boilers installed in Qinshan Nuclear Power Plant II is presented, and the causes for the High Voltage Bushings malfunctions since the boiler put into operation are also analyzed in this paper. The suggestions for the improvement of replacement and maintenance of the Bushings are given. (authors)

  17. Practical hybrid fiber optic current sensor on a high-voltage power line

    Zheng, Zhe; Chen, Zhan; Liu, Feng; Lu, Xin; Guo, Yanhui; Zheng, Shengxuan

    2000-10-01

    In this paper, the disadvantages of the traditional Current Transformer (CT) on high voltage power line are described. A new method to measure the high-voltage current is studied. A Practical Hybrid Fiber Optic Sensor for High-Voltage Current is developed and the result of the experiment and the errors are analyzed. This design consists of two parts. One is in the air attached with the high voltage power line and the other one is on the ground. In the upper part, a Rogowaski Loop is used to transform the current signal into voltage one, then a V/F converter is applied to change this voltage signal into frequency. After processed, the resulted frequency signal is fed to the LED, which turns the electrical signal into light one. Then, the light signal is lead along the optic fiber down to the ground. Here, the optic fiber is used for insulation purpose. On the ground the light signal is converted back into electrical signal with a photoelectric cell. After amplified and regulated, the electrical signal is fed to a F/V converter, which changes the frequency signal back into the original current signal.

  18. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  19. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  20. The DT-SJMOSFET : a new power MOSFET strucure for high-voltage applications

    Tholier, Loc; Morancho, Frdric; Isoird, Karine; Mahfoz-Kotb, Hicham; Tranduc, Henri

    2007-01-01

    New hybrid vehicles will probably use high voltage batteries (150 to 200 Volts). For these future automotive applications, the development of 600 Volts power MOSFET switches exhibiting low on-resistance is desired. The "Deep Trench SuperJunction" MOSFET (DT-SJMOSFET) is one of the new candidates. In this paper, a comparative theoretical study, using 2D simulations, shows that the DT-SJMOSFET should be a challenger to the conventional SJMOSFET in terms of "specific on-resistance / breakdown vo...

  1. High voltage characteristics of the electrodynamic tether and the generation of power and propulsion

    Williamson, P. R.

    1986-01-01

    The Tethered Satellite System (TSS) will deploy and retrieve a satellite from the Space Shuttle orbiter with a tether of up to 100 km in length attached between the satellite and the orbiter. The characteristics of the TSS which are related to high voltages, electrical currents, energy storage, power, and the generation of plasma waves are described. A number of specific features of the tether system of importance in assessing the operational characteristics of the electrodynamic TSS are identified.

  2. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  3. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    Rosolem, Joo Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, Joo Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 ?m multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  4. Repetitive plasma opening switch for powerful high-voltage pulse generators

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  5. On-site Testing and PD Diagnosis of High Voltage Power Cables

    Gulski, E.; Cichecki, P.; Wester, F.; Smit, J.J.; Bodega, R.; Hermans, T.J.W.H.; Seitz, P.P.; Quak, B.; de Vries, F.

    2008-01-01

    In addition to after-laying of new-installed high voltage (HV) power cables the use of on-site non-destructive on-site testing and diagnosis of service aged power cables is becoming an important issue to determine the actual condition of the cable systems and to determine the future performances. In this paper based on field experience an overview is presented on on-site testing and partial discharge diagnosis of HV power cables with regard to on-site testing methods: energizing, diagnostic a...

  6. On-site Testing and PD Diagnosis of High Voltage Power Cables:

    Gulski, E.; Cichecki, P.; Wester, F.; Smit, J J; Bodega, R.; Hermans, T.J.W.H.; Seitz, P.P.; Quak, B.; Vries, F. de

    2008-01-01

    In addition to after-laying of new-installed high voltage (HV) power cables the use of on-site non-destructive on-site testing and diagnosis of service aged power cables is becoming an important issue to determine the actual condition of the cable systems and to determine the future performances. In this paper based on field experience an overview is presented on on-site testing and partial discharge diagnosis of HV power cables with regard to on-site testing methods: energizing, diagnostic a...

  7. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch

    The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current −30 A, voltage drop −5 kV, air flow rate 35 g/s; for three-phase mode: current (40–85) A, voltage drop (2.5–3.2) kV, air flow rate (60–100) g/s. Arc length in the installations exceeded 2 m.

  8. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch

    Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.

    2012-12-01

    The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.

  9. 30 CFR 77.703 - Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding frames of stationary high-voltage..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.703 Grounding frames of stationary high-voltage equipment receiving power from ungrounded delta systems. The frames of all...

  10. A Study on Maximum Wind Power Penetration Limit in Island Power System Considering High-Voltage Direct Current Interconnections

    Minhan Yoon; Yong-Tae Yoon; Gilsoo Jang

    2015-01-01

    The variability and uncontrollability of wind power increases the difficulty for a power system operator to implement a wind power system with a high penetration rate. These are more serious factors to consider in small and isolated power systems since the system has small operating reserves and inertia to secure frequency and voltage. Typically, this difficulty can be reduced by interconnection with another robust power system using a controllable transmission system such as a high-voltage d...

  11. Audio-frequency noise emissions from high-voltage overhead power lines

    This article discusses the noise-emissions caused by high-voltage overhead power lines that can occur under certain atmospheric conditions. These emissions, caused by electric discharges around the conductors, can achieve disturbing values, depending on the conditions prevailing at the time in question. The causes of the discharges are examined and the ionisation processes involved are looked at. The parameters influencing the discharges are discussed and measures that can be taken to reduce such audio-frequency emissions are looked at. The authors note that a reduction of peripheral field strengths can reduce emissions and that hydrophilic coatings can lead to faster reduction of such effects after rainfall

  12. Performance of plasma erosion opening switches in high voltage pulsed power compression

    The plasma erosion opening switch was investigated for use in a pulsed power compression system. The effects of plasma injection velocity and injection polarity to the switch operation were studied experimentally. Using high injection velocity plasma, high impedance (up to 100 Ω) and high voltage (up to 6.4 MV) operation is possible. Comparison between experimental data and analytic calculations of the time history of the plasma erosion opening switch implied that a self magnetic pressure effect is important for fast, high impedance opening of the switch. (author)

  13. Investigation of Electrical Potential and Electromagnetic Field for Overhead High Voltage Power Lines in Malaysia

    Mokhtar, M.; S. Hitam; S.A. Fauzi; R. K.Z. Sahbudin

    2010-01-01

    The exposure of human body to electric field and magnetic field could cause biological effects, including changes in functions of cells and tissues and subtle changes in hormone levels, which may or may not be harmful. The aim of this study was to analyze and compute the amount of electrical potential, electric field and magnetic flux density at a certain point and distance from the overhead high voltage power lines of 132 and 275 kV in Malaysia. An analytical calculus method is proposed in o...

  14. Modeling of Eddy Current losses of the high voltage winding of power transformers for transient studies

    One of the most suitable models for studying the electromagnetic transient behavior of the high voltage winding of the power transformers is the detailed model. This model consists of inductive and capacitive effects as well as the Eddy Current and dielectric losses in the form of lumped parameters. The losses have significant effects on the damping of transient over voltages. In this paper, the Eddy Current losses are expressed by a matrix which its elements satisfy the proximity effects and skin effects precisely. The matrix is calculated at low frequency by the finite element method and then generalized to the high frequencies. Simulations are presented for illustration and validation

  15. High voltage power lines in Italy: Quantitation of exposure and health risk evaluation

    In Italy, as in most developed countries, a lively debate has been raised in the last years on possible long-term health effects of exposure to power frequency magnetic fields. Though the exposure is quite ubiquitous, due to the large presence of electric sources in any domestic, work, and urban environment, most of the concern regards fields generated by overhead high-voltage lines. Several epidemiological studies have in fact indicated an increase of cancer, in particular childhood leukaemia, within the population residing near power lines. The quantitative evaluation of the health risk associated with power lines is obviously of crucial importance, in particular for decision makers, in view of the future development of the electric network. Reliable data on the dimension of the health impact of power lines may in fact help in finding some consensus between the Authorities and the general public, and hopefully to overcome the present controversies

  16. Power quality monitoring guideline for wind farms connected to extra high voltage grids

    Rabe, Steffen; Rudion, Krzystof; Styczynski, Zbigniew A. [Magdeburg Univ. (Germany); Sassnick, Yvonne; Wilhelm, Matthias [50Hertz Transmission GmbH, Berlin (Germany)

    2011-07-01

    The development of wind energy technologies has caused the capacity of wind farms to increase. There are already some large wind farms (WFs) connected directly to the extra high voltage (EHV) networks. Since most of the modern wind turbines are based on power electronic interfaces, the power quality (PQ) aspects with respect to transmission grids have become even more relevant. The goal of this paper is to propose a methodological approach for a PQ measurement - and analysis procedure for WFs, which are interconnected to the power networks at the EHV level, based on important existing standards. This work is necessary because currently no comprehensive and standardized system of rules exists for this matter. Further, a measuring set-up and results from exemplary PQ measurements are presented and some conspicuous results are analyzed. (orig.)

  17. Nanosecond high-voltage pulse shaped with low-voltage supply

    Circuits are described of nanosecond kilovolt shapers based on drift diodes with a single-tact converter of low-voltage supply. The converter is synchronized with the shaper. A possibility is shown for conbining functions of the key of shaper and converter. The typical range for the repetition rate returning is 10-50 times

  18. Development of dielectric barrier discharging power supply

    Gao, Yinghui; Liu, Kun; Fu, Rongyao; Sun, Yaohong; Yan, Ping

    2015-11-01

    Due to the demand of a dielectric barrier discharge power supply, a high voltage and high frequency AC power supply was designed and implemented. Its output voltage is standard or approximate standard sine waveform with the frequency range of 1 kHz to 50 kHz. The output voltage and output frequency can be adjusted individually. The maximum output power of the power supply is 2 kW. It can be operated through local or remote control. The power supply has been used in the dielectric barrier discharging research under different conditions.

  19. Supply Power Factor Improvement in Ozone Generator System Using Active Power Factor Correction Converter

    G. Udhayakumar; Rashmi M R; PATEL K.; G.P. Ramesh; Suresh A

    2015-01-01

    Artificial Ozone Generating system needs High Voltage, High Frequency supply. The Ozonator distorts the supply currents and henceforth affect the supply power factor. This paper presents the performance comparison of PWM inverter to Power Factor Corrected (PFC) converter with PWM inverter based High-voltage High-frequency power supply for ozone generator system. The conventional inverter has front end bridge rectifier with smoothing capacitor. It draws non-sinusoidal current from ac mains; as...

  20. Charging a Battery-Powered Device with a Fiber-Optically Connected Photonic Power System for Achieving High-Voltage Isolation

    Lizon, David C [Los Alamos National Laboratory; Gioria, Jack G [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory; Snyder, Hans R [Los Alamos National Laboratory

    2008-01-01

    This paper describes the development and testing of a system to provide isolated power to the cathode-subsystem electronics of an x-ray tube. These components are located at the cathode potential of several hundred kilovolts, requiring a supply of power isolated from this high voltage. In this design a fiber-optically connected photonic power system (PPS) is used to recharge a lithium-ion battery pack, which will subsequently supply power to the cathode-subsystem electronics. The suitability of the commercially available JDSU PPS for this application is evaluated. The output of the ppe converter is characterized. The technical aspects of its use for charging a variety of Li-Ion batteries are discussed. Battery charge protection requirements and safety concerns are also addressed.

  1. High voltage engineering

    Rizk, Farouk AM

    2014-01-01

    Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selec

  2. Power supplied

    Woof, M.

    2000-04-01

    A joint development project between Rheinbraun and Pirelli Kabel und Systeme has produced versatile power cabling which should cut mining costs. It is designed to withstand continuous vibration or wetting, be flame retardant, and suitable to reel continuously or onto spiral or cylindrical needs. Test lengths of cable are on trial in various open pit mines. The cable has a new insulating material and novel sheath design and is light-weight. Several types of cables for different applications were developed in the project. Protolon (M)R is a low-voltage rubber-sheathed cable for installing on heavy machines; Protolon(M)F is for medium-voltage applications; Protomont(M) suits quasi-stationary installations such as conveyors. The Pirelli Optoflex(M) range is a tough and reliable optical fibre cable for data and signal traffic. 2 photos.

  3. Material science and device physics in SiC technology for high-voltage power devices

    Kimoto, Tsunenobu

    2015-04-01

    Power semiconductor devices are key components in power conversion systems. Silicon carbide (SiC) has received increasing attention as a wide-bandgap semiconductor suitable for high-voltage and low-loss power devices. Through recent progress in the crystal growth and process technology of SiC, the production of medium-voltage (600-1700 V) SiC Schottky barrier diodes (SBDs) and power metal-oxide-semiconductor field-effect transistors (MOSFETs) has started. However, basic understanding of the material properties, defect electronics, and the reliability of SiC devices is still poor. In this review paper, the features and present status of SiC power devices are briefly described. Then, several important aspects of the material science and device physics of SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed. Fundamental issues regarding SiC SBDs and power MOSFETs are also discussed.

  4. Interconnected High-Voltage Pulsed-Power Converters System Design for H? Ion Sources

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H? sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 ?s of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H? source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  5. Power water high-voltage shaping line with hydraulic shock damping

    To avoid a hydraulic impact on a dielectric material during power high-voltage pulse shaping a double shaping line (DSL) is developed for the ''KALMAR-1'' accelerator at electron energy of 1 MeV, beam current of 0.4 MA and a pulse duration of 100 ns. To prevent the design destruction due to a hydraulic impact the DSL structure filled with distilled water as a dielectric material provides for an impulse backwash of the intermediary cylinder of the line when a discharger operates. The hydraulic impact damping system has proved its efficiency. The DSL withstood more than 1000 operatings without failure with 20 kJ per pulse energy release into distilled water

  6. Spectral response of atmospheric electric field measurements near AC high voltage power lines

    Silva, H. G.; Matthews, J. C.; Wright, M. D.; Shallcross, D. E.

    2015-10-01

    To understand the influence of corona ion emission on the atmospheric electrical field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill recorded the atmospheric electric field over one year. Meteorological measurements were also taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that reason it is used as a reference against Z1 and Z2, which are strongly influenced by this phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral response of the aforementioned zones. Only frequencies above 1 minute are considered.

  7. High voltage fast switches for nuclear applications

    SILVA process consists in a selective ionization of the 235 uranium isotope, using laser beams generated by dye lasers pumped by copper vapour laser (C.V.L.). SILVA involves power electronic for 3 power supplies: - copper vapour laser power supply, - extraction power supply to generate the electric field in the vapour, and - electron beam power supply for vapour generation. This article reviews the main switches that are proposed on the market or are on development and that could be used in SILVA power supplies. The SILVA technical requirements are: high power, high voltage and very short pulses (200 ns width). (A.C.)

  8. Ultra high voltage MOS controlled 4H-SiC power switching devices

    Ryu, S.; Capell, C.; Van Brunt, E.; Jonas, C.; O'Loughlin, M.; Clayton, J.; Lam, K.; Pala, V.; Hull, B.; Lemma, Y.; Lichtenwalner, D.; Zhang, Q. J.; Richmond, J.; Butler, P.; Grider, D.; Casady, J.; Allen, S.; Palmour, J.; Hinojosa, M.; Tipton, C. W.; Scozzie, C.

    2015-08-01

    Ultra high voltage (UHV, >15 kV) 4H-silicon carbide (SiC) power devices have the potential to significantly improve the system performance, reliability, and cost of energy conversion systems by providing reduced part count, simplified circuit topology, and reduced switching losses. In this paper, we compare the two MOS based UHV 4H-SiC power switching devices; 15 kV 4H-SiC MOSFETs and 15 kV 4H-SiC n-IGBTs. The 15 kV 4H-SiC MOSFET shows a specific on-resistance of 204 m? cm2 at 25 C, which increased to 570 m? cm2 at 150 C. The 15 kV 4H-SiC MOSFET provides low, temperature-independent, switching losses which makes the device more attractive for applications that require higher switching frequencies. The 15 kV 4H-SiC n-IGBT shows a significantly lower forward voltage drop (VF), along with reasonable switching performance, which make it a very attractive device for high voltage applications with lower switching frequency requirements. An electrothermal analysis showed that the 15 kV 4H-SiC n-IGBT outperforms the 15 kV 4H-SiC MOSFET for applications with switching frequencies of less than 5 kHz. It was also shown that the use of a carrier storage layer (CSL) can significantly improve the conduction performance of the 15 kV 4H-SiC n-IGBTs.

  9. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  10. Novel High-Voltage, High-Power Piezoelectric Transformer Developed and Demonstrated for Space Communications Applications

    Carazo, Alfredo V.; Wintucky, Edwin G.

    2004-01-01

    Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The output section consists of a separate output rectifier for each PT connected in series.

  11. X-rays and microwave RF power from high voltage laboratory sparks

    Montanyà, Joan; Fabró, Ferran; March, Víctor; van der Velde, Oscar; Solà, Glòria; Romero, David; Argemí, Oriol

    2015-12-01

    Lightning flashes involve high energy processes that still are not well understood. In the laboratory, high voltage pulses are used to produce long sparks in open air allowing the production of energetic radiation. In this paper X-rays emitted by long sparks in air are simultaneously measured with the RF power radiation at 2.4 GHz. The experiment showed that the measured RF power systematically peaks at the time of the X-rays generation (in the microsecond time scale). All of the triggered sparks present peaks of RF radiation before the breakdown of the gap. The RF peaks are related to the applied voltage to the gap. RF peaks are also detected in discharges without breakdown. Cases where X-rays are detected presented higher RF power. The results indicate that at some stage of the discharge, before the breakdown, electrons are very fast accelerated letting in some cases to produce X-rays. Microwave radiation and X-rays may come from the same process.

  12. Investigation of Electrical Potential and Electromagnetic Field for Overhead High Voltage Power Lines in Malaysia

    M. Mokhtar

    2010-01-01

    Full Text Available The exposure of human body to electric field and magnetic field could cause biological effects, including changes in functions of cells and tissues and subtle changes in hormone levels, which may or may not be harmful. The aim of this study was to analyze and compute the amount of electrical potential, electric field and magnetic flux density at a certain point and distance from the overhead high voltage power lines of 132 and 275 kV in Malaysia. An analytical calculus method is proposed in order to accomplish this study. The models of the power lines were constructed using the actual physical dimensions of the towers. The results show that the exposure levels of the electromagnetic fields to the public is low if they stay more than 30 m away from the power lines. For the live-line worker, the exposure to the high electric and magnetic field could endanger their body if they stay too close to the conductor. The evaluations of the electrical potential, electric field strength and magnetic flux density are done using the Matlab environment. Matlabs Graphical User Interface (GUI techniques are developed as an easy and user-friendly tool to be used.

  13. IGBT based solid state high voltage pulse power modulator for RF linacs

    Solid-state pulsed power modulators offer the promise of higher efficiency, longer life and compactness. This paper describes an IGBT based solid-state high voltage pulse power modulator developed for industrial RF linacs. The pulse modulator is required to generate a voltage pulse of about 10 ?s width, amplitude in the range 50kV to 100kV at a repetition rate in the range of 100-400 Hz and peak pulse current in the range 2-5 A, keeping rise time less than 1 ?s. Sharp rise time pulse ensures low divergence beam. One of the challenges in pulse power modulator is to reduce the rise time. This leads to choosing appropriate magnetic cores and novel techniques for winding so as to minimize inductance and capacitance of pulse transformer. A brief discussion of circuit topologies and solid-state devices is followed by the presentation of results of two prototype modulators one using locally available Mn-Zn ferrite core and other using kcp-30 metglass core of Russian origin. (author)

  14. Highly efficient shielding of high-voltage underground power lines by pure iron screens

    Metallic shielding structures are often adopted to mitigate the magnetic fields generated by high-power high-voltage underground power lines. Their design calls for the assessment of the combined influence of their geometrical parameters and the properties of the employed materials. In this paper, we present the study of pure iron shielding of a three-phase power line and the related efficiency. A finite element-boundary element (FE-BE) method is applied to describe the electromagnetic behavior of the cable-enwrapping shield. This is modeled as an indefinitely long cylinder of hexagonal cross-section, obtained by longitudinal juxtaposition of two doubly bent laminations, their thickness ranging between 1 and 10 mm. The magnetic properties of the involved pure iron laminations have been experimentally obtained under three different conditions: as-received, after localized plastic deformation, after stress-relief annealing. A low-carbon steel lamination has also been considered, whose harder magnetic behavior is predicted to lead to inferior shielding properties. The strong increase of iron permeability obtained upon annealing is conducive to improved shielding effectiveness in thin lamination screens, the advantage of the related magnetic softening becoming irrelevant for sheet thickness larger than about 4 mm. Tests performed on a 42 m long archetype three-phase line, endowed with a 4 mm thick annealed pure iron shield, provide figures for the shielding effectiveness that are in close agreement with the FE-BE modeling prediction

  15. Highly efficient shielding of high-voltage underground power lines by pure iron screens

    Zucca, M.; Lorusso, G.; Fiorillo, F.; Roccato, P. E.; Annibale, M.

    Metallic shielding structures are often adopted to mitigate the magnetic fields generated by high-power high-voltage underground power lines. Their design calls for the assessment of the combined influence of their geometrical parameters and the properties of the employed materials. In this paper, we present the study of pure iron shielding of a three-phase power line and the related efficiency. A finite element-boundary element (FE-BE) method is applied to describe the electromagnetic behavior of the cable-enwrapping shield. This is modeled as an indefinitely long cylinder of hexagonal cross-section, obtained by longitudinal juxtaposition of two doubly bent laminations, their thickness ranging between 1 and 10 mm. The magnetic properties of the involved pure iron laminations have been experimentally obtained under three different conditions: as-received, after localized plastic deformation, after stress-relief annealing. A low-carbon steel lamination has also been considered, whose harder magnetic behavior is predicted to lead to inferior shielding properties. The strong increase of iron permeability obtained upon annealing is conducive to improved shielding effectiveness in thin lamination screens, the advantage of the related magnetic softening becoming irrelevant for sheet thickness larger than about 4 mm. Tests performed on a 42 m long archetype three-phase line, endowed with a 4 mm thick annealed pure iron shield, provide figures for the shielding effectiveness that are in close agreement with the FE-BE modeling prediction.

  16. A vacuum tolerant high voltage system with a low noise and low power Cockcroft–Walton photomultiplier base

    Masuda, T., E-mail: taka@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwai, E. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Kawasaki, N. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kim, E.J. [Division of Science Education, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Komatsubara, T.K. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Lee, J.W. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Lim, G.Y. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Maeda, Y.; Naito, D.; Nanjo, H. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Nomura, T. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Ri, Y.D. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Sasao, N. [Research Core for Extreme Quantum World, Okayama University, Tsushima-naka 3-1-1 Kita-ku, Okayama 700-8530 (Japan); Sato, K. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Seki, S. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Shiomi, K.; Sugiyama, Y.; Togawa, M. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Watanabe, H. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Yamanaka, T. [Department of Physics, Osaka University, Osaka 560-0043 (Japan)

    2014-05-11

    We developed a high voltage system for the electromagnetic calorimeter of the KOTO detector. The system is designed around a low noise, low power Cockcroft–Walton (CW) photomultiplier tube base with a high gain preamplifier. The low power makes it suitable for operations in vacuum. The low noise and high gain allow detecting signals in the 1 MeV range. We achieved a final noise level below 180μV{sub rms} for a preamplifier gain of more than 40. A vacuum tolerant control system for the CW bases power distribution was also designed. This system is able to control and monitor the high voltage of each individual base.

  17. ITER coil power supply

    The ITER Coil Power Supply and Distribution System (CPSDS) provides the supply and control of electrical power to generate the toroidal and poloidal fields which form, confine and control the plasma, as well as the supply of AC power to the Additional Heating Power Supplies. Here, an overview of the present design of the ITER coil power supply system is presented, along with brief descriptions of the main components including the AC/DC converters, switching networks, and discharge circuits

  18. Modern Risk Assessment for Nuclear Power Plants High-Voltage Substations

    The paper describes a first Romanian attempt to set up the methodology for risk assessment and control within high-voltage substations, developed for the Nuclear power plant in Cernavoda (Romania). Considering the present risk assessment methods the MENER Project will develop a new methodology, in line with the European Community legislation and with the specific regional needs. In order to correctly shape the necessary resources required by a risk analysis a large size enterprise (a nuclear power plant) is selected and the following five indicators will be estimated: the economic profit, environmental risk, indirect (future) risk, technology improvement and physic and psychological risk. The results are expected to considerably facilitate risk assessment, by: evaluating project acceptability; evaluating equipment compliance to regulatory criteria; estimating excluding clearances; easing the design of emergency programmes; identifying the equipment use restrictions; identifying the risk sources; selecting the maintenance and risk reduction methods; testing the procedures leading to future regulatory norms; suitability of the risk management system modification. The immediate result of employing modern risk assessment methods could be the decrease by one third of the expenses required by environment protection, staff health and labor safety and quality management. (author)

  19. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world

    Myllys Minna

    2014-03-01

    Full Text Available We have derived comprehensive statistics of geomagnetic activity for assessing the occurrence of geomagnetically induced currents (GIC in the Norwegian high-voltage power grid. The statistical study is based on geomagnetic recordings in 1994–2011 from which the geoelectric field can be modelled and applied to a DC description of the power grid to estimate GIC. The largest GIC up to a few 100 A in the Norwegian grid occur most likely in its southern parts. This follows primarily from the structure of the grid favouring large GIC in the south. The magnetic field has its most rapid variations on the average in the north, but during extreme geomagnetic storms they reach comparable values in the south too. The ground conductivity has also smaller values in the south, which further increases the electric field there. Additionally to results in 1994–2011, we performed a preliminary estimation of a once per 100 year event for geoelectric field by extrapolating the statistics. We found that the largest geoelectric field value would be twice the maximum in 1994–2011. Such value was actually reached on 13–14 July 1982.

