WorldWideScience

Sample records for high benzene concentrations

  1. Biodegradation of High Concentrations of Benzene Vapors in a Two Phase Partition Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  2. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    Directory of Open Access Journals (Sweden)

    Karimi Ali

    2013-01-01

    Full Text Available Abstract The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  3. Estimating hourly benzene concentrations in a highly-complex topographical environment in northern Spain using RAMS and the CALPUFF modeling system

    Science.gov (United States)

    Valdenebro, Vernica; Sez de Cmara, Estbaliz; Gangoiti, Gotzon; Alonso, Lucio; Garca, Jos Antonio; Ilardia, Juan Luis; Gonzlez, Nerea

    2013-04-01

    The RAMS-CALMET-CALPUFF modeling system together with observations has been used to analyse the hourly benzene impacts of a coke plant in a nearby urban area in a region of very complex topography (a mountainous region near the coast) in northern Spain. The air flow in this region is strongly influenced by the local topography and, specially under anticyclonic conditions, important daily changes in stability, wind velocity and wind direction occur almost every day, which directly affect the dispersion of pollutants in the area. The aim of this study was to set up a methodology suitable for dispersion studies in very complex areas, where pollutants dynamics is highly affected by mesoscale meteorological processes. Two ten-day periods have been modeled. High spatio-temporal resolution meteorological simulations have been performed with the non-hydrostatic mesoscale meteorological model RAMS. A configuration of four nested grids has been used. 4D assimilation has been performed using NCEP and ERA-Interim data. The RAMS meteorological output has been downscaled from a 1 km to a 250 m resolution with the CALMET diagnostic model. Observational meteorological data have been assimilated into CALMET. The results of the meteorological simulations have been validated both against data recorded by a network of surface stations and by a wind profiler radar (WPR) located near the coast. The already validated meteorological fields have been input into the CALPUFF nonsteady-state puff dispersion model. For the dispersion simulations, benzene emission data have been obtained from the Spanish E-PRTR Register. Predicted impacts have also been compared with observations. Comparisons of the RAMS simulated wind fields against the WPR profiles have revealed inaccurate NCEP reanalysis data for one of the simulated periods. Initialization with ECMWF-Interim data have improved the results. The main flows that affect dispersion in the area have been mostly well captured by the modeling system, for which the assimilation of meteorological observations into CALMET has shown of prime importance. This data assimilation has been crucial to reproduce the nocturnal drainage flows on some days and hence, for a subsequent simulation of the actual daily cycles of benzene concentrations by CALPUFF. These cycles has been captured by the model; however, concentration levels are underestimated, probably due to an underestimation of the registered benzene emissions. The availability of good meteorological observations in the area to assess the model reliability, and good emission data are of key importance to improve the model evaluations.

  4. Assessment and influence of operational parameters on the TiO2 photocatalytic degradation of sodium benzene sulfonate under highly concentrated solar light illumination

    International Nuclear Information System (INIS)

    Sodium benzene sulfonate (BS) was decomposed in aqueous TiO2 dispersions under highly concentrated solar light illumination to examine the photocatalytic characteristics of a parabolic round concentrator (PRC) reactor to degrade the pollutant without visible light absorption. The effects of such operational parameters as initial concentration, volume of the aqueous BS solution, oxygen purging, and TiO2 loading on the kinetics of decomposition of BS were investigated. An effective photodegradation necessitates a suitable combination of initial volume and concentration of BS solution. Relative to atmospheric air, oxygen purging significantly accelerates the degradation process at high initial concentrations of BS (0.40 mM or 1.0 mM). Optimal TiO2 loading was 9 gl -1, greater than previously reported. Elimination of TOC (total organic carbon) followed pseudo first-order kinetics in the initial stages of the photodegradation process. The relative photonic efficiency for the photodegradation of BS is ζrel=1.0. (Author)

  5. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Science.gov (United States)

    2010-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or...

  6. A comprehensive study of benzene concentrations and emissions in Houston

    Science.gov (United States)

    Mller, Markus; Eichler, Philipp; Berk Knighton, W.; Estes, Mark; Crawford, James H.; Mikoviny, Tomas; Wisthaler, Armin

    2014-05-01

    The Houston Metropolitan Area (Greater Houston) has a population of over 6 million people, it ranks among the three fastest growing metropolises in the developed world and population growth scenarios predict it to reach megacity status in the coming two to four decades. Greater Houston is home to the largest petrochemical-manufacturing complex in the world with important consequences for the environment in the region. Direct and fugitive emissions of hydrocarbons adversely affect Houston's air quality which has been subject to intense studies over the past two decades. In 2013, NASA conducted the DISCOVER-AQ field campaign in support of developing a satellite-based capability to assess Houston's air quality in the future. Amongst other measurements, airborne, mobile ground-based and stationary ground-based measurements of benzene were carried out. Benzene is a carcinogenic air toxic with strict exposure regulations in the U.S. and in Europe. We have used the obtained comprehensive dataset to map benzene concentrations in the Houston metropolitan area, locate and identify point sources, compare industrial and traffic emissions and put them in relation to previous measurements and emission inventories. The obtained data will allow a better assessment of health risks associated with benzene exposure in a large metropolitan area that includes both traffic and industrial benzene sources. This work was funded by BMVIT / FFG-ALR in the frame of the Austrian Space Application Programme (ASAP 8, project 833451). PE was funded through the PIMMS ITN (EU-FP7, agreement number 287382). Additional resources were provided through NASA's Earth Venture program (EV-1) and the NASA Postdoctoral Program (NPP). We want to thank Scott Herndon and Aerodyne Research for their support.

  7. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations

    International Nuclear Information System (INIS)

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  8. Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes.

    Science.gov (United States)

    Im, Jisun; Sterner, Elizabeth S; Swager, Timothy M

    2016-01-01

    An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT) sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX) vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer) selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom layer), which enables the simultaneous concentrating and sensing within a few seconds. The selectivity can be achieved by functionalizing cellulose acetate with a pentafluorophenylacetyl selector that interacts strongly with the target BTX analytes. A new design of the integrated cellulose concentrator/SWCNT sensing system allows high sensitivity with limits of detection for benzene, toluene, and m-xylene vapors of 55 ppm, 19 ppm, and 14 ppm, respectively, selectivity, and fast responses (<10 s to reach equilibrium), exhibiting the potential ability for on-site, real-time sensing applications. The sensing mechanism involves the selective adsorption of analytes in the concentrator film, which in turn mediates changes in the electronic potentials at the polymer-SWCNT interface and potentially changes in the tunneling barriers between nanotubes. PMID:26848660

  9. Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes

    Directory of Open Access Journals (Sweden)

    Jisun Im

    2016-02-01

    Full Text Available An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom layer, which enables the simultaneous concentrating and sensing within a few seconds. The selectivity can be achieved by functionalizing cellulose acetate with a pentafluorophenylacetyl selector that interacts strongly with the target BTX analytes. A new design of the integrated cellulose concentrator/SWCNT sensing system allows high sensitivity with limits of detection for benzene, toluene, and m-xylene vapors of 55 ppm, 19 ppm, and 14 ppm, respectively, selectivity, and fast responses (<10 s to reach equilibrium, exhibiting the potential ability for on-site, real-time sensing applications. The sensing mechanism involves the selective adsorption of analytes in the concentrator film, which in turn mediates changes in the electronic potentials at the polymer-SWCNT interface and potentially changes in the tunneling barriers between nanotubes.

  10. Exposition by inhalation to the benzene, toluene, ethyl-benzene and xylenes (BTEX) in the air. Sources, measures and concentrations; Exposition par inhalation au benzene, toluene, ethylbenzene et xylenes (BTEX) dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the benzene, toluene, ethyl-benzene and xylene (BTEX) concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  11. OH-initiated oxidation of benzene - Part II. Influence of elevated NOx concentrations

    DEFF Research Database (Denmark)

    Klotz, B; Volkamer, R; Hurley, MD; Andersen, Mads Peter Sulbæk; Nielsen, OJ; Barnes, I; Imamura, T; Wirtz, K; Becker, KH; Platt, U; Wallington, TJ; Washida, N

    2002-01-01

    The present work represents a continuation of part I of this series of papers, in which we investigated the phenol yields in the OH-initiated oxidation of benzene under conditions of low to moderate concentrations of NOx, to elevated NOx levels. The products of the OH-initiated oxidation of benzene...... in 700 760 Torr of N-2/O-2 diluent at 297 +/- 4 K were investigated in 3 different photochemical reaction chambers. In situ spectroscopic techniques were employed for the detection of products, and the initial concentrations of benzene, NOx, and O-2 were widely varied (by factors of 6300, 1500, and...

  12. An Order-of-Magnitude Estimation of Benzene Concentration in Saltstone Vault

    International Nuclear Information System (INIS)

    The contents of Tank 48H that include the tetraphenylborate (TPB) precipitates of potassium and cesium will be grouted and stored in the Saltstone vault. The grouting process is exothermic, which should accelerate the rate of decomposition of TPB precipitates eventually to benzene. Because the vault is not currently outfitted with an active ventilation system, there is a concern that a mixture of flammable gases may form in the vapor space of each cell filled with the curing grout. The purpose of this study was to determine if passive breathing induced by the diurnal fluctuations of barometric pressure would provide any mitigating measure against potential flammability in the cell vapor space. In Revision 0 of this document, a set of algorithms were presented that would predict the equilibrium concentration of benzene in the cell vapor space as a function of benzene generation rate, fill height, and passive breathing rate. The algorithms were derived based on several simplifying assumptions so that order of magnitude estimates could be made quickly for scoping purposes. In particular, it was assumed that passive breathing would occur solely due to barometric pressure fluctuations that were sinusoidal; the resulting algorithm for estimating the rate of passive breathing into or out of each cell is given in Eq. (10). Since Revision 0 was issued, the validity of this critical assumption on the mode of passive breathing was checked against available passive ventilation data for the Hanford waste tanks. It was found that the passive breathing rates estimated from Eq. (10) were on average 50 to 90% lower than those measured for 5 out of 6 Hanford tanks considered in this study (see Table 1); for Tank U-106, the estimated passive breathing rates were on average 20% lower than the measured data. These results indicate that Eq. (10) would most likely under predict passive breathing rates of the Saltstone vault. At a given fill height and benzene generation rate, under predicted breathing rates would in turn make the benzene concentration projections in the cell vapor space conservatively high, thus rendering the overall flammability assessment conservative. The results of this validation effort are summarized in Section 2.4 of this revision. It is to be noted that all the algorithms, numerical results and conclusions made in Revision 0 remain valid. In this work, the algorithms for estimating the equilibrium benzene concentration for a given scenario were derived by combining the asymptotic solutions to the transient mass balance equations for the exhaling and inhaling modes in a 24-hour period. These algorithms were then applied to simulate several test cases, including the baseline case where the cell was filled to the maximum height of 25 ft at the bulk benzene generation rate of 3.4 g/hr

  13. Modeling annual benzene, toluene, NO2, and soot concentrations on the basis of road traffic characteristics

    International Nuclear Information System (INIS)

    The investigation of potential adverse health effects of urban traffic-related air pollution is hampered by difficulties encountered with exposure assessment. Usually public measuring sites are few and thereby do not adequately describe spatial variation of pollutant levels over an urban area. In turn, individual monitoring of pollution exposure among study subjects is laborious and expensive. We therefore investigated whether traffic characteristics can be used to adequately predict benzene, NO2, and soot concentrations at individual addresses of study subjects in the city area of Munich, Germany. For all road segments with expected traffic volumes of at least 4000 vehicles a day (n=1840), all vehicles were counted manually or a single weekday in 1995. The proportion of vehicles in 'stop-go' mode, n estimate of traffic jam, was determined. Furthermore, annual concentrations of benzene, NO2, and soot from 18 high-concentration sites means: 8.7, 65.8, and 12.9 μg/m3, respectively) and from 16 school sites with moderate concentrations (means: 2.6, 32.2, and 5.7 μg/m3, respectively) were measured from 1996 to 1998. Statistical analysis of the data was performed using components of two different statistical models recently used to predict air pollution levels in comparable settings. Two traffic characteristics, traffic volume and traffic jam percentage, adequately described air pollutant concentrations (R2: 0.76-0.80, P=0.0001). This study shows that air pollutant concentrations can be accurately predicted by two traffic characteristics and that these models compare favorably with other more complex models in the literature

  14. High transmission in ruthenium-benzene-ruthenium molecular junctions

    International Nuclear Information System (INIS)

    The conductance of a benzene molecule connected to two ruthenium (Ru) electrodes through two C(H) anchoring groups is investigated using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with density functional theory. Our calculations demonstrate that a nearly perfect conductance with magnitude exceeding 84% of the conductance quantum G0 can be obtained when the two C(H) anchoring groups are bonded to a Ru adatom on the Ru(0 0 0 1) surface, independently from whether this is a Ru=C double bond or a Ru?C triple bond. Both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the benzene backbone interact with the Ru-C ? bonds in the contact region to form efficient charge transport channels, illustrating the high conducting nature of benzene

  15. Analysis of Benzene Concentration Effects at Workplace to the Phenol Concentration in Urine of Painting Workshop Labors in Makassar, Indonesia

    OpenAIRE

    Syafar, Muhammad; Wahab, Abd. Wahid

    2015-01-01

    Benzene in the body can cause central nervous system disorder, hematology disorder and the target is bone marrow. Benzene is used widely at the painting workshop as dissolvent since it is easily dissolved in paint. Workers who work at the workshop using spray paint have a high risk to benzene. The aim of the study was to analyze factors such as work experience, duration of spraying, ventilation, respirator and the most dominant factor affecting the Phenol level in the urine of the workers. Th...

  16. Concentrations of benzene and toluene in the atmosphere of the southwestern area at the Mexico City Metropolitan Zone

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, H.; Sosa, R.; Sanchez, P. [Universidad Autonoma de Mexico, Ciudad Universitaria (Mexico). Centro de Ciencias de la Atmosfera; Bueno, E.; Gonzalez, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia, SEMARNAP, Mexico (Mexico)

    2002-08-01

    The Mexico City Metropolitan Zone (MCMZ) presents important emissions of hazardous air pollutants. It is well documented that the MCMZ suffers a critical air pollution problem due to high ozone and particulate matter concentrations. However, toxic air pollutants such as benzene and toluene have not been considered. Benzene has accumulated sufficient evidence as a human carcinogen, and the ratio benzene/toluene is an excellent indicator to evaluate control strategies efficiency. In order to evaluate the levels of these two air toxic pollutants in the MCMZ, ambient air samples were collected in canisters and analyzed with a gas chromatograph with a flame ionization detector, according to procedures described in the United States Environmental Protection Agency (USEPA) method TO-15. Quality assurance was performed collecting duplicate samples which were analyzed in replicate to quantify the precision of air-quality measurements. Three different sites located in the Southwestern area in the MCMZ were selected for the sampling: the University campus, a gas station, and a vertical condominium area, in the same neighborhood, which presents different activities. At these sites, grab air samples were collected during the morning hours (7-8 a.m.), while for the University area, 24 h integrated air samples were collected simultaneously, with grab samples. Benzene concentrations (24 h sampling) in the atmosphere around the University campus have similar present levels as in other cities of North America. Mean values in this site were about 1.7 ppb. A significant variation exists between the benzene and toluene concentrations in the studied sites, being the more critical values than those registered at the gas station (an average of 25.8 ppb and a maximum of 141 ppb of benzene). There is a fuel regulation for gasoline in Mexico, which allows a maximum of 1 percent of benzene. However, since more than 60 percent of vehicles do not have catalytic converters (models before 1991) it is expected that most of this benzene be emitted through exhaust pipe. Another strategy being implemented is the use of vapor recovery systems at the gas stations. Vehicles emission control technology must be matched with adequate fuel characteristics in the problem area where it will be implemented, to achieve maximum emission reductions. (author)

  17. Survey of benzene in foods by using headspace concentration techniques and capillary gas chromatography.

    Science.gov (United States)

    McNeal, T P; Nyman, P J; Diachenko, G W; Hollifield, H C

    1993-01-01

    Recently, the combination of sodium or potassium benzoate with ascorbic acid was shown to produce low levels (ng/g) of benzene in fruit-flavored soft drinks. The presence of benzene also was reported in butter, eggs, meat, and certain fruits; levels of these findings ranged from 0.5 ng/g in butter to 500-1900 ng/g in eggs. Because benzoates are widely used as food preservatives, a limited survey of other foods containing added benzoate salts was conducted to investigate the potential for benzene formation. Selected foods that did not contain added benzoates but were previously reported to contain benzene were analyzed for comparison. More than 50 foods were analyzed by purge-and-trap or static headspace concentration and capillary gas chromatography. Benzene was quantitated by using the method of standard additions, and its identity was confirmed by mass selective detection. Results of this limited survey show that foods without added benzoates (including eggs) contained benzene at levels equal to or less than 2 ng/g. Slightly higher levels were present in some foods and beverages containing both ascorbic acid and sodium benzoate. PMID:8286958

  18. Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes

    OpenAIRE

    Jisun Im; Elizabeth S. Sterner; Swager, Timothy M.

    2016-01-01

    An integrated cellulose polymer concentrator/single-walled carbon nanotube (SWCNT) sensing system is demonstrated to detect benzene, toluene, and xylenes (BTX) vapors. The sensing system consists of functionalized cellulose as a selective concentrator disposed directly on top of a conductive SWCNT sensing layer. Functionalized cellulose concentrator (top layer) selectively adsorbs the target analyte and delivers the concentrated analyte as near as possible to the SWCNT sensing layer (bottom l...

  19. Airborne concentrations of benzene associated with the historical use of some formulations of liquid wrench.

    Science.gov (United States)

    Williams, Pamela R D; Knutsen, Jeffrey S; Atkinson, Chris; Madl, Amy K; Paustenbach, Dennis J

    2007-08-01

    The current study characterizes potential inhalation exposures to benzene associated with the historical use of some formulations of Liquid Wrench under specific test conditions. This product is a multiuse penetrant and lubricant commonly used in a variety of consumer and industrial settings. The study entailed the remanufacturing of several product formulations to have similar physical and chemical properties to most nonaerosol Liquid Wrench formulations between 1960 and 1978. The airborne concentrations of benzene and other constituents during the simulated application of these products were measured under a range of conditions. Nearly 200 breathing zone and area bystander air samples were collected during 11 different product use scenarios. Depending on the tests performed, average airborne concentrations of benzene ranged from approximately 0.2-9.9 mg/m(3) (0.08-3.8 ppm) for the 15-min personal samples; 0.1-8 mg/m(3) (0.04-3 ppm) for the 1-hr personal samples; and 0.1-5.1 mg/m(3) (0.04-2 ppm) for the 1-hr area samples. The 1-hr personal samples encompassed two 15-min product applications and two 15-min periods of standing within 5 to 10 feet of the work area. The measured airborne concentrations of benzene varied significantly based on the benzene content of the formulation tested (1%, 3%, 14%, or 30% v/v benzene) and the indoor air exchange rate but did not vary much with the base formulation of the product or the two quantities of Liquid Wrench used. The airborne concentrations of five other volatile chemicals (ethylbenzene, toluene, total xylenes, cyclohexane, and hexane) were also measured, and the results were consistent with the volatility and concentrations of these chemicals in the product tested. A linear regression analysis of air concentration compared with the chemical mole fraction in the solution and air exchange rate provided a relatively good fit to the data. The results of this study should be useful for evaluating potential inhalation exposures to benzene and other volatile chemicals that occurred during the past use of some formulations of Liquid Wrench and perhaps for some similar products containing these chemicals. PMID:17558801

  20. Photoacoustic spectroscopy-based detector for measuring benzene and toluene concentration in gas and liquid samples

    International Nuclear Information System (INIS)

    Here we present a novel instrument for on-line, automatic measurement of benzene and toluene concentration in gas and liquid samples produced in the natural gas industry. Operation of the instrument is based on the collection of analytes on an adsorbent, separation using a chromatographic column and detection by near-infrared diode laser-based photoacoustic spectroscopy. Sample handling, measurement and data evaluation are carried out fully automatically, using an integrated, programmable electronic unit. The instrument was calibrated in the laboratory for natural gas, nitrogen and liquid glycol samples, and tested under field conditions at a natural gas dehydration unit of the MOL Hungarian Oil and Gas Company. Minimum detectable concentrations (3σm−1) were found to be 2.5 µg l−1 for benzene and 4 µg l−1 for toluene in gas samples, while 1.5 mg l−1 for benzene and 3 mg l−1 for toluene in liquid samples, which is suitable for measuring benzene and toluene concentration in natural gas and glycol samples occurring at natural gas dehydration plants

  1. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam

    International Nuclear Information System (INIS)

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water site remedial with a mobile Electron Beam facility. (Author)

  2. Comparative Analysis between Conventional PI and Fuzzy LogicPI Controllers for Indoor Benzene Concentrations

    Directory of Open Access Journals (Sweden)

    Nun Pitalúa-Díaz

    2015-05-01

    Full Text Available Exposure to hazardous concentrations of volatile organic compounds indoors in small workshops could affect the health of workers, resulting in respirative diseases, severe intoxication or even cancer. Controlling the concentration of volatile organic compounds is required to prevent harmful conditions for workers in indoor environments. In this document, PI and fuzzy PI controllers were used to reduce hazardous indoor air benzene concentrations in small workplaces. The workshop is represented by means of a well-mixed room model. From the knowledge obtained from the model, PI and fuzzy PI controllers were designed and their performances were compared. Both controllers were able to maintain the benzene concentration within secure levels for the workers. The fuzzy PI controller performed more efficiently than the PI controller. Both approaches could be expanded to control multiple extractor fans in order to reduce the air pollution in a shorter time. The results from the comparative analysis showed that implementing a fuzzy logic PI controller is promising for assuring indoor air quality in this kind of hazardous work environment.

  3. Benzene exposures in urban areas

    International Nuclear Information System (INIS)

    Benzene exposures in urban areas were reviewed. Available data confirm that both in USA and Europe, benzene concentrations measured by fixed outdoor monitoring stations underestimate personal exposures of urban residents. Indoor sources, passive smoke and the high exposures during commuting time may explain this difference. Measures in European towns confirm that very frequently mean daily personal exposures to benzene exceed 10 μg/m3, current European air quality guideline for this carcinogenic compound

  4. Quantitative detection of benzene in toluene- and xylene-rich atmospheres using high-kinetic-energy ion mobility spectrometry (IMS).

    Science.gov (United States)

    Langejuergen, Jens; Allers, Maria; Oermann, Jens; Kirk, Ansgar; Zimmermann, Stefan

    2014-12-01

    One major drawback of ion mobility spectrometry (IMS) is the dependence of the response to a certain analyte on the concentration of water or the presence of other compounds in the sample gas. Especially for low proton affine analytes, e.g., benzene, which often exists in mixtures with other volatile organic compounds, such as toluene and xylene (BTX), a time-consuming preseparation is necessary. In this work, we investigate BTX mixtures using a compact IMS operated at decreased pressure (20 mbar) and high kinetic ion energies (HiKE-IMS). The reduced electric field in both the reaction tube and the drift tube can be independently increased up to 120 Td. Under these conditions, the water cluster distribution of reactant ions is shifted toward smaller clusters independent of the water content in the sample gas. Thus, benzene can be ionized via proton transfer from H3O(+) reactant ions. Also, a formation of benzene ions via charge transfer from NO(+) is possible. Furthermore, the time for interaction between ions and neutrals of different analytes is limited to such an extent that a simultaneous quantification of benzene, toluene, and xylene is possible from low ppbv up to several ppmv concentrations. The mobility resolution of the presented HiKE-IMS varies from R = 65 at high field (90 Td) to R = 73 at lower field (40 Td) in the drift tube, which is sufficient to separate the analyzed compounds. The detection limit for benzene is 29 ppbv (2 s of averaging) with 3700 ppmv water, 12.4 ppmv toluene, and 9 ppmv xylene present in the sample gas. Furthermore, a less-moisture-dependent benzene measurement with a detection limit of 32 ppbv with ca. 21?000 ppmv (90% relative humidity (RH) at 20 C) water present in the sample gas is possible evaluating the signal from benzene ions formed via charge transfer. PMID:25360539

  5. Benzene Evolution Rates from Saltstone Prepared with 2X ITP Flowsheet Concentrations of Phenylborates and Heated to 85 Degrees C

    International Nuclear Information System (INIS)

    The Saltstone Facility provides the final treatment and disposal of low level liquid wastes streams. At the Saltstone Facility, the waste is mixed with cement, flyash, and slag to form a grout, which is pumped into large concrete vaults where it cures. The facility started radioactive operations in June 1990. High Level Waste Engineering requested Savannah River Technology Center to determine the effect of TPB and its decomposition products (i.e., 3PB, 2PB, and 1PB) on the saltstone process. Previous testing performed by SRTC determined saltstone benzene evolution rates a function of ITP filtrate composition. Testing by the Thermal Fluids Laboratory has shown at design operation, the temperature in the Z-area vaults could reach 85 degrees Celsius. Saltstone asked SRTC to perform additional testing to determine whether curing at 85 degrees Celsius could change saltstone benzene evolution rates. This document describes the test performed to determine the effect of curing temperature on the benzene evolution rates

  6. EFFECTS OF FEED CONCENTRATION AND WATER VAPOR ON CATALYTIC COMBUSTION OF ETHYL ACETATE AND BENZENE IN AIR OVER CR-ZSM-5 CATALYST

    Directory of Open Access Journals (Sweden)

    Ahmad Zuhairi Abdullah

    2010-09-01

    Full Text Available Catalytic combustion of ethyl acetate (EAc and benzene (Bz over chromium exchanged ZSM-5 (Si/Al=240 is reported. An 11 mm i.d. fixed-bed catalytic reactor, operated at temperatures between 100 oC and 500 oC, and under excess oxygen condition, was used for the catalytic activity measurement. Apparent order of reaction and apparent activation energy were determined by operating the reactor differentially at a gas hourly space velocity (GHSV of 78,900 h-1 and feed concentrations between 3,500 ppm to 17,700 ppm and 3,700 to 12,400 ppm for ethyl acetate and benzene, respectively. Ethyl acetate was more reactive than benzene due to highly reactive carbonyl group in the molecule. The combustion process satisfactorily fitted pseudo first-order kinetics with respect to organic concentration and a zero-order dependence on the oxygen concentration. The presence of water vapor (9,000 ppm in the feed stream was found to weaken the reactivity of these organics which could also be demonstrated with increases in the activation energy from 23.1 kJ/mole to 37.6 kJ/mole for ethyl acetate and from 27.6 kJ/mole to 46.1 kJ/mole for benzene. Water vapor was found to play a positive role in the formation of carbon dioxide yield in ethyl acetate combustion. Deactivation of catalyst by water appeared to be only temporary and the activity reverted back to its original value once the source of water vapor was removed.

  7. High-resolution mapping of sources contributing to urban air pollution using adjoint sensitivity analysis: benzene and diesel black carbon.

    Science.gov (United States)

    Bastien, Lucas A J; McDonald, Brian C; Brown, Nancy J; Harley, Robert A

    2015-06-16

    The adjoint of the Community Multiscale Air Quality (CMAQ) model at 1 km horizontal resolution is used to map emissions that contribute to ambient concentrations of benzene and diesel black carbon (BC) in the San Francisco Bay area. Model responses of interest include population-weighted average concentrations for three highly polluted receptor areas and the entire air basin. We consider both summer (July) and winter (December) conditions. We introduce a novel approach to evaluate adjoint sensitivity calculations that complements existing methods. Adjoint sensitivities to emissions are found to be accurate to within a few percent, except at some locations associated with large sensitivities to emissions. Sensitivity of model responses to emissions is larger in winter, reflecting weaker atmospheric transport and mixing. The contribution of sources located within each receptor area to the same receptor's air pollution burden increases from 38-74% in summer to 56-85% in winter. The contribution of local sources is higher for diesel BC (62-85%) than for benzene (38-71%), reflecting the difference in these pollutants' atmospheric lifetimes. Morning (6-9am) and afternoon (4-7 pm) commuting-related emissions dominate region-wide benzene levels in winter (14 and 25% of the total response, respectively). In contrast, afternoon rush hour emissions do not contribute significantly in summer. Similar morning and afternoon peaks in sensitivity to emissions are observed for the BC response; these peaks are shifted toward midday because most diesel truck traffic occurs during off-peak hours. PMID:26001097

  8. Determination of Benzene, Toluene and Xylene (BTX Concentrations in Air Using HPLC Developed Method Compared to Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Abdulrahman Bahrami

    2011-01-01

    Full Text Available A new method for analysis of benzene, toluene, and xylene (BTX using High Performance Liquid Chromatography-UV detection (HPLC-UV is described and compared to the gas chromatography (GC method. A charcoal adsorption tube connected to a small pump was used to obtain samples from an atmosphere chamber standard. Samples were extracted with methanol and analyzed by HPLC-UV. Chromatography was isocratic in a mobile phase consisting of water-methanol (30-70. The flow rate was set at 1 ml/min. The analyses were completely separated and were quantified using both methods. The results demonstrated no statistically significant differences between BTX concentrations between the two analytical methods with a correlation coefficient of 0.98-0.99. The GC method provided higher sensitivity than HPLC, but the HPLC determination of BTX were applicable to real samples because its sensivity was lower than the thershold limit recommended by the American Conference of Governmental Industrial Hygienist (ACGIH for an 8-hour workday.

  9. Determination of benzene, toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression.

    Science.gov (United States)

    Maziejuk, M; Szczurek, A; Maciejewska, M; Pietrucha, T; Szyposzyńska, M

    2016-05-15

    Benzene, toluene and xylene (BTX compounds) are chemicals of greatest concern due to their impact on humans and the environment. In many cases, quantitative information about each of these compounds is required. Continuous, fast-response analysis, performed on site would be desired for this purpose. Several methods have been developed to detect and quantify these compounds in this way. Methods vary considerably in sensitivity, accuracy, ease of use and cost-effectiveness. The aim of this work is to show that differential ion mobility spectrometry (DMS) may be applied for determining concentration of BTX compounds in humid air. We demonstrate, this goal is achievable by applying multivariate analysis of the measurement data using partial least squares (PLS) regression. The approach was tested at low concentrations of these compounds in the range of 5-20ppm and for air humidity in a range 0-12g/kg. These conditions correspond to the foreseeable application of the developed approach in occupational health and safety measurements. The average concentration assessment error was about 1ppm for each: benzene, toluene and xylene. We also successfully determined water vapor content in air. The error achieved was 0.2g/kg. The obtained results are very promising regarding further development of DMS technique as well as its application. PMID:26992504

  10. Benzene from Traffic

    DEFF Research Database (Denmark)

    Palmgren, F.; Berkowicz, R.; Skov, H.; Hansen, A. B.

    The measurements of benzene showed very clear decreasing trends in the air concentrations and the emissions since 1994. At the same time the measurements of CO and NOx also showed a decreasing trend, but not so strong as for benzene. The general decreasing trend is explained by the increasing...... number of petrol vehicles with three way catalysts, 60-70% in 1999. The very steep decreasing trend for benzene at the beginning of the period from 1994 was explained by the combination of more catalyst vehicles and reduced benzene content in Danish petrol. The total amount of aromatics in petrol......, including toluene, increased only weakly. The analyses of air concentrations were confirmed by analyses of petrol sold in Denmark. The concentration of benzene at Jagtvej in Copenhagen is still in 1998 above the expected new EU limit value, 5 µg/m3 as annual average. However, the reduced content of benzene...

  11. High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex

    Science.gov (United States)

    Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng

    2016-04-01

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  12. Conversion of straight-run gas-condensate benzenes into high- octane gasolines based on modified ZSM-5 zeolites

    International Nuclear Information System (INIS)

    This paper describes the conversion of straight-run benzene of gas condensate into high-octane gasoline based on zeolite catalyst ZSM-5, modified in binary system oxide- based Sn (III) and Bi (III). It was defined that the introduction of the binary system oxide-based Sn(III) and Bi (III) into the basic zeolite results in the 2-fold increase of its catalytic activity.High-octane gasoline converted from straight-run benzene is characterized by a low benzol content in comparison to the high-octane benzenes produced during the catalytic reforming

  13. Determination of Benzene, Toluene and Xylene (BTX) Concentrations in Air Using HPLC Developed Method Compared to Gas Chromatography

    OpenAIRE

    Abdulrahman Bahrami; Hosien Mahjub; Marzieh Sadeghian; Farideh Golbabaei

    2011-01-01

    A new method for analysis of benzene, toluene, and xylene (BTX) using High Performance Liquid Chromatography-UV detection (HPLC-UV) is described and compared to the gas chromatography (GC) method. A charcoal adsorption tube connected to a small pump was used to obtain samples from an atmosphere chamber standard. Samples were extracted with methanol and analyzed by HPLC-UV. Chromatography was isocratic in a mobile phase consisting of water-methanol (30-70). The flow rate was set at 1 ml/min. T...

  14. Highly concentrating Fresnel lenses

    International Nuclear Information System (INIS)

    A new type of concave Fresnel lens capable of concentrating solar radiation very near the ultimate concentration limit is considered. The differential equations that describe the lens are solved to provide computed solutions which are then checked by ray tracing techniques. The performance (efficiency and concentration) of the lens is investigated and compared to that of a flat Fresnel lens, showing that the new lens is preferable for concentrating solar radiation. (author)

  15. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam; Radiolisis de benceno, tolueno y fenol en solucion acuosa utilizando haces de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Vanderhaghen, D.E

    1998-12-31

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 {mu}A). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water site remedial with a mobile Electron Beam facility. (Author)

  16. High selectivity of benzene electrochemical oxidation to p-benzoquinone on modified PbO2 electrode

    International Nuclear Information System (INIS)

    Highlights: • Uniform PbO2 surface layer with a pyramidal-angular structure. • High oxygen evolution potential of the modified electrode. • High selectivity of benzene electrochemical oxidation toward p-benzoquinone. - Abstract: In this paper, a modified Ti/SnO2–Sb2O3/PbO2 electrode was successfully synthesized. The interlayer SnO2–Sb2O3 was obtained through thermal decomposition and the surface layer by electrochemical deposition. The structures and morphology of the layers were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical property was carried out by cyclic voltammogrametry (CV) and the products obtained from electrochemical oxidation of benzene were investigated by gas chromatography and mass spectrometry (GC–MS). The results showed that the surface of the prepared electrode was mainly composed of tetragonal-shaped β-PbO2 crystal with a pyramidal-angular structure. The oxidation potential of benzene was +1.8 V vs. Ag/AgCl. The electrochemical oxidation of benzene showed the high selectivity toward p-benzoquinone on the modified Ti/SnO2–Sb2O3/PbO2 electrode. And the optimal oxidation temperature for oxidation of benzene was 75 °C and the optimal temperature was 60 min

  17. Occupational Exposure to Benzene from Painting with Epoxy and Other High Performance Coatings

    Energy Technology Data Exchange (ETDEWEB)

    JAHN, STEVEN

    2005-04-20

    Following the discovery of trace benzene in paint products, an assessment was needed to determine potential for benzene exposures to exceed the established ACGIH Threshold Limit Value (TLV) during painting operations. Sample data was collected by area industrial hygienists for benzene during routine maintenance and construction activities at Savannah River Site. A set of available data from the IH database, Sentry, was analyzed to provide guidance to the industrial hygiene staff and draw conclusions on the exposure potential during typical painting operations.

  18. [Benzene in soft drinks: a study in Florence (Italy)].

    Science.gov (United States)

    Bonaccorsi, Guglielmo; Perico, Andrea; Colzi, Alessio; Bavazzano, Paolo; Di Giusto, Maurizio; Lamberti, Ilaria; Martino, Gianrocco; Puggelli, Francesco; Lorini, Chiara

    2012-01-01

    The aim of this study was to determine the amount of benzene present in soft drinks sold in Florence (Italy). We analyzed 28 different types of soft drinks, by measuring concentrations of benzoic acid, sorbic acid, ascorbic acid (using high performance liquid chromatography with UV detection) and benzene (using gas chromatography and mass spectrometry). Data was analysed by using SPSS 18.0.Traces of benzene were detected in all analyzed beverages, with a mean concentration of 0.45 g/L (range: 0.15-2.36 g/L). Statistically significant differences in mean benzene concentrations were found between beverages according to the type of additive indicated on the drink label, with higher concentrations found in beverages containing both ascorbic acid and sodium benzoate. Two citrus fruit-based drinks were found to have benzene levels above the European limit for benzene in drinking water of 1 g /L. Sodium benzoate and ascorbic acid were also detected in the two drinks.In conclusion, not all soft drink producers have taken steps to eliminate benzoic acid from their soft drinks and thereby reduce the risk of formation of benzene, as recommended by the European Commission. Furthermore, the presence of benzene in trace amounts in all beverages suggests that migration of constituents of plastic packaging materials or air-borne contamination may be occurring. PMID:23073373

  19. Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations.

    Science.gov (United States)

    Pitoňák, M; Neogrády, P; Rezáč, J; Jurečka, P; Urban, M; Hobza, P

    2008-11-11

    High-level OVOS (optimized virtual orbital space) CCSD(T) interaction energy calculations (up to the aug-cc-pVQZ basis set) and various extrapolations toward the complete basis set (CBS) limit are presented for the most important structures on the benzene dimer potential energy surface. The geometries of these structures were obtained via an all-coordinate gradient geometry optimization using the DFT-D/BLYP method, covering the empirical dispersion correction fitted exclusively for this system. The fit was carried out against two estimated CCSD(T)/CBS potential energy curves corresponding to the distance variation between two benzene rings for the parallel-displaced (PD) and T-shaped (T) structures. The effect of the connected quadruple excitations on the interaction energy was estimated using the CCSD(TQf) method in a 6-31G*(0.25) basis set, destabilizing the T and T-shaped tilted (TT) structures by ≈0.02 kcal/mol and the PD structure by ≈0.04 kcal/mol. Our best CCSD(T)/CBS results show, within the error bars of the applied methodology, that the energetically lowest-lying structure is the TT structure, which is nearly 0.1 kcal/mol more stable than the almost isoenergetic PD and T structures. The specifically parametrized DFT-D/BLYP method leads to a correct energy ordering of the structures, with the errors being smaller by 0.2 kcal/mol with respect to the most accurate CCSD(T) values. PMID:26620326

  20. Health Risk Assessment of Ambient Air Concentrations of Benzene, Toluene and Xylene (BTX in Service Station Environments

    Directory of Open Access Journals (Sweden)

    Benjamin Edokpolo

    2014-06-01

    Full Text Available A comprehensive evaluation of the adverse health effects of human exposures to BTX from service station emissions was carried out using BTX exposure data from the scientific literature. The data was grouped into different scenarios based on activity, location and occupation and plotted as Cumulative Probability Distributions (CPD plots. Health risk was evaluated for each scenario using the Hazard Quotient (HQ at 50% (CEXP50 and 95% (CEXP95 exposure levels. HQ50 and HQ95 > 1 were obtained with benzene in the scenario for service station attendants and mechanics repairing petrol dispensing pumps indicating a possible health risk. The risk was minimized for service stations using vapour recovery systems which greatly reduced the benzene exposure levels. HQ50 and HQ95 < 1 were obtained for all other scenarios with benzene suggesting minimal risk for most of the exposed population. However, HQ50 and HQ95 < 1 was also found with toluene and xylene for all scenarios, suggesting minimal health risk. The lifetime excess Cancer Risk (CR and Overall Risk Probability for cancer on exposure to benzene was calculated for all Scenarios and this was higher amongst service station attendants than any other scenario.

  1. High concentration linear Fresnel reflectors

    International Nuclear Information System (INIS)

    Highlights: • Linear Fresnel reflectors (LFRs) have great potential for cost reductions. • Concentration in the receiver central strip as high as in trough collectors. • Daily constant flux map in the receiver if the filling factor is adequately designed. • High concentration variation between summer and winter for N–S configurations. - Abstract: The late exponential development of Concentrating Solar Power (CSP) technology has driven to a very high power installed worldwide, but with no time for global optimization of the technology. High feed-in-tariffs have concentrated investments on trough collectors and central towers, previously studied during the 1980s. Linear Fresnel reflectors (LFRs) are regarded as a low efficiency technology, which is mainly due to very little previous research. However, the use of slightly bent mirrors drives to high concentration ratios, with obvious cost advantages over other CSP technologies. This paper studies the radiation flux obtained in a flat receiver using different mirror shapes, and analyzes its variation along the year. Linear Fresnel reflector design variables are reviewed, and a Ray Tracing model of the Fresdemo prototype is carried out. Results show higher performances than expected

  2. High-order-harmonic generation in benzene with linearly and circularly polarized laser pulses

    Science.gov (United States)

    Wardlow, Abigail; Dundas, Daniel

    2016-02-01

    High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions move classically. The interaction with both linearly and circularly polarized infrared (λ =800 nm) laser pulses of duration of ten cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarized pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included, while our results for linearly polarized pulses are compared with both previous calculations and experiment. We find that even for the short-duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarized pulses are used, the response to circularly polarized pulses is almost comparable, in agreement with previous experimental results.

  3. High-harmonic generation in benzene with linearly- and circularly-polarised laser pulses

    CERN Document Server

    Wardlow, Abigail

    2015-01-01

    High harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density functional theory while the ions move classically. The interaction with both circularly- and linearly-polarised infra-red ($\\lambda = 800$ nm) laser pulses of duration 10 cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly-polarised pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included while our results for linearly-polarised pulses are compared with both previous calculations and experiment. We find that even for the short duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly-polarised pulses are used, the response to ...

  4. Isopropylation of benzene with propene on high-temperature chlorine-treated alumina catalysts; Koonensoshori arumina shokubaijo deno benzen no puropen niyoru arukiruka hanno

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Kazuhiro; Inui, Kan' ichiro; Honda, Kazunori; Ayame, Akimi [Muroran Institute of Technology, Hokkaido (Japan)

    1999-09-01

    Isopropylation of benzene with propene on alumina, solid Lewis superacid, AmLSA, treated in dry chlorine at 1073 K was studied using a semi-batch reactor (for liquid-phase catalytic reaction) and a fixed bed flow reactor (for vapor-phase catalytic reaction) under atmospheric pressure at 303 K and 303-623 K, respectively. In the liquid-phase reaction, the products were isopropylbenzene (IPB), di-isopropylbenzenes (di-IPB), and tri-isopropylbenzenes (tri-IPB). The dissolution of active species from the catalyst into organic medium was not observed. Since propene adsorption resulted in the formation of isopropylidene and 2-propylene cations, the isopropylation seemed likely to proceed through the interactions involving these cations and benzene {pi}-complex. Addition of sodium to the catalyst accelerated the formation of higher substituted benzenes and increased meta-para ratio of di-IPB. In the vapor-phase reaction, tetra-isopropylbenzene (tetra-IPB) was also formed, and the formation of di-, tri-, and tetra-IPB was promoted more at temperatures below 473 K than in the liquid phase reaction. With increase in the benzene-propene ration in the feed gases, the selectivity to all substituted benzenes on the basis of consumed propene increased. Furthermore, at all reaction temperatures, origomerization of propene deactivated the catalyst. (author)

  5. Solubilities of Toluene, Benzene and TCE in High-Biomass Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barton, John W. [Battelle Eastern Science & Technology Center; Vodraska, Christopher D [ORNL; Flanary, Sandie A. [Oak Ridge National Laboratory (ORNL); Davison, Brian H [ORNL

    2008-01-01

    We report measurements of solubility limits for benzene, toluene, and TCE in systems that contain varying levels of biomass up to 0.13 g/mL. The solubility limit increased from 20 to 48 mM when biomass (in the form of yeast) was added to aqueous batch systems containing benzene. The toluene solubility limit increased from 4.9 to greater than 20 mM. For TCE, the solubility increased from 8 mM to more than 1000 mM. Solubility for TCE was most heavily impacted by biomass levels, changing by two orders of magnitude.

  6. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  7. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw

    2014-08-15

    Highlights: Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. Due to electrostatic interaction the adsorbent has high dye adsorption capacity. ?? stacking interaction between benzene and dye enhances adsorption capacity. Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved ?? stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles.

  8. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S1 state

    International Nuclear Information System (INIS)

    High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 61 levels of C6H6 or C6D6 are split into 6a1 and 6b1 in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms

  9. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S1 state

    Science.gov (United States)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-12-01

    High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 61 levels of C6H6 or C6D6 are split into 6a1 and 6b1 in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

  10. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S(1) state.

    Science.gov (United States)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Hayashi, Masato; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2015-12-28

    High-resolution spectra of the S1←S0 transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S1 state. The degenerate 6(1) levels of C6H6 or C6D6 are split into 6a(1) and 6b(1) in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms. PMID:26723667

  11. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    Science.gov (United States)

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice. PMID:26662563

  12. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    Science.gov (United States)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  13. Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene

    Science.gov (United States)

    Civan, Mihriban Yılmaz; Elbir, Tolga; Seyfioglu, Remzi; Kuntasal, Öznur Oğuz; Bayram, Abdurrahman; Doğan, Güray; Yurdakul, Sema; Andiç, Özgün; Müezzinoğlu, Aysen; Sofuoglu, Sait C.; Pekey, Hakan; Pekey, Beyhan; Bozlaker, Ayse; Odabasi, Mustafa; Tuncel, Gürdal

    2015-02-01

    Ambient concentrations of volatile organic compounds (VOCs), nitrogen dioxide (NO2), sulphur dioxide (SO2) and ground-level ozone (O3) were measured at 55 locations around a densely populated industrial zone, hosting a petrochemical complex (Petkim), a petroleum refinery (Tupras), ship-dismantling facilities, several iron and steel plants, and a gas-fired power plant. Five passive sampling campaigns were performed covering summer and winter seasons of 2005 and 2007. Elevated concentrations of VOCs, NO2 and SO2 around the refinery, petrochemical complex and roads indicated that industrial activities and vehicular emissions are the main sources of these pollutants in the region. Ozone concentrations were low at the industrial zone and settlement areas, but high in rural stations downwind from these sources due to NO distillation. The United States Environmental Protection Agency's positive matrix factorization receptor model (EPA PMF) was employed to apportion ambient concentrations of VOCs into six factors, which were associated with emissions sources. Traffic was found to be highest contributor to measured ∑VOCs concentrations, followed by the Petkim and Tupras. Median cancer risk due to benzene inhalation calculated using a Monte Carlo simulation was approximately 4 per-one-million population, which exceeded the U.S. EPA benchmark of 1 per one million. Petkim, Tupras and traffic emissions were the major sources of cancer risk due to benzene inhalation in the Aliaga airshed. Relative contributions of these two source groups changes significantly from one location to another, demonstrating the limitation of determining source contributions and calculating health risk using data from one or two permanent stations in an industrial area.

  14. A lack of consensus in the literature findings on the removal of airborne benzene by houseplants: Effect of bacterial enrichment

    Science.gov (United States)

    Sriprapat, Wararat; Strand, Stuart E.

    2016-04-01

    Removal rates of benzene and formaldehyde gas by houseplants reported by several laboratories varied by several orders of magnitude. We hypothesized that these variations were caused by differential responses of soil microbial populations to the high levels of pollutant used in the studies, and tested responses to benzene by plants and soils separately. Five houseplant species and tobacco were exposed to benzene under hydroponic conditions and the uptake rates compared. Among the test plants, Syngonium podophyllum and Chlorophytum comosum and Epipremnum aureum had the highest benzene removal rates. The effects of benzene addition on populations of soil bacteria were determined using reverse transcription quantitative PCR (RT-qPCR) assays targeting microbial genes involved in benzene degradation. The total bacterial population increased as shown by increases in the levels of eubacteria 16S rRNA, which was significantly higher in the high benzene incubations than in the low benzene incubations. Transcripts (mRNA) of genes encoding phenol monooxygenases, catechol-2,3-dioxygenase and the housekeeping gene rpoB increased in all soils incubated with high benzene concentrations. Therefore the enrichment of soils with benzene gas levels typical of experiments with houseplants in the literature artificially increased the levels of total soil bacterial populations, and especially the levels and activities of benzene-degrading bacteria.

  15. High concentration aerosol removing device

    International Nuclear Information System (INIS)

    Steams jetted out from a reactor pressure vessel upon occurrence of an accident are discharged from a vent tube to a suppression pool. Since the steams contain aerosols at high concentration, it is necessary to remove them. When the steams are discharged from the vent pipe into water, a great number of fine bubbles are formed and the aerosol particles are contained in each of the bubbles. The aerosol particles in the bubbles transfer into the water due to bubble cleaning effect by water in the suppression pool, that is, by a so called scrubbing effect. Since the scrubbing effect is enhanced more, as the bubbles are smaller and the bubble staying time in the water is longer, the diameter of holes is made smaller in a shallow place and it is made greater as the water depth is increased. Increase of the diameter for the holes in a deep place contributes to provide an effect of preventing clogging of the holes. In view of the above, radioactivity leak from the reactor container can surely prevented. (T.M.)

