WorldWideScience

Sample records for heavy metals removal

  1. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  2. Removal of heavy metals using waste eggshell

    2007-01-01

    The removal capacity of toxic heavy metals by the reused eggshell was studied. As a pretreatment process for the preparation of reused material from waste eggshell, calcination was performed in the furnace at 800℃ for 2 h after crushing the dried waste eggshell. Calcination behavior, qualitative and quantitative elemental information, mineral type and surface characteristics before and after calcination of eggshell were examined by thermal gravimetric analysis (TGA), X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. After calcination, the major inorganic composition was identified as Ca (lime, 99.63%) and K, P and Sr were identified as minor components. When calcined eggshell was applied in the treatment of synthetic wastewater containing heavy metals, a complete removal of Cd as well as above 99% removal of Cr was observed after 10 min. Although the natural eggshell had some removal capacity of Cd and Cr, a complete removal was not accomplished even after 60 min due to quite slower removal rate. However, in contrast to Cd and Cr, an efficient removal of Pb was observed with the natural eggshell rather than the calcined eggshell. From the application of the calcined eggshell in the treatment of real electroplating wastewater, the calcined eggshell showed a promising removal capacity of heavy metal ions as well as had a good neutralization capacity in the treatment of strong acidic wastewater.

  3. Heavy metal removal and recovery using microorganisms

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  4. Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.

    Veeken, A.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal so

  5. Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.

    Veeken, A.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal solid waste. Biowaste is referred to as an organic waste stream but surprisingly it was found that a large part of biowaste is composed of inorganic material, i.e. sand, silt and clay minerals. The i...

  6. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Justyna Koc-Jurczyk

    2014-01-01

    Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater). Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported ab...

  7. Removal of heavy metal ions from aqueous solutions using clinoptilolite

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2015-01-01

    Heavy metals are a common pollutant found in various industrial effluents. They are often encountered in mining operations and acid mine drainage. The heavy metals are highly toxic and are non-biodegradable, therefore they must be removed from the polluted streams in order to meet increasingly stringent environmental quality standards. Removal of heavy metals can be accomplished by a variety of techniques. Conventional methods typically involve the use of processes such as coag...

  8. Removal of Heavy Metals in Effluent by Adsorption and Coagulation

    Feng Ting LI; Xia LI; Bing Ru ZHANG; Qing Hua OUYANG

    2004-01-01

    The silicate colloids with an average diameter 100 nm, were prepared by the hydrolysis of tetraethoxysilane (TES), NH4OH (30%) and then modified by (3-mercaptopropyl) trimethoxysilane ( APS). The colloids can adsorb heavy metals such as Pb and Cr in effluent and after adsorption the colloids can be separated by coagulation of aluminum sulfate. The removal of heavy metals is up to 99%.

  9. Heavy metals removal from dredged sediments using electro kinetics

    Ammami M. T.

    2013-04-01

    Full Text Available This study focuses on the use of a remediation process to remove particle-bound recalcitrant pollutants (heavy metals from dredged harbor sediments which must be previously treated before reuse in civil engineering. Electrokinetic (EK remediation is generally accepted as one of the most suitable technologies for extracting cationic heavy metals from fine grained sediments. Many batch tests were performed to better understand the capacity of various additives to improve sediment decontamination (when applying a constant voltage gradient of 1 V.cm-1, and the combination of enhancing agents (acids + surfactants were assessed to obtain an efficient removal of heavy metals. We succeeded in proving that mixing citric acid and a nonionic surfactant (Tween 20, additives which are environmentally friendly, was a good association to enhance heavy metals (Cd, Cr, Cu, Pb and Zn removal.

  10. Removal of heavy metals from aqueous solutions using opalized tuff

    Golomeova, Mirjana; Zendelska, Afrodita; Golomeov, Blagoj; Krstev, Boris; Jakupi, Shaban

    2015-01-01

    This paper presents the results of the examination of the possibility of applying opalized tuff as a natural raw material for disposal of heavy metals (copper, zinc, manganese and lead) from aqueous solutions. Of actual experiments obtained results show that working conditions attaching to the removal of Cu and Pb ions is more than 91% of zinc ions is above 81%, while manganese ions are removed about 77% .On this can be concluded that the removal of examined heavy metals using opalized tuff i...

  11. Heavy metals removal from dredged sediments using electro kinetics

    Ammami M. T.; Benamar A.; Koltalo F.; Wang H. Q.; LeDerf F.

    2013-01-01

    This study focuses on the use of a remediation process to remove particle-bound recalcitrant pollutants (heavy metals) from dredged harbor sediments which must be previously treated before reuse in civil engineering. Electrokinetic (EK) remediation is generally accepted as one of the most suitable technologies for extracting cationic heavy metals from fine grained sediments. Many batch tests were performed to better understand the capacity of various additives to improve sediment decontaminat...

  12. Science Letters: Simultaneous removal of nitrate and heavy metals by iron metal

    HAO Zhi-wei; XU Xin-hua; JIN Jian; HE Ping; LIU Yong; WANG Da-hui

    2005-01-01

    Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently.Different mechanisms of these contaminants removal by iron metal were also discussed.

  13. New trends in removing heavy metals from wastewater.

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming

    2016-08-01

    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater. PMID:27318819

  14. Plasma polymer-functionalized silica particles for heavy metals removal.

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals. PMID:25603034

  15. Removal of heavy metal from industrial effluents using Baker's yeast

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  16. Simultaneous heavy metal removal mechanism by dead macrophytes.

    Miretzky, Patricia; Saralegui, Andrea; Fernández Cirelli, Alicia

    2006-01-01

    The use of dead, dried aquatic plants, for water removal of metals derived from industrial activities as a simple biosorbent material has been increasing in the last years. The mechanism of simultaneous metal removal (Cd2+, Ni2+, Cu2+, Zn2+ and Pb2+) by 3 macrophytes biomass (Spirodela intermedia, Lemna minor and Pistia stratiotes) was investigated. L. minor biomass presented the highest mean removal percentage and P. stratiotes the lowest for all metals tested. Pb2+ and Cd2+ were more efficiently removed by the three of them. The simultaneous metal sorption data were analysed according to Langmuir and Freundlich isotherms. Data fitted the Langmuir model only for Ni and Cd, but Freundlich isotherm for all metals tested, as it was expected. The K(F) values showed that Pb was the metal more efficiently removed from water solution. The adsorption process for the three species studied followed first order kinetics. The mechanism involved in biosorption resulted ion exchange between monovalent metals as counter ions present in the macrophytes biomass and heavy metal ions and protons taken up from water. No significant differences were observed in the metal exchange amounts while using multi-metal or individual metal solutions. PMID:15990152

  17. Electrodialytic removal of heavy metals from fly ashes

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  18. Removal and recovery of heavy metals of residual water industrial

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  19. Individual and competitive removal of heavy metals using capacitive deionization.

    Huang, Zhe; Lu, Lu; Cai, Zhenxiao; Ren, Zhiyong Jason

    2016-01-25

    This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd(2+)), lead (Pb(2+)) and chromium (Cr(3+)) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5mM individual ions, the Cd(2+), Pb(2+), and Cr(3+) removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd(2+) removal than for the other two ions. Interestingly, while the removal of Pb(2+) and Cr(3+) remained at a similar level of 46% in the mixture of three ions, the Cd(2+) removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb(2+), Cr(3+), and Cd(2+) increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd(2+) were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation. PMID:26476320

  20. Novel forward osmosis process to effectively remove heavy metal ions

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  1. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  2. Electrodialytic Removal of Heavy Metals from Different Solid Waste Products

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Pedersen, Anne Juul;

    2003-01-01

    the method could be used for removal of different heavy metals from impregnated wood waste, fly ash from straw combustion, and fly ash from municipal solid waste incineration. The best result was obtained with the wood waste where more than 80% of each of the polluting elements Cu, Cr and As was...... removed in a 7-day experiment in which oxalic acid was used as enhancement solution. From the straw ash, 66% of the Cd was removed, but 64% of the fly ash dry mass dissolved during the treatment. In this actual experiment, no enhancement solution was used but that will be necessary to avoid dissolution of...... the ash to such a high extent. For the fly ash from waste incineration, ammonium citrate was tested as enhancement solution and in 14 days 62% Cd, 53% Cu, 6% Pb, and 31% Zn were removed. The preliminary results were thus promising for developing the electrodialytic method to other products than soil...

  3. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

    Pragnesh N. Dave; Lakhan V. Chopda

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nanaparticles based nanomaterials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purif...

  4. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-01

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater. PMID:26913810

  5. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied in......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases are...... lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected that the...

  6. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied in...... lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected that the......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases are...

  7. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  8. Mechanisms of heavy metal removal using microorganisms as biosorbent.

    Javanbakht, Vahid; Alavi, Seyed Amir; Zilouei, Hamid

    2014-01-01

    Release and distribution of heavy metals through industrial wastewaters has adverse affects on the environment via contamination of surface- and ground-water resources. Biosorption of heavy metals from aqueous solutions has been proved to be very promising, offering significant advantages such as low cost, availability, profitability, ease of operation, and high efficiency, especially when dealing with low concentrations. Residual biomasses of industrial microorganisms including bacteria, algae, fungi, and yeast have been found to be capable of efficiently accumulating heavy metals as biosorbent. This paper presents and investigates major mechanisms of biosorption and most of the functional groups involved. The biosorption process includes the following mechanisms: transport across cell membrane, complexation, ion exchange, precipitation, and physical adsorption. In order to understand how metals bind to the biomass, it is essential to identify the functional groups responsible for metal binding. Most of these groups have been characterized on the cell walls. The biosorbent contains a variety of functional sites including carboxyl, imidazole, sulfydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties that are responsible for metal adsorption. These could be helpful to improve biosorbents through modification of surface reactive sites via surface grafting and/or exchange of functional groups. PMID:24804650

  9. Comparison of electrocoagulation and chemical coagulation for heavy metal removal

    Akbal, F.; Camci, S. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun (Turkey)

    2010-10-15

    Copper (Cu), chromium (Cr), and nickel (Ni) removal from metal plating wastewater by electrocoagulation and chemical coagulation was investigated. Chemical coagulation was performed using either aluminum sulfate or ferric chloride, whereas electrocoagulation was done in an electrolytic cell using aluminum or iron electrodes. By chemical coagulation, Cu-, Cr-, and Ni-removal of 99.9 % was achieved with aluminum sulfate and ferric chloride dosages of 500, 1000, and 2000 mg L{sup -1}, respectively. Removal of metals by electrocoagulation was affected by the electrode material, wastewater pH, current density, number of electrodes, and electrocoagulation time. Electrocoagulation with iron electrodes at a current density of 10 mA cm{sup -2}, electrocoagulation time of 20 min, and pH 3.0 resulted in 99.9 % Cu-, 99.9 % Cr-, and 98 % Ni-removal. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Removal of heavy metals from aqueous solution by Carrot residues

    The removal of Copper(II), Zinc(II), and Chromium (III) from wastewater by carrot residues was investigated to evaluate cation exchange capacity. The effects of solution P H and co-ions were studied in batch experiments. Adsorption equilibria were initially rapidly established, and then decreased markedly after 10 min. Column experiments were carried out in a glass column filled with carrot residues to evaluate the metal removal capacity. The influences of the feed concentration and feed rate were also studied in order to compare the dynamic capacity for metal binding in different feed concentrations

  11. An optimised method for electrodialytic removal of heavy metals from harbour sediments

    Pedersen, Kristine B.; Jensen, Pernille Erland; Ottosen, Lisbeth M.;

    2015-01-01

    A 2-compartment electrodialytic cell set-up for treatment of solid materials has in many respects proven superior to other types of cells in removing heavy metals from sediments. Most notably, remediation times were shorter, energy consumption was lower and higher removal efficiencies were observed....... By employing m1ultivariate modelling and investigating additional experimental variables, the relative importance of variables effecting remediation was determined and response surfaces for heavy metal removal were calculated. Employing optimal conditions it was possible to remove targeted metals (Pb......, Cu, Zn), by 73-96 %, and remediation objectives could be met in a large region of the studied experimental domain....

  12. Heavy Metal Removal by Chitosan and Chitosan Composite

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  13. Removal of Heavy Metal Ions From Aqueous Solutions

    maziar noei

    2014-12-01

    Full Text Available The removal of Zn(II, V(II,  by  silica aerogel has been found to be concentration, , contact time, adsorbent dose and temperature dependent. ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on silica aerogel  was satisfied. The applicability of the Lagergren kinetic model has also been investigated. Thermodynamic constant (Kad , standard free energy ( ∆G0 ,enthalpy (∆H0 and entropy (∆S0 were calculated for predicting the nature of adsorption

  14. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.

    Mishra, Virendra Kumar; Tripathi, B D

    2008-10-01

    Under the present investigation effectiveness of three aquatic macrophytes Pistia stratiotes L. (water lettuce), Spirodela polyrrhiza W. Koch (duckweed) and Eichhornia crassipes were tested for the removal of five heavy metals (Fe, Zn, Cu, Cr and Cd). These plants were grown at three different concentrations (1.0, 2.0 and 5.0mgl(-1)) of metals in laboratory experiment. Result revealed high removal (>90%) of different metals during 15 days experiment. Highest removal was observed on 12th day of experiment, thereafter it decreased. Results revealed E. crassipes as the most efficient for the removal of selected heavy metals followed by P. stratiotes and S. polyrrhiza. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the water. Significant correlations between metal concentration in final water and macrophytes were obtained. Plants have accumulated heavy metals in its body without the production of any toxicity or reduction in growth. Selected plants shown a wide range of tolerance to all of the selected metals and therefore can be used for large scale removal of heavy metals from waste water. PMID:18296043

  15. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

    Pragnesh N. Dave

    2014-01-01

    Full Text Available In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nanaparticles based nanomaterials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  16. Heavy metal removal from MSS fly ash by thermal and chlorination treatments

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-11-01

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn.

  17. Acidification of Harbour sediment and removal of heavy metals induced by water splitting in electrodialytic remediation

    Nystrøm, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Harbor sediments are often contaminated with heavy metals, which can be removed by electrodialytic remediation. Water splitting at the anion exchange membrane in contact with the contaminated material in electrodialytic remediation is highly important for the removal of heavy metals. Here it was...... investigated how acidification caused by water splitting at the anion exchange membrane during electrodialytic remediation of contaminated harbor sediment and hence the metal removal, was influenced by different experimental conditions. Two different experimental cells were tested, where the number of...... sediment was acidified, the voltage decreased and electrical conductivity increased. After 5 days of remediation the sediment was acidified at the chosen current density (1 mA/cm(2)) and the main metal removal was observed shortly after. Thus it was crucial for the metal removal that the sediment was fully...

  18. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.

    Wang, Jing-Yuan; Huang, Xiang-Jun; Kao, Jimmy C M; Stabnikova, Olena

    2006-08-25

    An upward electrokinetic soil remedial (UESR) technology was proposed to remove heavy metals from contaminated kaolin. Unlike conventional electrokinetic treatment that uses boreholes or trenches for horizontal migration of heavy metals, the UESR technology, applying vertical non-uniform electric fields, caused upward transportation of heavy metals to the top surface of the treated soil. The effects of current density, treatment duration, cell diameter, and different cathode chamber influent (distilled water or 0.01 M nitric acid) were studied. The removal efficiencies of heavy metals positively correlated to current density and treatment duration. Higher heavy metals removal efficiency was observed for the reactor cell with smaller diameter. A substantial amount of heavy metals was accumulated in the nearest to cathode 2 cm layer of kaolin when distilled water was continuously supplied to the cathode chamber. Heavy metals accumulated in this layer of kaolin can be easily excavated and disposed off. The main part of the removed heavy metals was dissolved in cathode chamber influent and moved away with cathode chamber effluent when 0.01 M nitric acid was used, instead of distilled water. Energy saving treatment by UESR technology with highest metal removal efficiencies was provided by two regimes: (1) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 mm, duration of 18 days, and constant voltage of 3.5 V (19.7 k Wh/m(3) of kaolin) and (2) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 cm, duration of 6 days, and constant current density of 0.191 mA/cm(2) (19.1 k Wh/m(3) of kaolin). PMID:16504386

  19. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system. PMID:27332837

  1. Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    Sun, Tian R.; Ottosen, Lisbeth M.

    2012-01-01

    exchange membrane was the major contributor of energy consumption, and the pulse current could decrease the voltage drop of this part effectively. The overall removal of heavy metals in soil 1 (6–54%) was much higher than soil 2 (1–17%) due to the different acidification process and chemical speciation of...... heavy metals reflected by sequential extraction analysis. Among all experiments, the highest removal efficiency occurred in pulse current experiment of soil 1, where 54% of Cu and 30% of As were removed.......The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different...

  2. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.

    Vogel, Christian; Adam, Christian

    2011-09-01

    Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water. PMID:21819089

  3. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    Shohreh Azizi; Ilunga Kamika; Memory Tekere

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 h...

  4. Removal of Heavy Metals from Aqueous Solution using Clinoptilolite and Stilbite

    Golomeova, Mirjana; Zendelska, Afrodita; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj

    2014-01-01

    Heavy metals are highly toxic and they must be removed from the polluted streams. Аdsorption by zeolites is currently considered to be very suitable for wastewater treatment because of its simplicity and cost effectiveness. The aim of this investigation was to compare adsorption efficiency of heavy metals (Cu, Zn, Mn and Pb) from aqueous solution using two different types of natural zeolite: clinoptilolite from Bulgaria and stilbite from Macedonia. The obtained information will be basis for f...

  5. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  6. REMOVAL OF HEAVY METALS FROM INDUSTRIAL WASTEWATERS USING INSOLUBLE STARCH XANTHATE

    The Northern Regional Research Center developed an effective process to remove heavy metals from wastewaters of two nonferrous metal industries and insoluble starch xanthate (ISX). The study included bench-scale evaluation of wastewaters from two lead battery and one brass mill w...

  7. USEBILITY OF HYDROGELS IN ADSORPTION TECHNOLOGHY FOR REMOVAL OF HEAVY METAL AND DYE

    AÇIKEL Safiye Meriç

    2016-05-01

    Full Text Available Heavy metals and Dyes are very toxic and nonbiodegradable in waste waters to cause adverse health effects in human body and to induce irreversible pollution. Adsorption offers many potential advantages for removal of toxic heavy metals being flexibility in design and operation, high-quality treated effluent, reversible nature for multiple uses, and many commercially available adsorbent materials, such as activated carbon, zeolite, clay, sawdust, bark, biomass, lignin, chitosan and other polymer adsorbents. Compared to conventional adsorbent materials above, hydrogelbased adsorbents recently have attracted special attention to their highly potential for effective removal of heavy metals and dyes. Hydrogels are named “Hydrophilic Polymer” because of care for water. Hydrogels is not solved in water; however they have been swollen to their balance volume. Because of this swell behavior, they can adsorb big quantity of water in this structure. So they can term of “three sized polymers” due to protect their existing shape [9]. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. Hydrogels with porous structures and chemically-responsive functional groups, enable to readily capture metal ions and dyes from wastewater. In adsorption applications, hydrogels are used in water purification, heavy metal/dying removing, controlled fertilizer released, ion exchange applications, chromatographic applications, dilute extractions, waste water treatments. This article general inform about usage of hydrogels in Dye and Heavy Metal adsorption.

  8. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2

    Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States); Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-02-01

    Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  9. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-02-01

    Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

  10. Literature review on the use of bioaccumulation for heavy metal removal and recovery

    Bioaccumulation of metals by microbes -- '' bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R ampersand D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes

  11. Application of Electrochemical Process in Removal of Heavy Metals from Landfill Leachate

    Mostafaii Gh.1 PhD,

    2016-08-01

    Full Text Available Aims Municipal landfill leachate contains high concentrations of heavy metals, organics, ammonia. The efficeincy of electrochemically removal of heavy metals from landfill leachate was studied. Materials & Methods The leachate was obtained from Kahrizak landfill in south of Tehran. The experiments were carried out by batch process. The 2liter batch reactor was made of glass. There were eight anodes and cathodes electrodes. The electrodes were placed vertically parallel to each other and they were connected to a digital DC power supply. The pH and conductivity were adjusted to a desirable value using NaOH or H2SO4, and NaCl. All the runs were performed at constant temperature of 25°C. In each run, 1.5liter of the leachate was placed into the electrolytic cell. Samples were extracted every 10min and then filtered through a mixed cellulose acetate membrane (0.42μm. The amount of Lead, Zinc and Nickel removal was measured at pH=7 and in current density of 0.5, 0.75, and 1A. Findings When current density and time reaction increased, removal efficiency of heavy metals such as Lead, Zinc and Nickel increased. At initial pH=7, density 1A and reaction time= 60min, Lead, Nickel and Zinc were removed up to 86, 93 and 95%, respectively. Conclusion Electrochemical process can be proposed as a suitable technique to remove heavy metal from landfill leachate.

  12. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces. PMID:18842283

  13. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts.

    Shaheen, Sabry M; Eissa, Fawzy I; Ghanem, Khaled M; Gamal El-Din, Hala M; Al Anany, Fathia S

    2013-10-15

    Water contamination with heavy metals (HM) represents a potential threat to humans, animals and plants, and thus removal of these metals from contaminated waters has received increasing attention. The present study aimed to assess the efficiency of some low cost sorbents i.e., chitosan (CH), egg shell (ES), humate potassium (HK), and sugar beet factory lime (SBFL) for removal of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from wastewaters. For this purpose batch equilibrium experiments were conducted with aqueous solutions containing various concentrations of the metals and sorbents in a mono-metal and competitive sorption system. Sorption isotherms were developed, and sorption parameters were determined. The potential applicability of the tested sorbents in the removal of Cd, Cu, and Zn from contaminated wastewaters was also investigated by equilibrating different sorbents and water ratios. Chitosan expressed the highest affinity for the metals followed by SBFL, ES, and HK. Nearly 100% of the metals were removed from aqueous solutions with the lowest initial metal concentrations by the sorbents especially CH and SBFL. However, the sorption efficiency decreased as the initial metal concentrations increased. Competition among the four metals changed significantly their distribution coefficient (Kd) values with the sorbents. The selectivity sequence of the metals was: Pb > Cu > Zn > Cd. The metal removal from the wastewaters varied from 72, 69, and 60 to nearly 100% for Cd, Cu and Zn, respectively. The efficiency of the studied byproducts in removing metals from the wastewaters differed based on the source of contamination and metal concentrations. Cadmium removal percentages by HK and CH were higher than SBFL and ES. The HK and CH exhibited the highest removal percentage of Cu from water with high concentrations. The SBFL and ES revealed the highest removal percentage of Zn from water with high concentrations. The results, demonstrate a high potential

  14. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies. PMID:26271772

  15. The use of biosorbents for heavy metals removal from aqueous media

    Biomaterials, which could be adsorbed heavy metals, such bacteria, algae, yeasts, fungi and agricultural waste, is called Biomass. Recently, they are widely used for heavy metal removal from aqueous media, due to their large available quantities, low cost and good performance. The biosorbent, unlike mono functional ion exchange resins, contains variety of functional sites including carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide and hydroxyl moieties. In this paper, the biosorbents word widely and nationally used for heavy metal removal were reviewed. Their biosorption performance, their pretreatment and modification, aiming to improve their sorption capacity, and regeneration/reuse was introduced and evaluated. The potential application of biosorption and biosorbents was discussed. (author)

  16. A review on progress of heavy metal removal using adsorbents of microbial and plant origin.

    Srivastava, Shalini; Agrawal, S B; Mondal, M K

    2015-10-01

    Heavy metals released into the water bodies and on land surfaces by industries are highly toxic and carcinogenic in nature. These heavy metals create serious threats to all the flora and fauna due to their bioaccumulatory and biomagnifying nature at various levels of food chain. Existing conventional technologies for heavy metal removal are witnessing a downfall due to high operational cost and generation of huge quantity of chemical sludge. Adsorption by various adsorbents appears to be a potential alternative of conventional technologies. Its low cost, high efficiency, and possibility of adsorbent regeneration for reuse and recovery of metal ions for various purposes have allured the scientists to work on this technique. The present review compiles the exhaustive information available on the utilization of bacteria, algae, fungi, endophytes, aquatic plants, and agrowastes as source of adsorbent in adsorption process for removal of heavy metals from aquatic medium. During the last few years, a lot of work has been conducted on development of adsorbents after modification with various chemical and physical techniques. Adsorption of heavy metal ions is a complex process affected by operating conditions. As evident from the literature, Langmuir and Freundlich are the most widely used isotherm models, while pseudo first and second order are popularly studied kinetic models. Further, more researches are required in continuous column system and its practical application in wastewater treatment. PMID:26315592

  17. Enhanced removal of heavy metals in primary treatment using coagulation and flocculation.

    Johnson, Pauline D; Girinathannair, Padmanabhan; Ohlinger, Kurt N; Ritchie, Stephen; Teuber, Leah; Kirby, Jason

    2008-05-01

    The goal of this study was to determine the removal efficiencies of chromium, copper, lead, nickel, and zinc from raw wastewater by chemically enhanced primary treatment (CEPT) and to attain a total suspended solids removal goal of 80%. Operating parameters and chemical doses were optimized by bench-scale tests. Locally obtained raw wastewater samples were spiked with heavy metal solutions to obtain representative concentrations of metals in wastewater. Jar tests were conducted to compare the metals removal efficiencies of the chemical treatment options using ferric chloride, alum, and anionic polymer. The results obtained were compared with those from other studies. It was concluded that CEPT using ferric chloride and anionic polymer is more effective than CEPT using alum for metals removal. The CEPT dosing of 40 mg/L ferric chloride and 0.5 mg/L polymer enhanced heavy metals removal efficiencies by over 200% for chromium, copper, zinc, and nickel and 475% for lead, compared with traditional primary treatment. Efficient metals capture during CEPT can result in increased allowable headworks loadings or lower metal levels in the outfall. PMID:18605386

  18. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water.

    Vilela, Diana; Parmar, Jemish; Zeng, Yongfei; Zhao, Yanli; Sánchez, Samuel

    2016-04-13

    Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots' structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals. PMID:26998896

  19. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis

    Highlights: • Heavy metals removal from MSWI fly ash with BES and electrolysis was confirmed. • 98.5% of Cu(II), 95.4% of Zn(II) and 98.1% of Pb(II) removal were achieved in reactors. • BESs can remove some heavy metals in fly ash with energy saving. -- Abstract: Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10 h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors

  20. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    Liu Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: axore@163.com; Zhou Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Li Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Xu Weihua [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Fan Ting [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2007-03-06

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals.

  1. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals

  2. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  3. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  4. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  5. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment.

    Nowak, B; Pessl, A; Aschenbrenner, P; Szentannai, P; Mattenberger, H; Rechberger, H; Hermann, L; Winter, F

    2010-07-15

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000 degrees C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwärme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments. PMID:20356672

  6. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment

    Nowak, B., E-mail: benedikt.nowak@tuwien.ac.at [Institute of Chemical Engineering/Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Pessl, A. [Institute of Chemical Engineering/Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Aschenbrenner, P. [Institute for Water Quality, Resource and Waste Management/Vienna University of Technology, Karlsplatz 13/226, A-1040 Vienna (Austria); Szentannai, P. [Institute of Chemical Engineering/Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Mattenberger, H. [ASH DEC Umwelt AG, Donaufelderstrasse 101/4/5, A-1210 Vienna (Austria); Rechberger, H. [Institute for Water Quality, Resource and Waste Management/Vienna University of Technology, Karlsplatz 13/226, A-1040 Vienna (Austria); Hermann, L. [ASH DEC Umwelt AG, Donaufelderstrasse 101/4/5, A-1210 Vienna (Austria); Winter, F., E-mail: franz.winter@tuwien.ac.at [Institute of Chemical Engineering/Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria)

    2010-07-15

    Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

  7. Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sediments

    Pedersen, Kristine B.; Ottosen, Lisbeth M.; Jensen, Pernille Erland;

    2015-01-01

    Comparisons of cell and stack designs for the electrodialytic removal of heavy metals from two harbour sediments, were made. Multivariate modelling showed that sediment properties and experimental set-ups had the highest influence on the heavy metal removal indicating that they should be modelled...

  8. Comparison of Amberlite IR 120 and dolomite's performances for removal of heavy metals

    The presence of heavy metals in the environment is major concern due to their toxicity. Contamination of heavy metals in water supplies has steadily increased over the last years as a result of over population and expansion of industrial activities. A strong cation-exchange resin, Amberlite IR 120 and a natural zeolite, dolomite were used for the removal of lead(II) and cadmium(II). The optimum conditions were determined in a batch system as concentration range was between 5 and 100 mg/L, pH range between 1 and 8, contact time between 5 and 90 min, and the amount of adsorbent was from 0.1 to 1 g. A constant stirring speed, 2000 rpm, was chosen during all of the experiments. The optimum conditions were found to be a concentration of 20 mg/L, pH of 5, contact time of 60 min and 0.5 g of adsorbent. Also, for investigation of exchange equilibria different amounts of ion exchange resin and dolomite were contacted with a fixed volume and concentration of a heavy metal bearing solutions. Sorption data have been interpreted in terms of Langmuir and Freundlich equations. The effect of adsorption temperature on the heavy metals adsorption onto dolomite was investigated at three different temperatures (20, 40 and 60 deg. C). Thermodynamic parameters were calculated. The results obtained show that the Amberlite IR 120 strong cation-exchange resin and dolomite performed well for the removal of these heavy metals. As a low cost adsorbent, dolomite can preferable for removal of heavy metals from wastewaters

  9. Removal of Heavy Metals and PAH in Highway Detention Ponds

    Bentzen, Thomas Ruby; Larsen, Torben; Thorndahl, Søren Liedtke;

    2005-01-01

    rainfalls. The modelling will take place in a special version of the MIKE URBAN. The modelling is calibrated and validated on measurements from selected highway catchments. The removal of pollutants in the ponds is studied by local measurements in combination with CFD modelling using the MIKE 21 and MIKE 3...

  10. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Ab Razak Abdul Rafiq; Sunar Norshuhaila Mohamed; Alias Nurul Azira; Gani Paran; Subramaniam Menega

    2016-01-01

    The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and hea...

  11. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  12. Removal of Some Heavy Metals from Wastewater using Radiation- Adsorption Method

    Wastewater containing toxic materials poses a serious environmental problem. Many of the pollutants are not readily biodegradable and complete removal in many cases is a relatively expensive process. On the other hand, incomplete removal is a serious health hazard. In the present study, a try was made to explain the degradation kinetics due to gamma-irradiation and adsorption of some heavy metals: Uranium, Molybdenum, Zirconium, and Vanadium. Factors affecting the process such as concentration, irradiation dose and ph of the solution was studied. Gamma-radiation doses up to 50 kGy did not result in the degradation of the heavy metals. However, as expected gamma radiation resulted in a change in the valency of these heavy metal ions to other oxidation states which may have resulted in less toxicity. Adsorption and ion-exchange purification of the heavy metals onto GAC,Merck Ion Exchangers I, and IV and polymeric membranes showed that GAC has the highest adsorption capacity for all pollutants compared with the ion-exchangers and polymeric membranes which may be due to its very high surface area and high porous nature which causes internal and external distribution within the carbon particle more than it dose in the case of polymeric membranes and ion-exchangers. GAC was followed by the cation exchanger with different percent adsorption according to the type of pollutant and the least removal percent was shown by the polymeric membranes. Also, a study of the affinity of the pollutants towards the different adsorbents was carried out

  13. Heavy metal ion removal by adsorption on to biological materials

    The development of regulations constraints in the industrial waste-waters management leads to the study of new treatment processes, using raw or functionalized biological materials. These processes show competitive performances in metal ion sorption efficiency for the low metal content effluents. Uptake capacities of Uranium as high as 400 mg.g-1 chitosan, equivalent to the double of the uptake capacity of fungal origin biomass, can be reached. The application of these processes to real mine wastewaters gives efficiency coefficient upper to 90%, the residual concentrations are compatible to a direct injection into the environment. The grafting of functional groups onto the chitosan scales up the sorption performances to uptake capacity upper than 600 mg.g-1 polymer. pH, metal concentration are cited as major parameters, particle size influences both uptake kinetics and sorption equilibrium, in the case of the uranium accumulation by chitosan. The desorption of uranium from the sorbent allows the valorization of uranium and the re-use of the sorbent. (authors). 21 refs., 10 figs

  14. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil. PMID:23681773

  15. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    S.A. Bapat

    2016-03-01

    Full Text Available Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  16. Removal of heavy metals using a microbial active, continuously operated sand filter

    Heavy metals play an important role within the spectrum of the various pollutants, emitted into the environment via human activities. In contrast to most organic pollutants, heavy metal can not be degraded. Many soils, lakes and rivers show a high contamination with heavy metals due to the enrichment of these pollutants. In addition to existing chemical-physical and biological technologies for the treatment of heavy metal containing waste waters a demand for new, efficient and low-cost cleaning technologies exists, particularly for high volumes of weakly contaminated waters. Such a technology was developed within the framework of a scientific project of the European Union. The approach makes use of a continuously operated, moving-bed Astrasand filter, which has been operated as a continuous biofilm reactor. By inoculation of the reactor with bacteria providing different, defined mechanisms of metal immobilization, and by continuous supply of suitable nutrients, a metal-immobilizing biofilm is built up and regenerated continuously. Metal-enriched biomass is removed continuously from the system, and the contained metals can be recycled by pyrometallurgical treatment of the biomass. The subjects of the present work were the optimization of the nutrient supply for the process of metal removal, the investigation of the toxicity of different waste waters, the optimization of inoculation and biofilm formation, set-up and operation of a lab scale sand filter and the operation of a pilot scale sand filter treating rinsing water of a chemical nickel plating plant. First, basic parameters like toxicity of heavy metal-containing waste waters and the influence of the nutrition of bacteria on biosorption and total metal removal were examined, using freely suspended bacteria in batch culture. Concerning toxicity great differences could be found within the spectrum of heavy metal-containing waste waters tested. Some waters completely inhibited growth, while others did not

  17. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.

    Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam

    2016-11-15

    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. PMID:27474848

  18. Removal of heavy metals in wastewater by membrane bioreactor: effects of flux and suction period

    The effects of flux and suction period on the removal of selected heavy metals including nickel, arsenic, cadmium, antimony and lead by membrane bioreactor was investigated. The sludge-age was arranged as 25 days and MLSS concentration was about 13 g/L. The flux was increased from 13 to 26 L/m2-h to understand the effects of flux on the removals. Moreover, to understand the effect of bio-film formation on the membrane plate surfaces, different samples were taken at different periods of the suction cycle. COD removal during the study was over 95%. Influent concentration of each of the heavy metals spiked directly to the wastewater was about 100 meu g/L. Effluent concentrations of cadmium and lead were under the limit of detection in all samples meaning that all the cadmium and lead were removed. Removals of over 50, 96, and 95% for arsenic, nickel and antimony were achieved, respectively. The highest removal was achieved in the first minute of the suction where the metals were accumulated in the surface biomass. (author)

  19. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater. PMID:26512324

  20. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Zhong, Qinmei; Zhang, Chuer; Jia, Yongxia; Li, Ting; Deng, Ouping; Li, Yun

    2016-11-01

    Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals. PMID:27371771

  1. Removal of Heavy Metal Ions from Wastewater by Using Biosorbents from Marine Algae-A Cost Effective New Technology

    2001-01-01

    Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.

  2. Chitosan membrane development and design of equipment for the removal of heavy metals from water

    A filtration technique has compared with 1,75% m/v chitosan membranes, crosslinked with glutaraldehyde (0,08% m/v) and without cross link, to quantify the removal capacity of chromium, copper and cadmium ions of model solutions. In addition, a simple and low cost equipment was developed to use with prepared membranes. The main goal has been to use biodegradable materials for removing heavy metals from water, through a low energy consumption, cheap, and applicable to specific problems. Two data sheets were prepared for the membranes and was found that chromium was the metal with the highest removal from water, by using a crosslinked membrane. Metal adsorption was best adjusted to the Freundlich isotherm model, better than Langmuir isotherm model. However, no correlation has been found between pore size of the membranes and crosslinking degree. (author)

  3. Application of Novel Nanoporous Sorbents for the Removal of Heavy Metals, Metalloids, and Radionuclides

    Mattigod, Shas V.; Fryxell, Glen E.; Parker, Kent E.; Lin, Yuehe

    2005-10-01

    A new class of hybrid nanoporous materials for removing toxic heavy metals, oxyanions, and radionuclides from aqueous waste streams has been developed at the Pacific Northwest National Laboratory. These novel materials consist of functional molecules such as thiols, ethylenediamine complexed copper, and carbamoylphosphonates that are self-assembled as monolayers within the nanopores of a synthetic silica-based material. Tests indicated that these sorbents (self-assembled monolayers on mesoporous silica ? SAMMS) can achieve very high sorbate loadings ({approx}6 meq/g) very rapidly with relatively high specificity (Kd: 1?108 ml/g). Because of the specifically tunable nature of the functionalities, these nanoporous sorbents can be targeted to remove a selected category of contaminants such as heavy metals (Ag, Cd, Cu, Hg, and Pb), oxyanions (As and Cr), and radionuclides (137Cs, 129I, 237Np, and isotopes of Pu, Th, and U) from waste streams.

  4. Characterization of natural adsorbent material for heavy metal removal in a petrochemical site contamination

    Bianchi F.

    2013-04-01

    Full Text Available Despite of over 25 years of intensive technological efforts, sub-surface environment cleanup still remains a challenge, especially in case of highly contaminated sites. In this context, ion exchanger technologies could provide simple and effective solutions for heavy metal removal in water treatment. The challenge is finding exchanger able to operate in extreme natural environments or in situations involving natural interfering species such as inorganic ions. In this paper we exam the use of natural zeolites as versatile exchanger for environmental protection of coastal refinery's groundwater against pollution of Ni, Cd, Pb. The influence of particle diameter on clinoptilolite performances toward heavy metal removal is studied. Also, we evaluate the exchanger activities in condition of high ionic strength, commonly present in groundwater located under coastal petrol industries. The obtained results confirmed that ion exchangers could provide an effective solutions for remediation in complex environmental conditions.

  5. Removal of heavy metals from mine wastewater using zeolite bearing tuff

    Golomeova, Mirjana; Zendelska, Afrodita; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj

    2015-01-01

    This paper presents the results of the examination of the possibility of applying zeolite bearing tuff, as a natural material, for the removal of heavy metals (copper, zinc, manganese and lead) from mine water. The experiments were performed on wastewater taken from drainage water from Svinja River above horizont XV from The mine of lead and zinc "SASA" in Makedonska Kamenica and The copper mine "Bucim" in Radovis. From the analysis can be concluded that zeolite bearing tuff...

  6. The removal of heavy metals from aqueous solution by adsorption on weathered coal

    Meena, A.K.; Gupta, M.D.; Mishra, G.K.; Rajagopal, C.; Nagar, P.N. [Central Research Institute (Ayurveda), Gwalior (India)

    2009-07-01

    The adsorption followed first-order kinetics. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed. On the basis of experimental results, it can be inferred that the adsorbent weathered coal may be useful in developing an adsorptive technology for the removal of heavy metals. 25 refs., 8 figs., 4 tabs.

  7. Removal of nutrients by algae from municipal wastewater contaminated with heavy metals

    Aryal, Bigyan

    2015-01-01

    Selected species of algae (green algae and blue green algae) were cultivated in municipal wastewater using PBR (photo-bioreactor) bottles. Uptake of nutrients by these algae species was measured on different dates. From the results of the experiments, it was observed that a combination of certain blue green algae species (cyanobacteria) was able to remove most of the nutrients from the wastewater. The presence of heavy metal ions in the wastewater also affected the nutrient-absorbing capacit...

  8. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water.

    Elsanhoty, Rafaat M; Al-Turki, I A; Ramadan, Mohamed Fawzy

    2016-01-01

    In this study selected lactic acid bacteria (LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantrium and Streptococcus thermophiles) and probiotic bacteria (Bifidobacterium angulatum) were tested for their ability in removing heavy metals (HM) including cadmium (Cd), lead (Pb) and arsenic (As) as well as aflatoxin B1 (AFB1) from contaminated water. The biosorption parameters (pH, bacterial concentration, contact time and temperature) of removal using individual as well as mixed LAB and probiotic bacteria were studied. Removal of HM and AFB1 depended on the strain, wherein the process was strongly pH-dependent with high removal ability at a pH close to neutral. The increase in bacterial concentration enhanced the removal of Cd, Pb and As. Also, increasing of contact time and temperature increased the ability of LAB to remove HM. The effect of contact time on Cd removal was slightly different when freshly cultured cells were used. The removal of Cd, Pb and As decreased with the increase in the initial metal concentration. The most effective HM removers were Lactobacillus acidophilus and Bifidobacterium angulatum. The system was found to be adequate for concentrations of HM under investigation. At the end of the operation, the concentration of HM reached the level allowed by the World Health Organization regulations. PMID:27508367

  9. A feasibility study on bioelectrokinetics for the removal of heavy metals from tailing soil.

    Lee, Keun-Young; Kim, Hyun-A; Lee, Byung-Tae; Kim, Soon-Oh; Kwon, Young-Ho; Kim, Kyoung-Woong

    2011-01-01

    The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal-contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies. PMID:21046430

  10. A study on removal of heavy metal ions in waste water by foam fractionation

    The purpose of this study is to remove the Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+ ions in the waste water efficiently by sulfide precipitation and foam fractionation using the cationic surfactant (cetyl trimethly ammomium bromide, CTAB). In this study, the effects of pH, Na2S dose for sulfide precipitation and removal efficiency, removal rate of heavy metal ions by varying the pH range, Na2S dose and CTAB concentration were investigated. The optimum concentration of Na2S for sulfide precipitation was 1.0-1.5 equivalents to metal ions and pH range was 6.0-10.0 in coexistence of several metals. Coagulation by means of CTAB showed the best result at pH 8 and optimum CTAB concentration for foam fractionation was 40-5 mg/l at the entire pH range. Removal rate by means of form fractionation showed the following order; HgS>CdS>PbS>ZnS>CuS. Removal efficiencies of Cd2+, Cu2+, Hg2+ and Pb2+ were more than 99% at pH3-8, but Zn2+ showed more than 92% at above pH 10. When several metalions were coexisted, the optimum pH range for upmost removal efficiency showed pH 6-10 and more than 97% of them could be removed within 9 minutes.(Author)

  11. Heavy Metal Removal from Commercially-available Fruit Juice Packaged Products by Citric Acid

    Shabnam Mohammadi

    2015-03-01

    Full Text Available There has been an increasing trend in the production and consumption of local and imported fruit juices in Iran. The presence of impurities and foreign matter in finished products for human consumption is of great concern because they present health hazards when they exceed beneficial limits. The manufacture of juices requires special attention in terms of purity and the sources of water and its purification are crucial for maintaining quality and safety. Biosorption can be defined as the removal of metal or metalloid species, compounds and particulates from solution by biological material. citric acid content of beverages may be useful in nutrition therapy for calcium urolithiasis, achieving therapeutic urinary citrate concentration is one clinical target in the medical management of calcium urolithiasis. Information on the citric acid content of fruit juices and commercially-available formulations is not widely known. Levels of heavy metals: Lead, Cadmium and Nickel in 180 selected fruit juice commercially available packaged samples (Pineapple, Orange, Mango, Tropical, Cherry& Grape purchased from Tehran local Market in 2014. Heavy metals were determined using atomic absorption spectrophotometer (AAS by wet digestion method in Pharmaceutical Sciences Branch, Islamic Azad University Tehran-Iran. From the obtained result Ni, Cd and Pb were detectable in 85% of samples especially in Mango and Tropical juices. The efficiency removal of Nickel, lead and Cadmium and neutralization of calculus contain of juice by Citric acid as a chelating were carried out by using of Atomic Absorption Spectrophotometry technique. The result demonstrated the complexation formulating between the citric acid and heavy metals. The high efficiency of Citric acid played an important role in removal of lead and cadmium in addition to this removal were increased by increasing the citric acid. The enhancing of citric acid in removal of lead and cadmium caused to create a

  12. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. (Alabama Univ., University, AL (United States). Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  13. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. [Alabama Univ., University, AL (United States). Mineral Resources Inst.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  14. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation.

    Hansda, Arti; Kumar, Vipin; Anshumali

    2016-10-01

    The threat of heavy metal pollution to environmental health is getting worldwide attention due to their persistence and non-biodegradable nature. Ineffectiveness of various physicochemical methods due to economical and technical constraints resulted in the search for a cost-effective and eco-friendly biological technique for heavy metal removal from the environment. The two effective biotic methods used are biosorption and bioaccumulation. A comparison between these two processes demonstrated that biosorption is a better heavy metal removal process than bioaccumulation. This is due to the intoxication of heavy metal by inhibiting their entry into the microbial cell. Genes and enzymes related to bioremoval process are also discussed. On comparing the removal rate, bacteria are surpassed by algae and fungi. The aim of this review is to understand the biotic processes and to compare their metal removal efficiency. PMID:27565780

  15. Investigation of Media Effects on Removal of Heavy Metals in Bioretention Cells

    Gülbaz, Sezar; Melek Kazezyilmaz-Alhan, Cevza; Copty, Nadim K.

    2015-04-01

    Heavy metals are the most toxic elements at high concentrations, although some of them such as Cu and Zn are essential to plants, humans, and animals within a limited value. However, some heavy metals, such as Pb, have adverse effects even at low concentrations. Therefore, it is known that the toxic metals such as Zn, Cu and Pb in storm water runoff are serious threat for aquatic organisms. It is very important to control and reduce heavy metal concentration in urban storm water runoff. There are several methods to remove the aforementioned toxic metals such as electrolyte extraction, chemical precipitation, ion-exchange, reverse osmosis, membrane filtration, adsorption, cementation, and electrochemical treatment technologies. However, these methods are highly expensive and hard to implement for treatment of big volumes of water such as storm water. For this purpose, Low Impact Development (LID) Best Management Practices (BMPs) have become popular to collect, infiltrate, and treat toxic metals in storm water runoff in recent years. LID-BMP is a land planning method which is used to manage storm water runoff and improve water quality by reducing contaminant in storm water runoff. Bioretention is an example of LID-BMP application of which usage has recently been started in storm water treatment. Researchers have been investigating the advantages of bioretention systems and this study contributes to these research efforts by seeking for the media effects of bioretention on heavy metal removal. For this purpose, batch sorption experiments were performed to determine the distribution coefficients and retardation factor of copper (Cu), lead (Pb), and zinc (Zn) for bioretention media such as mulch, turf, local or vegetative soil, sand and gravel. Furthermore, sorption reaction kinetics of Cu, Pb and Zn are tested in order to assess the sorption equilibrium time of these metals for 5 bioretention media. The results of sorption test show that turf has higher sorption

  16. The removal of heavy metals from aqueous solution using natural Jordanian zeolite

    Taamneh, Yazan; Sharadqah, Suhail

    2016-02-01

    In this article, the adsorption process of cadmium and copper using natural Jordanian (NJ) zeolite as adsorbent has been experimentally estimated. The samples of NJ zeolite were obtained from Al Mafraq discrete, north east of Jordan. The influence of the bulk concentration (C o), contact time (t) and different adsorbent masses (m) of NJ zeolite on the removal of heavy metal were evaluated. These variables had a considerable function in promoting the sorption process of heavy metal using the NJ zeolite. The initial concentration of heavy metals in the stock solution was extended between 80 and 600 mg/L. The batch adsorption method was employed to investigate the adsorption process. The experimental data were correlated using Freundlich and Langmuir empirical formula. The ability of NJ zeolite to eliminate cadmium and copper was estimated according to Langmuir isotherm empirical formula and found 25.9 and 14.3 mg/g for cadmium and copper, respectively. The kinetics of adsorption of cadmium and copper have been analyzed and correlated by first-order and second-order reaction model. It was noticed that adsorption of cadmium and copper was better correlated with pseudo-second-order kinetic model. The results presented that NJ zeolite is practical adsorbent for removing cadmium and copper ion metal.

  17. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  18. Nitrogen removal and heavy metals in leachate treatment using SBR technology

    Biological nitrogen removal by the use of Sequencing Batch Reactors (SBRs) is today an accepted and well proven model. The results of SBR performance on nitrogen removal have encouraged consultants, engineering companies and landfill operators to develop and build full scale SBR plants at a number of sites in Sweden. Two of these plants, Isaetra and Norsa, have been studied closely. The Norsa plant treats leachate at a controlled water temperature, while the Isaetra plant is exposed to temperature variation throughout the year. Both plants have very well proven nitrogen removal capacities, although winter conditions have an adverse impact on their performance. Typical nitrification efficiency is close to 100%, while the total nitrogen removal is about 90-95% under stable operation conditions. A good relationship between the nitrogen load and the nitrification rate has been observed at the Norsa SBR plant. The heavy metal content in the leachate is very low thanks to anaerobic precipitation inside the landfill into metal sulphides. The heavy metal content in the biological sludge is consequently also very low.

  19. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions.

    Huang, Zhanhua; Wu, Qinglin; Liu, Shouxin; Liu, Tian; Zhang, Bin

    2013-09-12

    A novel biodegradable β-cyclodextrin-based gel (CAM) was prepared and applied to the removal of Cd(2+), Pb(2+) and Cu(2+) ions from aqueous solutions. CAM hydrogel has a typical three-dimensional network structure, and showed excellent capability for the removal of heavy metal ions. The effect of different experimental parameters, such as initial pH, adsorbent dosage and initial metal ion concentration, were investigated. The adsorption isotherm data fitted well to the Freundlich model. The adsorption capacity was in the order Pb(2+)>Cu(2+)>Cd(2+) under the same experimental conditions. The maximum adsorption capacities for the metal ions in terms of mg/g of dry gel were 210.6 for Pb(2+), 116.41 for Cu(2+), and 98.88 for Cd(2+). The biodegradation efficiency of the resin reached 79.4% for Gloeophyllum trabeum. The high adsorption capacity and kinetics results indicate that CAM can be used as an alternative adsorbent to remove heavy metals from aqueous solution. PMID:23911476

  20. Removal of some heavy metals by natural and synthetic materials and effect of gamma-radiation

    The adsorption of cupper, lead, cobalt and nickel from water by granular activated carbon (GAC), a strong cation exchanger (Dowex 50 w-x 8), calcium aluminum silicate and bentonite clay was studied. Batch experiments were carried out to determine the time to maintain equilibrium followed by adsorption isotherm. results obtained by using the different adsorbents were found to match with the freundlich equation. Different factors that affect the absorbability of dissolved metals were studied; among these the chemical form, solution Ph and ionic radii. The results showed that the adsorption treatment by using calcium aluminum silicate and bentonite clay resulted in more removal percent than GAC, and the strong cation exchanger. The removal of heavy metal ions from water using gamma irradiation has been investigated for the cases of Cu21, Pb21, Co21 and Ni21 ions. These metal ions are reduced by hydrated electrons and hydrogen atoms to lower valence state and eventually precipitate out of solutions

  1. Polyaza macroligands as potential agents for heavy metal removal from wastewater

    Elizondo Martínez Perla

    2013-01-01

    Full Text Available Two polyaza macroligands N,N´-bis(2-aminobenzyl-1,2- ethanediamine (L1 and 3,6,9,12-tetraaza-4(1,2,11(1,2-dibenzo-1(1,3- piridinaciclotridecafano (L2 were characterized and investigated for their metal ion extraction capabilities. The nature of all complexes was established by spectroscopic techniques. The equilibrium constants were determined by spectrophotometric and potentiometric techniques and the residual concentration of metals in the solutions by Atomic Absorption Spectrometry (AAS. The capacity of the ligands to remove heavy metals such as Cu(II, Ni(II, Cd(II, Zn(II and Pb(II as insoluble complexes was evaluated in wastewater from industrial effluents. These agents showed high affinity for the studied metals. The values of equilibrium constants of the isolated complexes (between 1 x 104 and 2 x 107 demonstrated the feasibility of applying these chelating agents as an alternative to remove heavy metals from industrial effluents.

  2. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  3. Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride.

    Vogel, Christian; Exner, Robert M; Adam, Christian

    2013-01-01

    Sewage sludge ash (SSA) is a prospective phosphorus source for the future production of recycling P-fertilizers. Due to its high heavy metals contents and the relatively low P plant-availability, SSA must be treated before agricultural utilisation. In this paper SSA was thermochemically treated with PVC in a bench-scale rotary furnace in order to remove heavy metals via the chloride pathway. PVC has a high Cl-content of 52-53% and a high heating value that can be beneficially used for the thermochemical process. Large amounts of waste PVC are already recovered in recycling processes, but there are still some fractions that would be available for the proposed thermochemical process, for example, the low quality near-infrared(NIR)-fraction from waste separation facilities. Heavy metals were effectively removed at temperatures in the range of 800-950 °C via the gas phase by utilisation of PVC as Cl-donor. The resulting P plant-availability was comparable to SSA thermochemically treated with MgCl(2) as Cl-donor if MgO was used as an additive (Mg-donor). A further increase of the plant availability of phosphorus was achieved by acid post-treatment of the thermochemically treated SSA. PMID:23189972

  4. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    Visa, Maria, E-mail: maria.visa@unitbv.ro; Chelaru, Andreea-Maria, E-mail: andreea.chelaru1@yahoo.com

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO{sub 2}/Al{sub 2}O{sub 3} over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  5. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    Visa, Maria; Chelaru, Andreea-Maria

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  6. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland.

    Bakhshoodeh, Reza; Alavi, Nadali; Soltani Mohammadi, Amir; Ghanavati, Hossein

    2016-06-01

    Composting facility leachate usually contains high concentrations of pollutants including heavy metals that are seriously harmful to the environment and public health. The main purpose of this study was to evaluate heavy metals removal from Isfahan composting facility (ICF) leachate by a horizontal flow constructed wetland (HFCWs) system. Two horizontal systems were constructed, one planted with vetiver and the other without plant as a control. They both operated at a flow rate of 24 L/day with a 5-day hydraulic retention time (HRT). The average removal efficiencies for Cr (53 %), Cd (40 %), Ni (35 %), Pb (30 %), Zn (35 %), and Cu (40 %) in vetiver constructed wetland were significantly higher than those of the control (P < 0.05). Accumulations of heavy metals in roots were higher than shoots. Cd and Zn showed the highest and the lowest bioconcentration factor (BCF), respectively. Vetiver tolerates the extreme condition in leachate including high total dissolved solids. PMID:26983810

  7. Effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation

    Sun, Tian Ran

    pathways to unacceptable dosages, leading to intolerable adverse effects on both public health and the environment. In the last decades, soil and water remediation have gained growing awareness, as the necessity becomes clearer for development of such techniques for elimination of the negative impact from......: transport of water (electroosmosis) and ions (electromigration), with electromigration being the most important transport process when treating heavy metal contaminated soils. Electrodialytic remediation (EDR), one of the enhanced electrochemical remediation techniques, is developed at the Technical...... applicability for remediation beyond bench and pilot scale. The overall aim of the present PhD study is to clarify and understand the underlying mechanisms of the effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Series of experiments with...

  8. Fast removal of heavy metal ions and phytic acids from water using new modified chelating fiber

    Li Xu; Jin Nan Wang; Ying Meng; Ai Min Li

    2012-01-01

    The graft copolymerization of acrylic acid (AA) onto polyethylene glycol terephthalate (PET) fiber initiated by benzoy peroxide (BPO) was carried out in heterogeneous media.Moreover,modification of the grafted PET fiber (PET-AA) was done by changing the carboxyl group into acylamino group through the reaction with dimethylamine.The modified chelating fiber (NDWJN 1) was characterized using elementary analysis,SEM and FT-IR spectroscopy.Adsorption kinetic curves indicated that NDWJN1 could fast remove heavy metal ions and phytic acids from water effectively.Furthermore,batch kinetic studies indicated that heavy metal ions adsorbed to NDWJN1 could be fitted well by both pseudo-first-order and pseudo-second-order adsorption equations,but the intra-particle diffusion plaved a dominant role in the adsorption of phvtic acids.

  9. Adsorptive removal of heavy metals by magnetic nanoadsorbent: an equilibrium and thermodynamic study

    Shirsath, D. S.; Shirivastava, V. S.

    2015-11-01

    An efficient and new magnetic nanoadsorbent photocatalyst was fabricated by co-precipitation technique. This research focuses on understanding metal removal process and developing a cost-effective technology for treatment of heavy metal-contaminated industrial wastewater. In this investigation, magnetic nanoadsorbent has been employed for the removal of Zn(II) ions from aqueous solutions by a batch adsorption technique. The adsorption equilibrium data fitted very well to Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Zn(II) ions adsorption onto the magnetic nanoadsorbents indicated that the adsorption was spontaneous, endothermic and physical in nature. Surface morphology of magnetic nanoadsorbent by scanning electron microscopy (SEM) and elemental analysis by EDX technique. The structural and photocatalytic properties of magnetic nanoadsorbent were characterized using X-ray diffraction (XRD) and FTIR techniques. Also, the magnetic properties of synthesized magnetic nanoadsorbent were determined by vibrating spinning magnetometer (VSM).

  10. Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters

    Amir H.A. Mahvi

    2005-01-01

    Full Text Available Water used in industries creates a wastewater that has a potential hazard for our environment because of introducing various contaminants such as heavy metals into soil and water resources. In this study, removal of cadmium, lead and nickel from industrial wastewaters has been investigated by using teawaste as a natural adsorbent. The research is a bench scale experimental type and analyses have performed by using different amounts of adsorbent in solutions with 5 different concentrations of each metal and also in a mixed combination. Besides, the effect of various amounts of teawaste used in adsorption efficiency experiments has been investigated. Results indicate that the removal efficiency is highest for lead and is minimum for cadmium. About 94 and 100% lead removal were achieved by using 0.5 and 1.5g adsorbent for solutions having concentrations of 5 and 10 mg/L Pb. Whereas, 1.5g teawaste can treat nickel solution of 5 mg/L concentration with an efficiency of not more that 85.7%. For cadmium, the efficiency was only 77.2% in the same conditions. On the other hand, for mixtures of metals and by applying 0.5 g teawaste, we considered a 3.5% decrease in lead removal efficiency and a 13.2% decrease in nickel adsorption for a mixed solution of 5 mg/L.

  11. Removal of Selected Heavy Metals from Green Mussel via Catalytic Oxidation

    Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/ 2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe2O3, and ZnO catalysts. The lethal dose of LD50 to rats of PAA is 1540 mg kg-1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 degree Celsius as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL-1 PAA and catalyzed with Fe2O3/ Al2O3 for up to 90 % mercury (Hg) removal. Using PAA with only 1 hour of reaction time, at room temperature (30-35 degree Celsius), pH 5-6 and salinity of 25-28 ppt, 90 % lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel. (author)

  12. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica

    A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe3O4), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe3O4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 105 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe3O4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe3O4 is suitable for repeated use in heavy metal removal from different water matrices.

  13. Removal mechanisms of heavy metal pollution from urban runoff in wetlands

    Zhiming ZHANG; Baoshan CUI; Xiaoyun FAN

    2012-01-01

    Solid particles,particularly urban surface dust in urban environments contain large quantities of pollutants.It is considered that urban surface dust is a major pollution source of urban stormwater runoff.The stormwater runoffwashes away urban surface dust and dissolves pollutants adsorbed onto the dust and finally discharges into receiving water bodies.The quality of receiving water bodies can be deteriorated by the dust and pollutants in it.Polluted waters can be purified by wetlands with various physical,chemical,and biologic processes.These processes have been employed to treat pollutants in urban stormwater runoff for many years because purification of treatment wetlands is a natural process and a low-cost method.In this paper,we reviewed the processes involved during pollutants transport in urban environments.Particularly,when the urban stormwater runoff enters into wetlands,their removal mechanisms involving various physical,chemical and biologic processes should been understood.Wetlands can remove heavy metals by absorbing and binding them and make them form a part of sediment.However,heavy metals can be released into water when the conditions changed.This information is important for the use of wetlands for removing of pollutants and reusing stormwater.

  14. Microbiological treatment for removal of heavy metals and nutrients in FGD wastewater

    Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Riffe, Michael R. [Siemens Water Technologies, General Industry Solutions, Warrendale, PA (United States); Walp, Richard J. [URS Corporation, Princeton, NJ (United States)

    2010-12-15

    In efforts to comply with the Clean Air Act many coal-fired fossil plants are installing wet flue gas desulfurization (WFGD) systems, also known as scrubbers, to remove sulfur dioxide (SO{sub 2}). Limestone slurry is injected into an absorber to promote the formation of calcium sulfate (CaSO{sub 4}) or gypsum. Chloride (chlorine in the fuel) becomes dissolved and increases in the absorber loop, which can lead to a more corrosive environment. Inert matter in the limestone also enters the absorber and must be reduced to meet the gypsum quality specification. To control the buildup of chloride and fines in the flue gas desulfurization (FGD) system a continuous blowdown or purge stream is utilized. Environmental regulations on the discharge of treated FGD wastewater are becoming increasingly more stringent to control impacts on the receiving body of water (stream, lake, river, or ocean). These new limitations often focus on heavy metals such as selenium and nutrients including nitrogen and phosphorus compounds. The FGD chloride purge stream is typically treated by chemical addition and clarification to remove excess calcium and heavy metals with pH adjustment prior to discharge. However this process is not efficient at selenium or nutrient removal. Information on a new approach using biological reactor systems or sequencing batch reactors (SBRs) to achieve reductions in selenium and nitrogen compounds (ammonia, nitrite, and nitrate) is discussed. A brief discussion on the physical/chemical pretreatment is also provided. (orig.)

  15. Removal mechanisms of heavy metal pollution from urban runoff in wetlands

    Zhang, Zhiming; Cui, Baoshan; Fan, Xiaoyun

    2012-12-01

    Solid particles, particularly urban surface dust in urban environments contain large quantities of pollutants. It is considered that urban surface dust is a major pollution source of urban stormwater runoff. The stormwater runoff washes away urban surface dust and dissolves pollutants adsorbed onto the dust and finally discharges into receiving water bodies. The quality of receiving water bodies can be deteriorated by the dust and pollutants in it. Polluted waters can be purified by wetlands with various physical, chemical, and biologic processes. These processes have been employed to treat pollutants in urban stormwater runoff for many years because purification of treatment wetlands is a natural process and a low-cost method. In this paper, we reviewed the processes involved during pollutants transport in urban environments. Particularly, when the urban stormwater runoff enters into wetlands, their removal mechanisms involving various physical, chemical and biologic processes should been understood. Wetlands can remove heavy metals by absorbing and binding them and make them form a part of sediment. However, heavy metals can be released into water when the conditions changed. This information is important for the use of wetlands for removing of pollutants and reusing stormwater.

  16. Heavy-metal removal from petroleum oily sludge using lemon- scented geraniums[General Conference

    Badawieh, A.; Elektorowicz, M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2006-07-01

    Finding an acceptable method to manage oily sludge generated during petroleum processes is one of the challenges currently facing the petroleum industry. This study investigated the response of plants to heavy-metal removal from oily sludge to determine the feasibility of using phytoremediation technologies as a treatment method for oily sludge. In particular, scented geraniums (Pelargonium sp. Frensham) have shown a strong capability to survive harsh conditions such as poor soil, high/low temperatures, high heavy-metal concentrations and low water content. In response to this observation, this feasibility study placed scented geraniums in a series of pots containing oily sludge where heavy-metal concentrations were artificially increased up to 2000 ppm. Plants were grown in two systems over a period of 50 days. The first system included oily sludge and soil while the second system included oily sludge, soil and compost. The study revealed that the scented geraniums accumulated up to 1600 mg, 1000 mg, and 1200 mg, of cadmium, nickel and vanadium respectively per 1 kg of the plant's dry weight. The results suggest that phytoremediation technology may be a potential method for successfully treating or pretreating oily sludge in the field.

  17. UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal

    Wang, Jingjing, E-mail: jjwang1@hotmail.com [Department of Polymer Materials and Engineering, School of Material Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China); Liu, Fang [Department of Polymer Materials and Engineering, School of Material Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. Black-Right-Pointing-Pointer The synergistic complexation was found in the adsorption studies. Black-Right-Pointing-Pointer The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materials in heavy metal removing processes.

  18. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  19. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  20. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  1. Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane-bound form

    This study assesses the ability of mycelia of Rhizopus delemar (both free and immobilized on polyurethane foam) to remove heavy metals from single-ion solutions as well as from a mixture of them. All experiments were conducted using 0.5-5 mM solutions of CuSO4.5H2O, CoCl2.6H2O and FeSO4.7H2O. Mycelia immobilized on polyurethane foam cells showed some times increase in uptake compared with that of free cells. Metal ions accumulation from a mixed solution was decreased slightly for cobalt and iron and considerable for copper ions. Heavy metal uptake was examined in the immobilized column experiments and more than 92% heavy metal removal (mg heavy metals removed/mg heavy metals added) from a mixed solution was achieved during the 5 cycles. During these experiments, the dry weight of the immobilized cells was decreased by only 2%. These results showed that immobilized mycelia of Rhizopus delemar can be used repeatedly for removal of heavy metals from aqueous solutions. (orig.)

  2. The application of fish scales in removing heavy metals from energy-produced waste streams: the role of microbes

    Mustafiz, S. [Dalhousie University, halifax, Nova Scotia (Canada). Faculty of Engineering

    2003-09-01

    In energy production, heavy metals pose significant contamination hazards. For example, the petroleum industry generates wastes that are often high in heavy metal concentrations. Heavy metals are very toxic and extremely deleterious to humans, plants, and animals. Application of fish scale to remove heavy metals is a very recent innovation. It is an environmentally appealing and economically attractive alternative to current heavy metal adsorbing materials. Previously, the adsorption phenomenon on this exotic waste material was explained by only physical-chemical reactions. Biological effects on adsorption of heavy metals such as lead, arsenic, and chromium were studied using Atlantic Cod scale. The difference in results between nonsterilized and sterilized experiments shows the microbial contribution to heavy metal removal. Results show a wide range of microbial contribution in removing chromium cations. For lead and arsenic cations, the effect is less. Measurement of pH gives some indication of the microbial role in the biosorption process and of the presence of possible microbial species. (author)

  3. The application of fish scales in removing heavy metals from energy-produced waste streams: the role of microbes

    In energy production, heavy metals pose significant contamination hazards. For example, the petroleum industry generates wastes that are often high in heavy metal concentrations. Heavy metals are very toxic and extremely deleterious to humans, plants, and animals. Application of fish scale to remove heavy metals is a very recent innovation. It is an environmentally appealing and economically attractive alternative to current heavy metal adsorbing materials. Previously, the adsorption phenomenon on this exotic waste material was explained by only physical-chemical reactions. Biological effects on adsorption of heavy metals such as lead, arsenic, and chromium were studied using Atlantic Cod scale. The difference in results between nonsterilized and sterilized experiments shows the microbial contribution to heavy metal removal. Results show a wide range of microbial contribution in removing chromium cations. For lead and arsenic cations, the effect is less. Measurement of pH gives some indication of the microbial role in the biosorption process and of the presence of possible microbial species. (author)

  4. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal

    Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) [poly(EGDMA-VIM)] hydrogel (average diameter 150-200 μm) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and found to contain 5 EGDMA monomer units each VIM monomer unit. Poly(EGDMA-VIM) beads had a specific surface area of 59.8 m2/g. Poly(EGDMA-VIM) beads were characterized by swelling studies and scanning electron microscopy (SEM). These poly(EGDMA-VIM) beads with a swelling ratio of 78% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Cd(II), Hg(II) and Pb(II) were investigated in aqueous media containing different amounts of these ions (10-750 mg/l) and at different pH values (3.0-7.0). Chelation rate was very fast. The maximum chelation capacities of the poly(EGDMA-VIM) beads were 69.4 mg/g for Cd(II), 114.8 mg/g for Pb(II) and 163.5 mg/g for Hg(II). The affinity order on molar basis was observed as follows: Hg(II)>Cd(II)>Pb(II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms. pH significantly affected the chelation capacity of VIM incorporated beads. Chelation of heavy metal ions from synthetic wastewater was also studied. The chelation capacities are 45.6 mg/g for Cd(II), 74.2 mg/g for Hg(II) and 92.5 mg/g for Pb(II) at 0.5 mmol/l initial metal concentration. Regeneration of the chelating-beads was easily performed with 0.1 M HNO3. These features make poly(EGDMA-VIM) beads potential candidate adsorbent for heavy metal removal

  5. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  6. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  7. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  8. The mechanisms of removal of heavy metals from water by ionizing radiation

    The removal of heavy metal ions from water using electron beam and gamma irradiation has been investigated for the cases of Pb2+ and Hg2+ ions. These metal ions are reduced by hydrated electrons and hydrogen atoms to lower or zero valence state and eventually precipitate out of solution. Ethanol is applied as a relatively non-toxic additive to scavenge ·OH radicals, to enhance reduction and inhibit oxidation. Mercury can be completely (>99.9%) removed from aqueous solution of 1x10-3 mol L-1 mercury (II) chloride by using a 3 kGy dose. However, a 40 kGy dose is required to remove 96% of lead ions from a 1x10-3 mol L-1 of PbCl2 solution. The effect of dissolved oxygen and carbonate were also investigated. E-beam irradiation of 1x10-3 mol L-1 lead ions complexed with ethylenediamine tetraacetic acid (EDTA) in deoxygenated as well as air-saturated solutions in the absence of ethanol resulted in removal of about 97% of the lead

  9. Synthesis of Mesoporous Adsorbent and its Application for Heavy Metal Ions Removal from Aqueous Solution

    The mesoporous silicas were synthesized via the evaporation-induced self-assembly (EISA) in the experiment. Cetyltrimethyl ammonium bromide (CTAB) was used as the template, and the silicon source was tetraethoxyorthosilicate (TEOS). The mesoporous silicas were characterized by nitrogen adsorption-desorption analysis, FTIR, TEM and SEM. The mesoporous silicas (adsorbent) exhibited higher pore diameter (centered at 5.57 nm), BET surface area (457.3 m2·g-1) and pore volume (0.563 cm2·g-1). The mesoporous silicas were used as the adsorbent to remove the heavy metal ions from aqueous solution. The following order of equilibrium adsorption capacity for Cu2+, Co2+, Ag+ and As3+ on adsorbent was: Ag+>Cu2+>Co2+>As3+. Analysis of adsorption kinetics showed that Cu2+, Co2+, Ag+ and As3+ adsorption fit the pseudo-second-order nonlinear model significantly. The removal rate for heavy metal ions was high, and the adsorbent can be regenerated by acid treatment without altering its properties.

  10. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland.

    Maine, M A; Suñe, N; Hadad, H; Sánchez, G; Bonetto, C

    2009-01-01

    A free water surface wetland was built to treat wastewater containing metals (Cr, Ni, Zn) and nutrients from a tool factory in Argentina. Water, sediment and macrophytes were sampled in the inlet and outlet area of the constructed wetland during three years. Three successive phases of vegetation dominance were developed and three different patterns of contaminant retention were observed. During the Eichhornia crassipes dominance, contaminants were retained in the macrophyte biomass; during the E. crassipes+Typha domingensis stage, contaminants were retained in the sediment and in the T. domingensis dominance stage, contaminants were retained in sediment and in the macrophyte biomass. Removal efficiency was not significantly different among the three vegetation stages, except for NH(4)(+) and i-P(diss). Because of its highest tolerance, T. domingensis is the best choice to treat wastewater of high pH and conductivity with heavy metals, a common result from many industrial processes. PMID:18079048

  11. Optimization of heavy metal and suspended solids removal using groundwater treatment plant sludge (GWTPS)

    Full text: A groundwater treatment plant located in Chicha, Kelantan, produced 5 tons of sludge daily that require offsite disposal. The sludge was found to contain high concentration of iron and manganese. An attempt was made to reuse the Groundwater Treatment Plant Sludge (GWTPS) for wastewater treatment purposes. This study is focusing on the effectiveness of GWTPS as an adsorbent in removing Zn and Cu, as well as coagulant in removing suspended solids. The characteristic of the freshly prepared GWTPS was analyzed by measuring its pH in distilled water and total Fe concentration. Adsorption study was conducted using GWTPS. Using batch test method, parameters such as pH, contact time, adsorbent dosage and initial concentration of sorbent was varied in order to find the optimum in removing Zn and Cu. The ability of GWTPS in removing Zn and Cu was further analyzed based on its removal efficiency. Recycled Ferric Chloride (RFC) and Recycled Ferrous Sulphate (RFS) are generated from GWTPS through a digestion process using Environmental Express Hot Block. The optimization of RFC and RFS was determined by varying the GWTPS dosage and contact time during digestion. Both RFC and RFS was tested for its efficiency as a coagulant in removing Zn, Cu and suspended solids by jar test method. It was found that GWTPS was effective in removing Zn and Cu. From the study it can be concluded that RFC and RFS, a coagulant derived from groundwater sludge, is effective in removing suspended solids that contain heavy metals such as Zn and Cu. (author)

  12. Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: estimate of metal removal efficiency.

    Löser, Christian; Zehnsdorf, Andreas; Hoffmann, Petra; Seidel, Heinz

    2007-01-01

    Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water. PMID:16908047

  13. BIOSORPTIVE REMOVAL OF HEAVY METALS (Cd+2, Pb+2 AND Cu+2 FROM AQUEOUS SOLUTIONS BY CASSIA ANGUSTIFOLIA BARK

    MADHAVI G MULGUND,

    2011-02-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. The aim of this present study was to investigate the removal of heavy metals (Cd+2, Pb+2 and Cu+2 using Cassia angustifolia bark. The objective was to evaluate the biosorbent for its metal uptake and study its batch equilibrium. The batch mode was carried out at varying initial pH (5 to 9, emperature (300C to 450C, metal ion concentration (20mg to 140mg/L and contact time (5 min to 240 min and desorption studies from pH 1 to 11. The equilibrium data obtained fit well in Langmuir and Freundlich isotherms. The results of the investigations show the efficacy of Cassia angustifolia bark as a low cost promising biosorbent for removal of heavy metals from industrial wastewaters.

  14. The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue

    Mohammed Nsaif

    2013-12-01

    Full Text Available This study is deal with study the potential of Iraqi Rice Husk (IRH on the removal of three heavy metals pollutant which were (Mg, Mn and Mo ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26 % for heavy metal (Mg, Mn and Mo respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absorbance material bed height, pH and feeding temperature. Statistical model is achieved to find an expression relates the overall operating parameters with the removal efficiency for each metal ions used in this investigation in a general equation (each one alone. The samples of (IRH remaining after using it in the removal of (Mg, Mn and Mo heavy metal ions above from Simulated Synthetic Aqueous Solutions (SSAS to investigate the capitalized of it in different methods. Different benefits possess which are: remove the three toxic heavy metals ions contaminated the water, get rid of agricultural waste (IRH, in the same time, produce light and more benefit hydrocarbons from n-heptane isomerization using a type Y-zeolite catalyst synthesis from remaining (IRH and prepare a cheap and active rodenticide.

  15. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process.

    Wang, Jing-Yuan; Huang, Xiang-Jun; Kao, Jimmy C M; Stabnikova, Olena

    2007-06-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01M HNO(3) solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process. PMID:17110023

  16. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%. PMID:23437664

  17. Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

  18. Removal and treatment of radioactive, organochlorine and heavy metal contaminants from solid surfaces

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are Generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria The O'Brien ampersand Gere Companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system that O'Brien ampersand Gere Companies developed removes fixed radioactive and hazardous surface contamination, while leaving the surface intact. Blasting residuals are dissolved and treated using physical/chemical processes. Bench- and pilot-scale testing of the soda blasting system was conducted between December 1993 and September 1994 on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Blasting residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after blasting residuals treatment. Waste residuals volume was decreased by 71%

  19. Chemical studies on the preparation of magnetic nanoparticles coated with glycine and its application for removal of heavy metals

    Jawaher Alzaidi

    2016-06-01

    Full Text Available The aim of this study is the preparation of magnetic nanoparticles and coating with glycine to remove heavy metals such as Cu+2. The magnetic nanoparticles were prepared by co-precipitation method using using ferrous sulphate and potassium nitrate in presence of potassium hydroxide. Different instrumental analysis such as XRD, TEM, SEM and EDAX were used to study the magnetic nanoparticles which produced and comparing it after coated with glycine. The optimum conditions which reflect the high efficiency of removal are pH 10, concentration of the heavy metal 200 ppm, dosage 0.05 g and for 24 h duration time. Therefore we recommend using magnetic nanoparticles coated with glycine for removal of heavy metals.

  20. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents

    Omar E. Abdel Salam

    2011-10-01

    Full Text Available In this study, the adsorption behavior of some low-cost adsorbents such as peanut husk charcoal, fly ash, and natural zeolite, with respect to Cu2+, and Zn2+ ions, has been studied in order to consider its application to the purification of metal finishing wastewater. The batch method was employed: parameters such as pH, contact time, and initial metal concentration were studied. The influence of the pH of the metal ion solutions on the uptake levels of the metal ions by the different adsorbents used were carried out between pH 4 and pH 11. The optimum pH for copper and zinc removal was 6 in the case of peanut husk charcoal and natural zeolite, and it was 8 in case of fly ash. An equilibrium time of 2 h was required for the adsorption of Cu(II and Zn(II ions onto peanut husk charcoal and fly ash and an equilibrium time 3 h was required for the adsorption of Cu(II and Zn(II ions onto natural zeolite. Adsorption parameters were determined using both Langmuir and Freundlich isotherms, but the experimental data were better fitted to the Langmuir equation than to Freundlich equation. The results showed that peanut husk charcoal, fly ash and natural zeolite all hold potential to remove cationic heavy metal species from industrial wastewater in the order fly ash < peanut husk charcoal < natural zeolite.

  1. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff.

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-09-01

    Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels. PMID:26862669

  2. Removal of heavy metals from aqueous solution by adsorption on biomass based adsorbent

    Alam, Sultan; Azmatullah, M. [Malakand Univ., Chakdara, Dir (Pakistan). Dept. of Chemistry; Bangash, Fazlullah Khan [Peshawar Univ. (Pakistan). Inst. of Chemical Sciences; Amin, Noor-ul [Abdul Wali Khan Univ., Mardan (Pakistan). Dept. of Chemistry

    2013-09-15

    Removal of heavy metals i.e. Zn{sup 2+} and Cd{sup 2+} from aqueous solution by adsorption onto biomass based adsorbent was investigated as a function of time and different concentrations. The sample was characterized by FTIR, EDS, BET surface area and Zeta potential technique, which was reported earlier. Adsorption kinetics of Zn{sup 2+} and Cd{sup 2+} was tested by first order kinetics, 'Elovich and parabolic diffusion kinetic equations which show that the process of adsorption is diffusion controlled process. The rate of adsorption was high at high adsorption temperature. Thermodynamic parameters like {Delta}H , {Delta}S and {Delta}G were calculated from the kinetic data. The negative value of Gibbs free energy ({Delta}G ) shows the spontaneous nature of the process. Freundlich, Langmuir, Temkin isotherms and distribution coefficient were found fit to the adsorption isotherm data. (orig.)

  3. Construction of Inorganic and Hybrid Biosorbents for Heavy Metal Ions Removal

    Lyudmila Kabaivanova

    2015-12-01

    Full Text Available Hybrid biosorbents, synthesized by the sol-gel method on the basis of Tetraethylorthosilicate (TEOS proved to be efficient for the removal of the heavy metal ions from aqueous solutions. The potential use of immobilized in TEOS algal cells of the red microalga Porphyridium cruentum and its products - low and high molecular heteropolysaccharides to remove Cu(II, Cd(II and Ni(II ions was evaluated. A laboratory bioreactor was involved in this process. Sol-gel sorbent with TEOS only was used as a control system to the hybrid biosorbents. Their structural characterization was performed using different methods. The maximum adsorption capacities were registered for the biosorbents with immobilized algal biomass and for the preparations with TEOS and high molecular algal heteropolysaccharide: for Cu(II, Cd(II and Ni(II, they were 18.771 and 21.715 mg·Cd·g-1 adsorbent; 16.662 and 17.545 mg·Ni/g-1 adsorbent and 40.633 and 34.431 mg·Cu·g-1 adsorbent, respectively. The adsorption of toxic Cu(II, Zn(II and Ni(II ions in the four types of sorbents proved to be effective. High percent of these ions removal was obtained during the first hours of the adsorption process.

  4. Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater

    Prakash, N.; Soundarrajan, M.; Arungalai Vendan, S.; Sudha, P. N.; Renganathan, N. G.

    2015-12-01

    Wastewater contaminated by heavy metals pose great challenges as they are non biodegradable, toxic and carcinogenic to the soil and aquifers. Vermiculite blended with chitosan have been used to remove Cr(VI) and Cd(II) from the industrial wastewater. The results indicate that the vermiculite blended with chitosan adsorb Cr(VI) and Cd(II) from industrial waste water. Batch adsorption experiments were performed as a function of pH 5.0 and 5.5 respectively for chromium and cadmium. The adsorption rate was observed to be 72 and 71 % of chromium and cadmium respectively. The initial optimum contact time for Cr(VI) was 300 min with 59.2 % adsorption and 300 min for Cd(II) with 71.5 % adsorption. Whereas, at 4-6 there is saturation, increasing the solid to liquid ratio for chitosan biopolymers increases the number of active sites available for adsorption. The optimum pH required for maximum adsorption was found to be 5.0 and 5.5 for chromium and cadmium respectively. The experimental equilibrium adsorption data were fitted using Langmuir and Freundlich equations. It was observed that adsorption kinetics of both the metal ions on vermiculite blended chitosan is well be analyzed with pseudo-second-order model. The negative free energy change of adsorption indicates that the process was spontaneous and vermiculite blended chitosan was a favourable adsorbent for both the metals.

  5. Comparative Study for Removal of Some Heavy Metals from Liquid Wastes Using Natural Resources and Bacteria

    Twenty three bacterial strains have been isolated from polluted water and soil samples of Ismailia Canal in Egypt. The polluted sites were at Abu Zabal Factory (fertilizer factory), Elshaba factory (Aluminum sulfate factory) and Oil-pipes Company (petrochemical materials). By screening the abilities of these isolates to tolerate heavy metals, it has been found that isolate MAM-4was the most potent isolate. This isolate was identified as Providencia rettgeri. As the concentration of Al3+ increased the ability of P. rettgeri to uptake Al3+ decreased. P. rettgeri could remove 97.2% of Al3+ from 25 mg/L. Bacillus cereus ATCC 11778 (American Type Culture Collection, U.S.A) gave the same trend for Al3+ uptake but P. rettgeri was more tolerant to Al3+ than B. cereus ATCC 11778.With increasing Co2+ concentration, abilities of P. rettgeri and B. cereus ATCC 11778 to uptake decreased. P. rettgeri could uptake 59 mg/L Co2+ from 200 mg/L (29.5%), while B. cereus ATCC 11778 uptake 68.3 mg/L (34.1%). Also, as the concentration of Cu2+ increased the abilities of P. rettgeri and B. cereus ATCC 11778 to uptake Cu2+ decreased. P. rettgeri removed 11.5 mg/Cu2+ from 25 mg/L (47.0%), while B. cereus ATCC 11778 removed 13.5 mg/L from the some concentration (54.%). Combined treatment of 1.0% untreated clay with P. rettgeri could remove 471.8 mg/L Al3+ from 500 mg/L (94.4%), 82.4 mg/L Co2+ from 200 mg/L (41.2%) and 150 mg/L Cu2+ from 300 mg/L (50%). However, 1.0 % treated clay combined with P. rettgeri adsorbed 207.8 mg/L Al3+from 500 mg/L (41.5%), 52.0 mg/L Co2+ from 200 mg/L (26.0%) and 185 mg/L Cu2+ from 300 mg/L (61.6%). The combined treatment adsorbed more heavy metals than clay only or bacterial cells only. Three KGy gamma radiations reduced the viable count of P. rettgeri by 7.4 log cycles. P. rettegri mutant MI was able to tolerate more Al3+ than the parent strain

  6. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C0), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (κ) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm2) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm2, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD5) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%

  7. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

    2009-05-15

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

  8. Kinetic study of heavy metal ions removal from aqueous solutions using activated pumice stone

    Naseh Babakhani

    2016-05-01

    Full Text Available Background: The presence of heavy metals in aquatic and terrestrial ecosystems causes harmful effects to living organisms in the environment. This research aimed to determine the potential of activated pumice stone (APS as a sorbent for the removal of Cd, Cu, and Zn from wastewater. Methods: This research was conducted during 2013 on a laboratory scale. The study was performed using batch experiments with synthetic wastewater having Cd, Cu, and Zn concentrations of 10, 20, 40, and 80 mg/L. Various isotherm models, including Langmuir and Freundlich, were used to evaluate the sorption data. The influence of contact time and amount of sorbent on the removal of Cd, Cu, and Zn from wastewater was studied. All experiments were done at pH = 7 and at room temperature (20 ± 1°C. The solution pH was adjusted using 1N NaOH or 1N HCl solutions, and the pH value was determined by a pH meter. Results: The results showed that the adsorption of Cd, Cu, and Zn approaches equilibrium after about 2 hours, while the rates of removal efficiency for Cd, Cu, and Zn at equilibrium were 91.6%, 91.8%, and 82.9%, respectively. Kinetic studies showed that the sorption of Cd, Cu, and Zn onto APS were fitted to the pseudo-second order kinetic models. Conclusion: The results indicate that the APS is a good choice, because it is a low-cost and effective sorbent. The sorption capacity of APS as a sorbent was considerably affected by the initial concentration of metal ions in the solution and by contact time.

  9. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA

    Highlights: • A novel readily biodegradable chelating ligand was employed to remove heavy metals. • The effects of different conditions on the extraction with GLDA were probed. • Species distribution of metals before and after extraction with GLDA was analyzed. • GLDA was effective for Cd extraction from sludge samples under various conditions. • GLDA offers special insights in the effective removal of heavy metals. - Abstract: Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II) = 3:1 and at pH = 4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA

  10. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  11. Influence of the civil construction debris layer in heavy metals removal of the leachate submitted to recirculation in landfill

    Maike Rossmann

    2010-08-01

    Full Text Available Little is known about the ability of stabilized organic matter (old MSW and construction waste (RCC to retain heavy metals from leachate generated in landfills. The objective of this study was to assess the potential of MSW to remove old heavy metals in MSW leachate produced by freshly collected, and the effect of RCC in the concentration of heavy metals in effluents from MSW old. In three columns (CR, put a layer of RCC and then MSW old and, on the other three (SR, only MSW old. Analyzed in the leachate and effluent pH, EC, BOD and metals Zn, Cd, Cu and Pb. There were similar and efficient removal of BOD and heavy metals in both treatments. The presence of the layer of RCC was considered important to the overall improvement in effluent quality, but did not influence the concentration of metals in the effluent. The order of retention of metals in the columns was: Cu ~ Pb> Cd> Zn. With the exception of Cd and Zn, all other variables assessed in the effluent were below the maximum standards set in DN 01.08 COPAM / CERH for release effluent into water bodies.

  12. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  13. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Zuolian Cheng; Annie Lai Kuan Tan; Yong Tao; Dan Shan; Kok Eng Ting; Xi Jiang Yin

    2012-01-01

    This study investigated the applicability of maghemite (γ-Fe2O3) nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticl...

  14. Pumice Characteristics and Their Utilization on the Synthesis of Mesoporous Minerals and on the Removal of Heavy Metals

    Ismail, A. I. M.; El-Shafey, O. I.; Amr, M. H. A.; El-Maghraby, M. S.

    2014-01-01

    Wastewater treatment of some heavy metals was carried out by synthetic zeolite P1, which was prepared by alkaline hydrothermal treatment of the pumice. Both of the pumice raw materials and synthetic zeolite were investigated for their chemical phase composition, physical properties, and microstructure. The adsorption behavior of Na-zeolite P1 with respect to Co+2, Cu+2, Fe+2, and Cd+2 has been studied to be applied in the industrial wastewater treatment. Metal removal was investigated using s...

  15. Efficiency of Algae Combinations in heavy metal removal from waste-waters using photo-bio-reactor

    Bello, Adedayo

    2015-01-01

    The aim of this thesis was to compare the efficiency of different algal combinations in heavy metals removal from wastewater using algae-based photo-bioreactors. Twelve different strains of algae were divided into four groups and were introduced into twenty-four photo-bioreactor bottles: twelve contained wastewaters only while the other twelve contained wastewaters con-taminated with 90 mg of heavy metal. Parameters such as temperature, pH, light and conductivi-ty, which are believed to affec...

  16. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent was...... studied, and the results were compared with traditional batch extraction experiments. The application of electric current was found to increase the heavy metal release significantly compared to batch extraction experiments at comparable conditions (same liquid-to-solid ratio, same assisting agent, and...

  17. In vitro removal of toxic heavy metals by poly(γ-glutamic acid-coated superparamagnetic nanoparticles

    Inbaraj BS

    2012-08-01

    Full Text Available Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs modified with an edible biopolymer poly(γ-glutamic acid (PGA were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF.Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8 and biological pH (1–8, implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg•min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate and essential metals (Cu, Fe, Zn, Mg, Ca, and K did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the

  18. The Use of Microwave Derived Activated Carbon for Removal of Heavy Metal in Aqueous Solution

    Rafeah Wahi

    2011-09-01

    Full Text Available Palm oil processing waste which is palm oil kernel shell (POKS was converted to activated carbon (POKS AC through 7 min microwave pyrolysis at temperature 270 °C followed by chemical activation using NaOH and HCl. The adsorption study on Ni(II, Cu(II and Cr(IV was conducted to evaluate the efficiency of the prepared activated carbon to remove heavy metal. The adsorption capacity was determined as a function of adsorbate initial concentration and adsorbent dosage. Based on Langmuir isotherm, Ni(II showed highest adsorption capacity of 40.98 mg/g, followed by Cr(IV and Cu(II with adsorption capacity of 40.60 mg/g and 13.69 mg/g, respectively. Cr(IV and Cu(II showed better fitting to Freundlich isotherm model with high correlation regression indicating the applicability of heterogeneous adsorption. Ni(II show better fitting with Langmuir isotherm that indicate monolayer coverage. The use of POKS AC is not only effective for adsorption of Cr(IV, Ni(II and Cu(II in aqueous solution but also helps to overcome the over abundance of POKS waste problem.

  19. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  20. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr2O72− and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl− and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl−, NO3−, and SO42−) except for PO43− for the pH change

  1. Removal of heavy metals from a contaminated soil using tartaric acid

    KE Xin; LI Pei-jun; ZHOU Qi-xing; ZHANG Yun; SUN Tie-heng

    2006-01-01

    This study reports the feasibility of remediation of a heavy metal (HM) contaminated soil using tartaric acid, an environmentally-friendly extractant. Batch experiments were performed to test the factors influencing remediation of the HM contaminated soil. An empirical model was employed to describe the kinetics of HM dissolution/desorption and to predict equilibrium concentrations of HMs in soil leachate. The changes of HMs in different fractions before and after tartaric acid treatment were also investigated. Tartaric acid solution containing HMs was regenerated by chestnut shells. Results show that utilization of tartaric acid was effective for removal of HMs from the contaminated soil, attaining 50%-60% of Cd, 40%-50% of Pb, 40%-50% of Cu and 20%-30% of Zn in the pH range of 3.5-4.0 within 24 h. Mass transfer coefficients for cadmium (Cd) and lead (Pb) were much higher than those for copper (Cu) and zinc (Zn). Sequential fractionations of treated and untreated soil samples showed that tartaric acid was effective in removing the exchangeable, carbonate fractions of Cd, Zn and Cu from the contaminated soil. The contents of Pb and Cu in Fe-Mn oxide fraciton were also significantly decreased by tartaric acid treatment. One hundred milliliters of tartaric acid solution containing HMs could be regenerated by 10 g chestnut shells in a batch reactor. Such a remediation procedure indicated that tartaric acid is a promising agent for remediation of HM contaminated soils. However, further research is needed before the method can be practically used for in situ remediation of contaminated sites.

  2. Linen Fire as Biosorbent to Remove Heavy Metal Ions From Wastewater Modeling

    Ildar G. Shaikhiev

    2014-03-01

    Full Text Available The possibility of using linen fires – lnopererabotk i waste as a sorption material for the extraction of heavy metal ions from wastewater modeling. It is shown that treatment with acid solutions linen fires a low concentration increases the surface area of linen fires and thus sorption capacity for heavy metal ions. The values of the maximum sorption capacity ions Fe (III, Co (II, Ni (II and Zn (II under static and dynamic conditions. IR spectroscopy shows that along with the physical sorption process proceeds chemisorption.

  3. Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad [Department of Chemistry, Faculty of Sciences, Agadir (Morocco); Tahrouch, Saida [Department of Biology, Faculty of Sciences, Agadir (Morocco); Persin, Michel [European Membrane Institute, CRNS, Montpellier (France)

    2011-04-15

    Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N{sub 2} at 77 K adsorption, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was {proportional_to}94% for Cd{sup 2+}, {proportional_to}92% for Cu{sup 2+}, {proportional_to}99% for Pb{sup 2+}, {proportional_to}97% for Zn{sup 2+}, {proportional_to}100% for NO{sub 3}{sup -} and {proportional_to}77% for PO{sub 4}{sup 3-} ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds. PMID:26999028

  5. Sewage sludge ash to phosphate fertilizer by chlorination and thermal treatment: residence time requirements for heavy metal removal.

    Nowak, Benedikt; Wegerer, Harald; Aschenbrenner, Philipp; Rechberger, Helmut; Winter, Franz

    2012-01-01

    Heavy metal removal from sewage sludge ash can be performed by mixing the ash with environmentally compatible chlorides (e.g. CaCl2 or MgCl2) and water, pelletizing the mixture and treating the pellets in a rotary reactor at about 1000 degrees C. Thermogravimetry-mass spectroscopy, muffle oven tests (500-1150 degrees C) and investigations in a laboratory-scale rotary reactor (950-1050 degrees C, residence time 1-25 min) were carried out. In the rotary reactor, up to 97% of Cu, 95% Pb and 95% Zn can be removed at 1050 degrees C. As Cl release starts from 400 degrees C (obtained from thermogravimetry-mass spectrometry experiments), heavy metals are already removed partially within the heating period. This heavy metal removal can be described as being similar to a first-order rate law. To meet the limit values specified in the Austrian and German fertilizer ordinances, residence times of the order of minutes are sufficient at 950 degrees C. PMID:23393980

  6. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas

    Trenouth, William R.; Gharabaghi, Bahram

    2015-10-01

    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  7. Removal of some heavy metals from industrial waste water using polyacrylamide ferric antimonate as new ion exchange material

    Composite ion exchangers consist of one or more ion exchangers combined with another material, which can be inorganic or organic and may it be an ion exchanger. The reason for manufacturing a composite material is to produce a granular material, with sufficient strength for column use, from ion exchangers that do not form, or only form weak, granules themselves. Attempts in this study are focused to prepare composite ion exchangers for treatment of wastewater. Heavy metals when present in water in concentrations exceeding the permitted limits are injurious to the health. Hence, it is very important to treat such waters to remove the metal ions present before it is supplied for any useful purpose. Therefore, many investigations have studied to develop more effective process to treat such waste stream. Ion-exchange has been widely adopted in heavy metal containing wastewater and most of the ion-exchangers (i.e. ion-exchange media) currently being used are commercially mass-produced organic resins.Therefore, the main aim of this work is directed to find the optimum conditions for removal of some heavy metals from industrial waste water.1-Preparation of polyacrylamide ferric antimonate composite.2-Characterization of the prepared exchanger using IR spectra, X-ray diffraction pattern, DTA and TG analyses.3-Chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (ph heating temperature and reaction temperature).4-Kinetic studies of some heavy metals.5-Ion exchange isotherm.6-Breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain condition.

  8. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water.

    Sun, Kejing; Tang, Jingchun; Gong, Yanyan; Zhang, Hairong

    2015-11-01

    Hydrochars produced from different feedstocks (sawdust, wheat straw, and corn stalk) via hydrothermal carbonization (HTC) and KOH modification were used as alternative adsorbents for aqueous heavy metals remediation. The chemical and physical properties of the hydrochars and KOH-treated hydrochars were characterized, and the ability of hydrochars for removal of heavy metals from aqueous solutions as a function of reaction time, pH, and initial contaminant concentration was tested. The results showed that KOH modification of hydrochars might have increased the aromatic and oxygen-containing functional groups, such as carboxyl groups, resulting in about 2-3 times increase of cadmium sorption capacity (30.40-40.78 mg/g) compared to that of unmodified hydrochars (13.92-14.52 mg/g). The sorption ability among different feedstocks after modification was as the following: sawdust > wheat straw > corn stack. Cadmium sorption kinetics on modified hydrochars could be interpreted with a pseudo-second order, and sorption isotherm was simulated with Langmuir adsorption model. High cadmium uptake on modified hydrochars was observed over the pH range of 4.0-8.0, while for other heavy metals (Pb(2+), Cu(2+), and Zn(2+)) the range was 4.0-6.0. In a multi-metal system, the sorption capacity of heavy metals by modified hydrochars was also higher than that by unmodified ones and followed the order of Pb(II) > Cu(II) > Cd(II) > Zn(II). The results suggest that KOH-modified hydrochars can be used as a low cost, environmental-friendly, and effective adsorbent for heavy metal removal from aqueous solutions. PMID:26081779

  9. Removal of SO42-, uranium and other heavy metal ions from simulated solution by sulfate reducing bacteria

    WANG Qing-liang; DING De-xin; HU E-ming; YU RUN-lan; QIU Guan-zhou

    2008-01-01

    In the case of in-situ leaching of uranium,the primitive geochemical environment for groundwater is changed since leachant is injected into the water bearing uranium deposit.This increases the concentration of SO42-,uranium and other heavy metal ions and results in the groundwater contamination.The effects of pH values of the simulated solution on the reduction of SO42- and the removal of uranium and other heavy metal ions by sulfate reducing bacteria(SRB) were studied.The results show that,when the pH value of the simulated solution is about 8,the reduction rate of SO42- by SRB and the removal rate of uranium,Mn2+,Zn2+,Pb2+ and Fe2+ will reach their highest values.A bioremediation technique for remediation of groundwater in in-situ leaching uranium mine can be developed.

  10. Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal

    This work reports the effectiveness of sugar-beet pectin xerogels for the removal of heavy metals (cadmium, lead and copper) after multiple batch sorption-desorption cycles, with and without a gels regeneration step. Metals were recovered from xerogel beads without destroying their sorption capability and the beads were successfully reused (nine cycles) without significant loss in both biosorption capacity and biosorbent mass. Metals uptake levelled off or increased after using a 1 M CaCl2 regeneration step after each desorption. Calcium, as a regenerating agent, increased the stability and reusability of the gels repairing the damage caused by the acid and removing the excess protons after each elution providing new binding sites. Because of their excellent reusability, pectin xerogels are suitable for metal remediation technologies.

  11. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    Highlights: → 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. → HA stable foams coated with biopolymers. → Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 μmol/g in the case of Pb2+, 378 μmol/g of Cu2+ and 316 μmol/g of Cd2+. These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  12. Efficiency of compost in the removal of heavy metals from the industrial wastewater

    Kocasoy, Günay; Güvener, Zeynep

    2009-03-01

    Authorities have been applying very strict regulations for the treatment of industrial wastewater recently because of the threatening level of the environmental pollution faced. Industrial wastewater containing heavy metals is a threat to the public health because of the accumulation of the heavy metals in the aquatic life which is transferred to human bodies through the food chain. Therefore, recently, researchers have been oriented toward the practical use of adsorbents for the treatment of wastewater polluted by heavy metals. The aim of this research was to determine the retention capacity of compost for copper, zinc, nickel and chromium. For this purpose, experiments in batch-mixing reactors with initial metal concentrations ranging from 100 to 1,000 mg/l were carried. It was also observed that compost could repeatedly be used in metal sorption processes. The experiments conducted indicated that compost has high retention capacities for copper, zinc and nickel, but not for chromium. Thus, compost has been approved as a potential sorbent for copper, zinc and nickel and may find place in industrial applications. Thus, solid waste which is another source of significant environmental pollution will be reduced by being converted into a beneficial product compost.

  13. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    Vila, M.; Sanchez-Salcedo, S.; Cicuendez, M.; Izquierdo-Barba, I. [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Vallet-Regi, Maria, E-mail: vallet@farm.ucm.es [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2011-08-15

    Highlights: {yields} 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. {yields} HA stable foams coated with biopolymers. {yields} Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 {mu}mol/g in the case of Pb{sup 2+}, 378 {mu}mol/g of Cu{sup 2+} and 316 {mu}mol/g of Cd{sup 2+}. These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  14. Validity of manganese as a surrogate of heavy metals removal in constructed wetlands treating acidic mine water

    The evaluation of manganese as a surrogate for heavy metal behavior in two wetland treatment systems receiving acidic coal mine drainage in central Pennsylvania was investigated. The use of manganese as an indicator is based on physical/chemical treatment processes quite different from wetland treatment. The treatment systems represented one anoxic, subsurface flow system and one oxic surface flow system. Water quality parameters measured included pH, alkalinity, acidity, and a suite of metals. Correlation and linear regression analysis were used to evaluate the ability of a candidate predictor variable (indicator) to predict heavy metal concentrations and removal. The use of manganese as a predictor of effluent quality proved to be poor in both wetland treatment systems, as evidenced by low linear R2 values and negative correlations. Zinc emerged as the best predictor of the detectable heavy metals at the anoxic wetland. Zinc exhibited positive strong linear correlations with copper, cobalt, and nickel (R2 values of 0.843, 0.881, and 0.970, respectively). Effluent pH was a slightly better predictor of effluent copper levels in the anoxic wetland. Iron and cobalt effluent concentrations showed the only strong relationship (R2 value = 0.778) in the oxic system. The lack of good correlations with manganese strongly challenges its appropriateness as a surrogate for heavy metals in these systems

  15. Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals

    D`Avila, J.S.; Nascimento, R.R. [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

    1993-12-31

    A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

  16. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.

    Ríos, C A; Williams, C D; Roberts, C L

    2008-08-15

    Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations, resulting from the microbial oxidation of pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The generation of AMD and release of dissolved heavy metals is an important concern facing the mining industry. The present study aimed at evaluating the use of low-cost sorbents like coal fly ash, natural clinker and synthetic zeolites to clean-up AMD generated at the Parys Mountain copper-lead-zinc deposit, Anglesey (North Wales), and to remove heavy metals and ammonium from AMD. pH played a very important role in the sorption/removal of the contaminants and a higher adsorbent ratio in the treatment of AMD promoted the increase of the pH, particularly using natural clinker-based faujasite (7.70-9.43) and the reduction of metal concentration. Na-phillipsite showed a lower efficiency as compared to that of faujasite. Selectivity of faujasite for metal removal was, in decreasing order, Fe>As>Pb>Zn>Cu>Ni>Cr. Based on these results, the use of these materials has the potential to provide improved methods for the treatment of AMD. PMID:18221835

  17. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Jl. Ir. Sutami 36A, Surakarta, Central Java 57126 (Indonesia)

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  18. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  19. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution

  20. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  1. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  2. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    Wang, Fei; Lu, Xingwen; Li, Xiao-Yan

    2016-05-01

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the COO(-) and OH groups on alginate. By simple calcination of the metal-laden gels at 700°C for 1h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100nm, respectively. PMID:26808245

  3. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... leterature (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed...

  4. Synthesis and Characterization of Iron Oxide Nanoparticles and Applications in the Removal of Heavy Metals from Industrial Wastewater

    Zuolian Cheng

    2012-01-01

    Full Text Available This study investigated the applicability of maghemite (γ-Fe2O3 nanoparticles for the selective removal of toxic heavy metals from electroplating wastewater. The maghemite nanoparticles of 60 nm were synthesized using a coprecipitation method and characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDX. Batch experiments were carried out for the removal of Pb2+ ions from aqueous solutions by maghemite nanoparticles. The effects of contact time, initial concentration of Pb2+ ions, solution pH, and salinity on the amount of Pb2+ removed were investigated. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb this metal from wastewater. The adsorption of Pb2+ reached equilibrium rapidly within 15 min and the adsorption data were well fitted with the Langmuir isotherm.

  5. Characterisation and removal of heavy metals in tannery effluents through the use of local materials

    Robertsson, Jonas; Andersson, Camilla

    2014-01-01

    Chromium and other heavy metals are known to cause issues related to human and environmental health when they occur in high concentrations in ecosystems. Chromium poses a particularly large threat if it occurs in its hexavalent form, Cr(VI), as it is highly reactive and carcinogenic. The aim of this project was to investigate the wastewater emitted from a tannery in Liwonde, Malawi, with respect to the metals Cr, Al, Cd, Cu, Fe, Mn, Pb and Zn, and to reduce the concentrations using locally av...

  6. Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; MAHVI, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems...

  7. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    S.A. Bapat; D.K. Jaspal

    2016-01-01

    Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers t...

  8. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. PMID:27423405

  9. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction.

    Wen, Jia; Yi, Yuanjie; Zeng, Guangming

    2016-08-01

    Sediment can be applied on land as a soil conditioner. However, toxic substances such as heavy metals within the sediment often lead to soil contamination if no proper management is conducted prior to land application. In order to reduce the bioavailable portion of heavy metals such as Pb, Cu, Zn and Cd, zeolite as a kind of stabilizer was investigated on the effect of metal stabilization in sediment. Zeolite was firstly modified and screened to get the best condition for removal of heavy metals. Results showed that the granulated zeolite with NaCl conditioning had the highest CEC and metal sorption. Using BCR sequential extraction, the selected modified zeolite effectively stabilized Pb, Cu, Zn and Cd in sediment to different extents. It was most suitable for Cd stabilization by reducing its acid exchangeable fraction while increasing the contents of the reducible and residual fractions. Modified zeolite also immobilized Cu, Zn and Pb in sediment by enhancing one stable fraction while decreasing the acid exchangeable fraction. PMID:27136618

  10. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    Dong, Zhihui [Nano-Bionics Division and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Feng; Wang, Dong; Liu, Xia [Nano-Bionics Division and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Jin, Jian, E-mail: jjin2009@sinano.ac.cn [Nano-Bionics Division and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2015-04-15

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.

  11. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu2+, Cd2+, Pb2+, Hg2+ are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m2/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu2+, Cd2+, Pb2+, and Hg2+, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way

  12. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals.

    Huang, Yu-Tuan; Hseu, Zeng-Yei; Hsi, Hsing-Cheng

    2011-08-01

    Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature>400°C successfully lowered the Hg content toheavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction. PMID:21624629

  13. Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water

    Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the γ-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions. - Highlights: ► Optimization of radiation dose for grafting reaction of polyethylene with binary monomers. ► Chelating functionalization of grafted film with various amine compounds. ► Characterization of both grafted and chelating functionalized films. ► Proposed mechanism for both grafting and chelating functionalization reaction. ► Application of the synthesized films for the removal of arsenic and some heavy metals from contaminated water.

  14. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests

    Experimental and modeling investigations were conducted to examine the effect of hydrogen peroxide treatment on hydrothermally produced biochar (hydrochar) from peanut hull to remove aqueous heavy metals. Characterization measurements showed that hydrogen peroxide modification increased the oxygen-c...

  15. Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors

    This work investigates the effects of flow rate (5-15 Bed Volumes/h), particle size (0.8-1.7 mm), concentration (0.005-0.02 N) and Na+-enrichment of natural clinoptilolite on the removal efficiency of Pb2+, Cu2+, Fe3+ and Cr3+ in aqueous solutions. Ion exchange is performed in an upflow fixed bed reactor. The removal efficiency is increased with decreasing flow rate, particle size and concentration and is improved by a factor of 2-10, depending on the specific metal. The modification of the natural sample is favorable, leading to an increase of removal efficiency by 32-100%. For the experimental conditions examined, removal efficiency order is the following: Pb2+>Cr3+>Fe3+≥Cu2+. Finally, the operation is influenced by the studied parameters, following the order: concentration>volumetric flow rate>particle size>modification of the material

  16. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    NareshKumar, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)], E-mail: nareshkrish@hotmail.com; Nagendran, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)

    2008-08-15

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application.

  17. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application

  18. Crayfish Carapace Micro-powder (CCM: A Novel and Efficient Adsorbent for Heavy Metal Ion Removal from Wastewater

    Xiaodong Zheng

    2010-06-01

    Full Text Available Crayfish carapace, a plentiful waste in China, was applied to remove divalent heavy metal ions—copper (Cu, cadmium (Cd, zinc (Zn, and lead (Pb—from wastewater. The adsorption capacities of crayfish carapace micro-powder (CCM for heavy metal ions were studied with adsorbent dosages ranging from 0.5–2.5 g/L and with initial metal concentrations ranging from 50–250 mg/L. CCM particle size, initial solution pH (from 2.5–6.5, temperature (from 25–65 °C and calcium level (from 3.5–21.5% were also varied in batch mode. The results indicated that the adsorption capacity increases with both decreasing particle size and increasing calcium level of the crayfish carapace. The kinetic studies indicated that the adsorption could be complete within 2 h, and that the data correlated with the pseudo-second-order model. CCM recorded maximum uptakes of 200, 217.39, 80, and 322.58 mg/g for Cu, Cd, Zn, and Pb, respectively. The adsorption capacities and removal efficiencies of CCM for metal ions were three-times higher than those of chitin and chitosan extracted from the CCM.

  19. Fabrication of chelating diethylenetriaminated pan micro and nano fibers for heavy metal removal

    Abdouss Majid

    2012-01-01

    Full Text Available In this study, commercial acrylic fibers were modified with diethylenetriamine to prepare metal chelating fibers. The effects of process parameters on the efficiency of the reaction were investigated. FTIR spectroscopy and TGA analysis were used to confirm the chemical changes made to the fibers during the reaction. The ability of the modified fibers for removal of Pb (II, Cu (II and Ce (IV ions from aqueous media was determined. The modified fibers showed a slight decrease in mechanical properties compared to raw ones. Furthermore, the acrylic micro fibers were electrospun to nanofibers and the ability of modified nanofibers for the adsorption of the metal ions was studied.

  20. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.

    Reddy, K R; Xu, C Y; Chinthamreddy, S

    2001-06-29

    Electrokinetic remediation of metal-contaminated soils is strongly affected by soil-type and chemical species of contaminants. This paper investigates the speciation and extent of migration of heavy metals in soils during electrokinetic remediation. Laboratory electrokinetic experiments were conducted using two diverse soils, kaolin and glacial till, contaminated with chromium as either Cr(III) or Cr(VI). Initial total chromium concentrations were maintained at 1000mg/kg. In addition, Ni(II) and Cd(II) were used in concentrations of 500 and 250mg/kg, respectively. The contaminated soils were subjected to a voltage gradient of 1 VDC/cm for over 200h. The extent of migration of contaminants after the electric potential application was determined. Sequential extractions were performed on the contaminated soils before and after electrokinetic treatment to provide an understanding of the distribution of the contaminants in the soils. The initial speciation of contaminants was found to depend on the soil composition as well as the type and amounts of different contaminants present. When the initial form of chromium was Cr(III), exchangeable and soluble fractions of Cr, Ni, and Cd ranged from 10 to 65% in kaolin; however, these fractions ranged from 0 to 4% in glacial till. When the initial form of chromium was Cr(VI), the exchangeable and soluble fractions of Cr, Ni and Cd ranged from 66 to 80% in kaolin. In glacial till, however, the exchangeable and soluble fraction for Cr was 38% and Ni and Cd fractions were 2 and 10%, respectively. The remainder of the contaminants existed as the complex and precipitate fractions. During electrokinetic remediation, Cr(VI) migrated towards the anode, whereas Cr(III), Ni(II) and Cd(II) migrated towards the cathode. The speciation of contaminants after electrokinetic treatment showed that significant change in exchangeable and soluble fractions occurred. In kaolin, exchangeable and soluble Cr(III), Ni(II), and Cd(II) decreased near the

  1. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... not guarantee that emission limit values set by the Danish EPA are satisfied. Runoff water was sampled from an urban highway, allowed to settle for 24 hours to simulate the effect of a detention pond, and finally spiked with metals to ensure concentration levels similar to high levels reported in the...... leterature (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed...

  2. Long Term Estimates of Removal of Heavy Metals and PAH in Retention Basins

    Larsen, Torben; Neerup-Jensen, O.

    2004-01-01

    The paper describes a method for the long-term simulation of the discharge of pollutants to the environment from storm sewer overflows in combined sewer systems, which have a connected retention basins. This study covers heavy metals (Cd, Cu, Ni, Pb, Zn) and PAH. The method includes both the...... influence of the flow-dependant sedimentation and the variation of the settling velocity of the particles. The results show that including these effects lead to significant lower discharges of pollutants compared to conventional methods of estimation. As an example computations with a spectrum of basins...

  3. Heavy metal sorption by microalgae

    Sandau, E. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Sandau, P. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Pulz, O. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany)

    1996-12-31

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  4. Heavy metal sorption by microalgae

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  5. Removal of heavy metals from Water Rinsing of Plating Baths by Electrodialysis

    Delimi R.

    2013-04-01

    Full Text Available During the chromic plating of parts, the baths become more and more poor in chromic acid and rich in metallic impurities such as Cu2+, Zn2+, Fe3+ and Cr3+ which makes the bath useless. Also, the water used to rinse parts contains chromic acid and metallic impurities. As it is known that chromic acid is relatively expensive and very toxic, so its recovery has double interest: economic and environmental. Its reuse is possible after removal of metallic impurities. In this work, we studied the possibility of metallic impurities elimination from the chromic acid. The influence of the current density and the circulating solution flow rate on the process efficiency has been studied. The elimination rates obtained in the presence of ion exchange textile are superior to those obtained in the absence of textile. The analysis of the results showed that for the three metallic impurities studied (Cu2+, Fe3+ and Zn2+, the purification rate increases versus the applied current density and solution flow rate. The importance of the elimination of the three metal cations is as the following order: Cu2+ >Zn2+ >Fe3+.

  6. The application of polymer inclusive membranes for removal of heavy metal ions from waste solutions

    B. Gajda

    2012-12-01

    Full Text Available Purpose: The aim of the conducted studies was to determine the possibility of selective separation and precipitation of metal ions from polimetalic solution containing nickel(II, cobalt(II, cadmium(II and zinc(II cations using polymer inclusive membranes. 1-decylimidazole was used in membrane as a carrier of ions. The influence of chloride anions concentration on the process has also been investigated.Design/methodology/approach: Polymer inclusive membranes (PIM containing cellulose acetate as a matrix, orto-nitrophenyl octyl ether (ONPOE as a plasticizer and 1-decylimidazole as a carrier were used in investigations. The membrane processes were carried out in a membrane module for 24 hours.Findings: The results obtained point out a significant influence of chloride anions concentration on separation process of certain metal ions. It was observed that zinc(II ions are isolated most effectively from the solution containing 2M of chloride anions. About 88% of Zn(II, 5.5% of Co(II, 6.5% of Cd(II and below 1% of Ni(II were separated from such a solution.Research limitations/implications: The obtained results show that it is possibility of the selective extraction of heavy metal ions from polymetallic chloride solutions in membrane processes. The aqueous solution containing 2M of chloride ions was used in the investigation.Practical implications: The results show that Zn(II can be effectively recovered from solutions containing Co(II, Cd(II and Ni(II. This process would allow the utilization of waste solutions containing the heavy metal ions. The results of the study presented in the paper can be used in the utilization process of the spent batteries and accumulators.Originality/value: The innovative issue shown in this paper concerns the usage of 1-decylimidazole in selective separation of nickel(II, cobalt(II, cadmium(II and zinc(II ions in membrane process using PIM.

  7. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.

    Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke

    2016-07-19

    The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed. PMID:27331413

  8. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin.

    Maturi, Kranti; Reddy, Krishna R

    2006-05-01

    Thousands of sites are contaminated with both heavy metals and organic compounds and these sites pose a major threat to public health and the environment. Previous studies have shown that electrokinetic remediation has potential to remove heavy metals and organic compounds when they exist individually in low permeability soils. This paper presents the feasibility of using cyclodextrins in electrokinetic remediation for the simultaneous removal of heavy metals and polycyclic aromatic hydrocarbons (PAHs) from low permeability soils. Kaolin was selected as a model low permeability soil and it was spiked with phenanthrene as well as nickel at concentrations of 500 mg kg-1 each to simulate typical mixed field contamination. Bench-scale electrokinetic experiments were conducted using hydroxypropyl beta-cyclodextrin (HPCD) at low (1%) and high (10%) concentrations and using deionized water in control test. A periodic voltage gradient of 2VDC cm-1 (with 5 d on and 2 d off) was applied to all the tests, and 0.01 M NaOH was added during the experiments to maintain neutral pH conditions at anode. In all tests, nickel migrated as Ni2+ ions towards the cathode and most of it was precipitated as Ni(OH)2 within the soil close to the cathode due to high pH condition generated by electrolysis reaction. The solubility of phenanthrene in the flushing solution and the amount of electroosmotic flow controlled the migration and removal of phenanthrene in all the tests. Even though high flow was generated in tests using deionized water and 1% HPCD, migration and removal of phenanthrene was low due to low solubility of phenanthrene in these solutions. The test with 10% HPCD solution showed higher solubility of phenanthrene which caused it migrate towards the cathode, but further migration and removal was retarded due to reduced electric current and electroosmotic flow. Approximately one pore volume of flushing resulted in approximately 50% removal of phenanthrene from the soil near the

  9. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2016-04-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  10. Removal of heteroatoms and metals from heavy oils by bioconversion processes

    Kaufman, E.N.

    1996-06-01

    Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

  11. REMOVAL OF HEAVY METALS FROM DYE EFFLUENT USING ACTIVATED CARBON PRODUCED FROM COCONUT SHELL

    Onyeji, L. I.

    2011-12-01

    Full Text Available The ability of activated carbon produced from coconut shell to remoe mercury Hg (II, Lead Pb (II and Copper Cu (II from dye effluent was investigated. The activated carbon was produced through chemical activation processes by using zinc chloride (ZnCl2. The adsorption capacity was determined as a function of adsorbent dosage. The adsorption Isotherms of the studied metals on adsorbent were also determined and compared with the Langmair models. The activated carbon produced showed excellent effecency in removing Hg (II and Pb(II with percentage removal up to 80 % at low adsorbent dosage of 2 g. In contrast, only about 29 % removal of Cu (II was achieved at adsorbent dosage of 2 g. The study also showed that the adsorption of Hg (II, Pb (II and Cu (II by the activated carbon is dependent on the dosage of the adsorbent and the initial metal concentration. The use of cocnut shell for activated carbon also helps in solving the problem of over abundance of cocnut shell as agricultural waste.

  12. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study.

    Abdolali, Atefeh; Ngo, Huu Hao; Guo, Wenshan; Lu, Shaoyong; Chen, Shiao-Shing; Nguyen, Nguyen Cong; Zhang, Xinbo; Wang, Jie; Wu, Yun

    2016-01-15

    A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions. PMID:26544889

  13. Accumulation of Heavy Metal Ions from Tanneries Wastes: An Approach For Chromium Removal Using Activated Charcoal

    *H. Tahir

    2012-09-01

    Full Text Available The environment is under increasing pressure from solid and liquid wastes emanating from the leather industry. These are inevitable by-products of the leather manufacturing process and causes significant pollution unless treated in some way prior to discharge. The tanneries wastes samples were collected from Lahore Pakistan. The samples were digested by wet oxidation method and the concentrations of metals: Cr, Co, Cu, Cd, Mn, Zn, Ni and Pb were estimated in sediments and liquid waste samples by atomic absorption spectrophotometer. The results show that the concentrations of these metals were higher than the values given by the national environmental quality standards. Selective separation of Cr ion from other metals was investigated in sediment sample TS2 by adsorption method using low cost natural adsorbent activated charcoal. The adsorption studies were carried out under the optimized conditions of adsorption like pH, shaking time and amount of adsorbent. The concentration of Cr after removal was determined by atomic absorption spectrophotometer. The adsorption equilibrium data were fitted in adsorption isotherm equations like: Freundlich, and Dubinin-Radushkevich equations at temperatures ranges from 303 to 318 K. Thermodynamic parameters ∆H, ∆S and ∆G were also calculated. The values of sorption free energy were estimated by employing D-R equation. The percent removal data show that about 99% removal was achieved by employing low cost adsorbent. This method can be employed on industrial scale for the treatment of solid and liquid waste before discharge into the main streams.

  14. Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments

    Pedersen, Kristine Bondo; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.;

    2015-01-01

    Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate......, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the......-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included. (C) 2014 Elsevier B.V. All rights reserved....

  15. Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles.

    Marzougui, Zied; Chaabouni, Amel; Elleuch, Boubaker; Elaissari, Abdelhamid

    2016-08-01

    In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5-5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π-π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity. PMID:26396007

  16. Graft copolymerization of polystyrene onto chitosan congress as an adsorbent for the removal of heavy metal ions

    Chitosan is primarily composed of glucosamine, 2-amino-2-deoxy-β-D-glucose. Chitosan has different types of reactive functional groups. Both hydroxyl and amino groups are possible sites for the reaction to incorporate new and desired functional groups. By modification of these groups various materials for different field of application can be achieved. Chitosan has been used as adsorbent for the removal of heavy metal ions from aqueous solution through adsorption process. Properties of chitosan, such as solubility, mechanical stability and adsorption compatibility, are enhanced by grafting. In this study, chitosan was graft copolymerized with polystyrene for wastewater treatment and evaluated its effectiveness in removing toxic heavy metals by adsorption. Chitosan-graft-polystyrene was characterized by FTIR spectroscopy, and SEM. Adsorption study of the copolymer is carried out as a function of adsorbent dose, pH, and contact time. Residual concentration was measured by Atomic Absorption Spectroscopy. To get an insight of the rate of adsorption and the rate limiting step of the transport mechanism, kinetic analysis was utilized. Langmuir equation/isotherm was used for proper quantification of the sorption equilibrium in the bio sorption process (author)

  17. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal.

    Zeng, Guangyong; He, Yi; Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue

    2016-11-01

    Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment. PMID:27262273

  18. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials

    Polish bituminous (PB) and South African (SA) coal fly ash (FA) samples, derived from pilot-scale circulated fluidized bed (CFB) combustion facilities, were utilized as raw materials for the synthesis of zeolitic products. The two FAs underwent a hydrothermal activation with 1 M NaOH solution. Two different FA/NaOH solution/ratios (50, 100 g/L) were applied for each sample and several zeolitic materials were formed. The experimental products were characterized by means of X-ray diffraction (XRD) and energy dispersive X-ray coupled-scanning electron microscope (EDX/SEM), while X-ray fluorescence (XRF) was applied for the determination of their chemical composition. The zeolitic products were also evaluated in terms of their cation exchange capacity (CEC), specific surface area (SSA), specific gravity (SG), particle size distribution (PSD), pH and the range of their micro- and macroporosity. Afterwards the hybrid materials were tested for their ability of adsorbing Cr, Pb, Ni, Cu, Cd and Zn from contaminated liquids. Main parameters for the precipitation of the heavy metals, as it was concluded from the experimental results, are the mineralogical composition of the initial fly ashes, as well as the type and the amount of the produced zeolite and specifically the mechanism by which the metals ions are hold on the substrate.

  19. An intelligent displacement pumping film system: A new concept for enhancing heavy metal ion removal efficiency from liquid waste

    Highlights: • A new concept for design of an intelligent displacement pumping film was proposed. • As-prepared ESIX hybrid film system showed excellent Ni2+ uptake/exclude rate. • Piston-like proton pumping effect existed in the prepared ESIX hybrid film. • The mechanism of the ion pumping effect was proved by XPS analysis. - Abstract: A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO4)2; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni2+ ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni2+ ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni2+ ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni2+ ions and/or other heavy metal ions from wastewater in various industrial processes

  20. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  1. Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles

    This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions with novel nanoparticle sorbents (Fe3O4, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe3O4, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g−1, for ZnO, CuO, and Fe3O4, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd2+ > Pb2+ > Cu2+ > Ni2+, while the following order was determined in multiple component solutions: Pb2+ > Cu2+ > Cd2+ > Ni2+. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd2+ and Pb2+ was adsorption, whereas both Cu2+ and Ni2+ sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  2. Application of the artificial intelligence to estimate the constructed wetland response to heavy metal removal

    Current design approaches lack essential parameters necessary to evaluate the removal of metals contained in wastewater which is discharged to constructed wetlands. As a result, there is no guideline for an accurate design of constructed wetlands. An artificial intelligence approach was used to assess constructed wetland design. For this purpose concentrations of bioavailable mercury were evaluated in conditions where initial concentrations of inorganic mercury, chloride concentrations and pH values changed. Fuzzy knowledge base was built based on results obtained from previous investigations performed in a greenhouse for floating plants, and from computations for mercury speciation. The Fuzzy Decision Support System (FDSS) used the knowledge base to find parameters that permit to generate the highest amount of mercury available for plants. The findings of this research can be applied to wetlands and all natural processes where correlations between them are uncertain. (author)

  3. Preparation and characterization of bentonite clays mixture destined to the removal of heavy metals

    In this work a mixture was prepared with 50% wt. of the Bofe and Verde-lodo clays. The characterization methods used they were: thermal analyses (TG and DTG), X-ray diffraction, fisissorption of N2, scanning electron microscopy and X-ray energy dispersive spectroscopy. The rehearsals of adsorption we accomplished in system of finite bath using as adsorbent the mixture loamy in natura or it mixes calcined. Starting from TG and DTG a thermal treatment was accomplished to 500 deg C of the loamy mixture. Through the results of the copper adsorption, it was verified that mixes loamy it provokes chemical precipitation of the copper while the calcined sample presents amount metal adsorbed around 7.31 mg of copper/g of adsorbent. The value of removal percentage obtained by the calcined sample it was of 63.02%. (author)

  4. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica)

    Meena, Ajay Kumar [Centre for Fire, Explosive and Environment Safety (CFEES), Defence R and D Organisation (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054 (India); Kadirvelu, K. [Centre for Fire, Explosive and Environment Safety (CFEES), Defence R and D Organisation (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054 (India)], E-mail: kadirvelu@lycos.com; Mishra, G.K.; Rajagopal, Chitra [Centre for Fire, Explosive and Environment Safety (CFEES), Defence R and D Organisation (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054 (India); Nagar, P.N. [Centre for Fire, Explosive and Environment Safety (CFEES), Defence R and D Organisation (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054 (India); Department of Chemistry, University of Rajasthan, Jaipur 302004 (India)

    2008-02-11

    The removal of Cr(VI), Pb(II), Hg(II) and Cu(II), by treated sawdust has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Adsorption capacity for treated sawdust, i.e. Cr(VI) (111.61 mg/g), Pb(II) (52.38 mg/g), Hg(II) (20.62 mg/g), and Cu(II) (5.64 mg/g), respectively. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on treated sawdust satisfies not only the Langmuir assumptions but also the Freundlich assumptions. The applicability of Lagergren kinetic model has also been investigated. The adsorption follows first-order kinetics. Thermodynamic constant (k{sub ad}), standard free energy ({delta}G{sup o}), enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) were calculated for predicting the nature of adsorption. The percentage adsorption increases with pH to attain a maximum at pH 6 and thereafter it decreases with further increase in pH. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.

  5. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica)

    The removal of Cr(VI), Pb(II), Hg(II) and Cu(II), by treated sawdust has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Adsorption capacity for treated sawdust, i.e. Cr(VI) (111.61 mg/g), Pb(II) (52.38 mg/g), Hg(II) (20.62 mg/g), and Cu(II) (5.64 mg/g), respectively. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on treated sawdust satisfies not only the Langmuir assumptions but also the Freundlich assumptions. The applicability of Lagergren kinetic model has also been investigated. The adsorption follows first-order kinetics. Thermodynamic constant (kad), standard free energy (ΔGo), enthalpy (ΔHo) and entropy (ΔSo) were calculated for predicting the nature of adsorption. The percentage adsorption increases with pH to attain a maximum at pH 6 and thereafter it decreases with further increase in pH. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed

  6. Heavy metal removal from produced water using retorted shale; Remocao de metais pesados em aguas produzidas utilizando xisto retortado

    Pimentel, Patricia M.; Melo, Marcos A.F.; Melo, Dulce M.A.; Silva Junior, Carlos N.; Assuncao, Ary L.C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Anjos, Marcelino J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2004-07-01

    The Production of oil and gas is usually accompanied by the production of large volume of water that can have significant environmental effects if not properly treated. In this work, the use of retort shale was investigated as adsorbent agent to remove heavy metals in produced water. Batch adsorption studies in synthetic solution were performed for several metal ions. The efficiency removal was controlled by solution pH, adsorbent dosage, and initial ion concentration and agitation times. Two simple kinetic models were used, pseudo-first- and second-order, were tested to investigate the adsorption mechanisms. The equilibrium data fitted well with Langmuir and Freundlich models. The produced water samples were treated by retorted shale under optimum adsorption conditions. Synchrotron radiation total reflection X-ray fluorescence was used to analyze the elements present in produced water samples from oil field in Rio Grande do Norte, Brazil. The removal was found to be approximately 20-50% for Co, Ni, Sr and above 80% for Cr, Ba, Hg and Pb. (author)

  7. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.

    Anirudhan, T S; Sreekumari, S S

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(II), Hg(II) and Cu(II) from industrial effluents through batch adsorption process. The AC was characterized by elemental analysis, fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric and differential thermal analysis, surface area analyzer and potentiometric titrations. The effects of initial metal concentration, contact time, pH and adsorbent dose on the adsorption of metal ions were studied. The adsorbent revealed a good adsorption potential for Pb(II) and Cu(II) at pH 6.0 and for Hg(II) at pH 7.0. The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation. The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model. The adsorption capacities of the AC decreased in the order: Pb(II) > Hg(II) > Cu(II). PMID:22432329

  8. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons

    T. S. Anirudhan; S. S. Sreekumari

    2011-01-01

    Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(Ⅱ),Hg(Ⅱ) and Cu(Ⅱ) from industrial effluents through batch adsorption process.The AC was characterized by elemental analysis,fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscopy,thermal gravimetric and differential thermal analysis,surface area analyzer and potentiometric titrations.The effects of initial metal concentration,contact time,pH and adsorbent dose on the adsorption of metal ions were studied.The adsorbent revealed a good adsorption potential for Pb(Ⅱ) and Cu(Ⅱ) at pH 6.0 and for Hg(Ⅱ) at pH 7.0.The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation.The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model.The adsorption capacities of the AC decreased in the order:Pb(Ⅱ) >Hg(Ⅱ) > Cu(Ⅱ).

  9. Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Municipal wastewater and sewage sludge is an abundant source of phosphorus (P), but its usage is often limited due to wastewater treatment methods and contaminants, mostly heavy metals (HM's). Three compartment (3C) electrodialysis (ED) was used to simultaneously extract HM's (Cd, Cr, Cu, Ni, Pb...... and Zn) and recover P from municipal sludge samples obtained at different stages during wastewater treatment involving biological and chemical treatment as well as polymer addition for thickening of sludge and anaerobic digestion of excess sludge. Direct P recovery was investigated for high P reject...... concentration P streams was most effective using a 3C ED cell setup, with the electrodes separated from the sample by ion-exchange membranes. Extraction with the 2C ED cell setup was less effective due to a rise in pH, caused by half reactions at the cathode and subsequent precipitation of P. For either removal...

  10. Chitosan and reinforced Chitosan films for the removal of Cr(VI heavy metal from synthetic aqueous solution

    Sibi Srinivasan

    2016-05-01

    Full Text Available Cr(VI is removed efficiently from aqueous solution using Chitosan made films as the adsorbent. The efficiency of free Chitosan films is compared with the Chitosan-Silica and Chitosan-Carbon, which are reinforced with biogenic Silica and Carbon obtained from Panicum miliare husk ashes, respectively. All the films were prepared by simple ageing method and swelling index was determined for all the three adsorbents independently. Adsorption studies of Cr(VI heavy metal were carried out by varying pH, temperature, initial concentration of the adsorbate and quantity of adsorbent. On the otherhand, Cr(VI was removed from the solution by Chitosan-Silica film better than free Chitosan and Chitosan-Carbon films. The optimum pH was found to be 3.0 and optimum temperature was 30°C. Thermodynamic, equilibrium and kinetic studies were carried out for all the three adsorbents, independently. Langmuir adsorption isotherm and Pseudo First Order kinetics were followed for the adsorption process. Concentration of metal ions was determined using a spectrophotometer. Oxidation states of the adsorbed Cr were determined by ESR. It was found that Chitosan-Silica film reduced Cr(VI to Cr(III almost completely in the aqueous solution.

  11. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  12. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Salihu Lukman

    2013-01-01

    Full Text Available In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  13. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.

    Ouhadi, V R; Yong, R N; Shariatmadari, N; Saeidijam, S; Goodarzi, A R; Safari-Zanjani, M

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of "calcite or carbonate" (CaCO(3)) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates. PMID:19733966

  14. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  15. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.

    Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X

    2007-06-01

    Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus

  16. OPTIMIZATION OF MOTOR VEHICLE INDUSTRIES WASTEWATER TREATMENT METHODS WITH THE AIM OF HEAVY METALS REMOVAL AND WATER REUSE IN PILOT SCALE

    S. A. Mirbagheri, M. Salehi M

    2006-10-01

    Full Text Available The waste of motor vehicle industries is mainly the result of washing, coloring and various stages of chassis manufacturing, which include oil, grease, dyestuff, chromium, phosphate and other pollutants. In the present research, extended aeration activated sludge biological treatment plant is being considered and evaluated, for the removal of heavy metals and pollution load from industrial wastes and sanitary wastewaters, and on the pilot scale for optimization of waste treatment method for motor vehicle industries. To accomplish the pilot experiments, the natural waste of Bahman motor vehicle factory is used. Effective factors on efficient removal of heavy metals and pollution load such as concentration of biological mass (MLVSS, COD, BOD, pH in the extended aeration activated sludge biological treatment system, in different ratios of the mixing of industrial waste to sanitary wastewater have been experimented and evaluated. The performance of the above system, in the best of conditions, removes about 90% of pollution load and 65% of heavy metals existing in the industrial wastes. After analyzing the experiments, it is concluded that the removal of heavy metals through biological methods is possible and moreover it is feasible to biologically treat the mixing of motor vehicle industries effluent and sanitary wastewater up to the ratio of one to one, if guided exactly and scientifically.

  17. Effect of different surfactants on removal efficiency of heavy metals in sewage sludge treated by a novel method combining bio-acidification with Fenton oxidation

    任苗苗; 林宁波; 袁兴中; 朱艺; 黄华军; 曾光明; 李辉; 陈明; 王侯; 陈畅亚

    2014-01-01

    The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant (sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants (tween-20 and tween-60) and cationic surfactant (hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants, especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous pH value. Lead is leached with a low efficiency as the formation of low soluble PbSO4 precipitates.

  18. Removal of selected heavy metals from MSW fly ash by the electrodialytic process

    Ferreira, Célia Maria Dias; Jensen, Pernille Erland; Ottosen, Lisbeth M.;

    2005-01-01

    This paper aims to assess the applicability of the electrodialytic remediation technique for the removal of zinc, lead, copper and cadmium from municipal solid waste (MSW) incinerator fly ash. A broad range of experimental conditions were studied including current densities, remediation times, use...

  19. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater.

    Rezania, Shahabaldin; Ponraj, Mohanadoss; Talaiekhozani, Amirreza; Mohamad, Shaza Eva; Md Din, Mohd Fadhil; Taib, Shazwin Mat; Sabbagh, Farzaneh; Sairan, Fadzlin Md

    2015-11-01

    The development of eco-friendly and efficient technologies for treating wastewater is one of the attractive research area. Phytoremediation is considered to be a possible method for the removal of pollutants present in wastewater and recognized as a better green remediation technology. Nowadays the focus is to look for a sustainable approach in developing wastewater treatment capability. Water hyacinth is one of the ancient technology that has been still used in the modern era. Although, many papers in relation to wastewater treatment using water hyacinth have been published, recently removal of organic, inorganic and heavy metal have not been reviewed extensively. The main objective of this paper is to review the possibility of using water hyacinth for the removal of pollutants present in different types of wastewater. Water hyacinth is although reported to be as one of the most problematic plants worldwide due to its uncontrollable growth in water bodies but its quest for nutrient absorption has provided way for its usage in phytoremediation, along with the combination of herbicidal control, integratated biological control and watershed management controlling nutrient supply to control its growth. Moreover as a part of solving wastewater treatment problems in urban or industrial areas using this plant, a large number of useful byproducts can be developed like animal and fish feed, power plant energy (briquette), ethanol, biogas, composting and fiber board making. In focus to the future aspects of phytoremediation, the utilization of invasive plants in pollution abatement phytotechnologies can certainly assist for their sustainable management in treating waste water. PMID:26311085

  20. Removal of organic pollutants and heavy metals in soils by electrokinetic remediation.

    Ricart, M T; Pazos, M; Gouveia, S; Cameselle, C; Sanroman, M A

    2008-07-01

    In this work, the feasibility of electrokinetic remediation for the restoration of polluted soil with organic and inorganic compounds had been development and evaluated using a model soil sample. The model soil was prepared with kaolinite clay artificially polluted in the laboratory with chromium and an azo dye: Reactive Black 5 (RB5). The electromigration of Cr in a spiked kaolinite sample was studied in alkaline conditions. Despite of the high pH registered in the kaolinite sample (around pH 9.5), Cr migrated towards the cathode and it was accumulated in the cathode chamber forming a white precipitate. The removal was not complete, and 23% of the initial Cr was retained into the kaolinite sample close to the cathode side. The azo dye RB5 could be effectively removed from kaolinite by electrokinetics and the complete cleanup of the kaolinite could be achieved in alkaline environment. In this condition, RB5 formed an anion that migrated towards the anode where it was accumulated and quickly degraded upon the electrode surface. The electrokinetic treatment of a kaolinite sample polluted with both Cr and RB5 yielded very good results. The removal of Cr was improved compared to the experiment where Cr was the only pollutant, and RB5 reached a removal as high as 95%. RB5 was removed by electromigration towards the anode, where the dye was degraded upon the surface of the electrode by electrochemical oxidation. Cr was transported towards the cathode by electromigration and electroosmosis. It is supposed that the interaction among RB5 and Cr into the kaolinite sample prevented premature precipitation and allow Cr to migrate and concentrate in the cathode chamber. PMID:18569297

  1. 用细菌运河除水中的重金属%Removal of Heavy Metals from Aqueous Solutions Using Bacteria

    黄民生; 潘静; 郑乐平

    2001-01-01

    The accumulation of heavy metals by microbial biomass with high surface area-to-volume ratio holds great potential for heavy metal removal in both soluble and paritcular forms, especially when the heavy metal concentrations are low (< 50 mg/L). E. coli and B. subtilis are effective agents for metal removal. We further investigated the effect of pH, temperature, equilibration time, and pre-treatment reagents on the removal of Pb( Ⅱ ), Cd( Ⅱ ) and Cr( Ⅵ ) from aqueous solutions by E. coli and B. subtilis. E. coli and B. subtilis were cultivated for 60 hours, the experimentally determined optimal cultivation time before they were used in metal removal experiments. Under the optimal conditions of pH 6.0, equilibration temperature 30 ℃ and equilibration time 1 hour, 63.39 % and 69.90 % Cd( Ⅱ ) can be removed by E. coli and B. subtilis. Under the optimal conditions of pH 5.5, equilibration temperature 30 ℃ and equilibration time 1 hour, 68.51% and 67.36% Pb( Ⅱ ) can be removed by E. coli and B. subtilis. And under the optimal conditions of pH 5.5, equilibration temperature 30 ℃, and equilibration time 1 hour, 60.26% and 54.56% Cr( Ⅵ ) can be removed by E. coli and B. subtilis. Chemical treatment of cultivated bacteria (0.1 mol/L NaOH, 0.1 mol/L, HCl, 30% ethanol, and distilled water) affects the efficiency of metal removal by E. coli and B. subtilis. Pretreatment of biomass by NaOH enhanced Cd( Ⅱ ), Pb( Ⅱ ) and Cr( Ⅵ ) removal, while pretreatment by HCl, ethanol and distilled water reduced Cd( Ⅱ ), Pb( Ⅱ ) and Ct( Ⅵ ) removal. For metal removal from industrial waste discharges, pretreated biomass of E. coli can remove 68.5 % of Cd and 58.1% of Cr from solutions, while pretreated biomass of B. subtilis can remove 62.6% of Cd and 57% of Cr from solutions.

  2. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study

  3. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    Parga, Jose R. [Institute Technology of Saltillo, Department of Metallurgy and Materials Science, V. Carranza 2400, C.P. 25280, Saltillo, Coahuila, Mexico (Mexico)]. E-mail: drjrparga@hotmail.com; Cocke, David L. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Valenzuela, Jesus L. [University of Sonora, Hermosillo, Sonora, Mexico (Mexico); Gomes, Jewel A. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Kesmez, Mehmet [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Irwin, George [Lamar University, Department of Chemistry and Physics, Beaumont, TX 77710 (United States); Moreno, Hector [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, Michael [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States)

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  4. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Babak Samiey

    2014-01-01

    Full Text Available Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores, assembling of nanobuilding blocks (e.g., layered or core-shell compounds and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied.

  5. Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

    Çiğdem Kıvılcımdan Moral

    2016-01-01

    Full Text Available Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.

  6. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal

    With cetyltrimethylammonium (CTAB) and tetramethylammonium hydroxide (TMAOH) as hybrid surfactant templates, a mesoporous adsorbent (adsorbent C) was synthesized in ethanol via the integration of 'One-step' procedure and 'Evaporation-Induced Self-Assembly' procedure. During the synthesis, TMAOH served as the subsidiary structure-directing agent. Adsorbent C exhibited higher pore diameter (centered at 6.1 nm), BET surface area (421.9 m2/g) and pore volume (0.556 cm3/g) than the other two adsorbents only using P123 (adsorbent A) or CTAB (adsorbent B) as the surfactant. The adsorbents were also characterized by XRD and FTIR spectroscopy. The adsorption of copper, zinc, lead, iron, silver and manganese ions on adsorbent C was investigated by contrast tests with adsorbent A and B. The experimental data showed that adsorbent C possessed better adsorption properties than the counterparts. The order of adsorption capacity for six metal ions was Mn2+ 2+ 2+ 2+ 2+ +. The kinetic and thermodynamic properties and the regeneration capacity of adsorbent C were also discussed

  7. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  8. Potential application of activated carbon from maize tassel for the removal of heavy metals in water

    Olorundare, O. F.; Krause, R. W. M.; Okonkwo, J. O.; Mamba, B. B.

    Water-pollution problems worldwide have led to an acute shortage of clean and pure water for both domestic and human consumption. Various technologies and techniques are available for water treatment which includes the use of activated carbon. In this study activated carbons used for the removal of lead (II) ions from water samples were prepared from maize tassels (an agricultural waste residue) which were modified using physical and chemical activation. In the physical activation CO2 was used as the activating agent, while in chemical activation H3PO4 with an impregnation ratio ranging from 1 to 4 was employed. The maize tassel was pyrolysed at different temperatures ranging from 300 °C to 700 °C in an inert atmosphere for a period of 60 min and activated at 700 °C for 30 min. The effects of activation temperature, impregnation ratio and duration were examined. The resultant modified tassels were characterised by measuring their particle-size distribution, porosities, pore volume, and pore-size distribution using scanning electron microscopy (SEM). The activated carbon produced by chemical activation had the highest BET surface area ranging from 623 m2 g-1 to 1 262 m2 g-1. The surface chemistry characteristics of the modified tassels were determined by FT-IR spectroscopy and Boehm’s titration method. The experimental data proved that properties of activated carbon depend on final temperature of the process, impregnation ratio and duration of the treatment at final temperature. The adsorption studies showed that chemically prepared activated carbon performed better than physically prepared activated carbon.

  9. Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb(II) heavy metal ions removal

    Sreekantan, Srimala; Mohd Zaki, Syazwani; Lai, Chin Wei; Tzu, Teoh Wah

    2014-07-01

    TiO2 nanotubes were synthesized via electrochemical anodization of Ti foil at 60 V for 1 h in a bath with electrolytes composed of ethylene glycol containing 5 wt.% of NH4F and 1 vol.% of H2O2. The incorporation of optimum Cu2+ ions (1.30 at.%) into TiO2 nanotubes were prepared by using wet impregnation method to improve their photocatalytic methyl orange degradation and Pb(II) heavy metal removal. The small Cu2+ ions were successfully diffused into lattice of TiO2 nanotubes by conducting post-annealing treatment at 400 °C for 4 h in argon atmosphere after wet impregnation. In this manner, optimum Cu2+ ions played a crucial role in suppressing the recombination of charge carriers by forming inter-band states (mismatch of the band energies) within the lattice of Cu-TiO2. The experimental results showed that a maximum of 80% methyl orange removal and 97.3% Pb(II) heavy metal removal at pH 11 under UV irradiation for 5 h. Besides, it was noticed that photocatalytic Pb(II) heavy metal removal was strong dependence on pH of the solution because of the amphoteric character of Cu-TiO2 in an aqueous medium.

  10. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.