  20. Low Voltage Power Supply Incorporating Ceramic Transformer

    Imori, M

    2007-01-01

    A low voltage power supply provides the regulated output voltage of 1 V from the supply voltage around 48 V. The low voltage power supply incorporates a ceramic transformer which utilizes piezoelectric effect to convert voltage. The ceramic transformer isolates the secondary from the primary, thus providing the ground isolation between the supply and the output voltages. The ceramic transformer takes the place of the conventional magnetic transformer. The ceramic transformer is constructed from a ceramic bar and does not include any magnetic material. So the low voltage power supply can operate under a magnetic field. The output voltage is stabilized by feedback. A feedback loop consists of an error amplifier, a voltage controlled oscillator and a driver circuit. The amplitude ratio of the transformer has dependence on the frequency, which is utilized to stabilize the output voltage. The low voltage power supply is investigated on the analogy of the high voltage power supply similarly incorporating the cerami...

  1. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    A new high-voltage and low-specific on-resistance (Ron,sp) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage Vd is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field EI and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low Ron,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. The high-voltage module for photomultipliers

    The high-voltage power supply module is described. The HV module is designed on the basis of the 'Greinaher Voltage Multiplier'. Any output of a Greinaher is an integral multiple of the supply voltage of the oscillator. The use of a Greinaher in the module permits one to achieve the high-voltage stability, the linear voltage distribution from cathode to anode, the low internal impedance and negligible cross-talk from the oscillator to the signal output. The advantages of a supply system where the cathode and dynode voltages for photomultipliers are generated by a miniaturised converter in the tube base are discussed, too

  3. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    Nussberger, A. A.; Woodcock, G. R.

    1980-07-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  4. High Power Amplifier and Power Supply

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  5. Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system

    Orama, Lionel R.

    In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.

  6. Design and development of power supplies at VECC for accelerators

    Several power supplies have been designed and developed in-house incorporating various topologies to match the load requirements. Most of the power supplies have been being utilised in K-130 and K-500 cyclotrons operation successfully from last several years. Amongst other types, Switching Mode PS (SMPS), Phase Controlled Rectifier (PCR), Linear mode power supply are mostly in use, irrespective of their own merits and demerits. Switching mode power supply (SMPS) is most common topology for various applications ranging from high current to high voltage applications. Due to low stored energy and faster response, the SMPS incorporating Pulse Switch Modulation (PSM) configuration is most suitable for high voltage DC power supply at larger power compared to its counterparts, makes possible to operate the power system without crowbar. For an IOT cathode power supply, a 200kW at - 40kV High voltage power supply is under development incorporating SMPS and PSM technique. Earlier, High Voltage power supply was made by using Tetrode Tube in linear mode for RF amplifier for K-130 Cyclotron. Later, in K-500 Cyclotron, a High Voltage power supply was developed incorporating PCR topology rated at 20kV, 20 Amp for Anodes for 3 nos. of RF amplifiers. These HV power supply is equipped with ultra-fast acting Crowbar Protection System developed in VECC which is for the protection of costly RF Tubes against the internal arc. Design and development of SMPS based Bipolar Power Supply with 4-Quadrant operation rated at 27 V, 300 Amp with current stability around 100 ppm for Super-conducting Magnets along with quench protection and energy dumping scheme. (author)

  7. Game Changing Usage of High-Voltage Power Transmission Systems as Extremely Large Antennas for Space Physical and Geophysical Remote Imaging Project

    National Aeronautics and Space Administration — Geomagnetic storms drive geomagnetically induced currents (GIC) in high-voltage power transmission systems worldwide. GIC distribution in the transmission system is...

  8. Power supply for superconductor

    A new power supply for superconductor is proposed. The conventional power supply consists of a transformer and thyristors. The present power supply does not consist of the large current transformer but only the switching devices to achieve the DC current amplification. The principle of new power supply is AC-DC-AC-DC conversion. The AC line is once rectified to small current of DC and next converted to large current of DC through switching device handling AC. On a test set, 800 A of superconducting current has been obtained with 50 A input DC current. The conceptual design of power supply for 20 kA has been done. The characteristic features of the new power supply have been compared with the conventional one. (author)

  9. Solar mobile power supply

    Hu, Libian

    2014-01-01

    The solar mobile power supply is a comprehensive energy saving and environment protective product. Besides, it consists of solar panels, storage battery and controller as well as other important components. Based on the traditional solar charging circuit, this solar power supply combines the 5V USB interface and 12V adjustable circuit as well as the 220V inverter and power adapter to greatly improve the function of the power system.

  10. New medium instead of high voltage power systems by using high-temperature superconductivity; Neue Mittel, statt konventioneller Hochspannungsnetze durch Hochtemperatur-Supraleitung

    Noe, Mathias [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Hofmann, Lutz [Hannover Univ. (Germany); Stemmle, Mark; Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Bock, Joachim [Nexans SuperConductors GmbH, Huerth (Germany)

    2011-07-01

    In recent years there was a large progress in developing high-temperature superconducting (HTS) wires and tapes for power applications and it seems that an industrial large scale manufacturing seems to start very soon. Superconducting power cables and fault current limiters have been developed successfully worldwide and several field tests of large scale prototypes underline that both application seem shortly before commercialization. The operation experience showed that all technical requirements are fulfilled and that a high reliability can be achieved. Due to their high energy density and their compactness HTS power equipment enables to set-up new and flexible power system structures and to implement innovative solutions. Especially, a combination of medium voltage HTS cables and superconducting fault current limiters seems highly attractive for future urban area power supply. Applications can be expected when high voltage cables and their respective substations are dismantled partly in downtown areas. With HTS technology new power system concepts with lower width and right of way of the power line can be achieved. A new study evaluates if and how far existing high voltage cables and substations can be replaced by a medium voltage HTS system consisting of a cable and a fault current limiter. The technical and economic feasibility has been investigated. The study contains the state-of-the-art of HTS cable technology, the design and operation parameters of medium voltage HTS cables, a description of the cooling system, aspects of availability and reliability as well as the description of the protection schemes in combination with a fault current limiter. Furthermore, measures for transport, laying and commissioning of the cable are shown and safety and environmental aspects are covered. This paper summarizes the major result of this study and concentrates on the conceptual design of the cable and the results of the economic feasibility study. It can be summarized today that HTS medium voltage cables are the only technical and economic alternative to prevent further high voltage cables in downtown areas and to dismantle high voltage substations. The future application of HTS cables depends very much on the further improvement of the price-performance ratio of HTS wires and tapes and the further optimization of the cable manufacturing and the cooling system cost. It can be expected that HTS technology still enables large progress in the future and that a considerable cost decrease can be achieved. (orig.)

  11. Coordination of voltage and reactive power control in the extra high voltage substations based on the example of solutions applied in the national power system

    Dariusz Ko?odziej; Jaros?aw Klucznik

    2012-01-01

    This paper presents examples of coordination between automatic voltage and reactive power control systems (ARST) covering adjacent and strongly related extra high voltage substations. Included are conclusions resulting from the use of these solutions. The Institute of Power Engineering, Gda?sk Division has developed and deployed ARST systems in the national power system for a dozen or so years.

  12. KEKB electromagnet power supply

    Numbers of electromagnet power supply for KEKB are 2,243 except BT. To satisfy stability, DAC in the current control circuit, current detector, R and D of small thermostatic bath and a calibration method of current using CPU were introduced. They satisfied needs. With producing R and D apparatus of switching source, problems of ripple, stability and noise were solved, so that we began mass production. In this paper, many kinds of R and D and performance and troubles after operation of KEKB power source are described. A plan of design of power supply consisted of seven items such as high accuracy, serial communication of interface, small type, high affectivity, easy maintenance, independence of current setting and current detector for monitor and control of radiation and conduction noise of switching power supply. These items were satisfied by development of interface board of ARCNET communication, introduction of double buffer method for interface through CPU, power supply unit by air-cooled method using a switching method and small thermostatic oven for bending and quadrupole electromagnet. R and D of DCCT, burden and shunt resistance, DAC, thermostatic bath, power supply, offset and gain calibration by double buffer method, specification of power supply, various kinds of measurements of mass production apparatus at rising, after long operation and problems before and after operation are reported. The results of R and D made satisfy the specification of stability and ripple of power supply. Although many switching power supply were operated, there was no noise and troubles at the initial period decreased. However, in order to use many power supply, the performance measurement and maintenance are very important at long shut down. (S.Y.)

  13. Microcontroller Based Power Supply

    Tanvir S. Mundra; Er. S.S. Sachdeva; K.S.Kahlon

    2006-01-01

    These days, majority of electronic devices work on DC power source, so there was a requirement of a reliable and customized power supply. Generally, the requirements are not too varied, but still they require every time a new hardware designing. The idea presented here is to build a microcontroller controlled power supply[1] that is flexible enough to meet different customer requirements, with minor software changes and no corresponding hardware change. Hardware issues are discussed, with a g...

  14. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is proposed and evaluated as the DC microgrid is disturbed through various mode transitions. Finally, two communication protocols are described for the microgrid---one to minimize communication overhead inside the microgrid and another to provide robust and scalable intra-grid communication. The work presented is supported by Asea Brown Boveri (ABB) Corporate Research Center within the Active Grid Infrastructure program, the Advanced Research Project Agency - Energy (ARPA-E) through the Solar ADEPT program, and Mitsubishi Electric Corporation (MELCO).

  15. High-voltage electron accelerators

    Ways for improving technical and economic factors of high-voltage electron accelerators intended for radiation technology are discussed. It is shown that basic components effecting radiation energy costs are the following: depreciation, costs of routine repair, energy expenses and attendant payments. Outlined is an improvement program for the Aurora and the Electron type accelerators of up to 100 kW power having high-voltage generator connected with emitters by 750 kV high-voltage cable

  16. Radioisotope Power Supply Project

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  17. The account of sagging of wires at definition of specific potential factors of air High-Voltage Power Transmission Lines

    Suslov V.M.

    2005-12-01

    Full Text Available The opportunity approached is shown, but more exact as it is usually accepted, the account of sagging of wires at definition of specific potential factors air High-Voltage Power Transmission Lines. The technique of reception of analytical expressions is resulted. For an opportunity of comparison traditional expressions for specific potential factors are resulted also. Communication of the offered and traditional analytical expressions is shown. Offered analytical expressions are not difficult for programming on a personal computer of any class and besides they allow to make an estimation of an error of traditional expressions by means of parallel definition of specific potential factors by both ways.

  18. Development of polymer insulators for electrical and high-voltage power lines with the application of radiation-chemical technology

    In the field of power engineering the problem of replacing traditional high-voltage porcelain and glass insulators by polymer insulators is being investigated. Polymers are desired which are relatively cheap and easy to process by molding. A copolymer of ethylene and vinyl acetate (EVA) filled aluminium hydroxide satisfys the requirements. In order to increase the heat stability of EVA, radiation-chemical technology was used in the present work. A pilot plant with a cobalt 60 radionuclide source was used as the source of ionizing radiation. The process of cross-linking EVA is described

  19. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  20. High Voltage Electrostatic Pendulum

    Baddi, Raju

    2012-01-01

    A pendulum powered by high voltage electricity is described. The pendulum consists of two conducting plates(thin foil) separated by copper rods and are insulated from each other. High voltage is applied to these plates through the connecting copper rods. Another stationary aluminum plate(thin foil) is placed in front of the pendulum such that it serves to attract the pendulum plates and makes electrical contact with them enabling charge transfer between the stationary plate and the pendulum plates. The pendulum is powered by the energy stored in the capacitance between the stationary aluminum plate and the pendulum plate. Attempt has been made to obtain the time period of oscillations as a function of applied voltage and other parameters. The derived formula for the time period has been verified experimentally. This apparatus can be used to demonstrate electrical phenomena in general and in particular electrical energy stored in conductors of small dimensions.

  1. PMTs applied circuitry--optimum design of high voltage generator

    This author introduces the result of a years approach on optimum design of low power high voltage generator that is preferred to use as an unit within the stable high voltage supplier to bias photomultipliers. The optimization is upon the comparison of the spike disturbing interference generating, limit of power transferred, transformer fabrication art, simplicity and key components supply between push-pull bi-direction drive and switch drive DC/DC converter type high voltage generator. Also a practice design under this policy is given as a sample. This approach is valuable as it would benefit the instrumentation widely

  2. Switch mode power supply

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  3. High power pulse magnetic field power supply system

    The magnetic field power supply system, control system and experiment results of the power supply of HL-2A device are presented. The total pulse capacity of this power supply is about 250 MVA. The released energy is 1300 MJ in one discharge pulse. The highest DC output voltage of these power supplies is 3510 V and the highest current is 45 kA. All these power supplies are operated in pulsed mode. The pulse duration is 5 s, and the period is 10 min. The main circuit of this power supply consists of flywheel generator set, thyristor convertor and silicon diode rectifier. Many key technologies such as output balance technology of 2 motor generators with diode rectifiers paralleled directly, current balance technology of paralleled rectifiers, constant-angle phase shift control technology which is adequate for dynamic change in large frequency range, all-turn-off detection of 6-phase rectifier with high current, advanced monitoring system and measurement of pulsed high voltage and high current are adopted in HL-2A power supply system. The experiment results show that the performance of power supplies can satisfied the requirement of experiment very well. (authors)

  4. Automating power supply checkout

    Laster, J.; Bruno, D.; D' Ottavio, T.; Drozd, J.; Marr, G.; Mi, C.

    2011-03-28

    Power Supply checkout is a necessary, pre-beam, time-critical function. At odds are the desire to decrease the amount of time to perform the checkout while at the same time maximizing the number and types of checks that can be performed and analyzing the results quickly (in case any problems exist that must be addressed). Controls and Power Supply Group personnel have worked together to develop tools to accomplish these goals. Power Supply checkouts are now accomplished in a time-frame of hours rather than days, reducing the number of person-hours needed to accomplish the checkout and making the system available more quickly for beam development. The goal of the Collider-Accelerator Department (CAD) at Brookhaven National Laboratory is to provide experimenters with collisions of heavy-ions and polarized protons. The Relativistic Heavy-Ion Collider (RHIC) magnets are controlled by 100's of varying types of power supplies. There is a concentrated effort to perform routine maintenance on the supplies during shutdown periods. There is an effort at RHIC to streamline the time needed for system checkout in order to quickly arrive at a period of beam operations for RHIC. This time-critical period is when the checkout of the power supplies is performed as the RHIC ring becomes cold and the supplies are connected to their physical magnets. The checkout process is used to identify problems in voltage and current regulation by examining data signals related to each for problems in settling and regulation (ripple).

  5. Gradient power supply

    A power supply particularly suited for driving coils in a magnetic nuclear resonance device, or scanner, is described. Bipolar switches driven by field-effect devices are used to couple the coil to a high potential when a rapid current change is required, control devices also comprises bipolar transistors driven by field-effect transistors are used to to control the current through the coil in steady state conditions. The power supply provides a trapezoidal current waveform in the coils. The control devices and switches are operated via opto-coupling means. Various protection and sequencing operations are described. The Linear Control Loop provides active compensation against the demanded current waveform. (author)

  6. Power supply and ethics

    The 'Power Supply and Ethics' workshop was designed on the basis of a recommendation by the Nuclear Technology Committee (FA-KT) of VDI-GET. The topic is part of a series of events and publications by VDI in an area where engineering and the humanities converge. The Workshop comprised presentations and thorough discussions of seven papers on 'Power Supply and Ethics', reflecting a variety of contents and points of view of the different disciplines participating. The Workshop offered another opportunity to take the initiative and influence the public, especially politics. Other activities are planned which also the participants increasingly consider an obligation to the public. (orig.)

  7. Environmental compatibility of ENEL's high voltage power network: Electromagnetic field effects

    In its investigation of environmental compatibility problems impacting the power transmission network of ENEL (the Italian National Electricity Board), this paper focuses on the effects of 50 Hz electric and magnetic fields. In particular, the paper cites documented cases of physical disturbances suffered by users of ENEL's power system and the follow-up investigations made by local health authorities and ENEL technicians. Relevant to these cases, recorded data obtained in on-site measurements of the electric and magnetic fields are reported. Comparisons of these data are made with the limiting values prescribed in current Italian health and safety normatives governing power transmission lines

  8. Microcontroller Based Power Supply

    Tanvir S. Mundra

    2006-01-01

    Full Text Available These days, majority of electronic devices work on DC power source, so there was a requirement of a reliable and customized power supply. Generally, the requirements are not too varied, but still they require every time a new hardware designing. The idea presented here is to build a microcontroller controlled power supply[1] that is flexible enough to meet different customer requirements, with minor software changes and no corresponding hardware change. Hardware issues are discussed, with a goal of developing a generalized power supply that has programmable output voltage and current. It is able to recognize faults and take corrective actions to prevent any permanent damage to the system. The system discussed here is capable of functioning independently by its own without any intervention from the user. The system finds application at remote sites to automatically manage primary (AC and secondary (Battery power sources to provide smooth uninterrupted power output even during switchovers between AC and DC power sources. It would also be helpful to insurance companies who expect that the products covered by them be reliable, robust and not prone to be damages.

  9. High voltage direct current (HVDC) link between the power networks of Italy and Greece

    Interconnection between the power networks of Italy and Greece has long been declared of European interest. The link, which will directly connect Greece with the power network of UCPTE, is perfectly in line with the targets of the European Union in terms of trans-European power networks. The interconnection, which benefits of a financial contribution of the EU, will rely on a 400 kV d.c. transmission system with one submarine cable between the Italian and Greek coasts, overhead lines on land, d.c./a.c. conversion stations, return of current to sea via marine electrodes. The main technical features of the project are described, highlighting its most significant design concepts. (author)

  10. AGS Fast spin resonance jump, magnets and power supplies

    Glenn,J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-05-04

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 {micro}s, hold flat for about 4 ms and fan to zero in 100 {micro}s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described.

  11. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    Boscolo, I. [Univ. and INFN, Milan (Italy); Gong, J. [Southwest Jiaotong Univ., Chengdu (China)

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  12. Allowance for insulation aging in the new concept of accelerated life tests of high-voltage power transformers

    This paper reports that the existing system of type and acceptance tests of high-voltage transformer insulation does not take into account insulation ageing, which is particularly objectionable with respect to equip-met with reduced insulation levels. Suggested in the paper is a new concept of accelerated life tests based on integrated simulation of basic operating loads, both periodic (surge) and long-term ones; by making a long-term accelerated test simulating the working conditions, with exposure of test object and/or its insulation to periodic operating surges (overvoltages and overcurrents). This test replaces a group of conventional individual acceptance tests and provides more ample and more precise information on performance and dependability of the equipment. The test procedure was checked in test of a small lot of 1600 kVA 35 kV power transformers

  13. High voltage, high power operation of the plasma erosion opening switch

    A Plasma Erosion Opening Switch (PEOS) is used as the opening switch for a vacuum inductive storage system driven by a 1.8-MV, 1.6-TW pulsed power generator. A 135-nH vacuum inductor is current charged to ∼750 kA in 50 ns through the closed PEOS which then opens in <10 ns into an inverse ion diode load. Electrical diagnostics and nuclear activations from ions accelerated in the diode yield a peak load voltage (4.25 MV) and peak load power (2.8 TW) that are 2.4 and 1.8 times greater than ideal matched load values for the same generator pulse

  14. DC characteristics and parameters of silicon carbide high-voltage power BJTs

    Patrzyk, Joanna; Zar?bski, Janusz; Bisewski, Damian

    2016-01-01

    The paper shows the static characteristics and operating parameters of the bipolar power transistors made of silicon carbide and for comparison their equivalents made of classical silicon technology. The characteristics and values of selected operating parameters with special emphasis on the effect of temperature and operating point of considered devices are discussed. Quantitative as well as qualitative differences between the characteristics of the transistor made of silicon and silicon carbide are indicated as well.

  15. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.

    Su, Chao; Shao, Zongping; Lin, Ye; Wu, Yuzhou; Wang, Huanting

    2012-09-21

    An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2-3 ?m) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness (>5 ?m), which is, however, beneficial for increasing triple phase boundaries where electrode reactions happen. A fuel cell with Ni-BaZr(0.4)Ce(0.4)Y(0.2)O(3) anode, thin-film SDC electrolyte and Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-?) (BSCF) cathode has an OCV as high as 1.022 V and delivered a power density of 462 mW cm(-2) at 0.7 V at 600 C. It greatly promises an intriguing fuel cell concept for efficient power generation. PMID:22870505

  16. A High-Voltage Test Bed for the Evaluation of High-Voltage Dividers for Pulsed Applications

    Bastos, M C; Hammarquist, M

    2011-01-01

    The design, evaluation, and commissioning of a high-voltage reference test bed for pulsed applications to be used in the precision testing of high-voltage dividers is described. The test bed is composed of a pulsed power supply, a reference divider based on compressed-gas capacitor technology, and an acquisition system that makes use of the fast measurement capabilities of the HP3458 digital voltmeter. The results of the evaluation of the reference system are presented.

  17. A High-voltage Reference Testbed for the Evaluation of High-voltage Dividers for Pulsed Applications

    Bastos, M Cerqueira; Bergman, A; 10.1109/CPEM.2010.5543408

    2010-01-01

    The design, evaluation and commissioning of a high voltage reference testbed for pulsed applications to be used in the precision testing of high voltage dividers is described. The testbed is composed of a pulsed power supply, a reference divider based on compressed gas capacitor technology and an acquisition system which makes use of the fast measurement capabilities of the HP 3458 DVM. Results of the evaluation of the reference system are presented.

  18. Minimization of Power Loss in Distribution Systems by Implementation of High Voltage Distribution System

    PARWAL Arvind

    2013-05-01

    Full Text Available The loads in rustic area are preeminent pump sets used for various applications i.e. lift irrigation system. Minimal power factor and minimal load factor is found in loads. Further, being a factordissemination of loads, load density is found low. The present distribution system dwell of three-phase 11KV/433Volts distribution transformer with extended L.T Lines. In this system, voltage profile and reliability are poor. In this paper, HVDS is unveiled with smallcapacity distribution transformers. A simple load flow technique is used for solving distribution networks before and after implementation of HVDS. The advantages of implementing HVDS against LVDS system are discussed.

  19. High Voltage Generation for Physics Lab

    Baddi, Raju

    2012-01-01

    A power efficient way to generate low power high voltage is given. The article describes various aspects of functioning and derives quantitative relations between different parameters and high voltage generated. Use of voltage multiplier (Cockcroft-Walton multiplier) network can provide further boost in the high voltage(~1000V).

  20. Switching time control on power high voltage bipolar transistors for high definition VDT by electron irradiation

    Transistors used as switches in horizontal deflection circuits for high definition TV and Video Display Terminals were subjected to electron irradiation using a 12 MeV linear accelerator. The use of electron irradiation has made possible a fine control of the charge carrier lifetime thus improving the switching time and greatly reducing the power losses at turn-on and turn-off. Devices able to work at horizontal deflection frequency from 32 kHz up to 64 kHz, 1.2-1.5 kV and to handle current between 2 and 10A have been obtained. The effects of the thermal processes, that the irradiated devices undergo during assembly and packaging operation, have been investigated. (author)

  1. Switching time control on power high voltage bipolar transistors for high definition VDT by electron irradiation

    Transistors used as switches in horizontal deflection circuits for high definition TV and Video Display Terminals were subjected to electron irradiation using a 12 MeV linear accelerator. The use of electron irradiation has made possible a fine control of the charge carrier lifetime thus improving the switching time and greatly reducing the power losses at turn-on and turn-off. Devices able to work at horizontal deflection frequency from 32 kHz up to 64 kHz, 1.2-1.5 kV and to handle current between 2 and 10A have been obtained. The effects of the thermal processes, that the irradiated devices undergo during assembly and packaging operations, have been investigated. (author)

  2. Development of method for detecting signs deterioration in insulator of high-voltage motors. 2. Test Results of a new on-line partial discharge monitor for high-voltage motors in nuclear power stations

    For the purpose of early detection of deterioration of insulators in high-voltage motors which are widely utilized in nuclear power stations, a new on-line partial discharge (PD) monitor was developed and was tested for sixteen motors which were practically running in nuclear power stations. From the test results, it is seen that (1) good signal to noise ratio is obtained by adopting a two frequency correlation method, (2) a resistance temperature detector (RTD) in a motor has sufficient sensitivity to detect PD, (3) when RTD is not installed or is unable to use for this purpose, a radio frequency current transformer (RFCT) can be utilized, although its sensitivity is about 1/10 of that of the RTD monitor. Finally we found a good correlation between the results of this on-line method and the conventional off-line method in which the insulator resistance of a concerned motor was measured during its shut-down, and thereby we demonstrated that this method could be applicable to the on-line test of high-voltage motors in nuclear power stations. (author)

  3. Switched power workshop power supply working group

    The power supply working group was assigned the problem of pulse charging the 3-MeV gun. The gun is a radial line structure that has two charging configurations: a single ring charged to 500 kV or nine rings charged from 100 to 200 kV. In either configuration, the pulsed source must rapidly charge the structure's ring(s) before breakdown can begin. The issues encountered in charging the structure can be divided into two categories. First, the charging system must be well matched to the gun structure. Proper impedance matching will avoid reflections and limit the fault current if the ring should spark. Second, several systems can achieve the wide range of charge voltages necessary. Some are better suited to high voltages, while others are better at low voltages. The following paragraphs will address the impedance matching issues are review three choices for pulse generators. A system for each type of source is described along with a very rough cost estimate. 1 ref., 4 figs., 2 tabs

  4. Rechargeable power supply

    Den Uijl, S.; Bouman, C.; Smit, W.