  16. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Studies were completed in F344/N rats and B6C3F1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  17. Fuel Dependence of Benzene Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  18. Determination of catechol and quinol in the urine of workers exposed to benzene.

    OpenAIRE

    Inoue, O.; Seiji, K; Kasahara, M.; Nakatsuka, H.; Watanabe, T; Yin, S.G.; Li, G.L.; Cai, S X; Jin, C; Ikeda, M

    1988-01-01

    Time weighted average concentrations of benzene in breathing zone air (measured by diffusive sampling coupled with FID gas chromatography) and concentrations of catechol and quinol in the urine (collected at about 1500 in the second half of a working week and analysed by high performance liquid chromatography) were compared in 152 workers who were exposed to benzene (64 men, 88 women). The concentration of urinary metabolites was also determined in 131 non-exposed subjects (43 men, 88 women)....

  19. At-line benzene monitor for measuring benzene in precipitate hydrolysis aqueous

    International Nuclear Information System (INIS)

    A highly accurate and repeatable at-line benzene monitor (ALBM) has been developed to measure the benzene concentration in precipitate hydrolysis aqueous (PHA) in the DWPF. This analyzer was conceived and jointly developed within SRTC by the Analytical Development and the Defense Waste Process Technology Sections with extensive support from the Applied Statistics Group and the TNX Operations Section. It is recommended that an ALBM specifically adapted to DWPF analytical requirements be used to measure benzene in PHA; calibrations be performed using a 10% methanol solution matrix (for standard stability); and based on experience gained in development at TNX, the services of ADS and ASG be employed to both adapt the ALBM to DWPF requirements and develop statistical control procedures

  20. At-line benzene monitor for measuring benzene in precipitate hydrolysis aqueous

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.J.

    1992-10-14

    A highly accurate and repeatable at-line benzene monitor (ALBM) has been developed to measure the benzene concentration in precipitate hydrolysis aqueous (PHA) in the DWPF. This analyzer was conceived and jointly developed within SRTC by the Analytical Development and the Defense Waste Process Technology Sections with extensive support from the Applied Statistics Group and the TNX Operations Section. It is recommended that an ALBM specifically adapted to DWPF analytical requirements be used to measure benzene in PHA; calibrations be performed using a 10% methanol solution matrix (for standard stability); and based on experience gained in development at TNX, the services of ADS and ASG be employed to both adapt the ALBM to DWPF requirements and develop statistical control procedures.

  1. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  2. Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants

    Science.gov (United States)

    Aluri, Geetha S.; Motayed, Abhishek; Davydov, Albert V.; Oleshko, Vladimir P.; Bertness, Kris A.; Sanford, Norman A.; Rao, Mulpuri V.

    2011-07-01

    Nanowire-nanocluster hybrid chemical sensors were realized by functionalizing gallium nitride (GaN) nanowires (NWs) with titanium dioxide (TiO2) nanoclusters for selectively sensing benzene and other related aromatic compounds. Hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO2 nanoclusters using RF magnetron sputtering. The sensor fabrication process employed standard microfabrication techniques. X-ray diffraction and high-resolution analytical transmission electron microscopy using energy-dispersive x-ray and electron energy-loss spectroscopies confirmed the presence of the anatase phase in TiO2 clusters after post-deposition anneal at 700 C. A change of current was observed for these hybrid sensors when exposed to the vapors of aromatic compounds (benzene, toluene, ethylbenzene, xylene and chlorobenzene mixed with air) under UV excitation, while they had no response to non-aromatic organic compounds such as methanol, ethanol, isopropanol, chloroform, acetone and 1,3-hexadiene. The sensitivity range for the noted aromatic compounds except chlorobenzene were from 1% down to 50 parts per billion (ppb) at room temperature. By combining the enhanced catalytic properties of the TiO2 nanoclusters with the sensitive transduction capability of the nanowires, an ultra-sensitive and selective chemical sensing architecture is demonstrated. We have proposed a mechanism that could qualitatively explain the observed sensing behavior.

  3. High performance Fresnel-based photovoltaic concentrator.

    Science.gov (United States)

    Benítez, Pablo; Miñano, Juan C; Zamora, Pablo; Mohedano, Rubén; Cvetkovic, Aleksandra; Buljan, Marina; Chaves, Julio; Hernández, Maikel

    2010-04-26

    In order to achieve competitive system costs in mass-production, it is essential that CPV concentrators incorporate sufficient manufacturing tolerances. This paper presents an advanced concentrator optic comprising a Fresnel lens and a refractive secondary element, both with broken rotational symmetry, an optic producing both the desired light concentration with high tolerance (high acceptance angle) as well as an excellent light homogenization by Köhler integration. This concentrator compares well with conventional Fresnel-based CPV concentrators. PMID:20607884

  4. Multielectron effects in high harmonic generation in N_2 and benzene: simulation using a non-adiabatic quantum molecular dynamics approach for laser-molecule interactions

    CERN Document Server

    Dundas, Daniel

    2012-01-01

    A mixed quantum-classical approach is introduced which allows the dynamically response of molecules driven far from equilibrium to be modeled. This method is applied here to the interaction of molecules with intense, short-duration laser pulses. The electronic response of the molecule is described using time-dependent density functional theory (TDDFT) and the resulting Kohn-Sham equations are solved numerically using finite difference techniques in conjunction with local and global adaptations of an underlying grid in curvilinear coordinates. Using this approach, simulations can be carried out for a wide range of molecules and both all-electron and pseudopotential calculations can be performed. The approach is applied to the study of high harmonic generation in N_2 and benzene using linearly-polarized laser pulses and to the best of our knowledge, the results for benzene represent the first TDDFT calculations of high harmonic generation in benzene using linearly polarized laser pulses. For N_2 an enhancement ...

  5. Case study: High capacity spiral concentrators

    Scientific Electronic Library Online (English)

    P., Ramsaywok; M.K.G., Vermaak; R., Viljoen.

    2010-11-01

    Full Text Available Spiral concentrators are compact, cost-effective and generally efficient gravity concentration separators for a wide range of applications (for example: coal, beach sands, iron ore, chromite and tantalite). Large mineral processing plants consist of thousands of spiral concentrators resulting in lar [...] ge plant footprints (capital intensive) and the adjustment of splitters is time consuming, impractical and is in many cases neglected-high capacity (HC) spiral concentrators aim to address these shortcomings. As a result Exxaro Namakwa Sands is currently investigating high capacity spiral technology for the spiral circuit upgrade at the primary concentrator plants (PCPs). This article summarizes the rougher spiral performance evaluation that was conducted on different types of spiral concentrators (the traditional MG4 spiral concentrator and the high capacity (HC) spiral concentrator) under different feed conditions. In addition, the effect of slimes on the spiral concentrator performance was also investigated. Slimes rheology was linked to the poor concentrator performance at the higher slimes concentrations. The test campaign shows a sacrifice in recovery under design-feed conditions can be expected when using high capacity spiral concentrators in the rougher stage when compared to traditional spiral technology currently in use. Both spiral concentrators show a detrimental impact of slimes on the performance, but the high capacity spiral concentrator is more sensitive to the higher slimes conditions.

  6. C2-Symmetric Benzene-based Low Molecular Weight Hydrogel Modified Electrode for Highly Sensitive Detection of Copper Ions

    International Nuclear Information System (INIS)

    In this paper, a new type of low molecular weight gelators (LMWGs), C2-symmetric benzene-based hydrogel (C2-BHG) with a 1,4-dimine benzene was self-assembled on glassy carbon electrode (GCE) and mica surface based on the hydrogen bond or hydrophobic interaction. Atomic force microscopy (AFM) characterization demonstrated the formation process of the C2-BHG hydrogel layer from particles to clusters, and finally to interconnected fiber network gel. The C2-BHG hydrogel layer resulted in the increase of the hydrophilicity of GCE surface. The C2-BHG modified GCEs (C2-BHG/GCE) with different assembly time were studied by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of Fe(CN)64−/3− redox probe. The rich amide and hydroxyl groups in the gel film make the C2-BHG/GCE suitable as ultrasensitive sensor for the detection of Cu(II) ions by stripping voltammetry with the limit of detection of 5×10−10 g/L (S/N>3). Under the optimal conditions, the two linear ranges of Cu(II) ions were found to be 1×10−9∼1×10−7 g/L and 1×10−7∼1×10−4 g/L. The strong coordination interaction of C2-BHG with Cu(II) ions was confirmed by UV-Visible characterization. This new type of C2-BHG modified electrode was promising for highly sensitive Cu(II) ions sensor application due to high stability and excellent selectivity of the analytical signal

  7. Human benzene metabolism following occupational and environmental exposures.

    Science.gov (United States)

    Rappaport, Stephen M; Kim, Sungkyoon; Lan, Qing; Li, Guilan; Vermeulen, Roel; Waidyanatha, Suramya; Zhang, Luoping; Yin, Songnian; Smith, Martyn T; Rothman, Nathaniel

    2010-03-19

    We previously reported evidence that humans metabolize benzene via two enzymes, including a hitherto unrecognized high-affinity enzyme that was responsible for an estimated 73% of total urinary metabolites [sum of phenol (PH), hydroquinone (HQ), catechol (CA), E,E-muconic acid (MA), and S-phenylmercapturic acid (SPMA)] in nonsmoking females exposed to benzene at sub-saturating (ppb) air concentrations. Here, we used the same Michaelis-Menten-like kinetic models to individually analyze urinary levels of PH, HQ, CA and MA from 263 nonsmoking Chinese women (179 benzene-exposed workers and 84 control workers) with estimated benzene air concentrations ranging from less than 0.001-299 ppm. One model depicted benzene metabolism as a single enzymatic process (1-enzyme model) and the other as two enzymatic processes which competed for access to benzene (2-enzyme model). We evaluated model fits based upon the difference in values of Akaike's Information Criterion (DeltaAIC), and we gauged the weights of evidence favoring the two models based upon the associated Akaike weights and Evidence Ratios. For each metabolite, the 2-enzyme model provided a better fit than the 1-enzyme model with DeltaAIC values decreasing in the order 9.511 for MA, 7.379 for PH, 1.417 for CA, and 0.193 for HQ. The corresponding weights of evidence favoring the 2-enzyme model (Evidence Ratios) were: 116.2:1 for MA, 40.0:1 for PH, 2.0:1 for CA and 1.1:1 for HQ. These results indicate that our earlier findings from models of total metabolites were driven largely by MA, representing the ring-opening pathway, and by PH, representing the ring-hydroxylation pathway. The predicted percentage of benzene metabolized by the putative high-affinity enzyme at an air concentration of 0.001 ppm was 88% based upon urinary MA and was 80% based upon urinary PH. As benzene concentrations increased, the respective percentages of benzene metabolized to MA and PH by the high-affinity enzyme decreased successively to 66 and 77% at 0.1 ppm, 20 and 58% at 1 ppm, and 2.7 and 17% at 10 ppm. This indicates that the putative high-affinity enzyme was active primarily below 1 ppm and favored the ring-opening pathway. PMID:20026321

  8. Human Benzene Metabolism Following Occupational and Environmental Exposures

    Science.gov (United States)

    Rappaport, Stephen M.; Kim, Sungkyoon; Lan, Qing; Li, Guilan; Vermeulen, Roel; Waidyanatha, Suramya; Zhang, Luoping; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2011-01-01

    We previously reported evidence that humans metabolize benzene via two enzymes, including a hitherto unrecognized high-affinity enzyme that was responsible for an estimated 73 percent of total urinary metabolites [sum of phenol (PH), hydroquinone (HQ), catechol (CA), E,E-muconic acid (MA), and S-phenylmercapturic acid (SPMA)] in nonsmoking females exposed to benzene at sub-saturating (ppb) air concentrations. Here, we used the same Michaelis-Menten-like kinetic models to individually analyze urinary levels of PH, HQ, CA and MA from 263 nonsmoking Chinese women (179 benzene-exposed workers and 84 control workers) with estimated benzene air concentrations ranging from less than 0.001 ppm to 299 ppm. One model depicted benzene metabolism as a single enzymatic process (1-enzyme model) and the other as two enzymatic processes which competed for access to benzene (2-enzyme model). We evaluated model fits based upon the difference in values of Akaike’s Information Criterion (ΔAIC), and we gauged the weights of evidence favoring the two models based upon the associated Akaike weights and Evidence Ratios. For each metabolite, the 2-enzyme model provided a better fit than the 1-enzyme model with ΔAIC values decreasing in the order 9.511 for MA, 7.379 for PH, 1.417 for CA, and 0.193 for HQ. The corresponding weights of evidence favoring the 2-enzyme model (Evidence Ratios) were: 116.2:1 for MA, 40.0:1 for PH, 2.0:1 for CA and 1.1:1 for HQ. These results indicate that our earlier findings from models of total metabolites were driven largely by MA, representing the ring-opening pathway, and by PH, representing the ring-hydroxylation pathway. The predicted percentage of benzene metabolized by the putative high-affinity enzyme at an air concentration of 0.001 ppm was 88% based upon urinary MA and was 80% based upon urinary PH. As benzene concentrations increased, the respective percentages of benzene metabolized to MA and PH by the high-affinity enzyme decreased successively to 66% and 77% at 0.1 ppm, 20% and 58% at 1 ppm, and 2.7% and 17% at 10 ppm. This indicates that the putative high-affinity enzyme was active primarily below 1 ppm and favored the ring-opening pathway. PMID:20026321

  9. Antioxidant Compounds in Traditional Indian Pickles May Prevent the Process-Induced Formation of Benzene.

    Science.gov (United States)

    Kharat, Mahesh M; Adiani, Vanshika; Variyar, Prasad; Sharma, Arun; Singhal, Rekha S

    2016-01-01

    Pickles in the Indian market contain ascorbic acid from the raw material used and benzoate as an added preservative that are involved in the formation of benzene in soft drinks. In this work, 24 market pickle samples were surveyed for benzene content, as well as its precursors and other constituents that influence its formation. The analysis showed that pickle samples were high in acid content (low pH) and showed significant amount of ascorbic acid, minerals (Cu and Fe), and benzoic acid present in them. Also, most samples exhibited high antioxidant activity that might be attributed to the ingredients used, such as fruits and spices. The solid-phase microextraction headspace gas chromatography-mass spectrometry method was developed in-house for benzene analysis. Eleven of 24 samples had benzene, with the highest concentration of 4.36 0.82 ?g of benzene per kg of pickle for a lime pickle that was also reported to have highest benzoic acid and considerably less hydroxyl radical (()OH) scavenging activity. However, benzene levels for all 11 samples were considerably below the World Health Organization regulatory limit of 10 ?g/kg for benzene in mineral water. Studies on model systems revealed that the high antioxidant activity of Indian pickles may have had a strong inhibitory effect on benzene formation. PMID:26735038

  10. A novel malonamide grafted polystyrene-divinyl benzene resin for extraction, pre-concentration and separation of actinides.

    Science.gov (United States)

    Ansari, S A; Mohapatra, P K; Manchanda, V K

    2009-01-30

    A new chelating polymeric extraction chromatographic resin was prepared by chemical anchoring of N,N'-dimethyl-N,N'-dibutyl malonamide (DMDBMA) with chloromethylated Merrifield resin((R)). The grafted resin exhibited stronger binding for hexavalent and tetravalent actinides such as U(VI), Th(IV) and Pu(IV) over trivalent actinides, viz. Am(III) and Pu(III). Batch studies on solid phase extraction performed over a wide range of acid solution (0.01-6M HNO(3)) revealed that ternary mixer of uranium, americium and plutonium or thorium, americium and plutonium could be separated from each other at 1M HNO(3). Desorption of U(VI), Pu(IV) and Am(III) from the loaded resin was efficiently carried out using 0.1M alpha-HIBA, 0.25M oxalic acid and 0.01M EDTA, respectively. Quantitative pre-concentration of actinide ions such as Th(IV) and U(VI) was possible from 3M HNO(3) solution. The practical utility of the grafted resin was evaluated by uranium sorption measurements in several successive cycles. The sorption efficiency of the resin with respect to uranyl ion remained unchanged even after 30 days of continuous use. The surface morphology of the resin was monitored with the help of scanning electron microscopy (SEM) technique. PMID:18541366

  11. Benzene dispersion and natural attenuation in an alluvial aquifer with strong interactions with surface water

    Science.gov (United States)

    Batlle-Aguilar, Jordi; Brouyère, Serge; Dassargues, Alain; Morasch, Barbara; Hunkeler, Daniel; Höhener, Patrick; Diels, Ludo; Vanbroekhoven, Karolien; Seuntjens, Piet; Halen, Henri

    2009-05-01

    SummaryField and laboratory investigations have been conducted at a former coke plant, in order to assess pollutant attenuation in a contaminated alluvial aquifer, discharging to an adjacent river. Various organic (BTEX, PAHs, mineral oils) and inorganic (As, Zn, Cd) compounds were found in the aquifer in concentrations exceeding regulatory values. Due to redox conditions of the aquifer, heavy metals were almost immobile, thus not posing a major risk of dispersion off-site the brownfield. Field and laboratory investigations demonstrated that benzene, among organic pollutants, presented the major worry for off-site dispersion, mainly due to its mobility and high concentration, i.e. up to 750 mg L -1 in the source zone. However, benzene could never be detected near the river which is about 160 m downgradient the main source. Redox conditions together with benzene concentrations determined in the aquifer have suggested that degradation mainly occurred within 100 m distance from the contaminant source under anoxic conditions, and most probably with sulphate as main oxidant. A numerical groundwater flow and transport model, calibrated under transient conditions, was used to simulate benzene attenuation in the alluvial aquifer towards the Meuse River. The mean benzene degradation rate used in the model was quantified in situ along the groundwater flow path using compound-specific carbon isotope analysis (CSIA). The results of the solute transport simulations confirmed that benzene concentrations decreased almost five orders of magnitude 70 m downgradient the source. Simulated concentrations have been found to be below the detection limit in the zone adjacent to the river and consistent with the absence of benzene in downgradient piezometers located close to the river reported in groundwater sampling campaigns. In a transient model scenario including groundwater-surface water dynamics, benzene concentrations were observed to be inversely correlated to the river water levels, leading to the hypothesis that benzene dispersion is mainly controlled by natural attenuation.

  12. Volatilization of Benzene in a River

    Directory of Open Access Journals (Sweden)

    Eric Dunlop

    2013-01-01

    Full Text Available Benzene is a volatile organic compound: when it contaminates a river, some of the substance will evaporate as it flows through. We examine the volumetric flow rate to find how volatilization affects the concentration levels of benzene as the substance flows through several consecutive sections of a river, using a specific example to illustrate the general method.

  13. Mechanistic considerations in benzene physiological model development

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Kenyon, E.M.; Seaton, M.J.; Schlosser, P.M. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase 11 enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. 39 refs., 4 figs., 2 tabs.

  14. Highly concentrated foam formulation for blast mitigation

    Science.gov (United States)

    Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  15. On the Nature of Active Sites in Benzene Oxidation to Phenol with N2O over H-ZSM-5 with Low Fe Concentrations

    Czech Academy of Sciences Publication Activity Database

    Kubánek, Petr; Wichterlová, Blanka; Sobalík, Zdeněk

    2002-01-01

    Roč. 211, č. 1 (2002), s. 109-118. ISSN 0021-9517 R&D Projects: GA AV ČR IAA4040007 Institutional research plan: CEZ:AV0Z4040901 Keywords : H-ZSM-5 * Fe-zeolites * N2O oxidation of benzene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.118, year: 2002

  16. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Majcher, Emily H.; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2014-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and desorption from the sediments.

  17. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    Science.gov (United States)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-02-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g-1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water.

  18. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    Science.gov (United States)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-01-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30?min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847?mg g?1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water. PMID:26843015

  19. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate.

    Science.gov (United States)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-01-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30?min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847?mg g(-1) at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na(+), Mg(2+), or Fe(3+)) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na(+), Mg(2+), and Fe(3+) were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na(+), Mg(2+), and Fe(3+). We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water. PMID:26843015

  20. (Liquid + liquid) equilibria for benzene + cyclohexane + N,N-dimethylformamide + sodium thiocyanate

    International Nuclear Information System (INIS)

    Graphical abstract: On the left, the figure was phase diagram about the LLE date. On the right, the figure was about the effects of mass fraction of benzene in the raffinate phase to the selectivity(S) coefficient under different salt concentration. ■, the NaSCN and DMF in ratio of 5/95; • , the NaSCN and DMF in ratio of 10/90; ▴, the NaSCN and DMF in ratio of 15/85; ★, the NaSCN and DMF in ratio of 20/80; ▾, the NaSCN and DMF in ratio of 23/77. ♦, only DMF was used extractant (the selectivity coefficient was calculated by literature 17). w22, refer to the mass fraction of benzene in the raffinate phase (cyclohexane-rich phase). Highlights: • (Liquid + liquid) equilibrium for quaternary system was measured. • The components include benzene, cyclohexane, N,N-dimethylformamide, sodium thiocyanate. • The (liquid + liquid) equilibrium data can be well correlated by the NRTL model. • Separation of benzene and cyclohexane by NaSCN + DMF was discussed. -- Abstract: (Liquid + liquid) equilibrium (LLE) data for benzene + cyclohexane + N,N-dimethylformamide (DMF) + sodium thiocyanate (NaSCN) were measured experimentally at atmospheric pressure and 303.15 K. The selectivity coefficients from these LLE data were calculated and compared to those previously reported in the literature for the systems (benzene + cyclohexane + DMF) and (benzene + cyclohexane + DMF + KSCN). The NRTL equation was used to correlate the experimental data. The agreement between the predicted and experimental results was good. It was found that the selectivity coefficients of DMF + NaSCN for benzene ranged from 2.45 to 11.99. Considering the relatively high extraction capacity and selectivity for benzene, DMF + NaSCN may be used as a potential extracting solvent for the separation of benzene from cyclohexane

  1. Long-term high frequency measurements of ethane, benzene and methyl chloride at Ragged Point, Barbados: Identification of long-range transport events

    Directory of Open Access Journals (Sweden)

    A.T. Archibald

    2015-09-01

    Full Text Available AbstractHere we present high frequency long-term observations of ethane, benzene and methyl chloride from the AGAGE Ragged Point, Barbados, monitoring station made using a custom built GC-MS system. Our analysis focuses on the first three years of data (20052007 and on the interpretation of periodic episodes of high concentrations of these compounds. We focus specifically on an exemplar episode during September 2007 to assess if these measurements are impacted by long-range transport of biomass burning and biogenic emissions. We use the Lagrangian Particle Dispersion model, NAME, run forwards and backwards in time to identify transport of air masses from the North East of Brazil during these events. To assess whether biomass burning was the cause we used hot spots detected using the MODIS instrument to act as point sources for simulating the release of biomass burning plumes. Excellent agreement for the arrival time of the simulated biomass burning plumes and the observations of enhancements in the trace gases indicates that biomass burning strongly influenced these measurements. These modelling data were then used to determine the emissions required to match the observations and compared with bottom up estimates based on burnt area and literature emission factors. Good agreement was found between the two techniques highlight the important role of biomass burning. The modelling constrained by in situ observations suggests that the emission factors were representative of their known upper limits, with the in situ data suggesting slightly greater emissions of ethane than the literature emission factors account for. Further analysis was performed concluding only a small role for biogenic emissions of methyl chloride from South America impacting measurements at Ragged Point. These results highlight the importance of long-term high frequency measurements of NMHC and ODS and highlight how these data can be used to determine sources of emissions 1000s km away.

  2. High concentration in gaas photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Guarini, G.

    1981-01-01

    The feasibility of a spectral separation method for increasing the efficiency of photovoltaic cells is considered. The technical state of the art of GaAs cells is reviewed. The structure of a 100 Wp high concentration system, comprised of a matrix of Fresnel lenses with as many spectral filters and pairs of cells is described. Operating results are analyzed.

  3. Pipe flow of highly concentrated sludge.

    Science.gov (United States)

    Slatter, Paul

    2008-11-01

    Industries that pump sludges experience pressure to operate at higher concentrations with sludges that have high mechanical strength properties. The viscous character of the sludge becomes increasingly non-Newtonian and yield stress in nature. The two principal problems are regime determination and laminar flow settling, which ultimately results in pipe blockage. In facing the diversities that sludge management currently presents, it is important to resolve these issues and develop solutions for engineering practice. The approaches developed at the Flow Process Research Centre to deal with these problems are introduced. The objectives of this paper are to introduce experimental data of the phenomena associated with the pipe flow of highly concentrated sludge, and use these to develop and evaluate predictive modeling approaches suitable for engineering design purposes. For the prediction of transitional flow, a new general approach for visco-plastic fluids in industrially relevant pipe sizes is presented, based on dimensional analysis of the flow problem. Settled bed behavior is modeled using an adapted two-layer model approach, in all flow regimes. The modeling approaches are evaluated using the experimental results obtained. The analysis shows that the present work provides a workable solution for the prediction of the pipe flow of highly concentrated sludges, for engineering design purposes. PMID:18821237

  4. Noncatalytic bromination of benzene: A combined computational and experimental study.

    Science.gov (United States)

    Shernyukov, Andrey V; Genaev, Alexander M; Salnikov, George E; Rzepa, Henry S; Shubin, Vyacheslav G

    2016-01-15

    The noncatalytic bromination of benzene is shown experimentally to require high 5-14 M concentrations of bromine to proceed at ambient temperatures to form predominantly bromobenzene, along with detectable (kinetic order in bromine at these high concentrations is 4.8??0.06 at 298 K and 5.6??0.11 at 273 K with a small measured inverse deuterium isotope effect using D6 -benzene of 0.97??0.03 at 298 K. These results are rationalized using computed transition states models at the B3LYP+D3/6-311++G(2d,2p) level with an essential continuum solvent field for benzene applied. The model with the lowest predicted activation free energies agrees with the high experimental kinetic order in bromine and involves formation of an ionic, concerted, and asynchronous transition state with a Br8 cluster resembling the structure of the known Br9 (-) . This cluster plays three roles; as a Br(+) donor, as a proton base, and as a stabilizing arm forming weak interactions with two adjacent benzene C?H hydrogens, these aspects together combining to overcome the lack of reactivity of benzene induced by its aromaticity. The computed inverse kinetic isotope effect of 0.95 agrees with experiment, and arises because C?Br bond formation is essentially complete, whereas C?H cleavage has not yet commenced. The computed free energy barriers for the reaction with 4Br2 and 5Br2 for a standard state of 14.3 M in bromine are reasonable for an ambient temperature reaction, unlike previously reported theoretical models involving only one or two bromines. 2015 Wiley Periodicals, Inc. PMID:26174310

  5. Validation of Armadillo officinalis Dumril, 1816 (Crustacea, Isopoda, Oniscidea) as a bioindicator: in vivo study of air benzene exposure.

    Science.gov (United States)

    Agodi, A; Oliveri Conti, G; Barchitta, M; Quattrocchi, A; Lombardo, B M; Montesanto, G; Messina, G; Fiore, M; Ferrante, M

    2015-04-01

    This study tests the potential for using Armadillo officinalis as a bioindicator of exposure to and activation of benzene metabolic pathways using an in vivo model. A. officinalis specimens collected in a natural reserve were divided into a control and three test groups exposed to 2.00, 5.32 or 9.09 g/m(3) benzene for 24h. Three independent tests were performed to assess model reproducibility. Animals were dissected to obtain three pooled tissue samples per group: hepatopancreas (HEP), other organs and tissues (OOT), and exoskeleton (EXO). Muconic acid (MA), S-phenylmercapturic acid (S-PMA), two human metabolites of benzene, and changes in mtDNA copy number, a human biomarker of benzene exposure, were determined in each sample; benzene was determined only in EXO. MA was measured by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection, S-PMA by triple quadrupole mass spectrometer liquid chromatography with electro spray ionization (LC-MS-ESI-TQD), mtDNA by real-time quantitative PCR and end-point PCR, and benzene by quadrupole mass spectrometer head-space gas chromatography (HSGC-MS). MA and S-PMA levels rose both in HEP and OOT; EXO exhibited increasing benzene concentrations; and mtDNA copy number rose in HEP but not in OOT samples. Overall, our findings demonstrate that A. officinalis is a sensitive bioindicator of air benzene exposure and show for the first time its ability to reproduce human metabolic dynamics. PMID:25638523

  6. Thin photovoltaic modules at ultra high concentration

    Science.gov (United States)

    Pérez-Higueras, Pedro; Ferrer-Rodríguez, Juan Pablo; Shanks, Katie; Almonacid, Florencia; Férnández, Eduardo F.

    2015-09-01

    A new design concept of high concentration photovoltaic (HCPV) module is studied both by ray-tracing simulation and by building a prototype. This set-up is based on the idea of concentrating sunlight from different optical units to a single commercial multi-junction solar cell, which is located in a different plane than that of the primary optics (e.g. Fresnel lenses). A two-optical-unit set-up, as a first approach, is built and measured with the solar simulator "Helios 3198". These results are compared to the measurement results of the single-unit of one Fresnel lens and the same solar cell. The feasibility of this new design has been confirmed theoretically and practically.

  7. Benzene exposure assessed by metabolite excretion in Estonian oil shale mineworkers: influence of glutathione s-transferase polymorphisms

    DEFF Research Database (Denmark)

    Sørensen, Mette; Poole, Jason; Autrup, Herman; Muzyka, Vladimir; Jensen, Annie; Loft, Steffen; Knudsen, Lisbeth E

    Measurement of urinary excretion of the benzene metabolites S-phenylmercapturic acid (S-PMA) and trans,trans-muconic acid (t,t-MA) has been proposed for assessing benzene exposure, in workplaces with relatively high benzene concentrations. Excretion of S-PMA and t,t-MA in underground workers at an...... oil shale mine were compared with the excretion in workers engaged in various production assignments above ground. In addition, possible modifying effects of genetic polymorphisms in glutathione S-transferases T1 (GSTT1), M1 (GSTM1), and P1 (GSTP1) on the excretion of S-PMA and t,t-MA were...

  8. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect

    International Nuclear Information System (INIS)

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions (196Hg, 198Hg, 202Hg, 204Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope 204Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m3 for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m3 at 1 s averaging and 0.1 mg/m3 at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. - Highlights: • Portable benzene analyser is designed for direct benzene detection in air and gas. • Zeeman effect absorption spectrometry ensures very low benzene detection limits. • The Hg 2537 nm emission line from capillary mercury lamp is used for absorption. • The best sensitivity and selectivity is found using Hg 204 isotope light source. • Mercury influence is eliminated by using a sorption filter at the inlet

  9. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect

    Energy Technology Data Exchange (ETDEWEB)

    Revalde, Gita, E-mail: gitar@latnet.lv [Institute of Technical Physics, Riga Technical University, P.Valdena 3, Riga LV 1050 (Latvia); Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir [St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034 (Russian Federation); Skudra, Atis [Institute of Atomic Physics and Spectroscopy, University of Latvia, Skunu 4, Riga (Latvia)

    2015-08-05

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ({sup 196}Hg, {sup 198}Hg, {sup 202}Hg, {sup 204}Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope {sup 204}Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m{sup 3} for benzene) level, the interference from SO{sub 2}, NO{sub 2}, O{sub 3}, H{sub 2}S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m{sup 3} at 1 s averaging and 0.1 mg/m{sup 3} at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. - Highlights: • Portable benzene analyser is designed for direct benzene detection in air and gas. • Zeeman effect absorption spectrometry ensures very low benzene detection limits. • The Hg 2537 nm emission line from capillary mercury lamp is used for absorption. • The best sensitivity and selectivity is found using Hg 204 isotope light source. • Mercury influence is eliminated by using a sorption filter at the inlet.

  10. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...... a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means...

  11. Interphase cytogenetics of workers exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Wang, Yunxia; Venkatesh, P. [Univ. of California, Berkeley, CA (United States)] [and others

    1996-12-01

    Fluorescence in situ hybridization (FISH) is a powerful new technique that allows numerical chromosome aberrations (aneuploidy) to be detected in interphase cells. In previous studies, FISH has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce aneuploidy of chromosomes 7 and 9 in cultures of human cells. In the present study, we used an interphase FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene (median=31 ppm, 8-hr time-weighted average) and 44 matched controls from Shanghai, China. High benzene exposure (>31 ppm, n=22) increased the hyperdiploid frequency of chromosome 9 (p<0.01), but lower exposure (<31 ppm, n=21) did not. Trisomy 9 was the major form of benzene-induced hyperdiploidy. The level of hyperdiploidy in exposed workers correlated with their urinary phenol level (r= 0.58, p < 0.0001), a measure of internal benzene close. A significant correlation was also found between hyperdiploicly and decreased absolute lymphocyte count, an indicator of benzene hematotoxicity, in the exposed group (r=-0.44, p=0.003) but not in controls (r=-0.09, P=0.58). These results show that high benzene exposure induces aneuploidy of chromosome 9 in nondiseased individuals, with trisomy being the most prevalent form. They further highlight the usefulness of interphase cytogenetics and FISH for the rapid and sensitive detection of aneuploidy in exposed human populations. 35 refs., 3 figs., 2 tabs.

  12. An analysis of historical exposures of pressmen to airborne benzene (1938-2006).

    Science.gov (United States)

    Novick, Rachel M; Keenan, James J; Gross, Sherilyn A; Paustenbach, Dennis J

    2013-07-01

    Benzene is an aromatic hydrocarbon that, with sufficient cumulative lifetime doses, can cause acute myelogenous leukemia. Because of its volatility and solvent properties, it was used in the printing industry in inks, ink solvents, and cleaning agents from the 1930s to the 1970s. This analysis represents the first known attempt to gather and synthesize the available data on historical airborne benzene concentrations in printing facilities and exposures to pressmen. The sources of fugitive benzene vapors from printing operations have been identified as evaporation from ink fountains, exposed sections of the printing cylinder, the paper web, the paper post exit, and spilled ink. In addition, specific activities that could lead to benzene exposure, such as filling the fountains, using solvents to clean the press, and using solvents as personal cleaning agents, potentially occurred multiple times per work period. Eighteen studies were identified that reported workplace airborne concentrations in printing facilities between 1938 and 2006. Typical benzene air concentrations, considering both personal and area samples of various durations, were as high as 200 p.p.m. in the 1930s through the 1950s, 3-35 p.p.m. in the 1960s, 1.3-16 p.p.m. in the 1970s, 0.013-1 in the 1980s, and far less than 1 p.p.m. in the 1990s and 2000s. The decrease in benzene air concentrations by the late 1970s was likely to be linked to the decreased benzene content of printing materials, increased engineering controls, and to more stringent occupational exposure limits. PMID:23316079

  13. Ammonia Solubility in High Concentration Salt Solutions

    International Nuclear Information System (INIS)

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks

  14. Ammonia Solubility in High Concentration Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  15. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  16. Benzene release. Status report

    International Nuclear Information System (INIS)

    Scoping benzene release measurements were conducted on 4 wt percent KTPB 'DEMO' formulation slurry using a round, flat bottomed 100-mL flask containing 75 mL slurry. The slurry was agitated with a magnetic stirrer bar to keep the surface refreshed without creating a vortex. Benzene release measurements were made by purging the vapor space at a constant rate and analyzing for benzene by gas chromatography with automatic data acquisition. Some of the data have been rounded or simplified in view of the scoping nature of this study

  17. Drying up the benzene

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Lynda

    2011-03-15

    In 2007, a directive from the Alberta Energy Resources Conservation Board asked companies running glycol dehydrators to report their benzene emissions. In order to help companies to do so, Process Ecology Inc. developed an online system that calculates, reports and manages dehydrators benzene emissions. This Benzene Emissions Advisor collects data, runs simulation models and stores the results in a database accessible to clients through its website. This software, used by 25 per cent of the market, can now be used for energy optimization purposes. It can inform operators of many saving opportunities, for example turning down the glycol pump.

  18. Benzene Monitor System report

    International Nuclear Information System (INIS)

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale open-quotes SRAT/SME/PRclose quotes and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard trademark sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system (0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge ampersand trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer's computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants)

  19. Benzene Monitor System report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R.R.

    1992-10-12

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale {open_quotes}SRAT/SME/PR{close_quotes} and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard{trademark} sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system ({+-}0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge & trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer`s computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants).

  20. Human risk assessment of benzene after a gasoline station fuel leak

    Directory of Open Access Journals (Sweden)

    Miriam dos Anjos Santos

    2013-06-01

    Full Text Available OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals, probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L.The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals. The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk. Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.

  1. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels

    Directory of Open Access Journals (Sweden)

    Werner Tirler

    2015-03-01

    Full Text Available Introduction. The increased use of incense, magic candles and other flameless products often produces indoor pollutants that may represent a health risk for humans. Today, in fact, incense and air fresheners are used inside homes as well as in public places including stores, shopping malls and places of worship. As a source of indoor contamination, the impact of smoke, incense and sparklers on human health cannot be ignored. Aim. In the present work, we report the results of an emission study regarding particles (PM10 and particle number concentration, PNC and benzene, produced by various incense sticks and sparklers. Results and discussion.The results obtained for benzene, PM10 and PNC, showed a strong negative influence on air quality when these products were used indoors. Various incense sticks gave completely different benzene results: from a small increase of the benzene concentration in the air, just slightly above the background levels of ambient air, to very high concentrations, of more than 200 µg/m³ of benzene in the test room after the incense sticks had been tested.

  2. Incense, sparklers and cigarettes are significant contributors to indoor benzene and particle levels

    Scientific Electronic Library Online (English)

    Werner, Tirler; Gaetano, Settimo.

    2015-03-01

    Full Text Available Introduction. The increased use of incense, magic candles and other flameless products often produces indoor pollutants that may represent a health risk for humans. Today, in fact, incense and air fresheners are used inside homes as well as in public places including stores, shopping malls and place [...] s of worship. As a source of indoor contamination, the impact of smoke, incense and sparklers on human health cannot be ignored. Aim. In the present work, we report the results of an emission study regarding particles (PM10 and particle number concentration, PNC) and benzene, produced by various incense sticks and sparklers. Results and discussion.The results obtained for benzene, PM10 and PNC, showed a strong negative influence on air quality when these products were used indoors. Various incense sticks gave completely different benzene results: from a small increase of the benzene concentration in the air, just slightly above the background levels of ambient air, to very high concentrations, of more than 200 g/m of benzene in the test room after the incense sticks had been tested.

  3. Fungal adaptation to extremely high salt concentrations.

    Science.gov (United States)

    Gostinčar, Cene; Lenassi, Metka; Gunde-Cimerman, Nina; Plemenitaš, Ana

    2011-01-01

    Hypersaline environments support substantial microbial communities of selected halotolerant and halophilic organisms, including fungi from various orders. In hypersaline water of solar salterns, the black yeast Hortaea werneckii is by far the most successful fungal representative. It has an outstanding ability to overcome the turgor loss and sodium toxicity that are typical for hypersaline environments, which facilitates its growth even in solutions that are almost saturated with NaCl. We propose a model of cellular responses to high salt concentrations that integrates the current knowledge of H. werneckii adaptations. The negative impact of a hyperosmolar environment is counteracted by an increase in the energy supply that is needed to drive the energy-demanding export of ions and synthesis of compatible solutes. Changes in membrane lipid composition and cell-wall structure maintain the integrity and functioning of the stressed cells. Understanding the salt responses of H. werneckii and other fungi (e.g., the halophilic Wallemia ichthyophaga) will extend our knowledge of fungal stress tolerance and promote the use of the currently unexploited biotechnological potential of fungi that live in hypersaline environments. PMID:22050822

  4. High concentration ferronematics in low magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tóth-Katona, T., E-mail: tothkatona.tibor@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 49 (Hungary); Salamon, P., E-mail: salamon.peter@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 49 (Hungary); Éber, N., E-mail: eber.nandor@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 49 (Hungary); Tomašovičová, N., E-mail: nhudak@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice (Slovakia); Mitróová, Z., E-mail: mitro@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice (Slovakia); Kopčanský, P., E-mail: kopcan@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonová 47, 04001 Košice (Slovakia)

    2014-12-15

    We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field B{sub bias}, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that B{sub bias} is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role. - Highlights: • Response to low magnetic fields was detected in high concentration ferronematics. • The role of the orienting bias magnetic field is discussed. • The influence of the pretilt angle and that of the aggregation is described. • Doping the liquid crystal with nanoparticles does not change the birefringence. • The phase transition temperature of the nematic does not change with doping.

  5. Benzene monitoring at CPPI service stations

    International Nuclear Information System (INIS)

    A study was conducted in which ambient airborne concentration levels of benzene were measured at a representative set of gasoline service stations in Toronto and Vancouver. Benzene is considered to be toxic under the Canadian Environmental Protection Act (CEPA). It is a component in gasoline (0.1 to 4.7 per cent by volume) and is present in vehicle evaporative and exhaust emissions. Measurements were made every 18 days at each station for one year. The objective of the study was to assess the ambient and employee exposure levels of benzene at service stations and to determine whether the levels were typical of those published in the literature. In a 1986 PACE (Petroleum Association for Conservation of the Canadian Environment) survey of exposure to gasoline hydrocarbon vapours at Canadian service stations, airborne benzene concentration data was inconsistent with similar ambient and personal exposure data in the international literature. It was concluded that both the mean ambient benzene concentration and the personal exposure level measurements in this study were generally lower than similar measurements made in other countries. The same observation was made with respect to ambient and personal exposure levels measured in this study vis-a-vis those measured during the PACE study conducted in 1985/86. . 31 refs., 24 tabs., 5 figs

  6. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    Science.gov (United States)

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene. Validation of this system in vivo should lead to more accurate assessment of the risk of benzene's toxicity following low-level exposure. PMID:7923572

  7. Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development.

    Science.gov (United States)

    Tomar, Dheeraj S; Kumar, Sandeep; Singh, Satish K; Goswami, Sumit; Li, Li

    2016-01-01

    Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored. PMID:26736022

  8. Benzene toxicity and risk assessment, 1972-1992: implications for future regulation.

    Science.gov (United States)

    Paustenbach, D J; Bass, R D; Price, P

    1993-01-01

    Acute and chronic exposure to benzene vapors poses a number of health hazards to humans. To evaluate the probability that a specific degree of exposure will produce an adverse effect, risk assessment methods must be used. This paper reviews much of the published information and evaluates the various risk assessments for benzene that have been conducted over the past 20 years. There is sufficient evidence that chronic exposure to relatively high concentrations of benzene can produce an increased incidence of acute myelogenous leukemia (AML). Some studies have indicated that benzene may cause other leukemias, but due to the inconsistency of results, the evidence is not conclusive. To predict the leukemogenic risk for humans exposed to much lower doses of benzene than those observed in most epidemiology studies, a model must be used. Although several models could yield plausible results, to date most risk assessments have used the linear-quadratic or conditional logistic models. These appear to be the most appropriate ones for providing the cancer risk for airborne concentrations of 1 ppb to 10 ppm, the range most often observed in the community and workplace. Of the seven major epidemiology studies that have been conducted, there is a consensus that the Pliofilm cohort (rubber workers) is the best one for estimating the cancer potency because it is the only one with good exposure and incidence of disease data. The current EPA, OSHA, and ACGIH cancer potency estimates for benzene are based largely on this cohort. A retrospective exposure assessment and an analysis of the incidence of disease in these workers were completed in 1991. All of these issues are discussed and the implications evaluated in this paper. The range of benzene exposures to which Americans are commonly exposed and the current regulatory criteria are also presented. PMID:8020442

  9. Benzene toxicity and risk assessment, 1972-1992: Implications for future regulation

    Energy Technology Data Exchange (ETDEWEB)

    Paustenbach, D.J.; Bass, R.D.; Price, P. [McLauren/Hart Environmental Engineering, Alameda, CA (United States)

    1993-12-01

    Acute and chronic exposure to benzene vapors poses a number of health hazards to humans. To evaluate the probability that a specific degree of exposure will produce an adverse effect, risk assessment methods must be used. This paper reviews much of the published information and evaluates the various risk assessments for benzene that have been conducted over the past 20 years. There is sufficient evidence that chronic exposure to relatively high concentrations of benzene can produce an increased incidence of acute myelogenous leukemia (AML). Some studies have indicated that benzene may cause other leukemias, but due to the inconsistency of results, the evidence is not conclusive. To predict the leukemogenic risk for humans exposed to much lower doses of benzene than those observed in most epidemiology studies, a model must be used. Although several models could yield plausible results, to date most risk assessments have used the linear-quadratic or conditional logistic models. These appear to be the most appropriate ones for providing the cancer risk for airborne concentrations of 1 ppb to 10 ppm, the range most often observed in the community and workplace. Of the seven major epidemiology studies that have been conducted, there is a consensus that the Pliofilm cohort (rubber workers) is the best one for estimating the cancer potency because it is the only one with good exposure and incidence of disease data. The current EPA, OSHA, and ACGIH cancer potency estimates for benzene are based largely on this cohort. A retrospective exposure assessment and an analysis of the incidence of disease in these workers were completed in 1991. All of these issues are discussed and the implications evaluated in this paper. The range of benzene exposures to which Americans are commonly exposed and the current regulatory criteria are also presented. 268 refs., 3 figs., 13 tabs.

  10. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Eva M., E-mail: eva.seeger@ufz.de [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Kuschk, Peter; Fazekas, Helga [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Hoelderlinstr. 12, 72074 Tuebingen (Germany); Kaestner, Matthias [Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-12-15

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m{sup 2}/d, 97/112 mg/m{sup 2}/d, and 1167/1342 mg/m{sup 2}/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: > BTEX compounds contaminated groundwater can be efficiently treated by CWs. > The removal efficiency depended on CW type, season and contaminant. > The plant root mat revealed better treatment results than the gravel filter CW. > Best results achieved by the plant root mat (99% benzene concentration decrease). > Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  11. Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands

    International Nuclear Information System (INIS)

    In this pilot-scale constructed wetland (CW) study for treating groundwater contaminated with benzene, MTBE, and ammonia-N, the performance of two types of CWs (a wetland with gravel matrix and a plant root mat) was investigated. Hypothesized stimulative effects of filter material additives (charcoal, iron(III)) on pollutant removal were also tested. Increased contaminant loss was found during summer; the best treatment performance was achieved by the plant root mat. Concentration decrease in the planted gravel filter/plant root mat, respectively, amounted to 81/99% for benzene, 17/82% for MTBE, and 54/41% for ammonia-N at calculated inflow loads of 525/603 mg/m2/d, 97/112 mg/m2/d, and 1167/1342 mg/m2/d for benzene, MTBE, and ammonia-N. Filter additives did not improve contaminant depletion, although sorption processes were observed and elevated iron(II) formation indicated iron reduction. Bacterial and stable isotope analysis provided evidence for microbial benzene degradation in the CW, emphasizing the promising potential of this treatment technique. - Highlights: → BTEX compounds contaminated groundwater can be efficiently treated by CWs. → The removal efficiency depended on CW type, season and contaminant. → The plant root mat revealed better treatment results than the gravel filter CW. → Best results achieved by the plant root mat (99% benzene concentration decrease). → Stable isotope analysis and MPN indicated high benzene remediation potential. - Gravel bed constructed wetlands and a plant root mat system efficiently eliminated fuel hydrocarbons (benzene, MTBE) and ammonia-N from groundwater at a pilot-scale.

  12. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages. PMID:26193396

  13. High plasma urea concentrations in collodion babies

    OpenAIRE

    1987-01-01

    We describe two infants born with a collodion membrane; both were treated with a product containing 10% urea and 5% lactic acid and as a consequence were found to have a raised plasma urea concentration.