    2006-01-01

    The invention relates to a rechargeable power supply suitable to be used in a battery-operated device comprising at least one supercapacitor and at least a first and a second DC-DC converter connected in series, wherein the supercapacitor is connectable to an entry of the first DC-DC converter and the device is connectable to an exit of the second DC-DC converter.

  5. Rechargeable power supply:

    Den Uijl, S.; Bouman, C; Smit, W.

    2006-01-01

    The invention relates to a rechargeable power supply suitable to be used in a battery-operated device comprising at least one supercapacitor and at least a first and a second DC-DC converter connected in series, wherein the supercapacitor is connectable to an entry of the first DC-DC converter and the device is connectable to an exit of the second DC-DC converter.

  6. Design and development of high voltage high power operational amplifier using thick film technology

    Krishna Mohan Nutheti; Vinod S Chippalakatti; Shashikala Prakash

    2008-10-01

    Applications of power operational amplifiers (opamps) are increasing day by day in the industry as they are used in audio amplifiers, Piezo transducer systems and the electron deflection systems. Power operational amplifiers have all the features of a general purpose opamp except the additional power handling capability. The power handling feature can be achieved using an external circuitry around a regular opamp. Normally power opamps can deliver current more than 50 mA and can operate on the supply voltage more than ±25 V. This paper gives the details of one of the power opamps developed to drive the Piezo Actuators for Active Vibration Control (AVC) of aircraft/aerospace structures. The designed power opamp will work on ±200 V supply voltage and can deliver 200 mA current.

  7. Study of static reactive power compensators for high-voltage power systems. Final report, May 12, 1981

    Byerly, R.T.; Bennon, R.J.; Taylor, E.R. Jr.; Poznaniak, D.T.

    1981-05-12

    A general study of the application of static VAR compensators (SVC's) to high-voltage transmission systems has been performed. Considerable emphasis has been placed on improvements to synchronous stability, and it is shown that SVC's can provide significant benefits in terms of damping for unstable modes of oscillation and increases in transient stability limits. This report includes descriptions of static VAR compensators, technical and economic comparisons of different compensators, compensator models for system studies, comprehensive study procedures, study results for two small-scale systems, and guidelines for SVC application.

  8. LED-Based High-Voltage Lines Warning System

    Eldar MUSA

    2013-04-01

    Full Text Available LED-based system, running with the current of high-voltage lines and converting the current flowing through the line into the light by using a toroid transformer, has been developed. The transformer’s primary winding is constituted by the high voltage power line. Toroidal core consists of two equal parts and the secondary windings are evenly placed on these two parts. The system is mounted on the high-voltage lines as a clamp. The secondary winding ends are connected in series by the connector on the clamp. LEDs are supplied by the voltage at the ends of secondary. Current flowing through highvoltage transmission lines is converted to voltage by the toroidal transformer and the light emitting LEDs are supplied with this voltage. The theory of the conversion of the current flowing through the line into the light is given. The system, running with the current of the line and converting the current into the light, has been developed. System has many application areas such as warning high voltage lines (warning winches to not hinder the high-voltage lines when working under the lines, warning planes to not touch the high-voltage lines, remote measurement of high-voltage line currents, and local illumination of the line area

  9. The current situation of diagnosis for insulation deterioration of high voltage induction motors in nuclear power plants

    In order to evaluate aging effect on motor correctly, several data of high voltage induction motors in 17 nuclear power plants of Tokyo Electric Power Co. (TEPCO) have been collected since 1984. Collected data are non-destructive insulation diagnosis test data including insulation resistance, static capacitance and the results of insulation destructive test after replacement of motors. Evaluation based on the data shows that breakdown voltage (BDV) of motor coil has relationship with the motor parameters such as current increase ratio, maximum discharge magnitude, difference of dielectric dissipation factor, etc. From this viewpoint, BDV estimation formula for 6.6 kV motors is established by using multiple linear regression analysis method, considering parameter used in D-map evaluation. However the measured parameters may vary due to the factors besides insulation deterioration, not only the estimated BDV but also visual inspection data are took into account for overall diagnosis. Further collection of data and evaluation will be done continuously in order to enhance accuracy of the insulation diagnosis. The current situation of diagnosis for insulation deterioration of 6.6 kV class induction motors in nuclear power plants is described in this technical note. Also current situation of investigation on 3.3 kV class motors is described. (author)

  10. The Power Behind the Controversy: Understanding Local Policy Elites' Perceptions on the Benefits and Risks Associated with High Voltage Power Line Installation in the State of Arkansas

    Moyer, Rachael M.

    Following a proposal for the installation of high voltage power lines in northwest Arkansas, a controversial policy debate emerged. Proponents of the transmission line argue that such an installation is inevitable and necessary to efficiently and reliably support the identified electric load in the region. Opponents claim that the lines will degrade the natural environment and hamper the tourism-based local economy in affected regions, notably in Ozark Mountain areas. This study seeks to understand how local policy elites perceive the benefits and risks associated with proposed transmission lines, which is a critical step in comprehending the formation and changes of related government policies. First, based upon the dual process theory of judgment, this study systematically investigates the triadic relationships between (a) more profound personal value predispositions, (b) affects and feelings, and (c) perceived benefits and risks related to the proposed installation of high voltage power lines among local policy elites in the state of Arkansas. Next, this study focuses more specifically on the role of value predispositions, specific emotional dimensions of affect heuristics, and perceptions pertaining to high voltage power line risks and benefits. Using original data collected from a statewide Internet survey of 420 local leaders and key policymakers about their opinions on the related issues, other factors claimed by previous literature, including trust, knowledge level, and demographic characteristics are considered. Analytical results suggest that grid-group cultural predispositions, as deeply held core values within local policy elites' individual belief systems, both directly and indirectly -- through affective feelings -- shape perceived utility associated with the installation of high voltage power lines. Recognizing that risk perceptions factor into policy decisions, some practical considerations for better designing policy addressing controversial issues of this nature.

  11. Nested high voltage generator/particle accelerator

    This patent describes a modular high voltage particle accelerator having an emission axis and an emission end, the accelerator. It comprises: a plurality of high voltage generators in nested adjacency to form a nested stack, each the generator comprising a cup-like housing having a base and a tubular sleeve extending from the base, a primary transformer winding encircling the nested stack; a secondary transformer winding between each adjacent pair of housings, magnetically linked to the primary transformer winding through the gaps; a power supply respective to each of the secondary windings converting alternating voltage from its respective secondary winding to d.c. voltage, the housings at the emission end forming a hollow throat for particle acceleration, a vacuum seal at the emission end of the throat which enables the throat to be evacuated; a particle source in the thrond power means to energize the primary transformer winding

  12. Power Supplies for Precooler Ring

    Fuja, Raymond; Praeg, Walter

    1980-12-12

    Eight power supplies will energize the antiproton Precooler ring. there will be two series connected supplies per quadrant. These supplies will power 32 dipole and 19 quadrupole magnets. The resistance and inductance per quadrant is R = 1.4045 Ohms and L = 0.466. Each powr supply will have 12-phase series bridge rectifiers and will be energized from the 480 V 3-phase grid. The total of eight power supplies are numbered IA, IIA, IIIA, IVA, and IB, IIB, IIIB, and IVB. Each quadrant will contain one A and one B supply. A block diagram of the Precooler ring with its power supplies is shown in Figure 1.

  13. Characterization of combined power plasma jet using AC high voltage and nanosecond pulse for reactive species composition control

    Takashima, Keisuke; Konishi, Hideaki; Kato, Toshiaki; Kaneko, Toshiro

    2014-10-01

    In the application studies for both bio-medical and agricultural applications, the roles of the reactive oxide and/or nitride species generated in the plasma has been reported as a key to control the effects and ill-effects on the living organism. The correlation between total OH radical exposure from an air atmospheric pressure plasma jet and the sterilization threshold on Botrytis cinerea is presented. With the increase of the OH radical exposure to the Botrytis cinerea, the probability of sterilization is increased. In this study, to resolve the roles of reactive species including OH radicals, a combined power plasma jet using nanosecond pulses and low-frequency sinusoidal AC high voltage (a few kHz) is studied for controlling the composition of the reactive species. The nanosecond pulses are superimposed on the AC voltage which is in synchronization with the AC phase. The undergoing work to characterize the combined power discharge with electric charge and voltage cycle on the plasma jet will also be presented to discuss the discharge characteristics to control the composition of the reactive species.

  14. Engineering Design of the ITER AC/DC Power Supplies

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  15. Research and development of high voltage linear fiber isolation system

    In the high voltage power supply system, signals should be insulated and transmitted between the high voltage circuit and measurement control system. The fiber isolation system not only satisfies the requirements of high voltage isolation but also has excellent ability against the electromagnetic disturbance. Two methods, which are adopted to insulate and transmit the analog signal in high power system by fiber, are introduced, and the configuration of isolation transmission system and design scheme of analog signal isolation transmission are explained. The experiment results show that the analog signal can be insulated and transmitted well between the high potential power supply circuit and its measurement circuits, because the emitter of this fiber is olation system works in its linearity range. (authors)

  16. Dual voltage power supply with 48 volt

    Froeschl, Joachim; Proebstle, Hartmut; Sirch, Ottmar [BMW Group, Muenchen (Germany)

    2012-11-01

    Automotive electrics/electronics have just reached a period of tremendous change. High voltage systems for Hybrid, Plug-In Hybrid or Battery Electric Vehicles with high power electric motors, high energy accumulators and electric climate compressors will be introduced in order to achieve the challenging targets for CO{sub 2} emissions and energy efficiency and to anticipate the mobility of the future. Additionally, innovations and the continuous increase of functionality for comfort, safety, driver assistance and infotainment systems require more and more electrical power of the vehicle power supply at all. On the one hand side electrified vehicles will certainly achieve a significant market share, on the other hand side they will increase the pressure to conventional vehicles with combustion engines for fuel consumption and CO{sub 2} emissions. These vehicles will be enabled to keep their competitiveness by new functions and the optimization of their electric systems. A dual voltage power supply with 48 Volt and 12 Volt will be one of the key technologies to realize these requirements. The power capability of the existing 12 Volt power supply has reached its limits. Further potentials can only be admitted by the introduction of 48 Volt. For this reason the car manufacturers Audi, BMW, Daimler, Porsche and Volkswagen started very early on this item and developed a common specification of the new voltage range. Now, it is necessary to identify the probable systems at this voltage range and to start the developments. (orig.)

  17. Best use of high-voltage, high-powered electron beams: a new approach to contract irradiation services

    Watanabe, T.

    2000-03-01

    Japan's first high-voltage, high-powered electron beam processing center is scheduled to come on-line during the first half of 1999. The center explores both challenges and opportunities of how best to use the 200 kW 10 MeV unit and its 5 MeV X-ray line. In particular, Nuclear Fuel Industries, Ltd. (NFI) has expanded the traditional model of a contract irradiation facility to include a much broader scope of services such as door-to-door transport, storage, and direct distribution to its customer's end-users. The new business scope not only finds new value-added components in a competitive marketplace, but serves to provide a viable mechanism to take advantage of the processing logistics of high throughput irradiation units. As such, the center features a high-capacity warehousing system, monitored by a newly developed PCMS (plant control management system), which has been comprehensively integrated into the irradiation unit's handling system, and will require only minimal human resources for its high rate of material handling. The identification and development of initial markets for this first unit will be discussed, concluding with how this same operational philosophy can help break open new irradiation segments in medical devices, consumer goods, animal feed, and food markets and NFI's other efforts in these same areas.

  18. Best use of high-voltage, high-powered electron beams: a new approach to contract irradiation services

    Japan's first high-voltage, high-powered electron beam processing center is scheduled to come on-line during the first half of 1999. The center explores both challenges and opportunities of how best to use the 200 kW 10 MeV unit and its 5 MeV X-ray line. In particular, Nuclear Fuel Industries, Ltd. (NFI) has expanded the traditional model of a contract irradiation facility to include a much broader scope of services such as door-to-door transport, storage, and direct distribution to its customer's end-users. The new business scope not only finds new value-added components in a competitive marketplace, but serves to provide a viable mechanism to take advantage of the processing logistics of high throughput irradiation units. As such, the center features a high-capacity warehousing system, monitored by a newly developed PCMS (plant control management system), which has been comprehensively integrated into the irradiation unit's handling system, and will require only minimal human resources for its high rate of material handling. The identification and development of initial markets for this first unit will be discussed, concluding with how this same operational philosophy can help break open new irradiation segments in medical devices, consumer goods, animal feed, and food markets and NFI's other efforts in these same areas. (author)

  19. Electromagnetic field model for the numerical computation of voltages induced on buried pipelines by high voltage overhead power lines

    Munteanu, C.; Mates, G.; Purcar, M.; Topa, V.; Pop, I. T.; Grindei, L.; Racasan, A.

    2012-07-01

    This paper proposes an innovative, generally applicable numerical model for the calculation of the three-dimensional (3D) electromagnetic field generated by high voltage (HV) overhead power transmission lines (OHL) on the buried metallic structures (e.g., pipeline networks). The numerical analysis is based on a coupled finite element-boundary element model (FEM-BEM) designed to calculate the induced potential on buried pipelines for complex geometrical structures of HV OHL networks working on normal or fault conditions. The one-dimensional (1D) FEM technique based on pipe elements is used to discretize the mathematical model that describes the interior of the pipe and is coupled with the mathematical model that describes the exterior of the pipe using 3D-BEM integral equations. The full electromagnetic field model gives the flexibility to calculate the potential distribution in any point of the soil, providing useful information for the step and touching voltages. The computation accuracy of the numerical algorithm implemented is verified through two test problems by comparing the numerical results with those obtained using a software package based on the Transmission Line Method (TLM) and CIGRE formulae. Last part of the paper presents calculations of the induced potential on buried pipeline in the vicinity of a complex HV OHL working on normal and fault condition. The influence of the currents' direction and magnitude flowing on the HV OHL on the induced pipeline potential distribution is analyzed.

  20. The effect of high voltage power lines on radon concentrations in air using solid state nuclear track detector CR-39 in Baghdad city

    This work involves the study of the effect of high Voltage power lines 400kV on radon concentration and its decay products using products using nuclear track detectors CR-39 in Baghdad city for one month inside and outside Bob Al-Sham station 400kV as well as in a number of the houses which are very close to the high voltage power during autumn. The concentrations of radon were determined through the comparison with the standard samples, and through the concluded results, we find that the value of weighted average of radon concentration inside the building which are under the effect of high voltage 400kV was (91.77 0.12Bq/m3), As for the buildings which are far from the high voltage lines at distance 600m, it was equal to (23.270.773Bq/m3) and outside the buildings (13.630.99 Bq/m3). The results of the study show the increase of radon concentration in the ares which are close to high voltage power lines clear effect of high voltage power lines upon the concentration of radon, and this influence increases with increase of the force of electromagnetic field as well as the near distance with these lines. The increase of concentration was due to the fact that the walls of the buildings are considered to be the main source for generating radon inside the building as well as the building history and their height upon the level of earth surface. (Author)

  1. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat a l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production

  2. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  3. Power supplies for INDUS-1

    Tiwari, S.R.; Thakurta, A.C.; Thipsay, A.P.; Pagare, A.; Gandhi, M.L.; Singh, T.N.; Singh Shyam; Kotaiah, S. [Centre for Advanced Technology, Indore (India)

    1998-11-01

    This paper describes the different schemes employed in the power supplies installed for microtron, transport line-1, Booster ring, Transport line-2 and 450 MeV Indus-1 Storage ring presently being commission at CAT, Indore. Approximately 130 Nos. of power supplies with ratings ranging from few VA to about 1.0 MVA are used to energise the electro-magnets for generation of magnetic field. The current stability requirement for the power supplies ranges from 1000 ppm to 100 ppm of current set. The schemes followed for power supplies are off line SMPS, linear series pass and SCR controlled power supplies. In booster the power supplies are of ramp type with repetition rate of 1 Hz and these are designed to take care of coupled voltages due to ramping field. All other power supplies are constant DC type. (author)

  4. Power supplies for INDUS-1

    This paper describes the different schemes employed in the power supplies installed for microtron, transport line-1, Booster ring, Transport line-2 and 450 MeV Indus-1 Storage ring presently being commission at CAT, Indore. Approximately 130 Nos. of power supplies with ratings ranging from few VA to about 1.0 MVA are used to energise the electro-magnets for generation of magnetic field. The current stability requirement for the power supplies ranges from 1000 ppm to 100 ppm of current set. The schemes followed for power supplies are off line SMPS, linear series pass and SCR controlled power supplies. In booster the power supplies are of ramp type with repetition rate of 1 Hz and these are designed to take care of coupled voltages due to ramping field. All other power supplies are constant DC type. (author)

  5. High-voltage test stand at Livermore

    This paper describes the present design and future capability of the high-voltage test stand for neutral-beam sources at Lawrence Livermore Laboratory. The stand's immediate use will be for testing the full-scale sources (120 kV, 65 A) for the Tokamak Fusion Test Reactor. It will then be used to test parts of the sustaining source system (80 kV, 85 A) being designed for the Magnetic Fusion Test Facility. Following that will be an intensive effort to develop beams of up to 200 kV at 20 A by accelerating negative ions. The design of the test stand features a 5-MVA power supply feeding a vacuum tetrode that is used as a switch and regulator. The 500-kW arc supply and the 100-kW filament supply for the neutral-beam source are battery powered, thus eliminating one or two costly isolation transformers

  6. Arc lamp power supply using a voltage multiplier

    Leighty, Bradley D.

    1988-02-01

    A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.

  7. Hybrid monolithic integration of high-power DC-DC converters in a high-voltage technology

    Windels, Jindrich

    2014-01-01

    The supply of electrical energy to home, commercial, and industrial users has become ubiquitous, and it is hard to imagine a world without the facilities provided by electrical energy. Despite the ever increasing efficiency of nearly every electrical application, the worldwide demand for electrical power continues to increase, since the number of users and applications more than compensates for these technological improvements. In order to maintain the affordability and feasibility of the tot...

  8. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation

  9. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  10. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  11. Resonance power supplies for large accelerator

    The resonance power supply has been proposed as an efficient power supply for a future 6 GB, keon producing accelerator. This report presents a detailed analysis of the circuit operation. Based on these analyses each component is designed, one line diagram is developed, component requirements are determined and a detailed cost estimate is prepared. The major components of the system are: the magnet power supply, high voltage by-pass thyristor switch, with l0kA repetitive interruption capability, capacitor banks, capacitor bank thyristor switch, and an energy make up device. The most important components are the bypass thyristor switch and the energy injection device. The bypass thyristor switch is designed to turn on and interrupt to 10 kA dc current with a recovery voltage of 20kV and repetition frequency of 3 Hz. The switch consists of a large array of series and parallel connected thyristors and gate turn off (GTO) devices. The make up energy device is designed to replace the circuit energy losses. A capacitor bank is charged with constant current and discharged during the acceleration period. One of the advantages of the developed circuit is that it can be supplied directly from the local power network. In order to prove the validity of the assumptions, a scaled down model circuit was thoroughly tested. These tests proved that the engineering design of critical components is correct and this resonant power supply can be properly controlled by an inventer/rectifier connected in series with the magnet and by the make up energy device. This finding reduces the system cost

  12. Establishment of high ground power supply center at Onagawa Nuclear Power Station

    A large earthquake occurred on March 11, 2011 and tsunami was generated following it. The East Japan suffered serious damage by the earthquake and tsunami. This is called the Great East Japan Earthquake. Onagawa Nuclear Power Station (NPS) is located closest to the epicenter of Great East Japan Earthquake. We experienced intense shake by the earthquake and some flooding from the tsunami, however, we have succeeded safely cold shutdown of the reactors. In this paper, we introduce the reinforcement of power supply to increase reliability and power supply center with high voltage electric power supply trucks which is original treatment at Onagawa NPS. (author)

  13. Magnet power supply for ISABELLE

    Nawrocky, R.J.; Frankel, R.F.; Thomas, M.G.

    1979-01-01

    The power supply system which will energize the superconducting magnets in the ISABELLE machine consists of some 520 computer-programmable power supplies with outputs ranging from 50 A to 4500 A. Most of the power supplies will be used for the correction of field harmonics, orbit correction and adjustment of the machine working line. During acceleration, currents in various magnet correction coils will be controlled in real time to track the main field; all power supplies must be highly stable during the stacking and storage of the beam (in some cases current regulation must be in the order of 0.001%). PS reference programs will be stored in microprocessor based function generators embedded in each power supply. Due to the large amount of stored energy in the system, the magnets must be protected during quenches. Details of the power supply and of the magnet quench protection system are described.

  14. Magnet power supply for ISABELLE

    The power supply system which will energize the superconducting magnets in the ISABELLE machine consists of some 520 computer-programmable power supplies with outputs ranging from 50 A to 4500 A. Most of the power supplies will be used for the correction of field harmonics, orbit correction and adjustment of the machine working line. During acceleration, currents in various magnet correction coils will be controlled in real time to track the main field; all power supplies must be highly stable during the stacking and storage of the beam (in some cases current regulation must be in the order of 0.001%). PS reference programs will be stored in microprocessor based function generators embedded in each power supply. Due to the large amount of stored energy in the system, the magnets must be protected during quenches. Details of the power supply and of the magnet quench protection system are described

  15. Optimization Design for a High Voltage DC Power Supply Module Based on PSM Technology

    Pulse step modulator (PSM) topology is applied to the EAST auxiliary heating system, which consists of a neutral beam injection (NBI) and the related microwave heating system. This paper firstly analyzes the merits and demerits of the traditional PSM modules adopted by other international companies, and then optimizes the topology of the module using the analysis results. Finally, a new topology for the PSM module (a three-phase neutral-point diode-clamped rectifier) is proposed. This new module overcomes the problems of traditional modules and has better cost-effective performance. The experimental results verify that the new module is feasible for engineering applications. (fusion engineering)

  16. Energy harvesting in high voltage measuring techniques

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  17. Nuclear fusion power supply device

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  18. Practical switching power supply design

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  19. High voltage test techniques

    Kind, Dieter

    2001-01-01

    The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field.High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems al

  20. Autonomous uninterruptable power supply apparatus

    Masson, J. H.

    1984-12-01

    This invention relates broadly to a power supply apparatus, and in particular to an autonomous uninterruptable power supply apparatus. The purpose of an uninterruptable power supply (UPS) is to protect critical electrical loads from transient or steady stage outages or disturbances in the primary power source. The basic configuration of a typical, commercially available, uninterruptable power supply is comprised at a minimum of a standby battery and a battery charger and may also include an inverter for AC applications. Systems of this type can be found in most computer installations and laboratory systems which cannot tolerate even momentary disturbances of input power. This document describes an autonomous uninterruptable power supply apparatus utilizing a digital processor unit as a control and monitor unit to measure and control input and output parameters in the power supply. A battery charger is utilized to maintain the voltage and current levels with the backup battery supply source which powers an inverter unit that converts the DC power to an AC output.

  1. Backup Power Supply System Analysis

    Bohuslav Lakota; Zdislav Exnar; Miroslav Matejcek; Mikulas Sostronek

    2015-01-01

    All electrical or electromechanical systems need electric voltage to function. This voltage is obtained from a distribution network or autonomous power supply. Reliable operation of systems/devices is then largely dependent on the reliability of delivering power supply voltage. The aim of this article is to point out to some aspects of increased reliability possibilities of those systems.

  2. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants...... to trip off during temporary grid side faults, commonly described as low voltage fault-ride-through requirement. There are four different fault-ride-through options discussed in the report. The first option includes controlling of collector network frequency. This provides a very good opportunity to...... difficult to control and as such a high current capacity of the WPP side VSC might be required. Detailed simulation results are included in the report. The other option is to use a DC chopper, the results of which are also presented in detail in the report. It is observed that a DC chopper can provide a...

  3. High voltage designing of 300.000 Volt

    Some methods of designing a.c and d.c high voltage supplies are discussed. A high voltage supply for the Gama Research Centre accelerator is designed using transistor pulse generators. High voltage transformers being made using radio transistor ferrits as a core are also discussed. (author)

  4. High-voltage engineering and testing

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  5. Design and development of power supplies for high power IOT based RF amplifier

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (?microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  6. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Chih-Lung Shen; Hong-Yu Chen; Po-Chieh Chiu

    2015-01-01

    In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current) converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling...

  7. A PC-PCL-based control system for the high-voltage pulsed-power operation of the Intense Diagnostic Neutral Beam (IDNB) Experiment

    A stand-alone, semiautomated control system for the high-voltage pulsed-power energy sources on the Intense Diagnostic Neutral Beam Experiment at Los Alamos National Laboratory using personal computer (PC) and programmable logic controller (PLC) technology has been developed and implemented. The control system, consisting of a PC with the graphic operator interface, the network connecting the PC to the PLC, the PLC, the PLC I/O modules, fiber-optic interfaces and software, is described

  8. Increased risk of childhood acute lymphoblastic leukemia (ALL) by prenatal and postnatal exposure to high voltage power lines: a case control study in Isfahan, Iran.

    Tabrizi, Maral Mazloomi; Bidgoli, Sepideh Arbabi

    2015-01-01

    Childhood acute lymphoblastic leukemia (ALL) is one of the most common hematologic malignancies, accounting for one fourth of all childhood cancer cases. Exposure to environmental factors around the time of conception or pregnancy can increase the risk of ALL in the offspring.This study aimed to evaluted the role of prenatal and postnatal exposure to high voltage power lines on the incidence of childhood ALL.This cross-sectional case control study was carried out on 22 cases and 100 controls who were born and lived in low socioeconomic families in Isfahan and hospitalized for therapeutic purposes in different hospitals from 2013-2014.With regard to the underlying risk factors, familial history and parental factors were noted but in this age, socioeonomic and zonal matched case control study, prenatal and childhood exposure to high voltage power lines was considered as the most important environmental risk factors of ALL (p=0.006, OR=3.651, CI 95%, 1.692-7.878). As the population was of low socioeconomic background, use of mobiles, computers and microwave was negligible. Moreover prenatal and postnatal exposure to indoor electrically charged objects was not determined to be a significant environmental factor. Thus, pre and post natal exposure to high voltage power lines and living in pollutant regions as well as familial influence could be described as risk factors of ALL for the first time in a low socioeconomic status Iranian population. PMID:25824762

  9. Power supply and environment protection

    The 16 lectures by German and Polish scientists have all been entered into the data base. They deal among other things with the common market for power and the constraints placed on it by EC law; local power supply in the Federal German Republic; intercommunal cooperation for satisfying local power demand; public participation in power law; ways of accelerating procedures etc. (HSCH)

  10. Power supply system for negative ion source at IPR

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ∼5 x 1012 cm-3, from which ∼ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (∼15 to 35kV), and high current (∼ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (∼50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (∼ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low and high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.

  11. Power supply system for negative ion source at IPR

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun, E-mail: agrajit@ipr.res.i [Institute for Plasma Research, Gandhinagar, Gujarat - 382428 (India)

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density {approx}5 x 10{sup 12} cm{sup -3}, from which {approx} 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage ({approx}15 to 35kV), and high current ({approx} 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< {+-}1%), low ripple (< {+-}2%), isolation ({approx}50kV), low energy content (< 10J) and fast cut-off (< 100{mu}s). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically ({approx} 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low and high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.

  12. Power supply system for negative ion source at IPR

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the design basis, topology selection, manufacturing, testing, commissioning, integration and control strategy of these HVPS. A complete power interconnection scheme, which includes all protective devices and measuring devices, low & high voltage power supplies, monitoring and control signals etc. shall also be discussed. The paper also discusses the protocols involved in grounding and shielding, particularly in operating the system in RF environment.

  13. Supply Power Factor Improvement in Ozone Generator System Using Active Power Factor Correction Converter

    G. Udhayakumar

    2015-06-01

    Full Text Available Artificial Ozone Generating system needs High Voltage, High Frequency supply. The Ozonator distorts the supply currents and henceforth affect the supply power factor. This paper presents the performance comparison of PWM inverter to Power Factor Corrected (PFC converter with PWM inverter based High-voltage High-frequency power supply for ozone generator system. The conventional inverter has front end bridge rectifier with smoothing capacitor. It draws non-sinusoidal current from ac mains; as a result input supply has more harmonics and poor power factor. Hence, there is a continuous need for power factor improvement and reduction of line current harmonics.  The proposed system has active power factor correction converter which is used to achieve sinusoidal current and improve the supply power factor. The active PFC converter with PWM inverter fed ozone generator generates more ozone output compared to the conventional inverter. Thus the proposed system has less current harmonics and better input power factor compared to the conventional system.  The performance of the both inverters are compared and analyzed with the help of simulation results presented in this paper.

  14. Tetrode bias power supply for Indus-1, synchrotron radiation source

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  15. Instrumentation architecture for ITER diagnostic neutral beam power supply system

    A Neutral Beam (NB) Injection system is used for heating or diagnostics of the plasma in a Tokamak. The Diagnostics Neutral Beam (DNB) system for ITER (International Thermonuclear Experimental Reactor) based on acceleration of negative ions; injects a neutral (H0) beam at 100 KeV with specified modulation into the plasma for charge exchange recombination spectroscopy. DNB Power Supply (DNBPS) system consists of various high voltage power supplies, high current power supplies and RF Generators. The system operates in a given operating sequence; very high electromagnetic transients are intrinsically generated during frequent short circuit at the accelerator grid (breakdowns) and sudden loss of load (Beam off). Instrumentation is to be provided to operate the DNBPS system remotely with required control and protection in synchronisation with ITER operation as directed by CODAC (COntrol Data Access and Communication); the central control system for ITER. Instrumentation functionality includes 1. Operation and control of DNBPS subsystems and associated auxiliaries 2. Protection of DNB components and power supplies using interlock system, 3. To ensure safe operation of high voltage hazardous systems 4. Acquisition of injector performance parameters and 5. To facilitate test and maintenance of individual subsystem. This paper discusses about proposed DNBPS instrumentation architecture. The design generally follows the protocols from the ITER- Plant Control Design Handbook (PCDH). (author)

  16. Mobile power supply

    Currie, J.A.N.; Kibble, J.D.

    1980-04-01

    This paper reports on research on the mechanization of transport and other outbye operations, in which the provision of mobile power is a serious problem. It surveys diesel engines and other ways of using chemical fuel, together with energy storage and transmissions. The concept of hybrid drives, in which advantages may be obtained from combining two forms of power, is introduced.

  17. Advances in the development of the nested high voltage generator

    The Nested High Voltage Generator (NHVG) is a high voltage accelerator/power supply topology which can potentially satisfy a variety of requirements for a compact, reliable inexpensive DC accelerator in the 0.25 - 10 MeV range. Applications for this technology include the generation of high voltage, high current pulsed electron beams for the curing of polymers, and the sterilization of medical waste. This technology has recently been demonstrated in an accelerator which has operated at 500 kV with an electron beam in a 36 inch long, 17 inch diameter device. In this paper the authors briefly describe the technology, and the operation of 3 machines built since the initial discussion of the technology in the 1991 Particle Accelerator Conference Proceedings. The operation of a machine at up to 500 kV and 83% efficiency has been demonstrated, and is particularly noteworthy

  18. Electric power system / emergency power supply

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  19. METHODICAL APPROACHES TO THE CHOICE OF THE NEW GENERATION OF HIGH-VOLTAGE POWER TRANSMISSION LINE 220 kV OPTIONS

    POSTOLATI V.M.

    2010-08-01

    Full Text Available The Transmission Power Lines of new generation are described in the article (single- compact, double-circuit compact, double-circuit Controlled Self-compensating High Voltage Transmission Power Lines (CSHVL. Basic principles of creation, design elements and comparative characteristics of the transmission lines of the new generation are described, the advantages of its are showed. Methodical approaches to the choosing of a new generation of transmission lines and facilities management FACTS are formulated. Methodical approaches to the choice of options for transmission lines 220 kV and facilities management are shown.

  20. Development of an IGBT converter for a magnet power supply

    A 100-kW-class current-type PWM (pulse width modulation) converter based IGBTs (insulated-gate bipolar transistors) was developed, and the feasibility of its application to a large magnet power supply for nuclear fusion device was investigated. Although the target of the rated performance of 200 V-500 A was achieved, the following problems arose: transient high voltages of a LC filter, distortion of an AC source current for low output voltage operation, and decrease in power factor owing to large current operation. (author)

  1. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  2. Design of the HL-2M power supply control system

    Highlights: • The control system is structured by using four kinds of control networks. • The controlling of converter is based on the real time network and FPGA. • With use of PROFINET, the status of all components can be monitored easily. • The SoE distinguishes input signals clearly to detect the fault rapidly. -- Abstract: The power supply control system is one of the most important local control systems of HL-2M tokamak. The power supply system of HL-2M is composed of four flywheel generator sets with total capacity of 600 MVA, all the magnetic field coil power supplies and high voltage power supplies of auxiliary heating system. The control system of power supply should make sure the large amount of on-site equipment and facilities to operate steadily and reliably. This paper presents the architecture of HL-2M control system and four kinds of established control networks. It describes how the power supply control system is built by using the established hardware structures and software agreements. Specially, it is focused on introducing an application of real-time technology based on the reflective shared memory and the fully digital compact solution for controlling the high power converters. Otherwise, a scheme which adopts PROFINET and Sequence of Events technology to carry out the intellect interlock control system is given

  3. Power supplies in Europe

    The contribution takes a look at the current situation of the internal energy market, for which the EC-Commission demands more competition due to the differing price policies of the individual EC-countries and their effects on industrial policy, in addition due to the free merchandise traffic which is necessary for electricity as well and due to international investments. A first step toward perfecting the internal market for electricity consists in the two directives which the Council of Ministers passed regarding the transit of electricity and the transparency of prices, the first phase of which has been initiated. During the second phase there are plans for permitting liberalization for a limited number of new competitors while orienting oneself to the existing structures. This phase consists in carrying out the following three main tasks: First of all the rights for the production of energy and the construction of power lines should be extended. Second of all, in vertically consolidated enterprises, the concept of decartelization, i.e. the separation of management and accounting must be introduced in the production area and in the transference and distribution sectors. The third tasks consists in giving third parties access to the power-distribution network to a limited degree. The main points of criticism on the part of the power suppliers are the following: - Long-term investments can no longer be made to a sufficient extent. - The individual consumer is placed at a disadvantage due to the competitive system. - The third-party-access system entails an unnecessary amount of bureaucratization. In closing, the contribution takes a brief look at energy taxes and CO2 stabilization as well as negotiations on the energy charter. (orig./HSCH)

  4. A high-power high-voltage multi-pulse twin-output driver for radiation generators

    This paper presents the second phase of a research programme aimed at producing twin series of high-voltage pulses from the single discharge of a capacitor into multiple arrays of exploding metallic wires. Details of the design and construction of a generator that is able to produce either three 200 kV pulses, two 250 kV pulses or a single 500 kV pulse, on resistive loads between 50 and 100 Ω at each output, are given. In addition to describing the design of the exploding wire arrays, the paper also details other ancillary equipment that is needed for the generator. This includes the two compact air-cored transformers that provide the twin series of output pulses at the required voltage. The experimental performance of the generator is shown to be close to that predicted by numerical modelling. Results are presented with the resistive loads replaced by x-ray heads, and ways by which the system can be further developed to drive microwave sources are discussed. (author)

  5. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  6. Development of microcontroller based remote control system for HV power supply of ECR ion source for ADSS project

    In this paper we will describe the design and development of the microcontroller based interface card used to control and monitor the operation of High Voltage Power supply 120kV/50mA (HVPS). This power supply is deployed for the extraction of proton beam from the microwave ion source in the ADSS project. (author)

  7. Design and implementation of the wireless high voltage control system

    In this paper we will describe the implementation of the wireless link for controlling and monitoring the serial data between control PC and the interface card (general DAQ card), by replacing existing RS232 based remote control system for controlling and monitoring High Voltage Power Supply (120kV/50mA). The enhancement in the reliability is achieved by replacing old RS232 based control system with wireless system by isolating ground loop. (author)

  8. High voltage engineering fundamentals

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  9. High voltage pickup plate

    For the 'electron gun' of the NIKHEF electron accelerator a High Voltage Pickup Plate (HVPP) has been constructed with belonging electronics, in order to iinvestigate the stability of the voltage of the electron gun. With the HVPP it is possible to measure the absolute quantities of the instabilities, as result of the rectifying and the pulsed load, of the ICT. (author). 28 figs.; 1 tab

  10. High voltage pulse conditioning

    Springfield, Ray M. (Sante Fe, NM); Wheat, Jr., Robert M. (Los Alamos, NM)

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  11. High-voltage picoamperemeter

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  12. High voltage electrical injuries

    Objective: To highlight the devastating nature and consequences of high voltage electrical injuries and to stress the need for its prevention. Design: It was a retrospective study. Place and duration of study: The study was conducted at Army Burn Centre, Combined Military Hospital Kharian Cantonment, between January 1,1998 to December 31, 2000. Subjects and Methods: All the patients reporting to Army Burn Centre with high voltage electrical injuries were included in the study. The epidemiology of these injuries were studied along with the pattern of their management and outcome in terms of mortality and morbidity. Results: Of all the patients admitted to the Army Burn Center, 5.94% were affected with electrical injuries. They were predominantly males in a ratio of 9.75:1 and mostly in the 3rd and 4th decades of their lives. Seventy percent of these injuries were injuries were work-related and 75% had associated surface burns. There was significant mortality rate of 18.6% and a limb amputation rate of 80% along with professional disability rate of 91% rendering it a highly morbid condition. Conclusion: This study stresses the necessity to educate the general public with regard to the devastating nature of high voltage electrical injury and highlight the importance of prevention. (author)

  13. High-voltage picoamperemeter

    Bugl, Andrea; Ball, Markus; Boehmer, Michael; Doerheim, Sverre; Hoenle, Andreas; Konorov, Igor [Technische Universitaet Muenchen, Garching (Germany); Ketzer, Bernhard [Technische Universitaet Muenchen, Garching (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany)

    2014-07-01

    Current measurements in the nano- and picoampere region on high voltage are an important tool to understand charge transfer processes in micropattern gas detectors like the Gas Electron Multiplier (GEM). They are currently used to e.g. optimize the field configuration in a multi-GEM stack to be used in the ALICE TPC after the upgrade of the experiment during the 2nd long shutdown of the LHC. Devices which allow measurements down to 1pA at high voltage up to 6 kV have been developed at TU Muenchen. They are based on analog current measurements via the voltage drop over a switchable shunt. A microcontroller collects 128 digital ADC values and calculates their mean and standard deviation. This information is sent with a wireless transmitting unit to a computer and stored in a root file. A nearly unlimited number of devices can be operated simultaneously and read out by a single receiver. The results can also be displayed on a LCD directly at the device. Battery operation and the wireless readout are important to protect the user from any contact to high voltage. The principle of the device is explained, and systematic studies of their properties are shown.

  14. Determination of high voltage

    The quality of an X-ray image is influenced by the radiation parameters (kV value, filtration) because of their impact on contrast and contrast resolution. Deviations from the nominal high voltage of an X-ray tube may lead to unnecessary exposure of the patient and complicate the comparability of X-ray images, which is why there is interest in an easy to handle, non-invasive method of determining the high voltage of an X-ray tube. For the purposes of constancy, several non-invasive high-voltage test tools have been developed, some of which work on the principle of modified film cassettes with two different intensifying screens or different optical extenuations, while others use a ''two filter method'' with photodiodes (electronic kV meters). The accuracy, reproducibility and practicality of two test cassettes and five electronic kV meters have been investigated and their usefulness with respect to national regulations and physicians' demands is discussed. (author)

  15. Compact, Lightweight, High Voltage Propellant Isolators Project

    National Aeronautics and Space Administration TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  16. Compact, Lightweight, High Voltage Propellant Isolators Project

    National Aeronautics and Space Administration — TA&T, Inc. proposes an enabling fabrication process for high voltage isolators required in high power solar electric and nuclear electric propulsion (SEP and...

  17. Application of thyristor circuit breaker to ohmic heating coil power supply systems

    New ohmic heating coil power supply systems which can generate high voltage are studied to insure their effective and economical use in nuclear fusion devices. Several systems are conceived by using normal, module, and multi-stage repetition types of thyristor circuit breakers. The operation of these systems are analyzed by digital simulation. It is seen that these thyristor circuit breakers are practical and applicable in ohmic heating coil power supply systems. (author)

  18. Non-isolated DC-AC converter with high voltage gain for autonomous systems of electric power; Conversor CC-CA nao isolado com alto ganho de tensao para aplicacao em sistemas autonomos de energia eletrica

    Silveira, George Cajazeiras [Centro Federal de Educacao Tecnologica do Ceara (CEFET/CE), Fortaleza, CE (Brazil); Torrico-Bascope, Rene P. [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)

    2008-07-01

    A non-isolated DC-AC converter with high voltage gain with two output sinusoidal voltage - 110 V and 220 V - and frequency 60 Hz for application in autonomous systems of electric power is proposed in this work. This topology consists of a boost converter with high voltage gain, based on three-state switching cell combined with a double half bridge inverter. This configuration type the size and the cost are reduced and the efficiency is gotten better, due to the reduced number of switches. The converters that compose this topology operate with high frequency, reducing the volume of the magnetic materials. can be mention as important characteristics: the voltage stress across the switches of the boost converter are low, due they be naturally clamped by one output filter capacitor, which allows the utilization of switches with lower conduction resistances, and the waveforms of the output voltage of the double half bridge inverter supplies for the load it is sinusoidal and it possesses low harmonic content. (author)

  19. The German power supply situation

    The first key statement of this paper runs like this: The situation of power supply in Germany basically is good. However, two qualifications should be added: The current situation is still good. Power outages as a consequence of power plant failures of the kind experienced in other countries must not be expected to occur in Germany. German utilities work hard to offer this assurance also for the future. This is where politics comes in with the need to guarantee reliable framework conditions. After deregulation of the electricity market, reregulation resulting from government interventions is becoming potentially more and more problematic. Energy issues remain at the top of the political agenda, e.g. with the amendment to the Power Economy Act. This is a matter involving a variety of questions and projects on the part of legislators which require delicate handling because, in addition to the prices to be paid by consumers, they also involve as the most important factor the continuity of supply. Nuclear power today covers a major part of our baseload supply, in addition to lignite and hard coal which are used mainly in the medium-load range. Supported by the findings of recent studies, such as the dena Study, the Prognos and EWI Energy Report, the problem is how to replace this share reliably, in a way protecting the climate and economically viable, in line with the political conditions stipulating residual electricity outputs of nuclear power plants. Other countries can be seen to pursue different policies in using nuclear power. (orig.)

  20. RICH High Voltages & PDF Analysis @ LHCb

    Fanchini, E

    2009-01-01

    In the LHCb experiment an important issue is the identification of the hadrons of the final states of the B mesons decays. Two RICH subdetectors are devoted to this task, and the Hybrid Photon Detectors (HPDs) are the photodetectors used to detect Cherenkov light. In this poster there is a description of how the very high voltage (-18 KV) supply stability used to power the HPDs is monitored. It is also presented the basics of a study which can be done with the first collision data: the analysis of the dimuons from the Drell-Yan process. This process is well known and the acceptance of the LHCb detector in terms of pseudorapidity will be very useful to improve the knowledge of the proton structure functions or, alternatively, try to estimate the luminosity from it.

  1. Magnetically switched power supply system for lasers

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  2. TPX power supply design and performance

    TPX will utilize a combination of new and existing AC/DC converter equipment, the latter consisting of the inventory of equipment available at the PPPL site when TPX succeeds TFTR. To make best use of existing facilities, the TFTR (a.k.a., Transrex) converters are applied to the TPX duty when appropriate, but in general the pulse rated, high voltage converters do not match the long pulse, low voltage demand of the load during the plasma burn phase. In the Poloidal Field (PF) system the Transrex converters are suitable for the dynamic operation associated with plasma ramp up and ramp down, but are not well suited to the quasi-steady conditions during plasma burn. In this case a parallel combination of the Transrex converters with new high current, low voltage power supplies is proposed. In the Toroidal Field (TF) system a new dual voltage converter using AC bus transfer is proposed. In the Fast Plasma Position Control (FPPC) system an anti-parallel 12-pulse arrangement of Transrex converters is proposed. This paper presents a description of the design of the converter systems along with preliminary results of simulation studies of the AC/DC converter performance in terms of short circuit, voltage drop, and control

  3. A prototype of a high-voltage platform for the KRION ion source

    Alexandrov, V. S.; Donets, E. E.; Konnov, G. I.; Kosukhin, V. V.; Sidorova, V. O.; Sidorov, A. I.; Shvetsov, V. S.; Trubnikov, G. V.

    2014-09-01

    A high-voltage platform that has been developed for the KRION ion source is described. The platform design concept is explained. The calculations that have been performed of the influence of the design and materials on the source magnetic field make it possible to define a range of materials suitable for manufacturing the platform. The major components of the high-voltage platform, such as a high-voltage power supplier, and decoupling insulators of the high-voltage power source, and the main and supplementary platforms, are chosen and described. It is determined that, to exclude electric breakdowns and corona discharges, one should use an electrically shielded channel with a cryocooler and power supplies for the KRION-source coupling cables.

  4. Specialized device of power supplies

    Gunchenko Y. A.

    2010-02-01

    Full Text Available The specialized device of power supplies, capable to change parameters of output voltage depending on conditions of environment and parameters of the fed equipment is offered. Examples of its application for feed of the electroluminescent indicator are resulted.

  5. On-chip High-Voltage Generator Design

    Tanzawa, Toru

    2013-01-01

    This book describes high-voltage generator design with switched-capacitor multiplier techniques.  The author provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.   ·         Shows readers how to design charge pump circuits with lower voltage operation, higher power efficiency, and smaller circuit area; ·         Describes comprehensive circuits and systems design of on-chip high-voltage generators; ·         Covers all the component circuit blocks, including charge pumps, pump regulators, level shifters, oscillators, and references.

  6. Power generator with high-voltage charging of a shaping line by means of electrical explosion wires

    A new scheme of creating high-power and heavy-current nanosecond generator is suggested. It includes a low-voltage (U 2.5 ?s) powered inductive accumulator, interrupter on the basis of electrical explosion wires, fast shaping lines, transmitting line with vacuum diode at the end. This circuit enables to design and to put into operation the sub-terawatt generator with ? 100 kG initial energy content, which supported the main assumptions and ideas. 6 refs., 5 figs

  7. Klystron bias power supplies for Indus-2 synchrotron radiation source

    The functioning of an alternating current (AC) voltage regulator based high voltage direct current (HVDC) power supplies with better input and output performances has been presented in this paper. The authors have incorporated a 3-phase series limiting inductor, along with detuned passive filter in each power supply, to take care of line harmonics and the input power factor (IPF), which is simple, cost effective, reliable and provides input performance matching that of an equivalent active filter. Such arrangement has special significance for controlled HVDC power supplies supplying to fixed load but operated from widely varying input voltages. It achieves line voltage total harmonic distortion (THD) below 4% and IPF better than 0.97, for 415 V - 30% to 415 V + 10% variations in 3-phase input voltages. A properly designed crowbar, along with suitable limiting elements, is incorporated in each power supply and stringent wire survivability tests were carried out to limit klystron fault energy below 10 Joules. Several simulated waveforms and experiment results are also presented. (author)

  8. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  9. Evaluation and measurement of magnetic field exposure at a typical high-voltage substation and its power lines

    This study presents a survey of magnetic field measurements including those resulting from 380/154 kV power substations, which play a vital role in human body biological studies. The survey was carried out in the main power substation of Antalya (Turkey)), located at the suburban region of the city, under actual loads. The paper also presents the actual magnetic field strength measured near the 380/154 kV substation and power transmission lines (380 and 154 kV) connecting to the substation. Since most part of these lines pass through a residential area, they have been included in the study, and the actual magnetic field variation around them has been investigated by comparative analysis of measured data. For the occupants working at substations, occupational exposure has been analysed with actual magnetic fields at operating locations. Induced internal electric fields and current densities in the occupants' body due to exposure to external magnetic fields produced by a conventional 380/154 kV power substation have been investigated. (authors)

  10. An On-Chip Multi-Voltage Power Converter With Leakage Current Prevention Using 0.18 μm High-Voltage CMOS Process.

    Lo, Yi-Kai; Chen, Kuanfu; Gad, Parag; Liu, Wentai

    2016-02-01

    In this paper, we present an on-chip multi-voltage power converter incorporating of a quad-voltage timing-control rectifier and regulators to produce ±12 V and ±1.8 V simultaneously through inductive powering. The power converter achieves a PCE of 77.3% with the delivery of more than 100 mW to the implant. The proposed rectifier adopts a two-phase start-up scheme and mixed-voltage gate controller to avoid substrate leakage current. This current cannot be prevented by the conventional dynamic substrate biasing technique when using the high-voltage CMOS process with transistor threshold voltage higher than the turn-on voltage of parasitic diodes. High power conversion efficiency is achieved by 1) substrate leakage current prevention, 2) operating all rectifying transistors as switches with boosted gate control voltages, and 3) compensating the delayed turn-on and preventing reverse leakage current of rectifying switches with the proposed look-ahead comparator. This chip occupies an area of 970 μm × 4500 μm in a 0.18 μ m 32 V HV CMOS process. The quad-voltage timing-control rectifier alone is able to output a high DC voltage at the range of [2.5 V, 25 V]. With this power converter, both bench-top experiment and in-vivo power link test using a rat model were validated. PMID:25616076

  11. High Voltage Charge Pump

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  12. High voltage isolation transformer

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  13. Design of a system of high voltage pulsed power converters for CERN’s Linac4 H$^{−}$ ion source

    Aguglia, D

    2014-01-01

    This paper presents the complete design and experimental validations of the full scale prototype of a system of three new high voltage pulsed power converters for the CERN Linac4 H$^{−}$ source. The system requires three pulsed voltages (50kV, 40kV and 25kV to ground) at 2Hz repetition rate, for a 700µs of usable flat-top. The solution presents switching frequency ripplefree voltages and a minimal stored energy to protect the ions source from arc events consequences. The main design aspects are presented. Experimental results on the final full-scale prototype are presented and show excellent behaviour in nominal and short circuit operations.

  14. Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link

    Wang, L.; Lee, D. J.; Lee, W. J.; Chen, Zhe

    2008-01-01

    This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore......) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system(FESS) and a compressed air energy storage (CAES) system to balance the required energy in the...... wind turbines andWells turbines to respectively capture wind energy and wave energy from marine wind and oceanwave. In addition to wind-turbine generators(WTGs) andwave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE...