  14. Cementification for radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide

    International Nuclear Information System (INIS)

    For the cementification of radioactive waste that has large concentrations of sodium sulfate and radioactive nuclide, a way of fixation for sulfate ion was studied comprising the pH control of water in contact with the cement solid, and the removal of the excess water from the cement matrix to prevent hydrogen gas generation with radiolysis. It was confirmed that the sulfate ion concentration in the contacted water with the cement solid is decreased with the formation of ettringite or barium sulfate before solidification, the pH value of the pore water in the cement solid can control less than 12.5 by the application of zeolite and a low-alkali cement such as alumina cement or fly ash mixed cement, and removal of the excess water from the cement matrix by heating is possible with aggregate addition. Consequently, radioactive waste including high-concentration sodium sulfate and high-concentration radioactive nuclide can be solidified with cementitious materials. (author)

  15. Air pollution monitoring in Como urban areas. Benzene

    International Nuclear Information System (INIS)

    This work presents the results of a physical - statistical analysis of concentrations of benzene, measured in the Como Center station from 1996 to 1999. The analysis, conducted by means of the development, by steps, of a multifactorial linear regression model, permitted to find an annual trend of benzene, independently from the influence of meteorologicals variables. It has been seen a decrease of concentrations of benzene, from 1997 to 1999, that may be correlate to a decrease of tenor of benzene in the petrol. At the same time, the results of the model permit to understand the role and the relative weight of different climatic factors on the concentrations of benzene. It has been investigated the presence of daily, weekly and seasonal trend, too

  16. Aggregation of deuterodichlormethane molecules with benzene molecules. Quantum-chemical calculations and spectroscopic studies

    International Nuclear Information System (INIS)

    C-D vibration band of deuterodichlormethane CD2Cl2 at its low concentration in benzene is slitted into components with frequency 2198 and 2193 cm-1 that is related to formation of weak benzene+deuterodichlormethane complexes. Quantum-chemical calculations confirm a formation of deuterodichlormethane+benzene dimer with participation of benzene's π -electron. Steric factors lead to a difference in orientation of one of deuterium atoms from the central orientation with respect to benzene ring. According to calculations the energy of deuterodichlormethane+benzene dimer is 1.2 kcal/mole. (author)

  17. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data to better assess environmental health risks in the future.

  18. Denaturation of DNA at high salt concentrations

    CERN Document Server

    Maity, Arghya; Singh, Navin

    2015-01-01

    Cations present in the solution are important for the stability of two negative strands of DNA molecules. Experimental as well as theoretical results show that the DNA molecule is more stable as the concentration of salt (or cations) increases. It is known that the two strands of DNA molecule carry negative charge due to phosphate group along the strands. These cations act as a shielding particles to the two like charge strands. Recently, in an experiment it is shown that there is a critical value in the concentration of salts (or cations) that can stabilize the helical structure of DNA. If one add more salt in the solution beyond this critical value, the stability of the DNA molecule will disrupt. In this work we study the stability of DNA molecules at higher concentrations. How the stability at higher concentration can be explained through some theoretical calculations is the aim of this manuscript. We consider the PBD model with proper modifications that can explain the negative stability of the molecule a...

  19. Benzene exposure in refinery workers: ExxonMobil Joliet, Illinois, USA (1977-2006).

    Science.gov (United States)

    Kreider, Marisa L; Unice, Ken M; Panko, Julie M; Burns, Amanda M; Paustenbach, Dennis J; Booher, Lindsay E; Gelatt, Richard H; Gaffney, Shannon H

    2010-11-01

    While petroleum industry studies have indicated low benzene exposure potential for refinery workers, most provide limited data for assessing job or task-related benzene exposures. This study characterizes job and task-specific airborne benzene concentrations and variability over time for the ExxonMobil refinery in Joliet, Illinois from 1977 to 2006. A database of 2289 industrial hygiene air samples, including 1145 non-task (?180 min) personal samples and 480 task-related (<180 min) personal samples, were analyzed. Samples were grouped by operational status, job, and task. Benzene concentrations were determined for each job category and task bin, with additional analyses conducted to determine whether benzene concentrations changed over time. The results indicate that the benzene concentrations for non-task and task samples were relatively low. For all non-task samples, the arithmetic mean benzene concentration was 0.12 part per million (ppm). The most frequently sampled workers (process technicians during routine operations) had an arithmetic mean benzene concentration of 0.038 ppm. The most frequently sampled task bin (blinding and breaking) had an arithmetic mean benzene concentration of 1.0 ppm. This study provides benzene air concentration data that can be used in combination with job histories to reconstruct historical benzene exposures for workers at the Joliet Refinery over the past 30 years. PMID:20643709

  20. Survey the Efficiency of Catalytic Ozonation Process with Carbosieve in the Removal of Benzene from Polluted Air Stream

    Directory of Open Access Journals (Sweden)

    M. Samarghandi

    2014-01-01

    Full Text Available Introduction & Objective: Benzene is one of the most common volatile organic compounds in the indoor and outdoor environments that has always been considered as one of the causes of air pollution. Thus before being discharged to the environment, it must be treated from pol-luted air stream. The aim of this study was to determine the efficiency of catalytic ozonation process with carbosieve in the removal of benzene from polluted air stream. Materials & Methods: The study was experimental in which catalytic ozonation process with carbosieve was used in the removal of benzene from polluted air stream. The experiments were carried out in a reactor with continuous system and the results of catalytic ozonation were compared with the results of single ozonation and carbosieve adsorbent .The sampling, benzene analyzing and determining of ozone concentration in samples were done with 1501 NMAM method by GC equipped with FID detector and iodometry , respectively. Results: The results of this study showed that the removal effectiveness of single ozonation process is averagely less than 19%. Also the efficiency of absorbent decreased with the con-centration increase of benzene.The increase ratio of efficiency in catalytic ozonation process to efficiency of carbosieve adsorbent was averagely 45%. Conclusion: With regard to high efficiency of catalytic ozonation process and increasing the benzene removal , the catalytic ozonation process is suggested as a promising and alternative technology for elimination of VOCs from the polluted air stream. (Sci J Hamadan Univ Med Sci 2014; 20 (4:303-311

  1. Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark

    Science.gov (United States)

    Skov, Henrik; Hansen, Asger B.; Lorenzen, Gitte; Andersen, Helle Vibeke; Lfstrm, Per; Christensen, Carsten S.

    Benzene is a carcinogenic compound, which is emitted from petrol-fuelled cars and thus is found ubiquitous in all cities. As part of the project Monitoring of Atmospheric Concentrations of Benzene in European Towns and Homes (MACBETH) six campaigns were carried out in the Municipality of Copenhagen, Denmark. The campaigns were distributed over 1 year. In each campaign, the personal exposure to benzene of 50 volunteers (non-smokers living in non-smoking families) living and working in Copenhagen was measured. Simultaneously, benzene was measured in their homes and in an urban network distributed over the municipality. The Radiello diffusive sampler was applied to sample 5 days averages of benzene and other hydrocarbons. Comparison of the results with those from a BTX-monitor showed excellent agreement. The exposure and the concentrations in homes and in the urban area were found to be close to log-normal distribution. The annual averages of the geometrical mean values were 5.22, 4.30 and 2.90 ?g m -3 for personal exposure, home concentrations and urban concentrations, respectively. Two main parameters are controlling the general level of benzene in Copenhagen: firstly, the emission from traffic and secondly, dispersion due to wind speed. The general level of exposure to benzene and home concentrations of benzene were strongly correlated with the outdoor level of benzene, which indicated that traffic is an important source for indoor concentrations of benzene and for the exposure to benzene.

  2. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst

    International Nuclear Information System (INIS)

    Synergistic effect of atmospheric non-thermal plasma generated by dielectric barrier discharge and nano titania photo catalyst for benzene decomposition was tested. The paper indicated the effect of photo catalyst on removal efficiency of benzene, the compare of photo catalyst characteristic in different high temperatures by heat treatment, analysis of by-products. The results showed that the effect of degradation was visible by added photo catalyst in the plasma reactor. When concentration of benzene was 600 mg/m3 and electric field strength was 10 kV/cm, the removal efficiency of benzene was increased up to 81 % without photo catalyst. At the same condition, the removal efficiency was increased to 15 % higher with photo catalyst. Nano titania crystal was anatase crystal in 450 degC heat treatment which is best for benzene removal. The plasma reactor packed with photo catalyst shows a better selectivity of carbon dioxide than that without photo catalyst. By-products are mostly carbon dioxide, water and a small quantity of carbon monoxide

  3. Evaluation of headspace-gas chromatography/mass spectrometry for the analysis of benzene in vitamin C drinks; pitfalls of headspace in benzene detection.

    Science.gov (United States)

    Ju, Hyun Kyoung; Park, Jeong Hill; Kwon, Sung Won

    2008-08-01

    Recently, there have been reports regarding the presence of benzene in vitamin C drinks. This is caused by sodium benzoate and ascorbic acid (vitamin C), which can react together to induce benzene formation. While the headspace gas chromatography method is well known for the detection of benzene, there could be pitfalls in the process of benzene extraction. This study was performed to check if benzene could be generated under high-temperature incubation conditions. As a result, the amount of benzene detected by headspace-gas chromatography/mass spectrometry (HSGC/MS) was affected by temperature changes. As the temperature of the sample vial was increased, newly generated benzene from the headspace also increased, causing false-positive determination of benzene. Although 80 degrees C is generally accepted for the temperature of headspace sample vials, lower temperatures, such as 40 degrees C, minimize the false-positive identification of benzene. Considering that this minimization allows benzene to be quantified at around 5 ppb, this lower temperature should definitely be considered since benzene, which is formed in sodium benzoate, can appear in vitamin C drinks under certain circumstances. The proposed analysis method of benzene in vitamin C drinks by HSGC/MS at 40 degrees C is an accurate and universal method for the monitoring of benzene without false-positive identification. PMID:18506678

  4. Measuring the protium concentration in highly concentrated heavy water by IR spectrometry

    International Nuclear Information System (INIS)

    A new technique to measure the protium and deuterium concentrations (aH and aD) in heavy water by infrared (IR) spectrometry is presented. This technique gives a possibility to determine the absolute protium concentration in highly concentrated heavy water with the relative error 1%. (authors)

  5. Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities

    Science.gov (United States)

    Rich, Alisa L.; Orimoloye, Helen T.

    2016-01-01

    BACKGROUND The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). OBJECTIVES The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. METHODS Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. RESULTS Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency’s Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. CONCLUSION Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P. PMID:27199565

  6. Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at nonacute toxic concentrations.

    Science.gov (United States)

    Mörbt, Nora; Tomm, Janina; Feltens, Ralph; Mögel, Iljana; Kalkhof, Stefan; Murugesan, Kalaimathi; Wirth, Henry; Vogt, Carsten; Binder, Hans; Lehmann, Irina; von Bergen, Martin

    2011-02-01

    In industrialized countries, people spend more time indoors and are therefore increasingly exposed to volatile organic compounds that are emitted at working places and from consumer products, paintings, and furniture, with chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) being representatives of the halogenated arenes. To unravel the molecular effects of low concentrations typical for indoor and occupational exposure, we exposed human lung epithelial cells to CB and DCB and analyzed the effects on the proteome level by 2-D DIGE, where 860 protein spots were detected. A set of 25 and 30 proteins were found to be significantly altered due to exposure to environmentally relevant concentrations of 10(-2) g/m(3) of CB or 10(-3) g/m(3) of DCB (2.2 and 0.17 ppm), respectively. The most enriched pathways were cell death signaling, oxidative stress response, protein quality control, and metabolism. The involvement of oxidative stress was validated by ROS measurement. Among the regulated proteins, 28, for example, voltage-dependent anion-selective channel protein 2, PDCD6IP protein, heat shock protein beta-1, proliferating cell nuclear antigen, nucleophosmin, seryl-tRNA synthetase, prohibitin, and protein arginine N-methyltransferase 1, could be correlated with the molecular pathway of cell death signaling. Caspase 3 activation by cleavage was confirmed for both CB and DCB by immunoblotting. Treatment with CB or DCB also caused differential protein phosphorylation, for example, at the proteins HNRNP C1/C2, serine-threonine receptor associated protein, and transaldolase 1. Compared to previous results, where cells were exposed to styrene, for the chlorinated aromatic substances besides oxidative stress, apoptosis was found as the predominant cellular response mechanism. PMID:21171652

  7. Sequence-Fenton Reaction for Decreasing Phenol Formation during Benzene Chemical Conversion in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    SB Mortazavi, A Sabzali, A Rezaee

    2005-04-01

    Full Text Available Advanced oxidation processes such as Fenton reagent generates highly reactive hydroxyl free radicals to oxidize various compounds in the water and wastewater. The efficiency of different Fenton-related oxidative processes such as Fenton, solar-Fenton, UV-Fenton and Fenton reactions in different batch reactors was examined using benzene as pollutant in aqueous solutions. A batch study was conducted to optimize parameters like pH, hydrogen peroxide concentration, temperature, reaction time and ferrous ion concentration governing the Fenton process. The concentrations of produced phenol were measured at the end of the reactions. The role of sequence reaction was tested for decreasing phenol formation during benzene conversion. At optimum conditions, different Fenton-related processes were compared for the degradation of benzene. Increased degradation efficiency was observed in photo-Fenton processes as compared to conventional Fenton process. The formation of phenol in Fenton reaction depended on reaction time, sequence in reaction, purity of hydrogen peroxide and other compounds such as alcohols that contributed into the reaction. In the Fenton process, carboxylic acids like acetic acid and oxalic acid were formed as the end products during the complete degradation of benzene. With the increase in mono-valence, two-valence ions and hardness, Fenton's efficiency decreased, respectively. Sequence Fenton reaction produced less phenol and its end products had smaller COD as compared to conventional Fenton process.

  8. Critical issues in benzene toxicity and metabolism: The effect of interactions with other organic chemicals on risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Schlosser, P.M.; Bond, J.A. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. 24 refs., 6 figs., 2 tabs.

  9. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor

    Directory of Open Access Journals (Sweden)

    Maria Chiara Mura

    2010-12-01

    Full Text Available In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6, concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%; most important, they suggest a possible procedure to optimize network design.

  10. Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

    Directory of Open Access Journals (Sweden)

    Paolo Viotti

    2015-11-01

    Full Text Available The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP. The two-stage air process combines a water scrubber and a biotrickling filter (BTF in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively. Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

  11. Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system.

    Science.gov (United States)

    Petrakis, Michael; Psiloglou, Basil; Kassomenos, Pavlos A; Cartalis, Costas

    2003-09-01

    In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene. PMID:13678363

  12. Hyperbranched poly(benzimidazole-co-benzene) with honeycomb structure as a membrane for high-temperature proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhadra, Sambhu [Dept of Polymer and Nano Engineering, Chonbuk National University, Duckjin-dong 1Ga 664-14, Jeonju, Jeonbuk, 561-756 (Korea); Kim, Nam Hoon; Choi, Ji Sun [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Duckjin-dong 1Ga 664-14, Jeonju, Jeonbuk, 561-756 (Korea); Rhee, Kyong Yop [Department of Mechanical Engineering, Kyung Hee University, Yongin, 446-701 (Korea); Lee, Joong Hee [Dept of Polymer and Nano Engineering, Chonbuk National University, Duckjin-dong 1Ga 664-14, Jeonju, Jeonbuk, 561-756 (Korea); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Duckjin-dong 1Ga 664-14, Jeonju, Jeonbuk, 561-756 (Korea)

    2010-05-01

    Hyperbranched poly(benzimidazole-co-benzene) (PBIB) with a honeycomb structure is synthesized by condensation polymerization of trimesic acid (TMA) and 3,3'-diaminobenzidine (DAB) for use as a membrane high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). The hyperbranched honeycomb structure of polybenzimidazole (PBI) has been introduced to impart higher mechanical strength to doped PBI membranes. The stress at break of the phosphoric acid doped PBIB (DPBIB) membrane (29 {+-} 3 MPa) is comparable with that of Nafion (28 {+-} 2 MPa) and much superior to doped PBI membranes. The DPBIB membrane exhibits lower proton conductivity than Nafion 115. On the other hand, the proton conductivity of Nafion 115 is enhanced with increase in relative humidity, whereas humidity has only a moderate effect on the proton conductivity of the DPBIB membrane. Consequently, the Nafion 115 membrane in a fuel cell cannot operate in the absence of humidity, whereas the DPBIB membrane can perform well. The power output of the DPBIB membrane in a fuel cell is superior under humid conditions than under dry conditions. The maximum power output from the DPBIB and Nafion 115 membranes is comparable under humid conditions. It is concluded that the DPBIB membrane, but not Nafion, is suitable for application in HT-PEMFCs. (author)

  13. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    Science.gov (United States)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  14. Benzene vapor recovery and processing

    International Nuclear Information System (INIS)

    The National Emissions Standards for Hazardous Air Pollutants, or NESHAPs, have provided a powerful motivation for interest in, and attention to, benzene vapor emissions in recent times. Benzene and its related aromatics are volatile organic compounds (VOCs), which marks them for surveillance as potential contributors to air pollution. In addition, benzene is a suspected carcinogen, which applies a special urgency to its control. The regulations governing the control of benzene emissions were issued as Title 40, Code of Federal Regulations, Part 61, subpart Y (Storage Vessels); subpart BB (Transfer Operations); and subpart FF (Waste Operations). These regulations specify very particular emission reduction guidelines for various generating sources. The problem in the hydrocarbon processing industry is to identify significant sources of benzene vapors in plants, and then to collect and process these vapors in an environmentally acceptable manner. This paper discusses various methods for collecting benzene fumes in these facilities

  15. Fabrication and tolerances of optics for high concentration photovoltaics

    OpenAIRE

    Benitez Gimenez, Pablo; Miano Dominguez, Juan Carlos; Ahmadpanaih, Hamed; Mendes Lopes, Joao; Zamora Herranz, Pablo

    2014-01-01

    High Concentration Photovoltaics (HCPV) require an optical system with high efficiency, low cost and large tolerance. We describe the particularities of the HCPV applications, which constrain the optics design and the manufacturing techonologies.

  16. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    International Nuclear Information System (INIS)

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a 60Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of 60Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 μg/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. 60Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants

  17. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  18. Experimental study of removing benzene from indoor air by needle-matrix to plate streamer discharge

    International Nuclear Information System (INIS)

    The degradation of benzene by needle-matrix to plate streamer discharge was investigated at normal temperature and pressure in indoor air. The effects of benzene initial concentration, air speed, discharge power and relative humidity (RH) on benzene removal rate were systematically studied. Meanwhile, the benzene removal efficiencies by adding MnO2/SiO2-active carbon catalyst to the system were also studied. The results showed that the benzene removal rate increased with the rise of the air speed and discharge power, decreased with the rise of the benzene initial concentration, and firstly increased and then decreased with the rise of the of RH. Under the same experimental conditions, adding MnO2 catalyst to the system did not significantly improve the removal efficiency of benzene.

  19. Biomarkers of environmental benzene exposure.

    OpenAIRE

    Weisel, C; Yu, R; Roy, A; Georgopoulos, P.

    1996-01-01

    Environmental exposures to benzene result in increases in body burden that are reflected in various biomarkers of exposure, including benzene in exhaled breath, benzene in blood and urinary trans-trans-muconic acid and S-phenylmercapturic acid. A review of the literature indicates that these biomarkers can be used to distinguish populations with different levels of exposure (such as smokers from nonsmokers and occupationally exposed from environmentally exposed populations) and to determine d...

  20. Accumulation of chlorinated benzenes in earthworms

    Science.gov (United States)

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  1. Hydroxylation and Carboxylation—Two Crucial Steps of Anaerobic Benzene Degradation by Dechloromonas Strain RCB

    OpenAIRE

    Chakraborty, Romy; Coates, John D.

    2005-01-01

    Benzene is a highly toxic industrial compound that is essential to the production of various chemicals, drugs, and fuel oils. Due to its toxicity and carcinogenicity, much recent attention has been focused on benzene biodegradation, especially in the absence of molecular oxygen. However, the mechanism by which anaerobic benzene biodegradation occurs is still unclear. This is because until the recent isolation of Dechloromonas strains JJ and RCB no organism that anaerobically degraded benzene ...

  2. [Update on benzene: from industrial toxicant to environmental carcinogen].

    Science.gov (United States)

    Manno, Maurizio

    2013-01-01

    Benzene, an industrial chemical myelotoxic at high doses in workers, is now an almost ubiquitous pollutant. It is also a no-threshold genotoxic carcinogen causing acute leukemia and other lymphoaematological tumours. Although its mechanism of action has not been fully clarified, benzene toxicity and carcinogenicity depend on metabolic activation. Polymorphism of activating and detoxifying enzymes (CYP, GST, NQO1) may be critical, therefore, in modulating individual susceptibility to benzene. Further uncertainty factors in assessing low level benzene exposure are the limited sensitivity and specificity of most exposure biomarkers, the frequent coexposure to other volatile organic chemicals (VOC), and the presence of non occupational sources of exposure, such as cigarette smoke and veicular traffic. The aim of this presentation is to introduce the main current critical issues in the risk assessment and the biological monitoring of occupational exposure to benzene at low doses. PMID:24303704

  3. Seasonal changes of radon concentration where building material of high radon concentration were used

    International Nuclear Information System (INIS)

    The majority of radiation exposure of natural origin of the population comes from radon. The primary source of radon accumulated in the buildings is the soil. Materials of high radium-content have been used at construction works in several countries. These may also act as considerable radon sources. Slag generated during the burning of coals (mined in Ajka, Tatabnya) of high radon-content has been used in several settlements as filling or insulating materials. Besides the increase of gamma dose rate in the building it also resulted in the increase of radon concentration. During our work the gamma dose rate has been surveyed in almost 100 flats in Ajka, and the quarterly average radon concentration has been measured for one year. The value of average radon concentration was measured in 20 flats monthly. In some cases samples could be taken from the slag built in, the 226Ra concentration of which was between 400 and 1500 Bq/kg. Based on the measured gamma dose rate and radon concentration values it can be stated that when slag of higher radium concentration was built in, higher radon concentration values were generated in the buildings. In one third of the buildings the annual radon concentration exceeded the value 200 Bq/m3. Based on the seasonal changes of radon concentration it could be stated that in case of building materials of high radium concentration the seasonal changes were not following the trend found by radon escaping from the soil. In these flats relatively higher radon concentration values should be taken into account even during hotter summer months. (author)

  4. Nonlinear diffusion in Acetone-Benzene Solution

    CERN Document Server

    Obukhovsky, Vjacheslav V

    2010-01-01

    The nonlinear diffusion in multicomponent liquids under chemical reactions influence has been studied. The theory is applied to the analysis of mass transfer in a solution of acetone-benzene. It has been shown, that the creation of molecular complexes should be taken into account for the explanation of the experimental data on concentration dependence of diffusion coefficients. The matrix of mutual diffusivities has been found and effective parameters of the system have been computed.

  5. Methane-benzene binary mixture destruction in a reverse flow catalytic reactor

    International Nuclear Information System (INIS)

    A reverse flow reactor (RFR) is a packed catalytic bed reactor in which feed flow direction is periodically reversed. When an exothermic catalytic combustion is conducted in a RFR, a hot zone is trapped in the center while both ends of the reactor act as regenerative heat exchanger. This enables an auto thermal operation at high temperatures even for feeds having a low adiabatic temperature rise. These features make RFR highly competitive for VOCs combustion. An experimental study of binary mixture purification in bench scale reverse flow reactor, with an inner diameter of 60 mm, has been carried out. Methane and benzene are chosen due to their different properties. The ignition temperature of methane is higher than any other hydrocarbons and benzene is widely used as solvent in industry. With periodic reversal feed, auto thermal catalytic combustion of very lean binary mixture can be achieved. When peak temperature in the hot zone reaches about 550 degree Celsius, both methane and benzene are well removed and little NOx or no other secondary pollutants are detected. The influence of several operation parameters, such as gas velocity, cycle period and methane-to-benzene ratio are discussed. A mathematical model has been developed and solved using a FORTRAN code, good correspondence being observed between both approaches. This provides a solution if VOC concentration in the contaminated air is too low to maintain an auto thermal operation, while natural gas (which is mainly methane) can be added as auxiliary fuel. (author)

  6. Analysis of sodium at high concentrations by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    A method for determining high concentrations of sodium by Atomic Absorption Spectroscopy (AAS) was developed. Parameter values were set and an interfering ion study completed. This technique utilizing sodium atomic absorption of zinc ion emission from zinc hollow cathode lamp allows analyses of solutions with concentrations to 30 grams sodium/liter without dilution

  7. 9-Fold Fresnel Köhler concentrator for increased uniform irradiance on high concentrations

    Science.gov (United States)

    Mendes-Lopes, João; Benítez, Pablo; Zamora, Pablo; Miñano, Carlos

    2013-09-01

    Non-uniform irradiance patterns created by Concentrated Photovoltaics (CPV) concentrators over Multi-Junction Cells (MJC) can originate significant power losses, especially when there are different spectral irradiance distributions over the different MJC junctions. This fact has an increased importance considering the recent advances in 4 and 5 junction cells. The spectral irradiance distributions are especially affected with thermal effects on Silicone-on-Glass (SoG) CPV systems. This work presents a new CPV optical design, the 9-fold Fresnel Köhler concentrator, prepared to overcome these effects at high concentrations while maintaining a large acceptance angle, paving the way for a future generation of high efficiency CPV systems of 4 and 5 junction cells.

  8. 9-fold Fresnel-Köhler concentrator for increased uniform irradiance on high concentrations

    Science.gov (United States)

    Mendes-Lopes, João.; Benítez, Pablo; Zamora, Pablo; Miñano, Juan Carlos

    2013-09-01

    Non-uniform irradiance patterns created by Concentrated Photovoltaics (CPV) concentrators over Multi-Junction Cells (MJC) can originate significant power losses, especially when there are different spectral irradiance distributions over the different MJC junctions. This fact has an increased importance considering the recent advances in 4 and 5 junction cells. The spectral irradiance distributions are especially affected with thermal effects on Silicone-on-Glass (SoG) CPV systems. This work presents a new CPV optical design, the 9-fold Fresnel Köhler concentrator, prepared to overcome these effects at high concentrations while maintaining a large acceptance angle, paving the way for a future generation of high efficiency CPV systems of 4 and 5 junction cells.

  9. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in analyses of metabolites with benzene-grown cultures, suggesting an activation of benzene via carboxylation.

  10. Highly Emissive Whole Rainbow Fluorophores Consisting of 1,4-Bis(2-phenylethynyl)benzene Core Skeleton: Design, Synthesis, and Light-Emitting Characteristics.

    Science.gov (United States)

    Yamaguchi, Yoshihiro; Ochi, Takanori; Matsubara, Yoshio; Yoshida, Zen-ichi

    2015-08-13

    To create the whole-rainbow-fluorophores (WRF) having the small Δλem (the difference of λem between a given fluorophore and nearest neighboring fluorophore having the same core skeleton) values (4.5), and the high Φf (>0.6), we investigated molecular design, synthesis, and light-emitting characteristics of the π-conjugated molecules (D/A-BPBs) consisting of 1,4-bis(phenylethynyl)benzene (BPB) modified by donor groups (OMe, SMe, NMe2, and NPh2) and an acceptor group (CN). As a result, synthesized 20 D/A-BPBs (1a-5d) were found to be the desired WRF. To get the intense red fluorophore (Φf > 0.7, λem > 610 nm), we synthesized new compounds (5e-5i) and elucidated their photophysical properties in CHCl3 solution. As a result, 5h, in which a 4-cyanophenyl group is introduced to the para-position of two benzene rings in the terminal NPh2 group of 5d, was found to be the desired intense red fluorophore (log ε = 4.56, Φf = 0.76, λem = 611 nm). The intramolecular charge-transfer nature of the S1 state of WRF (1a-5d) was elucidated by the positive linear relationship between optical transition energy (νem) from the S1 state to the S0 state and HOMO(D)-LUMO(A) difference, and the molecular orbitals calculated with the DFT method. It is demonstrated that our concept (Φf = 1/(exp(-Aπ) + 1)) connected with the relationship between Φf and magnitude (Aπ) of π conjugation length in the S1 state can be applied to WRF (1a-5d). It is suggested that the prediction of Φf from a structural model can be achieved by the equation Φf = 1/(exp(-((ν̃a - ν̃f)(1/2) × a(3/2)) + 1), where ν̃a and ν̃f are the wavenumber (cm(-1)) of absorption and fluorescence peaks, respectively, and a is the calculated molecular radius. From the viewpoint of application of WRF to various functional materials, the light-emitting characteristics of 1a-5i in doped polymer films were examined. It was demonstrated that 1a-5i dispersed in two kinds of polymer film (PST and PMMA) emit light at the whole visible region and have the small Δλem values (0.6). Therefore, the present D/A-BPBs can be said to be the desired WRF even in the doped polymer film. PMID:26186476

  11. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    Science.gov (United States)

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  12. High concentration photovoltaic systems applying III-V cells

    International Nuclear Information System (INIS)

    High concentration systems make use of the direct solar beam and therefore are suitable for application in regions with high annual direct irradiation values. III-V PV cells with a nominal efficiency of up to 39% are readily available in today's market, with further efficiency improvements expected in the years ahead. The relatively high cost of III-V cells limits their terrestrial use to applications under high concentration, usually above 400 suns. In this way the relatively high cell cost is compensated through the low amount for cells needed per kW nominal system output. This paper presents a state of the art of high concentration photovoltaics using III-V cells. This PV field accounts already for more than 20 developed systems, which are commercially available or shortly before market introduction. (author)

  13. Effects of high CO2 concentrations on ecophysiologically different microorganisms

    International Nuclear Information System (INIS)

    We investigated the effect of increasing CO2 concentrations on the growth and viability of ecophysiologically different microorganisms to obtain information for a leakage scenario of CO2 into shallow aquifers related to the capture and storage of CO2 in deep geological sections. CO2 concentrations in the gas phase varied between atmospheric conditions and 80% CO2 for the aerobic strains Pseudomonas putida F1 and Bacillus subtilis 168 and up to 100% CO2 for the anaerobic strains Thauera aromatica K172 and Desulfovibrio vulgaris Hildenborough. Increased CO2 concentrations caused prolonged lag-phases, and reduced growth rates and cell yields; the extent of this effect was proportional to the CO2 concentration. Additional experiments with increasing CO2 concentrations and increasing pressure (1–5000 kPa) simulated situations occurring in deep CO2 storage sites. Living cell numbers decreased significantly within 24 h at pressures ≥1000 kPa, demonstrating a severe lethal effect for the combination of high pressure and CO2. - Highlights: ► Influence of high CO2 concentration on ecophysiologically different (aerobic, nitrate-reducing, sulphate-reducing) microorganisms. ► Investigation of growth and viability of two aerobic and two anaerobic model organisms. ► CO2 treatment also at elevated pressure up to 5000 kPa. ► Reduction of growth and viability at high CO2 concentrations. ► Sterilization at high pressure and high CO2 concentrations. - Increased CO2 concentrations, combined also with high pressure, adversely affected the growth and viability of four ecophysiological different microorganisms.

  14. Applications of nonimaging optics for very high solar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  15. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  16. Variability of benzene exposure among filling station attendants

    International Nuclear Information System (INIS)

    A monitoring survey of filling station attendants aimed at identifying sources of variability of exposure to benzene and other aromatics was carried out. Concurrent samples of the worker's breathing zone air, atmospheric air in the service station proximity, and gasoline were collected, along with information about daily workloads and other exposure-related factors. Benzene personal exposure was characterised by a small between-worker variability and a predominant within-worker variance component. Such elevated day-to-day variability yields to imprecise estimates of mean personal exposure. Almost 70% of the overall personal exposure variance was explained by a model including daily benzene from dispensed fuel, presence of a shelter over the refueling area, amount of fuel supplied to the station if a delivery occurred, and background atmospheric benzene concentration

  17. Thermodynamic and chemical behavior of benzene under shock conditions

    Science.gov (United States)

    Maillet, Jean-Bernard; Pineau, Nicolas; Bourasseau, Emeric

    2007-06-01

    The thermodynamic and chemical behavior of benzene along its hugoniot curve is investigated using Molecular Dynamics simulations with reactive potentials. The simulated hugoniot curve is in good agreement with experimental data at low pressures. Moreover, the decomposition threshold is well reproduced. In the high pressure regime, reactive simulations show that benzene rapidly decomposes, but resulting pressures do not match experimental ones anymore. Simulations starting with diamond nanoparticules and hydrogen gas give good pressures along the hugoniot. These simulations seem to confirm the existence of carbon clusters with diamond structure in the decomposition products of benzene.

  18. Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara.

    Science.gov (United States)

    Beall, C M; Brittenham, G M; Strohl, K P; Blangero, J; Williams-Blangero, S; Goldstein, M C; Decker, M J; Vargas, E; Villena, M; Soria, R; Alarcon, A M; Gonzales, C

    1998-07-01

    Elevated hemoglobin concentrations have been reported for high-altitude sojourners and Andean high-altitude natives since early in the 20th century. Thus, reports that have appeared since the 1970s describing relatively low hemoglobin concentration among Tibetan high-altitude natives were unexpected. These suggested a hypothesis of population differences in hematological response to high-altitude hypoxia. A case of quantitatively different responses to one environmental stress would offer an opportunity to study the broad evolutionary question of the origin of adaptations. However, many factors may confound population comparisons. The present study was designed to test the null hypothesis of no difference in mean hemoglobin concentration of Tibetan and Aymara native residents at 3,800-4,065 meters by using healthy samples that were screened for iron deficiency, abnormal hemoglobins, and thalassemias, recruited and assessed using the same techniques. The hypothesis was rejected, because Tibetan males had a significantly lower mean hemoglobin concentration of 15.6 gm/dl compared with 19.2 gm/dl for Aymara males, and Tibetan females had a mean hemoglobin concentration of 14.2 gm/dl compared with 17.8 gm/dl for Aymara females. The Tibetan hemoglobin distribution closely resembled that from a comparable, sea-level sample from the United States, whereas the Aymara distribution was shifted toward 3-4 gm/dl higher values. Genetic factors accounted for a very high proportion of the phenotypic variance in hemoglobin concentration in both samples (0.86 in the Tibetan sample and 0.87 in the Aymara sample). The presence of significant genetic variance means that there is the potential for natural selection and genetic adaptation of hemoglobin concentration in Tibetan and Aymara high-altitude populations. PMID:9696153

  19. Agitation leach experiment of fine ore and high grade concentrate

    International Nuclear Information System (INIS)

    Lab experiment and field pilot test were conducted on a slurry from the ore crushing and classification process prior to heap leaching and on a high grade concentrate through ore separation. 96% of uranium extraction can be reached for the slurry ore applying acid leaching. 99% of uranium can be extracted for the concentrate by acid leaching, with the acid consumption being quite high as considerable carbonate associated with the concentrate. While alkaline leaching was applied to the concentrate, only 70% of uranium extraction was approached though the recovery could be enhanced significantly with the temperature increasing. Liquid/solid separation of the leached slurry is feasible through filtration using filter press, with the treatment capacity up to 155 kg/(m2d) and the washing efficiency over 99%. (authors)

  20. Evaluation of seawater contamination with benzene, toluene and xylene in EHE Ubatuba Region and study of their degradation by ionizing radiation

    International Nuclear Information System (INIS)

    A major concern with leaking petroleum is the environmental contamination by toxic and low water-soluble components such as benzene, toluene, and xylenes (BTX). These hydrocarbons have relatively high pollution potential because of their significant toxicity. The objective of this study was to evaluate the contamination of seawater by the main pollutants of the output and transport of petroleum, such as benzene, toluene, and xylenes, and their removal by exposure to ionizing radiation. The studied region was Ubatuba region, SP, between 23 deg 26'S and 23 deg 46' S of latitude and 45 deg 02' W and 45 deg 11' W of longitude, area of carry and output of petroleum, and samples were collected from November, 2003 to July, 2005. For BTX in seawater analysis, the Purge and Trap concentrator with FIDGC detector showed significantly higher sensibility than headspace concentrator with MSGC detector. The minimal detected limits (MDL) obtained at FIDGC were of 0.50 ?g/L for benzene, 0.70 /L for toluene, and 1.54 /L for xylenes, and the obtained experimental variability was 15%. While the concentrator type Headspace system with MS detector showed higher MDL, about of 9.30 mg/L for benzene, 8.50 mg/L for toluene, and 9.80 mg/L for xylenes, and 10% of experimental variability. In the studied area the benzene concentration varied from 1.0 ?g/L to 2.0 ?g/L, the concentration of toluene varied from 60Co. The results showed a removal from 10% to 40% of benzene at 20 kGy absorbed doses and concentration of 35.1 mg/L and 70.2 mg/L, respectively. For toluene the removal were from 20% to 60% with 15 kGy and xylenes were removed from 20% to 80% with 15 kGy and similar concentrations. (author)

  1. Outdoor Characterisation of High Efficiency Luminescent Solar Concentrators

    OpenAIRE

    Pravettoni, Mauro; VIRTUANI Alessandro; KENNY Robert; Farrell, Daniel J.; CHATTEN Amanda J.; BARNHAM Keith W. J.

    2008-01-01

    This work presents recent results on outdoor characterisation of high efficiency luminescent solar concentrators. Outdoor measurements at 25C and corrected to 1000 W/m2 have been compared with indoor characterization according to the international standards for conventional photovoltaic devices. Dependence of electrical parameters with temperature is also shown, together with results of various 1-day monitoring campaigns of luminescent concentrators performance under varying irradiance condi...

  2. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  3. High Stokes shift perylene dyes for luminescent solar concentrators.

    Science.gov (United States)

    Sanguineti, Alessandro; Sassi, Mauro; Turrisi, Riccardo; Ruffo, Riccardo; Vaccaro, Gianfranco; Meinardi, Francesco; Beverina, Luca

    2013-02-25

    Highly efficient plastic based single layer Luminescent Solar Concentrators (LSCs) require the design of luminophores having complete spectral separation between absorption and emission spectra (large Stokes shift). We describe the design, synthesis and characterization of a new perylene dye possessing Stokes shift as high as 300 meV, fluorescent quantum yield in the LSC slab of 70% and high chemical and photochemical stability. PMID:23338660

  4. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    Science.gov (United States)

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection. PMID:26149748

  5. Steel corrosion in anoxic mediums with high chloride concentrations

    International Nuclear Information System (INIS)

    Carbon steels are widely used in contact with chloride containing mediums, however most of the literature reports corrosion problems in solutions in contact with air, for example, sea water. There are other applications where the steel is in contact with freshwater in the absence of oxygen as is the case with materials for nuclear repositories or in petroleum production. These mediums can have varied composition but their corrosivity is usually related to the concentration of chlorides. There are no systematic studies in the literature about the influence of high chloride concentrations on the speed of steel corrosion for carbon steels in the absence of oxygen. Some work has been done using Raman and XPS spectroscopy, but these techniques have been carried out ex situ in samples submitted to the action of high chloride concentrations. This results in the appearance of corrosion products on the metal surface due to the oxidation of the surface from exposure to air before and during the use of these techniques, generating confusing and uncertain data. The lack of reliable data is due to the difficulty of applying these techniques in situ under very low oxygen conditions (less than 10 ppb) without allowing any air into the system. Since there are no studies in the literature about the influence of high concentrations of chloride on the corrosion speed of carbon steels in the absence of oxygen, this work aims to generate experimental data to evaluate the influence of high concentrations of this anion on the corrosion speed of steel under anoxic conditions. The corrosivity of each solution was evaluated using electrochemical techniques such as corrosion potential, corrosion speed, anodic and cathodic polarization curves, cyclic voltammetries and electrochemical impedance spectroscopy to study the oxidation-reduction processes that occur with specific temperature, pH and chloride concentration conditions. Concentrated solutions of sodium chloride (50,000, 100,000 and 180,000 ppm of Cl-) were used in the absence of oxygen (concentration less than 10 ppb) and at 40oC0C and pH=7.5. The material chosen for this study was AISI 1018 steel. The results show that the corrosion speed of the carbon steel decreases with the increase in chloride concentrations and the increase in the steel's exposure time to the corrosive medium. This suggests that a high concentration of Cl- anions in the medium will provoke the adsorption of matter on the metal surface forming a homogeneous barrier that impedes corrosion by simply blocking the active reaction sites

  6. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  7. Geographical distribution of benzene in air in northwestern Italy and personal exposure.

    OpenAIRE

    Gilli, G.; Scursatone, E; Bono, R.

    1996-01-01

    Benzene is a solvent strictly related to some industrial activities and to automotive emissions. After the reduction in lead content of fuel gasoline, and the consequent decrease in octane number, an increase in benzene and other aromatic hydrocarbons in gasoline occurred. Therefore, an increase in the concentration of these chemicals in the air as primary pollutants and as precursors of photochemical smog could occur in the future. The objectives of this study were to describe the benzene ai...

  8. Law and regulation of benzene.

    OpenAIRE

    Feitshans, I L

    1989-01-01

    OSHA has created final benzene regulations after extensive rulemakings on two occasions, 1978 and 1987. These standards have been the subject of extensive litigation for nearly 20 years. This article examines in detail the conceptual underpinnings of the Benzene Case, (which was decided by the U.S. Supreme Court in 1980) in light of U.S. administrative law precedents that have set limits upon administrative discretion under the test for "substantial evidence" and the "hard look doctrine." Thi...

  9. [Metabolism features of bacteria resistant to high concentrations of chromate].

    Science.gov (United States)

    Smirnova, G F; Podgorskiĭ, V S

    2013-01-01

    Twenty strains of bacteria resistant to high concentrations of chromate were isolated from different ecological niches. They were able to reduce chromate to compounds of trivalent chromium--nonsoluble chromium hydroxide or soluble crystalline hydrates of trivalent chromium. The growth features of these microorganisms on media containing chromate at high concentrations (up to 20.0 g/l) are described. Besides chromate bacteria can reduce vanadate to compounds of V(4+) and Mo(6+) to Mo(5+). The best reduction takes place on the media where MPB. glucose or ethanol serves as the source of carbon. The growth and reduction of anion-in-study did not occur on organic acids. It was shown that tungstate, chlorate or perchlorate were not toxic for the studied bacteria up to concentrations of 10.0 g/l, however were not reduced by these microorganisms. The most active strains belong to genera Pseudomonas, Oerskovia, Bacillus, Micrococcus. PMID:23720958

  10. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  11. Effect of high glucose concentrations on human erythrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Jana Viskupicova

    2015-08-01

    Full Text Available Exposure to high glucose concentrations in vitro is often employed as a model for understanding erythrocyte modifications in diabetes. However, effects of such experiments may be affected by glucose consumption during prolonged incubation and changes of cellular parameters conditioned by impaired energy balance. The aim of this study was to compare alterations in various red cell parameters in this type of experiment to differentiate between those affected by glycoxidation and those affected by energy imbalance. Erythrocytes were incubated with 5, 45 or 100 mM glucose for up to 72 h. High glucose concentrations intensified lipid peroxidation and loss of activities of erythrocyte enzymes (glutathione S-transferase and glutathione reductase. On the other hand, hemolysis, eryptosis, calcium accumulation, loss of glutathione and increase in the GSSG/GSH ratio were attenuated by high glucose apparently due to maintenance of energy supply to the cells. Loss of plasma membrane Ca2+-ATPase activity and decrease in superoxide production were not affected by glucose concentration, being seemingly determined by processes independent of both glycoxidation and energy depletion. These results point to the necessity of careful interpretation of data obtained in experiments, in which erythrocytes are subject to treatment with high glucose concentrations in vitro.

  12. Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations

    OpenAIRE

    Chao-Xuan Liu; Jin-Woo Choi

    2012-01-01

    The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were...

  13. On the concentration structure of high-concentration constant-volume fluid mud gravity currents

    Science.gov (United States)

    Jacobson, M. R.; Testik, F. Y.

    2013-01-01

    An exhaustive laboratory experimental campaign was undertaken in order to elucidate the concentration structure of two-dimensional constant-volume non-Newtonian fluid mud gravity currents. Two sets of experiments were conducted in a lock-exchange tank. The first set of experiments involved measuring the vertical concentration profiles using a siphoning technique; the second set involved auxiliary visual observations. The first set of experiments consisted of 32 experimental runs for four different experimental conditions, with an array of siphoned samples being withdrawn throughout the head and body of the gravity current. From these samples, vertical concentration profiles occurring in constant-volume fluid mud gravity currents were classified and the underlying physical processes that led to the occurrence of observed profiles were discussed. Furthermore, the functional form of the vertical concentration profiles within the head of relatively low-initial-concentration gravity currents was proposed. The relatively high-initial-concentration gravity currents revealed the presence of a lutocline in the current head and body, the presence of which was observed for constant-flux release gravity currents. To our knowledge, this is the first measurement of a lutocline in constant-volume gravity currents. Abrupt transitions, a phenomenon in which the bulk of the suspended sediment in the propagating gravity current drops out, were observed through the concentration profiles and through 15 auxiliary visual experimental runs. It was found that abrupt transitions were caused by the presence of a lutocline. The entrainment of ambient water resulting in the dilution of the gravity current at different concentration contours has been quantified. In a previous work by the authors of this study, it was shown that the initial reduced gravity is directly proportional to the growth rate of the visual area of the two-dimensional current. The analysis of our experimental observations presented in this study, however, showed the initial reduced gravity to be inversely proportional to the growth rate of the area enclosed by concentration contours with higher values than that of the visual area. These seemingly opposing conclusions are rationalized and the considerable practical impacts are discussed.

  14. [Toxic effects of high concentrations of ammonia on Euglena gracilis].

    Science.gov (United States)

    Liu, Yan; Shi, Xiao-Rong; Cui, Yi-Bin; Li, Mei

    2013-11-01

    Ammonia is among the common contaminants in aquatic environments. The present study aimed at evaluation of the toxicity of ammonia at high concentration by detecting its effects on the growth, pigment contents, antioxidant enzyme activities, and DNA damage (comet assay) of a unicellular microalga, Euglena gracilis. Ammonia restrained the growth of E. gracilis, while at higher concentrations, ammonia showed notable inhibition effect, the growth at 2 000 mg x L(-1) was restrained to 55.7% compared with that of the control; The contents of photosynthetic pigments and protein went up with increasing ammonia dosage and decreased when the ammonia concentration was above 1000 mg x L(-1); In addition, there was an obvious increase in SOD and POD activities, at higher concentration (2 000 mg x L(-1)), activities of SOD and POD increased by 30.7% and 49.4% compared with those of the control, indicating that ammonia could promote activities of antioxidant enzymes in E. gracilis; The degree of DNA damage observed in the comet assay increased with increasing ammonia concentration, which suggested that high dose of ammonia may have potential mutagenicity on E. gracilis. PMID:24455949

  15. Investigation of the areas of high radon concentration in Gyeongju

    International Nuclear Information System (INIS)

    The aim of this study was to survey the radon concentrations at 21 elementary schools in Gyeongju, Republic of Korea, to identify those schools with high radon concentrations. Considering their geological characteristics and the preliminary survey results, three schools were finally placed under close scrutiny. For these three schools, continuous measurements over 48 h were taken at the principal's and administration office. The radon concentrations at one school, Naenam, exceeded the action level (148 Bq/m3) established by the U.S. EPA, while those at the other two schools were below that level. - Highlights: Preliminary measurements of the indoor radon concentrations were performed at the auditoriums in 23 elementary schools in Gyeongju. Considering the geological characteristics and preliminary survey results, three elementary schools were screened for closer scrutiny. For the three schools, continuous measurements were made at their principal's and administration offices over 48-h period. The scrutiny revealed one elementary school of high radon concentration much higher than the U.S. EPA action level

  16. Reactions of energetic carbon-11 with benzene leading to acetylene

    International Nuclear Information System (INIS)

    The reactions of energetic carbon-11 leading to acetylene were studied in specifically deuteriated benzene and 50/50 mixtures of perdeuteriated and perprotonated benzenes and alkanes. The contributions of intermolecular and intramolecular mechanisms in acetylene formation in benzene were deduced from the relative yields of the three isotopic acetylenes /sup (11)/C2H2, /sup (11)/C2HD, and /sup (11)/C2D2. High-energy stripping and abstraction reactions of /sup (11)/C2 and /sup (11)/C2H ions appear to account for acetylene formed via an intermolecular pathway. After correction for the intermolecular mechanisms, the remaining acetylene is formed mainly by direct insertion (? or ?) plus a small contribution from a mechanism involving random selection of H or D in the benzene molecule

  17. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    International Nuclear Information System (INIS)

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  18. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dipty [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India); Fulekar, M.H., E-mail: mhfulekar@yahoo.com [Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai-400 098 (India)

    2010-03-15

    Bioremediation of benzene has been carried out using cow dung microflora in a bioreactor. The bioremediation of benzene under the influence of cow dung microflora was found to be 100% and 67.5%, at initial concentrations of 100 mg/l and 250 mg/l within 72 h and 168 h respectively; where as at higher concentration (500 mg/l), benzene was found to be inhibitory. Hence the two phase partitioning bioreactor (TPPB) has been designed and developed to carryout biodegradation at higher concentration. In TPPB 5000 mg/l benzene was biodegraded up to 50.17% over a period of 168 h. Further the Pseudomonas putida MHF 7109 was isolated from cow dung microflora as potential benzene degrader and its ability to degrade benzene at various concentrations was evaluated. The data indicates 100%, 81% and 65% degradation at the concentrations of 50 mg/l, 100 mg/l, 250 mg/l within the time period of 24 h, 96 h and 168 h respectively. The GC-MS data also shows the presence of catechol and 2-hydroxymuconic semialdehyde, which confirms the established pathway of benzene biodegradation. The present research proves the potential of cow dung microflora as a source of biomass for benzene biodegradation in TPPB.

  19. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  20. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    International Nuclear Information System (INIS)

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors

  1. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes

    Science.gov (United States)

    Oren, Aharon

    2013-01-01

    Extremely halophilic microorganisms that accumulate KCl for osmotic balance (the Halobacteriaceae, Salinibacter) have a large excess of acidic amino acids in their proteins. This minireview explores the occurrence of acidic proteomes in halophiles of different physiology and phylogenetic affiliation. For fermentative bacteria of the order Halanaerobiales, known to accumulate KCl, an acidic proteome was predicted. However, this is not confirmed by genome analysis. The reported excess of acidic amino acids is due to a high content of Gln and Asn, which yield Glu and Asp upon acid hydrolysis. The closely related Halorhodospira halophila and Halorhodospira halochloris use different strategies to cope with high salt. The first has an acidic proteome and accumulates high KCl concentrations at high salt concentrations; the second does not accumulate KCl and lacks an acidic proteome. Acidic proteomes can be predicted from the genomes of some moderately halophilic aerobes that accumulate organic osmotic solutes (Halomonas elongata, Chromohalobacter salexigens) and some marine bacteria. Based on the information on cultured species it is possible to understand the pI profiles predicted from metagenomic data from hypersaline environments. PMID:24204364

  2. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes

    Directory of Open Access Journals (Sweden)

    AharonOren

    2013-11-01

    Full Text Available Extremely halophilic microorganisms that accumulate KCl for osmotic balance (the Halobacteriaceae, Salinibacter have a large excess of acidic amino acids in their proteins. This minireview explores the occurrence of acidic proteomes in halophiles of different physiology and phylogenetic affiliation. For fermentative bacteria of the order Halanaerobiales, known to accumulate KCl, an acidic proteome was predicted. However, this is not confirmed by genome analysis. The reported excess of acidic amino acids is due to a high content of Gln and Asn, which yield Glu and Asp upon acid hydrolysis. The closely related Halorhodospira halophila and Halorhodospira halochloris use different strategies to cope with high salt. The first has an acidic proteome and accumulates high KCl concentrations at high salt concentrations; the second does not accumulate KCl and lacks an acidic proteome. Acidic proteomes can be predicted from the genomes of some moderately halophilic aerobes that accumulate organic osmotic solutes (Halomonas elongata, Chromohalobacter salexigens and some marine bacteria. Based on the information on cultured species it is possible to understand the pI profiles predicted from metagenomic data from hypersaline environments.

  3. Determination of total protein in highly purified factor IX concentrates.

    Science.gov (United States)

    Lf, A L; Gustafsson, G; Novak, V; Engman, L; Mikaelsson, M

    1992-01-01

    Protein determination by the methods of Kjeldahl, Biuret, Bradford and UV absorbance at 280 nm have been studied in regard to accuracy, precision and simplicity. A reference preparation of a highly purified factor IX concentrate, Nanotiv, reconstituted to 1/5 of ordinary volume was used in the study in order to make a comparison between the different procedures. The Kjeldahl method resulted in a protein concentration of 3.7 mg/ml, whereas the Biuret, Bradford (BSA) and UV absorbance at 280 nm resulted in protein concentrations of 3.6, 2.5 and 2.8 mg/ml, respectively. The corresponding values for specific activity were 136, 140, 200 and 179 IU/mg, respectively. These results demonstrate a great variation in the response obtained by different methods for determination of total protein. PMID:1448961

  4. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    Energy Technology Data Exchange (ETDEWEB)

    Bahadar, Haji [International Campus, Tehran University of Medical Sciences (Iran, Islamic Republic of); Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Mostafalou, Sara [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of)

    2014-04-15

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be evaluated in related chronic diseases. • Cigarette smoke is the main source for indoor benzene exposure. • Health outcomes associated with air pollutants are poorly characterized due to lack of comprehensive monitoring system.

  5. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    International Nuclear Information System (INIS)

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmental pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be evaluated in related chronic diseases. • Cigarette smoke is the main source for indoor benzene exposure. • Health outcomes associated with air pollutants are poorly characterized due to lack of comprehensive monitoring system

  6. Destruction of benzene (VOC) using electron beam radiation in flue gas treatment

    International Nuclear Information System (INIS)

    In this study, Benzene, one of the volatile organic compounds (VOCs) is used to destruct by electron beam. As we know Benzene is one of the most stable compound and very difficult to break. By using the powerful energy produced by electron beam, the benzene compound can be broken up to form new compounds. The technique used in this experiment is by using static process in a control condition where other gases are not allowed to enter the Tedlar bag or glass jar. The Tedlar Bag and Glass jar are used as media for benzene gas to be irradiated. From the experiment it was found that the Tedlag Bag is more suitable than the glass jar the electron beam can easily penetrate and destroy benzene gas. Nitrogen and Helium gas is used as a cleaning gas. The concentrations of benzene gas used for this study are 100 ppm. (part per million), 1 ppmv, and 1 ppmv each for 32 types of VOC. From the result it can be concluded that the electron beam technique used for destruction of benzene (VOQ is very suitable for the low concentration of benzene, the dose needed for the destruction to reach 85-95% is only between 8-12 kGy. It was also observed that many new compound can be produced when benzene is destruct by electron beam. (Author)

  7. Copper uptake by Eichhornia crassipes exposed at high level concentrations.

    Science.gov (United States)

    Melignani, Eliana; de Cabo, Laura Isabel; Faggi, Ana María

    2015-06-01

    The objective of this study was to assess the growth of water hyacinth (Eichhornia crassipes) and its ability to accumulate Cu from polluted water with high Cu concentrations and a mixture of other contaminants under short-term exposure, in order to use this species for the remediation of highly contaminated sites. Two hydroponic experiments were performed under greenhouse conditions for 7 days. One of them consisted of growing water hyacinth in Hoagland solution supplemented with 15 or 25 mg Cu/L and a control. The other one contained water hyacinth growing in polluted river water supplemented with 15 mg Cu/L and a control. Cu was accumulated principally in roots. The maximum Cu concentration was 23,387.2 mg/kg dw in the treatment of 25 mg Cu/L in Hoagland solution. Cu translocation from roots to leaves was low. The mixture of 15 mg Cu/L with polluted water did not appear to have toxic effects on the water hyacinth. This plant showed a remarkable uptake capacity under elevated Cu concentrations in a mixture of pollutants similar to pure industrial effluents in a short time of exposure. This result has not been reported before, to our knowledge. This species is suitable for phytoremediation of waters subject to discharge of mixed industrial effluents containing elevated Cu concentrations (≥15 mg Cu/L), as well as nutrient-rich domestic wastewaters. PMID:25529492

  8. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.

    Science.gov (United States)

    Peng, Cheng; Arthur, Dionne M; Sichani, Homa Teimouri; Xia, Qing; Ng, Jack C

    2013-11-01

    Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 ?M) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater. PMID:24034892

  9. Solar power system, with high concentration, linear reflective solar panels

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.A.

    1979-11-06

    A solar power system with high concentration linear reflective solar panels of the linear parabolic type is described which increases the electrical power output from conventional silicon solar cells and heats water for steam power. The solar power system may be arranged as an all electric type using continuous lines of silicon solar cells located at the apex or focal zone of the parabola, or may be designed as a dual solar conversion system with both solar photoelectric means and a water heating steam means, as an indirect or secondary power source. The key feature of the system is the geometric configuration of the linear parabolic reflectors, with an unusually high reflective concentration ratio of 10:1 minimum, plus boosters, and the connection of these pivoted linear panels to a common oscillating linkage and timing unit for full sun following capability to maintain optimum direct solar exposure each day. 8 claims.

  10. Mitigation of high 222 Rn concentrations in potable water

    International Nuclear Information System (INIS)

    Potable water is recommended to have less than 300 p Ci/L (11.1 Bq/L) of 222Rn because of its potential carcinogenic effects. Some well water may have exceedingly high 222Rn concentrations and must be mitigated to be potable. This study was carried out on well water artificially enriched with 222Rn simulating well water naturally high in 222Rn concentration. This water was then subjected to different mitigation treatments. This included aeration treatment, adding granulated activated carbon and a heating treatment. The mitigating effect of varying the main parameters of each treatment was investigated. It is concluded that aeration treatment is the preferred mitigation method because of is efficiency and least environmental impact

  11. Entry and competition in highly concentrated banking markets

    OpenAIRE

    Nicola Cetorelli

    2002-01-01

    This article studies conditions of entry and competitive conduct in highly concentrated banking markets. The author estimates the minimum market size at which a second bank, a third, a fourth, and so on, can enter and maintain long-run profitability. The results suggest no evidence of cartel-like behavior, where banks collude and maximize joint monopoly profits, even in markets with only two or three banks. The results are more consistent with the competitive conduct predicted by models of ol...

  12. Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations

    Directory of Open Access Journals (Sweden)

    Chao-Xuan Liu

    2012-10-01

    Full Text Available The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane (PDMS as a polymer matrix and multi-walled carbon nanotubes (MWCNTs as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques. The dispersion procedure was optimized via extended experimentation, which is discussed in detail.

  13. Small scale spatial gradients of outdoor and indoor benzene in proximity of an integrated steel plant.

    Science.gov (United States)

    Licen, Sabina; Tolloi, Arianna; Briguglio, Sara; Piazzalunga, Andrea; Adami, Gianpiero; Barbieri, Pierluigi

    2016-05-15

    Benzene is known as a human carcinogen, whose annual mean concentration exceeded the EU limit value (5μg/m(3)) only in very few locations in Europe during 2012. Nevertheless 10% to 12% of the EU-28 urban population was still exposed to benzene concentrations above the WHO reference level of 1.7μg/m(3). WHO recommended a wise choice of monitoring stations positioning in proximity of "hot spots" to define and assess the representativeness of each site paying attention to micro-scale conditions. In this context benzene and other VOCs of health concern (toluene, ethylbenzene, xylenes) concentrations have been investigated, with weekly passive sampling for one year, both in outdoor and indoor air in inhabited buildings in close proximity (180m far up to 1100m) of an integrated steel plant in NE of Italy. Even though the outdoor mean annual benzene concentration was below the EU limit in every site, in the site closest to the works the benzene concentration was above 5μg/m(3) in 14weeks. These events were related to a benzene over toluene ratio above one, which is diagnostic for the presence of an industrial source, and to meteorological factors. These information pointed at the identification of the coke ovens of the plant as the dominant outdoor source of benzene. Benzene gradients with the increasing distance from coke ovens have been found for both outdoor and indoor air. Linear models linking outdoor to indoor benzene concentrations have been then identified, allowing to estimate indoor exposure from ambient air benzene data. In the considered period, a narrow area of about 250m appeared impacted at a higher degree than the other sites both considering outdoor and indoor air. Passive BTEX sampling permits to collect information on both ambient air and daily life settings, allowing to assemble a valuable data support for further environmental cost-benefit analyses. PMID:26930323

  14. Reduced gene expression levels after chronic exposure to high concentrations of air pollutants.

    Science.gov (United States)

    Rossner, Pavel; Tulupova, Elena; Rossnerova, Andrea; Libalova, Helena; Honkova, Katerina; Gmuender, Hans; Pastorkova, Anna; Svecova, Vlasta; Topinka, Jan; Sram, Radim J

    2015-10-01

    We analyzed the ability of particulate matter (PM) and chemicals adsorbed onto it to induce diverse gene expression profiles in subjects living in two regions of the Czech Republic differing in levels and sources of the air pollution. A total of 312 samples from polluted Ostrava region and 154 control samples from Prague were collected in winter 2009, summer 2009 and winter 2010. The highest concentrations of air pollutants were detected in winter 2010 when the subjects were exposed to: PM of aerodynamic diameter <2.5?m (PM2.5) (70 vs. 44.9?g/m(3)); benzo[a]pyrene (9.02 vs. 2.56ng/m(3)) and benzene (10.2 vs. 5.5?g/m(3)) in Ostrava and Prague, respectively. Global gene expression analysis of total RNA extracted from leukocytes was performed using Illumina Expression BeadChips microarrays. The expression of selected genes was verified by quantitative real-time PCR (qRT-PCR). Gene expression profiles differed by locations and seasons. Despite lower concentrations of air pollutants a higher number of differentially expressed genes and affected KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was found in subjects from Prague. In both locations immune response pathways were affected, in Prague also neurodegenerative diseases-related pathways. Over-representation of the latter pathways was associated with the exposure to PM2.5. The qRT-PCR analysis showed a significant decrease in expression of APEX, ATM, FAS, GSTM1, IL1B and RAD21 in subjects from Ostrava, in a comparison of winter 2010 and summer 2009. In Prague, an increase in gene expression was observed for GADD45A and PTGS2. In conclusion, high concentrations of pollutants in Ostrava were not associated with higher number of differentially expressed genes, affected KEGG pathways and expression levels of selected genes. This observation suggests that chronic exposure to air pollution may result in reduced gene expression response with possible negative health consequences. PMID:26298100

  15. Effect of high concentration gadolinium nitrate in reactor moderator system

    International Nuclear Information System (INIS)

    Gadolinium is used as a neutron poison in nuclear reactors to control the reactivity because it has high thermal neutron absorption cross section (∼49,000 b) and good solubility in water. Gadolinium nitrate is added with nitric acid to the moderator heavy water and the pH is maintained in the range of 5.0 to 5.5 to prevent gadolinium precipitation. Usually the concentration of gadolinium (Gd3+) used is ∼15 ppm during the actuation of secondary shutdown system. In the moderator system of a proposed tube type boiling water nuclear reactor of Indian origin, a higher concentration (20-400 ppm) of soluble neutron poison, Gd(NO3)3 is proposed to be used in the emergency safety shutdown system. Effect of this high concentration of gadolinium nitrate in the reactor moderator is evaluated from the angle of generation of molecular products viz. H2 and H2O2 due to radiolysis. H2 yield was found to increase linearly with absorbed dose (10 - 100 kGy). With increasing Gd concentration there was increase in H2 yield but the increase was marginal in 100 to 400 ppm range. Both the initial yield and saturated concentrations of H2O2 (at higher doses) in normal and off - normal conditions were also estimated. It was observed that the head space provided above the liquid phase in irradiation zone has a substantial effect on the generation of H2. With decreasing head space, H2 generation increased and went through a maximum. Production of H2O2 was also observed to be decreased in case of fully filled samples as compared to the ∼ 60% filled cases. Radiolysis of Gd(NO3)3 in high purity D2O was carried out to see the isotope effect and D2 formation was observed to be lowered than H2 for same Gd(NO3)3 concentration solutions in light water. The above results were discussed in detail in this paper. (author)

  16. Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems.

    Science.gov (United States)

    van Afferden, Manfred; Rahman, Khaja Z; Mosig, Peter; De Biase, Cecilia; Thullner, Martin; Oswald, Sascha E; Mller, Roland A

    2011-10-15

    Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF+PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970816 and 13,9661998 ?g L(-1), respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m(-2) d(-1) were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m(-2) d(-1), the mean concentrations of MTBE and benzene were found to be 550133 and 65123 ?g L(-1) in the effluent of the RF. In the effluent of the PF system, respective mean MTBE and benzene concentrations of 4977 and 0.50.2 ?g L(-1) were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 ?g L(-1) for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF+PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (?100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 510 and 0.60.2 ?g L(-1) in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries. PMID:21794890

  17. Electromagnetically assisted synthesis of highly concentrated gold nanoparticle colloids

    Science.gov (United States)

    Hernandez, Laura; Rosas, Walter; Naranjo, Guillermo; Peralta, Xomalin G.; Vargas, Watson L.

    2015-03-01

    The synthesis of metallic nanoparticles is currently an extremely active area of research due to the multiple potential applications of nanomaterials to areas ranging from nano-medicine to catalysis. Some of the current challenges of nanoparticle synthesis protocols include synthesizing nanoparticles in high concentrations with a small polydispersity. The present study contrasts and compares the synthesis of highly concentrated colloidal gold using three different sources of electromagnetic radiation to assist the reaction. The first source was a Spectra Physics Mai Tai Ti:Sapphire laser made by Sperian, this laser generates 70 fs FWHM pulses with wavelengths in the range of 690-1040 nm. The second source was sun light; this was measured to have a power of 10W. The third source was a lowelDP lamp with a measured intensity of 25W. Both the solar light and the lamp's rays were concentrated using a 28cm x 28cm Fresnel lens. Results will be presented highlighting differences and similarities in size, shape, crystallinity and time of the reaction. We speculate about the role played by variations in wavelength, temporal profile of the electromagnetic source (pulsed vs. continuous), temperature of the reaction and excitation power in the final structure of the nanoparticles generated.

  18. Symmetry-breaking phase-transitions in highly concentrated semen

    Science.gov (United States)

    Plouraboué, Franck; Creppy, Adama; Praud, Olivier; Druart, Xavier; Cazin, Sébastien; Yu, Hui; Degond, Pierre

    2015-11-01

    New experimental evidence of self-motion of a confined active suspension is presented. Depositing fresh semen sample in an annular shaped micro-fluidic chip leads to a spontaneous rotation motion of the fluid at sufficiently large sperm concentration. The rotation occurs unpredictably clockwise or counterclockwise and is robust and stable. Furthermore, for highly active and concentrated semen, richer dynamics can occur such as self-sustained or damped rotation oscillations. Experimental results obtained with systematic dilution provide a clear evidence of a phase transition toward collective motion associated with local alignment of spermatozoa akin to the Vicsek model. A macroscopic theory based on previously derived Self-Organized Hydrodynamics (SOH) models is adapted to this context and provides predictions consistent with the observed stationary motion.

  19. Disposal of high-concentration hydrazine solutions by chemical decomposition

    International Nuclear Information System (INIS)

    Corrosion prevention and oxygen removal require hydrazine to be used in the various circuits of power plants at concentrations established bench-scale and corroborated by operational experience. However, these hydrazine contents are too high for any discharge of waste water from system scavenging at inspections and other necessary tests or from desludging for improving water quality. Hydrazine concentrations must be reduced to comply with the legal provisions covering the discharge of effluents into tributories. A process version for hydrazine decomposition was tested in the Grohnde nuclear power plant. Hydrazine is decomposed in an up-to-date filter plant with a palladium-doped ion exchanger with H2O2 added. (orig./RB)

  20. Assessment of potential human health risks posed by benzene in beverages.

    Science.gov (United States)

    Haws, L C; Tachovsky, J A; Williams, E S; Scott, L L F; Paustenbach, D J; Harris, M A

    2008-05-01

    A recent study by the U.S. Food and Drug Administration (FDA) indicated that some beverages contained benzene at levels above the federal drinking water standard of 5 parts per billion (ppb). In tests conducted by the FDA, Crystal Light Sunrise Classic Orange (CLSCO) was reported to contain benzene levels as high as 87.9 ppb. The purpose of the present study was to better characterize benzene concentrations in CLSCO and to quantify potential human health risks. Twenty-eight samples of CLSCO were obtained from retail stores in Houston, Tex., U.S.A. The mean benzene concentrations in 16 oz original and new formulation bottles were 90 and 0.18 ppb, respectively, while 64-oz bottles contained an average of 3.38 ppb. A variety of exposure scenarios were evaluated to determine potential health risks using both deterministic and probabilistic techniques. In the deterministic analyses, upper bound point estimate cancer risks ranged from 5.4E-6 to 8.7E-8, while hazard indices (HI) ranged from 0.28 to 0.00104. Probabilistic analyses were conducted to develop more realistic cancer risk estimates. In these analyses, the 50th and 95th percentile cancer risk estimates were 3.7E-6 and 8.0E-6, and the 50th and 95th percentile hazard indices were 0.19 and 0.42, respectively. In conclusion, all cancer risk estimates and noncancer hazards met the typical health risk benchmarks established by the U.S. regulatory agencies (1E-4 to 1E-6 for cancer and hazard indices less than 1.0). PMID:18460143

  1. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm3 for U3Si2-Al dispersion-based and 2.3 gU/cm3 for U3O8-Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm3 in U3Si2-Al dispersion and 3.2 gU/cm3 U3O8-Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U3Si2-Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U3O8-Al dispersion fuel plates with 3.2 gU/cm3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U3Si2 production at 4.8 gU/cm3, with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  2. The Solubility of Phenylborate Compounds in Benzene

    International Nuclear Information System (INIS)

    The original goal of this scoping study was to determine if the solubility of sodium and potassium tetraphenylborates in benzene was sufficiently large to justify designing and performing kinetic studies on a benzene-phase catalytic reaction

  3. UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene

    International Nuclear Information System (INIS)

    Using the differential optical absorption spectroscopy (DOAS) technique and a Fourier transform spectrometer, NO2, SO2, O3, benzene, and toluene were measured during three measurement campaigns held in Brussels in 1995, 1996, and 1997. The O3 concentrations could be explained as the results of the local photochemistry and the dynamical properties of the mixing layer. NO2 concentrations were anti-correlated to the O3 concentrations, is expected. SO2 also showed a pronounced dependence on car traffic. Average benzene and toluene concentrations were, respectively 1.7 ppb and between 4.4 and 6.6 pbb, but high values of toluene up to 98.8 ppb were observed. SO2 concentrations and to a lesser extent, those of NO2 and O3, were dependent on the wind direction. Ozone in Brussels has been found to be influenced by the meteorological conditions prevailing in central Europe. Comparisons with other measurements have shown that O3 and SO2 data are in general in good agreement, but our NO2 concentrations seem to be generally higher. (author)

  4. UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene.

    Science.gov (United States)

    Vandaele, A C; Tsouli, A; Carleer, M; Colin, R

    2002-01-01

    Using the differential optical absorption spectroscopy (DOAS) technique and a Fourier transform spectrometer, NO2, SO2, O3, benzene. and toluene were measured during three measurement campaigns held in Brussels in 1995, 1996, and 1997. The O3 concentrations could be explained as the results of the local photochemistry and the dynamical properties of the mixing layer. NO2 concentrations were anti-correlated to the O3 concentrations, as expected. SO2 also showed a pronounced dependence on car traffic. Average benzene and toluene concentrations were, respectively 1.7 ppb and between 4.4 and 6.6 pbb, but high values of toluene up to 98.8 ppb were observed. SO2 concentrations and to a lesser extent, those of NO2 and 03, were dependent on the wind direction. Ozone in Brussels has been found to be influenced by the meteorological conditions prevailing in central Europe. Comparisons with other measurements have shown that 03 and SO2 data are in general in good agreement, but our NO2 concentrations seem to be generally higher. PMID:11806447

  5. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  6. High performance concentration method for viruses in drinking water.

    Science.gov (United States)

    Kunze, Andreas; Pei, Lu; Elsässer, Dennis; Niessner, Reinhard; Seidel, Michael

    2015-09-15

    According to the risk assessment of the WHO, highly infectious pathogenic viruses like rotaviruses should not be present in large-volume drinking water samples of up to 90 m(3). On the other hand, quantification methods for viruses are only operable in small volumes, and presently no concentration procedure for processing such large volumes has been reported. Therefore, the aim of this study was to demonstrate a procedure for processing viruses in-line of a drinking water pipeline by ultrafiltration (UF) and consecutive further concentration by monolithic filtration (MF) and centrifugal ultrafiltration (CeUF) of viruses to a final 1-mL sample. For testing this concept, the model virus bacteriophage MS2 was spiked continuously in UF instrumentation. Tap water was processed in volumes between 32.4 m(3) (22 h) and 97.7 m(3) (72 h) continuously either in dead-end (DE) or cross-flow (CF) mode. Best results were found by DE-UF over 22 h. The concentration of MS2 was increased from 4.2×10(4) GU/mL (genomic units per milliliter) to 3.2×10(10) GU/mL and from 71 PFU/mL to 2×10(8) PFU/mL as determined by qRT-PCR and plaque assay, respectively. PMID:26093027

  7. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    CERN Document Server

    Casse, G L; Lemeilleur, F; Ruzin, A; Wegrzecki, M

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10/sup 17/ atoms cm/sup -3 /) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO/sub 2/ layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 mu m thick silicon wafer. (7 refs).

  8. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>1017 atoms cm-3) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 ?m thick silicon wafer

  9. Occupational exposure to benzene at the ExxonMobil refinery at Baton Rouge, Louisiana (1977-2005).

    Science.gov (United States)

    Panko, Julie M; Gaffney, Shannon H; Burns, Amanda M; Unice, Ken M; Kreider, Marisa L; Booher, Lindsay E; Gelatt, Richard H; Marshall, J Ralph; Paustenbach, Dennis J

    2009-09-01

    Because crude oil contains up to 3% benzene and there is an association between high chronic exposure to appreciable concentrations of benzene and acute myelogenous leukemia, exposure of refinery workers has been studied for many years. To date, no extensive industrial hygiene exposure analyses for historical benzene exposure have been performed, and none have focused on the airborne concentrations in the workplace at specific refineries or for specific tasks. In this study, the authors evaluated the airborne concentrations of benzene and their variability over time at the ExxonMobil refinery in Baton Rouge between 1977 and 2005. Refinery workers were categorized into 117 worker groups using company job descriptions. These 117 groups were further collapsed into 25 job categories based on similarity of measured exposure results. Results of 5289 personal air samples are included in this analysis; 3403 were considered nontask (>or= 180 min) personal samples, and 830 were considered task-related (< 180 min) personal samples; the remainder did not fit in either category. In general, nontask personal air samples indicated that exposures of the past 30 years were generally below the occupational exposure limit of 1 ppm, but there was only a small, decreasing temporal trend in the concentrations. The job sampled most frequently during routine operations was process technician and, as broken down by area, resulted in the following mean benzene concentrations: analyzers (mean = 0.12 ppm), coker (mean = 0.013 ppm), hydrofiner (mean = 0.0054 ppm), lube blending and storage (mean = 0.010 ppm), waste treatment (mean = 0.092 ppm), and all other areas (mean = 0.055 ppm). Task-based samples indicated that the highest exposures resulted from the sampling tasks, specifically from those performed on process materials; in general, though, even these tasks had concentrations well below the STEL of 5 ppm. The most frequently sampled task was gauging (mean = 0.12 ppm). Task-related exposures were also similar across job categories for a given task, with a few exceptions. This study thus provides a task-focused analysis for occupational exposure to benzene during refinery operations, which can be insightful for understanding exposures at this refinery and perhaps others operated since about 1975. PMID:19544135

  10. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  11. Airborne determination of the temporo-spatial distribution of benzene, toluene, nitrogen oxides and ozone in the boundary layer across Greater London, UK

    Science.gov (United States)

    Shaw, M. D.; Lee, J. D.; Davison, B.; Vaughan, A.; Purvis, R. M.; Harvey, A.; Lewis, A. C.; Hewitt, C. N.

    2015-05-01

    Highly spatially resolved mixing ratios of benzene and toluene, nitrogen oxides (NOx) and ozone (O3) were measured in the atmospheric boundary layer above Greater London during the period 24 June to 9 July 2013 using a Dornier 228 aircraft. Toluene and benzene were determined in situ using a proton transfer reaction mass spectrometer (PTR-MS), NOx by dual-channel NOx chemiluminescence and O3 mixing ratios by UV absorption. Average mixing ratios observed over inner London at 360 ± 10 m a.g.l. were 0.20 ± 0.05, 0.28 ± 0.07, 13.2 ± 8.6, 21.0 ± 7.3 and 34.3 ± 15.2 ppbv for benzene, toluene, NO, NO2 and NOx respectively. Linear regression analysis between NO2, benzene and toluene mixing ratios yields a strong covariance, indicating that these compounds predominantly share the same or co-located sources within the city. Average mixing ratios measured at 360 ± 10 m a.g.l. over outer London were always lower than over inner London. Where traffic densities were highest, the toluene / benzene (T / B) concentration ratios were highest (average of 1.8 ± 0.5 ppbv ppbv-1), indicative of strong local sources. Daytime maxima in NOx, benzene and toluene mixing ratios were observed in the morning (~ 40 ppbv NOx, ~ 350 pptv toluene and ~ 200 pptv benzene) and in the mid-afternoon for ozone (~ 40 ppbv O3), all at 360 ± 10 m a.g.l.

  12. 27 CFR 21.97 - Benzene.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are...

  13. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 1015cm-3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 107 cm-3 and are estimated to contain 108 H atoms each

  14. High manganese concentrations in rocks at Gale crater, Mars

    Science.gov (United States)

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  15. First DIAMEX partitioning using genuine high active concentrate

    International Nuclear Information System (INIS)

    The efficiency of Minor Actinides (MA) recovery in the DIAMEX process has already been demonstrated using High Active Raffinate (HAR). The next step aims at the partitioning of MA from High Active Concentrate (HAC) as feed, in view of an industrial application. The volume reduction reduces the size of the installation and thereby the costs of the process. In this work, MA recovery by DIAMEX partitioning using genuine HAC has for the first time been demonstrated. The experiment was successfully carried out in a 18-stage centrifugal extractor battery, installed in the hot cell facilities at ITU, using 1 MN,N'-Dimethyl N,N'-Di-Octyl-Hexyl-Malonamide (DMDOHEMA) as extractant. In order to produce a representative HAC, a concentration-denitration process was applied to a genuine HAR solution produced by small scale Purex reprocessing of a MOX fuel solution. In the DIAMEX process up to 5 extraction stages were sufficient to achieve feed decontamination factors above 20000 for minor actinides. Co-extraction of molybdenum, zirconium and palladium were prevented using oxalic acid and HEDTA scrubbing. The back extraction proved to be very efficient, yielding in 4 stages recoveries for Am and Cm in the Ln/An effluent above 99.7 and 99.9% respectively, which can be improved by process optimisation. This work is a major contribution in the field of partitioning and an important step towards the industrial implementation of MA partitioning. (author)

  16. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  17. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L-1, linked to the reduction of 619 ± 81 μEq L-1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  18. Instrument for benzene and toluene emission measurements of glycol regenerators

    International Nuclear Information System (INIS)

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m−3 for benzene, 3 mg m−3 for toluene in natural gas, and 5 g m−3 for benzene and 6 g m−3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature. (paper)

  19. Benzene emission from the actual car fleet in relation to petrol composition in Denmark

    International Nuclear Information System (INIS)

    The present study covers an investigation of the trends in air pollution levels of benzene in Danish cities and their relationship with the benzene content in petrol. Petrol samples from the two refineries in Denmark as well as sold petrol from some representative Danish petrol stations were analysed. The benzene content in Danish petrol was reduced from 3.5% for 95 octane prior to 1995 to approx. 2% in 1995 and further to 1% in 1998. Air quality measurements of aromatic VOC are available from two Danish cities; Copenhagen since 1994 and Odense since 1997. Measurements of benzene, CO and NOx from these two locations were analysed using the Operational Street Pollution Model (OSPM) and trends in the actual emissions of these pollutants were determined. It is shown that the decrease in both the concentration levels and in the emissions was significantly larger for benzene than for CO and NOx. The decreasing trends of NOx and CO could be explained by the increasing fraction of petrol-fuelled vehicles with three way catalysts (TWC). The much steeper decreasing trend for benzene can most likely be attributed to a combination of the effect of the increasing share of the TWC vehicles and a simultaneous reduction of benzene content in Danish petrol. The reduction of benzene concentrations and emissions is observed despite that the total amount of aromatics in petrol has increased slightly in the same period. (Author)

  20. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    Science.gov (United States)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  1. A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer

    Directory of Open Access Journals (Sweden)

    Lung-Ming Fu

    2009-04-01

    Full Text Available In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs. When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This causes a change in the electrical conductivity of the WO3 film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. A specific orientation of the WO3 layer is obtained by optimizing the sputtering process parameters. It is found that the sensitivity of the gas sensor is optimized at a working temperature of 300 °C. At the optimal working temperature, the experimental results show that the sensor has a high degree of sensitivity (1.0 KΩ ppm-1, a low detection limit (0.2 ppm and a rapid response time (35 s.

  2. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  3. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Science.gov (United States)

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or...

  4. Dish-based high concentration PV system with Khler optics.

    Science.gov (United States)

    Coughenour, Blake M; Stalcup, Thomas; Wheelwright, Brian; Geary, Andrew; Hammer, Kimberly; Angel, Roger

    2014-03-10

    We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Khler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system. PMID:24922230

  5. YAG nano-light sources with high Ce concentration

    CERN Document Server

    Masenelli, Bruno; Boisron, Olivier; Canut, Bruno; Ledoux, Gilles; Bluet, Jean-Marie; Melinon, Patrice; Huant, Serge

    2013-01-01

    We investigate the luminescence properties of 10 nm YAG nanoparticles doped with Ce ions at 0.2%, 4% and 13% that are designed as active probes for Scanning Near field Optical Microscopy. They are produced by a physical method without any subsequent treatment, which is imposed by the desired application. The structural analysis reveals the amorphous nature of the particles, which we relate to some compositional defect as indicated by the elemental analysis. The optimum emission is obtained with a doping level of 4%. The emission of the YAG nanoparticles doped at 0.2% is strongly perturbed by the crystalline disorder whereas the 13% doped particles hardly exhibit any luminescence. In the latter case, the presence of Ce4+ ions is confirmed, indicating that the Ce concentration is too high to be incorporated efficiently in YAG nanoparticles in the trivalent state. By a unique procedure combining cathodoluminescence and Rutherford backscattering spectrometry, we demonstrate that the enhancement of the particles l...

  6. Coagulation pretreatment of highly concentrated acrylonitrile wastewater from petrochemical plants.

    Science.gov (United States)

    Zheng, Dongju; Qin, Lin; Wang, Tao; Ren, Xiaojing; Zhang, Zhongguo; Li, Jiding

    2014-01-01

    Acrylonitrile (AN) wastewater is a heavily polluted and a likely hazardous liquid that is generated during the production of AN. Several chemical methods for the pretreatment of AN wastewater are available in laboratory scale. However, the harsh reaction conditions and high operational cost make these methods undesirable. Until now, four-effect evaporation is the only pretreatment method used for AN wastewater in industry despite its huge energy consumption and high cost. It is difficult to find an energy-saving pretreatment technique from the perspective of industrial application. In this study, a safe and low-cost coagulation technique was developed for the pretreatment of AN wastewater. Three types of inorganic coagulant and three types of polymer coagulant were investigated for the coagulation treatment of highly concentrated AN wastewater from petrochemical plants. The effects of coagulant type, dosage, and coagulation conditions on the pretreatment efficiency of AN wastewater were investigated. The results show that a combination of inorganic and polymer coagulants is effective for the pretreatment of AN wastewater. PMID:25051483

  7. The extraction of high purity yttrium from concentrated strontium

    International Nuclear Information System (INIS)

    Full text: A highly purified radioisotope yttrium (Y-90) used in radiotherapy can be extracted from radioisotope strontium (Sr-90). Process for extracting trace amount of yttrium from high concentration of strontium to obtain high purity yttrium was studied. Optimized conditions are applied for preparation of Y-90 radioisotope. In the study, 1.8 μg Y-carrier was extracted from feed solution of 30 mg Sr-carrier which is equivalent to the Sr-90 content with radio activity of 1 Ci. Diethyl hexyl phosphoric acid (HDEHP) 0.3 molar in dodecane was used as extracting solution. Extraction efficiency of yttrium was 97.33% in the first 3-ml volume of HDEHP. Almost 100% of Sr remained in raffinate solution, while only 0.08 ppm (0.3 μg) was carried over in yttrium fraction. This value of contamination is within the range of Sr-90 found in Y-90 solution that is routinely used in clinical application

  8. Energy concentration of high-oil corn varieties for pigs.

    Science.gov (United States)

    Adeola, O; Bajjalieh, N L

    1997-02-01

    Growth performance and utilization of nutrients and energy in three high-oil corn varieties (5.4 to 9.7% ether extract) and regular corn (4.2% ether extract) were compared in three experiments using growing pigs. Twenty-four 25-kg crossbred barrows were used in Exp. 1 to evaluate nutrient and energy digestibility in the three high-oil corn varieties and regular corn. Four diets were formulated to contain 97% of one of four varieties of corn (Control, TC1, TC2, and X122 varieties) and 3% minerals and vitamins. Digestibilities of nitrogen and ether extract were similar (P > .05) for regular corn and all three varieties of high-oil corn. The digestible energy concentrations (kcal/g; as-fed basis) for control, TC1, TC2, and X122 corn varieties were 3.29, 3.57, 3.4, and 3.41, respectively, with control lower (P lysine.HCl were fed to 24 crossbred barrows (six pigs per diet) in a nutrient and energy balance study similar to the Exp. 1. Results were similar to those obtained in Exp. 1. The same four diets that were used in Exp. 2 were fed to 40 (10/diet) 20-kg crossbred pigs (20 barrows and 20 gilts) in a 28-d growth performance study (Exp. 3). Gain:feed ratios were .39, .43, .42, and .42 and growth rates (kg/d) were .68, .74, .70, and .72 for diets containing control, TC1, TC2, and X122 corn varieties, respectively. These translate to 8 to 10% improvement in feed efficiency and a numerical improvement in weight gain (3 to 9%) when high-oil corn was fed as compared with control corn. The results of nitrogen, ether extract, and energy balance and feeding experiments with growing pigs indicate efficient utilization of nutrients in diets containing high-oil corn. PMID:9051466

  9. High temperature helical tubular receiver for concentrating solar power system

    Science.gov (United States)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  10. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  11. Lymphocyte chromosome breakage in low benzene exposure among Indonesian workers

    Directory of Open Access Journals (Sweden)

    Dewi S. Soemarko

    2015-01-01

    Full Text Available Background: Benzene has been used in industry since long time and its level in environment should be controled. Although environmental benzene level has been controlled to less than 1 ppm, negative effect of benzene exposure is still observed, such as chromosome breakage. This study aimed to know the prevalence of lymphocyte chromosome breakage and the influencing factors among workers in low level benzene exposure.Methods: This was a cross sectional study in oil & gas industry T, conducted between September 2007 and April 2010. The study subjects consisted of 115 workers from production section and head office. Data on type of work, duration of benzene exposure, and antioxidant consumption were collected by interview as well as observation of working process. Lymphocyte chromosome breakage was examined by banding method. Analysis of relationship between chromosome breakage and risk factors was performed by chi-square and odd ratio, whereas the role of determinant risk factors was analyzed by multivariate forward stepwise.Results: Overall lymphocyte chromosome breakage was experieced by 72 out of 115 subjects (62.61%. The prevalence among workers at production section was 68.9%, while among administration workers was 40% (p > 0.05. Low antioxidant intake increases the risk of chromosome breakage (p = 0.035; ORadjusted = 2.90; 95%CI 1.08-7.78. Other influencing factors are: type of work (p = 0,10; ORcrude = 3.32; 95% CI 1.33-8.3 and chronic benzene exposure at workplace (p = 0.014; ORcrude = 2.61; 95% CI 1.2-5.67, while the work practice-behavior decreases the lymphocyte chromosome breakage (p = 0.007; ORadjusted = 0.30; 95% CI 0.15-0.76.Conclusion: The prevalence of lymphocyte chromosome breakage in the environment with low benzene exposure is quite high especially in production workers. Chronic benzene exposure in the workplace, type of work, and low antioxidant consumption is related to lymphocyte chromosome breakage. Thus, benzene in the workplace should be controlled to less than 1 ppm, and the habit of high antioxidant consumption is recommended.

  12. Double photoionization of halogenated benzene

    International Nuclear Information System (INIS)

    We have experimentally investigated the double-photoionization process in C6BrF5 using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C6H3D3) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance

  13. Double photoionization of halogenated benzene

    Science.gov (United States)

    AlKhaldi, Mashaal Q.; Wehlitz, Ralf

    2016-01-01

    We have experimentally investigated the double-photoionization process in C6BrF5 using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C6H3D3) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  14. Modelling acceptance of sunlight in high and low photovoltaic concentration

    International Nuclear Information System (INIS)

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV

  15. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: MB.Gholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba; Shamizadeh, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam; Astinchap, Bandar [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Technology Research Laboratory, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Co{sub 3}O{sub 4} nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co{sub 3}O{sub 4} nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.

  16. Study on Concentrating Characteristics of a Solar Parabolic Dish Concentrator within High Radiation Flux

    OpenAIRE

    Qianjun Mao; Liya Zhang; Hongjun Wu

    2015-01-01

    Concentrating characteristics of the sunlight have an important effect on the optical-thermal conversion efficiency of solar concentrator and the application of the receiver. In this paper, radiation flux in the focal plane and the receiver with three focal lengths has been investigated based on Monte Carlo ray-tracing method. At the same time, based on the equal area-height and equal area-diameter methods to design four different shape receivers and numerical simulation of radiation flux dis...

  17. 9-Fold Fresnel Köhler concentrator for increased uniform irradiance on high concentrations

    OpenAIRE

    Mendes Lopes, Joao; Benitez Gimenez, Pablo; Zamora Herranz, Pablo; Miñano Dominguez, Juan Carlos

    2013-01-01

    Non-uniform irradiance patterns created by Concentrated Photovoltaics (CPV) concentrators over Multi-Junction Cells (MJC) can originate significant power losses, especially when there are different spectral irradiance distributions over the different MJC junctions. This fact has an increased importance considering the recent advances in 4 and 5 junction cells. The spectral irradiance distributions are especially affected with thermal effects on Silicone-on-Glass (SoG) CPV systems. This work p...

  18. Evaluation of the occupational risk for exposition to Benzene, Toluene and Xylene in a paintings industry in Bogota

    International Nuclear Information System (INIS)

    It was determined Benzene, Toluene and Xylene (BTX) levels in air from paint manufacture assigned to Instituto Colombiano de Seguro Social with the purpose to evaluate the occupational hazard caused by the use of these solvents. These results were compared with the threshold limit value (TLV). It was selected as sampling strategy, the methodology of partial period with consecutive samples and charcoal tubes as adsorbent of solvents. The extraction was realized with carbon disulfide and it was used gas chromatography with FID as analysis method. It was found that the method is highly selective because in presence of the others ten solvents, utilized in paint manufacture, were obtained a good separation for BTX. The precision, expressed a variance coefficient, was lower than 10%, the accuracy varied between 85 and 99 % for the three solvents. The airborne concentration found was between no detectable and 55,1 mg/m3 for benzene, 18,3 and 253 mg/m3 for toluene and 11,8 and 122,2 mg/m3 for xylene. The corrected TLV values for benzene, toluene and xylenes according to the brief and scale model for the ten hours shift were 1,1, 132 and 304 mg/m3 respectively. It was found occupational risk for benzene in some workplaces; this one is worried because benzene is not used as raw material for the paint manufacture. It was determinate that exist occupational risk in almost every workplace of the industry when it is considered the mixture of the three solvents

  19. Adsorption of vapor-phase VOCs (benzene and toluene) on modified clays and its relation with surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, C.; Gallardo-Velazquez, T.; Arellano-Cardenas, S. [National School of Biological Sciences (Mexico). Biophysics Dept.; Osorio-Revilla, G. [National School of Biological Sciences (Mexico). Biochemical Engineering Dept.

    2008-04-15

    A study was conducted to investigate the potential use of modified clays for the adsorption of volatile organic compounds (VOCs) present in air. These VOCs which include toluene and benzene, are among the main air pollutants that represent a human health risk at high concentrations, mostly in indoor environments. In this study, a Mexican bentonite was used to prepare 3 modified clays, notably an organoclay (OC-CPC) by intercalating cetylpyridinium chloride (CPC); an aluminum-pillared clay (Al-PILC); and an inorganic-organic clay (IOC-CPC) prepared from Al-PILC intercalating CPC. Their structures were differentiated by infrared and thermogravimetric analyses, and the interlayer distance was assessed through X-ray diffraction. Toluene and benzene adsorption on OC-CPC was higher than in IOC-CPC and Al-PILC. Natural clay showed no adsorption capacity for these compounds. Comparison of the gas chromatography retention times for non polar and low-polarity compounds (octyne and benzene) in columns packed with OC-CPC and a commercial non polar column (squalene) showed that the OC-CPC possessed a higher organophilic (non polar) nature than squalene. This explains the higher benzene and toluene adsorption capacity of the OC-CPC compared with the other modified clays. It was concluded that organoclays represent a potential alternative for the adsorption of volatile organic compounds such as benzene and toluene present in indoor environments. Since the OC-CPC is hydrophobic by nature, the relative humidity of water vapour in the environment would not affects its adsorption capacity. 27 refs., 5 tabs., 5 figs.

  20. Airborne benzene exposures from cleaning metal surfaces with small volumes of petroleum solvents.

    Science.gov (United States)

    Hollins, Dana M; Kerger, Brent D; Unice, Kenneth M; Knutsen, Jeffrey S; Madl, Amy K; Sahmel, Jennifer E; Paustenbach, Dennis J

    2013-06-01

    Airborne benzene concentrations were measured in a room with controlled air exchange during surface cleaning with two petroleum-based solvents (a paint thinner and an engine degreaser). The solvents were spiked with benzene to obtain target concentrations of 0.001, 0.01, and 0.1% by volume in the liquid. Personal samples on the worker and area samples up to 1.8m away were collected over 12 events (n=84 samples) designed to examine variation in exposure with solvent type, cleaning method (rag wipe or spatula scrape), surface area cleaned, air exchange rate, solvent volume applied, and distance from the cleaned surface. Average task breathing zone concentrations of benzene represented by 18-32 min time-weighted averages were 0.01 ppm, 0.05 ppm, and 0.27 ppm, when the solvents contained approximately 0.003, 0.008, and 0.07% benzene. Solvent benzene concentration, volume applied, and distance from the handling activities had the greatest effect on airborne concentrations. The studied solvent products containing 0.07% benzene (spiked) did not exceed the current OSHA permissible exposure limit of 1 ppm (averaged over 8h) or the ACGIH Threshold Limit Value of 0.5 ppm, in any of the tested short-term exposure scenarios. These data suggest that, under these solvent use scenarios, petroleum-based solvent products produced in the United States after 1978 likely did not produce airborne benzene concentrations above those measured if the concentration was less than 0.1% benzene. PMID:23088855

  1. An Automatic High Efficient Method for Dish Concentrator Alignment

    OpenAIRE

    Yong Wang; Song Li; Jinshan Xu; Yijiang Wang; Xu Cheng; Changgui Gu; Shengyong Chen; Bin Wan

    2014-01-01

    Alignment of dish concentrator is a key factor to the performance of solar energy system. We propose a new method for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facets footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25?kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our me...

  2. Research on biological effects induced by γ-irradiation combined with benzene, toluene and carbon monoxide inhalation

    International Nuclear Information System (INIS)

    Objective: To explore the patterns of biological effects induced by γ-rays irradiation combined with simultaneous inhalation benzene, toluene or carbon monoxide and to analyze their antagonistic,additive or synergistic interaction. Methods: Ninety healthy male rabbits were equally divided into 9 groups. Eight of which were assigned to be test groups according to four-factor-two-dose-level orthogonal layout {L8(27) } program and the other one was the control group. The two dose-levels of these four agents were: the γ-irradiation doses were 0.0075 Gy/d and 0.0375 Gy/d, and the two concentrations of benzene, toluene and carbon monoxide were 40 +-15 and 162 +- 33 mg/m3, 90 +- 30 and 407 +- 68 mg/m3, 93 +- 4 and 278 +- 8 mg/m3, respectively. The animals were exposed to γ-irradiation combined with benzene,toluene or CO vapour 2 h a day and 5 days a week for successive 8 weeks. Variance analysis and comparison between test groups were made for analyzing the test data. Results: (1) It was showed that γ-irradiation, benzene and toluene could all induce chromosome aberrations, SCEs and micronuclei of lymphocytes and chromosome aberrations of bone marrow cells; but no effect could be seen in CO alone treated group. (2) The ratios (ω) of biological effects jointly induced by the four agents and the sum of those induced separately by them were 2.16, 1.58, 2.07, 2.67, 1.25 and 1.18 for dicentric + ring,acentric, aberration cells, total aberration, micronuclei and micronucleus cells, respectively,and it was as high as 5.97 for aberrant sperms.The ratios showed that the interactions were synergistic(ω>1). However,interactions between γ-rays and benzene was antagonistic for acentric of lymphocytes. (3) The four agents could all obviously cause decrease of weight index of testis, γ-rays,toluene and CO could all markedly reduce the number of sperms and increase the ratio of aberrant sperms. Conclusion: γ-irradiation combined with benzene, toluene and CO inhalation can lead to significant interactions which are mainly synergistic,while CO can cause obvious effects on sex gland when it is combined with γ-rays, benzene and toluene

  3. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.; Heygster, G.; Pedersen, Leif Toudal

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide...... trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found with...... sensor noise between 1.3 and 1.8%. This is in accord with variability estimated from analysis of SSM/I time series. Algorithms, which primarily use 85 GHz information, consistently give the best agreement with both SAR ice concentrations and ship observations. Although the 85 GHz information is more...