  15. FFT Analysis of a Series Loaded Resonant Converter-Based Power Supply for Pulsed Power Applications

    An impulse power supply has been designed, simulated, and tested in order to feed the primary of a high-frequency transformer. Pulse power system has been widely used for plasma applications. The operational principle of the pulse power system is that the energy from the input source is stored in the capacitor bank device through a dc-dc converter. Then, when a discharging signal is given, the stored energy is released to the load. The new family of ZCS converters is suitable for high-power applications using insulated gate bipolar transistors (IGBTs). The power converter can achieve zero switching with the aid of high-frequency transformer. The device is capable of charging a 0.1μF capacitor up to 5 kV which accounts for a charging power of 5 kJ/s. The novel control algorithm is achieved which eminently considers the nonlinear control characteristics of impulse power supply. The required charging voltage, together with the constraint on the charging time, translates into a required maximum power of 10 kW reduced in this initial version to 5 kW. The difficulty to reliably control such a power at the high-voltage side practically forbids any approach featuring a more or less stabilized DC high-voltage to be generated from a conventional 50 Hz transformer through rectification.

  16. Gyrotron and power supply development for upgrading the electron cyclotron heating system on DIII-D

    Tooker, Joseph F., E-mail: tooker@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Huynh, Paul [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Felch, Kevin; Blank, Monica; Borchardt, Philipp; Cauffman, Steve [Communications and Power Industries, 811 Hanson Way, Palo Alto, CA 94304 (United States)

    2013-10-15

    Highlights: ► Vendor completed design of 1.5 MW, 117.5 GHz gyrotron for DIII-D. ► Fabrication of gyrotron by vendor underway. ► Finalizing design of solid-state high voltage modulator for cathode power supply. ► Fabrication of solid-state high voltage modulator has begun. ► Finalizing design of high voltage linear amplifier for gyrotron body power supply. -- Abstract: An upgrade of the electron cyclotron heating system on DIII-D to almost 15 MW is being planned which will expand it from a system with six 1 MW 110 GHz gyrotrons to one with ten gyrotrons. A depressed collector 1.2 MW 110 GHz gyrotron is being commissioned as the seventh gyrotron. A new 117.5 GHz 1.5 MW depressed collector gyrotron has been designed, and the first article will be the eighth gyrotron. Two more are planned, increasing the system to ten total gyrotrons, and the existing 1 MW gyrotrons will subsequently be replaced with 1.5 MW gyrotrons. Communications and Power Industries completed the design of the 117.5 GHz gyrotron, and are now fabricating the first article. The design was optimized for a nominal 1.5 MW at a beam voltage of 105 kV, collector potential depression of 30 kV, and beam current of 50 A, but can achieve 1.8 MW at 60 A. The design of the collector permits modulation above 100 Hz by either the body or the cathode power supply, or both, while modulation below 100 Hz must use only the cathode power supply. General Atomics is developing solid-state power supplies for this upgrade: a solid-state modulator for the cathode power supply and a linear high voltage amplifier for the body power supply. The solid-state modulator has series-connected insulated-gate bipolar transistors that are switched at a fixed frequency by a pulse-width modulation regulator to control the output voltage. The design of the linear high voltage amplifier has series-connected transistors to control the output voltage, which was successfully demonstrated in a proof-of-principle test at 2 kV. The designs of complete power supplies are progressing. The design features of the 117.5 GHz 1.5 MW gyrotron and the solid-state cathode and body power supplies will be described and the current status and plans are presented.

  17. Gyrotron and power supply development for upgrading the electron cyclotron heating system on DIII-D

    Highlights: ► Vendor completed design of 1.5 MW, 117.5 GHz gyrotron for DIII-D. ► Fabrication of gyrotron by vendor underway. ► Finalizing design of solid-state high voltage modulator for cathode power supply. ► Fabrication of solid-state high voltage modulator has begun. ► Finalizing design of high voltage linear amplifier for gyrotron body power supply. -- Abstract: An upgrade of the electron cyclotron heating system on DIII-D to almost 15 MW is being planned which will expand it from a system with six 1 MW 110 GHz gyrotrons to one with ten gyrotrons. A depressed collector 1.2 MW 110 GHz gyrotron is being commissioned as the seventh gyrotron. A new 117.5 GHz 1.5 MW depressed collector gyrotron has been designed, and the first article will be the eighth gyrotron. Two more are planned, increasing the system to ten total gyrotrons, and the existing 1 MW gyrotrons will subsequently be replaced with 1.5 MW gyrotrons. Communications and Power Industries completed the design of the 117.5 GHz gyrotron, and are now fabricating the first article. The design was optimized for a nominal 1.5 MW at a beam voltage of 105 kV, collector potential depression of 30 kV, and beam current of 50 A, but can achieve 1.8 MW at 60 A. The design of the collector permits modulation above 100 Hz by either the body or the cathode power supply, or both, while modulation below 100 Hz must use only the cathode power supply. General Atomics is developing solid-state power supplies for this upgrade: a solid-state modulator for the cathode power supply and a linear high voltage amplifier for the body power supply. The solid-state modulator has series-connected insulated-gate bipolar transistors that are switched at a fixed frequency by a pulse-width modulation regulator to control the output voltage. The design of the linear high voltage amplifier has series-connected transistors to control the output voltage, which was successfully demonstrated in a proof-of-principle test at 2 kV. The designs of complete power supplies are progressing. The design features of the 117.5 GHz 1.5 MW gyrotron and the solid-state cathode and body power supplies will be described and the current status and plans are presented

  18. Re-creation of aerosol charge state found near HV power lines using a high voltage corona charger

    Matthews, J. C.; Wright, M. D.; Biddiscombe, M. F.; Underwood, R.; Usmani, O. S.; Shallcross, D. E.; Henshaw, D. L.

    2015-10-01

    Corona ionisation from AC HV power lines (HVPL) can release ions into the environment, which have the potential to electrically charge pollutant aerosol in the atmosphere. It has been hypothesised that these charged particles have an enhanced probability of being deposited in human airways upon inhalation due to electrostatic attraction by image charge within the lung, with implications for human health. Carbonaceous aerosol particles from a Technegas generator were artificially charge-enhanced using a corona charger. Once generated, particles were passed through the charger, which was either on or off, and stored in a 15 litre conducting bag for ∼20 minutes to observe size and charge distribution changes over time. Charge states were estimated using two Sequential Mobility Particle Sizers measuring the size and mobility distributions. Charge-neutral particles were measured 7 times and positive particles 9 times, the average charge-neutral value of x was 1.00 (sd = 0.06) while the average positive value was 4.60 (0.72). The system will be used to generate positive or charge neutral particles for delivery to human volunteers in an inhalation study to assess the impact of charge on ultrafine (size < 100 nm) particle deposition.

  19. Design and Construction of a Test Bench to Characterize Efficiency and Reliability of High Voltage Battery Energy Storage Systems

    Blank, Tobias; Thomas, Stephan; Roggendorf, Christoph; Pollok, Thomas; Trintis, Ionut; Sauer, Dirk Uwe

    Stationary battery energy storage systems are widely used for uninterruptible power supply systems. Furthermore, they are able to provide grid services. This yields in rising installed power and capacity. One possibility uses high voltage batteries. This results in an improvement of the overall...... system efficiency. High voltage batteries may be advantageous for future medium voltage DC-grids as well. In all cases, high availability and reliability is indispensable. Investigations on the operating behavior of such systems are needed. For this purpose, a test bench for high voltage storage systems...... was built to analyze these processes for different battery technologies. A special safety infrastructure for the test bench was developed due to the high voltage and the storable energy of approximately 120 kWh. This paper presents the layout of the test bench for analyzing high voltage batteries with...

  20. Design and Construction of a Test Bench to Characterize Efficiency and Reliability of High Voltage Battery Energy Storage Systems

    Blank, Tobias; Thomas, Stephan; Roggendorf, Christoph; Pollok, Thomas; Trintis, Ionut; Sauer, Dirk Uwe

    Stationary battery energy storage systems are widely used for uninterruptible power supply systems. Furthermore, they are able to provide grid services. This yields in rising installed power and capacity. One possibility uses high voltage batteries. This results in an improvement of the overall...... system efficiency. High voltage batteries may be advantageous for future medium voltage DC-grids as well. In all cases, high availability and reliability is indispensable. Investigations on the operating behavior of such systems are needed. For this purpose, a test bench for high voltage storage systems...

  1. Abort kicker power supply systems at Fermilab

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beams of approx.1.8 ?s. The current waveform is required to rise to 90% of I/sub max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I/sub max/ for the 21 ?s needed to ensure all the beam has left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of approx.20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention is given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades are given for the two operational systems. 2 refs., 4 figs., 1 tab

  2. Design of auto-control high-voltage control system of pulsed neutron generator

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  3. High voltage breakdown capabilities of high temperature insulation coatings for HTS and LTS conductors

    High temperature ZrO2 based coatings were deposited on Ag and Ag/AgMg sheathed Bi-2212 tapes from solutions derived from alkoxide-based precursors using a reel-to-reel, continuous sol-gel technique. The insulation coatings were annealed at 850 deg. C for 20 hours under O2 flow. The surface morphology and structure of coatings were characterized by SEM and XRD. High voltage breakdown of insulation on tapes was measured by a standard high voltage breakdown power supply. It has been found that high voltage breakdown values of these insulations strongly depend on number of dipping, thickness, coating type, annealing conditions, and dopant content in ZrO2. 20% Y2O3-ZrO2 coatings showed the best high voltage breakdown value, 2.05 kV at 1.5 mA

  4. Power supply control protocol used at GANIL

    This document intends to establish specifications for power supply control so that, if complied with by power supply manufacturers, power supplies from any manufacturer can be linked at once to the Ganil Control system. The only points to take care of are reduced to physical link and filling of the data base

  5. Design of thyristor power supply regulator

    The author gives transmission-function of rectification of thyristor power supply. The authors designed regulator based on principle of automatic control system. The regulator has been employed in MI2 power supply for HIRFL. It is satisfying results for power supply

  6. High-Voltage, Asymmetric-Waveform Generator

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise leave the fundamental timing signal unchanged. The buffered timing signal would be fed as input to the level shifter. The output of the level shifter would serve as a timing and control signal for the high-voltage switch, causing the switch to alternately be (1) opened, allowing the capacitive load to be charged from a high-voltage DC power supply; then (2) closed to discharge the capacitive load to ground. Hence, the output waveform would closely approximate a series of exponential charging and discharging curves (see Figure 2).

  7. 3.6MW Power Supply System of the 170GHz ECH&CD System in KSTAR

    Shim, Eun-yong; Ahn, Il-kun; Seo, Tae-won; Lee, Seung-kyo; Bae, Young-soon; Joung, Jin-Hyun; Joung, Mi

    2012-09-01

    A 3.6 MW (-66 kV/55 A) Gyrotron power supply system was developed for the 170 GHz ECH&CD gyrotron system in KSTAR. This power supply system consists of Cathode Power Supply(CPS), Anode Power Supply(APS) and Body Power Supply(BPS). The CPS is using the Pulse Step Modulation by the 32set of IGBT choppers. The respons time of Chopper is very fast. So the cathode voltaget is able to be controlled rapidly. The APS is a sort of voltage devider using zener and switch component. It was achieved 3kHz modulation operation. The BPS is combined the commercial power supply and special high voltage switches. It is very simple topology but 5kHz modulation was accomplished easily. Theses power supply system were installed and commissioned successfully in 2011. This paper presents the topology of the each power supply and test result for 170 GHz gyrotron in KSTAR.

  8. Meeting the power supply challenge

    A review of activities at Ontario Power Generation since deregulation was presented. Since May 1, 2002, Ontario business and residential users have been able to choose to buy electricity from local utilities at the market price or from fixed-term, fixed-price contracts with retailers. A major heat wave in the summer of 2002 forced electricity prices to rise as supply was strained by record energy demands. On November 11, 2002, Bill 210 placed the retail market on temporary hold as the price of electricity was capped at 4.3 cents per kWh for low-volume consumers. On March 21, 2003, the fixed price was extended to users up to 250,000 kWh. It is expected that energy demand in Ontario will grow 1 per cent each year for the next 10 years. Electricity supply, transmission and distribution in the Greater Toronto area must be addressed to ensure safe, reliable and affordable power. Another issue that must be addressed is that 20 per cent of Ontario's aging generating facilities will have be overhauled or replaced by 2013. Environmental issues and the pending retirement of coal as a fuel source must also be addressed. Possible solutions include returning the Pickering 'A' nuclear facility to service, additional nuclear generation, hydroelectric upgrades, and new green generation initiatives such as wind or gas-fired combined cycle generation. Maintaining the fossil option is possible by reducing emissions. 8 figs

  9. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  10. -1 MV DC UHV power supply for ITER NBI

    A dc -1 MV ultra high voltage (UHV) power supply system is required for the ITER neutral beam injector (NBI) to accelerate negative ion beams up to the energy of 1 MeV with the beam current of 40 A for 3600 s. Domestic Agency of Japan (JADA) and Domestic Agency of EU (EUDA) have agreed the procurement sharing for the ITER NBI power supply system. JADA contributes procurement of dc -1 MV ultra-high voltage (UHV) components such as a -1 MV dc generator, a transmission line and a -1 MV insulating transformer. The dc UHV insulation is essential issue for the system, because dc long pulse insulation is different from conventional ac insulation. Voltage sharing is changed from capacitive distribution to resistive one by dc long pulse applying. Electric field distribution for multi-layer (oil/paper composites) insulation structure of the transformer has been studied by simulation for the long pulse operation up to 3600 s. The insulating structure has been designed and the overall dimensions of the dc UHV components have been finalized. In order to realize a stable NBI system, a surge energy suppression system is also essential to protect the accelerator from electric breakdowns. JADA contributes to provide an effective surge suppression system composed of a core snubber and resistors. Input energy from the power supply to the accelerator can be reduced to less than 20 joule which is smaller than design criteria of 50 joule at 1 MV breakdown. From these studies, JADA is ready for procurement arrangement for the UHV components. (author)

  11. A new bipolar Qtrim power supply system

    Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drozd, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Nolan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Orsatti, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Heppener, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Di Lieto, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Zapasek, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This year marks the 15th run of RHIC (Relativistic Heavy Ion Collider) operations. The reliability of superconducting magnet power supplies is one of the essential factors in the entire accelerator complex. Besides maintaining existing power supplies and their associated equipment, newly designed systems are also required based on the physicist’s latest requirements. A bipolar power supply was required for this year’s main quadruple trim power supply. This paper will explain the design, prototype, testing, installation and operation of this recently installed power supply system.

  12. Crowbarless solid state modular HV power supply

    A prototype development of solid state modular HV power supply is presented here to validate the scheme. This scheme will be utilized for developing 32 kV, 24 Amp HVDC power supplies for 250 kW CW klystrons or for developing 100 kV, 24 Amp HVDC power supplies for 1 MW cw klystrons as their bias supplies. It provides better input parameters and lower output stored energies making the arrangement crowbarless. (author)

  13. Energy supply without nuclear power

    In a first phase of work (1979-1980), the four energy paths were developed as an attempt to describe on a technical basis in quantitative terms, and combine in a consistent picture, the variety of opinions then prevailing in the Federal Republic with respect to future energy supply structures. The social compatibility of energy supply systems was the subject of investigation in the early eighties by two groups of scientists working on behalf, and following a suggestion, respectively, of the German Federal Ministry for Research and Technology, i.e., one group headed by K.M. Meyer-Abich and B. Schefold, and another group at the Juelich Nuclear Research Center. The final report by the Meyer-Abich/Schefold group, which was written for public release, is a book entitled 'Die Grenzen der Atomwirtschaft' (The Limits to the Nuclear Economy). This latter book came out in spring of 1986 and soon played a major role in the energy policy debate after the Chernobyl disaster. In their conclusions the authors clearly express themselves against using nuclear power on the grounds that it was a socially incompatible source of energy. This article compairs the energy scenarios K and S described in the book with the energy paths 2 and 3 of the Fact Finding Committee on Future Nuclear Energy Policy. (orig.)

  14. An IGBT-based High Voltage, Variable Pulse Width Nanosecond Pulser for Plasma Creation Applications

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Carscadden, John

    2013-10-01

    Eagle Harbor Technologies (EHT) has developed a modular solid state power supply based on IGBT technology, which can support a wide array of applications. The EHT Integrated Power Module (IPM) incorporates fast gate drive technology, high voltage isolation (~30 kV), fiber optic control, and optional crowbar diodes into a single unit. The EHT IPM can be configured to produce variable pulsed width (20 to 1000 ns), high voltage (>20 kV) high repetition frequency (2 MHz) nanosecond pulser. Nanosecond pulser applications include plasma creation for drag reduction, medical applications, water decontamination, fuel mixing and control of flue gas emissions.

  15. Monitoring System for Uninterruptible Power Supply

    S. A.Z. Murad; M. N.M. Isa; N A. Rahman

    2007-01-01

    In industrial process today, reliability of equipment is very important. Power supply must be able to cater the need of industrial process. In case of power failure, backup power supply system must be able to support the main process plant. This is to ensure smooth operation and product quality. In order to do this, uninterruptible power supply (UPS) system can be used to ensure the reliability, stability and consistency of the entire system. This UPS system must be monitored in order to enab...

  16. Fault Analysis of ITER Coil Power Supply System

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults is considered for the TF coil power supply and CS/PF coil power supply systems taking account of a single fault. The analysis results are discussed for transient and steady-state during normal and abnormal operations

  17. Design of 1 MHz solid state high frequency power supply

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  18. Bulk water distribution power supply failures

    D T, Nel; J, Haarhoff.

    2011-04-01

    Full Text Available This paper considers the probability of power supply failures at bulk water distribution pump stations. Electrical power supply is important within the bulk water distribution environment, particularly when pumping is required. Reliability of power supply is commonly expressed by means of indices, s [...] uch as amongst others, the SAIDI and SAIFI indices as defined by the Institute of Electrical and Electronics Engineering (IEEE). These indices are used to calculate the probability of failure associated with power supply. Data was obtained from a number of sources and used to benchmark the reliability of South African power supply against that of other countries. The reliability of power supply from seven South African Water Board (Rand Water) pump stations is also analysed. Limited data seems to be available that allows one to quantify the reliability of pump systems, taking into account the reliability of the various system components.

  19. A High Power RF Power Supply for High Energy Physics Applications

    Bland, Michael J; Przybyla, Jan; Wheeler, Pat

    2005-01-01

    Accelerators used for experiments in high-energy physics require very high power radio frequency sources to provide the energy needed to accelerate the particles. The RF power needs to be stable and predictable such that any variation in the supplied RF power has a limited and acceptable impact on the accelerated beam quality. The output load specifications for high voltage DC power systems are becoming increasingly more demanding. In addition, the impact of such systems on the electricity source is becoming more tightly regulated through power quality directives. These regulations set limits, for example, on the allowable individual harmonic current amplitudes and on "flicker" caused by transient load demands - the latter is particularly important for "long-pulse" modulators. The requirements above have to be met while still providing higher reliability to a higher specification at lower cost. A situation has now been reached where modulators based on existing approaches cannot meet these specifications and ...

  20. Expert system for space power supplies

    Design and evaluation of space power supplies involves many qualitative, uncertain and heuristic factors that cannot be handled by conventional algorithmic computer programs. The authors are applying Artificial Intelligence/Expert Systems techniques to provide tools for designers and managers for the synthesis and analysis of space power supplies. The authors have evaluated the feasibility of an Expert System for the identification and selection of supplies for a wide range of NASA missions of various power levels (P) and durations

  1. Bulk water distribution power supply failures

    D T Nel; J Haarhoff

    2011-01-01

    This paper considers the probability of power supply failures at bulk water distribution pump stations. Electrical power supply is important within the bulk water distribution environment, particularly when pumping is required. Reliability of power supply is commonly expressed by means of indices, such as amongst others, the SAIDI and SAIFI indices as defined by the Institute of Electrical and Electronics Engineering (IEEE). These indices are used to calculate the probability of failure assoc...

  2. Nuclear reactor power supply system

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  3. Simplified design of switching power supplies

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  4. Development of the 50 kV class high-voltage coaxial connector

    We have developed a 50 kV class high-voltage coaxial cable connector. It was designed to feed high-power pulses from an inverter power supply to a modulator, and from a modulator to a klystron tank. The connector plug can be easily removed from the socket on the oil-filled tank, leaving the tank close. A spring contact wa used to make reliable connection. The voidless fiber reinforced plastic (FRP), which has excellent high-voltage characteristics, was introduced to the insulator bushing to avoid discharge problems. This high-voltage connector has been applied to the C-band modulator and the pulsed electron gun for the X-ray FEL project at SPring-8, and worked for more than 1 year without any troubles. (author)

  5. Compact Digital High Voltage Charger

    Li, Ge

    2005-01-01

    The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.

  6. Studies on the behavior of multisecondary transformers used for regulated HV power supplies

    Multisecondary transformers are used at the input stage of modular high voltage power supplies. These power supplies are used in various steady state and pulsed applications, typical examples are neutral beam injectors, rf and microwave devices [N. Tomljenovic et al., Solid power supplies for Gyrotron and NBI sources, Fusion Technol., 1992; H.-U. Boksberger et al., The solid state TEXTOR high voltage neutral beam accelerator power supplies, in: Proceedings of the 11th SOFE, Austin, 1985, p. 679]. This paper presents a systematic study of the interactions of the transformer secondary winding stray capacitances [S. Austen Stigant, The J and P Transformer Book, Butterworths, London, 10th ed., pp. 498-500] and their behavior on the switching frequency of the power supply. Results from simulation and experiments on a pair of 300 kV A, 415/330 V (20 secondaries), 30 kV dc isolation transformers used for generating a regulated 14 kV dc, 35 A output are presented. Additional dielectric losses ∼13% of the total transformer loss and voltage swings at the switching frequency of the semiconductor devices are observed. Possible effects on the performance of the transformer and the design considerations are discussed. Constructional features and other observations related to the multisecondary transformers are also discussed

  7. High and low voltage power supply

    A converter is designed to convert 2 bateries input voltage of 1.5 volt each, to obtain the desired dc output voltage to perform a low voltage of 10 volt, 3mA and a high voltage of 600 volt, 20 A. The L.V. of 10 volt is operated to provide some transistor bias voltages, to a preamplifier and a discriminator, and the H.V. of 600 volt supply a GM tube (type 18555) bias voltage. The converter comprise of a blocking oscillator, a transformer, a double ended clipper, a rectifier and a filter. The waveform of the ac voltage to be generated in the blocking oscillator is square wave approximately. The 2N 2907-type transistor as a blocking oscillator operates in the linear region. The saturation region of the 58T3-type ferrite transformer never been reached. Even the efficiency is rather low; the bat-tery life can reach 25 hours approximately. (author)

  8. Depressão em trabalhadores de linhas elétricas de alta tensão Depression in high voltage power line workers

    Suerda Fortaleza de Souza

    2012-06-01

    Full Text Available OBJETIVO: Investigar a associação entre desequilíbrio esforços-recompensas no trabalho e sintomas depressivos em trabalhadores de linhas elétricas de alta tensão. MÉTODOS: Estudo de corte transversal realizado em 158 trabalhadores de uma empresa de energia elétrica no Nordeste do Brasil. As dimensões do modelo esforço-recompensa (ERI constituíram as variáveis independentes principais e a variável resposta foi depressão, medida pela escala Center for Epidemiologic Studies Depression (CES-D. Os dados foram analisados com técnicas de regressão logística múltipla. RESULTADOS: Trabalhadores no grupo de baixa recompensa apresentaram prevalência de depressão 6,2 vezes maior em relação àqueles no grupo de alta recompensa. A prevalência de depressão foi 3,3 vezes maior entre os trabalhadores em condição de desequilíbrio esforço-recompensa do que entre aqueles em situação de equilíbrio. CONCLUSÕES: A prevalência de depressão estava fortemente associada às dimensões de esforços e recompensas presentes no trabalho dos eletricitários.OBJECTIVE: To investigate the association between effort-reward imbalance and depressive symptoms among workers in high voltage power lines. METHODS: A cross-sectional study among 158 workers from an electric power company in Northeast Brazil. The main independent variables were the Effort-Reward Imbalance Model (ERI dimensions and the main dependent variable was the prevalence of depression, as measured by the Center for Epidemiologic Studies Depression (CES-D scale. Data were analyzed by multiple logistic regression techniques. RESULTS: The group of low reward workers presented a depression prevalence rate 6.2 times greater than those in the high reward group. The depression prevalence rate was 3.3 greater in workers in the situation of imbalanced effort-reward than in those in effort-reward equilibrium. CONCLUSIONS: The prevalence of depression was strongly associated with psychosocial factors present in the work of electricity workers.

  9. Simplified design of switching power supplies

    Lenk, John

    1996-01-01

    Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional.Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of switching supplies, including DC-DC converters, inverters, buck, boost, buck-boost, pulse frequency modulation, pulse width modulation, current-mode control and pulse skipping, are described in detail. The design examples may

  10. Controlled power supply for isotopes separator

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors)

  11. Neutrino horn power supply operational experience

    The operational experiences required to run the 300 kA pulsed power supply at Brookhaven National Laboratory are given. Various interlocks and monitoring circuits are described and the impact on system reliability are discussed. The initial conditioning process of the power supply during startup is described

  12. Diseo de una Fuente de Alto Voltaje / A High Voltage Source Design

    Jos Enrique, Eirez Izquierdo; Fabriciano, Rodrguez Gonzlez; Sonnia, Pavoni Oliver.

    2013-12-01

    Full Text Available Este documento presenta las experiencias en el diseo de una fuente de alto voltaje, basada en multiplicadores de media onda. La fuente garantizar un voltaje de salida en el orden de 10 V y una corriente en el orden de 10-3 A. Se muestran y analizan resultados experimentales encaminados a su aplic [...] acin en la alimentacin de un generador de pulsos de alto voltaje. Abstract in english This paper shows a high voltage power supply design experiences realized by half wave multipliers. The source supplies an output voltage in order of 10 V and current of the order 10-3 A. Experimental results of the power supply applied to a high voltage pulses generator are shown and analyzed. [...