  4. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  5. The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration.

    Science.gov (United States)

    Yeung, T K; Germond, C; Chen, X; Wang, Z

    1999-09-24

    The cytotoxicity of Taxol represents both inhibition of cell proliferation and cell death. The drug blocked cells in the G2/M phase of the cell cycle. It has also been reported that Taxol induced cell apoptosis; however, the mode of action of Taxol is far from clear. In this communication, the cytotoxicity of Taxol in various breast cancer cell lines was carefully examined. We showed that Taxol treatment induced a biphasic decrease of viable cells. While the first phase of decrease occurred over concentrations ranging from 0.005 to 0.05 microM and the second phase of decrease occurred at concentrations ranging from 5 to 50 microM, there was a plateau between these ranges. We determined that the biphasic response was due to two different mechanisms. In the lower concentration range (0.005-0.05 microM), Taxol stabilized the spindle during mitosis, thereby blocking mitosis. This mitotic block led to the inhibition of cell proliferation and the induction of apoptosis. In the higher concentration range (5-50 microM), Taxol mainly increased the polymerization of microtubule and stimulated the formation of microtubule bundles, which blocked entry into S phase. This inhibition of S phase entry led to the inhibition of cell proliferation and the induction of necrosis. These findings may have profound clinical implications. PMID:10491305

  6. Production of Phenol from Benzene via Cumene

    Science.gov (United States)

    Daniels, D. J.; And Others

    1976-01-01

    Describes an undergraduate chemistry laboratory experiment involving the production of phenol from benzene with the intermediate production of isopropylbenzene and isopropylbenzene hydroperoxide. (SL)

  7. Benzene and human health: A historical review and appraisal of associations with various diseases.

    Science.gov (United States)

    Galbraith, David; Gross, Sherilyn A; Paustenbach, Dennis

    2010-11-01

    Over the last century, benzene has been a well-studied chemical, with some acute and chronic exposures being directly associated with observed hematologic effects in humans and animals. Chronic heavy exposures to benzene have also been associated with acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) in humans. Other disease processes have also been studied, but have generally not been supported by epidemiologic studies of workers using benzene in the workplace. Within occupational cohorts with large populations and very low airborne benzene exposures (less than 0.11.0 ppm), it can be difficult to separate background disease incidence from those occurring due to occupational exposures. In the last few decades, some scientists and physicians have suggested that chronic exposures to various airborne concentrations of benzene may increase the risk of developing non-Hodgkin's lymphoma (NHL) (Savitz and Andrews, 1997, Am J Ind Med 31:287295; Smith et al., 2007, Cancer Epidemiol Biomarkers Prev 16:385391), multiple myeloma (MM) (Goldstein, 1990, Ann NY Acad Sci 609:225230; Infante, 2006, Ann NY Acad Sci 1076:90109), and various other hematopoietic disorders. We present a state-of-the-science review of the medical and regulatory aspects regarding the hazards of occupational exposure to benzene. We also review the available scientific and medical evidence relating to benzene and the risk of developing various disorders following specific levels of exposure. Our evaluation indicates that the only malignant hematopoietic disease that has been clearly linked to benzene exposure is AML. Information from the recent "Benzene 2009," a symposium of international experts focusing on the health effects and mechanisms of toxicity of benzene, hosted by the Technical University of Munich, has been incorporated and referenced. PMID:20939751

  8. Albumin Adducts of Electrophilic Benzene Metabolites in Benzene-Exposed and Control Workers

    OpenAIRE

    Lin, Yu-Sheng; Vermeulen, Roel; Tsai, Chin H.; Waidyanatha, Suramya; Lan, Qing; Rothman, Nathaniel; Smith, Martyn T; Zhang, Luoping; Shen, Min; Li, Guilan; Yin, Songnian; Kim, Sungkyoon; Rappaport, Stephen M.

    2006-01-01

    Background Metabolism of benzene produces reactive electrophiles, including benzene oxide (BO), 1,4-benzoquinone (1,4-BQ), and 1,2-benzoquinone (1,2-BQ), that are capable of reacting with blood proteins to produce adducts. Objectives The main purpose of this study was to characterize relationships between levels of albumin adducts of these electrophiles in blood and the corresponding benzene exposures in benzene-exposed and control workers, after adjusting for important covariates. Because se...

  9. A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer

    OpenAIRE

    Lung-Ming Fu; Chia-Yen Lee; Mu-Tsun Lee; Ming-Tsun Ke

    2009-01-01

    In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs). When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This causes a change in the electrical conductivity of the WO3 film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. ...

  10. Environmental and biological monitoring of benzene during self-service automobile refueling.

    Science.gov (United States)

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-12-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (SD = 5.8 mg/m(3); median duration = 3 min) with a range of < 0.076-36 mg/m(3), and postexposure breath levels averaged 160 microg/m(3) (SD = 260 microg/m(3)) with a range of < 3.2-1,400 microg/m(3). Log-transformed exposures and breath levels were significantly correlated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences of environmental and subject-specific factors on benzene exposure and breath levels and to investigate the importance of various covariates obtained by questionnaire. Model fitting yielded three significant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of exposure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three significant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), preexposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold range, and was comprised entirely of the within-person component of variance (representing exposures of the same subject at different times of refueling). The corresponding range for benzene concentrations in breath was 41-fold and was comprised primarily of the within-person variance component (74% of the total variance). Our results indicate that environmental rather than interindividual differences are primarily responsible for benzene exposure and uptake during automobile refueling. The study also demonstrates that self-administered monitoring can be efficiently used to measure environmental exposures and biomarkers among the general public. PMID:11133401

  11. Selection of common bean lines with high agronomic performance and high calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2013-10-01

    Full Text Available The objective of this work was to evaluate the genetic variability of common bean lines for cycle, weight of 100 grains, grain yield, cooking time, and grain calcium and iron concentrations. Twenty-four common bean lines were evaluated in two crop cycles (2010 and 2011. The ¯Z index was used for the selection of superior lines for most of the traits. The DF 06-19, DF 06-03, DF 06-17, DF 06-20, DF 06-11, DF 06-14, DF 06-01, DF 06-08, DF 06-22, and DF 06-04 lines showed high grain yield. All lines were of semi-early cycle and of fast cooking. The DF 06-08 and DF 06-23 lines showed high calcium concentration in grains (>1.4 g kg-1 dry matter - DM, and the DF 06-09, DF 06-03, DF 06-04, and DF 06-06 lines presented high iron concentration in grains (>0.95 g kg-1 DM in the two crop cycles. The DF 06-09 and DF 06-03 carioca lines present high agronomic performance and high iron concentration in grains. The DF 06-17 and DF 06-08 black lines present high agronomic performance and high calcium concentration in grains. The selection of the DF 06-09, DF 06-03, DF 06-17, and DF 06-08 lines is recommended.

  12. Geogenic sources of benzene in aquifers used for public supply, California

    Science.gov (United States)

    Belitz, Kenneth; Landon, Matthew K.

    2012-01-01

    Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium 1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.

  13. SELENIUM EFFECT UPON THE RATS' HEMATOPOIESIS IN THE SUBACUTE BENZENE INTOXICATION

    Directory of Open Access Journals (Sweden)

    Pavle Randjelovic

    2001-03-01

    Full Text Available The antioxidants (selenium, vitamins C and E stabilize the cell membrane andprotect the cells from the action of free radicals. On the other hand, the antioxidantsreduce the effects of chemical and physical agenls. Bcsidcs, selenium has animportant role in Transporting electrons in the mitochondria and il is necessary for iheglulathione peroxidase function in the protection from apoplhosis. Benzene is auniversal solvent and has a wide application in chemical industry. Its toxicity ismanifested in the damages done to the central nervous syslem, liver, kidneys andhematopoiesis system. Tn this experiment the Wistar rats were used that wereclassified in three experimental groups regarding the quantity of the receivedselenium. Each group comprised ten animals of both sexes and after two weeks'treatment by selenium of 4,8 and 16 mcg, the animals had received benzene byinlraperiloneal administration in the dose of 1,2 ml/kg of the body weight. Thecounting of the shaped blood elements was done after the selenium pretreatment andafter the benzene intoxication. The obtained results poinl to increased number of alithe blood elements after the selenium pretreatment while after benzene adminislrationthere was a drastic drop of the number of erylhrocyles and leukocytes alongwith moderate lhrombocylopenia. After the sacrifice, Ihe hematopoiesis organs weretaken. The hislological findings of the bone marrow show the emergence ofdisturbances, especially of the red sort cells as well as an obvious fat degeneration which is particularly conspicuous in the second and third groups of animals. Therewas also some damage done to the spleen, especially of its red pulp along with thepresence of a greater number of fresh erythrocytes in the second and third groups.Only the changes were more drastic in the third group. The obtained results show thatselenium in higher concentrations increases the number of erytrocytes andleukocytes which proves that it stimulates highly-proliferating cells of the bonemarrow. However, after the intoxication by a sub lethal benzene dose there was a dropof the cells of red and white color but these values are within the normal limits. Thispoints to the fact that the emergence of death is not in any direct correlation with thedisturbances in the hematopoiesis, but death was caused by the damage done to someother vital organs. Despite the fact that selenium prevents the cells' damage, in thisčaše its protective effect manifested itself only when it was given in small doses sincethere was no death in this group of animals.

  14. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed. PMID:15474375

  15. [High concentration ethanol continuous fermentation using yeast flocs].

    Science.gov (United States)

    Liu, C; Bai, F; Shao, M; Xie, J; Li, N

    2001-06-01

    Continuous ethanol fermentation using yeast flocs was carried out in 4 air-lift suspended-bed bioreactors operated in series. Drafted by CO2, with complete recycle of ethanol distilled effluent broth and at the dilution rate of 0.2/h, the average ethanol concentration of the fermentation broth was 96.6 g/L, while the average concentration of residual total sugar was 4.1 g/L and residual reducing sugar was 1.2 g/L. PMID:12549094

  16. Methods and devices for high-throughput dielectrophoretic concentration

    Science.gov (United States)

    Simmons, Blake A. (San Francisco, CA); Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Germantown, MD); Fintschenko, Yolanda (Livermore, CA); McGraw, Gregory J. (Ann Arbor, MI); Salmi, Allen (Escalon, CA)

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  17. The obtaining a high-grade gadolinium concentrate

    International Nuclear Information System (INIS)

    Gadolinium concentrates obtained by the fractional precipitation of lanthanon-potassium double chromates were separated by ion exchange with 0,4 M lactic acid solution in the presence of 0,1 M ammonium nitrate at pH of the medium 2,95-3,4. It was found out, that using the fractional precipitation of lanthanon-potassium double chromates (as the fast and cheap method that does not need special equipment) together with ion exchange separation with lactic acid solution as the eluent gave a highgrade gadolinium concentrate in a quick and economical way. (author)

  18. Performance of silicone-on-glass Fresnel lenses in EMCORE's Gen 3 high-concentration concentrator photovoltaic system

    Science.gov (United States)

    Foresi, James S.; Hoffman, Rick; King, David; Ponsardin, Patrick

    2012-10-01

    EMCORE's Concentrator Photovoltaic (CPV) systems use large-format Fresnel lenses to achieve 1090X concentration onto high-efficiency multi-junction solar cells. The use of Fresnel lenses is common in CPV systems due to their thin profile and light weight. EMCORE uses silicone-on-glass (SOG) lens technology, which provides a high-reliability, high-durability alternative to acrylic lenses. This paper describes performance variations of these lenses based on the Fresnel groove depth. Both the optical efficiency and temperature dependence of the optical system are evaluated as a function of groove depth.

  19. Evaluation of seawater contamination with benzene, toluene and xylene in the Ubatuba north coast, SP region, and study of their removal by ionizing radiation

    International Nuclear Information System (INIS)

    A major concern with leaking petroleum is the environmental contamination by the toxic and low water-soluble components such as benzene, toluene, and xylenes (BTX). These hydrocarbons have relatively high pollution potential because of their significant toxicity. The objective of this study was to evaluate the contamination of seawater by the main pollutants of the output and transport of petroleum, such as benzene, toluene, and xylene, and their removal by the exposure to the ionizing radiation. The studied region was Ubatuba region, SP, between 23 deg 26'S and 23 deg 46'S of latitude and 45 deg 02'W and 45 deg 11'W of longitude, area of carry and output of petroleum, and samples were collected from November, 2003 to July, 2005. For BTX in seawater analysis, the Purge and Trap concentrator with FIDGC detector showed significantly higher sensibility than Head Space concentrator with MSGC detector. The minimal detected limits (MDL) obtained at FIDGC were of 0.50 μg/L for benzene, 0.70 μg/L for toluene, and 1.54 μg/L for xylene, and the obtained experimental variability was 15%. While the concentrator type Headspace system with MS detector showed higher MLD, about of 9.30 mg/L for benzene, 8.50 mg/L for toluene, and 9.80 mg/L for xylene, and 10% of experimental variability. In the studied area the benzene concentration varied from 1.0 μg/L to 2.0 μg/L, the concentration of toluene varied from 60Co, presented a removal from 10% to 40% of benzene at 20 kGy absorbed doses and concentration of 35.1 mg/L and 70.2 mg/L, respectively; from 20% to 60% of toluene removal with 15 kGy absorbed dose and from 20% to 80% of xylene with 15 kGy absorbed dose in similar concentrations. (author)

  20. Stability of Human Telomere Quadruplexes at High DNA Concentrations

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Vorlíčková, Michaela; Brázdová, Marie; Sagi, J.

    2014-01-01

    Roč. 101, č. 4 (2014), s. 428-438. ISSN 0006-3525 R&D Projects: GA ČR(CZ) GAP205/12/0466 Institutional support: RVO:68081707 Keywords : quadruplex * DNA concentration * folding topology Subject RIV: BO - Biophysics Impact factor: 2.385, year: 2014

  1. Occupational exposures associated with petroleum-derived products containing trace levels of benzene.

    Science.gov (United States)

    Williams, Pamela R D; Panko, Julie M; Unice, Ken; Brown, Jay L; Paustenbach, Dennis J

    2008-09-01

    Benzene may be present as a trace impurity or residual component of mixed petroleum products due to refining processes. In this article, the authors review the historical benzene content of various petroleum-derived products and characterize the airborne concentrations of benzene associated with the typical handling or use of these products in the United States, based on indoor exposure modeling and industrial hygiene air monitoring data collected since the late 1970s. Analysis showed that products that normally contained less than 0.1% v/v benzene, such as paints and paint solvents, printing solvents and inks, cutting and honing oils, adhesives, mineral spirits and degreasers, and jet fuel typically have yielded time-weighted average (TWA) airborne concentrations of benzene in the breathing zone and surrounding air ranging on average from <0.01 to 0.3 ppm. Except for a limited number of studies where the benzene content of the product was not confirmed to be <0.1% v/v, airborne benzene concentrations were also less than current occupational exposure limits (e.g., threshold limit value of 0.5 ppm and permissible exposure limit of 1.0 ppm) based on exceedance fraction calculations. Exposure modeling using Monte Carlo techniques also predicted 8-hr TWA near field airborne benzene concentrations ranging from 0.002 to 0.4 ppm under three hypothetical solvent use scenarios involving mineral spirits. The overall weight-of-evidence indicates that the vast majority of products manufactured in the United States after about 1978 contained <0.1% v/v benzene, and 8-hr TWA airborne concentrations of benzene in the workplace during the use of these products would not have been expected to exceed 0.5 ppm under most product use scenarios. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a document containing exposure modeling scenarios and results, historical benzene content of petroleum-derived products, and air monitoring results.]. PMID:18615290

  2. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens

    OpenAIRE

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Jessica A. Smith; Bain, Timothy S.; Derek R. Lovley

    2013-01-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (

  3. 46 CFR 30.25-3 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more...

  4. 46 CFR 151.50-60 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of...

  5. 29 CFR 1926.1128 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene....

  6. 29 CFR 1915.1028 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical...

  7. 29 CFR 1910.1028 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... safety data sheet (MSDS) which addresses benzene and complies with 29 CFR 1910.1200. (ii) Employers who... the requirements of 29 CFR 1910.1200(h) (1) and (2), and shall include specific information on benzene... and unloading operations, except for the provisions of 29 CFR 1910.1200 as incorporated into...

  8. Bio sensing Benzene in the refinery

    International Nuclear Information System (INIS)

    A biosensor based on Pseudomonas putida cells was utilized for Benzene analysis in air of an oil refinery. Biosensoristic approach was compared to gaschromatografic essay. We also developed bio sensing Benzene genetically modified Escherichia coli and tested them with refinery samples. Microbial biosensor were useful to determine air pollution.

  9. High urinary phthalate concentration associated with delayed pubarche in girls

    DEFF Research Database (Denmark)

    Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, Casper; Petersen, Jørgen Holm; Skakkebaek, N E; Andersson, Anna-Maria; Juul, A

    2012-01-01

    Phthalates are a group of chemicals present in numerous consumer products. They have anti-androgenic properties in experimental studies and are suspected to be involved in human male reproductive health problems. A few studies have shown associations between phthalate exposure and changes in...... pubertal timing among girls, although controversies exist. We determined the concentration of 12 phthalate metabolites in first morning urine samples from 725 healthy Danish girls (aged 5.6-19.1 years) in relation to age, pubertal development (breast and pubic hair stage) and reproductive hormone levels...... (luteinizing hormone, oestradiol and testosterone). Furthermore, urinary phthalates were determined in 25 girls with precocious puberty (PP). In general, the youngest girls with less advanced pubertal development had the highest first morning urinary concentration of the monobutyl phthalate isoforms (¿MBP...

  10. Comparison of measurement methods for benzene and toluene

    Science.gov (United States)

    Wideqvist, U.; Vesely, V.; Johansson, C.; Potter, A.; Brorstrm-Lundn, E.; Sjberg, K.; Jonsson, T.

    Diffusive sampling and active (pumped) sampling (tubes filled with Tenax TA or Carbopack B) were compared with an automatic BTX instrument (Chrompack, GC/FID) for measurements of benzene and toluene. The measurements were made during differing pollution levels and different weather conditions at a roof-top site and in a densely trafficked street canyon in Stockholm, Sweden. The BTX instrument was used as the reference method for comparison with the other methods. Considering all data the Perkin-Elmer diffusive samplers, containing Tenax TA and assuming a constant uptake rate of 0.406 cm3 min-1, showed about 30% higher benzene values compared to the BTX instrument. This discrepancy may be explained by a dose-dependent uptake rate with higher uptake rates at lower dose as suggested by laboratory experiments presented in the literature. After correction by applying the relationship between uptake rate and dose as suggested by Roche et al. (Atmos. Environ. 33 (1999) 1905), the two methods agreed almost perfectly. For toluene there was much better agreement between the two methods. No sign of a dose-dependent uptake could be seen. The mean concentrations and 95% confidence intervals of all toluene measurements (67 values) were (10.801.6) ?g m -3 for diffusive sampling and (11.31.6) ?g m -3 for the BTX instrument, respectively. The overall ratio between the concentrations obtained using diffusive sampling and the BTX instrument was 0.910.07 (95% confidence interval). Tenax TA was found to be equal to Carbopack B for measuring benzene and toluene in this concentration range, although it has been proposed not to be optimal for benzene. There was also good agreement between the active samplers and the BTX instrument.

  11. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    Science.gov (United States)

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude. PMID:26361271

  12. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2012-02-01

    BACKGROUND: Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. METHODS: This was a cross-sectional case-control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. RESULTS: The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng\\/ml vs 4.3 (4.0) ng\\/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng\\/ml vs 1.4 (0.9) ng\\/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. CONCLUSIONS: Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.

  13. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, Antnio Alves; Albergaria, Jos Toms; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceio M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. PMID:20605039

  14. Molecular dynamics simulation of benzene

    Science.gov (United States)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2016-03-01

    Intermolecular potentials and a few models of intermolecular interaction in liquid benzene are tested by Molecular Dynamics (MD) simulations. The repulsive part of the Lennard-Jones 12-6 (LJ 12-6) potential is too hard, which yields incorrect results. The exp-6 potential with a too hard repulsive term is also often used. Therefore, we took an expa-6 potential with a small Gaussian correction plus electrostatic interactions. This allows to modify the curvature of the potential. The MD simulations are carried out in the temperature range 280-352 K under normal pressure and at experimental density. The Rayleigh scattering of depolarized light is used for comparison. The results of MD simulations are comparable with the experimental values.

  15. Dome-shaped Fresnel-Köhler: a novel high performance optical concentrator

    OpenAIRE

    Zamora Herranz, Pablo; Benitez Gimenez, Pablo; Li, Yang; Miñano Dominguez, Juan Carlos; Mendes Lopes, Joao; Araki, Kenji

    2012-01-01

    The dome-shaped Fresnel-Köhler concentrator is a novel optical design for photovoltaic applications. It is based on two previous successful CPV optical designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. This optical concentrator will be able to achieve large concentration factors, high tolerance (i.e. acceptance angle) and high optical efficiency, three key issues when dealing with photo...

  16. Excess Thermodynamic Properties of Concentrated Aqueous Solutions at High Temperatures

    International Nuclear Information System (INIS)

    Measurements of the vapor pressure of the solvent in wide ranges of concentration and temperature provide information on solute solvation and ion pairing--the two phenomena most often invoked for description of dilute solutions. Even in moderately concentrated solutions, as interionic distances become comparable to ionic diameters, these simple concepts gradually lose their meaning and solutions behave like molten salts. The usefulness of experimental vapor pressure results increases rapidly with their accuracy, since derived properties, such as solution enthalpies and heat capacities, can be calculated. Very accurate results can be obtained by the isopiestic method, but primary vapor pressure data for standard solutions are needed. In order to obtain vapor pressures at conditions where accurate isopiestic standards are not available and to establish more accurate standards, the ORNL isopiestic apparatus was modified for simultaneous direct vapor pressure measurements and isopiestic comparisons. There are no comprehensive solution theories derived from molecular level models and able to predict thermodynamic properties of various electrolytes as the composition changes from dilute solutions to molten salts in a wide range of temperatures. Empirical and semi-empirical models are useful for representation of experimental results, interpretation of measurements of other properties such as conductance., solubility or liquid-vapor partitioning of solutes, and for verification of theoretical predictions. Vapor pressures for aqueous CaCl(sub 2), CaBr(sub 2), LiCl, LiBr, LiI, NaI were measured at temperatures between 380 and 523 K in the concentration range extended to water activities below 0.2 (over 30 mol/kg for LiCl). General equations based on the modified Pitzer ion-interaction model were used to obtain enthalpy and heat capacity surfaces, which are compared with direct calorimetric measurements

  17. High efficiency GaAs-GaAlAs solar cells for very high concentration systems

    Energy Technology Data Exchange (ETDEWEB)

    Fanetti, E.; Flores, C.; Guarini, G.

    1979-10-01

    Basic data on design and processing of GaAs-GaAlAs solar cells for high concentration ratios are briefly reported. Conversion efficiencies up to 23% at 100 suns and 17% at 925 suns have been measured. The temperature variation of conversion efficiency was also checked up to 200/sup 0/C and a close correlation between theoretical and experimental results was generally found.

  18. Reductions in ozone at high concentrations of stratospheric halogens

    Science.gov (United States)

    Prather, M. J.; Mcelroy, M. B.; Wofsy, S. C.

    1984-01-01

    An increase in the concentration of inorganic chlorine to levels comparable to that of oxidized reactive nitrogen could cause a significant change in the chemistry of the lower stratosphere leading to a reduction potentially larger than 15 percent in the column density of ozone. This could occur, for example by the middle of the next century, if emissions of man-made chlorocarbons were to grow at a rate of 3 percent per year. Ozone could be further depressed by release of industrial bromocarbon.

  19. The anaesthesia of fish by high carbon-dioxide concentrations

    Science.gov (United States)

    1942-01-01

    A practical and economical method for anaesthetizing adult salmon and steelhead trout in the fish trucks used in the Grand Coulee fish salvage program is described. The method consists in generating a predetermined carbon-dioxide concentration in the 1000-gallon tanks of the trucks through the successive addition of predissolved sodium bicarbonate and dilute sulphuric acid in proper quantities. Carbon-dioxide anaesthesia effectively solved the acute problem of species segregation in the fish salvage program and, with minor modifications, could be used with equal success in certain hatchery operations necessitating the handling of large fish.

  20. Thermodynamic Limitations of Photosynthetic Water Oxidation at High Proton Concentrations*

    OpenAIRE

    Zaharieva, Ivelina; Wichmann, Jrg M.; Dau, Holger

    2011-01-01

    In oxygenic photosynthesis, solar energy drives the oxidation of water catalyzed by a Mn4Ca complex bound to the proteins of Photosystem II. Four protons are released during one turnover of the water oxidation cycle (S-state cycle), implying thermodynamic limitations at low pH. For proton concentrations ranging from 1 nm (pH 9) to 1 mm (pH 3), we have characterized the low-pH limitations using a new experimental approach: a specific pH-jump protocol combined with time-resolved measurement of ...

  1. Low Viscosity Highly Concentrated Injectable Nonaqueous Suspensions of Lysozyme Microparticles

    OpenAIRE

    Miller, Maria A.; Engstrom, Joshua D.; Ludher, Baltej S.; Johnston, Keith P.

    2010-01-01

    Subcutaneous injection of concentrated protein and peptide solutions, in the range of 100–400 mg/mL, is often not possible with a 25- to 27-gauge needle, as the viscosity can be well above 50 cP. Apparent viscosities below this limit are reported for suspensions of milled lysozyme microparticles up to nearly 400 mg/mL in benzyl benzoate or benzyl benzoate mixtures with safflower oils through a syringe with a 25- to 27-gauge needle at room temperature. These apparent viscosities were confirmed...

  2. Ion exchange method of obtaining high grade europium concentrates

    International Nuclear Information System (INIS)

    The studies of receiving the europium from Gd-Sm-Eu concentrate and the separation of Eu-Gd pair by ion-exchange method on Wofatit KPS x 8 using as eluents α-HIBA, ammonia lactate and mixed eluent EDTA-ammonia acetate, were carried out. The best results were obtained by the use of α-HIBA as an eluent (0,1-0,15 M and pH 3,9-4,25). As a result of Eu-Gd pair separation by using α-HIBA as an eluent, Eu2O3 of purity >=3 N was received. (author)

  3. Catalytically-mediated denitration of highly HNO3 concentrated solutions

    International Nuclear Information System (INIS)

    Chemical denitration by formic acid aims to reduce nuclear fuel reprocessing nitric wastes volume and concentration. The use of Pt/SiO2 catalysts suppresses the induction period of the reaction between formic and nitric acids. This is due to the fast initial catalytic generation of HNO2 from HNO3 on Pt/SiO2, which become further the active species in the homogeneous phase. It is proposed that HNO2 generation passivates the Pt metal phase, which is in turn reactivated by formic acid. (authors)

  4. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  5. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  6. Reductions in human benzene exposure in the California South Coast Air Basin

    Science.gov (United States)

    Fruin, Scott A.; Denis, Michael J. St; Winer, Arthur M.; Colome, Steven D.; Lurmann, Frederick W.

    Benzene typically contributes a significant fraction of the human cancer risk associated with exposure to urban air pollutants. In recent years, concentrations of benzene in ambient air have declined in many urban areas due to the use of reformulated gasolines, lower vehicle emissions, and other control measures. In the California South Coast Air Basin (SoCAB) ambient benzene concentrations have been reduced by more than 70% since 1989. To estimate the resulting effect on human exposures, the Regional Human Exposure (REHEX) model was used to calculate benzene exposures in the SoCAB for the years 1989 and 1997. Benzene concentration distributions in 14 microenvironments (e.g. outdoor, home, vehicle, work) were combined with California time-activity patterns and census data to calculate exposure distributions for 11 demographic groups in the SoCAB. For 1997, the calculated average benzene exposure for nonsmoking adults in the SoCAB was 2 ppb, compared to 6 ppb for 1989. For nonsmokers, about half of the 1997 exposure was due to ambient air concentrations (including their contributions to other microenvironments), but only 4% for smokers. Passive tobacco smoke contributed about one-fourth of all exposure for adult nonsmokers. In-transit microenvironments and attached garages contributed approximately 15 and 10%, respectively. From 1989 to 1997, decreases in passive smoke exposure accounted for about one-sixth of the decrease in exposure for nonsmoking adults, with the remainder due to decreases in ambient concentrations. The reductions in exposure during this time period indicate the effectiveness of reformulated fuels, more stringent emission standards, and smoking restrictions in significantly reducing exposure to benzene.

  7. Excited state of protonated benzene and toluene

    International Nuclear Information System (INIS)

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)

  8. Dosimetric studies in a facility with high concentrations of radon

    International Nuclear Information System (INIS)

    In a coastal marsh area have high levels of radon found in some locations, one of them is a wastewater treatment plant, which far exceeds the recommended level in work zones. We present the results of the study for the evaluation of excess doses received by workers in that facility. (Author)

  9. Distribution of air pollutants in the Inn Valley atmosphere during high concentration events in winter 2006

    International Nuclear Information System (INIS)

    Full text: The goal of the INNOX field campaign, which took place during January and February 2006 near the town of Schwaz, was to obtain a three-dimensional picture of the spatial distribution of air pollutants in the Inn Valley during wintertime. For this purpose continuous ground based measurements and, on six chosen days, vertical profiles within the lowest 200 m above ground level (AGL) of the valley atmosphere of certain VOCs (benzene, toluene, etc.) and CO were performed using a proton-transfer-reaction mass spectrometry instrument (PTR-MS). For the soundings a 200-m long teflon line was fixed on a tethered balloon through which the air was sucked to the PTR-MS instrument and to a CO analyser. Next to the inlet on the tethered balloon meteorological data, such as air temperature, pressure, wind, were measured as well. Above the lowest 200 m AGL a research aircraft from MetAir AG (Switzerland), equipped with various instruments for in-situ measurements of air pollutants and meteorological data, was operated. A typical flight pattern consisted of five vertical cross sections between about 150 to 2500 m AGL and lasted about three hours. Altogether 25 hours of aircraft measurements were carried out on six different days. The combination of low-level balloon measurements and upper-level aircraft observations yields vertical profiles of various parameters which cover the whole valley atmosphere. Preliminary results which show strong vertical but also horizontal gradients of air pollutant concentrations will be presented. (author)

  10. Boeing high-efficiency low-cost concentrated photovoltaic technology

    Science.gov (United States)

    Hall, John C.; Martins, Guy L.; Cameron, Michael; Marks, Stuart

    2011-10-01

    The Boeing CPV system has been developed as a jointly funded effort between the Boeing companies, its industrial partners and the Department of Energy. As with all commercial solar systems the key driver of success is a production cost which is competitive with existing power sources. In this paper we describe an approach for driving the near term cost and LCOE (levelized cost of energy) of less than 0.10 per kWh with growth opportunities down to 0.07 per kWh. This objective is achievable through a combination of existing high performance optics, the future availability of +40% to 50% conversion efficient multi-junction cells, low cost design tailored to high speed and low cost manufacturing, field assembly, and low cost trackers.

  11. High plasma uric acid concentration: causes and consequences

    Directory of Open Access Journals (Sweden)

    de Oliveira Erick

    2012-04-01

    Full Text Available Abstract High plasma uric acid (UA is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease.

  12. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated massive CDR interventions eventually bring down the global mean pH value to the RCP2.6 level, yet cannot restore a similarly homogenous distribution - while the pH of the upper ocean returns to the preindustrial value or even exceed it (in the 180 ppm scenario), the deep ocean remains acidified. The deep ocean is out of contact with the atmosphere and therefore unreachable by atmospheric CDR. Our results suggest that the proposition that the marine consequences of early emissions reductions are comparable to those of delayed reductions plus CDR is delusive and that a policy that allows for emitting CO2 today in the hopes of removing it tomorrow is bound to generate substantial regrets.

  13. Effect of benzene on product evolution in a H2S/O2 flame under Claus condition

    International Nuclear Information System (INIS)

    Highlights: • Effect of trace amounts of benzene (0.3%, 0.5% and 1%) to H2S combustion process. • Benzene favored formation of H2 and reduced conversion of H2S. • Benzene reduced SO2 formation to impact sulfur production. • Benzene addition promoted CO and COS formation and degraded sulfur quality. - Abstract: Experimental results are presented on the role of benzene addition to H2S combustion at an equivalence ratio of three with respect to H2S (Claus condition) and complete combustion of benzene. The results are reported with 0.3%, 0.5% and 1% benzene addition to H2S/O2 flame. Combustion of H2S and benzene mixtures is of practical value for sulfur recovery during combustion of acid gases. The results showed that H2S combustion caused H2S to decompose to a minimum mole fraction with high conversion of H2S while the SO2 mole fraction reached a maximum value. Addition of benzene decreased the conversion of H2S with reduced mole fraction of SO2 in the reactor to subsequently reduce the formation of elemental sulfur. Benzene also caused significant production of H2, CO and COS formation along with faster decomposition of the formed SO2. Presence of benzene, even in trace amounts, in acid gas hinders sulfur conversion in a Claus reactor and increases emission of unwanted sulfur bearing compounds. Increased hydrogen production with benzene offers potential value for hydrogen recovery under certain conditions

  14. Ambient air benzene at background sites in China's most developed coastal regions: exposure levels, source implications and health risks.

    Science.gov (United States)

    Zhang, Zhou; Wang, Xinming; Zhang, Yanli; Lü, Sujun; Huang, Zhonghui; Huang, Xinyu; Wang, Yuesi

    2015-04-01

    Benzene is a known human carcinogen causing leukemia, yet ambient air quality objectives for benzene are not available in China. The ambient benzene levels at four background sites in China's most developed coastal regions were measured from March 2012 to February 2013. The sites are: SYNECP, in the Northeast China Plain (NECP); YCNCP, in the North China Plain (NCP); THYRD, in the Yangtze River Delta (YRD) and DHPRD, in the Pearl River Delta (PRD). It was found that the mean annual benzene levels (578-1297 ppt) at the background sites were alarmingly higher, especially when compared to those of 60-480 pptv monitored in 28 cities in the United States. Wintertime benzene levels were significantly elevated at both sites (SYNECP and YCNCP) in northern China due to heating with coal/biofuels. Even at these background sites, the lifetime cancer risks of benzene (1.7-3.7E-05) all exceeded 1E-06 set by USEPA as acceptable for adults. At both sites in northern China, good correlations between benzene and CO or chloromethane, together with much lower toluene/benzene (T/B) ratios, suggested that benzene was largely related to coal combustion and biomass/biofuel burning. At the DHPRD site in the PRD, benzene revealed a highly significant correlation with methyl tert-butyl ether (MTBE), indicating that its source was predominantly from vehicle emissions. At the THYRD site in the YRD, higher T/B ratios and correlations between benzene and tetrachloroethylene, or MTBE, implied that benzene levels were probably affected by both traffic-related and industrial emissions. PMID:25618820

  15. Revisiting the assembly of amino ester-based benzene-1,3,5-tricarboxamides: chiral rods in solution.

    Science.gov (United States)

    Desmarchelier, Alaric; Raynal, Matthieu; Brocorens, Patrick; Vanthuyne, Nicolas; Bouteiller, Laurent

    2015-04-30

    Some benzene-1,3,5-tricarboxamide (BTA) monomers derived from (l) ?-amino esters self-assemble into long rods at millimolar concentrations, and display a strong chiral amplification effect. These rods are in competition with dimeric species. PMID:25823883

  16. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  17. Characterization of blood donors with high haemoglobin concentration

    DEFF Research Database (Denmark)

    Magnussen, K; Hasselbalch, H C; Ullum, H; Bjerrum, O W

    2013-01-01

    Background and Objectives  The literature contains little on the prevalence and causes of high predonation haemoglobin levels among blood donors. This study aimed to characterize and develop an algorithm to manage would-be donors with polycythaemia. Materials and Methods  Between November 2009 and......, erythropoietin, ferritin, platelet count and leucocyte count, JAK2 V617 and JAK2 exon12 analysis, as well as other routine measurements. Results  Among 46 such donors, 39 had a history of smoking, which contributes to erythrocytosis. Two had PV, five had severe hypertension, one of them because of renal artery...

  18. Asymmetric reversal in aged high concentration CuMn alloy

    International Nuclear Information System (INIS)

    The magnetic hysteresis loops of an aged Cu81.2Mn18.8 alloy sample exhibit significant asymmetric reversal at low temperatures, with high sensitivity to the cooling field. Much of the observed behaviour was explained by considering an ensemble of coherent, ferromagnetically aligned clusters interacting with a randomized spin glass component. A modified Stoner–Wohlfarth model was successfully applied to the data using Monte Carlo simulations, in order to gain insight into the dependence of the cluster shape anisotropy and exchange anisotropy on the cooling field. This model suggested that ferromagnetic clusters grow as the cooling field increases. (paper)

  19. Asymmetric reversal in aged high concentration CuMn alloy.

    Science.gov (United States)

    Barnsley, L C; MacA Gray, E; Webb, C J

    2013-02-27

    The magnetic hysteresis loops of an aged Cu(81.2)Mn(18.8) alloy sample exhibit significant asymmetric reversal at low temperatures, with high sensitivity to the cooling field. Much of the observed behaviour was explained by considering an ensemble of coherent, ferromagnetically aligned clusters interacting with a randomized spin glass component. A modified Stoner-Wohlfarth model was successfully applied to the data using Monte Carlo simulations, in order to gain insight into the dependence of the cluster shape anisotropy and exchange anisotropy on the cooling field. This model suggested that ferromagnetic clusters grow as the cooling field increases. PMID:23361044

  20. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Science.gov (United States)

    2010-10-01

    ... appendices A and B of this subpart or a MSDS on benzene meeting the requirements of 29 CFR 1910.1200(g) is... 46 Shipping 7 2010-10-01 2010-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards....

  1. Recommended sublimation pressure and enthalpy of benzene

    International Nuclear Information System (INIS)

    Highlights: • Sublimation pressures of benzene were measured. • Benzene thermodynamic properties in the state of ideal gas were calculated. • Recommended sublimation pressure and enthalpy of benzene were developed. -- Abstract: Recommended vapor pressures of solid benzene (CAS Registry Number: 71-43-2) which are consistent with thermodynamically related crystalline and ideal-gas heat capacities as well as with properties of the liquid phase at the triple point temperature (vapor pressure, enthalpy of vaporization) were established. The recommended data were developed by a multi-property simultaneous correlation of vapor pressures and related thermal data. Vapor pressures measured in this work using the static method in the temperature range from 233 K to 260 K, covering pressure range from 99 Pa to 1230 Pa, were included in the simultaneous correlation. The enthalpy of sublimation was established with uncertainty significantly lower than the previously recommended values

  2. Uranium concentrations of Mediterranean seawater with high salinities

    International Nuclear Information System (INIS)

    Uranium contents and 234U/238U ratios were determined in 25 samples of Mediterranean and Atlantic seawater by α-spectrometry. The Mediterranean waters present salinities often higher than 3.8%. This allowed us to test the relationship between their uranium content and salinity (U-S), already defined for a salinity interval from 3.03 to 3.62%. The uranium content of the Mediterranean waters is higher than predicted by the U-S relationship which might be due to the fact that (1) the relationship established for lower salinities cannot be extrapolated to high salinities or (2) Mediterranean waters present higher uranium content, possibly due to phosphate fertilizer inputs

  3. Development of particle-sizing for high concentrated colloidal dispersions based on photon correlations spectroscopy

    International Nuclear Information System (INIS)

    Particle-sizing in colloidal dispersions by dynamic light scattering is restricted to the low-concentration regime. This report shows the development of the above mentioned technique to very high concentrations. The apparatus consists in the main part of a fiber-optic spectrometer; data acquisition and interpretation in done conventionally. The apparent systematic deviations of the particle diameter - evaluated from the diffusion coefficient - to the real particle size as a function of particle concentration is up to a high concentration due to particle-particle-interaction. The described experimental technique enables the measurement of particle diffusion coefficients even in very high concentrated colloidal dispersions. (orig.)

  4. Ab initio investigation of intermolecular interactions in solid benzene

    OpenAIRE

    Bludsky, O.; Rubes, M.; Soldan, P.

    2008-01-01

    A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are r...

  5. High Precision Fe Isotope Analysis in low Concentration Samples by High Resolution MC-ICPMS

    Science.gov (United States)

    Chung, C.; Wu, J.; You, C.

    2009-12-01

    Iron availability has been shown to be the main limitation factor for phytoplankton growth in the ocean. However, due to the limitation of analytical technique, the database of dissolved Fe concentrations and isotope ratio distribution in the ocean is still very limited. In particular, the iron sources to the ocean remain uncertain. Aeolian dust from the continental is considered as the primary source, also the digenetic dissolution at the continental margins is proposed to contribute significant portion of iron content of the sea surface water. The field of Fe isotope geochemistry has seen important developments in methodology and scope since the advent of Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). Although increasing the number of replicates in High Resolution MC-ICPMS reduces the uncertainty related to instability in instrumental mass bias and counting statistics, many other parameters include mass fractionation during column separation, matrix effect in ICPMS analysis and the presence of isobaric interferences can affect the precision and accuracy of Fe isotopic analyses. In this study, a high precision analytical method of Fe isotope measurement for low concentration samples was developed using HR-MC-ICPMS. Several parameters that may affect the accuracy and precision of 56Fe/54Fe result such as background, instrumental mass discrimination, isobaric interferences, type of introduction system and acid molarity were identified and evaluated. External precisions better than 0.04‰ for δ56Fe can be achieve using only 10ng of iron sample with APEX and X-cone as introduction system. Significant improvement in terms of sample size was made. This method can be applied on very low concentration samples such as coral and seawater.

  6. Measurement of DNA repair deficiency in workers exposed to benzene

    International Nuclear Information System (INIS)

    We hypothesize that chronic exposure to environmental toxicants can induce genetic damage causing DNA repair deficiencies and leading to the postulated mutator phenotype of carcinogenesis. To test our hypothesis, a host cell reactivation (HCR) assay was used in which pCMVcat plasmids were damaged with UV light (175, 350 J/m2 UV light), inactivating the chloramphenicol acetyltransferase reporter gene, and then transfected into lymphocytes. Transfected lymphocytes were therefore challenged to repair the damaged plasmids, reactivating the reporter gene. Xeroderma pigmentosum (XP) and Gaucher cell lines were used as positive and negative controls for the HCR assay. The Gaucher cell line repaired normally but XP cell lines demonstrated lower repair activity. Additionally, the repair activity of the XP heterozygous cell line showed intermediate repair compared to the homozygous XP and Gaucher cells. We used HCR to measure the effects of benzene exposure on 12 exposed and 8 nonexposed workers from a local benzene plant. Plasmids 175 J/m2 and 350 J/m2 were repaired with a mean frequency of 66% and 58%, respectively, in control workers compared to 71% and 62% in exposed workers. Conversely, more of the exposed workers were grouped into the reduced repair category than controls. These differences in repair capacity between exposed and control workers were, however, not statistically significant. The lack of significant differences between the exposed and control groups may be due to extremely low exposure to benzene (<0.3 ppm), small population size, or a lack of benzene genotoxicity at these concentrations. These results are consistent with a parallel hprt gene mutation assay. 26 refs., 4 figs., 2 tabs

  7. A field campaign for measurement of benzene in urban area of Venice

    International Nuclear Information System (INIS)

    A field campaign for the measurement of benzene and toluene in urban areas has been planned by the city of Venice in collaboration with CNR during the period June-July 1994. The measurements were provided by three automatic systems, available from the companies Chrompack, Elecos and Perkin-Elmer. The main aims of this campaign were to collect information on spatial and temporal distribution of these pollutants, in order to estimate the exposure risk for people in an urban polluted environment, and to identify the most reliable and accurate systems to measure this pollutant. From the comparison between the temporal trend of benzene and natural radioactivity it can be deduced that the concentration levels of primary pollutants at ground state are not simply linked to emissions, but they are strongly modulated by atmospheric diffusion processes. The reliability of the experimental results was demonstrated by a statistical treatment, and it was shown that it is necessary to carry out measurements at sufficiently high frequencies to represent the real environmental situation

  8. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  9. Dissociative electron attachment to laser-excited benzene

    International Nuclear Information System (INIS)

    We have conducted comprehensive measurements on enhanced electron attachment to ArF and KrF laser-excited benzene in the presence of Ar and N2 buffer gases. At both these laser lines, two-photon absorption leads to excitation of benzene to energies above its ionization potential. Such excitations have been shown to lead to a population of long-lived, core-excited high-Rydberg states in addition to the ionization of the molecule. Present measurements on the dependence of negative ion yield on laser fluence, benzene pressure, and applied electric field verify that the observed negative ion formation is due to the attachment of the photoelectrons to the concomitantly produced high-Rydberg states. Using a rate equation analysis, the electron attachment rate constant for the core-excited Rydberg states was estimated to be of the order of 10-4-10-3 cm3 s-1. Laser photoionization cross sections were also estimated, and the cross section at the KrF laser line is in agreement (author)

  10. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pbenzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided. PMID:27041300

  11. COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN

    International Nuclear Information System (INIS)

    The aromatic benzene molecule (C6H6)-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C2H2) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two orders of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.

  12. Highly efficient transduction of repopulating bone marrow cells using rapidly concentrated polymer-complexed retrovirus

    International Nuclear Information System (INIS)

    Using the cationic polymer, Polybrene, and the anionic polymer, chondroitin sulfate C, we concentrated recombinant retrovirus pseudotyped with an ecotropic envelope, which is susceptible to inactivation by high-speed concentration methods. To evaluate gene marking, murine bone marrow was harvested from C3H mice, transduced with polymer-concentrated GFP virus, and transplanted into lethally irradiated recipients. Total gene marking in mice averaged 30-35% at 8 weeks post-transplant and transgene expression remained stable for over 16 weeks. Using the polymer concentration method, a second retroviral vector encoding the drug resistant variant of dihydrofolate reductase (L22Y-DHFR) was concentrated and tested. Approximately 40% of transduced murine bone marrow progenitor cells were protected against trimetrexate concentrations that completely eliminated the growth of non-modified cells. These results show that anionic and cationic polymers can be combined to rapidly concentrate viruses that are normally difficult to concentrate, and the concentrated virus efficiently transduces hematopoietic stem cells

  13. High catechin concentrations detected in Withania somnifera (ashwagandha by high performance liquid chromatography analysis

    Directory of Open Access Journals (Sweden)

    Sulaiman Siti

    2011-08-01

    Full Text Available Abstract Background Withania somnifera is an important medicinal plant traditionally used in the treatment of many diseases. The present study was carried out to characterize the phenolic acids, flavonoids and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH scavenging activities in methanolic extracts of W. somnifera fruits, roots and leaves (WSFEt, WSREt and WSLEt. Methods WSFEt, WSREt and WSLEt was prepared by using 80% aqueous methanol and total polyphenols, flavonoids as well as DPPH radical scavenging activities were determined by spectrophotometric methods and phenolic acid profiles were determined by HPLC methods. Results High concentrations of both phenolics and flavonoids were detected in all parts of the plant with the former ranging between 17.80 ± 5.80 and 32.58 ± 3.16 mg/g (dry weight and the latter ranging between 15.49 ± 1.02 and 31.58 ± 5.07 mg/g. All of the three different plant parts showed strong DPPH radical scavenging activities (59.16 ± 1.20 to 91.84 ± 0.38%. Eight polyphenols (gallic, syringic, benzoic, p-coumaric and vanillic acids as well as catechin, kaempferol and naringenin have been identified by HPLC in parts of the plant as well. Among all the polyphenols, catechin was detected in the highest concentration (13.01 ± 8.93 to 30.61 ± 11.41 mg/g. Conclusion The results indicating that W. somnifera is a plant with strong therapeutic properties thus further supporting its traditional claims. All major parts of W. somnifera such as the roots, fruits and leaves provide potential benefits for human health because of its high content of polyphenols and antioxidant activities with the leaves containing the highest amounts of polyphenols specially catechin with strong antioxidant properties.

  14. Measurements of two-photon absorption cross sections for liquid benzene and methyl benzenes

    International Nuclear Information System (INIS)

    Two-photon cross sections of neat benzene and methyl substituted benzenes at various wavelengths for selective excitation were measured by two-photon induced fluorescence spectra for the first time. The results show that the two-photon rate increases rapidly with the frequency of the photon

  15. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    Science.gov (United States)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  16. Solar Thermal Collectors at High Latitudes : Design and performance of non-tracking concentrators

    OpenAIRE

    Adsten, Monika

    2002-01-01

    Solar thermal collectors at high latitudes have been studied, with emphasis on concentrating collectors. A novel design of concentrating collector, the Maximum Reflector Collector (MaReCo), especially designed for high latitudes, has been investigated optically and thermally. The MaReCo is an asymmetrical compound parabolic concentrator with a bi-facial absorber. The collector can be adapted to various installation conditions, for example stand-alone, roof- or wall mounted. MaReCo prototypes ...

  17. Thermal Analysis of Direct Liquid-Immersed Solar Receiver for High Concentrating Photovoltaic System

    OpenAIRE

    Xinyue Han; Qian Wang; Jun Zheng; Jian Qu

    2015-01-01

    Concentrator solar cells that operate at high solar concentration level must be cooled. In this paper, direct liquid immersion cooling of triple-junction solar cells (InGaP/InGaAs/Ge) is proposed as a heat dissipation solution for dense-array high concentrating photovoltaic (HCPV) systems. The advantages of triple-junction CPV cells immersed in a circulating dielectric liquid and dish HCPV technology are integrated into a CPV system to improve the system electrical conversion efficiency. An a...

  18. Factors influencing the crystallisation of highly concentrated water-in-oil emulsions: A DSC study

    OpenAIRE

    Irina Masalova; Karina Kovalchuk

    2012-01-01

    Highly concentrated emulsions are used in a variety of applications, including the cosmetics, food and liquid explosives industries. The stability of these highly concentrated water-in-oil emulsions was studied by differential scanning calorimetry. Crystallisation of the emulsions was initiated by exposing the emulsions to a low temperature. The effects of surfactant type, electrolyte concentration and electrolyte composition in the aqueous phase on emulsion crystallisation temperature were s...

  19. Forming High Ozone Concentration in the Ambient Air of Southern Taiwan under the Effects of Western Pacific Subtropical High

    OpenAIRE

    Kuo-Cheng Lo; Chung-Hsuang Hung

    2015-01-01

    Due to the distinct geographical and meteorological conditions of Taiwan, air pollutants concentrations in the ambient air of it may vary with seasons. Accordingly, this study aimed to investigate the formation of high O3 concentration in the ambient air of Southern Taiwan during summers. A high O3 concentration case occurring between June 28 and July 2, 2013, was modeled and analyzed with WRF-Chem meteorological and air quality model. During the investigated period, a typical western Pacific...

  20. Radiolysis of benzene solutions in aqueous NaNO3

    International Nuclear Information System (INIS)

    The radiolysis of aqueous benzene solutions was carried out at 35 deg C, 45 deg C, 55 deg C and 65 deg C. The results, obtained by coupling HPLC and GC separations, showed that the yields of all the radiolysis products increased with temperature. However, the comparison of the results must be limited to those compounds that are formed exclusively in aqueous solutions. It was found that the increase of the relative concentrations of the products with the temperature followed the order: nitrobenzene > phenol > o-nitrophenol > p-nitrophenol. (author) 7 refs.; 4 tabs

  1. MICROSTRUCTURAL PROPERTIES OF HIGH-LEVEL WASTE CONCENTRATES AND GELS WITH RAMAN AND INFRARED SPECTROSCOPIES

    Science.gov (United States)

    Nearly half of the high level radioactive waste stored at Hanford is composed of highly alkaline concentrates referred to as either salt cakes or Double-Shell Slurry (DSS), depending on their compositions and processing histories. The major components of these concentrates are wa...

  2. Study on a Passive Vapor Feed Direct Methanol Fuel Cell with High Methanol Concentration

    Directory of Open Access Journals (Sweden)

    F. A. Halim

    2013-10-01

    Full Text Available An extensive research has been carried out to improve the performance of direct methanol fuel cells (DMFCs using low methanol concentration below 5 M either in active or passive conditions due to methanol crossover (MCO problem which the methanol crosses over the membrane and reacts directly with oxygen at cathode. However, a low methanol concentration leads to a low energy density of the fuel cell system and a short runtime which cannot meet the requirement of commercialization. Therefore, it is important to use a high concentration of methanol in DMFC to achieve a high energy density. This study was done to improve the performance of passive vapor feed DMFC by using high methanol concentrations from 12 M (molarity to neat methanol. From the results obtained, it was showed that the performance of passive vapor feed DMFC that used high methanol concentration improved. It was a linear dependence of current density on methanol concentration which is the current density increased when the methanol concentration increased up to neat. The linear dependence of current density on the concentration suggested that the cell operation was under the rate controlling by the methanol transport. Therefore, it can conclude that high methanol concentration can leads to high energy density achieved by the DMFCs.

  3. Electrochemical radiofluorination. Labeling of benzene with [18F]fluoride by nucleophilic substitution

    International Nuclear Information System (INIS)

    18F-labeling of aromatic compounds normally is achieved by electrophilic substitution. In that case [18F]fluoride cannot be applied although it is produced very efficiently at medical cyclotrons. By the use of electrochemical methods, however, benzene can be oxidized and thus, the electron density is reduced in a way that nucleophilic attack of [18F]fluoride occurs. For the first time benzene was shown to be labeled with [18F]fluoride after being electrochemically oxidized in a 2 ml electrolysis cell with 0.033M Et3N x 3HF and 0.066M Et3N x HCl in CH3CN and benzene in various concentrations. After 50 Coulombs (60-90 min) maximum of labeling was reached. With the highest concentration of aromatic compound (1.0M) the radiochemical yields were 16±9% with specific activities up to 27 GBq/mmol. (author)

  4. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg−1) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg−1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  5. Ion-selective uranyl electrode with membrane based on a mixture of uranyl di-2-ethylhexylphosphate with tributlyphosphate in benzene

    Energy Technology Data Exchange (ETDEWEB)

    Serebrennikova, N.V.; Kukushkina, I.I.; Plotnikova, N.V.

    1982-04-01

    A study is presented of the electrochemical properties of an uranyl electrode with a liquid membrane, a benzene solution of UO/sub 2/R/sub 2/ mixed with tributylphosphate (TBP). The electrochemical properties of the electrode were studied using a TR-1501 electrometer with EZ-7 strip-chart recorder to record the transmembrane potential difference as a function of uranyl ion activity in aqueous sulfate solutions. The selectivity coefficients were determined by the method of bionic potentials for the electrode with various concentrations of uranyl di-2-ethylhexylphosphate and with various additives of TBP. As the UO/sub 2/R/sub 2/ concentration is changed the selective properties change with respect to a number of singly and doubly charged ions. The uranyl membrane electrode is more highly selective in the presence of a number of ions and has a lower boundary of uranyl ion content determination than electrodes with the membrane containing only uranyl di-2-ethylhexylphosphate in benzene. The properties of the electrode depend both on the concentration of ion exchange substance and on the quantity of tributylphosphate added.

  6. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin

    International Nuclear Information System (INIS)

    In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin-Astakov (D-A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D-A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.

  7. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Long Chao, E-mail: clong@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal and Resources Reuse, Nanjing 210046 (China); Jiangsu Engineering Research Center for Organic Pollution Control and Resources Reuse, Nanjing 210046 (China); Li Qifen [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Qian Hongming [State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal and Resources Reuse, Nanjing 210046 (China); Jiangsu Engineering Research Center for Organic Pollution Control and Resources Reuse, Nanjing 210046 (China); Li Aimin; Zhang Quanxing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal and Resources Reuse, Nanjing 210046 (China); Jiangsu Engineering Research Center for Organic Pollution Control and Resources Reuse, Nanjing 210046 (China)

    2009-07-15

    In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin-Astakov (D-A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D-A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.

  8. Synergic extraction of lanthanoid(III) with 2-thenoyltrifluoroacetone and triphenylarsine oxide in benzene

    International Nuclear Information System (INIS)

    The synergic extraction of La(III), Eu(III) and Lu(III) with 2-thenoyltrifluoroacetone (Htta) and triphenylarsine oxide (tpao) in benzene was studied. The extractability of lanthanoids, Ln(III), is significantly affected by the association of Htta with tpao in the organic phase. The associated species is Htta · tpao and the association constant is determined as 101.63. The intrinsic extraction equilibrium of Ln(III) is analyzed using the free concentration of Htta and tpao. The synergic enhancement is ascribable to the formation of the adduct complexes shown as Ln(tta)3tpao and Ln(tta)3(tpao)2 in the present extraction system. The adduct formation constants determined are very large as expected from the high basicity of tpao. (author) 13 refs.; 5 figs.; 2 tabs

  9. Benzene, benzo(a)pyrene, and lead in smoke from tobacco products other than cigarettes.

    Science.gov (United States)

    Appel, B R; Guirguis, G; Kim, I S; Garbin, O; Fracchia, M; Flessel, C P; Kizer, K W; Book, S A; Warriner, T E

    1990-05-01

    Benzene, benzo(a)pyrene (BaP), and lead in mainstream smoke from cigars, roll-your-own (RYO) cigarette and pipe tobaccos were sampled to evaluate their potential health significance. Results with reference cigarettes were consistent with published values, providing support for the methodology employed. The emissions of benzene and BaP, expressed as mass emitted per gram of tobacco consumed, were similar for all products evaluated; for benzene, the mean values for cigars, RYO cigarette and pipe tobaccos were 156 +/- 52, 68 +/- 11, and 242 +/- 126 micrograms/g, respectively. Mean values for BaP were 42 +/- 7 and 48 +/- 4 ng/g for cigars and RYO cigarette tobacco, respectively. Lead values were below the limit of reliable quantitation in all cases. The mean benzene concentrations in a puff ranged from 1 to 2 x 10(5) micrograms/m3 for cigars, RYO cigarette and pipe tobaccos. For BaP, the puff concentration averaged about 60 micrograms/m3 for cigars and RYO cigarette tobacco. The results suggest that smoking cigars, pipes or RYO cigarettes leads to potential exposures which exceed the No Significant Risk levels of benzene and BaP set pursuant to California's Proposition 65. These tobacco products are now required to bear a health hazard warning when sold in California. We recommend that this be adopted as national policy. PMID:2327532

  10. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  11. Contamination from endocrine disrupters of the general population at low and high concentrations.

    Science.gov (United States)

    Porta, Miquel; Pumarega, José; Gasull, Magda; Lopez, Tomàs

    2014-01-01

    Analyses of the concentrations of a given environmental compound usually show that most citizens have much lower concentrations than a certain minority, whose members have high body concentrations. Surveys of human exposure to chemicals do not usually integrate the number of chemical compounds detected per person and the concentration of each compound. This leaves untested relevant exposure situations, for example, whether individuals with low concentrations of some compounds have high concentrations of the other compounds. On scientific grounds, it is puzzling that this possibility, arithmetically and conceptually rather simple, has seldom if ever been tested in studies based on a representative sample of the general population. A study based on a representative sample of the general population of Catalonia (Spain) (Porta, Pumarega, & Gasull, 2012), which integrated the number of compounds detected per person and the concentration of each compound, found that more than half of the population had concentrations in the top quartile of 1 or more of the 19 persistent toxic substances (PTS) (pesticides and polychlorinated biphenyls) analyzed. Significant subgroups of the population accumulated PTS mixtures at high concentrations. For instance, 48% of women 60-74 years had concentrations of 6 or more PTS in the top quartile; half of the entire population had levels of 1-5 PTS above 500 ng/g, and less than 4% of citizens had all PTS in the lowest quartile. Thus, PTS concentrations appear low in most of the population only when each individual compound is looked at separately. It is not accurate to state that most of the population has low concentrations of PTS. The assessment of mixture effects must address the fact that most individuals are contaminated by PTS mixtures made of compounds at both low and high concentrations. PMID:24388190

  12. An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).

    Science.gov (United States)

    Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

    2013-01-01

    Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at similar facilities. The data also provide a basis for comparable measured exposure levels and the potential for adverse health effects. These data may also prove beneficial for comparing relative exposure potential for production versus nonproduction operations and the relationship between area and personal breathing zone samples. PMID:23980839

  13. Gas phase nitrosation of substituted benzenes

    Science.gov (United States)

    Dechamps, Noémie; Gerbaux, Pascal; Flammang, Robert; Bouchoux, Guy; Nam, Pham-Cam; Nguyen, Minh-Tho

    2004-03-01

    Using a combination of tandem mass spectrometric experiments (ion-molecule reactions, collisional activation, neutralization-reionization, MS/MS/MS) and theoretical calculations, protonated substituted benzenes are demonstrated to readily react with neutral t-butyl nitrite by the formation of stable complexes linking ionized nitric oxide to the benzene derivatives. The overall process is proposed to involve the concomitant elimination of neutral 2-methyl-2-propanol. Proton-bound dimers are proposed to intervene as the key-intermediates in these reactions, which also competitively produce protonated t-butyl nitrite. All the experiments were performed in a single hybrid tandem mass spectrometer of sector-quadrupole-sector configuration.

  14. Metabolites of benzene are potent inhibitors of gap-junction intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Rivedal, Edgar [Norwegian Radium Hospital, Institute for Cancer Research, Montebello, Oslo (Norway); Witz, Gisela [Robert Wood Johnson Medical School/UMDNJ, Environmental and Occupational Health Sciences Institute and Department of Environmental and Occupational Medicine, Piscataway, New Jersey (United States)

    2005-06-01

    Chronic exposure to benzene has been shown to lead to bone marrow depression and the development of leukemia. The mechanism underlying the carcinogenicity of benzene is unknown, although a number of genetic changes including chromosomal aberrations have been associated with benzene toxicity. Metabolism of benzene is required for the induced toxicological effects. We have investigated the effect of trans,trans-muconaldehyde (MUC), hydroquinone (HQ), and four MUC metabolites on gap-junction intercellular communication (GJIC). Inhibition of GJIC has been considered a possible predictor of tumor promoters and non-genotoxic carcinogens, and shown to result in perturbation of hematopoiesis. MUC was found to be a strong inhibitor of GJIC (EC50=12 {mu}mol L{sup -1}) in rat liver epithelial cells IAR20, with potency similar to that of chlordane (EC50=7 {mu}mol L{sup -1}). HQ inhibited GJIC with an EC50 of 25 {mu}mol L{sup -1}, and the metabolite OH/CHO with an EC50 of 58 {mu}mol L{sup -1}. The other MUC metabolites tested, CHO/COOH and OH/COOH were weak inhibitors of GJIC whereas COOH/COOH had no effect. Benzene itself had no effect on GJIC when tested in concentrations up to 20 mmol L{sup -1}. The relative potency observed for the metabolites on GJIC is similar to their hematotoxic effects. The effect of MUC on GJIC was observed to take place concordant with a dramatic loss of connexin 43 (Cx43) from the cells as visualized by Western blotting. Substances with the ability to inhibit Cx43-dependent GJIC have previously been observed to interfere with normal hematopoietic development. The ability of benzene metabolites to interfere with gap-junction functionality, and especially the dramatic loss of Cx43 induced by MUC, should therefore be considered as a possible mechanism for benzene-induced hematotoxicity and development of leukemia. (orig.)

  15. Anti-benzene compounds. Conversion of benzene to toluene by methyl donors, in man.

    Science.gov (United States)

    Braier, L

    1977-01-01

    The level of benzene in blood can be efficiently reduced, an its noxious effect neutralized, by the concurrent administration of either of two groups of organic compounds: 1) methyl donors such as choline and betaine; and, 2) cysteine-HCL. Methionine acts as a precursor of cysteine in the body as uell as a methyl donor like choline and betaine. The appearance of toluene in blood was demonstrated after the sequential ingestion of choline plus betaine, benzene. The results are discussed in relation to clinical application in workers chronically exposed to benzene. PMID:594433

  16. High altitude AM0 testing of PV concentrator lens elements. [Air Mass Zero

    Science.gov (United States)

    Piszczor, M. F.; Brinker, D. J.; Boyer, E. O.; Mcknight, R. C.; Ranaudo, R. J.

    1990-01-01

    Recently, the NASA Lewis Research Center modified its Lear High Altitude Test Facility to fly two prototype ENTECH minidome Fresnel lens photovoltaic concentrator elements. The tests were highly successful, and the results verified the ability of the Lear High Altitude Facility to measure the optical performance of individual concentrator lens elements and concentrator/cell combinations at near AM0 insolation conditions. The two concentrator lenses flown achieved optical efficiencies, based on a gallium arsenide concentrator cell response, of 89.8 percent and 90.0 percent. The flights demonstrated the ability of the aircraft to maintain the pointing accuracy required to obtain useful data. With proper alignment of the collimating tube and the pilot's sunsight, this facility could easily maintain a pointing accuracy of + or - 0.5 deg for a sufficiently long time to obtain accurate, reproducible results.

  17. Small-angle neutron scattering studies of sodium butyl benzene sulfonate aggregates in aqueous solution

    Indian Academy of Sciences (India)

    O R Pal; V G Gaikar; J V Joshi; P S Goyal; V K Aswal

    2004-08-01

    The aggregation behaviour of a hydrotrope, sodium -butyl benzene sulfonate (Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope seems to form self-assemblies with aggregation number of 36–40 with a substantial charge on the aggregate. This aggregation number is weakly affected by the hydrotrope concentration.

  18. Survey of benzene and aromatics in Canadian Gasoline - 1994

    International Nuclear Information System (INIS)

    A comprehensive database of the benzene and aromatics levels of gasoline produced in or imported into Canada during 1994, was presented. Environment Canada conducted a survey that requested refineries and importers to report quarterly on benzene and aromatics levels in gasoline. Benzene, which has been declared toxic by the Canadian Environmental Protection Act, is found in gasoline and is formed during the combustion of the aromatic components of gasoline. It was shown that benzene and aromatics levels differ regionally and seasonally. There are also variations in benzene levels between batches of gasoline produced at any one refinery. This report listed the responses to the benzene/aromatics survey. It also described the analytical procedures used to measure benzene and aromatics levels in gasoline, and provided guidelines for reporting gasoline benzene and total aromatics data. 7 tabs., 21 figs

  19. Occupational exposure to benzene at the ExxonMobil refinery in Beaumont, TX (1976-2007).

    Science.gov (United States)

    Gaffney, Shannon H; Burns, Amanda M; Kreider, Marisa L; Unice, Ken M; Widner, Thomas E; Paustenbach, Dennis J; Booher, Lindsay E; Gelatt, Richard H; Panko, Julie M

    2010-07-01

    Because crude oil and refined petroleum products can contain benzene and benzene is considered a known carcinogen by numerous independent and governmental agencies, including the International Agency for Cancer Research, the petroleum industry has implemented exposure control programs for decades. As part of the benzene control programs, significant exposure assessments have been performed; both qualitatively and through quantitative measurements. In this study, we evaluated the airborne concentrations of benzene and their variability over time at the ExxonMobil refinery in Beaumont, TX between 1976 and 2007. The results of 5854 personal air samples are included in this analysis; 3761 were considered non-task (> or =180 min) personal samples, and 2093 were considered task-related (<180 min) personal samples. Dock and loading rack samples were analyzed separately from the refinery samples because in addition to refinery products, employees at the dock and loading rack also handled chemical plant products. In general, the non-task personal refinery air samples indicated that exposures of the past 30 years were generally below the occupational exposure limit of 1 ppm (mean=0.30 ppm, SD=3.1), were higher during routine (mean=0.32 ppm, SD=3.3) than turnaround operations (mean=0.16 ppm, SD=0.87), and decreased slightly over time. The job sampled most frequently during routine operations was that of process technician, and, as broken down by area, resulted in the following mean benzene air concentrations: coker (n=146, mean=0.014 ppm, SD=0.036), lube extraction unit (n=31, mean<0.070 ppm), pipestills (n=136, mean=0.12, SD=0.47), waste treatment (n=107, mean=0.20, SD=0.28), and all other areas (n=1115, mean=0.059 ppm, SD=0.36). Task-based samples indicated that the highest exposures resulted from the tank cleaning tasks, although the overall task mean benzene air concentration was 1.4 ppm during routine operations. The most frequently sampled task during routine operations was blinding and breaking, and the mean benzene air concentrations associated with this task were statistically higher in the reformer area of the refinery (n=311, mean=3.2 ppm, SD=7.9) than in all other areas (n=200, mean=0.92 ppm, SD=3.1). However, task-related exposures were found to be statistically similar across job categories for a given task. This study thus provides a task-focused analysis for occupational exposure to benzene during refinery operations, and will be useful for understanding exposures at this refinery. PMID:20494616

  20. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  1. Benzene derivatives produced by Fusarium graminearum - Short communication.

    Science.gov (United States)

    Ntushelo, Khayalethu; Setshedi, Itumeleng

    2015-06-01

    Using NMR spectroscopy benzene derivatives were detected in mycelia of Fusarium graminearum, a pathogen of wheat and maize. In previous studies F. graminearum was found to cause cancer to humans and benzene derivatives were detected in breath of cancer sufferers. Surprisingly, no study found benzene derivatives to be the cancerous agents in F. graminearum. In this study we detected benzene derivatives in F. graminearum and propose to study their role as cancer agents. PMID:26081280

  2. A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications

    Science.gov (United States)

    Piszczor, Michael F., Jr.; Macosko, Robert P.

    2000-01-01

    A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.

  3. Recommended sublimation pressure and enthalpy of benzene

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Červinka, C.

    2014-01-01

    Roč. 68, Jan (2014), s. 40-47. ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : benzene * vapor pressure * heat capacity * ideal-gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  4. 46 CFR 153.1060 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060...

  5. Formation of Benzene in the Interstellar Medium

    Science.gov (United States)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  6. Systems biology of human benzene exposure

    OpenAIRE

    2009-01-01

    Toxicogenomic studies, including genome-wide analyses of susceptibility genes (genomics), gene expression (transcriptomics), protein expression (proteomics), and epigenetic modifications (epigenomics), of human populations exposed to benzene are crucial to understanding gene-environment interactions, providing the ability to develop biomarkers of exposure, early effect and susceptibility. Comprehensive analysis of these toxicogenomic and epigenomic profiles by bioinformatics in the context of...

  7. Radiation-induced chlorination of benzene

    International Nuclear Information System (INIS)

    Radiation-induced process of the benzene chlorination to achieving the maximum yield of γ-hexachlorocyclohexane (γ-HCH) was investigated. The influence of temperature, flow rate of chlorine and dose rate of γ-radiation was appointed. The addition of such halogenohydrocarbons as dichloromethane and tetrachloroethane, to reacting system increased γ-HCH content in the products mixture. (author)

  8. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  9. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    International Nuclear Information System (INIS)

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C6H6/CH4/N2 via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH4/N2. Our results show that even a trace amount of C6H6 (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH4, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  10. High dose intravitreal ganciclovir injection provides a prolonged therapeutic intraocular concentration.

    OpenAIRE

    Morlet, N.; Young, S.; Naidoo, D.; Graham, G.; Coroneo, M T

    1996-01-01

    BACKGROUND: Although intravitreal high dose ganciclovir has previously been found to provide excellent control of cytomegalovirus (CMV) retinitis, little was known about the vitreous concentrations of ganciclovir after a 2 mg intravitreal injection. METHODS: Eleven vitreous samples were taken from seven patients with CMV retinitis at 24 and 72 hours after a 2 mg intravitreal injection of ganciclovir and the concentration of ganciclovir was measured by high performance liquid chromatography. R...

  11. Effective surface dilatational viscosity of highly concentrated particle-laden interfaces

    CERN Document Server

    Lishchuk, S V

    2014-01-01

    The effective surface dilatational viscosity is calculated of a flat interface separating two immiscible fluids laden with half-immersed monodisperse rigid spherical non-Brownian particles in the limit of high particle concentration. The derivation is based upon the facts that (i) highly-concentrated particle arrays in a plane form hexagonal structure, and (ii) the dominant contribution to the viscous dissipation rate arises in the thin gaps between neighboring particles.

  12. Dynamic instability of dislocation motion at high-strain-rate deformation of crystals with high concentration of point defects

    Science.gov (United States)

    Malashenko, V. V.

    2015-12-01

    The motion of an ensemble of edge dislocations has been studied under conditions of high-strainrate deformation of a crystal with a high concentration of point defects. The conditions of existence of the region of dynamic instability of dislocation motion have been found. It has been shown that the existence of the region and its boundaries is determined by the proportion of the point defect concentration and the dislocation density.

  13. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  14. [Evaluation of penicillin expandase mutants and complex substrate inhibition characteristics at high concentrations of penicillin G].

    Science.gov (United States)

    Wu, Linjun; Fan, Keqiang; Ji, Junjie; Yang, Keqian

    2015-12-01

    Penicillin expandase, also known as deacetoxycephalosporin C synthase (DAOCS), is an essential enzyme involved in cephalosporin C biosynthesis. To evaluate the catalytic behaviors of penicillin expandase under high penicillin G concentration and to identify mutants suitable for industrial applications, the specific activities of wild-type DAOCS and several mutants with increased activities toward penicillin G were determined by HPLC under high penicillin G concentrations. Their specific activity profiles were compared with theoretical predictions by different catalytic dynamics models. We evaluated the specific activities of wild-type DAOCS and previous reported high-activity mutants H4, H5, H6 and H7 at concentrations ranging from 5.6 to 500 mmol/L penicillin G. The specific activities of wild-type DAOCS and mutant H4 increased as penicillin G concentration increased, but decreased when concentrations of substrate go above 200 mmol/L. Other mutants H5, H6 and H7 showed more complex behaviors under high concentration of penicillin G. Among all tested enzymes, mutant H6 showed the highest activity when concentration of penicillin G is above 100 mmol/L. Our results revealed that the substrate inhibition to wild-type DAOCS' by penicillin G is noncompetitive. Other DAOCS mutants showed more complex trends in their specific activities at high concentration of penicillin G (>100 mmol/L), indicating more complex substrate inhibition mechanism might exist. The substrate inhibition and activity of DAOCS mutants at high penicillin G concentration provide important insight to help select proper mutants for industrial application. PMID:27093832

  15. Irradiation with benzene, toluene and phenol electron beams in aqueous solution

    International Nuclear Information System (INIS)

    It is described a methodology for waste water treatment which is simulated doing a benzene-toluene-phenol mixture in aqueous solution. Three different concentrations of them ones were used which were irradiated with electron beams coming from a Pelletron Accelerator carrying out the degradation effect of these compounds in CO2 and H2O. By mean of gas chromatography the analytical determinations were realized finding that in lower concentration of benzene and toluene performances of degradation higher than 95 % were obtained, but higher concentrations (100 ppm) the performance diminishes at 89 %, while for phenol in higher concentrations its degradation is over 60 % and in lower concentrations the degradation is under 80 %. The results are obtained with a constant irradiation time of 12 seconds and neutral pH. (Author

  16. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage.

    Science.gov (United States)

    Zanichelli, Fulvia; Capasso, Stefania; Di Bernardo, Giovanni; Cipollaro, Marilena; Pagnotta, Eleonora; Cartenì, Maria; Casale, Fiorina; Iori, Renato; Giordano, Antonio; Galderisi, Umberto

    2012-09-01

    Isothiocyanates (ITCs) are molecules naturally present in many cruciferous vegetables (broccoli, black radish, daikon radish, and cauliflowers). Several studies suggest that cruciferous vegetable consumption may reduce cancer risk and slow the aging process. To investigate the effect of ITCs on cellular DNA damage, we evaluated the effects of two different ITCs [sulforaphane (SFN) and raphasatin (RPS)] on the biology of human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, contribute to the homeostatic maintenance of many organs. The choice of SFN and RPS relies on two considerations: they are among the most popular cruciferous vegetables in the diet of western and eastern countries, respectively, and their bioactive properties may differ since they possess specific molecular moiety. Our investigation evidenced that MSCs incubated with low doses of SFN and RPS show reduced in vitro oxidative stress. Moreover, these cells are protected from oxidative damages induced by hydrogen peroxide, while no protection was evident following treatment with the UV ray of a double strand DNA damaging drug, such as doxorubicin. High concentrations of both ITCs induced cytotoxic effects in MSC cultures and further increased DNA damage induced by peroxides. In summary, our study suggests that ITCs, at low doses, may contribute to slowing the aging process related to oxidative DNA damage. Moreover, in cancer treatment, low doses of ITCs may be used as an adjuvant to reduce chemotherapy-induced oxidative stress, while high doses may synergize with anticancer drugs to promote cell DNA damage. PMID:22684843

  17. Combustion of hydrogen at high concentrations including the effect of obstacles

    International Nuclear Information System (INIS)

    Combustion of hydrogen-steam-air mixtures has been studied in a 2.3-m diameter sphere at 1000C and near atmospheric pressure. The range of concentrations investigated were 10% to 42% hydrogen and 0% to 30% steam by volume. Over this range, the combustion proceeded until one of the reactants was completely consumed. Measured peak combustion pressures were 10 to 20% below the calculated, adiabatic values. the effect of fan-generated turbulence was less pronounced at high hydrogen concentrations than at low concentrations. The effect of obstacles was investigated by placing gratings in the sphere. Although gratings increased the extent of combustion and the peak pressure at low concentrations, their effect was less at high hydrogen concentrations. In general, gratings acted as heat sinks, reducing, in some cases, the peak pressure as well as the rate of pressure rise. These observations are preliminary and further studies are required for confirmation

  18. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene,...

  19. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject...

  20. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to...

  1. BENZENE VAPOR DEPLETION IN THE PRESENCE OF PLANTS

    Science.gov (United States)

    Three plant species, Eichhornia crassipes in a nutrient hydroponic culture Beta vulgaris saccharifera, and Beta vulgaris cicla in soil and in water cultures, were found to deplete benzene from the air. Following benzene depletion, plant tissues were extracted and no benzene was d...

  2. Concentrator Systems

    Science.gov (United States)

    Luque-Heredia, Ignacio; Luque, Antonio

    2015-10-01

    The following sections are included: * Introduction * The early development of CPV * Concentrator solar cells * Optics for photovoltaic concentrators * Photovoltaic concentration modules * Tracking systems for photovoltaic concentration * High-concentration systems * Rating and performance * Cost considerations * Conclusions * References

  3. The free form XR photovoltaic concentrator: a high performance SMS3D design

    Science.gov (United States)

    Cvetkovic, Aleksandra; Hernandez, Maikel; Benítez, Pablo; Miñano, Juan C.; Schwartz, Joel; Plesniak, Adam; Jones, Russ; Whelan, David

    2008-08-01

    A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and high acceptance angle that in the same time is compact and convenient for thermal and mechanical management. This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces (i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and is one of the keys to get a cost competitive photovoltaic generator. For the geometrical concentration of 1000x the simulation results show the acceptance angle of +/-1.8 deg. The irradiance distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum values under the ones that the cell can accept. The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.

  4. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    Science.gov (United States)

    Mattes, Benjamin R. (Sante Fe, NM); Wang, Hsing-Lin (Los Alamos, NM)

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  5. Radiation dose in mass screening for gastric cancer with high-concentration barium sulphate compared with moderate-concentration barium sulphate

    International Nuclear Information System (INIS)

    Full text: Recently, high-concentration barium sulfate has been developed and is used in many medical facilities. This study compared radiation dose using high-concentration and moderate-concentration barium sulfate. The dose was evaluated with an experimental method using a gastric phantom and with a clinical examination. In the former, the dose and X-ray tube load were measured on the phantom with two concentrations of barium sulfate. In the latter, the fluoroscopic dose-area product (DAP), the radiographic DAP and their sum, the total DAP, were investigated in 150 subjects (112 males, 38 females) treated with both concentrations of barium sulfate. The effective dose was calculated by the software of PCXMC in every case. The results of the experimental evaluation indicated that the effective dose and X-ray tube load were greater with high-concentration barium sulfate than with moderate-concentration barium sulfate (p < 0.05). The results of the clinical evaluation indicated that the fluoroscopic DAP was greater with moderate-concentration barium sulfate than with high-concentration barium sulfate (p < 0.05), but the radiographic DAP was quite the reverse, so the total DAP and effective dose were almost same with both concentrations of barium sulfate. We conclude that high-concentration barium sulfate does not increase radiation dose in mass screening for gastric cancer.

  6. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    Science.gov (United States)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.

  7. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    Science.gov (United States)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer. Measurements from the two instruments were highly correlated (R2=0.80) over a wide range of sampling conditions.

  8. Benzene exposures caused by traffic in Munich public transportation systems between 1993 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Roemmelt, H.; Pfaller, A.; Fruhmann, G.; Nowak, D. [Institute and Outpatient Clinic for Occupational and Environmental Medicine, Ludwig-Maximilians-University Munich, Ziemssenstr. 1, D-80336 Munich (Germany)

    1999-10-29

    Volatile aromatics (benzene, toluene, xylenes, the BTX-aromatics) were measured between 1993 and 1997 in buses and trams in Munich center and along main roads during regular rides. The sampling time was between 07.00 and 00.00 h. A total of 631 probes were sampled and centrally analyzed. In the mean of 5 years we found 15.0 {mu}g benzene/m{sup 3}, 50% above the limit of the 23. BImSchV and 107.5 {mu}g BTX aromates/m{sup 3} along the strongly traffic loaded main streets. Splitting up these mean emissions into single years we observed a trend toward a decline of mean immission of all volatile aromatics (benzene from 23.8 {mu}g/m{sup 3} to 7.4 {mu}g/m{sup 3}) and the sum of BTX aromatics (from 147.5 {mu}g/m{sup 3} to 59.4 {mu}g/m{sup 3}). The measured hydrocarbon concentrations in Munich center were consistent with the long range theoretical calculations concerning the decrease of traffic-caused benzene immissions in cities. If the current trends continue, we can expect benzene concentrations to be below 5 {mu}g/m{sup 3} by the year 2001 and below 2.5 {mu}g/m{sup 3} by the year 2008. At these levels, the carcinogenic risk from benzene is probably less significant than the risks to public health from other car exhaust components.

  9. Solvent isotope effect on viscosity of polystyrene-benzene solutions

    International Nuclear Information System (INIS)

    The concentration and temperature dependencies of viscosity and density of solutions of nearly monodisperse samples (Mw/Mn w) ranging from 4x103 to 4x105 between 293-313 K. Isotope H/D substitution in benzene causes visible changes in viscosity and density of solutions, however, its influence on intrinsic viscosities and Huggins constants, derived from the concentration dependences of viscosity, is negligible. No isotope effects on the exponents in the power low relationship have been detected. The viscosities of the solutions have been also correlated with the densities. The apparent close-packed volumes are practically constant for all solutions and seem to be determined by the properties of the solvent. The deuterium substitution visibly affects the close-packed volumes - they decrease by approximately 13%, both in pure solvent and in solutions. (author)

  10. Comparison and prediction of the retention in micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for disubstituted benzenes.

    Science.gov (United States)

    Angkanasiriporn, Siriporn; Singsung, Wuttipong; Petsom, Amorn; Nhujak, Thumnoon

    2010-01-01

    Retention index (I), rather than retention factor (k), was found to be a more reasonable parameter for comparison of the relative affinity of disubstituted benzenes in MEEKC and MEKC, due to independent of I with the SDS surfactant concentration. MEKC and MEEKC may give similar or different I values, depending on types of moieties. With known I and K(ow) for alkylbenzenes as references in MEKC and MEEKC, the values of K(ow) for disubstituted benzenes can be estimated from the observed I values, where K(ow) is the octanol-water distribution constant. In addition, a group additive approach can be used to predict I for disubstituted benzenes with different moieties from the average observed I for the disubstituted benzenes with same moieties. However, electronic effects and/or intramolecular interaction may result in the different observed I from prediction. PMID:20162592

  11. Ab initio investigation of intermolecular interactions in solid benzene

    CERN Document Server

    Bludsky, O; Soldan, P; 10.1103/PhysRevB.77.092103

    2009-01-01

    A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are reproduced, and the value of 480 meV/molecule is calculated for its cohesive energy.

  12. Removal of benzene from wastewater via Fenton pre-treatment followed by enzyme catalyzed polymerization.

    Science.gov (United States)

    Saha, Beeta; Taylor, K E; Bewtra, J K; Biswas, N

    2011-01-01

    This study investigated the feasibility of a two-step process for the removal of benzene from buffered synthetic wastewater. Benzene is outside the scope of enzymatic removal. In order to remove it from wastewater using enzyme, its pretreatment by modified Fenton reaction was employed to generate the corresponding phenolic compounds. In the first phase, the optimum pH, H2O2 and Fe2+ concentrations and reaction time for the Fenton reaction were determined to maximize the conversion of benzene to phenolic compounds without causing significant mineralization. The pretreatment process was followed by oxidative polymerization of the phenolic compounds catalyzed by a laccase from Trametes villosa. Factors of interest for the three-hour enzymatic treatment were pH and laccase concentration. Under optimum Fenton reaction conditions, 80% conversion of the initial benzene concentration was achieved, giving a mixture containing oxidative dimerization product (biphenyl) and hydroxylation products (phenol, catechol, resorcinol, benzoquinone and hydroquinone). Enzymatic removal of biphenyl and benzoquinone was not possible but 2.5 U/mL laccase was successful in removal of the rest of the phenolic PMID:21866766

  13. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  14. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    International Nuclear Information System (INIS)

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: ► Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. ► Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. ► The Si/SiOx core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC–MS and UV–Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 × 10−4 M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  15. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Suoyuan [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034 (China); Tsang, Chi Him A. [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Wong, Ningbew [Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China); Lee, Shuit-Tong [Institute of Functional Nano and Soft Materials and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong (China)

    2011-12-15

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  16. Diffusion and adsorption of benzene in Regina clay

    International Nuclear Information System (INIS)

    Surface or near-surface spills of hydrocarbons such as gasoline and diesel often occur in clay soils which are fractured and unsaturated. For cost-effective remediation, the extent of contamination and the distribution of the various phases should be determined before the development of remediation methods. The four volatile compounds that are commonly associated with gasoline leaking from underground fuel storage tanks are benzene, toluene, ethlybenzene and xylene. Existing diffusion test methods have been used successfully for inorganic species, but the successful application of these methods to volatile organic compounds is limited. The main difficulty with experiments using volatile organics is that there is a need for careful sample handling and sensitive analytical methods to accurately measure the aqueous concentration. Work was carried out to develop an apparatus that could be used to measure the diffusion and adsorption of volatile organics in clay. The best visual fit to the experimental data for the single reservoir test was an effective diffusion coefficient of 0.01 mL/g, and an adsorption coefficient of 0.1 mL/g. Based on diffusion cell tests, there are relatively low levels of retardation for benzene as it moves in clay soils with low organic carbon content. The implications for remediation are summarized. 28 refs., 16 figs., 5 tabs

  17. Developmental toxicity and brain aromatase induction by high genistein concentrations in zebrafish embryos

    OpenAIRE

    Kim, Dong-Jae; Seok, Seung-Hyeok; Baek, Min-Won; Lee, Hui-Young; Na, Yi-Rang; Park, Sung-Hoon; Lee, Hyun-Kyoung; Dutta, Noton Kumar; Kawakami, Koichi; Park, Jae-Hak

    2009-01-01

    Genistein is a phytoestrogen found at a high level in soybeans. In vitro and in vivo studies showed that high concentrations of genistein caused toxic effects. This study was designed to test the feasibility of zebrafish embryos for evaluating developmental toxicity and estrogenic potential of high genistein concentrations. The zebrafish embryos at 24 h post-fertilization were exposed to genistein (1 × 10−4 M, 0.5 × 10−4 M, 0.25 × 10−4 M) or vehicle (ethanol, 0.1%) for 60 h. Genistein-treated...

  18. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie N.; Jørgensen, Christian Juncher; Askaer, Louise; Rickelt, Lars F.; Joensen, Hans P.; Larsen, Morten; Liengaard, Lars

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  19. The design and research of distributed cooling type high concentrated photovoltaic module

    Science.gov (United States)

    Dai, Mingchong; Yao, Shun; Chen, Bingzhen; Yang, Guanghui; Guo, Limin; Peng, Na; Shen, Du; Bao, Wei; Yang, Cuibai; Zhang, Yang; Wang, Zhiyong

    2015-10-01

    At present, the conversion efficiency of high concentrated photovoltaic modules is about 30%, most of the solar energy is converted into heat, which will result in solar cell temperature rise and subsequent module efficiency decrease. For existing module with large solar cell, the heat source is concentrated and additional cooling fins must be used, resulting in high system complexity and cost rise. In order to lower the cost of photovoltaic, we developed distributed cooling type module with simple structure. This paper depicts a distributed cooling design for high concentrated photovoltaic module, as well as the thermal simulation of this design with analysis software. Module prototype was also made to test the actual effect. The final outdoor results showed high consistency with the simulation results. The chip temperature can be lower than 45° and the module outdoor working efficiency is higher than 26% and lower temperature provide a guarantee of long-term reliability to module packaging material.

  20. Electrodeposited ZnO/ Zn Photo catalysts for the Degradation of Benzene-Toluene-Xylene Mixture in Aqueous Phase

    International Nuclear Information System (INIS)

    The recognition of the ability of volatile organic compounds, (VOCs) to pollute the ground water is now well documented. VOCs such as benzene, toluene and xylene from the petroleum industries processed water leaked through the underground old piping system into the soils and groundwater during its transportation to the wastewater plant. Photo catalysis have been used as a potential system in the degradation of VOCs in the wastewater. However, the powdered form photo catalysts that were used in various studies are difficult to be separated from the aqueous solution at the end of the treatment. Therefore, the main objective of this research is to prepare the electrodeposited photo catalysts for the degradation of aromatic hydrocarbon mixture, benzene-toluene-xylene (BTX) solution under UV light (354 nm). The concentrations of electrolyte and electrodeposition voltages used to prepare the photo catalysts were studied for their efficiency in the degradation. From the research, ZnO/ Zn prepared in 0.8 M NaOH and under 12 V possessed the best catalytic degradation performance by degrading 32.37 % of BTX in the solution. The ZnO/ Zn photo catalyst was characterized using X-ray Diffraction Techniques (XRD) which illustrated high crystallinity of Zn species and reasonably high amorphous phase of ZnO species. (author)

  1. Maximum entropy estimation of a Benzene contaminated plume using ecotoxicological assays

    International Nuclear Information System (INIS)

    Ecotoxicological bioassays, e.g. based on Danio rerio teratogenicity (DarT) or the acute luminescence inhibition with Vibrio fischeri, could potentially lead to significant benefits for detecting on site contaminations on qualitative or semi-quantitative bases. The aim was to use the observed effects of two ecotoxicological assays for estimating the extent of a Benzene groundwater contamination plume. We used a Maximum Entropy (MaxEnt) method to rebuild a bivariate probability table that links the observed toxicity from the bioassays with Benzene concentrations. Compared with direct mapping of the contamination plume as obtained from groundwater samples, the MaxEnt concentration map exhibits on average slightly higher concentrations though the global pattern is close to it. This suggest MaxEnt is a valuable method to build a relationship between quantitative data, e.g. contaminant concentrations, and more qualitative or indirect measurements, in a spatial mapping framework, which is especially useful when clear quantitative relation is not at hand. - Highlights: ► Ecotoxicological shows significant benefits for detecting on site contaminations. ► MaxEnt to rebuild qualitative link on concentration and ecotoxicological assays. ► MaxEnt shows similar pattern when compared with concentrations map of groundwater. ► MaxEnt is a valuable method especially when quantitative relation is not at hand. - A Maximum Entropy method to rebuild qualitative relationships between Benzene groundwater concentrations and their ecotoxicological effect.

  2. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach

    KAUST Repository

    Williamson, Curtis B.

    2015-12-23

    © 2015 American Chemical Society. Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (<7% relative standard deviation for Cu2-xS and CdS), and demonstrate a 10-1000-fold increase in Cu2-xS NP production (>200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (64% increase in heat capacity), and is resistant to Ostwald ripening.

  3. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow......A continuum model is established for numerical studies of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle......-concentration field coupled to the continuity and Navier–Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is...

  4. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    OpenAIRE

    Lei Jing; Hua Liu; Yao Wang; Wenbin Xu; Hongxin Zhang; Zhenwu Lu

    2014-01-01

    A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy ef...

  5. Electrical and Thermal Performance Analysis for a Highly Concentrating Photovoltaic/Thermal System

    OpenAIRE

    Ning Xu; Jie Ji; Wei Sun; Wenzhu Huang; Zhuling Jin

    2015-01-01

    A 30 kW highly concentrating photovoltaic/thermal (HCPV/T) system has been constructed and tested outdoors. The HCPV/T system consists of 32 modules, each of which consists of point-focus Fresnel lens and triple-junction solar cells with a geometric concentrating ratio of 1090x. The modules are connected to produce both electrical and thermal energy. Performance analysis has been conducted from the viewpoint of thermodynamics. The experimental results show that highest photovoltaic efficiency...

  6. Effect of sorghum tannins in sheep fed with high-concentrate diets

    OpenAIRE

    S.L.S. Cabral Filho; A.L. Abdalla; I.C.S. Bueno; S.P. Gobbo; A.A.M. Oliveira

    2013-01-01

    The aim of this study was to evaluate the nutritional value of three sorghum cultivars with different concentrations of condensed tannins in sheep diets. Six adult sheep (LW=56kg) with rumen and duodenal fistulas were assigned to experimental groups using two 3x3 Latin Square designs. The diets were formulated using three sorghum cultivars: LTC (low-tannin cultivar), MTC (medium-tannin cultivar) and HTC (high-tannin cultivar). Microbial nitrogen (MN) concentration in the duodenum was measured...

  7. High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System

    Science.gov (United States)

    Nakamura, T.; Case, J. A.; Timmons, M. L.

    2004-01-01

    This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.

  8. High concentrations of myeloperoxidase in the equine uterus as an indicator of endometritis.

    Science.gov (United States)

    Parrilla-Hernandez, Sonia; Ponthier, Jérôme; Franck, Thierry Y; Serteyn, Didier D; Deleuze, Stéfan C

    2014-04-15

    Intraluminal fluid and excessive abnormal hyperedema are regularly used for the diagnosis of endometritis in the mare, which is routinely confirmed by the presence of neutrophils on endometrial smears. Studies show a relation between neutrophils and myeloperoxidase (MPO), an enzyme contained in and released by neutrophils during degranulation or after cell lysis. This enzyme has been found in many fluids and tissues, and associated with different inflammatory pathologies in the horse. The aims of this study were to assess the presence and concentration of MPO in the equine uterus, and to investigate its relation with neutrophils, and other clinical signs of endometritis. Mares (n = 51) were evaluated for the presence of intraluminal fluid and excessive endometrial edema before breeding, and a small volume lavage and cytology samples were obtained. From 69 cycles, supernatant of the uterine flushes was analyzed with a specific equine MPO ELISA assay to measure MPO concentration. Cytology samples were used for the diagnosis of endometritis. Myeloperoxidase was present in the uterus of all estrus mares in highly variable concentrations. Myeloperoxidase concentrations were significantly (P < 0.05) higher in samples with positive cytologies and in the presence of intraluminal fluid. Occasionally, some samples with negative cytologies showed high MPO concentration, but the opposite was never observed. Cycles presenting hyperedema weren't associated with high concentration of MPO, intraluminal fluid, or positive cytology, making it a poor diagnostic tool of endometritis. PMID:24565475

  9. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa

    2013-10-01

    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  10. Formation of reactive metabolites from benzene

    International Nuclear Information System (INIS)

    Rat liver mitoplasts were incubated first with [3H]dGTP, to form DNA labeled in G, and then with [14C]benzene. The DNA was isolated and upon isopycnic density gradient centrifugation in CsCl yielded a single fraction of DNA labeled with both [3H] and [14C]. These data are consistent with the covalent binding of one or more metabolites of benzene to DNA. The DNA was enzymatically hydrolyzed to deoxynucleosides and chromatographed to reveal at least seven deoxyguanosine adducts. Further studies with labeled deoxyadenine revealed one adduct on deoxyadenine. [3H]Deoxyguanosine was reacted with [14C]hydroquinone or benzoquinone. The product was characterized using uv, fluorescence, mass and NMR spectroscopy. A proposed structure is described. (orig.)