  13. Different power supplies for different machines

    Eckoldt, H J

    2006-01-01

    Each time a new accelerator is built, the question of the right choice of technology for the power supplies (PS) is raised again. No specific advice can be given since the demands on the units as well as the available budget have a strong influence on the decision. An overview of the different technologies in the different machines is given here. On account of the large number of different applications, not every solution can be mentioned here but examples of different power supplies are shown. The categories are fast cycling machines, fast ramping machines, slow ramping machines, pulsed machines, and constant-power power supplies.

  14. Corrector magnet power supplies for Indus-2

    First phase of Fast Orbit Feedback System has been successfully implemented for the correction of fast disturbances to electron beam in Indus-2 Synchrotron to provide stable photon flux to beam users. Air cored combined function fast corrector magnets driven by bipolar current controlled power supplies have been used in a fast beam-position controlled feedback loop to achieve this goal. In order to track the fast varying references generated by the beam position controller, higher power supply current loop bandwidth is desired. The beam position corrector system demands large signal bandwidth of the power supply to be of the order of 100 Hz. This paper describes the design of the power and control circuit of the fast corrector power supplies and the results obtained. The power supplies are rated for ±15 A, ±150 V and have ±50 ppm stability. The developed two stage power supply has a half-controlled thyristor converter followed by a four quadrant switching converter at the output. The load current is sensed using high stability shunt. The control circuit consists of cascaded current and voltage loops. Feed-forward of load voltage has been provided to get better tracking of reference. These power supplies fulfil the requirement of the desired large signal current loop bandwidth. The observed small signal bandwidth is 500 Hz. (author)

  15. High voltage protection for the megawatt beam line

    The high voltage supply used to drive a high power neutral injector must have good regulation in order to preserve good ion beam optics. Consequently, peak fault currents can be very high and with 50 Hz supply frequency it is essential to protect the electrodes by fast acting shunt or series systems. Shunt devices may incorporate valves, spark gaps, solid dielectric switches, ignitrons etc., whereas for series elements hard valves or the crossed field interrupter are the only choices available at this time. A summary of the characteristics of several such systems is given together with an indication of costs of the development of auxiliary apparatus required and the further potential of the systems where known

  16. Improvement of Heat Power Supply Module

    Lee, Hyung Soo; Park, Jung Jin; Kim, Dae Jae; Kim, Deok In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    A module which provides power to Heat Junction Thermocouple(HJTC) is called Hear Power Supply Module(HPSM). The main roles of HJTC are as below. 1. Measuring reactor coolant level (providing loss of coolant information) 2. Measuring temperature in reactor head area (Calculating subcooled margin in reactor head area) HPSM supplies power to such HJTC and it is equipped in a QIAS-P Cabinet

  17. AC power supply for railways in Japan

    Uzuka, Tetsuo; Nagasawa, Hiroki [Railway Technical Research Inst., Kokubunji (Japan)

    2009-04-15

    Revenue service of AC traction in Japan began in 1957. Since then conventional lines and Shinkansen high-speed line have formed the two categories of AC traction. Japanese environment governed the design of AC power supply. To keep mass transit smooth, availability has priority also for fixed installations. In Japan, some traction substations or sectioning post have advanced devices for balancing power or suppressing voltage fluctuation of both the supplying power grid and overhead contact line circuits. (orig.)

  18. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand

  19. An accurate continuous calibration system for high voltage current transformer

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  20. Power flow and efficiency in supplying systems of arc plasma generators

    An arc plasma generator requires a supplying system of several hundred kVA and with such operating characteristics as to ignite the discharge at a high voltage of 10 to 20 kV and then to maintain it at a voltage ten times lower. There are many various types of arc plasma generators and they differ considerably from one another depending on their application, construction and kind of discharge used for plasma generation. An arc plasma generator with a gliding arc and the supplying systems are discussed, this mainly from the point of view of power flow and efficiency. (author)

  1. Modifications in booster dipole magnet, power supply

    The magnets in the Booster Synchrotron at C.A.T are energized with a current ramp during electron beam acceleration. Existing power supply for main dipole magnets suffers from certain problems and limitations, which may result in further difficulties during operation of Indus-2. In order to achieve improved performance of Synchrotron up to 700 MeV, a major modification program for magnet power supplies has been planned. Implementation of this new scheme of power supply will also allow operating parameters of Booster Synchrotron to be more flexible so that optimization experiments become easier. (author)

  2. High voltage testing for the MAJORANA Demonstrator

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Cuesta, C; Detwiler, J A; Doe, P J; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Fu, Z; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Li, A; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Thompson, A; Ton, K T; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V

    2016-01-01

    The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in Ge-76. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA Demonstrator. This eff?ect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including diff?erent improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA Demonstrator was characterized and the micro-discharge eff?ects during the MAJORANA Demonstrator commissioning phase were studied. A stable c...

  3. Monitoring System for Uninterruptible Power Supply

    S. A.Z. Murad

    2007-01-01

    Full Text Available In industrial process today, reliability of equipment is very important. Power supply must be able to cater the need of industrial process. In case of power failure, backup power supply system must be able to support the main process plant. This is to ensure smooth operation and product quality. In order to do this, uninterruptible power supply (UPS system can be used to ensure the reliability, stability and consistency of the entire system. This UPS system must be monitored in order to enable them to react accordingly in response to a fault or power failure. In this project, monitoring system for UPS was designed by using visual basic (VB to provide a safe and constant 12V DC supply in the case of power disruption. The main power supply, 240V AC was converted to 12V DC as output voltage and a battery will be used as part of the backup system. This system will be able to control the source of power which offers power from LIVE line or power from BATTERY line. The main output voltage was 12V DC and the battery level will be monitored using GUI software created using VB.

  4. Power Regulatory Framework & Opportunities for Self Supply

    Finger, Matthias; Trevino, Luis

    2008-01-01

    The intention of a single energy market in Europe is to have a sustainable, competitive, and secure supply of energy. However, the current rise in the cost of electricity supply is affecting the competitiveness of large industrial users. This has led large electricity consumers to look for new ways to supply themselves with electricity. An important alternative to reduce power cost and avoid using electricity from the grid is self generation from a renewable energy source. The proposed paper ...

  5. Issues on Simulations of Inverter Power Supply

    Ioan Mircea GORDAN; Claudiu MICH-VANCEA

    2009-01-01

    The modern supply for non-industrial equipment, unlike the industrial power supply installations, must have specific parameters (voltage and frequency). Some modern devices, as the converter – inverter system with static commutation elements, can be used in order to obtain these parameters. The role of the converter in this system is to convert the alternative current of the industrial supplying device to a continuous current; with the help of the inverter the voltage is converted back to alt...

  6. Evolution of Very High Frequency Power Supplies

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter; Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Kovacevic, Milovan; Andersen, Michael A. E.

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  7. Nuclear power: energy security and supply assurances

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  8. Design of ITER NBI power supply system

    Watanabe, Kazuhiro; Ohara, Yoshihiro; Okumura, Yoshikazu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Higa, Osamu; Kawashima, Syuichi; Ono, Youichi; Tanaka, Masanobu; Yasutomi, Sei

    1997-07-01

    Power supply system for the ITER neutral beam injector (NBI) whose total injection power is 1 MeV, 50 MW from three modules, has been designed. The power supply system consists of a source power supply for negative ion production/extraction and a DC 1 MV, 45 A power supply for negative ion acceleration. An inverter controlled multi-transformer/rectifier system has been adopted to the acceleration power supply. An inverter frequency of 150 Hz was selected to satisfy required specifications which are rise time of <100 ms, voltage ripple of <10% peak to peak and cut off speed of <200{mu}s. It was confirmed that the rise time, the ripple and the cut off speed is about 50 ms, 7% and <200{mu}s respectively by computation. It was also confirmed that a surge current and an energy input to the ion source at the breakdown can be suppressed lower than 3 kA and 10 J, which are considered to be lower than allowable values. A 1 MV transmission line has been designed from a view point of electric field on the inner conductors and grounded conductor. The results from the design study indicate that all the required specification to the power supply system can be satisfied and that R and D on the transmission line is one of the most important subjects. (author)

  9. Design of ITER NBI power supply system

    Power supply system for the ITER neutral beam injector (NBI) whose total injection power is 1 MeV, 50 MW from three modules, has been designed. The power supply system consists of a source power supply for negative ion production/extraction and a DC 1 MV, 45 A power supply for negative ion acceleration. An inverter controlled multi-transformer/rectifier system has been adopted to the acceleration power supply. An inverter frequency of 150 Hz was selected to satisfy required specifications which are rise time of <100 ms, voltage ripple of <10% peak to peak and cut off speed of <200μs. It was confirmed that the rise time, the ripple and the cut off speed is about 50 ms, 7% and <200μs respectively by computation. It was also confirmed that a surge current and an energy input to the ion source at the breakdown can be suppressed lower than 3 kA and 10 J, which are considered to be lower than allowable values. A 1 MV transmission line has been designed from a view point of electric field on the inner conductors and grounded conductor. The results from the design study indicate that all the required specification to the power supply system can be satisfied and that R and D on the transmission line is one of the most important subjects. (author)

  10. ENERGY STAR Certified Uninterruptible Power Supplies

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Uninterruptible Power Supplies that are...

  11. 24 CFR 3280.803 - Power supply.

    2010-04-01

    ... rubber, neoprene, or other approved materials which have been found suitable for the purpose, and shall... power supply cord shall bear the following marking: For use with manufactured homes40 amperes or...

  12. Control units for APS power supplies

    The Advanced Photon Source (APS) accelerator facility is made up of five major subsystems in addition to the linac: the positron accumulator ring (PAR), low energy transport (LET), booster synchrotron (SYNCH), high energy transport (HET), the storage ring (SR). Each subsystem has multiple magnet power supply combinations, some requiring multiple of operation. These magnet and power supply combinations computer controlled and monitored. The power supply control unit (PSCU) is the first layer of hardware and software above the power supply itself and is described in this paper. The description includes the basic philosophy for each of operation and how it influences the topology and of implementing control. The design of the analog reference blocks (ARBs) influenced the design of other custom functions well as the feedback controls for vibration and other dynamic corrections. The command set supported by the PSCU is discussed

  13. Resonant converter topologies for constant-current power supplies and their applications

    Power electronics, in general, and power supplies, in particular, is an important field of accelerator technology due to its widespread use, for instance in dc, ramp or pulse magnet power supplies, high voltage power supplies for electrostatic accelerators and RF amplifies, power supplies for vacuum pumps, vacuum gauges, beam diagnostic devices etc. It has been possible to meet stringent performance requirements with the continuing advancement in the field of power electronics. Resonant converters have been an active area of research in power electronics field due to variety of topologies, diverse, peculiar and useful characteristics. While the majority of the previous work on resonant converters has been directed towards developing methods of analysis and control techniques for the mentioned applications, very little has been done to explore their suitability for application as a constant-current power supply, which is either inherently required or can be advantageously applied in power supplies for various accelerator subsystems and other industrial applications such as electric arc welding, laser diode drivers, magnet illumination systems, battery charging, electrochemical processes etc.

  14. Reliability analysis of emergency transfer logic for restoration of power supply to safety related loads

    Nuclear Power Plants (NPPs) have normal as well as emergency power supply systems. Both the power supply systems are to be reliable for proper operation of the plant. Diesel Generators (DGs) are the main on site power sources in Class III Emergency power supply system in the Nuclear Power Plants. Normally station auxiliary loads are fed by Class IV power supply system and during Class IV failure, essential safety and safety related loads are fed by Class III power supply system. The transfer of these loads from Class IV to Class III power supply is done through Emergency Transfer (EMTR) logic. For effective restoration of loads, EMTR logic has to be reliable. The EMTR scheme covers the sensing of under voltage on the 6.6 kV emergency bus, starting of DG on auto mode, tripping of motor loads and closing of DG circuit breaker and then sequential load pick up at high voltage and medium voltage levels. Both hardwired logic and PLC based logic are adopted for EMTR in NPPs. This paper discusses the reliability analysis carried out for hardwired EMTR logic by constructing fault tree using ISOGRAPH software. The target unavailability of EMTR system for plant safety is 10-4. It is shown that hardwired logic developed meets the target unavailability. (author)

  15. Improving Power Quality in AC Supply Grids

    Piotr Fabijański

    2015-01-01

    This paper describes a digital and actual model of the UPQC (Unified Power Quality Conditioner) integrated system for power quality improvement. The UPQC’s design and its connection to an AC supply grid, 1-phase and 3-phase alike, provide effective compensation of unwanted interferences in the waveforms of load supply voltages and non-linear load currents. This article presents an overview of topologies and control strategies. The study of the UPQC confirmed its positive impact on the powe...

  16. Optimization of Resonant Power Supply Circuit

    A Resonant Power Supply has been proposed to power Rapid Cycling Accelerator magnets. The Resonant Power Supply circuits were studied extensively, but were not optimized. Most designs assume equal choke and magnet inductance, however, the variation of inductance affects both performance and cost of the system. This paper optimizes the Resonant Power Supply Circuit by selecting the most feasible choke inductance. For this optimization, a computer model and an approximate design method were developed. The effect of choke inductance on the components rating and cost was determined. It was found that the increase of choke inductance reduces the maximum and increases the minimum choke current, which leads to a significant increase of system losses. The maximum voltage is independent of the choke inductance. The described change of choke current reduces the current of the Bypass Thyristor Switch and the Capacitor Bank Switch, which results in cost reduction. The increase of choke inductance reduces the size of capacitor banks. The loss increase requires larger Make-up Power Supply and ac supply systems. It also increases the operation costs. The system cost function has a minimum, when the choke inductance is about 1.5--2 times larger than the magnet one. The application of the result will lead to a more economical and efficient Resonant Power Supply. 2 refs., 8 figs., 1 tab

  17. Optimization of resonant power supply circuit

    A Resonant Power Supply has been proposed to power Rapid Cycling Accelerator magnets. The Resonant Power Supply circuits were studied extensively, but were not optimized. Most designs assume equal choke and magnet inductance, however, the variation of inductance affects both performance and cost of the system. This paper optimizes the Resonant Power Supply Circuit by selecting the most feasible choke inductance. For this optimization, a computer model and an approximate design method were developed. The effect of choke inductance on the components rating and cost was determined. It was found that the increase of choke inductance reduces the maximum and increases the minimum choke current, which leads to a significant increase of system losses. The maximum voltage is independent of the choke inductance. The described change of choke current reduces the current of the Bypass Thyristor Switch and the Capacitor Bank Switch, which results in cost reduction. The increase of choke inductance reduces the size of capacitor banks. The loss increase requires larger Make-up Power Supply and AC supply systems. It also increases the operation costs. The system cost function has a minimum, when the choke inductance is about 1.5-2 times larger than the magnet one. The application of the result will lead to a more economical and efficient Resonant Power Supply. 2 refs., 8 figs., 1 tab

  18. Control System for Electromagnet Power Supplies

    Ermolov, E. Y.; Kozak, V. R.; Kuper, E. A.; Medvedko, A. S.; Petrov, S. P.; Veremeenko, V. F.

    2001-01-01

    A set of power supplies (PS) with output power rated from 100 W up to 10 kW for electromagnets powering was developed. These PS have range of current tuning of 60-80 db with high accuracy (error should be less than 0,01%). Some types of power supplies have bipolar output current. The report will describe a set of unified embedded devices for control and measurements of PS incorporated into distributed control systems. These embedded devices includes DAC, ADC with multiplexers and status Input...

  19. New intelligent magnet power supplies for LAMPF

    New magnet power supplies are scheduled to be installed in the proton linac at the Clinton P. Anderson Meson Physics Facility (LAMPF). The control and interface design of these power supplies represents a departure from all others onsite. A high-level ASCII control protocol has been designed. The supplies have sophisticated microprocessor control onboard and communicate with the accelerator control system via RS-422 (serial communications). The low-level software used by the accelerator control system is currently being rewritten to accommodate these new devices. They will communicate with the control system through a terminal server port connected to the site-wide ethernet backbone. This means that each supply will, for all intents and purposes, be a network object. Details of the design strategies for the analog and digital control for these supplies as well as the control protocol interface will be presented. 5 refs., 5 figs., 1 tab

  20. A high voltage test stand for electron gun qualification for LINACs

    An electron gun lest stand has been developed at RRCAT. The test stand consists of a high voltage pulsed power supply, electron gun filament supply, grid supply, UHV system and electron gun current measurement system. Several electron guns developed indigenously were evaluated on this test stand. The shielding is provided for the electron gun set up. Electron gun tests can be tested upto 55 kV with pulse width of 15 microsecs and pulse repetition rates up to 200 Hz. The technical details of the subsystems are furnished and results of performance of the test stand have been reported in this paper. (author)

  1. A high voltage test stand for electron gun qualification for LINACs

    Wanmode, Yashwant D.; Mulchandani, J.; Acharya, M.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam, E-mail: yash@rrcat.gov.in [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2011-07-01

    An electron gun lest stand has been developed at RRCAT. The test stand consists of a high voltage pulsed power supply, electron gun filament supply, grid supply, UHV system and electron gun current measurement system. Several electron guns developed indigenously were evaluated on this test stand. The shielding is provided for the electron gun set up. Electron gun tests can be tested upto 55 kV with pulse width of 15 microsecs and pulse repetition rates up to 200 Hz. The technical details of the subsystems are furnished and results of performance of the test stand have been reported in this paper. (author)

  2. The situation of European power supply

    The requirement for energy worldwide is going to rise dramatically in the next few years and decades. Despite all developments of renewable energy sources, and despite the expansion of nuclear power in some industrialized countries and emerging countries, coal will turn out to be the key source of energy in the 21st century. Europe as a whole has a lot to offer which strengthens its position with respect to present and future requirements to be met in the construction of new power plants as well as in electricity and power supplies. As regards nuclear power in Germany, if it is to be given another chance, we must seek a dialog, pointing out that - nuclear power offers advantages in ensuring energy supply in Germany, given the development in the world energy markets; - nuclear power makes an important contribution to climate protection; - Germany's energy supply must be adapted to the global situation; - nuclear power offers opportunities in education, training, research and development; - nuclear power is contributing massively to our economic prosperity. The future viability of European power supply will not depend on the debate about nuclear power in Germany. The debate will be decided chiefly by the world market and on a European level. (orig.)

  3. Design of a prototype of a van de Graaf high voltage generator

    Prototype of a Generator van de Graaf which operates at atmospheric pressure is constructed. The electrode is made of copper with the diameter of 70 cm and with the height of 75 cm. Colomns are made of pralon and rubber belt and work with a rotary motor 1/3 HP, 1400 cycles per sec. A high voltage power supply of 6000 V is regulated with a transformator 110 V which is amplified by 4 stages Cockroft Walton system. (author)

  4. Positron Accumulator Ring (PAR) power supply

    The Positron Accumulator Ring (PAR) consists of 8 dipole magnets connected in series. These magnets are energized via one 12-pulse dc power supply. The power supply consists of four phase controlled half-wave wye group converters. Each of the two half-wave converters are connected through an interphase transformer to obtain a full-wave converter with 120 degrees conduction. The input voltage for these two half-wave converters are 180 degrees apart. The two full-wave converters are connected in parallel through a third interphase transformer. This type of connection of the converters not only provides the required output current, it also improves the input power factor of the power supply. The output of the wye group converters is filtered through a passive L-R-C filter to reduce the ripple content of the output current. At low current values of the power supply the current ripple is high, thus a large filter is needed, which adds to the cost of the power supply, however at high output current levels, the current ripple is less severe. The large size of the filter can be reduced by adding an anti-parallel rectifier diode(D1) to the output of the power supply. A freewheeling diode(D2) is connected before the choke to circulate the current once the power supply is turned off. In order to measure the current in the magnet a high precision, low drift, zero flux current transductor is used. This transductor senses the magnet current which provides a feedback signal to control the gating of the converter's thyristors. A true 14 bit Digital to Analog Converter (DAC) is programmed by the control computer for the required current value, providing a reference for the current regulator. Fast correction of the line transients is provided by a relatively fast voltage loop controlled by a high gain slow response current loop

  5. General conditions for electric power supply

    If it is uncertain whether future power bills will be paid fully, it is admissible to take an action claiming a declaration which states that the electricity rate payment boycotter has no right to non-payment nor a right to withhold payment towards the electricity supply utility, and that the electricity supply utility has the right to stop energy supply because of reduced electricity rate payments effected and/or announced, and to denounce the contract without observing any term of notice. If the electricity buyer reduces a power bill to be paid without any legal grounds, the electricity supply utility has the right to stop power supplies and to denounce the power supply contract without observing any term of notice. The freedom of thought and the freedom of opinion must not be expressed by reducing power bills to be paid. Basic rights discontinue to be effective as soon as a contract or law is broken. A weighing of protected interests is not effected if the exercise of a basic law is unlawful. (orig./HP)

  6. Advances in high voltage engineering

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  7. Design, development and commissioning of a 16 kV, 6A power supply for 12 MW klystron modulator for 10 MeV LINAC

    A 12 MW high voltage pulse modulator for 10 MeV LINAC is being developed for agricultural radiation processing facility in RRCAT. A modular 16k V, 6A high voltage power supply unit has been designed and developed as an input power source for the klystron modulator. The high voltage power supply consists of primary three phase thyristor controller, vacuum epoxy impregnated dry type transformer, primary inductors to limit current in case of short circuit, three phase diode bridge rectifiers, epoxy potted filter choke and filter capacitor. The transformer has a delta connected primary and 32 numbers of secondary windings. The secondary windings are equally divided into star and delta fashion. The output of each secondary is rectified using three phase bridge rectifier and generates 500 V DC output. All such individual outputs are connected in series to generate 16 kV DC output. The star delta connection helps to achieve 600 Hz ripple at the output. Due to modular construction, the damage will be limited to only one secondary section in case of any high voltage fault. Such design improves the reliability of the high voltage system, eliminates the requirement of transformer oil and environmental effects are minimised due to the epoxy potting. This power supply has been successfully commissioned and output regulation of 1 % has been achieved. (author)

  8. High power fast ramping power supplies

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  9. 1000-kVA arc power supply

    Because of ever-increasing power demands for the development of the Oak Ridge duoPIGatron ion source, a continuous-duty arc power supply was constructed for the Medium Energy Test Facility (METF) to furnish power for the plasma generator of experimental ion sources. The power supply utilizes 12-pulse rectification with half-wave switching in a delta and wye full-wave bridge that may be connected in series or parallel. It will deliver 340 V dc, 2500 A to an ion source when series connected and 170 V dc, 5000 A when paralleled connected. Silicon-controlled rectifiers (SCR) in each rectifier bridge can be switched for pulses as short as 10 ms through continuous duty. The filter section that reduces the ripple in the output consists of an inductor-to-capacitor (L-C) filter to smooth the 720-Hz pulses. The power transformer serves as an isolation transformer allowing the secondary to be elevated to the accelerating potential of the ion source. The dc output level is controlled with a 1000-kVA auto transformer connected to the primary of the power transformer. All elevated voltages and currents are monitored at ground potential with an optical telemetry system. This paper describes the power supply in detail, including block diagrams, component specifications, and waveforms when supplying power to an ion source

  10. Basic technology of synchrotron power supply

    The thyristor power supply for a synchrotron magnet system is described. An analysis of the magnet strings, power electronics and control system is carried out with a bird's-eye view, however the fundamental description is appeared. It assumes a student and an engineer in fields concepts, which can be the electronics designing in related fields, and a background in Laplas transforms. It presents an example of power supply, which is developed for the synchrotron- cooler ring TARN II at Institute for Nuclear Study, Univ. of Tokyo. (author)

  11. CMS uniform low voltage power supply system

    Vankov, I

    2003-01-01

    Some problems of the CMS front-end-electronics low voltage power supply are discussed in. The most serious of them was the very significant power losses in the connecting low voltage cables. There was shown that these losses could be minimize by using a three stage power supply system, in which an intermediary stage, mounted on the CMS detector periphery, is included. During the last two years this idea is developed and modified. New equipments for the first end second stage are proposed, evaluated and tested. On this base an uniform low voltage system for all CMS subdetectors is accepted now and will be described below. (11 refs).

  12. Electron cyclotron pulse gyroklstron power supply

    The system herein described represents utilization of technology developed at Universal Voltronics Corporation in accordance with General Atomic specifications to provide power for a gyrotron developed by Varian Inc. The current designs are derived from experience gained in design of similar systems and the requirements imposed by Varian to supply needs of gyrotron. The technical approach was carefully selected to insure high reliability, high performance, low maintenance time, and best cost trade-off. The gyrotron power supply system is designed to furnish all power, cooling, protection, and mechanical mounting for a pulse gyroklystron

  13. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  14. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  15. Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries

    Highlights: → Microporous-structured PVdF-HFP/PET composite nonwoven separators for Li-batteries. → Well-developed microporous structure and liquid electrolyte wettability. → Provision of facile ion transport and suppressed growth of cell impedance. → Superior cell performance at high-voltages/high-current densities. - Abstract: We demonstrate potential application of a new composite non-woven separator, which is comprised of a phase inversion-controlled, microporous polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) gel polymer electrolyte and a polyethylene terephthalate (PET) non-woven support, to high-voltage and high-power lithium-ion batteries. In comparison to a commercialized polyethylene (PE) separator, the composite non-woven separator exhibits distinct improvements in microporous structure and liquid electrolyte wettability. Based on the understanding of the composite non-woven separator, cell performances of the separator at challenging charge/discharge conditions are investigated and discussed in terms of ion transport of the separator and AC impedance of the cell. The aforementioned advantageous features of the composite non-woven separator play a key role in providing facile ion transport and suppressing growth of cell impedance during cycling, which in turn contribute to superior cell performances at harsh charge/discharge conditions such as high voltages and high current densities.

  16. Power supply system for JAERI AVF cyclotron

    An AVF cyclotron (K number : 110) system, which is main accelerator to promote for advanced radiation application using various ion beams, has been introduced in Takasaki Establishment of JAERI. This cyclotron system consists of electro-static magnet, radio frequency, beam diagnostic, computer control vacuum, cooling systems and power supplies for these systems are equipped according to the function of their loads. This report describes the power supply system for the cyclotron. The primary electric-supply lines to TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facility and the secondary ones to the cyclotron system are explained briefly, then the construction of power supplies for the cyclotron system is illustrated. Measurement results of current stability and ripple are shown in regard to the power supplies for magnets which have occupied in the great part of them, especially. Temperature rise of assembled power cables into a bend sleeve which has penetrated across the shielding wall was estimated, and temperature measurement was also carried out practically. (author)

  17. The APS Septum Magnet Power Supplies Upgrade

    Deriy, Boris; Sprau, Gary; Wang, Ju

    2005-01-01

    The higher requirements for beam injection stability at the APS storage ring demand improvement of pulsed power supplies for the septum magnets. The upgrade will be performed in two stages. In the first stage we will implement a new power supply circuit with a new regulation timing sequence that will provide better voltage regulation performance. A common design was made for all of the septum magnet power supplies at the APS. The new regulation module has already been tested on both thin and thick septum magnet power supplies. This test showed that the new target for the current regulation stability, 1/2000 with less than 10-ns jitter, is achievable with this approach. In the second stage we will implement an embedded microprocessor system that will provide digitally controlled shot-to-shot current regulation of the power supply. The system comprises modules for communication with EPICS, data acquisition, and precise timing. A prototype has already been built and will also be discussed.

  18. Power supply for thermonuclear devices

    Purpose: To decrease the withstand voltage and the capacity of a capacitor and the power capacity of an AC - DC converter required for the change of current in air-core transformer coils, with respect to the plasma breakdown and plasma current rising. Method: Current changes in air-core transformer coils have been made so far by a capacitor system of discharging electrical energy at once stored in a capacitor or a variable voltage DC conversion system of suddenly interrupting the previous excitation by a variable voltage DC converter. The two systems are combined in this invention, in which a one-way flowing switch is used, to share the current change required for the previous excitation of the air-core transformer coils to the condenser system and share the low voltage and gradual current change required thereafter to the variable voltage DC converter system. (Nakamoto, H.)

  19. High voltage processing of the SLC Polarized Electron Gun

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required. X-ray sensitive photographic film, a nanoammeter in series with the gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometer were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, the authors found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described

  20. High-voltage magnetic generator of nonosecond pulses

    A circuit of a high-voltage pulse generator designed to supply electron guns or streamer chamber is described. A ferrite coaxial line, in which shock waves are formed is used in the generator. A thyratron is used as a commutator and a magnetic link in the form of a choke containing 9 turns of wire wound on a permalloy core is used for increasing the generator power. Pulses with a front of 3 ns and an amplitude of 250 kV and pulses with a front of 6 ns and an amplitude of 170 kV are shapid on an active load connected to the generator output. The pulse repetition frequency is up to 70 Hz

  1. Power Supply control of the obsea seafloor

    Palou, Xavier; Nogueras Cervera, Marc; Manuel Lázaro, Antonio

    2009-01-01

    The aim of this paper is to present the design and construction process of the power supply needed for a remote data acquisition system. It is based on twelve AC to DC switching converters in a serial connection and a logic programmable controller (PLC). The energy is transmitted to the acquisition system, which is located several kilometers away, by means of a cable. The supply system has been designed with a higher capacity than the current requirements of the subsea...

  2. Power supplies for hearing aids.

    Knutsen, J E

    1982-08-01

    The design of a hearing-aid system involves three disciplines of applied science--electrochemistry, electrical engineering and audio engineering. This paper is concerned with the interface between the first two. Batteries are essentially non-linear components. Optimum performance is only achievable when the electrical requirements of the hearing aid are closely matched with the voltage, rate capability and impedance of the battery. After years of optimalization, the modern '675' button cell has earned universal acceptability and is now used in most 'behind-the-ear' hearing aids. When more power is required, the larger and less specialized LR6 'penlight' cell is typically specified. Higher voltage might lead to better circuit efficiency, and there is some pressure to introduce a 3 V lithium-based product. Lithium should give superior energy density, but there are problems which remain to be solved. In the end, it is quite possible that the market might settle for an ecologically acceptable long-life lower voltage metal-air cell. If so, the recent zinc-air system may well have a future and could conceivably succeed both the mercury '675' and the alkaline 'penlight' cells. PMID:7171873

  3. Conceptual design and circuit analyses for the power supplies of the NIO1 experiment

    Recchia, M., E-mail: mauro.recchia@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Bigi, M. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Cavenago, M. [INFN-LNL, Viale dell' Universita 2, 35020 Legnaro (Italy)

    2011-10-15

    The NIO1 (Negative Ion Optimization phase 1) experiment, whose construction has started in 2010 at Consorzio RFX in Padova in collaboration with INFN-LNL, is a radio frequency Hydrogen negative ion source designed to produce a beam current of 130 mA with 60 keV particle energy. The aim of the experiment is to provide a highly flexible system to test material properties of source components and to benchmark simulation codes for beam optics and plasma behavior. The paper focuses on a conceptual design for NIO1 power supply system on the basis of given operational and performance requirements. The requested ratings fall well within those of products available on the market and the design includes standard commercial solutions for the individual power supplies. The ion source operates at -60 kV with respect to ground, leading to a number of design issues at system level and related to mutual connection between power supplies and load, layout and grounding. These aspects, along with the crucial point of ensuring protection to the arc prone beam source, are reviewed and discussed. The study leads to a scheme integrating high voltage power supplies, high current power supplies and a possible solution for passive protection components at the power supply output.

  4. High-Voltage Terminal Test of Test Stand for 1-MV Electrostatic Accelerator

    Park, Sae-Hoon

    2015-01-01

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  5. On-chip high-voltage generator design design methodology for charge pumps

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  6. Lunar surface fission power supplies: Radiation issues

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  7. The JET power supply comprehensive system

    The Joint European Torus (JET) Power Supply pulses system has to provide power and energy to four main loads; toroidal field coils (up to 380MW, 5500MJ), poloidal field coils (up to 300MW, 1200MJ), poloidal field control amplifiers (+50, -30MW, 500MJ), additional heating (>=25MW, 250MJ). The power supply scheme designed as a result of a compromise between JET requirements, site H.V. line characteristics and equipment manufacturing experience in industry, consists of a combination of constant frequency units (transformers + controlled convertor (TCC)), directly supplied by the mains at 400kV during the pulse and variable frequency units (flywheel generator convertor (FGC)), isolated from the electric system during the pulse

  8. The fast extraction kicker power supply for the main ring of J-PARC

    An effect induced by parasitic inductance in a pulsed power supply for a fast extraction kicker was studied. The parasitic inductance in high voltage capacitors for a low impedance pulse forming network disturbs a sharp rise of an excitation current. A high voltage capacitor with a coaxial structure to minimize the parasitic inductance is proposed. The effectiveness was confirmed experimentally. An impedance mismatch by a leakage inductance of a pulse transformer in a transmission line was studied. The effect is serious at the flat-top period of the excitation current. By introducing a compensation circuit, which is composed by a capacitor and a resistor, impedance matching was established. The pulsed power supply for the fast extraction kicker was operated at a charging voltage of 30 kV. A required rise time of less than 1.1 ?s was achieved. The flatness was also confirmed to be in an acceptable value of less than 1%. -- Highlights: ?An effect by parasitic inductance of the energy storage capacitor of the PFN was studied. ?A faster rise time was achieved by introducing a coaxial structure for the PFN capacitor. ?An impedance mismatch by a leakage inductance of a pulse transformer was studied. ?Serious deterioration of the pulsed waveform was cured by a compensation circuit. ?The pulsed power supply for the fast extraction kicker was developed and operated successfully

  9. Smart Power Supply for Battery-Powered Systems

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have differing power needs, this supply also has a secondary power bus, which can be programmed a priori or on-the-fly to boost the primary battery voltage level from 24 to 50 V to accommodate various loads as they are brought on line. Through voltage and current monitoring, the device can also shield the charging source from overloads, keep it within safe operating modes, and can meter available power to the application and maintain safe operations.

  10. Synchrotron power supply of TARN II

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10-3 and tracking error of 10-4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He2+ beam has been done up to 600 MeV in April, 1991. (author)

  11. Realization of a programmable scanning power supply

    In this paper, a four-quadrant converter topology and the current closed-loop feedback technology are used to realize the scanning magnet power supply. The reference waveform is modulated by high frequency, which is then filtered by load inductance. The output current can be set by any programmable waveform within certain bandwidth. As a result of the current close feedback, the load current is not affected by magnetic parameters and environment changes. A 15 Hz with 12 A scan power supply has been developed and the test results are given. (authors)

  12. The SSRF power supply control system

    The SSRF power supply control system is a fully distributed control system based on the EPICS system. About 65K runtime database records run in the 27 VME/IOC controllers to make physics access more than 600 sets of power' supplies distributed in the SSRF facility. In this paper, the layered system architecture and its working principles are introduced. The EPICS-based control solutions for the PSI-designed and SINAP-designed digital controllers are described. The hardware and software, together with the communication technology applied in the system, are presented. (authors)

  13. The ELETTRA power supply control system

    The control of the magnet power supplies is one of the most important tasks within the ELETTRA control system. The equipment interface units (EIU) have been integrated in the power supply cabinets, providing local and remote control functions. Each EIU consists of a VMEbus based crate containing the digital-to-analog converter (DAC), analog-to-digital converter (ADC), digital input/output modules together with a microprocessor module. Exploiting the same communication interface, an integrated development system has been implemented which has been used for the tests of the embedded EIUs. The detailed EIU hardware and software design is given. (author) 8 refs.; 2 figs.; 1 tab

  14. Environmental impact of high voltage substations

    The first Romanian methodology for simultaneous environmental and human risk evaluation in case of HV installations within substations pertaining to nuclear power stations, based on EU regulation is now applicable in Cernavoda substation. High voltage substations are zones where the environmental impact is focused on electromagnetic field that's causes particular effects in living tissues (human being included). That is the reason why is necessary to identify the potential risk sources, the asses including the way to correct them and to dissimulate the results to the staff and the operational personal.(author)

  15. Conductor warming in high-voltage grids

    This illustrated article examines the heating-up of high-voltage power lines under load. As an example, the 105 km long Lukmanier power line that crosses the Alps in Switzerland is looked at. Varying loading caused by power transfers between Germany in the north and Italy in the south are discussed. Increasing instances of load variations resulting from the liberalisation of the electricity market in Switzerland are examined. The results of a pilot study carried out by Atel Netz AG and Etrans AG (today: Swissgrid AG) are presented and discussed. Various systems for the real-time measurement and analysis of various factors such as loading and temperature of the power lines are introduced and discussed. The geographical situation and the location of switch yards is looked at and the different climatic conditions encountered along the route over the Alps are discussed. Temporary and permanent measurement equipment installed for various electrical and meteorological data is described. The results obtained are discussed

  16. Contribution to high voltage matrix switches reliability

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author)

  17. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Shen, Chih-Lung; Liang, Tsair-Chun

    2013-01-01

    A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER) fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-fr...

  18. Power supply ripple study at the SPS

    Burla, P.; Cornuet, D.; Fischer, K.; Leclere, P.; Schmidt, F.

    1995-02-01

    Power supply ripple of the main dipoles and quadrupoles may further limit the dynamic aperture of large proton colliders such as the Large Hadron Collider (LHC) in the presence of the non-linear field errors of the superconducting magnets. The Super Proton Synchrotron (SPS), the future injector of the LHC, is used to evaluate the effects of power supply ripple. These investigations will allow to specify the quality of the LHC main power supplies. In this report we demonstrate how the ripple spectrum measured at the power supplies of the different SPS magnet chains can be translated into an expected spectrum of tune ripple seen by the beam. To this end the transmission line characteristics of various single elements and magnet chains have been measured and compared to theoretical models. The damping effect of eddy currents induced in the vacuum chamber by the rippled main fields has been measured and compared to a preliminary model. The resulting tune spectrum is then compared with the actual tune ripple that has been measured with the Schottky system.

  19. Protection of the MFTF accel power supplies

    The MFTF experiment's Sustaining Neutral Beam Power Supply System (SNBPSS) includes twenty-four 95 kV, 80 A accel dc power supplies (ADCPS). Each power supply includes a relatively high-impedance (20 percent) rectifier transformer and a step voltage regulator with a 50-100 percent voltage range. With this combination, the fault current for some postulated faults may be lower than the supply's full load current at maximum voltage. A design has been developed which uses protective relays and current-limiting fuses coordinated to detect phase and ground faults, DC faults, incorrect voltage conditions, rectifier faults, power factor correction capacitor faults, and overloads. This unusual solution ensures fast tripping on potentially destructive high-current faults and long-time delays at lower currents to allow 30 second pulse operation. The ADCPS meets the LLL specification that all major assemblies be self-protecting, that is, able to sustain external faults without damage to minimize damage due to internal faults

  20. Grid Connected Power Supplies for Particle Accelerator Magnets

    Nielsen, Rasmus Ørndrup

    Power supplies play a large role in particle accelerators, for creating, accelerating, steering and shaping the beam. This thesis covers the power supplies for steering and shaping the beam, namely the magnet power supplies. These power supplies have a special set of requirements regarding output...

  1. Pulsed power supply for Nova Upgrade

    This report describes work carried out at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). A baseline design of the Nova Upgrade has been completed by Lawrence Livermore National Laboratory. The Nova Upgrade is an 18 beamline Nd: glass laser design utilizing fully relayed 4x4 30 cm aperture segmented optical components. The laser thus consists of 288 independent beamlets nominally producing 1.5 to 2.0 MJ of 0.35 μm light in a 3 to 5 ns pulse. The laser design is extremely flexible and will allow a wide range of pulses to irradiate ICF targets. This facility will demonstrate ignition/gain and the scientific feasibility of ICF for energy and defense applications. The pulsed power requirements for the Nova Upgrade are given. CEM-UT was contracted to study and develop a design for a homopolar generator/inductor (HPG/inductor) opening switch system which would satisfy the pulsed power supply requirements of the Nova Upgrade. The Nd:glass laser amplifiers used in the Nova Upgrade will be powered by light from xenon flashlamps. The pulsed power supply for the Nova Upgrade powers the xenon flashlamps. This design and study was for a power supply to drive flashlamps

  2. Design of multi-way composite switching power supply for intelligent sensor system

    By the work principle of double grid air counter intelligent sensor system for detecting low energy electron emission, the design specifications of the power supply is put forward. The article goes on with particular design of each part of the multi-way output power supply circuit. The high-voltage-output circuit is a single-end reverse exciting switching power supply, the middle-voltage-output circuit is a push-pull switching power supply under close-loop control and low-voltage-output circuit is realized with integrated power circuit. To design different kinds of switching transformer, varied methods are analyzed in detail. In middle-voltage-output circuit, the following functions can be realized with KA7500B; (1) push-pull output mode, (2) PWM control, (3) soft start, (4) lack-voltage protection, (5) over-current protection. Experiments indicate that the multi-way output power supply, which adopts technology of PWM, satisfies the electrical requirements of sensor system, gets a high efficiency, realizes the miniaturization and has a rather long life duration. (authors)

  3. Characteristics of superconducting magnetic energy storage (SMES) energized by a high-voltage SCR converter

    A small-scale Superconducting Magnetic Energy Storage (SMES) unit was constructed using small magnets and a high-voltage converter, and the characteristics of this unit were examined. The high output voltage of the converter makes it possible for even a small magnet to charge and discharge large power. Moreover, converter control provides adequate protection during quenching. AC and DC filters can be eliminated from the converter system, and ripple voltage does not harm the superconducting magnet. These features demonstrated the potential of an SMES unit as a power system stabilizer and a peak load power supply

  4. A novel High-Voltage System for a triple GEM detector

    Corradi, Giovanni; Tagnani, Diego; 10.1016/j.nima.2006.10.166

    2007-01-01

    A novel High-Voltage System for a triple GEM detector has been designed and realized in Frascati within the LHCb muon detector framework. The system is built with seven floating power supply, with a maximum of 1200 V each, and controlled via CANbus, for voltage settings and monitoring. Several HV modules can be installed in a nano-ammeter mainframe already developed in Frascati, realizing a HV crate able to supply up to 24 triple GEM chambers with a 1 nA resolution monitoring system.

  5. Performance and modelling of 70kVdc power supply with solid-state crowbar

    The experimental activities of tokamak research involve development of high power RF and microwave sources for fusion related heating and current drive applications. High power RF and microwave tubes like Klystron, Gyrotron and Tetrode are in general operated with high voltage DC power supplies. These HVDC power supplies of the order of 70 kVdc, must be equipped with necessary arc fault protection in addition to general over current and over voltage protection. The arc fault protection must act within few microseconds to prevent permanent damage to the RF tube, window, etc. When an arc fault is detected, output voltage of the DC power supply is short circuited using a crowbar device (generally Ignitron, Thyratron, thyristor, rail-gap, etc.) that operates in few microseconds. This diverts the fault current from the load to crowbar device, thereby protecting the load. This is necessary as conventional protection in the power supply input takes ∼100 ms to switch-off. The crowbar device must be able to take the fault current till the circuit breaker placed at power supply input is switched off. The arc fault protection is tested for its effectiveness by “wire-burn” test. Full power short circuit of ∼1.5 MW DC power supply puts enormous stress on the power supply, utility and the crowbar, therefore frequent wire-burn testing is to be avoided. This report presents simulation of wire-burn test using PSIM software. Optimization of the component values without conducting actual wire-burn test could be achieved

  6. Performance and modelling of 70kVdc power supply with solid-state crowbar

    Yellamraju, Sham Sunder Srinivas, E-mail: ysssrinivas@gmail.com [Institute for Plasma Research, BHAT, Gandhinagar 382428 (India); Kulkarni, Sanjay V. [Institute for Plasma Research, BHAT, Gandhinagar 382428 (India)

    2013-10-15

    The experimental activities of tokamak research involve development of high power RF and microwave sources for fusion related heating and current drive applications. High power RF and microwave tubes like Klystron, Gyrotron and Tetrode are in general operated with high voltage DC power supplies. These HVDC power supplies of the order of 70 kVdc, must be equipped with necessary arc fault protection in addition to general over current and over voltage protection. The arc fault protection must act within few microseconds to prevent permanent damage to the RF tube, window, etc. When an arc fault is detected, output voltage of the DC power supply is short circuited using a crowbar device (generally Ignitron, Thyratron, thyristor, rail-gap, etc.) that operates in few microseconds. This diverts the fault current from the load to crowbar device, thereby protecting the load. This is necessary as conventional protection in the power supply input takes ∼100 ms to switch-off. The crowbar device must be able to take the fault current till the circuit breaker placed at power supply input is switched off. The arc fault protection is tested for its effectiveness by “wire-burn” test. Full power short circuit of ∼1.5 MW DC power supply puts enormous stress on the power supply, utility and the crowbar, therefore frequent wire-burn testing is to be avoided. This report presents simulation of wire-burn test using PSIM software. Optimization of the component values without conducting actual wire-burn test could be achieved.

  7. Magnet power supply as a network object

    Magnet power supplies with embedded microprocessor controls are being installed in the beam-lines of the linear accelerator and proton storage ring at LAMPF. Using an RS422 link they communicate with the accelerator control system through a terminal server connected to the site-wide DECnet backbone. Each supply is, for all intents and purposes, a network object. The controller has a command set of over seventy-five three-character ASCII control and read-back instructions. Strategies for choosing the appropriate control protocol and the process of integrating these devices into a large accelerator control system will be presented. 7 refs., 2 figs., 1 tab

  8. A combined compensation method for the output voltage of an insulated core transformer power supply

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA

  9. A combined compensation method for the output voltage of an insulated core transformer power supply.

    Yang, L; Yang, J; Liu, K F; Qin, B; Chen, D Z

    2014-06-01

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA. PMID:24985809

  10. RHIC INSERTION REGION, SHUNT POWER SUPPLY CURRENT ERRORS

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. RHIC requires power supplies to supply currents to highly inductive superconducting magnets. The RHIC Insertion Region contain's many shunt power supplies to trim the current of different magnet elements in a large superconducting magnet circuit. Power Supply current error measurements were performed during the commissioning of RHIC. Models of these power supply systems were produced to predict and improve these power supply current errors using the circuit analysis program MicroCap V by Spectrum Software (TM). Results of the power supply current errors are presented from the models and from the measurements performed during the commissioning of RHIC

  11. Supply disruption cost for power network planning

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  12. Commissioning experiences on high voltage generator of 750 KeV DC accelerator at RRCAT, Indore

    Design approach of high voltage generator for 750 keV DC accelerator, developed at RRCAT Indore, inculcates a unique feature of high frequency operation of symmetrical Cockcroft-Walton voltage generator. Apart from design simplicity and feasibility of modular construction, the high frequency use of symmetrical Cockcroft-Walton circuit gives added advantages of less ripple, better regulation, faster response and low stored energy in the system. Additionally the scheme allows us the use of low voltage, light weight components thus improving the overall economy of the system. The accelerator has been commissioned and made operational at its rated energy of 750 keV in the recent past. With brief introduction on design aspects of high voltage generator and filament power supply of this accelerator, the paper presented here describes the developmental steps of various components with focus on challenges encountered and solutions implemented. Development of high frequency inverter, high voltage ferrite core transformer, compensating inductors, interface bushings, voltage multiplier stack, and filament transformer along with floating power supply for electron emitter of the accelerator has been dealt in detail. The failures encountered during commissioning stages of the accelerator have been reported with measures taken for improvement of the specific components. Intricacies of the reflected capacitance of the multiplier stack and arc-current ground return are also described with their effects on system operation and reliability. (author)

  13. Exporting Australia's remote area power supply industry

    The Australian renewable energy industry has two faces: Remote Area Power Supply systems (RAPS), where the trade-off is between the traditional diesel generator and diesel hybrid or the stand alone renewable energy system. The competency of the Australian RAPS industry is recognised internationally. Grid connected renewable energy technologies, where industry activity is expanding rapidly, but where Australian competencies carry relatively little weight internationally (other than for research and development of related components such as big performance, crystalline silicon photovoltaic cells). Individual industry development strategies are required in each instance. The focus of this paper is on strategies that enhance the export potential of the Australian RAPS industry. Involvement of the electricity supply utilities is promoted as a means of quickly instituting a substantial industry presence. The term RAPS can be confusing. It is used to describe any supply system serving a remote user, be they a single property owner with a simple, stand alone DC photovoltaic supply, or several communities with complex, inter-connected, diesel/hybrid power stations, sometimes termed a 'remote-grid'. Utility interest tends to emerge as market fragmentation decreases, system complexity increases and economies of scale become evident. A review of the domestic situation is a necessary adjunct to development of export strategies for Australian RAPS products. The two are inexorably linked, as is reflected in the format of this paper. (author)

  14. A comparative study of different transformer connections for railway power supply- mitigation of voltage unbalance

    Firat, Gurkan; Yang, Guangya; Ali Hussain Al-Ali, Haider

    2015-01-01

    The railway represents a large power consumer that can cause uneven loading of the phases in the high voltage grid. These unbalanced loads supplied by the utility may lead to voltage unbalance problems in the system and thereby affects the other consumers connected to the same network. It is fact...... that, voltage unbalance appears mainly as a result of unbalanced currents at the points of common coupling drawn by unevenly distributed loads. Because of a significant amount of negative sequence current injected to the system, the power system components will suffer from consequent negative effects...... such as overheating, additional losses of lines and transformers, interference with communication systems etc. This paper presents a comparative study of some transformer connections which commonly used in railway supplying AC traction loads, for voltage unbalance mitigations. Simulations for...

  15. Discussion - a high voltage DC generator

    One of the requirements for a high power ion source is a high voltage, high current DC generator. The high voltage, high current generator, DISCATRON, presently under development in our laboratory is a rotating disc type electrostatic generator similar in design to the one reported by A. Isoya et al. (1985). It is compact and rugged electrostatic DC generator based on the principle of induction charging by pellet chains used in the pelletron accelerator. It is, basically, a constant-current device with little stored energy, so that, in case of a breakdown, damage to the equipment connected to the output terminals is minimal. Since the present generator is only a proto-type, meant for a study of the practical difficulties that would be encountered in its manufacture, the output voltage and current specified has been kept quite modest viz., 300 kV at 500 μA, maximum. Some results of the preliminary tests carried out with this generator are described. (author). 4 figs

  16. International experiences with power supply crises

    Many so-called deregulated power markets experience a hardened energy and power balance and some have had supply crises. This report discusses the crises, their impacts and their causes as well as the measures taken by the authorities to solve the crises. It also considers the similarities or dissimilarities with respect to the situation in Norway the winter 2002/2003. Like Norway, many of the countries have a considerable share of hydroelectric power. It is found, however, that the dependence on water of its own is not the reason for the crises, but that the inflow conditions give the market greater challenges. Furthermore, the Norwegian market has greater flexibility in the consumption, greater import capacity, better price security possibilities and less problems with market power than most of the countries here considered. Various factors influence a country's power consumption and production capacity. Economic growth and the availability of inexpensive power contribute to accelerate the consumption, while predictable external conditions and sufficient expected investment earnings are necessary to achieve an increase of the capacity - both through new investments and attendance to existing capacity. In a smooth power market there must be a certain correspondence between consumption and installed capacity, and the capacity must be such that it can cover the continuous demand for power and at the same time be flexible enough to deliver power at peak loads. This is also true of the transmission capacity. In addition, some extra capacity must be available for unexpected events. The basic problem is, in any power market, that the consumption may rise fast, while the investments in new capacity typically occurs in leaps, with long and costly construction phases. Many countries have lately experienced a hardening of the balance between consumption and capacity and so have been vulnerable to unexpected increases in consumption or resource failure. This was also the case with the Norwegian/Nordic market the winter 2002/2003, when the autumn rain failed to come and the winter came early and was unusually cold. The subject of this report is deregulated power markets outside of the Nordic countries, where the supply security is a serious problem or has been such. The report aims to: (1) Give an account of the course of events, the causes, the impacts and the measures taken to handle the crises, and (2) Analyze similarities and dissimilarities with respect to the situation in Norway. Information about the causes of supply crises and their impacts in other countries may help to create a better basis for the Norwegian authorities to make decisions about measures to secure a robust power market in Norway.

  17. Power Supplies for High Energy Particle Accelerators

    Dey, Pranab Kumar

    2015-05-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  18. The SPS auxiliary magnet power supplies

    A functional description is given of these thyristor power supplies - many of which are of the bipolar type without circulating current - with emphasis on the CERN-developed regulation circuits. A detailed analysis is given of a new thyristor gate control with low subharmonic content and fast response over a wide rectifier output range. A current regulation time constant of 14 msec is maintained even at near-zero output, where the thyristors conduct only during a small fraction of each cycle. (Auth.)

  19. Development of large high-voltage pressure insulators for the Princeton TFTR [Tokamak Fusion Test Reactor] flexible transmission lines

    Specially formulated insulator materials with improved strength and high-voltage properties were developed and used for critical components of the flexible transmission lines to the TFTR neutral beam ion sources. These critical components are plates which support central conductors as they exit the high-voltage power supply and enter the ion source enclosure. Each plate acts both as a high-voltage insulator and as a pressure barrier to the SF6 insulating gas. The original plate was made of commercial glass-epoxy laminate which limited the plate voltage capacity. The newly developed insulator is made of specially-formulated cycloalphatic Di-epoxide whose isotropic properties exhibit increased arc resistance. It is cast in one piece with skirts which greatly increase the breakdown voltage. This paper discusses the design, fabrication and testing of the new insulator

  20. Design of neutral beam injection power supplies for ITER

    Watanabe, Kazuhiro; Okumura, Yoshikazu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Higa, Osamu; Kawashima, Syuichi [Toshiba Corp., Kawasaki, Kanagawa (Japan); Ono, Youichi; Tanaka, Masanobu [Hitachi Ltd., Tokyo (Japan)

    2000-03-01

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  1. Design of neutral beam injection power supplies for ITER

    Design study on a power supply system for the ITER neutral beam injector(NBI) has been performed. Circuits of converter/inverter system and other components of the acceleration power supply whose capacity is 1 MV, 45 A have been designed in detail. Performance of the negative ion production power supplies such as an arc and an extraction power supplies was investigated using the EMTDC code. It was confirmed that ripples of 0.34%p-p for the extraction power supply and 1.7%p-p for the arc power supply are small enough. It was also confirmed that an energy input to a negative ion generator from the arc power supply at an arcing can be suppressed smaller than 8 J. The extraction power supply was designed to suppress the energy input lower than 13 J at the breakdown in the extractor. These performances satisfy the required specification of the power supply system. (author)

  2. 3.6MW Power Supply System of the 170GHz ECH&CD System in KSTAR

    Joung Jin-Hyun

    2012-09-01

    Full Text Available A 3.6 MW (-66 kV/55 A Gyrotron power supply system was developed for the 170 GHz ECH&CD gyrotron system in KSTAR. This power supply system consists of Cathode Power Supply(CPS, Anode Power Supply(APS and Body Power Supply(BPS. The CPS is using the Pulse Step Modulation by the 32set of IGBT choppers. The respons time of Chopper is very fast. So the cathode voltaget is able to be controlled rapidly. The APS is a sort of voltage devider using zener and switch component. It was achieved 3kHz modulation operation. The BPS is combined the commercial power supply and special high voltage switches. It is very simple topology but 5kHz modulation was accomplished easily. Theses power supply system were installed and commissioned successfully in 2011. This paper presents the topology of the each power supply and test result for 170 GHz gyrotron in KSTAR.

  3. Pulse electric power compensation for accelerator power supply

    Some synchrotron accelerators are excited by pulse operation. Especially, power supply for the large-scale accelerator magnets, such as J-PARC, draws a large amount of power from the utility network. Such large pulse power will give un-allowed disturbances to the connected ac power system. Energy storage system, such as a SMES system, will be required for compensating the pulse electric power and reducing the disturbances. A SMES system is also expected to protect the instantaneous voltage drop and the load levelling so far. Load levelling is essential to reduce the running cost of medical use accelerators. Present status of R and D for SMES and other energy storage systems is presented. An application example for an accelerator power supply is also discussed. (author)

  4. Thermal power in the Swedish energy supply

    A survey is presented of the part played by thermal power plants including nuclear plants in the Swedish electric power supply system. The Swedish and Norwegian situations are compared. The background for the present structure is outlined and the optimisation of electricity production is briefly discussed. The Nordic grid is presented and the strategy and charges discussed. The prognosis for the development in Sweden is presented with a brief discussion of the influence of industrial development. Finally the responsibility of the politicians for the continued development is discussed. (JIW)

  5. Risk allocation in independent power supply contracts

    Congress has made significant progress in recent months toward amending the Public Utility Holding Company Act of 1935 (PUHCA). The purposes of such amendment are to broaden power supply options for electric utilities and expand competition in whole-sale power generation markets. PUHCA reform is an integral part of President Bush's National Energy Strategy and has been included in legislation pending in both Houses of Congress. Congress will, hopefully, approve energy legislation that includes PUHCA reform before it adjourns this year. PUHCA reform has, however, stimulated heated debate within the power industry itself as well as among various consumer interest groups. One important issue in the public debate concerns risk allocation. If PUHCA is reformed, will risk be allocated efficiently and equitably between independent power producers and electric utility buyers? This article addresses that important question

  6. Development of three channel linear bipolar high voltage amplifier (±2 KV) for electrostatic steerer

    Electrostatic steerers and scanners are planned for low energy ion beam facilities at IUAC to steer and scan the ion beam on target. The power supplies for electrostatic steerers are high voltage bipolar DC amplifiers and for scanners are bipolar AC amplifiers. To fulfil the requirements a common unit has been designed and assembled for AC and DC applications. It can be used with electrostatic devices in scanning, steering and sweeping of low energy ion beams at high frequencies to attain uniform implantation. The unit consist of three independent limited bandwidth high voltage, linear bipolar amplifiers (for X-axis, Y-axis and Y1-dog leg plates). The unit has been provided with both local and remote control. (author)

  7. Power supplies for the injector synchrotron quadrupoles and sextupoles

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  8. Power supplies for plasma torches (Paper No. CP 4)

    Owing to the negative slope of the arc characteristics, the plasma torch requires a current regulated D.C. power supply for stable operation. The arc voltage depends upon the type of plasma gas and the type of operation. Transductor controlled or SCR regulated power supplies can be operated as constant current sources. This paper describes the selection criteria for power supplies for plasma torches for various applications, advantages of SCR regulated power supplies and the performance of the power supplies in operating condition. The details of 1 MW plasma torch power supply for uranium cutting are also given. (author)

  9. ATF2 High Availability Power Supplies

    Bellomo, A; Lira, C.de; Lam, B.; MacNair, D.; White, G.; /SLAC

    2008-06-27

    ATF2 is an accelerator test facility modeled after the final focus beamline envisioned for the ILC. By the end of 2008, KEK plans to commission the ATF2 [1]. SLAC and OCEM collaborated on the design of 38 power systems for beamline magnets. The systems range in output power from 1.5 kW to 6 kW. Since high availability is essential for the success of the ILC, Collaborators employed an N+1 modular approach, allowing for redundancy and the use of a single power module rating. This approach increases the availability of the power systems. Common power modules reduces inventory and eases maintenance. Current stability requirements are as tight as 10 ppm. A novel, SLAC designed 20-bit Ethernet Power Supply Controller provides the required precision current regulation. In this paper, Collaborators present the power system design, the expected reliability, fault immunity features, and the methods for satisfying the control and monitoring challenges. Presented are test results and the status of the power systems.

  10. Present status of klystron power supply systems for J-PARC linac 2012. Recovery from earthquake disaster, HVDCPS breakdown and energy upgrade

    After the Great East Japan Earthquake, the klystron power supply systems for the J-PARC 181MeV linac had recovered in last October, and restarted the all-day operations in last November. In this March, the high-voltage DC power supply no.1 (HVDCPS no.1) broke down. The cause was the breakdown of the condensers, which were the parts of the stacks of the diode circuitries. For the linac energy upgrade to 400MeV, the new power supply systems were tested. (author)

  11. Development of high-power switching power supply

    We report the development of high power switching power supply to charge a PFN for klystron modulator which is used as RF source of the KEK electron/positron injector linac. This power supply has a maximum output voltage of 43 kV and the charging power of 30 kJ/s. It consists of two high frequency inverters, a high frequency transformer, and a diode bridge circuit, and series resonance circuits to charges the PFN. The output voltage stability is less than 0.2%p-p for 5% deviation of AC 420 V 3-phase input. Also interlock system for abnormal charging such as miss fire of thyratron. The continuous running test at a rated output power is performed at KEK. (author)

  12. Large power supply facilities for fusion research

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  13. Very low power, high voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope

    The described system is developed in the framework of a deep-sea submerged Very Large Volume neutrino Telescope where photons are detected by a large number of Photo Multiplier Tubes. These PMTs are placed in optical modules (OM). A basic Cockcroft-Walton (CW) voltage multiplier circuit design is used to generate multiple voltages to drive the dynodes of the photomultiplier tube. To achieve a long lifetime and a high reliability the dissipation in the OM must be kept to the minimum. The design is also constrained by size restrictions, load current, voltage range, and the maximum allowable ripple in the output voltage. A surface mount PMT-base PCB prototype is designed and successfully tested. The system draws less than 1.5 mA of supply current at a voltage of 3.3 V with outputs up to -1400 Vdc cathode voltage, a factor 10 less than the commercially available state of the art.

  14. Distance to high-voltage power lines and risk of childhood leukaemia – an analysis of confounding by and interaction with other potential risk factors

    Pedersen, Camilla; Bräuner, Elvira V.; Rod, Naja H.; Albieri, Vanna; Andersen, Claus E.; Ulbak, Kaare; Hertel, Ole; Johansen, Christoffer

    2014-01-01

    and traffic-related air pollution (p = 0.73). We found almost no change in the estimated association between distance to power line and risk of childhood leukemia when adjusting for socioeconomic status of the municipality, urbanization, maternal age, birth order, domestic radon and traffic......We investigated whether there is an interaction between distance from residence at birth to nearest power line and domestic radon and traffic-related air pollution, respectively, in relation to childhood leukemia risk. Further, we investigated whether adjusting for potential confounders alters the...... association between distance to nearest power line and childhood leukemia. We included 1024 cases aged <15, diagnosed with leukemia during 1968-1991, from the Danish Cancer Registry and 2048 controls randomly selected from the Danish childhood population and individually matched by gender and year of birth...

  15. 30 CFR 75.825 - Power centers.

    2010-07-01

    ...-energizes the incoming high-voltage in the event of an emergency. (h) Grounding stick. The power center must....825 Power centers. (a) Main disconnecting switch. The power center supplying high voltage power to the... the main disconnecting switch required in paragraph (a) of this section, the power center must...

  16. Ultracapacitor-Based Uninterrupted Power Supply System

    Eichenberg, Dennis J.

    2011-01-01

    The ultracapacitor-based uninterrupted power supply (UPS) system enhances system reliability; reduces life-of-system, maintenance, and downtime costs; and greatly reduces environmental impact when compared to conventional UPS energy storage systems. This design provides power when required and absorbs power when required to smooth the system load and also has excellent low-temperature performance. The UPS used during hardware tests at Glenn is an efficient, compact, maintenance-free, rack-mount, pure sine-wave inverter unit. The UPS provides a continuous output power up to 1,700 W with a surge rating of 1,870 W for up to one minute at a nominal output voltage of 115 VAC. The ultracapacitor energy storage system tested in conjunction with the UPS is rated at 5.8 F. This is a bank of ten symmetric ultracapacitor modules. Each module is actively balanced using a linear voltage balancing technique in which the cell-to-cell leakage is dependent upon the imbalance of the individual cells. The ultracapacitors are charged by a DC power supply, which can provide up to 300 VDC at 4 A. A constant-voltage, constant-current power supply was selected for this application. The long life of ultracapacitors greatly enhances system reliability, which is significant in critical applications such as medical power systems and space power systems. The energy storage system can usually last longer than the application, given its 20-year life span. This means that the ultracapacitors will probably never need to be replaced and disposed of, whereas batteries require frequent replacement and disposal. The charge-discharge efficiency of rechargeable batteries is approximately 50 percent, and after some hundreds of charges and discharges, they must be replaced. The charge-discharge efficiency of ultracapacitors exceeds 90 percent, and can accept more than a million charges and discharges. Thus, there is a significant energy savings through the efficiency improvement, and there is far less downtime for applications and labor involved in replacing an ultracapacitor versus batteries. Also, the lengthy lifespan of this design would greatly reduce the disposal problems posed by lead acid, nickel cadmium, lithium, and nickel metal hydride batteries. This innovation is recyclable by nature, which further reduces system costs. The disposal of ultracapacitors is simple, as they are constructed of non-hazardous components. They are also safer than batteries in that they can be easily discharged, and left indefinitely in a safe, discharged state where batteries cannot.

  17. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  18. Nuclear power as a regional energy supply

    The author describes the Point Lepreau nuclear power plant and its impact on the electric power grid and the economy of the small province of New Brunswick. The 600 MW CANDU reactor is considered suitable for small operations and has an excellent world record. Although nuclear energy has high capital costs, its fuel costs are low, thus rendering it comparatively inflation free. Its fuel costs of 3 to 4 mills are contrasted with 40 mills for oil-fuelled units. The cost advantage of uranium over coal and oil permits New Brunswick to put aside funds for waste management and decommissioning. Regulatory streamlining is needed to reduce both expense and time of construction. The CANDU system is ideally suited to providing base load, with coal as an intermediate load supply and hydro for peaking. There is room for tidal power as a future part of the mix

  19. Converter stations in 50 or 60 Hz traction power supply

    Rieckhoff, Kurt [KfW Bankengruppe (Germany); Behmann, Uwe

    2011-11-15

    Many railways operating electrically at 50 or 60 Hz are confronted with severe reservations or even a strong verdict by operators of high voltage grids against feeding back of regenerative braking power, while on the other hand chances for internal using of braking energy are low because of sectionalized catenary networks. A solution to these problems will be using static converters in traction substations. Furthermore, fringe benefits can be expected as regards capital expenditures and operational costs. (orig.)

  20. Young people's view of power generation and power supply

    Asked about what they think are the most urgent political problems, the young people ranked unemployment and environmental pollution higher (80 pic) than the problems of energy generation and supply, which are in the third place together with peaceful policy and terrorism (55% priority for each). Young people's problem awareness in the energy sector rather concentrates on nuclear power generation and its hazards than on aspects of future energy supplies. In fact, currently only 38% of the young people expect any electricity supply shortages in the FRG, as compared to 47% in 1982. But as in 1982, seven per cent of the young people today assume that power consumption in the FRG will continue to rise. (orig.)

  1. Design of a -1 MV dc UHV power supply for ITER NBI

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  2. Simple power supply for power load controlled isoelectric focusing

    Duša, Filip; Šlais, Karel

    2014-01-01

    Roč. 35, č. 8 (2014), s. 1114-1117. ISSN 0173-0835 R&D Projects: GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : isoelectric focusing * power supply * voltage multiplier Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014 http://hdl.handle.net/11104/0231022

  3. Pulse Power Supply for Plasma Dynamic Accelerator

    A new concept of a coaxial plasma dynamic accelerator with a self-energized magnetic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse power supply system including the charging circuit, start switch and current transfer system along with some of the key techniques for this kind of accelerator. Using this accelerator configuration, ceramic beads of 100 fim in diameter were accelerated to a speed as high as 18 km/sec. The facility can be used in a laboratory setting to study impact phenomena on solar array materials, potential structural materials for use in space.

  4. Measurement ot the switching over-voltages at the disconnection of the high voltage shunt reactors in the Romanian power system

    Stroica, Paul Constantin; Merfu, Ion; Stroica, Mihail; Merfu, Marius; Cojocaru, Florian; Stefan, Dinu; Cojocaru, Mihai

    2010-09-15

    The paper presents the measurements of the switching over-voltages made in the Romanian Power System, at the 400/220/110 kV Urechesti substation at the disconnection of a 400 kV, 100 MVAr shunt reactor type DFAL, Siemens, Germany, in 3 consecutive versions. The first one is for shunt reactor controlled by live-tank oil circuit breaker, the second one is for shunt reactor controlled by SF6 circuit breaker, and the third one is for shunt reactor controlled by SF6 circuit breaker and synchronize device.

  5. A novel power supply for wound rotor induction motor creep

    Zuo, D.S.; Jiang, J.G. [Shanghai Jiao Tong University, Shanghai (China)

    2006-02-15

    A novel power supply for wound rotor induction motor creep is proposed in this paper. Although this power supply is not perfect in performance, its cost is lower than others. This power supply is used in high-power drive system in coal mine. Two groups of 6-pulse blocking mode cycloconverter connected as 'V' shape will produce low-frequency supply for creep.

  6. Innovative Digitally Controlled Particle Accelerator Magnet Power Supply

    Nielsen, Rasmus Ørndrup; Bidoggia, Benoit; Maheshwari, Ram Krishan; Török, Lajos

    Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described.......Particle accelerator magnet power supplies needs to be extremely precise. A new and innovative power supply for particle accelerator magnets is proposed. The topologies for the input and the output converter are shown and the control architecture is described....

  7. Grid Connected Power Supplies for Particle Accelerator Magnets

    Nielsen, Rasmus Ørndrup

    2015-01-01

    Power supplies play a large role in particle accelerators, for creating, accelerating, steering and shaping the beam. This thesis covers the power supplies for steering and shaping the beam, namely the magnet power supplies. These power supplies have a special set of requirements regarding output current stability and accuracy, typically allowed drift over 8 hours is down to 10 parts per million of the maximum output current. After an introduction to the topic several topologies are discussed...

  8. Issues on Simulations of Inverter Power Supply

    Ioan Mircea GORDAN

    2009-05-01

    Full Text Available The modern supply for non-industrial equipment, unlike the industrial power supply installations, must have specific parameters (voltage and frequency. Some modern devices, as the converter – inverter system with static commutation elements, can be used in order to obtain these parameters. The role of the converter in this system is to convert the alternative current of the industrial supplying device to a continuous current; with the help of the inverter the voltage is converted back to alternative voltage.This paper presents the alternative – continuous current conversion bridge (the converter, the continuous – alternative conversion bridge (the inverter having different switching elements and the PWM command signal generation methods of the semiconductor elements by using the “Matlab–Simulink” graphical environment. The system, converter-inverter, has been simulated for a specific parameters R, L, C. These parameters have been obtained after a designing calculation for a universal load. The simulations presented use the static switching device as optimal for a proper behaviour of the inverter in the case of the given charge.

  9. Grid Connected Power Supplies for Particle Accelerator Magnets

    Nielsen, Rasmus rndrup

    Power supplies play a large role in particle accelerators, for creating, accelerating, steering and shaping the beam. This thesis covers the power supplies for steering and shaping the beam, namely the magnet power supplies. These power supplies have a special set of requirements regarding output...... power module on the grid side of the transformer, consisting of a boost rectifier and a dual half-bridge isolated DC/DC converter. It is shown that it is possible to create a power supply using a single module and that this approach can lead to improved layout and smaller converter size. A high...

  10. A power supply for XFEL/SPring-8

    The XFEL institution is under construction now in a SPring8 campus. We installed a machine AC power supply as electric facilities construction. It is to make the voltage regulation of the AC power supply small to be important. I report it about some technology that I adopted to make the voltage regulation of the AC power supply small. (author)

  11. Report about the contribution of new technologies to the burial of high and very-high voltage power lines; Rapport sur l'apport de nouvelles technologies dans l'enfouissement des lignes electriques a haute et tres haute tension

    Kert, Ch. [Assemblee Nationale, 75 - Paris (France)

    2001-12-01

    Today, high voltage overhead power lines are badly perceived by the population in particular in urban areas and in areas with remarkable landscapes, for their visual impact on the environment and for their possible effect on human health. With the increase of the domestic and foreign power demand, the high voltage grid will develop in the future and the partial burial of power lines can be the first steps towards a solution to these problems. This report makes a worldwide status of the state-of-the-art of power line burial technologies, all voltages considered, and then focusses on the very-high voltage challenge which encounters the most important technological and economical constraints. The technical feasibility has been proven but the lowering of costs needs the development of a real European market of power lines burial. (J.S.)

  12. Electrical isolation for high voltage water cooled components

    Cordero, J.; Hruby, V.; Martinez-Tamayo, F.; Pote, B. [Busek Co. Inc., Needham, MA (United States)

    1995-12-31

    To achieve high overall efficiency in an MHD power plant, the heat rejected from cooling the combustor walls must be integrated into the overall steam bottoming cycle. Because the combustor operates at a high voltage, and the boiler, heat recovery and other plant components are at ground potential, a means of electrical isolation must be provided in the water supply and return lines. The Busek isolator design concept consists of a series of pipe sections that are internally lined with dielectric material and isolated from each other. The complete structure behaves as a continuous dielectric tube. The design issues include leakage current level, dielectric material selection and allowable electrochemical corrosion. To address these issues, a set of potential dielectric materials was tested and a prototype electrical isolator is being constructed which will be tested in an already built dedicated facility that can duplicate the conditions in a real power plant. The test results will enable an assessment of the level of water resistivity required and the resulting impact on the isolator design, the water purification plant, and the combustor cooling system parameters.

  13. High performance magnet power supply optimization

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems

  14. Supply ships powered by liquid natural gas

    The Norwegian Government has signed an agreement with three Norwegian companies to build two new supply ships that will use cooled liquid natural gas as a fuel (LNG). The new ships will supply the offshore installations in the North Sea. The greatest advantage for the environment is the fact that the emission of nitrogen oxides is reduced by 85 per cent compared to conventional diesel power. The emission of carbon dioxide is reduced by 20 to 30 per cent. For Norway to be able to fulfil its international environmental commitments the authorities must make it possible for all coastal traffic to use natural gas for fuel in the future. The cost of reducing the NOx emissions directly by using the new gas-powered ships is several times smaller than the cost of obtaining the same reduction on the land bases. If all the Norwegian coastal traffic converted from diesel to natural gas, this would have fulfilled 70 per cent of the country's commitment according to the Gothenburg Protocol

  15. JINR DLNP Phasotron intellectual power supply and control system, realized on the basis of one high power supply source at different currents in electromagnetic lenses

    The intellectual power supply and control system is presented for the group of the electromagnetic lenses in the Phasotron beam transport channel supplied from one power supply source. The intellectual power supply and control system is proposed to provide minimization of the power consumption at redistribution of the lenses currents between the main power supply and additional local regulation power supply sources

  16. Design of sampling circuit in negative high voltage unit in particle detector

    A kind of Sampling Circuit in negative High Voltage Unit (HVU), which is used to provide the bias voltage to the solid detectors, is designed by using Auxiliary Winding. The Sampling Circuit is designed base on theoretical analysis and PSpice simulation analysis. In the design of HVU, the specifications are: input voltage +12 V, output voltage -160 V, pulse-space rate 6.45%, 0?18 (A load regulation 8.8, voltage regulation 3.9, ripple coefficient is 3.1. The theoretical analysis and PSpice simulation analysis are agreed to the experiments, so that this method can be a useful reference for such power supply design. (authors)

  17. Control and protection system for an electron injector installed in a high-voltage terminal

    The basic principles of operation of the control and protection system for an electron accelerator gun are described. The electron gun parameters are independently controlled by using four special secondary windings of the high-voltage transformer providing the accelerating voltage. Four groups of thyristor ac regulators employing phase control are connected so as to provide independent adjustment of each parameter of the gun. The power controller of modular construction has a single-phase supply from the 50 Hz 220 V mains. (orig.)

  18. DC power supplies power management and surge protection for power electronic systems

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  19. Precision power supply system of the LEPTA group magnetic elements

    An individual power supply source is usually used for each group of the identical magnetic elements in the accelerators of charged particles. We discuss the power supply and control system on the basis of additional current shunts applied for simultaneous supply of several groups of magnets in the positron storage ring LEPTA. Data on the use of the shunt of the linear and key converter are provided. The option of the device of a power supply system with transformation of the recuperated energy in the storage battery and supply from it of the precision power supply sources of the correcting magnets of LEPTA is considered. The channel of individual digital transformation of power supply system elements is given which allows one to build together with a reverse precision converter effective intellectual balanced power supply systems

  20. Universal power supply for repair operation at TPP and NPP

    Universal power supply for repair operations at TPP and NPP is described. Serial transformer represents a basic element of the power supply. The power supply ensures a great amount of operation voltage stages from 4.6 V up to 61 V at load current up to 1600 A. The portable power supply may be used for turbine stud heating, steam line induction heating and welding operations. The main power supply advantage over previous devices consists in considerable decrease of required current and in increase of its reliability