  11. One Million Quantum States of Benzene.

    Science.gov (United States)

    Halverson, Thomas; Poirier, Bill

    2015-12-17

    In this study, we compute all of the dynamically relevant vibrational quantum states of benzene, using an "exact" quantum dynamics (EQD) methodology. Benzene (C6H6), in addition to being a very large molecule for EQD (12 atoms, 30 vibrational modes), also has a very large number of vibrational states-around 10(6) in all, lying within 6500 cm(-1) of the ground state. The EQD methodology developed here uses a phase space picture to optimize the truncation of a harmonic oscillator basis-not only with respect to the molecular system of interest but also with respect to the targeted spectral range. By employing several such EQD calculations, targeted to different spectral ranges, a "hybridized" data set is constructed that provides the most accurate results everywhere. In particular, more than 500?000 states are converged to 15 cm(-1) or better. PMID:26418314

  12. Experimental Study of Sorbitol Production by Zymomonas mobilis in High Sucrose Concentration

    Directory of Open Access Journals (Sweden)

    Rui Srgio dos Santos Ferreira da Silva

    2004-01-01

    Full Text Available The sorbitol presents several industrial applications and its conventional production is of high cost and low yield. Sorbitol production by Zymomonas mobilis production has attracted attention as both production cost and environmental impact are low. The sorbitol plays an osmo-protective rule so that its production is promoted by high sugar concentrations. This work has evaluated the effect of high sucrose concentration in the sorbitol production. The raise of sucrose concentration from 100 to 300g/ L caused an increase in the sorbitol production from 4,979 to 20,633g/l. Statistic analysis showed that 95,5% in the variation in sorbitol production can be explained.

  13. High-dimensional orbital angular momentum entanglement concentration based on Laguerre–Gaussian mode selection

    International Nuclear Information System (INIS)

    Twisted photons enable the definition of a Hilbert space beyond two dimensions by orbital angular momentum (OAM) eigenstates. Here we propose a feasible entanglement concentration experiment, to enhance the quality of high-dimensional entanglement shared by twisted photon pairs. Our approach is started from the full characterization of entangled spiral bandwidth, and is then based on the careful selection of the Laguerre–Gaussian (LG) modes with specific radial and azimuthal indices p and ℓ. In particular, we demonstrate the possibility of high-dimensional entanglement concentration residing in the OAM subspace of up to 21 dimensions. By means of LabVIEW simulations with spatial light modulators, we show that the Shannon dimensionality could be employed to quantify the quality of the present concentration. Our scheme holds promise in quantum information applications defined in high-dimensional Hilbert space. (letter)

  14. DMR (Deacetylation and Mechanical Refining) Processing of Corn Stover Achieves High Monomeric Sugar Concentrations (230 g L-1) During Enzymatic Hydrolysis and High Ethanol Concentrations (>10% v/v) During Fermentation Without Hydrolysate Purification or Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.; Nelson, Robert; Tao, Ling; Zhang, Min; Tucker, Melvin P.

    2016-04-01

    Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In this work, we achieved approximately 230 g L-1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L-1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. The potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.

  15. Exploration of the horizontally staggered light guides for high concentration CPV applications.

    Science.gov (United States)

    Selimoglu, Ozgur; Turan, Rasit

    2012-08-13

    The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system. PMID:23038554

  16. Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene

    International Nuclear Information System (INIS)

    Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously. -- Graphical abstract: Under visible light irradiation, Au nanoparticles, which are supported on ZnO nanowires, dominate their catalytic properties in gas-phase degradation benzene reaction. Highlights: ► The composites that Au nanoparticles supported on ZnO nanowires were synthesized. ► Au/ZnO composites were firstly used as effective photocatalysts for benzene degradation. ► Two operating mechanisms were proposed depending on excitation wavelength.

  17. Evaluating the impact of high Pluronic F68 concentrations on antibody producing CHO cell lines.

    Science.gov (United States)

    Tharmalingam, Tharmala; Goudar, Chetan T

    2015-04-01

    Pluronic F68 (P-F68) is an important component of chemically-defined cell culture medium because it protects cells from hydrodynamic and bubble-induced shear in the bioreactor. While P-F68 is typically used in cell culture medium at a concentration of 1?g/L (0.1%), higher concentrations can offer additional shear protection and have also been shown to be beneficial during cryopreservation. Recent industry experience with variability in P-F68-associated shear-protection has opened up the possibility of elevated P-F68 concentrations in cell culture media, a topic that has not been previously explored in the context of industrial cell culture processes. Recognizing this gap, we first evaluated the effect of 1-5?g/L P-F68 concentrations in shake flask cultures over ten 3-day passages for cell lines A and B. Increase in terminal cell density and cell size was seen over time at higher P-F68 concentrations but protein productivity was not impacted. Results from this preliminary screening study suggested no adverse impact of high P-F68 concentrations. Subsequently fed-batch bioreactor experiments were conducted at 1 and 5?g/L P-F68 concentrations with both cell lines where cell growth, viability, metabolism, and product quality were examined under process conditions reflective of a commercial process. Results from these bioreactor experiments confirmed findings from the preliminary screen and also indicated no impact of elevated P-F68 concentration on product quality. If additional shear protection is desired, either due to raw material variability, cell line sensitivity, or a high-shear cell culture process, our results suggest this can be accomplished by elevating the P-F68 concentration in the cell culture medium without impacting cell culture performance and product quality. PMID:25384465

  18. Lack of correlation between environmental or biological indicators of benzene exposure at parts per billion levels and micronuclei induction

    International Nuclear Information System (INIS)

    Despite growing concern for possible carcinogenic effects associated with environmental benzene exposure in the general population, few studies exist at parts per billion (ppb) levels. We investigated the existence of a relationship between airborne/biological measurements of benzene exposure i.e., personal/area sampling and unmodified urinary benzene/trans,trans-muconic acid; t,t-MA) and micronuclei induction cytochalasin B technique) among exposed chemical laboratory workers (n=47) and traffic wardens (n=15). Although urinary t,t-MA (106.9±123.17 μg/Lurine) correlated (R2=0.37) with urinary benzene (0.66±0.99 μg/Lurine), neither biological measurement correlated with environmental benzene exposure (14.04±9.71 μg/m3; 4.39±3.03 ppb), suggesting that, at ppb level (1 ppb=3.2 μg/m3), airborne benzene constitutes a fraction of the total intake. Traffic wardens and laboratory workers had comparable numbers of micronuclei (4.70±2.63 versus .76±3.11; n.s.), similar to levels recorded in the general population. With univariate/multivariate analysis, no association was found between micronuclei induction and air/urinary benzene exposure variables. Notably, among the personal characteristics examined (including age, gender, smoking, drinking, etc.), high body mass index correlated with micronuclei induction while, among females, use of hormonal medication was associated with less micronuclei. Thus the present study provides no evidence that ppb levels of environmental benzene exposure appreciably affect micronuclei incidence against the background of other relevant factors). However, this should not be taken as an argument against efforts aiming to reduce environmental benzene pollution

  19. Electronic structure of the benzene dimer cation

    Science.gov (United States)

    Pieniazek, Piotr A.; Krylov, Anna I.; Bradforth, Stephen E.

    2007-07-01

    The benzene and benzene dimer cations are studied using the equation-of-motion coupled-cluster model with single and double substitutions for ionized systems. The ten lowest electronic states of the dimer at t-shaped, sandwich, and displaced sandwich configurations are described and cataloged based on the character of the constituent fragment molecular orbitals. The character of the states, bonding patterns, and important features of the electronic spectrum are explained using qualitative dimer molecular orbital linear combination of fragment molecular orbital framework. Relaxed ground state geometries are obtained for all isomers. Calculations reveal that the lowest energy structure of the cation has a displaced sandwich structure and a binding energy of 20kcal/mol, while the t-shaped isomer is 6kcal/mol higher. The calculated electronic spectra agree well with experimental gas phase action spectra and femtosecond transient absorption in liquid benzene. Both sandwich and t-shaped structures feature intense charge resonance bands, whose location is very sensitive to the interfragment distance. Change in the electronic state ordering was observed between ? and ?u states, which correlate to the B and C bands of the monomer, suggesting a reassignment of the local excitation peaks in the gas phase experimental spectrum.

  20. PROCESS SIMULATION OF BENZENE SEPARATION COLUMN OF LINEAR ALKYL BENZENE (LABPLANT

    Directory of Open Access Journals (Sweden)

    Zaid A. AbdelRahman

    2013-05-01

    Full Text Available       CHEMCAD process simulator was used for the analysis of existing benzene separation column in LAB plant(Arab Detergent Company/Beiji-Iraq.         Simulated column performance curves were constructed. The variables considered in this study are the thermodynamic model option, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates compositions, were constructed. Four different thermodynamic models options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.            For Benzene Column (32 real stages, feed stage 14, the simulated results show that bottom temperature above 200 oC the weight fractions of top components, except benzene, increases sharply, where as benzene top weight fraction decreasing sharply. Also, feed temperature above 180 oC  shows same trends. The column profiles remain fairly constant from tray 3 (immediately below condenser to tray 10 (immediately above feed and from tray 15 (immediately below feed to tray 25 (immediately above reboiler. Simulation of the benzene separation column in LAB production plant using CHEMCAD simulator, confirms the real plant operation data. The study gives evidence about a successful simulation with CHEMCAD.

  1. An assessment of a spiral duct centrifuge using standard and high concentration aerosols

    International Nuclear Information System (INIS)

    The Stoeber spiral duct centrifuge has been calibrated by means of polystyrene latex microspheres for the subsequent measurement of aerosol particle size distributions. Intermediate (1 g m-3) ad high (100 g m-3) sodium chloride aerosol concentrations have been sampled by the centrifuge to determine possible limitations in the equipment. Corrections have to be made for the effect of Coriolis forces, and aerosol concentrations above 1 g m-3 should be diluted before sampling. The spiral duct centrifuge is an extremely versatile instrument for aerosol analysis, and shows a high degree of reliability when operated under well-defined conditions. (author)

  2. Use of Fixed-Film Bioreactors, in Situ Microcosms, and Molecular Biological Analyses to Evaluate Bioremediation of Chlorinated Benzenes By Indigenous Bacteria and a Bioaugmented Dechlorinating Consortium

    Science.gov (United States)

    Lorah, M. M.; Teunis, J. A.

    2014-12-01

    Evaluation of bioremediation is complicated by contaminant mixtures, high concentrations, variable site conditions, and multiple possible degradation pathways. In this study, fixed-film bioreactor experiments, in situ microcosms, and microbial analyses were utilized to evaluate both anaerobic and aerobic biodegradation processes for tri- and dichlorobenzene isomers, monochlorobenzene, and benzene in a wetland. Biofilm-based bioreactors provide a robust assessment tool because of their typically high degree of stability, even with major and repeated perturbations. Two bioreactor units seeded with an anaerobic dechlorinating consortium (WBC-2) and one unit seeded only with bacteria indigenous to the site were operated under flow-through conditions to compare biougmentation and natural attenuation. Electron donor levels were varied to fluctuate between anaerobic and aerobic conditions, and inflow concentrations of total chlorobenzenes were transitioned from 1-10 mg/L to 50-100 mg/L. Biodegradation resulted in removal efficiencies of 80 to 99 percent for the different compounds and inflow concentrations. Degradation efficiency in the native bioreactor was not impacted by cycling between anaerobic and aerobic conditions, although removal rates for monochlorobenzene and benzene increased under aerobic conditions. In situ microcosms were incubated below the wetland surface in sets of 3 treatments—unamended, biostimulated (lactate addition), and bioaugmented (WBC-2 and lactate). Additional treatment sets contained 13C-labeled contaminants to monitor for production of 13C-containing carbon dioxide and cellular material. Microcosm results verified that WBC-2 bioaugmentation can enhance biodegradation, with complete mineralization of chlorobenzene and benzene in bioaugmented and native treatments. Microbial analyses using QuantArrayTM for functional and taxonomic genes indicated potential for co-occurrence of anaerobic and aerobic biodegradation. Compared to the unamended in situ microcosms, the WBC-2 microcosm contained two to five orders of magnitude higher quantities of targeted microbial populations that are associated with degradation of chlorinated and petroleum compounds through both anaerobic and aerobic pathways.

  3. High Iridium concentration of alkaline rocks of Deccan and implications to K/T boundary

    Indian Academy of Sciences (India)

    P N Shukla; N Bhandari; Anirban Das; A D Shukla; J S Ray

    2001-06-01

    We report here an unusually high concentration of iridium in some alkali basalts and alkaline rocks of Deccan region having an age of about 65Ma, similar to the age of the Cretaceous-Tertiary boundary. The alkali basalts of Anjar, in the western periphery of Deccan province, have irid-ium concentration as high as 178pg/g whereas the alkaline rocks and basalts associated with the Amba Dongar carbonatite complex have concentrations ranging between 8 and 80 pg/g. Some of these values are more than an order of magnitude higher than the concentration in the tholeiiticbasalts of Deccan, indicating the significance of alkaline magmatism in the iridium inventory at the Cretaceous-Tertiary boundary. Despite higher concentration, their contribution to the global inventory of iridium in the Cretaceous-Tertiary boundary clays remains small. The concentration of iridium in uorites from Amba Dongar was found to be < 30 pg/g indicating that iridium is not incorporated during their formation in hydrothermal activity.

  4. Vitamin E Concentrations in Adults with HIV/AIDS on Highly Active Antiretroviral Therapy

    Science.gov (United States)

    Kaio, Daniella J. Itinoseki; Rondó, Patricia Helen C.; Luzia, Liania Alves; Souza, José Maria P.; Firmino, Aline Vale; Santos, Sigrid Sousa

    2014-01-01

    HIV/AIDS patients are probably more predisposed to vitamin E deficiency, considering that they are more exposed to oxidative stress. Additionally, there are an extensive number of drugs in the highly active antiretroviral therapy (HAART) regimens that may interfere with vitamin E concentrations. The objective of this study was to compare serum concentrations of alpha-tocopherol in 182 HIV/AIDS patients receiving different HAART regimens. The patients were divided into three groups according to regimen: nucleoside analog reverse-transcriptase inhibitors (NRTIs) + non-nucleoside analog reverse-transcriptase inhibitors (NNRTIs); NRTIs + protease inhibitors + ritonavir; NRTIs + other classes. Alpha-tocopherol was assessed by high-performance liquid chromatography. Multiple linear regression analysis was used to evaluate the effects of HAART regimen, time of use, and compliance with the regimen on alpha-tocopherol concentrations. Alpha-tocopherol concentrations were on average 4.12 μmol/L lower for the NRTIs + other classes regimen when compared to the NRTIs + NNRTIs regimen (p = 0.037). A positive association (p < 0.001) was observed between alpha-tocopherol and cholesterol concentrations, a finding due, in part, to the relationship between liposoluble vitamins and lipid profile. This study demonstrated differences in alpha-tocopherol concentrations between patients using different HAART regimens, especially regimens involving the use of new drugs. Long-term prospective cohort studies are needed to monitor vitamin E status in HIV/AIDS patients since the beginning of treatment. PMID:25225815

  5. Installation of a bitumen coating plant for high-activity concentrates

    International Nuclear Information System (INIS)

    Following the excellent results obtained on the industrial coating of radioactive sludges, the possibility of solidifying also the evaporation concentrates with bitumen has been considered. For high activity concentrates, the use of bitumen is however limited by two main parameters: temperature resistance, irradiation resistance. By making use of the characteristics of a blown bitumen, it has been possible to design a high activity coating pilot plant treating concentrations of several tens of curies per litre. This plant will make use of a screw-type extrusion machine capable of coating treated concentrates at a rate of 20 l/hr. Before being coated, the concentrates will be subjected to a coprecipitation treatment designed to make the radioelements insoluble. This installation will make possible, apart from technological studies, laboratory experiments on the coated material (measurements on self-heating, on electrical charges, on radiolytic gases, and also lixiviation tests. It is at present believed, on the basis of available data, that it is possible to coat concentrates having an activity of 20 Ci/l at a price of 1840 F per cubic metre. (authors)

  6. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    Science.gov (United States)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will enable us to determine the magnitude and to identify the sources of emission at local to regional scales.

  7. Benzene-contaminated groundwaters-transport parameters and isotopic evidence for natural attenuation

    International Nuclear Information System (INIS)

    The area of investigation is located on the site of a former hydrogenation plant in Zeitz (Saxonia-Anhalt, Germany). The plant was founded in 1938 to produce gasoline and lubricants originally for the German war industry and was subject of severe bomb strikes in 1944 and 1945 spilling about 250 m3 hydrocarbons into soil. In 1946 it was rebuilt and in the beginning of the 1960s upgraded with a benzene production plant in the eastern part of hydrogenation plant. From 1963 till 1990 the latter produced more than 750,000 t of benzene with maximum production rate in 1979 (79,000 t per year). Leaks and production accidents contaminated groundwater. Contaminations were found in two aquifers. The upper aquifer (I) is a 5-10 m layer of sandy and clayey deposits from the Pleistocene Elster-glacial. The Tertiary aquifer (II) is composed of gravel deposited by an Eocene river, partly overlain by a lignite seam or silt and clay layer of Tertiary age. The prevailing contaminants of aquifer I are BTEX, dominated by high benzene concentrations up to 500 mg L-1. BTEX-concentrations in the aquifer of Tertiary age are considerably lower (100 mg L-1), and benzene is again the dominant pollutant. At three positions, groundwater samples for tritium and 3He analyses were taken from both aquifers trying to match beginning, centre, and end of the contamination plume. Samples exhibit tritium contents of about 10 TU, the groundwater from deepest well 11.7 TU. Tritiugenic 3He contents are in the upper aquifer between 0 and 3.3 TUequivalent (1 TUequivalent is the 3He content yielded by the decay of 1 TU tritium) corresponding to 3He/tritium ratios of 0.31 and less, whereas in the deeper aquifer tritiugenic 3He was found between 19 and 37 TTUequivalent, i.e. 3He/tritium varies in flow direction from 2.0 to 3.1. In terms of apparent groundwater ages these contents correspond to 3 - 5 years in the upper and 10 - 25 years in the deeper aquifer. In case of samples from the deeper aquifer even increasing apparent ages in flow direction might be evident. The upper aquifer is phreatic, and therefore 3He contents there may be affected by diffusive losses. However, tritium contents in both aquifers indicate apparent ages of less than 15 years. The confinement of the deeper aquifer probably preserves most of tritiugenic 3He. Apparent groundwater ages in Figure 1 indicate a recharge in 1975 or younger. Thus, it is probable that at least in the deeper aquifer the contaminant plume does not 'flow' together with the groundwater. The energy consumption of natural attenuation processes may be covered by 'oxidizers' like nitrate and/or sulphate. Because in contaminated as well as non-contaminated groundwaters of the investigation area the nitrate level is very low, attention was focussed on the isotopic composition of sulphate (δ34S) as possible source of energy and on dissolved inorganic carbon (DIC; δ13C) as indicator of totally decomposed hydrocarbons. Fig. 2 shows sulphate content and its δ34S along a flow path in aquifer I, reflecting isotopic enrichment in sulphate due to bacterial reduction. This trend corresponds to a slight decrease of δ13C of DIC from -22.4 per mille to -23.7 per mille confirming the hypothesis of bacterial decomposition of hydrocarbons as natural attenuation process

  8. High sulphate concentrations in squeezed Boom Clay pore water: evidence of oxidation of clay cores

    Science.gov (United States)

    De Craen, M.; Van Geet, M.; Wang, L.; Put, M.

    Pore water has been extracted from Boom Clay by mechanical squeezing. Clay cores were obtained from various boreholes, all drilled at the SCK·CEN domain (Mol, Belgium). In contrast to pore water collected from piezometers, high sulphate concentrations are measured in the squeezed pore water. The lowest sulphate concentrations (<60 mg/l) were measured in pore waters squeezed immediately after drilling. Higher sulphate concentrations were often measured in the pore water when the clay cores were preserved for some time (generally <500 mg/l SO 42-, but sometimes up to 20,000 mg/l SO 42-). Nevertheless, a relation between preservation time and sulphate content could not be retrieved. However, major ion concentrations were obviously correlated with the sulphate content in the squeezed waters. The observed evolution in chemical composition were explained by water-rock interactions considering the pyrite oxidation and the subsequent ion exchange and mineral dissolution reactions.

  9. Effect of Nd3+ concentration quenching in highly doped lead lanthanum zirconate titanate transparent ferroelectric ceramics

    Science.gov (United States)

    de Camargo, A. S. S.; Jacinto, C.; Nunes, L. A. O.; Catunda, T.; Garcia, D.; Botero, . R.; Eiras, J. A.

    2007-03-01

    The concentration dependence of the fluorescence quantum efficiency in Nd3+ doped lead lanthanum zirconate titanate (PLZT), transparent ceramics, is presented. The total emission decay of the emitting level F3/24 is close to exponential, even for high Nd3+ concentration Nt, due to the very low probability of the cross relaxation energy transfer processes among ions. Owing to this low probability, it was inferred that Nd:PLZT presents lower concentration quenching than other laser materials as Nd:YAG. The figure of merit ?Nt, where ? is the fluorescence quantum efficiency, presents a maximum around 6.0wt% Nd2O3, indicating the good prospects of concentrated samples for miniaturization of the laser medium (microchip laser).

  10. Potential of membrane distillation for production of high quality fruit juice concentrate.

    Science.gov (United States)

    Onsekizoglu Bagci, Pelin

    2015-01-01

    Fruit juices are generally concentrated in order to improve the stability during storage and to reduce handling, packaging, and transportation costs. Thermal evaporation is the most widely used technique in industrial fruit juice concentrate production. In addition to high energy consumption, a large part of the characteristics determining the quality of the fresh juice including aroma, color, vitamins, and antioxidants undergoes remarkable alterations through the use of high operation temperatures. Increasing consumer demand for minimally or naturally processed stable products able to retain as much possible the uniqueness of the fresh fruit has engendered a growing interest for development of nonthermal approaches for fruit juice concentration. Among them, membrane distillation (MD) and its variants have attracted much attention for allowing very high concentrations to be reached under atmospheric pressure and temperatures near ambient temperature. This review will provide an overview of the current status and recent developments in the use of MD for concentration of fruit juices. In addition to the most basic concepts of MD variants, crucial suggestions for membrane selection and operating parameters will be presented. Challenges and future trends for industrial adaptation taking into account the possibility of integrating MD with other existing processes will be discussed. PMID:24915342

  11. Investigating DOC export dynamics using high-frequency instream concentration measurements

    Science.gov (United States)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  12. From Halogen to Superhalogen Behavior of Organic Molecules Created by Functionalizing Benzene.

    Science.gov (United States)

    Zhao, Hongmin; Zhou, Jian; Fang, Hong; Jena, Puru

    2016-01-01

    Benzene, the classic organic molecule obeying Hckel's rule of aromaticity, has negative electron affinity (EA), namely -1.15?eV. By using density functional theory with hybrid functional for exchange and correlation potential, we show that a series of organic molecules created by changing either the benzene core or the ligands, or both, result in species with EAs that range from 2.15 to 5.37?eV. This shows that ligand substitution is more effective than aromaticity in increasing the EA of organic molecules. The ability to create highly electronegative organic molecules by functionalizing benzene may provide new opportunities for synthesizing organic oxidizing agents with potential new applications. PMID:26467557

  13. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.

    Science.gov (United States)

    Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent

    2015-04-24

    Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. PMID:25908817

  14. Charge Transfer Complex Role in the Formation of Chlorobenzene in the γ-Irradiated Carbon Tetrachloride - Benzene System

    International Nuclear Information System (INIS)

    The formation of carbon tetrachloride-benzene charge transfer complex was confirmed by UV and NMR spectrometric studies. A change in UV spectrum of benzene is observed upon addition of carbon tetrachloride. The appearance of new bands supports the formation of charge transfer complex. NMR study shows that benzene proton chemical shift depends on the CCI4-C6H6 molar ratio. This observation is another criterion for the formation of benzene - carbon tetrachloride charge transfer complex. Job's Continuous Variation method indicates that a 2:1 CCI4-C6H6 charge transfer complex(2:1 CTC) could be formed. The association constants (K2:1) of this 2:1 CTC was found to be 0.0197 M-2 .The maximum concentration of 2:1 CTC was found at about 33% benzene mole percent. The maximum yield of chlorobenzene was obtained, also, upon radiolysis of CCI4-C6H6 samples at 2:1 molar ratio (33% benzene mole percent). Therefore, it could be concluded that 2:1 CTC participates in thc formation of chlorobenzene upon radiolysis of benzene - carbon tetrachloride system.This conclusion was supported by the dependence of the chlorobenzene yield of γ-irradiated 2: 1 carbon tetrachloride - benzene system on irradiation time according to third order kinetic equation with a very good linearity (R2 = 0.9977). Accordingly, the rate constant for the chlorobenzene formation under this condition, was found to be ∼ 5.5 x 10-7 L2 .moI-2.h-1. We propose a radiation chemical mechanism in which the 2: 1 CTC plays a role in the formation of chlorobenzene

  15. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations.

    Science.gov (United States)

    Chennupati, Pratyusha; Seguin, Philippe; Liu, Wucheng

    2011-12-28

    Soybean contains a range of compounds with putative health benefits including isoflavones and tocopherols. A study was conducted to determine the effects on these compounds of high temperature stress imposed at specific development stages [i.e., none, pre-emergence, vegetative, early reproductive (R1-4), late-reproductive (R5-8), or all stages]. Two cultivars (AC Proteina and OAC Champion) were grown in growth chambers set at contrasting temperatures [i.e., stress conditions of 33/25 °C (day/night temperature) and control conditions of 23/15 °C] in order to generate these treatments. Isoflavone and tocopherol concentrations in mature seeds were determined using high-performance liquid chromatography. In both cultivars isoflavone response was greatest when stress occurred during the R5-8 stages and during all development stages, these treatments reducing total isoflavone concentration by an average of 85% compared to the control. Stress imposed at other stages also affected isoflavone concentration although the response was smaller. For example, stress during the vegetative stages reduced total isoflavones by 33% in OAC Champion. Stress imposed pre-emergence had an opposite effect increasing daidzein concentration by 24% in AC Proteina. Tocopherol concentrations were affected the most when stress was imposed during all stages of development, followed by stress restricted to stages R5-8; response to stress during other stages was limited. The specific response of tocopherols differed, α-tocopherol being increased by high temperature by as much as 752%, the reverse being observed for δ-tocopherol and γ-tocopherol. The present study demonstrates that while isoflavone and tocopherol concentrations in soybeans are affected the most by stress occurring during seed formation, concentrations can also be affected by stress occurring at other stages including stages as early as pre-emergence. PMID:22098462

  16. A case study of benzene urinary biomarkers quantification: the comparison between pre- and post-shift samples improves the interpretation of individual biological monitoring data

    Directory of Open Access Journals (Sweden)

    Acampora A

    2013-07-01

    Full Text Available Background: Benzene is a common industrial chemical and a component of tobacco smoke and of gasoline. It is widely used as chemical intermediate and is a constituent of crude oil and fuels with a large distribution in the environment owing to vehicles engine emissions. Besides, smoking tobacco is regarded as another major source of environmental benzene exposure. As a consequence, benzene is an ubiquitous pollutant of the outdoor and indoor human environment, and the occupational/environmental exposure concerns a large population. Data from epidemiological studies evidence benzene toxicity to humans. In fact, it is classified as a carcinogen (group A1 by the American Conference of Governmental Industrial Hygienists (ACGIH, suggesting a threshold limit value-time weighted average (TLV-TWA of 0.5ppm.Hence health risks prevention strategies allowing to discriminate between occupational and non-occupational exposure are essential. Objective: Evaluation of occupational exposure to benzene by comparison between urinary biomarkers levels in pre- and post-shift samples in biological monitoring (BM investigations. Methods: The biological monitoring of 14 (smoker and non-smoker workers of a refueling station was performed. Urinary benzene (UB and trans,trans-muconic acid (t,t-MA were used as biological markers. The determinations of UB and t,t-MA were performed by head space-solid phase microextraction followed by gas chromatography/mass spectrometry operating in Selected Ion Monitoring mode and High Performance Liquid Chromatography/UltraViolet detection, respectively. Urinary creatinine levels were also determined.Urine collection was initially performed after work-shift (first BM campaign as suggested by ACGIH. Given difficulties in interpreting data without statistical basis, the urine collection was repeated before and after the work-shift (second BM campaign. Results and Discussion: During the first BM campaign, contrasting results were found. Some workers showed low UB concentrations with respect to t,t-MA ones and vice versa, and although most investigated subjects presented UB and t,t-MA levels below Biological Equivalents (BEs values and ACGIH’s BEI, various exceptions were found, either with exceeding UB or with exceeding t,t-MA levels.According to the ACGIH, the high biomarkers levels found in post-shift urine would have suggested an occupational exposure to benzene. Nevertheless, ACGIH’s BEI are defined on statistical basis and should not be used when individual data are interpreted, in fact results obtained by monitoring post-shift urine only without knowing individual background levels did not facilitate the interpretation of data.As a consequence, the biological monitoring investigation was repeated by collecting urine samples before and after work-shift, and a biomarkers concentration decrement was observed, allowing the discrimination between occupational and non-occupational exposure. Conclusions: The obtained findings suggest that biological monitoring strategies aimed to evaluate the exposure of individuals (single workers to ubiquitous hazardous chemicals, need the measurement of biomarkers concentration both before and after each potential exposure cause, so that confounding factors could be taken into account during data interpretation.

  17. Inhibition effects of high calcium concentration on anaerobic biological treatment of MSW leachate.

    Science.gov (United States)

    Xia, Yi; He, Pin-Jing; Pu, Hong-Xia; Lü, Fan; Shao, Li-Ming; Zhang, Hua

    2016-04-01

    With the increasing use of municipal solid waste incineration (MSWI) and more stringent limits on landfilling of organic waste, more MSWI bottom ash is being landfilled, and the proportion of inorganic wastes in landfills is increasing, causing the increased Ca concentrations in landfill leachate. In this research, the inhibition effect of Ca concentration on the anaerobic treatment of landfill leachate was studied using a biochemical methane potential experiment. Slight inhibition of methane production occurred when the addition of Ca concentration was less than 2000 mg/L. When the addition of Ca concentration was between 6000 and 8000 mg/L, methane production was significantly reduced (to 29.4-34.8 % of that produced by the BLK reactor), and the lag phase was increased from 8.55 to 16.32 d. Moreover, when the dosage of Ca concentration increased from zero to 8000 mg/L, reductions in solution Ca concentration increased from 929 to 2611 mg/L, and the proportion of Ca in the residual sludge increased from 22.58 to 46.87 %. Based on the results, when the dosage of Ca concentration was less than 4000 mg/L, the formation of Ca precipitates on the surface of sludge appeared to prevent mass transfer and was the dominant reason for the reduction in methane production and sludge biomass. At higher Ca concentrations (6000-8000 mg/L), the severe inhibition of methane production appeared to be caused by the toxic effect of highly concentrated Ca on sludge as well as mass transfer blockage. PMID:26769478

  18. Self-assembling semicrystalline polymer into highly ordered, microscopic concentric rings by evaporation.

    Science.gov (United States)

    Byun, Myunghwan; Hong, Suck Won; Zhu, Lei; Lin, Zhiqun

    2008-04-01

    A drop of semicrystalline polymer, poly(ethylene oxide) (PEO), solution was placed in a restricted geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Upon solvent evaporation from the sphere-on-flat geometry, microscopic concentric rings of PEO with appropriate high molecular weight were produced via controlled, repetitive pinning ("stick") and depinning ("slip") cycles of the contact line. The evaporation-induced concentric rings of PEO exhibited a fibrillar-like surface morphology. Subsequent isothermal crystallization of rings at 40 and 58 degrees C led to the formation of multilayer of flat-on lamellae (i.e., spiral morphology). In between adjacent spirals, depletion zones were developed during crystallization, as revealed by AFM measurements. The present highly ordered, concentric PEO rings may serve as a platform to study cell adhesion and motility, neuron guidance, cell mechanotransduction, and other biological processes. PMID:18275235

  19. Preparation of a high concentration of lithium-7 atoms in a magneto-optical trap

    Energy Technology Data Exchange (ETDEWEB)

    Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Manykin, E. A. [National Research Nuclear University Moscow Engineering Physics Institute, (Russian Federation); Zelener, B. V.; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2014-11-15

    This study is aimed at obtaining high concentration of optically cooled lithium-7 atoms for preparing strongly interacting ultracold plasma and Rydberg matter. A special setup has been constructed, in which two high-power semiconductor lasers are used to cool lithium-7 atoms in a magneto-optical trap. At an optimum detuning of the cooling laser frequency and a magnetic field gradient of 35 G/cm, the concentration of ultracold lithium-7 atoms reaches about 10{sup 11} cm{sup ?3}. Additional independent information about the concentration and number of ultracold lithium-7 atoms on different sublevels of the ground state was obtained by using of an additional probing laser.

  20. State-resolved three-dimensional electron-momentum correlation in nonsequential double ionization of benzene

    Science.gov (United States)

    Winney, Alexander H.; Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Li, Wen

    2016-03-01

    We report state-resolved electron-momentum correlation measurement of strong-field nonsequential double ionization in benzene. With a novel coincidence detection apparatus, highly efficient triple coincidence (electron-electron dication) and quadruple coincidence (electron-electron-cation-cation) are used to resolve the final ionic states and to characterize three-dimensional (3D) electron-momentum correlation. The primary states associated with dissociative and nondissociative dications are assigned. A 3D momentum anticorrelation is observed for the electrons in coincidence with dissociative benzene dication states whereas such a correlation is absent for nondissociative dication states.

  1. Nonthermal plasma assisted photocatalytic oxidation of dilute benzene

    Indian Academy of Sciences (India)

    J Karuppiah; E Linga Reddy; L Sivachandiran; R Karvembu; Ch Subrahmanyam

    2012-07-01

    Oxidative decomposition of low concentrations (50-1000 ppm) of diluted benzene in air was carried out in a nonthermal plasma (NTP) dielectric barrier discharge (DBD) reactor with the inner electrode made up of stainless steel fibres (SMF) modified with transition metal oxides in such a way to integrate the catalyst in discharge zone. Typical results indicate the better performance of MnO and TiO2/MnO modified systems, which may be attributed to the in situ decomposition of ozone on the surface of MnO that may lead to the formation of atomic oxygen; whereas ultraviolet light induced photocatalytic oxidation may be taking place with TiO2 modified systems. Water vapour improved the selectivity to total oxidation.

  2. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    International Nuclear Information System (INIS)

    Aqueous solutions of benzene have been irradiated with Co γ-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed

  3. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses are...... the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol...... high solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic...

  4. Current gain of SiGe HBTs under high base doping concentrations

    Science.gov (United States)

    Jiang, Ningyue; Ma, Zhenqiang

    2007-01-01

    As high doping concentrations and high Ge contents are implemented in the base regions of SiGe heterojunction bipolar transistors (HBTs) to improve device performance, neutral base recombination (NBR) is also simultaneously enhanced. The enhanced NBR can severely degrade the current gain values of SiGe HBTs and thus needs to be carefully considered in device design. In this paper, a new analytical expression for the current gain of SiGe HBTs is derived to include the NBR component in the base current. The new current gain expression indicates that the maximum achievable current gain of SiGe HBTs is limited by the NBR and can be realized via optimization of the Ge profile. The analyses of the current gain of SiGe HBTs employing high base doping concentrations and high Ge contents are verified with MEDICI simulations.

  5. Convergence rate and concentration inequalities for Gibbs sampling in high dimension

    OpenAIRE

    Wang, Neng-Yi; Wu, Liming

    2014-01-01

    The objective of this paper is to study the Gibbs sampling for computing the mean of observable in very high dimension - a powerful Markov chain Monte Carlo method. Under the Dobrushin's uniqueness condition, we establish some explicit and sharp estimate of the exponential convergence rate and prove some Gaussian concentration inequalities for the empirical mean.

  6. Nuclear reaction analysis of 16O concentration profiles with a high-resolution magnetic spectrometer

    International Nuclear Information System (INIS)

    The (d,p) and (d, ?) nuclear reactions have been used to measure 16O concentration profiles with a high-resolution magnetic spectrometer as an analyzer. Experimental data illustrating advantages, limitations, and general features of this analysis technique are presented. (Auth.)

  7. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    International Nuclear Information System (INIS)

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints

  8. Kinetic instability of high concentration electron beam in low-temperature plasma

    International Nuclear Information System (INIS)

    The kinetic instability dynamics of high concentrated electron beam was investigated in low-temperature plasma. The measurement was carried out in beam plasma low-voltage arc in He. Modified probe method was used as a basic methodics of inequilibrium and anisotropic velocity distribution diagnostics. The results can be used in dynamics of upper atmospheric plasmas. (D.Gy.)

  9. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, N.J.

    1998-10-21

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  10. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol. PMID:25877397

  11. 509-45-1: A C. annuum Pepper germplasm containing high concentrations of capsinoids

    Science.gov (United States)

    This publication reports the public release of pepper (Capsicum annuum) germplasm 509-45-1. Pepper germplasm 509-45-1 is a small-fruited, non-pungent single plant selection from PI 645509. Fruit of 509-45-1 contain high concentrations of capsinoids [capsiate ((4-hydroxy-3-methoxybenzyl (E)-8...

  12. FBAR syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner

    DEFF Research Database (Denmark)

    Ramesh, Pradeep; Baroji, Younes F.; Seyyed Reihani, Seyyed Nader; Stamou, Dimitrios; Oddershede, Lene Broeng; Bendix, Pl Martin

    2013-01-01

    brain lipid vesicles and show that it senses membrane curvature at low density whereas it induces and reinforces tube stiffness at higher density. FBAR strongly up-concentrates on the high curvature tubes pulled out of Giant Unilamellar lipid Vesicles (GUVs), this sorting behavior is strongly amplified...

  13. Subcutaneous absorption kinetics of two highly concentrated preparations of recombinant human growth hormone

    DEFF Research Database (Denmark)

    Laursen, Torben; Jørgensen, Jens Otto Lunde; Susgaard, Søren; Møller, Jens; Christiansen, Jens Sandahl

    1993-01-01

    Abstract OBJECTIVE: The relative bioavailability of two highly concentrated (12 IU/ml) formulations of biosynthetic human growth hormone (GH) administered subcutaneously was compared. DESIGN: A randomized, crossover study. Conventional GH therapy was withdrawn 72 hours before each study period. T...

  14. Effect of high pressure on critical concentration energy transport in isotopically mixed naphthalene crystals

    International Nuclear Information System (INIS)

    High pressure has been observed to enhance significantly triplet energy transfer from naphthalene-h8 traps to ?-methylnaphthalene supertraps in a naphthalene-d8 crystal near the critical trap concentration, as indicated by supertrap/trap phosphorescence ratios. This suggests the importance of long-range interactions in triplet transport in this crystal system. 16 references, 1 figure, 1 table

  15. TREATMENT OF HIGH ETHANOL CONCENTRATION WASTEWATER BY CONSTRUCTED WETLANDS: ENHANCED COD REMOVAL AND BACTERIAL COMMUNITY DYNAMICS

    OpenAIRE

    Rodriguez Caballero, Adrian

    2011-01-01

    Winery wastewater is characterized by its high chemical oxygen demand (COD), seasonal occurrence and variable composition, including periodic high ethanol concentrations. In addition, winery wastewater may contain insufficient inorganic nutrients for optimal biodegradation of organic constituents. Two pilot-scale constructed wetlands (CWs) were used to treat artificial wastewater: the first was amended with ethanol and the second with ethanol, inorganic nitrogen (N) and phosphorus (P). A numb...

  16. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    Science.gov (United States)

    Azadi, Sam; Cohen, R. E.

    2015-09-01

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  17. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    CERN Document Server

    Azadi, Sam

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, compar...

  18. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    International Nuclear Information System (INIS)

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods

  19. Fluorescent carbon nanoparticles synthesized from benzene by electric plasma discharge

    Science.gov (United States)

    Chaudhary, R.; Varadarajan, V.; Mohanty, S. K.; Koymen, A. R.

    2011-03-01

    Various allotropes of Carbon nanoparticles (CNP) are emerging as very important building blocks for nanotechnology and biomedical applications due to their unique electronic, optical, mechanical and thermal properties. We report synthesis of crystalline CNPs from benzene using electric plasma discharge method under controlled laboratory environment. With varied electric field, different allotropes of carbon were synthesized as observed under high resolution electron microscope and selected area electron diffraction, optical spectroscopic studies revealed distinct differences between these CNPs. Raman spectroscopy of these CNPs showed a distinct peak at 1330 cm-1 (characteristic of defect band) and another peak at 1600 cm-1 (graphitic band). The ratio of defect to graphitic band was found to increase with increasing voltage between Fe-electrodes. Further, the ratio was altered when CNPs were formed using graphite-electrodes. Fluorescence spectroscopic measurements showed evident blue fluorescence exhibited by CNPs formed at relatively higher voltage between two Fe-electrodes. This was attributed to the increasing Fe-content, as measured by Energy dispersive X-ray analysis (EDX) and vibrating sample magnetometer (VSM). Addition of exogenous dyes in benzene during synthesis of CNPs using electric plasma discharge led to formation of fluorescent nanotubes. These fluorescent CNPs can be functionalized to target cancer cells for both imaging and targeted photothermal therapy using near-IR laser beam.

  20. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    Science.gov (United States)

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods. PMID:26374029

  1. Assessment of pancreatic CT enhancement using a high concentration of contrast material

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the usefulness of pancreatic enhancement using a high concentration of contrast material in CT. We performed abdominal CT on 125 patients after dividing them at random into five groups with two different concentrations, two different injection rates and three different injection doses: group A: 100 ml, 300 mgI/mL, 3 mL/sec; group B: 2 mL/kg, 300 mgI/mL, 3 mL/sec; group C: 1.5 mL/kg, 370 mgI/mL, 3 mL/sec; group D: 2 mL/kg, 300 mgI/mL, 5 mL/sec; and group E: 1.5 mL/kg, 370 mgI/mL, 5 mL/sec. Among these five groups, the two groups given a concentration of 370 mgI/mL received a dose of 1.5 mL/body weight. The peak enhancement value of the pancreas was significantly greater in group E than in groups A and B. However, no statistically significant differences were found among the other groups. The fast injection rate using the high concentration of contrast medium provided greater enhancement of the pancreas than the slow injection rate using the routine concentration of contrast medium, and pancreatic CT enhancement depended more on the dose of iodine per second than on that of total iodine. (author)

  2. Response of Salvinia cucullata to high NH4(+) concentrations at laboratory scales.

    Science.gov (United States)

    Jampeetong, Arunothai; Brix, Hans; Kantawanichkul, Suwasa

    2012-05-01

    Growth, morphology, NH(4)(+) uptake and mineral allocation in Salvinia cucullata Roxb. ex Bory grown with different amounts of NH(4)(+) were investigated. Plants of uniform size were grown on full strength Smart and Barko medium with different NH(4)(+) concentrations (0.5, 1, 5, 10 and 15 mM) and incubated in a greenhouse for four weeks. Salvinia cucullata grew well in the medium with 0.5-1 mM NH(4)(+) with a relative growth rate of 0.11-0.12 d(-1) without exhibiting NH(4)(+) toxicity symptoms. With an NH(4)(+) concentration above 5 mM, plant growth was suppressed and signs of NH(4)(+) toxicity were observed. NH(4)(+) toxicity symptoms were obvious in plants supplied with 10 mM and 15 mM NH(4)(+). These plants had low growth rates, short roots, low numbers of roots and showed chlorosis. Rotted roots and stems were also found in plants fed with 15 mM NH(4)(+). This species had a high uptake rate even though the NH(4)(+) concentrations increased, making it an ideal candidate for growth in eutrophic environments. The high NH(4)(+) concentration had a negative effect on K uptake resulting in low K concentration in the plant tissue, but the plants increased N content in plant tissue. Thus, harvested plants can be used as soil fertilizer or for animal feed. Furthermore, maintaining plant biomass can improve the efficiency of water treatment. PMID:22195762

  3. Assessment of pancreatic CT enhancement using a high concentration of contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Shinagawa, Masaharu; Uchida, Masafumi; Ishibashi, Masatoshi; Nishimura, Hiroshi; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine

    2003-04-01

    The objective of this study was to evaluate the usefulness of pancreatic enhancement using a high concentration of contrast material in CT. We performed abdominal CT on 125 patients after dividing them at random into five groups with two different concentrations, two different injection rates and three different injection doses: group A: 100 ml, 300 mgI/mL, 3 mL/sec; group B: 2 mL/kg, 300 mgI/mL, 3 mL/sec; group C: 1.5 mL/kg, 370 mgI/mL, 3 mL/sec; group D: 2 mL/kg, 300 mgI/mL, 5 mL/sec; and group E: 1.5 mL/kg, 370 mgI/mL, 5 mL/sec. Among these five groups, the two groups given a concentration of 370 mgI/mL received a dose of 1.5 mL/body weight. The peak enhancement value of the pancreas was significantly greater in group E than in groups A and B. However, no statistically significant differences were found among the other groups. The fast injection rate using the high concentration of contrast medium provided greater enhancement of the pancreas than the slow injection rate using the routine concentration of contrast medium, and pancreatic CT enhancement depended more on the dose of iodine per second than on that of total iodine. (author)

  4. Perchlorate reduction from a highly concentrated aqueous solution by bacterium Rhodococcus sp. YSPW03.

    Science.gov (United States)

    Lee, Sang-Hoon; Hwang, Jae-Hoon; Kabra, Akhil N; Abou-Shanab, Reda A I; Kurade, Mayur B; Min, Booki; Jeon, Byong-Hun

    2015-12-01

    A novel isolated bacterium Rhodococcus sp. YSPW03 was able to reduce high concentrations (up to 700 mg L(-1)) of perchlorate using acetate as electron donor. Perchlorate reduction rate increased from 2.90 to 11.23 mg L(-1) h(-1) with increasing initial acetate concentration from 100 to 2000 mg L(-1), leading to complete removal of perchlorate (100 mg L(-1)) within 9 h. The bacterium also promoted complete reduction of high perchlorate concentrations (500 and 700 mg L(-1)) at 2000 mg L(-1) of acetate within 48 and 96 h, respectively. Under semi-continuous reactor operation, efficient reduction on varied perchlorate concentrations (80-700 mg L(-1)) was performed by the bacterium in presence of acetate (600-6000 mg L(-1)) over 140 days. The highest perchlorate reduction rate of 280 mg L(-1) day(-1) was observed with an initial perchlorate concentration of 570 mg L(-1) at day 34. Dissolved chloride ions of 1000 mg L(-1) in the semi-continuous reactor (SCR) completely inhibited the biological perchlorate reduction. The findings of this study will help improve the perchlorate bioreactor design and determine the optimal conditions to maximize the perchlorate reduction efficiency. PMID:26201662

  5. Mechanistic in situ High-Pressure NMR Studies of Benzene Hydrogenation by Supramolecular Cluster Catalysis with [(?6-C6H6)(?6-C6Me6)2Ru3(?3-O)(?2-OH)(?2-H)2][BF4

    OpenAIRE

    Laurenczy, Gabor; Faure, Matthieu; Vieille-Petit, Ludovic; Sss-Fink, Georg; Ward, Thomas R.

    2006-01-01

    In situ high-pressure NMR spectroscopy of the hydrogenation of benzene to give cyclohexane, catalysed by the cluster cation [(?6-C6H6)(?6-C6Me6)2Ru3(?3-O)(?2-OH)(?2-H)2]+2, supports a mechanism involving a supramolecular host-guest complex of the substrate molecule in the hydrophobic pocket of the intact cluster molecule.

  6. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    Science.gov (United States)

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal. PMID:25872710

  7. Cytotoxic effects of high concentrations of sodium ascorbate on human myeloid cell lines.

    Science.gov (United States)

    Mastrangelo, Domenico; Massai, Lauretta; Lo Coco, Francesco; Noguera, Nlida Ins; Borgia, Loredana; Fioritoni, Giuseppe; Berardi, Anna; Iacone, Antonio; Muscettola, Michela; Pelosi, Elvira; Castelli, Germana; Testa, Ugo; Di Pisa, Francesco; Grasso, Giovanni

    2015-11-01

    The effect of high doses of intravenous (sodium) ascorbate (ASC) in the treatment of cancer has been controversial although there is growing evidence that ASC in high (pharmacologic) concentrations induces dose-dependent pro-apoptotic death of tumor cells, in vitro. Very few data are available on the role of ASC in the treatment of acute myeloid leukemia (AML). Ascorbate behaves as an antioxidant at low (physiologic), and as pro-oxidant at pharmacologic, concentrations, and this may account for the differences reported in different experimental settings, when human myeloid cell lines, such as HL60, were treated with ASC. Considering the myeloid origin of HL60 cells, and previous literature reports showing that some cell lines belonging to the myeloid lineage could be sensitive to the pro-apoptotic effects of high concentrations of ASC, we investigated in more details the effects of high doses (0.5 to 7mM) of ASC in vitro, on a variety of human myeloid cell lines including the following: HL60, U937, NB4, NB4-R4 (retinoic acid [RA]-resistant), NB4/AsR (ATO-resistant) acute promyelocytic leukemia (APL)-derived cell lines, and K562 as well as on normal CD34+ progenitors derived from human cord blood. Our results indicate that all analyzed cell lines including all-trans retinoic acid (ATRA)- and arsenic trioxide (ATO)-resistant ones are highly sensitive to the cytotoxic, pro-oxidant effects of high doses of ASC, with an average 50% lethal concentration (LC50) of 3mM, depending on cell type, ASC concentration, and time of exposure. Conversely, high doses of ASC neither did exert significant cytotoxic effects nor impaired the differentiation potential in cord blood (CB) CD34+ normal cells. Since plasma ASC concentrations within the millimolar (mM) range can be easily and safely reached by intravenous administration, we conclude that phase I/II clinical trials using high doses of ASC should be designed for patients with advanced/refractory AML and APL. PMID:26264692

  8. Irrigation with Groundwater Containing Relatively High Concentrations of Radium: Effect on Soil

    International Nuclear Information System (INIS)

    Naturally occurring radium isotopes at relatively high concentrations are found in groundwater in the southern part of Israel in two main aquifers of the Negev and the Arava Valley: the Nubean Sandstone (Kurnub group) and the Lower Cretaceous (Judea group)(1). Radium is being transferred from the host rock into the aquifer by geochemical processes and it is commonly found in the groundwater as three isotopes: Ra (half-life of 5.75y), Ra (half-life of 1600y) and 224Ra (half-life of 3.66d). High radium concentrations may play a key role in the potential exploitation and utilization of groundwater for drinking water as well as for agricultural purposes. Radionuclides of natural origin, including radium, are present in all foodstuffs at varying degrees. In essence, the doses from natural radionuclides are not worthy to control since the concentrations are mostly low and the resources required to control exposure would be out of proportion to the benefits achieved for health. Nevertheless, in prone areas, where radium concentrations in the ground water are significantly higher than drinking water standards, it is recommended to investigate the effect of using such water sources for agricultural purposes. Irrigation with water containing high radium concentrations may imply that the radium could find its way into the food chain having been integrated into the plant with the water(2'3). Water from the Shizafon 1 and 11 drillings is intended to be used for irrigation. The Shizafon drillings are characterized by a radium concentration exceeding the current Israeli drinking water standards by ca. 300%. The current study investigates the influence of drip irrigation with radium-containing water on the culture medium

  9. Early stages of radiolysis of sulfuric dioxide high-concentrated aqueous solutions

    International Nuclear Information System (INIS)

    New short-lived intermediate products of SO2 aqueous solution radiolysis which are produced only at high concentrations (>0.06 mol/l) are formed by the method of pulse radiolysis with spectrophotometric recording. Their absorption is maximum at 390 and 560 nm. It is established that they are produced as a result of H atom interaction with one of equilibrium SO2 forms. It is shown that there are two mechanism of radiochemical transformations of SO2 in an aqueous solution depending on its concentration

  10. High and concentration-proportional accumulation of [3H]-nitrendipine by intact cardiac tissue.

    OpenAIRE

    Lüllmann, H.; Mohr, K.

    1987-01-01

    The binding of [3H]-nitrendipine to intact, electrically driven isolated left atria of guinea-pigs was investigated over the concentration range 10(-10) M to 3 X 10(-5) M. A high affinity binding site saturable in the nM range as found in ventricular homogenates could not be detected. Instead the accumulation of nitrendipine in intact atria was found to be proportional to the concentration from 10(-10) M to 10(-6) M; beyond 10(-6) M the binding started to become saturated. Nitrendipine was hi...

  11. Entropy Generation in Flow of Highly Concentrated Non-Newtonian Emulsions in Smooth Tubes

    OpenAIRE

    Rajinder Pal

    2014-01-01

    Entropy generation in adiabatic flow of highly concentrated non-Newtonian emulsions in smooth tubes of five different diameters (7.15–26.54 mm) was investigated experimentally. The emulsions were of oil-in-water type with dispersed-phase concentration (Φ) ranging from 59.61–72.21% vol. The emulsions exhibited shear-thinning behavior in that the viscosity decreased with the increase in shear rate. The shear-stress (τ) versus shear rate (˙γ) data of emulsions could be described well by the powe...

  12. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    Science.gov (United States)

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account. PMID:26455872

  13. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  14. The potential of np GaAs solar cells for high efficiency concentrator applications

    Science.gov (United States)

    Flat, A.; Milnes, A. G.

    1979-01-01

    This communication considers the design of the front grid contact of np GaAs solar cells for high efficiency concentrator applications. This design involves shadowing, contact resistance, and active layer sheet resistance losses, and at high concentrations, the power loss due to voltage drop on the resistance of the grid fingers should be considered. Analysis of the performance can be calculated as a function of junction depth and surface recombination velocity. The junction depth can be optimized by considering its effect on the collection efficiency of the dark current-voltage characteristics or the open circuit voltage, and on the series resistance loss or the fill factor for material parameters. The choice of the material parameters, calculation of the short circuit current, the selection of the n layer thickness, and the cell maximum power and efficiency are discussed. It is concluded that optimized multi-grid structures should allow the use of 10 by 10 sq cm cells with good efficiencies at high concentration ratios, and efficiencies of 22 to 25% should be obtainable from large area cells at concentrations of 40 AM1.

  15. Exposure to methyl tert-butyl ether, benzene, and total hydrocarbons at the Singapore-Malaysia causeway immigration checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.; Ong, H.Y.; Kok, P.W. [and others

    1996-12-31

    The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weighted average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.

  16. The occurence of high nitrate concentration in groundwater in villages in Northwestern Burkina Faso

    Science.gov (United States)

    Groen, J.; Schuchmann, J. B.; Geirnaert, W.

    In the ≪Volta Noire≫ rural water supply project 168 boreholes have been drilled and equipped with handpumps in north-western Burkina Faso in the period 1984 - 1986. In 15% of these drilled wells nitrate concentrations exceeded the World Health Organization recommended limit of 45 mg/1. This was also the case in 36% of dug wells sampled during reconnaissance surveys. A review of the field data showed that high nitrate concentrations were more pronounced in villages of certain ethnic groups characterized by a high housing density. Nitrate contamination is caused by the dumping of organic waste in and around the villages. When villages or village-quarters are spread out over larger areas, the contamination is more diffuse and the crops grown between the houses are presumed to take up a substancial part of the nitrogen charge. Groundwater with a high electrical conductivity is positively related to high nitrate concentrations. Near villages with high housing density, conductive groundwater bodies have been detected by routine geo-electrical profiling. It was observed that in horeholes downstream of the village with regard to the direction of groundwater flow, a higher incidence of nitrate contamination is present. It is therefore recommended to site boreholes in villages with a close grouping of houses upstream from the village and to observe a minimum distance from the village center of at least 200m. Siting of boreholes can be improved by applying electrical or electro-magnetic methods.

  17. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    International Nuclear Information System (INIS)

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration

  18. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  19. Fabrication of High Contrast Gratings for the Spectrum Splitting Dispersive Element in a Concentrated Photovoltaic System.

    Science.gov (United States)

    Yao, Yuhan; Liu, He; Wu, Wei

    2015-01-01

    High contrast gratings are designed and fabricated and its application is proposed in a parallel spectrum splitting dispersive element that can improve the solar conversion efficiency of a concentrated photovoltaic system. The proposed system will also lower the solar cell cost in the concentrated photovoltaic system by replacing the expensive tandem solar cells with the cost-effective single junction solar cells. The structures and the parameters of high contrast gratings for the dispersive elements were numerically optimized. The large-area fabrication of high contrast gratings was experimentally demonstrated using nanoimprint lithography and dry etching. The quality of grating material and the performance of the fabricated device were both experimentally characterized. By analyzing the measurement results, the possible side effects from the fabrication processes are discussed and several methods that have the potential to improve the fabrication processes are proposed, which can help to increase the optical efficiency of the fabricated devices. PMID:26275094

  20. Influence of a High-Pressure Comminution Technology on Concentrate Yields in Copper Ore Flotation Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2014-10-01

    Full Text Available The article concerns the issues of flotation process effectiveness in relationship to the operating conditions of a high-pressure comminution process course. Experimental programme covering a flotation laboratory batch tests was a verification technique of a high-pressure crushing operations course. The most favorable values of flotation concentrate weight recoveries were obtained for the pressing force 6 kN and 4% of the feed moisture. It was also determined the model of the concentrate weight recovery as a function of pressing force in the press and feed moisture content. This model was the basis for the optimization of effects of copper ore flotation processes preceded in high-pressure crushing operation in roller presses.

  1. Microstructural Changes in High-Protein Nutrition Bars Formulated with Extruded or Toasted Milk Protein Concentrate.

    Science.gov (United States)

    Banach, J C; Clark, S; Lamsal, B P

    2016-02-01

    Milk protein concentrates with more than 80% protein (that is, MPC80) are underutilized as the primary protein source in high-protein nutrition bars as they impart crumbliness and cause hardening during storage. High-protein nutrition bar texture changes are often associated with internal protein aggregations and macronutrient phase separation. These changes were investigated in model high-protein nutrition bars formulated with MPC80 and physically modified MPC80s. High-protein nutrition bars formulated with extruded MPC80s hardened slower than those formulated with toasted or unmodified MPC80. Extruded MPC80 had reduced free sulfhydryl group exposure, whereas measurable increases were seen in the toasted MPC80. High-protein nutrition bar textural performance may be related to the number of exposed free sulfhydryl groups in MPC80. Protein aggregations resulting from ingredient modification and high-protein nutrition bar storage were studied with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Disulfide-based protein aggregations and changes in free sulfhydryl concentration were not consistently relatable to high-protein nutrition bar texture change. However, the high-protein nutrition bars formulated with extruded MPC80 were less prone to phase separations, as depicted by confocal laser scanning microscopy, and underwent less texture change during storage than those formulated with toasted or unmodified MPC80. PMID:26748454

  2. 46 CFR Appendix A to Subpart C to... - Sample Substance Safety Data Sheet, Benzene

    Science.gov (United States)

    2010-10-01

    .... (See 46 CFR 197.570(c).) VIII. Precautions for Safe Use, Handling, and Storage Benzene liquid is highly... in the past while employed by your current employer, your employer may be required by 46 CFR 197.560... protective clothing and equipment (See 46 CFR 197.575.) VII. Access to Records You or your representative...

  3. Benzene, the Exposome and Future Investigations of Leukemia Etiology

    OpenAIRE

    Smith, Martyn T.; ZHANG, LUOPING; Cliona M. McHale; Skibola, Christine F; Stephen M Rappaport

    2011-01-01

    Benzene exposure is associated with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and probably lymphoma and childhood leukemia. Biological plausibility for a causal role of benzene in these diseases comes from its toxicity to hematopoietic stem cells (HSC) or progenitor cells, from which all leukemias and related disorders arise. The effect of this toxicity is manifest as lowered blood counts (hematotoxicity), even in individuals occupationally exposed to low levels of benzen...

  4. Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2xn Surface

    International Nuclear Information System (INIS)

    We investigated the adsorption and desorption characteristics of benzene molecules on Si(001)-2xn surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a Si(001)-2xn surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twistedbridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface

  5. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

  6. Large nonlinear optical activity from hybrid inorganic–organic films with fluorinated benzene as isolation group

    International Nuclear Information System (INIS)

    Two azo chromophores containing fluorinated benzene and alkyl chain as isolation group were designed and synthesized, respectively, and the corresponding alkoxysilane dyes were obtained by coupling 3-isocyanatopropyltriethoxysilane with the chromophores. The molecular structures were verified by elemental analysis, hydrogen nuclear magnetic resonance, and Fourier transform infrared spectrum. Followed by a sol–gel process of the alkoxysilane dyes, inorganic–organic hybrid films were prepared by spin-coating. After electric poling, these hybrid films show the higher nonlinear optical (NLO) response than their analog containing chromophore DR1. Furthermore, the fluorinated benzene group exhibits better enhanced effect than the flexible alkyl group. The highest NLO coefficients (d33) of the hybrid film containing fluorinated benzene group was determined to be 140.5 pm V−1 at the chromophore concentration of 40%. - Highlights: • Inorganic-organic hybrid films are prepared via sol-gel process of alkoxysilane dyes • Nonlinear optical properties of hybrid films are investigated • Fluorinated benzene group effectively improves the nonlinear optical property

  7. Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Directory of Open Access Journals (Sweden)

    Valquria Campos

    2015-04-01

    Full Text Available The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol1 is thermally more stable than 3,6 ionene (E = 115.52 kJ mol1 complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

  8. Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Scientific Electronic Library Online (English)

    Valquria, Campos; Celize Maia, Tcacenco.

    2015-04-01

    Full Text Available The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for envi [...] ronmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol1) is thermally more stable than 3,6 ionene (E = 115.52 kJ mol1) complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

  9. Destruction of benzene in an air stream by the outer combined plasma photolysis method

    International Nuclear Information System (INIS)

    An outer combined plasma photolysis (OCPP) reactor that simultaneously utilized a dielectric barrier discharge (DBD) plasma and UV radiation from DBD-driven KrI* excimer was designed and constructed. Gas streams containing benzene were treated with normal DBD and OCPP at atmospheric pressure. In contrast to DBD, benzene removal efficiency increased by 15.9% in OCPP when applied voltage, gas flow rate and initial concentration of benzene were set at 9 kV, 35 L min-1 and 800 mg m-3, respectively. Thus, the applied voltage could be reduced to a certain extent in the plasma decomposition of pollutants with OCPP. In addition, the effects of various operational parameters including pressure of filled Kr, ratio of Kr/I2 and quartz dielectric characteristics on OCPP performance were investigated. Finally, the likely reaction mechanisms for the removal of benzene by OCPP were suggested on the basis of the emission spectra of KrI* excimer and byproducts analysis. Those results would offer prospective commercial applications for pollutant decomposition with OCPP

  10. Destruction of benzene in an air stream by the outer combined plasma photolysis method

    Science.gov (United States)

    Lian Ye, Zhao; Shen, Yan; Zhang Xi, Ren; Hou, Hui Qi

    2008-01-01

    An outer combined plasma photolysis (OCPP) reactor that simultaneously utilized a dielectric barrier discharge (DBD) plasma and UV radiation from DBD-driven KrI* excimer was designed and constructed. Gas streams containing benzene were treated with normal DBD and OCPP at atmospheric pressure. In contrast to DBD, benzene removal efficiency increased by 15.9% in OCPP when applied voltage, gas flow rate and initial concentration of benzene were set at 9 kV, 35 L min-1 and 800 mg m-3, respectively. Thus, the applied voltage could be reduced to a certain extent in the plasma decomposition of pollutants with OCPP. In addition, the effects of various operational parameters including pressure of filled Kr, ratio of Kr/I2 and quartz dielectric characteristics on OCPP performance were investigated. Finally, the likely reaction mechanisms for the removal of benzene by OCPP were suggested on the basis of the emission spectra of KrI* excimer and byproducts analysis. Those results would offer prospective commercial applications for pollutant decomposition with OCPP.

  11. Rheophysics of highly concentrated coarse-particle suspensions in a wide-gap Couette rheometer

    Science.gov (United States)

    Wiederseiner, S.; Ancey, C.; Rentschler, M.; Andreini, N.

    2009-06-01

    An optical visualization apparatus has been designed to measure the particle-velocity and solid-concentration profiles of highly concentrated coarse-particle suspensions in a wide-gap Couette rheometer. The main objective is to investigate the frictional-viscous transition, a phenomenon that has been already reported in recent papers [1, 2, 3, 4], but still remains partially understood. For wide-gap viscometers and complex fluids, a related issue is the Couette problem, which underpins the rheometrical treatment for viscometric flows in coaxial-cylinder rheometers; we compare shear-rate computations obtained by solving the Couette problem (bulk estimate) and by differentiating the velocity and concentration profiles (local measurement).

  12. Carrier concentration profiles by high-energy boron ion implantation into silicon

    International Nuclear Information System (INIS)

    P-type carrier concentration profiles, formed by high-energy boron ion implantation at 400 and 700 keV into p-type silicon followed by subsequent annealing, have been investigated by C-V (capacitance-voltage) methods using test element diodes. Measured carrier concentrations were compared with those simulated by one-dimensional simulators such as MIPS based on SUPREM-3, and ICECREM. Monte Carlo data by TRIM followed by diffusion with ICECREM was also compared. The simulated carrier concentration profiles by MIPS and ICECREM for 400 keV implantation agree well with measured profiles, whereas ICECREM for 700 keV implantation shows a better agreement with the measured one than MIPS. Monte Carlo data by TRIM followed by diffusion showed about 10-20% deeper profiles than those by MIPS and ICECREM. (orig.)

  13. Study of dopant concentrations on thermal induced mode instability in high power fiber amplifiers

    CERN Document Server

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    Dependence of mode instabilities (MI) on ytterbium dopant concentrations in high power fiber amplifiers has been investigated. It is theoretically shown that, by only varying the fiber length to maintain the same total small-signal pump absorption, the MI threshold is independent of dopant concentration. MI thresholds of gain fibers with ytterbium dopant concentration of 5.93X10^25/m3 and 1.02X10^26/m3 have been measured, which exhibit similar thresholds and agree with theoretical results. The result indicates that heavy doping of active fiber can be adopted to suppress nonlinear effects without decreasing MI threshold, which provides a method of maximizing the power output of fiber laser, taking into account the stimulated Brillouin scattering, stimulated Raman Scattering, and MI thresholds simultaneously.

  14. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels showed that the increase of phenol concentration was accompanied by a decrease in the microbial community and a progressive selection of the most adapted phenotypes.

  15. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation

    Directory of Open Access Journals (Sweden)

    Ichim Christine V

    2011-08-01

    Full Text Available Abstract Background Viral vectors provide a method of stably introducing exogenous DNA into cells that are not easily transfectable allowing for the ectopic expression or silencing of genes for therapeutic or experimental purposes. However, some cell types, in particular bone marrow cells, dendritic cells and neurons are difficult to transduce with viral vectors. Successful transduction of such cells requires preparation of highly concentrated viral stocks, which permit a high virus concentration and multiplicity of infection (MOI during transduction. Pseudotyping with the vesicular stomatitis virus G (VSV-G envelope protein is common practice for both lentiviral and retroviral vectors. The VSV-G glycoprotein adds physical stability to retroviral particles, allowing concentration of virus by high-speed ultracentrifugation. Here we describe a method report for concentration of virus from large volumes of culture supernatant by means of successive rounds of ultracentrifugation into the same ultracentrifuge tube. Method Stable retrovirus producer cell lines were generated and large volumes of virus-containing supernatant were produced. We then tested the transduction ability of virus following varying rounds of concentration by ultra-centrifugation. In a second series of experiments lentivirus-containing supernatant was produced by transient transfection of 297T/17 cells and again we tested the transduction ability of virus following multiple rounds of ultra-centrifugation. Results We report being able to centrifuge VSV-G coated retrovirus for as many as four rounds of ultracentrifugation while observing an additive increase in viral titer. Even after four rounds of ultracentrifugation we did not reach a plateau in viral titer relative to viral supernatant concentrated to indicate that we had reached the maximum tolerated centrifugation time, implying that it may be possible to centrifuge VSV-G coated retrovirus even further should it be necessary to achieve yet higher titers for specific applications. We further report that VSV-G coated lentiviral particles may also be concentrated by successive rounds of ultracentrifugation (in this case four rounds with minimal loss of transduction efficiency. Conclusion This method of concentrating virus has allowed us to generate virus of sufficient titers to transduce bone marrow cells with both retrovirus and lentivirus, including virus carrying shRNA constructs.

  16. Impact of High Concentration Solutions on Hydraulic Properties of Geosynthetic Clay Liner Materials

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2012-11-01

    Full Text Available This study focuses on the impact of landfill high concentration solutions erosion on geosynthetic clay liner (GCL materials permeability. The permeation tests on the GCL, submerged using different kinds of solutions with different concentrations, were carried out systematically by taking these chemical solutions as permeant liquids. Based on seasonal variations of ion concentrations in Chenjiachong landfill leachate (Wuhan Province, CaCl2, MgCl2, NaCl, and KCl were selected as chemical attack solutions to carry out experimental investigations under three concentrations (50 mM, 100 mM, 200 mM and soak times (5, 10, and 20 days. The variation law of the GCL hydraulic conductivity under different operating conditions was analyzed. The relationship between GCL hydraulic conductivity, chemical solutions categories, concentrations, and soak times were further discussed. The GCL hydraulic conductivity, when soaked and permeated with high concentration chemical solutions, increases several times or exceeds two orders of magnitude, as compared with the permeation test under normal conditions that used water as the permeant liquid. This reveals that GCL is very susceptible to chemical attack. For four chemical solutions, the chemical attack effect on GCL hydraulic conductivity is CaCl2 > MgCl2 > KCl > NaCl. The impact of soak times on GCL hydraulic conductivity is the cooperative contribution of the liner chemical attack reaction and hydration swelling. A longer soak time results in a more advantageous hydration swelling effect. The chemical attack reaction restrains the hydration swelling of the GCL. Moreover, the GCL hydraulic conductivity exponentially decreases with the increased amplitude of thickness.

  17. Adsorption of actinides by chelating agents containing benzene rings, fixed on charcoal

    International Nuclear Information System (INIS)

    Preparation of some specific adsorbers capable of isolating and concentrating actinides was studied. Bases of the 8-hydroxyquinoline family, diphosphineamine and tribenyzlamine, salted by benyohydroxamic, benzylic or phthalic acid, are able to complex actinides in different oxidation states. As a result of the presence of the benzene rings, all the compounds are easily incorporated into active charcoal to obtain adsorbers with a highly specific surface. The adsorption behaviors of uranyl U(VI) ion, thorium(IV) and Eu(III) were studied by evaluating their distribution coefficients, Kd. Results show that all the prepared salts can adsorb the ions in the III and IV oxidation state from weak acid solutions, whereas uranyl ion is adsorbed mainly from weak basic solutions. The prepared compounds can be used successfully to absorb and concentrate actinides from nearly neutral solutions, such as natural waters. The 8-hydroxyquinoline salt of the benzylic anion showed the highest adsorption values and thus seems to be the most appropriate salt to use in the analysis of actinides in water. (author)

  18. Effect of excess oxygen concentration on high-temperature strength of ODS martensitic steel

    International Nuclear Information System (INIS)

    Oxide dispersion strengthened (ODS) martensitic steel (9CrODS steel) has been identified as an attractive candidate for advanced fast reactor (FR) fuel cladding tube because of its superior high-temperature strength and radiation resistance. Our recent research revealed that high-temperature strength of different lots of the cladding tubes is inconsistent each other, even though the same manufacturing process was applied to these tubes. This inconsistency leads to a serious problem that high-strength 9CrODS steel cladding tubes can not be manufactured reliably and consistently. In this report, a microstructure control technique to consistently and reliably manufacture high-strength 9CrODS steel cladding tubes is examined based on a series of derived data concerning effect of excess oxygen concentration on high temperature strength and microstructure of 9CrODS steel. The results are summarized as follows. (1) It was revealed that high strength 9CrODS steel cladding can be reliably and consistently manufactured by appropriately controlling excess oxygen and titanium concentrations for elongated grains having ultra-fine oxide particle dispersion to remain in matrix. The elongated grain would be residual α-ferrite grain which remained untransformed during hot-extrusion process, considering the ferrite former elements (tungsten and chromium) are concentrated in the grain. (2) Fluctuation of excess oxygen concentration was shown to reduce by applying ultra-high purity Ar gas (99.9999 wt% Ar) to mechanical alloying (MA) atmosphere. Excess oxygen concentration can be controlled by mixing appropriate amount of Fe2Y powder and Fe2O3 powder. (3) Creep strength of 9CrODS steel was shown to linearly increase with increasing hardness. Therefore creep strength of cladding tube should be estimated by measuring Vickers hardness of mother tube. (4) Creep strength was shown to significantly degrade by elevating hot-extrusion temperature from 1150degC to 1200degC. Lower hot-extrusion temperature is favorable for high-temperature strength improvement. (author)

  19. Accurate Quantification of High Density Lipoprotein Particle Concentration by Calibrated Ion Mobility Analysis

    Science.gov (United States)

    Hutchins, Patrick M.; Ronsein, Graziella E.; Monette, Jeffrey S.; Pamir, Nathalie; Wimberger, Jake; He, Yi; Anantharamaiah, G.M.; Kim, Daniel Seung; Ranchalis, Jane E.; Jarvik, Gail P.; Vaisar, Tomas; Heinecke, Jay W.

    2015-01-01

    Background It is critical to develop new metrics to determine whether high density lipoprotein (HDL) is cardioprotective in humans. One promising approach is HDL particle concentration (HDL-P) the size and concentration of HDL in plasma or serum. However, the two methods currently used to determine HDL-P yield concentrations that differ more than 5-fold. We therefore developed and validated an improved approach to quantify HDL-P, termed calibrated ion mobility analysis (calibrated IMA). Methods HDL was isolated from plasma by ultracentrifugation, introduced into the gas phase with electrospray ionization, separated by size, and quantified by particle counting. A calibration curve constructed with purified proteins was used to correct for the ionization efficiency of HDL particles. Results The concentrations of gold nanoparticles and reconstituted HDLs measured by calibrated IMA were indistinguishable from concentrations determined by orthogonal methods. In plasma of control (n=40) and cerebrovascular disease (n=40) subjects, three subspecies of HDL were reproducibility measured, with an estimated total HDL-P of 13.42.4 M (meanSD). HDL-C accounted for 48% of the variance in HDL-P. HDL-P was significantly lower in subjects with cerebrovascular disease, and this difference remained significant after adjustment for HDL cholesterol levels. Conclusions Calibrated IMA accurately and reproducibly determined the concentration of gold nanoparticles and synthetic HDL, strongly suggesting the method could accurately quantify HDL particle concentration. Importantly, the estimated stoichiometry of apoA-I determined by calibrated IMA was 34 per HDL particle, in excellent agreement with current structural models. Furthermore, HDL-P associated with cardiovascular disease status in a clinical population independently of HDL cholesterol. PMID:25225166

  20. An approach to the subslab depressurization remedial action in a high {sup 222}Rn concentration dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Llerena, J.J., E-mail: juanjose.llerena@usc.e [Laboratorio de Analisis de Radiaciones (LAR), Departamento de Fisica de Particulas. Grupo Experimental de Nucleos y Particulas (GENP), Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Cortina, D.; Duran, I.; Sorribas, R. [Laboratorio de Analisis de Radiaciones (LAR), Departamento de Fisica de Particulas. Grupo Experimental de Nucleos y Particulas (GENP), Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-03-15

    Galicia (NW Spain) is a radon-prone area in the Iberian Peninsula. Measurements were carried out at a rural dwelling, with an annual average of radon concentration over 4000 Bq m{sup -3} and a maximum of 9000 Bq m{sup -3}, found during a radon screening campaign held in the Autonomous Community of Galicia. We performed a detailed study to identify the main contamination source and the behaviour of the radon concentration, in which a linear dependence with temperature was verified, once corrected for relative humidity. We used different passive methods (charcoal canisters and two types of etched track detectors) as well as a radon concentration monitor that provided continuous measurement. Subsequent to this characterization, and in order to reduce the high radon concentration, a remedial action was developed using different passive and forced ventilation methods. A modified subslab depressurization technique was found to be the most effective remedy, providing a radon concentration reduction of around 96%. This method also has the advantages of being inexpensive and reliable over time.

  1. An approach to the subslab depressurization remedial action in a high 222Rn concentration dwelling

    International Nuclear Information System (INIS)

    Galicia (NW Spain) is a radon-prone area in the Iberian Peninsula. Measurements were carried out at a rural dwelling, with an annual average of radon concentration over 4000 Bq m-3 and a maximum of 9000 Bq m-3, found during a radon screening campaign held in the Autonomous Community of Galicia. We performed a detailed study to identify the main contamination source and the behaviour of the radon concentration, in which a linear dependence with temperature was verified, once corrected for relative humidity. We used different passive methods (charcoal canisters and two types of etched track detectors) as well as a radon concentration monitor that provided continuous measurement. Subsequent to this characterization, and in order to reduce the high radon concentration, a remedial action was developed using different passive and forced ventilation methods. A modified subslab depressurization technique was found to be the most effective remedy, providing a radon concentration reduction of around 96%. This method also has the advantages of being inexpensive and reliable over time.

  2. Removal of High Concentration of Phenol from Synthetic Solutions by Fusarium Culmorum Granules

    Directory of Open Access Journals (Sweden)

    Sh. Roudbar Mohammadi

    2012-03-01

    Full Text Available Background and Objectives: Effluent generated in several industries contains phenolic compounds, which have been classified as priority pollutants. Due to its toxicity, the conventional systems are inefficient for treatment of phenol-Laden wastewater. Biological processes using pure microbial culture, including fungi and yeast, are environmentally friendly techniques capable of complete destruction of contaminants. Materials and Methods: This work was aimed at investigating the efficiency of a fungi specie in the decomposition of high concentrations of phenol ranging from 500 to 20000 mg/L. Several batch reactors were operated at different phenol concentration. The concentration of residual phenol was monitored over time using colorimetric method 4-aminoantipyrine. The removal efficiency was calculated considering the initial phenol concentration. Results: Experimental data indicated that the phenol could efficiently degrade using the selected culture. The developed granules could completely degrade phenol at concentrations up to 20000 mg/L. Conclusion: It can be concluded from the experimental data that the biodegradation using the Fungi granules is a very efficient and thus promising technique for treatment of wastewaters containing phenolic compounds.

  3. The occurrence of high concentration of natural radionuclides in black sands of Malaysian beaches

    International Nuclear Information System (INIS)

    A study has been carried out to measure the concentration of natural radionuclides in black sands of Pasir Hitam (Langkawi Island) and Batu Feringhi (Penang Island) beaches of Malaysia. Black sand was found to be more concentrated in the beach of Pasir Hitam as compared to Batu Feringhi where it occurred only in patches. Sample analysis was conducted using a gamma spectrometer. This study showed that most of black sands of Pasir Hitam beach and some of Batu Feringhi beach contain high concentrations of natural radionuclides of the uranium and thorium series. The mean concentrations of radium-226 and radium-228 in black sand of Pasir Hitam beach were 1150 ± 800 Bq/kg and 500 ± 300 Bq/kg respectively. This is much higher than the normal beach sands with activity levels of 13 ± 7 Bq/kg Ra-226 and 11 ±6 Bq/kg Ra-228. The mean concentrations of 1350 ± 1300 Bq/kg Ra-226 and 805 ± 757 Bq/kg Ra-228 of two black sans samples of Batu Feringhi beach were similar to those of the Pasir Hitam. However, some black sand mixtures of Batu Feringhi contain normal level of natural radionuclides. In general, the activity levels of natural radionuclides in black sand of Malaysian beaches vary very significantly. (Author)

  4. High variability of dissolved iron concentrations in the vicinity of Kerguelen Island (Southern Ocean

    Directory of Open Access Journals (Sweden)

    F. Quéroué

    2015-01-01

    Full Text Available Dissolved Fe (dFe concentrations were measured in the upper 1300 m of the water column in the vicinity of Kerguelen Island as part of the second Kerguelen Ocean Plateau compared Study (KEOPS2. Concentrations ranged from 0.06 nmol L−1 in offshore, Southern Ocean waters, to 3.82 nmol L−1 within Hillsborough Bay, on the north-eastern coast of Kerguelen Island. Direct island runoff, glacial melting and resuspended sediments were identified as important inputs of dFe that could potentially fertilize the northern part of the plateau. A significant deep dFe enrichment was observed over the plateau with dFe concentrations increasing up to 1.30 nmol L−1 close to the seafloor, probably due to sediment resuspension and pore water release. Biological uptake was identified as a likely explanation for the decrease in dFe concentrations between two visits (28 days apart at a station above the plateau. Our results allowed studying other processes and sources, such as atmospheric inputs, lateral advection of enriched seawater, remineralization processes and the influence of the Polar Front (PF as a vector for Fe transport. Overall, heterogeneous sources of Fe over and off the Kerguelen Plateau, in addition to strong variability in Fe supply by vertical or horizontal transport, may explain the high variability in dFe concentrations observed during this study.

  5. Benzene and ethylene in Bio-SNG production. Nuisance, fuel or valuable products?

    Energy Technology Data Exchange (ETDEWEB)

    Rabou, L.P.L.M. Rabou; Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-11-15

    Gasification of biomass with the aim to produce Substitute Natural Gas (SNG) is best performed at temperatures around 850C, where 50% of the combustion value of the producer gas is concentrated in hydrocarbons. After removal of the heavy hydrocarbons (i.e. tar) and sulphur components, the producer gas can be converted catalytically to a mixture of mainly methane, carbon dioxide and water. Using producer gas as intermediate instead of syngas can lead to 10% higher efficiency, as producer gas does contain a significant amount of methane already and because less heat is evolved in the conversion of the remainder than for a mixture of carbon monoxide and hydrogen. Some of the hydrocarbons in producer gas, notably benzene, toluene, acetylene and ethylene, together with some of the more volatile tar compounds, can be a nuisance in the conversion step, as they easily form carbon deposits on the methanation catalysts involved. Several strategies can be followed to make these annoying components useful. Here, we will focus on benzene and ethylene, as each represents nearly 90% of the total amount of aromatic and unsaturated hydrocarbons respectively in biomass producer gas. One approach, followed in the SNG demonstration plant in Guessing, is to remove benzene nearly completely from producer gas in a low-temperature scrubber. Recovered benzene with some of the scrubbing liquid is used as fuel to provide heat for the gasifier. Any benzene remaining in the producer gas and ethylene are converted in the fluidized bed methanation reactor. The fluidized bed creates conditions in which carbon deposits are gasified before they can harm the catalyst performance. The use of benzene as heat source in the gasifier reduces the need to burn part of the producer gas for that purpose. Effectively, more 'clean' producer gas becomes available for the methanation step. The MILENA type gasifier developed by ECN has a lower heat demand than the Guessing FICFB gasifier. Consequently, it has no use for benzene as an additional heat source. That is why ECN research focuses on solving problems associated with the conversion of benzene and ethylene to methane. One of the problems is removal of organic sulphur compounds, especially thiophene and its derivatives like benzo-thiophene. The main route pursued by ECN is conversion of thiophenes by a hydrodesulphurization (HDS) catalyst, followed by adsorption of the hydrogensulphide produced. Benzene removed from producer gas by liquid scrubbing or adsorption to a solid sorbent can also be recovered for use as fuel in a separate boiler. An advantage of that approach would be that benzene can be stored more easily than producer gas to match heat production with demand by e.g. a district heat system or to provide heat during gasifier maintenance. In fact, that would copy the approach followed in Harbooere with tar. Another promising option is cryogenic separation of producer gas. In principle, that would make it possible to separate and recover not only benzene but also ethylene. Even without purification, these may have more value as chemical base materials than when used as fuel. The cryogenic treatment would probably also capture sulphur compounds, thus considerably simplifying the gas cleaning needed for protection of the methanation catalyst. Advantages and disadvantages of the above options will be discussed. Experimental results of ECN research on hydrodesulphurization and adsorbents will be presented. Further research questions will be addressed.

  6. Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion.

    Science.gov (United States)

    Kato, Souichiro; Goya, Eri; Tanaka, Michiko; Kitagawa, Wataru; Kikuchi, Yoshitomo; Asano, Kozo; Kamagata, Yoichi

    2016-01-01

    Interest in the interaction of microorganisms with cesium ions (Cs(+)) has arisen, especially in terms of their potent ability for radiocesium bioaccumulation and their important roles in biogeochemical cycling. Although high concentrations of Cs(+) display toxic effects on microorganisms, there have been only limited reports for Cs(+)-tolerant microorganisms. Here we report enrichment and isolation of Cs(+)-tolerant microorganisms from soil microbiota. Microbial community analysis revealed that bacteria within the phylum Bacteroidetes, especially Flavobacterium spp., dominated in enrichment cultures in the medium supplemented with 50 or 200?mM Cs(+), while Gammaproteobacteria was dominant in the control enrichment cultures (in the presence of 50 and 200?mM K(+) instead of Cs(+)). The dominant Flavobacterium sp. was successfully isolated from the enrichment culture and was closely related to Flavobacterium chungbukense with 99.5% identity. Growth experiments clearly demonstrated that the isolate has significantly higher tolerance to Cs(+) compared to its close relatives, suggesting the Cs(+)-tolerance is a specific trait of this strain, but not a universal trait in the genus Flavobacterium. Measurement of intracellular K(+) and Cs(+) concentrations of the Cs(+)-tolerant isolate and its close relatives suggested that the ability to maintain low intracellular Cs(+) concentration confers the tolerance against high concentrations of external Cs(+). PMID:26883718

  7. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.

    Science.gov (United States)

    Han, Jianqiu; Chen, Fengzhen; Zhou, Yumei; Wang, Chaohua

    2015-01-01

    When constructed wetlands are used to treat high-Pb wastewater, Pb may become a stress to wetland plants, which subsequently reduces treatment performance and the other ecosystem services. To facilitate the design and operation of constructed wetlands for treatment of Pb-rich wastewater, we investigated the irreversible inhibitory level of Pb for Typha latifolia through experiments in microcosm wetlands. Seven horizontal subsurface flow constructed wetlands were built with rectangular plastic tanks and packed with marble chips and sand. All wetlands were transplanted with nine stems of Typha latifolia each. The wetlands were batch operated in a greenhouse with artificial wastewater (10 L each) for 12 days. Influent to the seven wetlands had different concentrations of Pb: 0 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, and 500 mg/L, respectively. The results suggested that leaf chlorophyll relative content, relative growth rate, photosynthetic characteristics, activities of superoxide dismutase, peroxidase, and content of malondialdehyde were not affected when initial Pb concentration was at 100 mg/L and below. But when initial Pb concentration was above 100 mg/L, all of them were seriously affected. We conclude that high Pb concentrations wastewater could inhibit the growth of Typha latifolia and decrease the removal rate of wetlands. PMID:26038940

  8. Continuum modeling of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions.

    Science.gov (United States)

    Ley, Mikkel W H; Bruus, Henrik

    2016-03-23

    A continuum model is established for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle-concentration field coupled to the continuity and Navier-Stokes equation for the solution. The hydrodynamic interactions are accounted for through the concentration dependence of the suspension viscosity, of the single-particle mobility, and of the momentum transfer from the particles to the suspension. The model is applied on a magnetophoretic and an acoustophoretic system, respectively, and based on the results, we illustrate three main points: (1) for relative particle-to-fluid volume fractions greater than 0.01, the hydrodynamic interaction effects become important through a decreased particle mobility and an increased suspension viscosity. (2) At these high particle concentrations, particle-induced flow rolls occur, which can lead to significant deviations of the advective particle transport relative to that of dilute suspensions. (3) Which interaction mechanism that dominates, depends on the specific flow geometry and the specific external force acting on the particles. PMID:26948344

  9. Isolation and genetic characterization of an improved benzene-tolerant mutant of Pseudomonas putida S12.

    Science.gov (United States)

    Volkers, Rita J M; Ballerstedt, Hendrik; De Winde, Johannes H; Ruijssenaars, Harald J

    2010-06-01

    Pseudomonas putida S12.49, a mutant stain of P. putida S12 that tolerates up to 20?mM benzene, was obtained by evolutionary selection. The genetic basis for the strongly enhanced benzene tolerance was investigated by proteome and transcriptome analysis. Indications were found that the highly benzene-tolerant phenotype is the resultant of multi-level systemic changes. The solvent extrusion pump SrpABC was constitutively expressed in P. putida S12.49, which could be attributed to the disruption of the srpS regulator gene by the indigenous mutator element ISS12. The occurrence of this and two additional transposition events was in good agreement with the increased transcriptional activity of transposase-encoding genes in strain S12.49. These observations suggested that transposition events are an important force driving the generation of the genetic diversity apparently required to obtain highly solvent-tolerant phenotypes. In addition, various expression responses relating to energy generation indicated system changes that accommodated the energy demand associated with the high-level expression of the proton-driven solvent extrusion pump. The relatively modest effect of a respiratory chain uncoupler on benzene tolerance in P. putida S12.49 indicated the involvement of an alternative, non-respiratory mechanism to maintain the proton gradient. PMID:23766120

  10. Simplification of Sun Tracking Mode to Gain High Concentration Solar Energy

    Directory of Open Access Journals (Sweden)

    Omar Aliman

    2007-01-01

    Full Text Available Power conversion from solar thermal energy to electrical energy is still very cost-intensive. Serious effort has to be given in the development of the concentrator or heliostat structure expenditure which contributing the most expensive component in a central receiver solar power plant. With current development to find alternatives and lower down the capital, a new mode of sun tracking has been developed and feasibility tested. As it applies a single stage collector replacing conventional double stages structure, the new technique has significantly benefits use in high temperature and high concentration solar energy applications. Meanwhile, the stationary or fixed target (receiver offers more convenient working environment for various applications. Large and heavy solar powered Stirling Engine could be placed at the stationary location. On the other advantage offers by the new technique, the optical alignment was reasonably easier and less time consuming.

  11. First report worldwide of huge retroperitoneal pseudocyst with high fluid concentration of CA 125

    International Nuclear Information System (INIS)

    Background: Primary non-traumatic retroperitoneal pseudocysts are very rare; until now those containing high fluid concentration of CA 125 have not been described. Case Report: A 27-year-old male was admitted to our Department with a symptomatic, huge retroperitoneal cystic lesion of unknown origin. It was totally excised, with surrounding organs left intact. Plasma levels of neoplasm markers were normal; history of trauma, pancreatic and urogenital diseases was denied. The cyst contained transparent fluid with very high concentration of Cancer Antigen 125 (CA 125 > 600 U/ml); cyst fluid culture was negative. Histopathological examination showed absence of an epithelial lining; the wall was composed of dense connective tissue. Thus, diagnosis of retroperitoneal pseudocyst was established. Conclusions: Surgeons should be made aware of the possible occurrence of benign retroperitoneal cystic masses of unknown origin which may have many atypical characteristics, including elevated fluid malignancy markers. (authors)

  12. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  13. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations

    Directory of Open Access Journals (Sweden)

    Chandran Kartik

    2010-03-01

    Full Text Available Abstract Background Nitrosomonas europaea is a widely studied chemolithoautotrophic ammonia oxidizing bacterium. While significant work exists on the ammonia oxidation pathway of N. europaea, its responses to factors such as dissolved oxygen limitation or sufficiency or exposure to high nitrite concentrations, particularly at the functional gene transcription level are relatively sparse. The principal goal of this study was to investigate responses at the whole-cell activity and gene transcript levels in N. europaea 19718 batch cultures, which were cultivated at different dissolved oxygen and nitrite concentrations. Transcription of genes coding for principal metabolic pathways including ammonia oxidation (amoA, hydroxylamine oxidation (hao, nitrite reduction (nirK and nitric oxide reduction (norB were quantitatively measured during batch growth, at a range of DO concentrations (0.5, 1.5 and 3.0 mg O2/L. Measurements were also conducted during growth at 1.5 mg O2/L in the presence of 280 mg-N/L of externally added nitrite. Results Several wide ranging responses to DO limitation and nitrite toxicity were observed in N. europaea batch cultures. In contrast to our initial hypothesis, exponential phase mRNA concentrations of both amoA and hao increased with decreasing DO concentrations, suggesting a mechanism to metabolize ammonia and hydroxylamine more effectively under DO limitation. Batch growth in the presence of 280 mg nitrite-N/L resulted in elevated exponential phase nirK and norB mRNA concentrations, potentially to promote utilization of nitrite as an electron acceptor and to detoxify nitrite. This response was in keeping with our initial hypothesis and congruent with similar responses in heterotrophic denitrifying bacteria. Stationary phase responses were distinct from exponential phase responses in most cases, suggesting a strong impact of ammonia availability and metabolism on responses to DO limitation and nitrite toxicity. In general, whole-cell responses to DO limitation or nitrite toxicity, such as sOUR or nitrite reduction to nitric oxide (NO did not parallel the corresponding mRNA (nirK profiles, suggesting differences between the gene transcription and enzyme translation or activity levels. Conclusions The results of this study show that N. europaea possesses specific mechanisms to cope with growth under low DO concentrations and high nitrite concentrations. These mechanisms are additionally influenced by the physiological growth state of N. europaea cultures and are possibly geared to enable more efficient substrate utilization or nitrite detoxification.

  14. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke

    International Nuclear Information System (INIS)

    Background: Environmental tobacco smoke (ETS) is one of the most important sources for indoor air pollution and a substantial threat to human health, but data on the concentrations of the trace metals cerium (Ce) and lanthanum (La) in context with ETS exposure are scarce. Therefore the aim of our study was to quantify Ce and La concentrations in indoor air with high ETS load. Methods: In two subsequent investigations Ce, La and cadmium (Cd) in 3 smokers' (11 samples) and 7 non-smokers' (28 samples) households as well as in 28 hospitality venues in Southern Germany were analysed. Active sampling of indoor air was conducted continuously for seven days in every season in the smokers' and non-smokers' residences, and for 4 h during the main visiting hours in the hospitality venues (restaurants, pubs, and discotheques). Results: In terms of residences median levels of Cd were 0.1 ng/m3 for non-smokers' and 0.8 ng/m3 for smokers' households. Median concentrations of Ce were 0.4 ng/m3 and 9.6 ng/m3, and median concentrations of La were 0.2 ng/m3 and 5.9 ng/m3 for non-smokers' and for smokers' households, respectively. In the different types of hospitality venues median levels ranged from 2.6 to 9.7 ng/m3 for Cd, from 18.5 to 50.0 ng/m3 for Ce and from 10.6 to 23.0 ng/m3 for La with highest median levels in discotheques. Conclusions: The high concentrations of Ce and La found in ETS enriched indoor air of smokers' households and hospitality venues are an important finding as Ce and La are associated with adverse health effects and data on this issue are scarce. Further research on their toxicological, human and public health consequences is urgently required. - Highlights: ► We quantified cer, lanthanum and cadmium concentrations in indoor air. ► Cer and lanthanum concentrations were high in tobacco smoke enriched locations. ► Both elements can be considered as good markers for indoor air quality.

  15. Phenylacetic acid in human body fluids: high correlation between plasma and cerebrospinal fluid concentration values.

    OpenAIRE

    Sandler, M.; Ruthven, C. R.; Goodwin, B L; Lees, A.; Stern, G. M.

    1982-01-01

    In a group of six Parkinsonian patients and 13 "controls" with non-Parkinsonian neurological disease, there was a high correlation between both free and conjugated phenylacetic acid concentrations in plasma and cerebrospinal fluid taken at about the same time. This compound is the major metabolite of phenylethylamine, the production of which may be disturbed in a number of neuropsychiatric illnesses. Thus plasma measurements might be employed clinically to provide an estimate of central chang...

  16. High-temperature selective extraction of tungsten from tungsten concentrates in ionic melts

    International Nuclear Information System (INIS)

    High-temperature selective extraction of tungsten and determination of the technological parameters (temperature, melt composition, duration) of the process are studied. It is substantiated experimentally that tungsten ores and concentrates decompose at 1050-1100 Deg C in melts of sodium chloride - sodium metasilicate forming two nonmiscible phases: halide-tungstate and silicate ones. The first phase contains 96-99 % of tungsten and the second one - more than 90 % of ore constituents

  17. Struvite Crystallization of Anaerobic Digestive Fluid of Swine Manure Containing Highly Concentrated Nitrogen

    OpenAIRE

    Lee, Eun Young; Oh, Min Hwan; Yang, Seung-Hak; Yoon, Tae Han

    2015-01-01

    In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 ...

  18. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    OpenAIRE

    Yu-Pei Huang; Peng-Fei Tsai

    2015-01-01

    The output power of a high concentration photovoltaic (HCPV) system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented...

  19. Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils

    OpenAIRE

    Crisler, J.D.; Newville, T.M.; Chen, F.; Clark, B. C.; Schneegurt, M. A.

    2012-01-01

    The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO4 minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of M...

  20. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    OpenAIRE

    Dengfeng Liu; Hong-Tao Zhang; Weili Xiong; Jianhua Hu; Baoguo Xu; Chi-Chung Lin; Ling Xu; Lihua Jiang

    2014-01-01

    Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest...