WorldWideScience
 
 
1

REMOVAL OF HEAVY METALS USING ALUMINUM SALTS FOR PHOSPHORUS REMOVAL  

Science.gov (United States)

The use of aluminum salts to remove phosphorus is common practice. It has been shown that aluminum salts are also capable of removing heavy metals, but the dosages were much greater than normally applied for phosphorus removal. This study investigates the removal of heavy metals ...

2

Simultaneous removal of nitrate and heavy metals by iron metal*  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitr...

Hao, Zhi-wei; Xu, Xin-hua; Jin, Jian; He, Ping; Liu, Yong; Wang, Da-hui

2005-01-01

3

Heavy metal removal and recovery using microorganisms  

International Nuclear Information System (INIS)

Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

4

Heavy metal removal using reverse osmosis  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of this work was to study reverse osmosis characteristics for copper, nickel and zinc removal from technological aqueoussolutions. Reverse osmosis (RO is a separation process that uses pressure to force a solution through a membrane that retainsthe solute on one side and allows the pure solvent to pass to the other side. A polyamide thin-film composite membrane TW30-1812-50was used. The difference in flux decline is significant. There is a significant difference in flux decline depending on the anions of usedheavy metal salts. The heavy metal concentration also has a significant influence on the membrane separation. There is alsoa significant difference in flux decline depending on the transmembrane pressure.

Lucia Gajdošová

2009-12-01

5

Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal solid waste. Biowaste is referred to as an organic waste stream but surprisingly it was found that a large part of biowaste is composed of inorganic material, i.e. sand, silt and clay minerals. The i...

Veeken, A.

1998-01-01

6

REMOVAL OF HEAVY METALS BY ARTIFICIAL WETLANDS  

Science.gov (United States)

Artificial wetlands have been operated successfully for treatment of municipal wastewater for a number of years at several locations in this country. However, the capability of these systems to treat heavy metal laden municipal wastewater had not previously been investigated. The...

7

ULTRASONIC ENHANCEMENT OF THE REMOVAL OF HEAVY METALS  

Science.gov (United States)

EPA GRANT NUMBER: R828598C020 Title: Ultrasonic Enhancement of the Removal of Heavy Metals Investigators: Dennis Truax, Krishnan Balasubramaniam Institution: Mississippi State University EPA Project Officer: S. Bala Krishnan...

8

Removal of Heavy Metals from Waste Water Using Water Hyacinth  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Water pollution has become one of the most serious problems of today's civilization. In the last few years considerable amount of research has been done on the potential of aquatic macrophytes for pollutant removal or even as bio-indicators for heavy metals in aquatic ecosystems. Water hyacinth is one of the aquatic plant species successfully used for wastewater treatment. It is very efficient in removing pollutants like suspended solids, BOD, organic matter, heavy metals and pathogens. This ...

Mary Lissy, P. N.; G, Madhu

2011-01-01

9

Heavy metals removal from dredged sediments using electro kinetics  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study focuses on the use of a remediation process to remove particle-bound recalcitrant pollutants (heavy metals) from dredged harbor sediments which must be previously treated before reuse in civil engineering. Electrokinetic (EK) remediation is generally accepted as one of the most suitable technologies for extracting cationic heavy metals from fine grained sediments. Many batch tests were performed to better understand the capacity of various additives to improve sediment decontaminat...

Ammami M. T.; Benamar A.; Koltalo F.; Wang H. Q.; LeDerf F.

2013-01-01

10

Cocoa shells for heavy metal removal from acidic solutions.  

Science.gov (United States)

The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5-40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb>Cr>Cd=Cu=Fe>Zn=Co>Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (q(max)=6.2 mg Pb/g, pH(i)=2.0 and T=22 degrees C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells. PMID:14575948

Meunier, N; Laroulandie, J; Blais, J F; Tyagi, R D

2003-12-01

11

Electrodialytic removal of heavy metals from fly ashes  

DEFF Research Database (Denmark)

The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.

Pedersen, Anne Juul

2002-01-01

12

Removal of Trichloroethylene and Heavy Metals by Zerovalent Iron Nanoparticles  

Science.gov (United States)

Heavy metals combined with chlorinated solvents are one class of mixed waste found at various hazardous waste sites in North America. Nano zerovalent iron (nZVI), an emerging technology, is being successfully used for treating chlorinated solvents and heavy metals independently, however comparatively little research has investigated the remediation of the wastes when they are present in the same mixture. The remediation of trichloroethylene (TCE)/heavy metal waste mixtures via nZVI has been investigated in the present study. Results suggest that some metals are reduced by nZVI to their zerovalent state and thus precipitate on nZVI particles. This improves the contaminant removal performance of nZVI by forming bimetallic iron nanoparticles. Other metals are directly precipitated or adsorbed on the nZVI particles in their original oxidation state and are rendered immobile. In some cases the presence of the heavy metals in the waste mixture enhanced the dechlorination of TCE while in other cases it did not. This study suggests that nano zerovalent iron particles can be effectively used for the remediation of mixed contamination of heavy metals and chlorinated solvents. Results have been supported by a variety of techniques including X-ray photoelectron spectroscopy (XPS) analysis.

Boparai, H. K.; O'Carroll, D. M.

2009-05-01

13

Removing heavy metals by in vitro cultures.  

Science.gov (United States)

In vitro roots cultures of Typha latifolia and Scirpus americanus aquatic plants have the capacity to remove Pb (II), Mn (II), and Cr (III) from the culture medium. Both species remove Cr and Pb by an absorption process, while Mn is mainly adsorbed to the root surface. This chapter describes a protocol for the establishment of in vitro roots cultures (nontransformed) from T. latifolia and S. americanus, and the procedure for the uptake analysis of Pb (II), Mn (II), and Cr (III) by roots. PMID:22610634

Santos-Díaz, María del Socorro; Barrón-Cruz, María del Carmen

2012-01-01

14

Chitosan removes toxic heavy metal ions from cigarette mainstream smoke  

Science.gov (United States)

This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

2013-09-01

15

Removal of heavy metals ions by synthetic carbonate apatite  

International Nuclear Information System (INIS)

The removal of cations such as Zn2+, Cd2+ and Pb2+ in aqueous solutions containing various counter-anions by synthetic carbonate apatite (CAP) has been in investigated using batch methods. The ranking of ions according to amount exchanged was as follows: Pb2+ > Cd2+ > Zn2+. The reaction with Pb2'+ ions was especially remarkable: after 2 hours, removal of Pb2+ ions from the 1000 ppm solution was 98,1%. XRD and IR analysis indicated the formation of a single phase of Pb'2+ ion-exchanged carbonate apatite. we can conclude that synthesized CAP is useful in removing heavy-metal ions from water. (author)

16

Heavy metal removal using reverse osmosis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The aim of this work was to study reverse osmosis characteristics for copper, nickel and zinc removal from technological aqueoussolutions. Reverse osmosis (RO) is a separation process that uses pressure to force a solution through a membrane that retainsthe solute on one side and allows the pure solvent to pass to the other side. A polyamide thin-film composite membrane TW30-1812-50was used. The difference in flux decline is significant. There is a significant difference in flux decline depen...

Lucia Gajdošová; Milan Búgel; Tomáš Bakalár

2009-01-01

17

Removal of Heavy Metal Ions by Blended Periwinkle Shells  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study, coconut husk and palm kernel fiber were characterized, blended with periwinkle shells, thiolated and used to remove heavy metal ions-Co2+, Ni2+ and Cd2+ ions from aqueous solution. Periwinkle shells, palm kernel fiber and coco nut husk were obtained from New Benin market, Benin city, Nigeria. These were milled, sieved with a 300ìm mesh sieve, blended in seven different ratios: 1:1:1, 1:1:4, 1:4:1, 4:1:1, 1:3:2, 2:1:3, 3:2:1 and characterized. T...

Okuo, James M.

2006-01-01

18

Removal of Heavy Metals and PAH in Highway Detention Ponds  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The paper presents some of the first results from a study of the removal of pollutants in highway detention ponds in Denmark. The objective of the study is to set up a procedure for long-term modelling of discharges of pollutants to the environment from the many Danish highway detention ponds, which has been designed according to standard design criteria for several decades. The study will focus on heavy metals (Cd, Cr, Cu, Pb and Zn) and polyaromatic hydrocarbons (PAH). The long-term simulat...

Bentzen, Thomas Ruby; Larsen, Torben; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

2010-01-01

19

Heavy metal removal from aqueous solutions by activated phosphate rock  

International Nuclear Information System (INIS)

The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N2); and, (b) qualified and quantified the interaction of Pb2+, Cd2+, Cu2+ and Zn2+ with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1 h for (PR) and 2 h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb2+ and 4 and 6 for Cd2+, Cu2+ and Zn2+. The effect of temperature has been carried out at 10, 20 and 40 deg. C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption (?Ho), free energy (?Go) and change in entropy (?So) wnd change in entropy (?So) were calculated. They show that sorption of Pb2+, Cd2+, Cu2+ and Zn2+on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH

20

Heavy metal removal from aqueous solutions by activated phosphate rock  

Energy Technology Data Exchange (ETDEWEB)

The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N{sub 2}); and, (b) qualified and quantified the interaction of Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+} with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1 h for (PR) and 2 h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb{sup 2+} and 4 and 6 for Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+}. The effect of temperature has been carried out at 10, 20 and 40 deg. C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption ({delta}H{sup o}), free energy ({delta}G{sup o}) and change in entropy ({delta}S{sup o}) were calculated. They show that sorption of Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+}on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH.

Elouear, Z. [Laboratoire Eau Energie et Environnement, Departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038, Sfax (Tunisia)], E-mail: zouheir.elouaer@tunet.tn; Bouzid, J.; Boujelben, N. [Laboratoire Eau Energie et Environnement, Departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038, Sfax (Tunisia); Feki, M. [Unite de chimie industriel I, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia); Jamoussi, F. [Laboratoire de Georessources CERTE BP 95, 2050 Hamam-Lif (Tunisia); Montiel, A. [Societe Anonyme de Gestion des Eaux de Paris, 9 rue Schoelcher, 75675 Paris cedex 14 (France)

2008-08-15

 
 
 
 
21

Removal Of Heavy Metals From Electroplating Wastewater By Anaerobic Bacteria  

Science.gov (United States)

Biosorption of heavy metals from simulated wastewater and the raw electroplating wastewater with "BM (Biosorption of Metals) bacteria" were investigated in this study. The influence of initial pH, biosorbents dose, concentration of ions, contact time and temperature on biosorption capacity of Cr(VI) and Ni(II) were studied. The optimum pH for biosorption of Cr(VI) was found to be low, and the removal efficiency of Cr(VI) was 98.60% with "BM bacteria" at pH 2. The removal efficiency of Ni(II) was increased with increasing the pH, and was enhanced up to 115% compared with the wastewater without BM bacteria. In this experiment, the "BM bacteria" efficiently removed Cu(II), Ni(II), Cr(VI), Zn(II) and COD from the raw electroplating wastewater, and the removal efficiencies were 98.92%, 99.92%, 99.86%, 99.93% and 45.20% respectively.

Ma, Wanggang; Sun, Peide; Song, Yingqi; Zhang, Yi; Yin, Jun

2010-11-01

22

Removal of Heavy Metals and PAH in Highway Detention Ponds  

DEFF Research Database (Denmark)

The paper presents some of the first results from a study of the removal of pollutants in highway detention ponds in Denmark. The objective of the study is to set up a procedure for long-term modelling of discharges of pollutants to the environment from the many Danish highway detention ponds, which has been designed according to standard design criteria for several decades. The study will focus on heavy metals (Cd, Cr, Cu, Pb and Zn) and polyaromatic hydrocarbons (PAH). The long-term simulation of input of flow and pollution to the ponds will be a hind cast based on time series of historical rainfalls. The modelling will take place in a special version of the MIKE URBAN. The modelling is calibrated and validated on measurements from selected highway catchments. The removal of pollutants in the ponds is studied by local measurements in combination with CFD modelling using the MIKE 21 and MIKE 3 numerical models.

Bentzen, Thomas Ruby; Larsen, Torben

2005-01-01

23

Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater.  

Science.gov (United States)

Two pulp and paper industrial wastes, lime mud (LM) and recovery boiler ash (RB), have low moisture contents, low heavy metal contaminations and contain various carbonate compounds which contribute to a high pH. Metal finishing wastewater (MF-WW) has a low pH, high levels of TDS and high contaminations from Cr, Cu, Pb and Zn. The heavy metals from MF-WW were removed by sorption and precipitation mechanisms. LM gave better results in removing heavy metals from MF-WW than RB. At a reaction time of 45min, the maximum removal efficiencies for Cr (93%) and Cu (99%) were obtained at 110gL(-1) of LM, but at 80gL(-1) for Pb (96%) and Zn (99%). Treatment with LM gives a higher sludge volume than with RB. However, the leachability of heavy metals from LM is lower. Leachability of heavy metals in the sediment for all selected treatment conditions is within government standards. PMID:19501952

Sthiannopkao, Suthipong; Sreesai, Siranee

2009-08-01

24

Heavy Metal and Phosphorus Removal from Waters by Optimizing Use of Calcium Hydroxide and Risk Assessment  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The optimizing using calcium hydroxide to remove dissolved heavy metal, phosphorus pollutants and algae was investigated. It was found that the concentration of calcium ion was minimal at pH 10.5 when a large amount of generated calcium carbonate increased the particle size of the precipitates and improved sedimentation of sludge and the removal efficiency of heavy metal and phosphorus significantly. Regardless of the initial heavy metals concentrations contained in the wastewater, the final ...

Binyuan Chen; Ruijuan Qu; Jiaqi Shi; Dinglong Li; Zhongbo Wei; Xi Yang; Zunyao Wang

2012-01-01

25

Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. ...

Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George

2011-01-01

26

Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor  

International Nuclear Information System (INIS)

The purpose of this study is mainly to evaluate the performance of the continuous recirculation flow cell at low current density and pH (the pH at which the effluents are available) in removing heavy metals from copper smelting effluent by cathodic reduction. During the electrolysis at different pH, % removal of heavy metals removal, energy consumption and heterogeneous reaction rate constants were investigated at given flow rate and current density on the selected industrial effluent. The overall specific energy consumption at the pH 0.64 was observed to be lowest, which is 10.99 kWh/kg of heavy metal removal

27

Utilization of Carbamoyethylated Cotton for Heavy Metal Ion Removal  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Cotton cellulose in fabric form was rendered ion exchanger via Carbamoyethylation Reaction (CER). The latter was carried out using acrylamide (Aam) and sodium hydroxide. The resulted carbamoyethylated cotton having amide functional groups (CONH2) was monitored for its ability to adsorb heavy metals from their aqueous solutions. Different factors affecting adsorption of metal ions onto the latter substrate such as metal ion concentration, pH, treatment time and temperature were stud...

Mostafa, Kh M.; Hassan Al-Bar

2005-01-01

28

Effect of operational parameters on heavy metal removal by electrocoagulation.  

Science.gov (United States)

In the present paper, the performance of electrocoagulation (EC) for the treatability of mixed metals (chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)) from metal plating industrial wastewater (EPW) has been investigated. The study mainly focused on the affecting parameters of EC process, such as electrode material, initial pH, distance between electrodes, electrode size, and applied voltage. The pH 8 is observed to be the best for metal removal. Fe-Fe electrode pair with 1-cm inter-electrode distance and electrode surface area of 40 cm(2) at an applied voltage of 8 V is observed to more efficient in the metal removal. Experiments have shown that the maximum removal percentage of the metals like Cr, Ni, Zn, Cu, and Pb are reported to be 96.2, 96.4, 99.9, 98, and 99.5 %, respectively, at a reaction time of 30 min. Under optimum conditions, the energy consumption is observed to be 51.40 kWh/m(3). The method is observed to be very effective in the removal of metals from electroplating effluent. PMID:25056749

Bhagawan, D; Poodari, Saritha; Pothuraju, Tulasiram; Srinivasulu, D; Shankaraiah, G; Yamuna Rani, M; Himabindu, V; Vidyavathi, S

2014-12-01

29

Removal of heavy metals from aqueous solution by Carrot residues  

International Nuclear Information System (INIS)

The removal of Copper(II), Zinc(II), and Chromium (III) from wastewater by carrot residues was investigated to evaluate cation exchange capacity. The effects of solution P H and co-ions were studied in batch experiments. Adsorption equilibria were initially rapidly established, and then decreased markedly after 10 min. Column experiments were carried out in a glass column filled with carrot residues to evaluate the metal removal capacity. The influences of the feed concentration and feed rate were also studied in order to compare the dynamic capacity for metal binding in different feed concentrations

30

Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes  

DEFF Research Database (Denmark)

Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected that the speciation of these metals was similar in the two ashes. On the other hand, the leaching behaviour (and concentration) of Cr was diverse. The apparent similar speciation of Cd, Pb, Zn and Cu was only partly confirmed in the following electrodialytic remediation experiments. Significant differences in re-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash,was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases are dominating in the MSWI ashes.

Pedersen, Anne Juul; Ottosen, Lisbeth M.

2003-01-01

31

Removal of heavy metals from electroplating wastewater by membrane  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This research was to study the treatment of heavy metals in electroplating wastewater using membranes. Two selected membrane types, cellulose acetate microfiltration membrane with pore size 0.2 ?m and polysulfone ultrafiltration membrane with MWCO of 30 kDa were used in this study. Synthetic and factory electroplating wastewater were used as the samples. The experiments were performed by chemical precipitating both synthetic and factory wastewater in the first step and membrane filtrating of...

Galaya Srisuwan; Poonpetch Thongchai

2002-01-01

32

Removal of Heavy Metal Ions from Polluted Waters by Using of Low Cost Adsorbents: Review  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Adsorption is a fundamental process in the physicochemical treatment of wastewaters which industries employ to reduce hazardous organic and inorganic wastes in effluents. In recent years the use of low-cost adsorbents has been widely investigated as a replacement for the currently costly methods of removing heavy metal ions from wastewater. It is well-known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can ...

Ghaedi, M.; Mosallanejad, N.

2013-01-01

33

Remoção de metais pesados de efluentes industriais por aluminossilicatos Removal of heavy metals from wastewaters by aluminosilicate  

Directory of Open Access Journals (Sweden)

Full Text Available This review had as aim the bibliography research for the use of aluminosilicates to remove heavy metals from wastewaters. Advanced studies based on parameters that have influence for removal of heavy metals as pH, metal concentration, effect of ligants and removal capacity of zeolites and clays, were reported. These studies demonstrate that aluminosilicates can be successfully used for the removal of heavy metals under the optimized conditions.

Mônica Regina Marques Palermo de Aguiar

2002-12-01

34

Investigation of heavy metal removal from motorway stormwater using inorganic ion exchange  

International Nuclear Information System (INIS)

Stormwater runoff from motorway surfaces contains toxic heavy metals that are not sufficiently removed by current treatment systems. This research has investigated the potential use of inorganic ion exchange materials to further reduce the levels of dissolved heavy metals. Candidate materials (synthetic/natural zeolites, clay/modified clay, hydrotalcite, lignite) were tested by a shaking procedure (mixed 5 mg dm-3 of each heavy metals, shaken for 10 min) and analysed by atomic absorption spectrometry. The synthetic zeolites MAP and Y showed 100% heavy metal removal and were investigated further by a series of batch experiments. The zeolites exhibited a selectivity sequence Pb > Cu > Cd ? Zn. Zeolite MAP has a high capacity for heavy metal uptake (4.5 meq g-1), but is not practical for use in a treatment facility owing to its low particle size (3 ?m). However, large zeolite pellets (? 2 mm) were found to have a low heavy metal uptake (? 44 %) due to diffusion limitations. Selected materials (zeolites MAP, Y, mordenite, and carbon-based lignite) were tested in actual and spiked motorway stormwater. The synthetic zeolites effectively remove heavy metals (? 100 %) but change the environmental chemistry of the stormwater by releasing high concentrations of sodium, removing calcium ions and increasing the solution pH. The presence of other dissolved contaminants in motorway stormwater inhibited the uptake of heavy metals by the natural zeoliteavy metals by the natural zeolite mordenite (34 % less removal). Alkali/alkaline-earth metals (Na, Ca) in solution compete for exchange sites in lignite and mordenite, reducing the heavy metal uptake. Chloride in solution forms complexes with cadmium, severely reducing its uptake by zeolite Y. The presence of dissolved road salt is a potentially serious concern as it causes previously exchanged heavy metals to be re-eluted, especially zinc and cadmium. Zeolite MAP as an exchanger is relatively unaffected by road salt. There is potential for the use of ion exchange materials to remove heavy metals from motorway stormwater, but a balance needs to be achieved between a practical particle size, capacity for heavy metal uptake and the potential environmental impact. (author)

35

Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.  

Science.gov (United States)

Under the present investigation effectiveness of three aquatic macrophytes Pistia stratiotes L. (water lettuce), Spirodela polyrrhiza W. Koch (duckweed) and Eichhornia crassipes were tested for the removal of five heavy metals (Fe, Zn, Cu, Cr and Cd). These plants were grown at three different concentrations (1.0, 2.0 and 5.0mgl(-1)) of metals in laboratory experiment. Result revealed high removal (>90%) of different metals during 15 days experiment. Highest removal was observed on 12th day of experiment, thereafter it decreased. Results revealed E. crassipes as the most efficient for the removal of selected heavy metals followed by P. stratiotes and S. polyrrhiza. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the water. Significant correlations between metal concentration in final water and macrophytes were obtained. Plants have accumulated heavy metals in its body without the production of any toxicity or reduction in growth. Selected plants shown a wide range of tolerance to all of the selected metals and therefore can be used for large scale removal of heavy metals from waste water. PMID:18296043

Mishra, Virendra Kumar; Tripathi, B D

2008-10-01

36

A new material for removing heavy metals from water  

Science.gov (United States)

The NASA Lewis Research Center developed and is patenting a new high capacity ion exchange material (IEM) that removes toxic metals from contaminated water in laboratory tests. The IEM can be made into many forms, such as thin films, coatings, pellets, and fibers. As a result, it can be adapted to many applications to purify contaminated water wherever it is found, be it in waste water treatment systems, lakes, ponds, industrial plants, or in homes. Laboratory tests have been conducted on aqueous solutions containing only one of the following metal cations: lead, copper, mercury, cadmium, silver, chromium (III), nickel, zinc, and yttrium. Tests were also conducted with: (1) calcium present to determine its effects on the uptake of cadmium and copper, and (2) uranium and lanthanides which are stand-ins for other radioactive elements, (3) drinking water for the removal of copper and lead, and (3) others compositions. The results revealed that the IEM removes all these cations, even in the presence of the calcium. Of particular interest are the results of the tests with the drinking water: the lead concentration was reduced from 142 ppb down to 2.8 ppb (well below the accepted EPA standard).

Philipp, Warren H., Jr.; Street, Kenneth W., Jr.

1994-01-01

37

Removal of Heavy Metal from Contaminated Water by Biopolymer Crab Shell Chitosan  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The study focuses on potential of using crab shell chitosan as a low-cost biosorbent, for heavy metals removal from aqueous solutions in an adsorption filtration system. Chitosan was synthesized from chitin by the treatment of strong alkali solution under reflux condition and chitin was extracted from crab shell followed by decalcification and deproteinization treatment. Spectrometric (AA and UV) method was employed to detect the heavy metals concentration. Prepared 10 mg L-1 solut...

Rana, M. S.; Halim, M. A.; Safiullah, S.; Mamun Mollah, M.; Azam, M. S.; Goni, M. A.; Kamal Hossain, M.; Rana, M. M.

2009-01-01

38

Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters  

CERN Document Server

Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

Dash, Monika

2013-01-01

39

Removal of Heavy Metals from Liquid Laboratory Waste Using Precipitation and Adsorption Methods  

Directory of Open Access Journals (Sweden)

Full Text Available Liquid laboratory waste (such as residue of Chemical Oxygen Demand/COD analysis contains high concentration of heavy metals (mercury/Hg, silver/Ag and chrome/Cr and has a high potential to pollute the environment. The liquid waste generated by laboratories is generally in small quantity, but it is extremely toxic. It is urgently in need to find out an appropriate method to reduce the problems according to the liquid waste characteristics. In this research work, precipitation and adsorption methods were evaluated to remove Hg, Ag and Cr from liquid laboratory waste, covering determination of optimum process conditions, levels of removal and achievable treated waste quality. Results showed that a Cr removal of 97% was obtained by pH 10, and Hg and Ag removals of 97-99% were reached by pH 12. Although heavy metals removals using precipitation was very significant, but the concentration of heavy metals in the treated waste was still high (0.73-2.62 mg/L and need for further treatment. Applying activated carbon adsorption for further treatment of the effluent reduced dissolved heavy metals to 0-0.05 mg/L, depending on the type of heavy metals as well as the type and dosing of activated carbon.

Nastiti Siswi Indrasti

2010-04-01

40

REMOVAL OF HEAVY METALS FROM INDUSTRIAL WASTEWATERS USING INSOLUBLE STARCH XANTHATE  

Science.gov (United States)

The Northern Regional Research Center developed an effective process to remove heavy metals from wastewaters of two nonferrous metal industries and insoluble starch xanthate (ISX). The study included bench-scale evaluation of wastewaters from two lead battery and one brass mill w...

 
 
 
 
41

Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems.  

Science.gov (United States)

The filter media in biofiltration systems play an important role in removing potentially harmful pollutants from urban stormwater runoff. This study compares the heavy metal removal potential (Cu, Zn, Cd, Pb) of five materials (potting soil, compost, coconut coir, sludge and a commercial mix) using laboratory columns. Total/dissolved organic carbon (TOC/DOC) was also analysed because some of the test materials had high carbon content which affects heavy metal uptake/release. Potting soil and the commercial mix offered the best metal uptake when dosed with low (Cu: 44.78 ?g/L, Zn: 436.4 ?g/L, Cd, 1.82 ?g/L, Pb: 51.32 ?g/L) and high concentrations of heavy metals (Cu: 241 ?g/L, Zn: 1127 ?g/L, Cd: 4.57 ?g/L, Pb: 90.25 ?g/L). Compost and sludge also had high removal efficiencies (>90%). Heavy metal leaching from these materials was negligible. A one-month dry period between dosing experiments did not affect metal removal efficiencies. TOC concentrations from all materials increased after the dry period. Heavy metal removal was not affected by filter media depth (600 mm vs. 300 mm). Heavy metals tended to accumulate at the upper 5 cm of the filter media although potting soil showed bottom-enriched concentrations. We recommend using potting soil as the principal media mixed with compost or sludge since these materials perform well and are readily available. The use of renewable materials commonly found in Singapore supports a sustainable approach to urban water management. PMID:25261749

Lim, H S; Lim, W; Hu, J Y; Ziegler, A; Ong, S L

2015-01-01

42

The removal of heavy metals in urban runoff by sorption on mulch  

International Nuclear Information System (INIS)

A series of adsorption experiments was conducted in order to assess the ability of three mulches to remove several of the heavy metal ions typically encountered in urban runoff. Three types of mulch, cypress bark (C), hardwood bark (H), and pine bark nugget (P), were selected as potential sorbents to capture heavy metals in urban runoff. The hardwood bark (H) mulch had the best physicochemical properties for adsorption of heavy metal ions. In addition, because of its fast removal rate and acceptably high capacity for all the heavy metal ions, it was concluded that the H mulch is the best of the three adsorbents for treatment of urban runoff containing trace amounts of heavy metals. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. The sorption of these metals on H mulch conformed to the linear form of the Langmuir adsorption equation. At pH 5 and 6, the Langmuir constants (Sm) for each metal were found to be 0.324 and 0.359 mmol/g (Cu); 0.306 and 0.350 mmol/g (Pb); and 0.185 and 0.187 mmol/g (Zn) at 25 deg. C. - Capsule: Hardwood bark had the best physicochemical properties for adsorption of metal ions

43

Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance.  

Science.gov (United States)

The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) is very common in contaminated environments. It is of paramount importance and great challenge to exploit a bioremediation to remove PAHs in these environments with combined pollution. We approached this question by probing the influence of HMs coexisting with PAHs on the removal of PAHs by Acremonium sp. P0997 possessing metal resistance. A removal capability for naphthalene, fluorene, phenanthrene, anthracene, and fluoranthenepresentalone (98.6, 99.3, 89.9, 60.4, and 70 %, respectively) and in a mixture (96.9, 71.8, 67.0, 85.0, and 87.9 %, respectively) was achieved in mineral culture inoculated with Acremonium sp. P0997, and this strain also displayed high resistance to the individual HMs (Mn(2+), Fe(2+), Zn(2+), Cu(2+), Al(3+), and Pb(2+)). The removal of individual PAHs existing in a mixture was differently affected by the separately tested HMs. Cu(2+)enhanced the partition process of anthracene to dead or alive mycelia and the contribution of the biosorption by this strain but imposed a little negative influence on the contribution of biodegradation to the total removal of anthracene individually in a culture. However, Mn(2+) had an inhibitory effect on the partition process of anthracene to dead or alive mycelia and decreased the contributions of both biosorption and biodegradation to the total anthracene removal. This work showcased the value of fungi in bioremediation for the environments with combined pollution, and the findings have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites. PMID:25077776

Ma, Xiao-Kui; Ling Wu, Ling; Fam, Hala

2014-12-01

44

Literature review on the use of bioaccumulation for heavy metal removal and recovery  

International Nuclear Information System (INIS)

Bioaccumulation of metals by microbes -- '' bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R ampersand D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes

45

Utilization of Nitrogen Containing Pregelled Starch Derivatives as Biodegradable Polymers for Heavy Metal Ions Removal  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Two type of nitrogen containing pregelled starch derivatives having amide groups (CONH2) were used in heavy metal ions removal from its solutions. These pregelled starch derivatives were carbamated pregelled starch (CPS) and poly (methacrylamide)-pregelled starch graft copolymer (PMamPSGC). Different factors affecting adsorption of metal ions onto these substrates such as metal ion concentration, pH, treatment time and temperature as well as type of starch derivatives were studied....

Mostafa, Kh M.; Abdul-Rahim Samerkandy

2004-01-01

46

Literature review on the use of bioaccumulation for heavy metal removal and recovery. Volume 2  

Energy Technology Data Exchange (ETDEWEB)

Bioaccumulation of metals by microbes -- `` bioremoval`` -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R&D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

Benemann, J.R. [Benemann (J.R.), Pinole, CA (United States); Wilde, E.W. [Westinghouse Savannah River Co., Aiken, SC (United States)

1991-02-01

47

Literature review on the use of bioaccumulation for heavy metal removal and recovery  

Energy Technology Data Exchange (ETDEWEB)

Bioaccumulation of metals by microbes -- bioremoval'' -- is a powerful new technology for the concentration, recovery, and removal of toxic heavy metals and radionuclides from waste streams and contaminated environments. Algae are particularly well suited for metal bioremoval. A recent commercial application of bioremoval utilizes inert (dead) immobilized microalgae biomass as ion exchange materials for the removal of heavy metals from industrial waste waters. Also, living microalgal cultures have been used to remove metals from mine effluents. Microbial cells and biomass can bioaccumulate metals and radionuclides by a large variety of mechanisms, both dependent and independent of cell metabolism. Microbial cell walls can act as ion exchange and metal complexation agents. Heavy metals can precipitate and even crystallize on cell surfaces. Metabolically produced hydrogen sulfide or other metabolic products can bioprecipitate heavy metals. Many microbes produce both intra- and extracellular metal complexing agents which could be considered in practical metal removal processes. Bioremoval processes are greatly affected by the microbial species and even strain used, pH, redox potential, temperature, and other conditions under which the microbes are grown. Development of practical applications of bioremoval requires applies research using the particular waste solutions to be treated, or close simulations thereof. From a practical perspective, the selection of the microbial biomass and the process for contacting the microbial biomass with the metal containing solutions are the key issues. Much of the recent commercial R D has emphasized commercially available, inert, microbial biomass sources as these can be acquired in sufficient quantities at affordable costs. The fundamental research and practical applications of bioaccumulation by microalgae suggests these organisms warrant a high priority in the development of advanced bioremoval processes.

Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States)); Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States))

1991-02-01

48

The use of biosorbents for heavy metals removal from aqueous media  

International Nuclear Information System (INIS)

Biomaterials, which could be adsorbed heavy metals, such bacteria, algae, yeasts, fungi and agricultural waste, is called Biomass. Recently, they are widely used for heavy metal removal from aqueous media, due to their large available quantities, low cost and good performance. The biosorbent, unlike mono functional ion exchange resins, contains variety of functional sites including carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide and hydroxyl moieties. In this paper, the biosorbents word widely and nationally used for heavy metal removal were reviewed. Their biosorption performance, their pretreatment and modification, aiming to improve their sorption capacity, and regeneration/reuse was introduced and evaluated. The potential application of biosorption and biosorbents was discussed. (author)

49

Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation  

DEFF Research Database (Denmark)

The aims of this paper were to investigate the possibility for energy saving when using a pulsed electric field during electrodialytic soil remediation (EDR) and the effect of the pulsed current on removal of heavy metals. Eight experiments with constant and pulse current in the different industrially polluted soils were performed. At a current density of 0.1mA/cm2 in soil 1 and 0.2mA/cm2 in soil 2, there was no difference on energy consumption and removal of heavy metals between pulse current and constant current experiments, but at higher current experiments (i.e., 0.2mA/cm2 in soil 1 and 0.8mA/cm2 in soil 2) the energy was saved 67% and 60% and the removal of heavy metals was increased 17–76% and 31–51% by pulse current in soil 1 and soil 2, respectively. When comparing the voltage drop at different parts of EDR cells, it was found that the voltage drop of the area across cation exchange membrane was the major contributor of energy consumption, and the pulse current could decrease the voltage drop of this part effectively. The overall removal of heavy metals in soil 1 (6–54%) was much higher than soil 2 (1–17%) due to the different acidification process and chemical speciation of heavy metals reflected by sequential extraction analysis. Among all experiments, the highest removal efficiency occurred in pulse current experiment of soil 1, where 54% of Cu and 30% of As were removed.

Sun, Tian R.; Ottosen, Lisbeth M.

2012-01-01

50

Comparison of Amberlite IR 120 and dolomite's performances for removal of heavy metals  

International Nuclear Information System (INIS)

The presence of heavy metals in the environment is major concern due to their toxicity. Contamination of heavy metals in water supplies has steadily increased over the last years as a result of over population and expansion of industrial activities. A strong cation-exchange resin, Amberlite IR 120 and a natural zeolite, dolomite were used for the removal of lead(II) and cadmium(II). The optimum conditions were determined in a batch system as concentration range was between 5 and 100 mg/L, pH range between 1 and 8, contact time between 5 and 90 min, and the amount of adsorbent was from 0.1 to 1 g. A constant stirring speed, 2000 rpm, was chosen during all of the experiments. The optimum conditions were found to be a concentration of 20 mg/L, pH of 5, contact time of 60 min and 0.5 g of adsorbent. Also, for investigation of exchange equilibria different amounts of ion exchange resin and dolomite were contacted with a fixed volume and concentration of a heavy metal bearing solutions. Sorption data have been interpreted in terms of Langmuir and Freundlich equations. The effect of adsorption temperature on the heavy metals adsorption onto dolomite was investigated at three different temperatures (20, 40 and 60 deg. C). Thermodynamic parameters were calculated. The results obtained show that the Amberlite IR 120 strong cation-exchange resin and dolomite performed well for the removal of these heavy metals. As a low cost adsorbent, dolomite can preferable for removal of heavolomite can preferable for removal of heavy metals from wastewaters

51

Cysteine methyl ester modified glassy carbon spheres for removal of toxic heavy metals from aqueous media.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Glassy carbon spherical powder (10-20 microm diameter) modified with cysteine methyl ester is found to be an inexpensive, novel material for the rapid removal of large quantities of toxic heavy metal ions such as Cd(II), Cu(II) and As(III) from aqueous media, with wide ranging potential applications such as third world drinking water filtration or environmental cleanup.

Wildgoose, Gg; Leventis, Hc; Simm, Ao; Jones, Jh; Compton, Rg

2005-01-01

52

Remoção de metais pesados de efluentes industriais por aluminossilicatos / Removal of heavy metals from wastewaters by aluminosilicate  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese [...] Abstract in english This review had as aim the bibliography research for the use of aluminosilicates to remove heavy metals from wastewaters. Advanced studies based on parameters that have influence for removal of heavy metals as pH, metal concentration, effect of ligants and removal capacity of zeolites and clays, wer [...] e reported. These studies demonstrate that aluminosilicates can be successfully used for the removal of heavy metals under the optimized conditions.

Mônica Regina Marques Palermo de, Aguiar; Amanda Cardoso, Novaes; Alcides Wagner Serpa, Guarino.

1145-11-01

53

Study on the Heavy Metals Removal Efficiencies of Constructed Wetlands with Different Substrates  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to describe removing of Zn and Cu. The experimental results showed that first dynamic removal rate constants of Zn in CWs with coke and gravel were 0.2326 h-1 and 0.1222 h-1, respectively. And those of Cu in CWs with coke and gravel were 0.2017 h-1 and 0.3739 h-1. However, removal effici...

Yu, Zhaoxiang; Li, Xianpo; Tang, Yingying; Chen, Mengzhi

2009-01-01

54

Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis  

Energy Technology Data Exchange (ETDEWEB)

Highlights: • Heavy metals removal from MSWI fly ash with BES and electrolysis was confirmed. • 98.5% of Cu(II), 95.4% of Zn(II) and 98.1% of Pb(II) removal were achieved in reactors. • BESs can remove some heavy metals in fly ash with energy saving. -- Abstract: Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10 h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors.

Tao, Hu-Chun, E-mail: taohc@pkusz.edu.cn [Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055 (China); Lei, Tao; Shi, Gang; Sun, Xiao-Nan; Wei, Xue-Yan; Zhang, Li-Juan [Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055 (China); Wu, Wei-Min [Department of Civil and Environmental Engineering, Center for Sustainable Development and Global Competitiveness, Stanford University, Stanford, CA 94305-4020 (United States)

2014-01-15

55

Distribution and removal efficiency of heavy metals in two constructed wetlands treating landfill leachate.  

Science.gov (United States)

The results of heavy metals (Fe, Mn, Zn, Ni, Cu, Cr, Pb, Cd) removal and partitioning between aqueous and solid phases at two treatment wetlands (TWs) treating municipal landfill leachates are presented. One of the TWs is a surface flow facility consisting of 10 ponds. The other TW is a newly constructed pilot-scale facility consisting of three beds with alternately vertical and horizontal subsurface flow. The metals concentrations were analysed in leachate (both TWs) and bottom sediments (surface flow TW). Very high (90.9-99.9%) removal rates of metals were observed in a mature surface flow TW. The effectiveness of metals removal in a newly constructed pilot-scale sub-surface flow wetland were considerably lower (range 0-73%). This is attributed to young age of the TW, different hydraulic conditions (sub-surface flow system with much shorter retention time, unoxic conditions) and presence of metallic complexes with refractory organic matter. PMID:22335101

Wojciechowska, Ewa; Waara, Sylvia

2011-01-01

56

Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching  

International Nuclear Information System (INIS)

Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals

57

Study on the Heavy Metals Removal Efficiencies of Constructed Wetlands with Different Substrates  

Directory of Open Access Journals (Sweden)

Full Text Available In this study constructed wetlands (CWs were used to remove three heavy metals (Zn, Cu and Pb. The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to describe removing of Zn and Cu. The experimental results showed that first dynamic removal rate constants of Zn in CWs with coke and gravel were 0.2326 h-1 and 0.1222 h-1, respectively. And those of Cu in CWs with coke and gravel were 0.2017 h-1 and 0.3739 h-1. However, removal efficiencies of Pb in the coke system and the gravel system were within 95-99%, so the first order dynamic model failed to fit the experimental data because the hydraulic resident times of Pb did not affect outlet concentration of Pb. From the removal rate constants, it is found that the coke and gravel system have different absorption efficiencies of heavy metal pollutants. Therefore, it is suggested that the removal efficiencies of heavy metals are influenced by the choice of substrates to some extent.

Zhaoxiang YU

2009-05-01

58

Equilibrium analysis for heavy metal cation removal using cement kiln dust.  

Science.gov (United States)

Ion exchange, reverse osmosis, and chemical precipitation have been investigated extensively for heavy metal uptake. However, they are deemed too expensive to meet stringent effluent characteristics. In this study, cement kiln dust (CKD) was examined for the removal of target heavy metals. Adsorption studies in completely mixed batch reactors were used to generate equilibrium pH adsorption edges. Studies showed the ability of CKD to remove the target heavy metals in a pH range below that of precipitation after an equilibrium reaction time of 24 h. A surface titration experiment indicated negative surface charge of the CKD at pH below 10, meaning that electrostatic attraction of the divalent metals can occur below the pH required for precipitation. However, surface complexation was also important due to the substantive metal removal. Accordingly, a surface complexation model approach that utilizes an electrostatic term in the double-layer description was used to estimate equilibrium constants for the protolysis interactions of the CKD surface as well as equilibria between background ions and the sorbent surface. It was concluded that the removal strength of adsorption is in the order: Pb > Cu > Cd. The experiments were also supported by Fourier transform infrared spectroscopy (FTIR). PMID:25259489

El Zayat, Mohamed; Elagroudy, Sherien; El Haggar, Salah

2014-01-01

59

Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment  

International Nuclear Information System (INIS)

Municipal solid waste (MSW) fly ash is classified as a hazardous material because it contains high amounts of heavy metals. For decontamination, MSW fly ash is first mixed with alkali or alkaline earth metal chlorides (e.g. calcium chloride) and water, and then the mixture is pelletized and treated in a rotary reactor at about 1000deg. C. Volatile heavy metal compounds are formed and evaporate. In this paper, the effect of calcium chloride addition, gas velocity, temperature and residence time on the separation of heavy metals are studied. The fly ash was sampled at the waste-to-energy plant Fernwaerme Wien/Spittelau (Vienna, Austria). The results were obtained from batch tests performed in an indirectly heated laboratory-scale rotary reactor. More than 90% of Cd and Pb and about 60% of Cu and 80% of Zn could be removed in the experiments.

60

Removal and treatment of radioactive, organochlorine, and heavy metal  

International Nuclear Information System (INIS)

A decontamination system was tested on concrete and steel surfaces contaminated with radioactive (238U and 99Tc) and hazardous (PCBs and lead) waste in Oak Ridge, TN. The principal objectives of this on-site soda blasting demonstration project were to evaluate the effectiveness of decontamination by blasting with sodium bicarbonate and to minimize waste volume by dissolving and treating blasting residuals through a wastewater treatment system. Areas of concrete floors and columns and steel and aluminum surfaces were selected to evaluate the soda blasting process. Testing evaluated six operating variables: air pressure, water pressure, nozzle orifice diameter, nozzle orifice design, media type, and media flow rate. Spent blasting media was mixed with water for treatment. The treatment system comprised pH adjustment, chemical precipitation, solids removal, carbon adsorption, and ion exchange. Removal rates from blasting averaged between 95 and 100% beta/gamma and non-quantifiable to 100% alpha for surfaces tested using selected blasing parameters. The non-quantifiable percent removals for alpha resulted from initial readings which approached background levels. In each test, the post blast alpha readings were below the release limit of 5000 dpm. The waste volume reduction system effectively removed more than 97% of uranium and more than 99 percent of lead and PCBs. Ion exchange column testing results demonstrated technetium removal to below the 100 rated technetium removal to below the 100 pCi/l treatment objective for both resins. Testing results demonstrated that this soda blasting/waste residuals treatment system provided a 70% reduction in waste volume as compared to blasting without treatment. The system removed fixed radioactive and hazardous surface contamination, while leaving the surface intact, and produced water meeting stringent water quality criteria and residual solid waste requiring off-site management

 
 
 
 
61

Removal of Heavy Metal from Contaminated Water by Biopolymer Crab Shell Chitosan  

Directory of Open Access Journals (Sweden)

Full Text Available The study focuses on potential of using crab shell chitosan as a low-cost biosorbent, for heavy metals removal from aqueous solutions in an adsorption filtration system. Chitosan was synthesized from chitin by the treatment of strong alkali solution under reflux condition and chitin was extracted from crab shell followed by decalcification and deproteinization treatment. Spectrometric (AA and UV method was employed to detect the heavy metals concentration. Prepared 10 mg L-1 solutions of zinc, lead, cadmium, cobalt, nickel, chromium, manganese and iron were passed through the 5 g of chitosan separately and it was found that chitosan was excellent adsorbent in removing mentioned heavy metals. The removal efficiency of chitosan was in the following order Mn>Cd>Zn>Co>Ni>Fe>Pb>Cr. The result also showed that the time required for 100% breakthrough of prepared chitosan for Mn and Zn was approximately 27 and 23 h whereas it was only 16 h for both Cr and Pb, respectively. The research revealed that prepared chitosan showed better removal performance for Mn, Cd, Zn whereas the removal efficiency was satisfactory for Co, Ni and Fe but it exhibited relatively least performance for Pb and Cr.

M.S. Rana

2009-01-01

62

Removal of Heavy Metal from Contaminated Soil with Chelating Agents  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Removal of copper and nickel by the addition of the biodegradable chelating agent, chitosan and ethylenediamine tetraacetic acid (EDTA), was investigated, alongside the reaction of a reference compound sodium citrate for comparison. The artificial-contaminated soils were used in this study. The experiments showed that the extraction ability for copper and nickel from the contaminated soil decreased as follows: chitosan > EDTA > sodium citrate. The pH value of the eluents is the key to c...

Wei Jiang; Tao Tao; Zhi-Ming Liao

2011-01-01

63

Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions  

Science.gov (United States)

Three-dimensional free-standing graphene oxide foam (GOF) was explored as an exceptionally absorbent for the removal of heavy metal ions. GOF was prepared by direct oxidation of graphene foam (GF), and the GF was synthesized by microwave plasma chemical vapor deposition. The GOF processed a very high surface area (578.4 m2/g) and abundant oxygen functional groups with a rather low C/O ratio of 0.65. Evaluation of its adsorption capacity for the removal of heavy metal ions demonstrated that GOF had superior adsorption ability and good recyclability towards a wide range of metals ions, such as Zn2+, Fe3+, Pb2+, and Cd2+.

Lei, Yinlin; Chen, Fei; Luo, Yunjie; Zhang, Long

2014-02-01

64

In vitro removal of toxic heavy metals by poly(?-glutamic acid-coated superparamagnetic nanoparticles  

Directory of Open Access Journals (Sweden)

Full Text Available Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs modified with an edible biopolymer poly(?-glutamic acid (PGA were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF.Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8 and biological pH (1–8, implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg•min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate and essential metals (Cu, Fe, Zn, Mg, Ca, and K did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the latter. However, a lower cadmium removal capacity was shown for SGIF (23.15 mg/g than for deionized water (31.13 mg/g.Conclusion: These results suggest that PGA-SPIONs could be used as a metal chelator for clinical treatment of metal poisoning.Keywords: superparamagnetic iron oxide nanoparticles, poly(?-glutamic acid, heavy metals, chelation therapy, gastrointestinal pH, kinetics

Inbaraj BS

2012-08-01

65

Removal Efficiency of Heavy Metals Using Various Resins and Natural Materials  

Directory of Open Access Journals (Sweden)

Full Text Available Heavy metals found in local water are an environmental concern. These metals are potentially harmful since they can bio-accumulate in organisms and have been classified as toxic and/or carcinogenic. In this study, water was collected from a shipyard located on a bayou. Various materials (chitosan, mixed bed and amphoteric resins were tested to determine their efficiency for metal remediation. Inductively coupled plasma mass spectrometry (ICP/MS was used to quantify the efficiency of the materials examined. Overall, amphoteric resin was found to be the most efficient for a greater number of metals examined (Al, Co, Cu, Fe, Mn, followed by mixed bed which most efficiently removed As and Fe. Chitosan showed the poorest efficiency for metal removal.

M. Cochran

2012-01-01

66

Removal of Heavy Metal from Contaminated Soil with Chelating Agents  

Directory of Open Access Journals (Sweden)

Full Text Available Removal of copper and nickel by the addition of the biodegradable chelating agent, chitosan and ethylenediamine tetraacetic acid (EDTA, was investigated, alongside the reaction of a reference compound sodium citrate for comparison. The artificial-contaminated soils were used in this study. The experiments showed that the extraction ability for copper and nickel from the contaminated soil decreased as follows: chitosan > EDTA > sodium citrate. The pH value of the eluents is the key to control the extraction, especially to chitosan solution. It was evident that the chitosan solution was the most efficient when the pH value was 3 - 3.5, the rate of extraction of copper being 43.36% and of nickel being 37.07%. And the best match of concentration and liquid/solid was 0.3 g/L and 10 mL/g.

Wei Jiang

2011-09-01

67

Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal.  

Science.gov (United States)

Biosorbents have been widely used in heavy metal removal. New resources should be exploited to develop more efficient biosorbents. This study reports the preparation of three novel chitosan microcapsules from pollens of three common, wind-pollinated plants (Acer negundo, Cupressus sempervirens and Populus nigra). The microcapsules were characterized (Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis) and used in removal of heavy metal ions: Cd(II), Cr(III), Cu(II), Ni(II) and Zn(II). Their sorption capacities were compared to those of cross-linked chitosan beads without pollen grains. C. sempervirens-chitosan microcapsules exhibited better performance (Cd(II): 65.98; Cu(II): 67.10 and Zn(II): 49.55mgg(-1)) than the other microcapsules and the cross-linked beads. A. negundo-chitosan microcapsules were more efficient in Cr(III) (70.40mgg(-1)) removal. P. nigra-chitosan microcapsules were found to be less efficient. Chitosan-pollen microcapsules (except P. nigra-chitosan microcapsules) can be used in heavy metal removal. PMID:25479387

Sarg?n, ?dris; Kaya, Murat; Arslan, Gulsin; Baran, Talat; Ceter, Talip

2015-02-01

68

Removal of Heavy Metals from Solid Wastes Leachates Coagulation-Flocculation Process  

Directory of Open Access Journals (Sweden)

Full Text Available The main objectives of present research were to determine heavy metals (Ni, Cd, Cr, Zn and Cu and COD concentration in raw leachate in Esfahan (Iran composting plant and to examine the application of coagulation-flocculation process for the treatment of raw leachates. Jar-test experiments were employed in order to determine the optimum conditions (effective dosage and optimum pH for the removal of COD and heavy metals. Alum (aluminum sulphate and Ferric chloride were tested as conventional coagulants. Ten times had taken sampling from leachates as standard methods in the composting plant prior to composting process. The results showed that Leachate pH was 4.3-5.9 and the average was 4.98±0.62. The concentration of Leachate pollutants were more than effluent standard limits (Environment protection Agency. And also the results indicated, Cd and Zn with concentration 0.46±0.41 and 5.81±3.69 mg L-1, had minimum and maximum levels, respectively. The results of coagulation and flocculation tests showed that in optimum conditions, the removal efficiency of heavy metals and COD by using alum were 77-91 and 21%, respectively. While removal of heavy metals and COD by ferric chloride were 68-85.5% and 28%, respectively. Also the residues of heavy metals after treatment get to under of standard limits of Iran EPA. The results have indicated optimum pH of two coagulants for leachate treatment was 6.5 and 10 and also effective coagulant dosages were 1400 and 1000 mg L-1 for alum and ferric chloride, respectively. In view of economical, ferric chloride is cost benefit. The physico-chemical process may be used as a useful pretreatment step, especially for fresh leachates.

Z. Yousefi

2008-01-01

69

The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study is deal with study the potential of Iraqi Rice Husk (IRH) on the removal of three heavy metals pollutant which were (Mg, Mn and Mo) ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26) % for heavy metal (Mg, Mn and Mo) respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absor...

Mohammed Nsaif; Firas Saeed

2013-01-01

70

Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters.  

Science.gov (United States)

Biofiltration is a technology to treat urban stormwater runoff, which conveys pollutants, including heavy metals. However, the variability of metals removal performance in biofiltration systems is as yet unknown. A laboratory study has been conducted with vegetated biofilter mesocosms, partly fitted with a submerged zone at the bottom of the filter combined with a carbon source. The biofilters were dosed with stormwater according to three different dry/wet schemes, to investigate the effect of intermittent wetting and drying conditions on metal removal. Provided that the biofilters received regular stormwater input, metal removal exceeded 95%. The highest metal accumulation occurs in the top layer of the filter media. However, after antecedent drying before a storm event exceeding 3-4 weeks the filters performed significantly worse, although metal removal still remained relatively high. Introducing a submerged zone into the filter improved the performance significantly after extended dry periods. In particular, copper removal in filters equipped with a submerged zone was increased by around 12% (alpha=0.05) both during wet and dry periods and for lead the negative effect of drying could completely be eliminated, with consistently low outflow concentrations even after long drying periods. PMID:19683781

Blecken, Godecke-Tobias; Zinger, Yaron; Deleti?, Ana; Fletcher, Tim D; Viklander, Maria

2009-10-01

71

Chitosan membrane development and design of equipment for the removal of heavy metals from water  

International Nuclear Information System (INIS)

A filtration technique has compared with 1,75% m/v chitosan membranes, crosslinked with glutaraldehyde (0,08% m/v) and without cross link, to quantify the removal capacity of chromium, copper and cadmium ions of model solutions. In addition, a simple and low cost equipment was developed to use with prepared membranes. The main goal has been to use biodegradable materials for removing heavy metals from water, through a low energy consumption, cheap, and applicable to specific problems. Two data sheets were prepared for the membranes and was found that chromium was the metal with the highest removal from water, by using a crosslinked membrane. Metal adsorption was best adjusted to the Freundlich isotherm model, better than Langmuir isotherm model. However, no correlation has been found between pore size of the membranes and crosslinking degree. (author)

72

Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions.  

Science.gov (United States)

This paper investigates the potential of using the silver antibacterial properties combined with the metal ion exchange characteristics of silver-modified clinoptilolite to produce a treatment system capable of removing both contaminants from aqueous streams. The results have shown that silver-modified clinoptilolite is capable of completely eliminating Escherichia coli after 30-min contact time demonstrating its effectiveness as a disinfectant. Systems containing both E. coli and metals exhibited 100 % E. coli reduction after 15-min contact time and maximum metal adsorption removal efficiencies of 97, 98, and 99 % for Pb(2+), Cd(2+), and Zn(2+) respectively after 60 min; 0.182-0.266 mg/g of metal ions were adsorbed by the zeolites in the single- and mixed-metal-containing solutions. Nonmodified clinoptilolite showed no antibacterial properties. This study demonstrated that silver-modified clinoptilolite exhibited high disinfection and heavy metal removal efficiencies and consequently could provide an effective combined treatment system for the removal of E. coli and metals from contaminated water streams. PMID:24756684

Akhigbe, Lulu; Ouki, Sabeha; Saroj, Devendra; Lim, Xiang Min

2014-09-01

73

Acidification of Harbour sediment and removal of heavy metals induced by water splitting in electrodialytic remediation.  

DEFF Research Database (Denmark)

Harbor sediments are often contaminated with heavy metals, which can be removed by electrodialytic remediation. Water splitting at the anion exchange membrane in contact with the contaminated material in electrodialytic remediation is highly important for the removal of heavy metals. Here it was investigated how acidification caused by water splitting at the anion exchange membrane during electrodialytic remediation of contaminated harbor sediment and hence the metal removal, was influenced by different experimental conditions. Two different experimental cells were tested, where the number of compartments and ion exchange membranes differed. Totally, 14 electrodialytic experiments were made, with varying remediation time, current densities, and liquid to solid ratio (L/S). pH in the sediment decreased slightly after 1 day of remediation, even if the sediment had a high buffering capacity, suggesting that water splitting at the anion exchange membrane started early in the remediation process. An increase in the voltage over the cell and a decrease in the electrical conductivity in the sediment suspension also indicated that the water splitting started within 1 day of remediation. When the sediment was acidified, the voltage decreased and electrical conductivity increased. After 5 days of remediation the sediment was acidified at the chosen current density (1 mA/cm(2)) and the main metal removal was observed shortly after. Thus it was crucial for the metal removal that the sediment was fully acidified. Lower metal removal was seen in an experimental cell with three compartments compared to five compartments, due to increased sensitivity of pH changes in the cell.

NystrØm, Gunvor Marie; Ottosen, Lisbeth M.

2005-01-01

74

Synthesis of LTA zeolite on corundum supports: Preliminary assessment for heavy metal removal from waste water  

International Nuclear Information System (INIS)

The effectiveness of materials based on LTA Zeolite as active phase, for their incorporation into systems aimed at the removal of heavy metals on waste water is evaluated in a preliminary way. This type of Zeolite with the main channel of a minimum free diameter of 0,41 nm and a low SiO2/Al2O3 ratio is an interesting molecular sieve, which in turn display a high ion exchange capacity. From this point of view, LTA Zeolite crystals were obtained in situ by hydrothermal synthesis and characterized by x ray diffraction (XRD) and scanning electron microscopy (SEM). We have studied the effect of hydrothermal synthesis time at 378 K. Likewise, the removal capacity of heavy metal from the active phase was evaluated in as a first step on diluted solutions of cooper salts at slightly acidic pH (? 4,7). (Author) 28 refs.

75

Theoretical analysis of air classifiers used to remove heavy metals from soil  

International Nuclear Information System (INIS)

Extensive nuclear testing that has been conducted at the Nevada Test Site, other Department of Energy (DOE) sites, and many Naval Facilities Command (NAFAC) sites has left heavy metal radioactive contaminants such as plutonium in the soil. Environmental restoration efforts have been initiated to purify the contaminated areas. The current effort by DOE involves many different approaches including physical, chemical and biological separation. This paper presents a theoretical analysis of the potential of air classifiers used to remove heavy metals from soil. Spreadsheet calculations indicate that air classifiers in conjunction with sieves can theoretically exceed the project goal which is to remove 80% or more of the plutonium with 20% or less (by volume) of the soil

76

Zeolitic adsorbent synthesized from powdered waste porcelain, and its capacity for heavy metal removal  

International Nuclear Information System (INIS)

A zeolitic adsorbent was synthesized from powdered waste porcelain kept at 80oC for 24 h. The product contained the zeolite phases Na-P1 and hydroxysodalite. The product with the highest cation exchange capacity (CEC) was synthesized using 4 M NaOH and the sample weight / volume of alkali solution ratio was 1/4. The highest CEC obtained for the product was almost 1900 mmol/kg, which is the same as that of natural zeolite. The product with the highest CEC was tested for its ability to remove heavy metals (Fe, Cu, Ni, Zn, Pb, Cd, Mn, Cr, Al, B,Mo) from an acidic solution (pH 2). The product can neutralize the acidic solution to almost pH 7, and the capacity of the product for the removal of heavy metals is higher than that of the natural zeolite, except for Mo and B. (authors)

77

Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.  

Science.gov (United States)

A cost-effective and promising technology has been demonstrated for the removal of copper (Cu), cadmium (Cd), chromium (Cr), nickel (Ni), iron (Fe), lead (Pb) and zinc (Zn) from urban sewage mixed with industrial effluents within 14 days. With the help of P. australis and T. latifolia grown alone and in combination batch experiments were designed to assess the removal of heavy metals from the wastewater collected from 5 sampling stations. The results revealed that P. australis performed better than T. latifolia for Cu, Cd, Cr, Ni, Fe, Pb and Zn removal, while mixing of the plant species further enhanced the removal of Cu to 78.0±1.2%, Cd to 60.0±1.2%, Cr to 68.1±0.4%, Ni to 73.8±0.6%, Fe to 80.1±0.3%, Pb to 61.0±1.2% and Zn to 61.0±1.2% for wastewater samples from Raj Ghat. Negative correlation coefficients of Cu, Cd, Cr, Ni, Fe, Pb and Zn concentrations in wastewater with the retention time revealed that there was an increase in the heavy metal removal rate with retention time. P. australis showed higher accumulative capacities for Cu, Cd, Cr, Ni and Fe than T. latifolia. P. australis and T. latifolia grown in combination can be used for the removal of Cu, Cd, Cr, Ni, Fe, Pb and Zn from the urban sewage mixed with industrial effluents within 14 days. PMID:25463857

Kumari, Menka; Tripathi, B D

2015-02-01

78

The role of some heavy metal pollutants in the removal of uranium from coastal marine waters  

International Nuclear Information System (INIS)

Vertical profiles of silicon, aluminium, calcium, magnesium, potassium, iron, copper, lead, zinc, organic carbon and uranium in six sediment cores from the Venetian Lagoon have been determined with the aim of contrasting the possible roles of anthropogenically derived materials in the removal of uranium from the water column. The observed enhancement in uranium concentrations in a relatively polluted area is not dramatic but is consistent with a positive contribution of some heavy metals in the scavenging process. (orig.)

79

Characterization of natural adsorbent material for heavy metal removal in a petrochemical site contamination  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Despite of over 25 years of intensive technological efforts, sub-surface environment cleanup still remains a challenge, especially in case of highly contaminated sites. In this context, ion exchanger technologies could provide simple and effective solutions for heavy metal removal in water treatment. The challenge is finding exchanger able to operate in extreme natural environments or in situations involving natural interfering species such as inorganic ions. In this paper we exam the use of ...

Bianchi F.; Farao C.; Maretto M.; Petrangeli Papini M.; Vignola R.

2013-01-01

80

EVALUATION OF HEAVY METAL REMOVAL BY OXIDISED LIGNINS IN ACID MEDIA FROM VARIOUS SOURCES  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The capacity for removal of heavy metals from liquid streams by formation of complexes with lignins oxidized by acid treatment was studied. Lignins were obtained from different sources: sulfuric acid pretreated cane bagasse, soda pulping bagasse, eucalypt Kraft lignin, and commercial Kraft lignin. These lignins were characterized using different techniques to determine Klason lignin, carbohydrates, total acids, ashes, and their main functional groups: phenolic-OH, carbonyls, etc. The studi...

Quintana, Germa?n C.; Rocha, George J. M.; Gonc?alves, Adilson R.; Vela?squez, Jorge A.

2008-01-01

 
 
 
 
81

SURFACE MODIFICATION OF NANOFILTRATION MEMBRANES WITH ALKOXYSILANES FOR HEAVY METAL ION REMOVAL  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Heavy metal ions, such as Zn2+, Cd2+, Pb2+, Ni2+, Cu2+, Mn2+, Hg2+, Co2+, Al3+, Fe3+, Cr6+,… are mainly discharged into the environment as industrial wastewaters, causing serious soil and water pollution and consequently effect the health of living organisms due to ecotoxical properties. Their removal is achievable with membrane technologies, by using appropriate nanofiltration membrane. Since NF membrane’s efficiency varies regarding the material used and preparation process of the manuf...

Bauman, Maja

2010-01-01

82

Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Water used in industries creates a wastewater that has a potential hazard for our environment because of introducing various contaminants such as heavy metals into soil and water resources. In this study, removal of cadmium, lead and nickel from industrial wastewaters has been investigated by using teawaste as a natural adsorbent. The research is a bench scale experimental type and analyses have performed by using different amounts of adsorbent in solutions with 5 differen...

Mahvi, Amir H. A.; Dariush Naghipour; Forugh Vaezi; Shahrokh Nazmara

2005-01-01

83

The Use of Microwave Derived Activated Carbon for Removal of Heavy Metal in Aqueous Solution  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Palm oil processing waste which is palm oil kernel shell (POKS) was converted to activated carbon (POKS AC) through 7 min microwave pyrolysis at temperature 270 °C followed by chemical activation using NaOH and HCl. The adsorption study on Ni(II), Cu(II) and Cr(IV) was conducted to evaluate the efficiency of the prepared activated carbon to remove heavy metal. The adsorption capacity was determined as a function of adsorbate initial concentration and adsorbent dosage. B...

Rafeah Wahi; Herman Senghie

2011-01-01

84

Removal of Heavy Metal Ions from Wastewater by Carbon Nanotubes (CNTs)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Advent of nanotechnology has introduced us with new generation of adsorbents such as carbon nanotubes (CNTs) which have aroused widespread attention due to their outstanding ability for the removal of various inorganic and organic pollutants from large volumes of water. This article reviews the practical feasibility of various kinds of raw and surface modified carbon nanotubes for adsorption of heavy metal ions from wastewater. Further, properties of CNTs (adsorption sites), ch...

Ashish Gadhave; Jyotsna Waghmare

2014-01-01

85

Molecular Characterization and Phylogenetic Analyses of Heavy Metal Removal Bacteria from the Persian Gulf  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A total of 35 heavy metals resistance and removal bacterial strains were isolated from samples of marine environment and enclosed industrial areas. All isolates were characterized by molecular method. The diversity of isolated bacteria was examined by the phylogenetic analysis of 16S rRNA gene sequences. The phylogenetic analysis of the sequences revealed seven main taxonomic lineages. The phylogenetic tree illustrated discrimination between isolated bacteria from wastewater, industrials area...

Zolgharnein, H.; Karami, K.; Mazaheri Assadi, M.; Dadolahi Sohrab, A.

2010-01-01

86

Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms ? microorganisms (MO), which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1). The sulphate-reducing bacteria (SRB) miss the...

Ku?nierová Mária; Luptáková Alena

2000-01-01

87

A study on removal of heavy metal ions in waste water by foam fractionation  

International Nuclear Information System (INIS)

The purpose of this study is to remove the Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+ ions in the waste water efficiently by sulfide precipitation and foam fractionation using the cationic surfactant (cetyl trimethly ammomium bromide, CTAB). In this study, the effects of pH, Na2S dose for sulfide precipitation and removal efficiency, removal rate of heavy metal ions by varying the pH range, Na2S dose and CTAB concentration were investigated. The optimum concentration of Na2S for sulfide precipitation was 1.0-1.5 equivalents to metal ions and pH range was 6.0-10.0 in coexistence of several metals. Coagulation by means of CTAB showed the best result at pH 8 and optimum CTAB concentration for foam fractionation was 40-5 mg/l at the entire pH range. Removal rate by means of form fractionation showed the following order; HgS>CdS>PbS>ZnS>CuS. Removal efficiencies of Cd2+, Cu2+, Hg2+ and Pb2+ were more than 99% at pH3-8, but Zn2+ showed more than 92% at above pH 10. When several metalions were coexisted, the optimum pH range for upmost removal efficiency showed pH 6-10 and more than 97% of them could be removed within 9 minutes.(Author)

88

Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water  

International Nuclear Information System (INIS)

Due to the infinite size of nanoparticles, the surface area is relatively large and, as a result, they usually have high reactivity and sorption to various heavy metals. In this work, we investigated the sorption behavior of the iron oxide (?-Fe2O3) nanoparticles and its applicability to purify water from the aluminum (Al III), arsenic (As III), cadmium (Cd II), cobalt (Cd II), copper (Cu II), and nickel (Ni II). A batch experiment was performed, in which aqueous solutions of the metallic ions were prepared. The adsorption behaviors of the ?-Fe2O3 nanoparticles towards the metallic ions were studied under different conditions of contact time, ph, temperature, ?-Fe2O3 dosage and metal concentration. 10 ml of aqueous solutions contaminated with each metal were artificially prepared and treated with the nanoparticles. The adsorption behaviors study was performed by changing one of the conditions while keeping the others fixed. The fixed conditions were: metal concentration = 1 ppm; ?-Fe2O3 dosage=0.35 g; contact time = 30 minutes; temperature=21± 1 degree C; and ph ? 7. According to the results, maximum percent removals (%) for all metals tested were reached within a short period of time (5 minutes). The maximum percent removal (%) of both Cu (II) and As (II) reached more than 95%, while the other metal had percent removal between 35% and 65%. Increasing the ph of solution led Increasing the ph of solution led to increase of the percent removal for all metals except Al which had plateau shape with ph, reaching a maximum percent removal at ph 5 and decreasing back at higher ph

89

Nitrogen removal and heavy metals in leachate treatment using SBR technology  

Energy Technology Data Exchange (ETDEWEB)

Biological nitrogen removal by the use of Sequencing Batch Reactors (SBRs) is today an accepted and well proven model. The results of SBR performance on nitrogen removal have encouraged consultants, engineering companies and landfill operators to develop and build full scale SBR plants at a number of sites in Sweden. Two of these plants, Isaetra and Norsa, have been studied closely. The Norsa plant treats leachate at a controlled water temperature, while the Isaetra plant is exposed to temperature variation throughout the year. Both plants have very well proven nitrogen removal capacities, although winter conditions have an adverse impact on their performance. Typical nitrification efficiency is close to 100%, while the total nitrogen removal is about 90-95% under stable operation conditions. A good relationship between the nitrogen load and the nitrification rate has been observed at the Norsa SBR plant. The heavy metal content in the leachate is very low thanks to anaerobic precipitation inside the landfill into metal sulphides. The heavy metal content in the biological sludge is consequently also very low.

Morling, S., E-mail: stig.morling@sweco.se [SWECO Environment AB, P.O. Box 34044, S-100 26, Stockholm (Sweden)

2010-02-15

90

Polyaza macroligands as potential agents for heavy metal removal from wastewater  

Directory of Open Access Journals (Sweden)

Full Text Available Two polyaza macroligands N,N´-bis(2-aminobenzyl-1,2- ethanediamine (L1 and 3,6,9,12-tetraaza-4(1,2,11(1,2-dibenzo-1(1,3- piridinaciclotridecafano (L2 were characterized and investigated for their metal ion extraction capabilities. The nature of all complexes was established by spectroscopic techniques. The equilibrium constants were determined by spectrophotometric and potentiometric techniques and the residual concentration of metals in the solutions by Atomic Absorption Spectrometry (AAS. The capacity of the ligands to remove heavy metals such as Cu(II, Ni(II, Cd(II, Zn(II and Pb(II as insoluble complexes was evaluated in wastewater from industrial effluents. These agents showed high affinity for the studied metals. The values of equilibrium constants of the isolated complexes (between 1 x 104 and 2 x 107 demonstrated the feasibility of applying these chelating agents as an alternative to remove heavy metals from industrial effluents.

Elizondo Martínez Perla

2013-01-01

91

Physical Characterization of Prepared and Spent CFA/PFA/RHA Sorbents in Removing Heavy Metals and Dyes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

High concentration of heavy metals and dyes creates health and environmental problems. Different types of treatment have been applied to remove these pollutants. In this study, physical characterization of CFA/PFA/RHA sorbent has been investigated to obtain a better understanding of adsorption process in removing heavy metals and dye. The sorbents from Coal Fly Ash (CFA), Palm oil Fuel Ash (PFA) and Rice Husk Ash (RHA) were prepared using water hydration method, sol-gel method and activation ...

Ismail, S.; Dahlan, I.

2012-01-01

92

Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.  

Science.gov (United States)

Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. PMID:24095965

Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

2014-01-15

93

Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal.  

Science.gov (United States)

High performance nanofiltration (NF) membranes for heavy metal removal have been molecularly designed by adsorption of chelating polymers containing negatively charged functional groups such as poly (acrylic acid-co-maleic acid) (PAM), poly (acrylic acid) (PAA) and poly (dimethylamine-co-epichlorohydrin-co-ethylenediamine) (PDMED) on the positively charged polyethyleneimine (PEI) cross-linked P84 hollow fiber substrates. Not only do these chelating polymers change the membrane surface charge and pore size, but also provide an extra mean to remove heavy metal ions through adsorption in addition to traditional steric effect and Donnan exclusion. The adsorbed membranes have comparable water permeability and superior rejections to heavy metals, for instance, Pb(NO3)2, CuSO4, NiCl2, CdCl2, ZnCl2, Na2Cr2O7 and Na2HAsO4, with rejections higher than 98%. The membranes also display excellent rejections to mixed ions with rejections more than 99%. The newly developed membranes show reasonably stability during 60-h tests as well as multiple washes. PMID:25016298

Gao, Jie; Sun, Shi-Peng; Zhu, Wen-Ping; Chung, Tai-Shung

2014-10-15

94

Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions  

International Nuclear Information System (INIS)

Surface properties of montmorillonite (MMT) and its adsorption characteristics for heavy metals have been investigated with nickel and copper as sorbate from aqueous solutions. Employing the potentiometric and mass titration techniques in batch experimental methods, the point of zero charge (PZC) and point of zero net proton charge (PZNPC) of MMT edges at different ionic strengths present pHPZC and pHPZNPC to be 3.4 ± 0.2. A crossing point was observed for the proton adsorption vs. pH curves at different ionic strengths of KCl electrolyte and in investigating MMT remediation potentialities as sorbent for heavy metals polluted waters, the effects of heavy metal concentration, pH, MMT dosage, reaction time and temperature for Cu2+ and Ni2+ uptake were studied. The sorption of metal ions by MMT was pH dependent and the adsorption kinetics revealed sorption rate could be well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. Adsorption isotherms showed that the uptake of Cu2+ and Ni2+ could be described by the Langmuir model and from calculations on thermodynamic parameters, the positive ?Go values at different temperatures suggest that the sorption of both metal ions wt that the sorption of both metal ions were non-spontaneous. Change in enthalpy (?Ho) for Ni2+ and Cu2+ were 28.9 and 13.27 kJ/mol K respectively, hence an endothermic diffusion process, as ion uptake increased with increase in temperature. Values of ?So indicate low randomness at the solid/solution interface during the uptake of both Cu2+ and Ni2+ by MMT. Montmorillonite has a considerable potential for the removal of heavy metal cationic species from aqueous solution and wastewater.

95

Heavy metal removal from synthetics wastes by natural and acid-activated bentonite s  

International Nuclear Information System (INIS)

This paper examines heavy metals removal from synthetics wastes by the use of natural and sulfuric acid-activated bentonite so that a cheap adsorbent can be attained for removing these metals from the wastes. Bentonite is a 2: 1 layer alurninnisilicate whose dominant mineral is montmorillonite which is a nano-structure and nano porous material. Montmorillonite affects all the properties of bentonite. In the next step, the effect of acid activation on the adsorption of both of lead (Pb) and thallium (Tl) is studied. In this research, after the mineralogical and chemical composition analyses by X-ray diffraction and fluorescence (XRD and X-ray fluorescence) methods, granulometric analysis is carried out on five samples namely, S 2-Raw, S 3-Raw, Es 3-Raw, G 1-Raw and GH 1-Raw to remove the heavy metals such as Cr, Co, Cu, Fe, Pb, Tl, Ni, and Zn accompanying atomic absorption spectroscopy. Then, the effect of four factors including concentration, liquid to solid ratio (L/S), time, and activation temperature in acid activation process were studied. This process is done by a mineral acid, sulfuric acid, to promote the absorbability of lead and thallium in both natural and activated types of Es 3-Raw and GH 1-Raw. In all case, due to the presence of dominant mineral of nano-montmorillonite and its unique structure, montmorillonite has a higher absorbability in comparison with that of the other clay minerals.

96

Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor.  

Science.gov (United States)

A heavy-metal resistant bacterial consortium was obtained from a contaminated river in São Paulo, Brazil and utilized for the design of a fixed-bed column for the removal of copper. Prior to the design of the fixed-bed bioreactor, the copper removal capacity by the live consortium and the effects of copper in the consortium biofilm formation were investigated. The Langmuir model indicated that the sorption capacity of the consortium for copper was 450.0 mg/g dry cells. The biosorption of copper into the microbial biomass was attributed to carboxyl and hydroxyl groups present in the microbial biomass. The effect of copper in planktonic cells to form biofilm under copper rich conditions was investigated with confocal microscopy. The results revealed that biofilm formed after 72 h exposure to copper presented a reduced thickness by 57% when compared to the control; however 84% of the total cells were still alive. The fixed-bed bioreactor was set up by growing the consortium biofilm on granular activated carbon (GAC) and analyzed for copper removal. The biofilm-GAC (BGAC) column retained 45% of the copper mass present in the influent, as opposed to 17% in the control column that contained GAC only. These findings suggest that native microbial communities in sites contaminated with heavy metals can be immobilized in fixed-bed bioreactors and used to treat metal contaminated water. PMID:24952346

Carpio, Isis E Mejias; Machado-Santelli, Glaucia; Sakata, Solange Kazumi; Ferreira Filho, Sidney Seckler; Rodrigues, Debora Frigi

2014-10-01

97

Removal of Heavy Metals from Industrial Wastewaters Using Local Alum and Other Conventional Coagulants-A Comparative Study  

Directory of Open Access Journals (Sweden)

Full Text Available The present study aimed at effective management and purification of industrial wastewaters using cheaper and locally available local alum for removal of heavy metals as a substitute to convectional coagulants. The effect of local alum, aluminum sulphate and ferric chloride on the metal contents of industrial wastewaters was investigated in the pH range of 5.9-7.5. Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents of the wastewaters. The percentage removal of the metals from the industrial wastewaters increased with mg L-l dosage of the coagulants used with optimal performance generally at a slightly alkaline pH. Local alum proved to be equally effective in removing heavy metals from the industrial wastewater samples compared with the conventional aluminum sulphate and ferric chloride.

A.O. Ogunfowokan

2007-01-01

98

Removal of heavy metal using poly (N-vinyl imidazole)-grafted-carboxymethylated starch.  

Science.gov (United States)

Carboxymethyl starch (CMS) grafted with N-vinyl imidazole was investigated for heavy metal removal from aqueous solutions. Poly (N-vinyl imidazole)-grafted carboxymethyl starch (PVI-g-CMS) was prepared in aqueous solution using potassium persulfate (KPS) as initiator. The produced grafted copolymer was characterized by FTIR, TGA, surface area and elemental analysis. The grafted material was used for the sorption of Mn(II), Zn(II) and Cd(II). Uptake parameters such as affinity of metal ions, effect of metal ion concentration, adsorbent amount and agitation time were investigated. The polymers were more sensitive to Cd(II) and Zn(II) and the order of metal ion binding was Cd(II)>Zn(II)>Mn(II). The adsorption data was fitted very well in a Freundlich isotherm equation and the kinetics of adsorption was found to follow the pseudo-first order kinetic model. PMID:24589473

El-Hamshary, Hany; Fouda, Moustafa M G; Moydeen, Meera; Al-Deyab, Salem S

2014-05-01

99

Removal of heavy metals and lanthanides from industrial phosphoric acid process liquors  

Energy Technology Data Exchange (ETDEWEB)

To diminish the discharge of heavy metals and lanthanides by the phosphoric acid industry, these impurities have to be removed from the mother liquor before their incorporation in the gypsum crystals. This can best be achieved by means of solvent extraction or ion exchange during the recrystallization of hemihydrate to dihydrate gypsum. Various commercial carriers and two ion-exchange resins were screened for their efficiency and selectivity. Light and heavy lanthanide ions are extracted from the recrystallization acid by didodecylnaphthalenesulfonic acid (Nacure 1052) and di(2-ethylhexyl)phosphoric acid (D2EHPA), and the heavy-metal ions by bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) and by bis(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302). Mercury is also extracted by the anion carriers tri(C{sub 8}-C{sub 10})amine (Alamine 336) and tri(C{sub 8}-C{sub 10}) monomethyl ammonium chloride (Aliquat 336). Both Dowex C-500 and Amberlite IR-120 extract lanthanide and heavy-metal ions. Unfortunately, D2EHPA, Nacure 1052, and the two ion-exchange resins also show affinity for ions present in much higher concentrations, like calcium or iron ions.

Koopman, C.; Witkamp, G.J.; Van Rosmalen, G.M.

1999-11-01

100

Heavy metal removal in an UASB-CW system treating municipal wastewater.  

Science.gov (United States)

The objective of the present study was to investigate for the first time the long-term removal of heavy metals (HMs) in a combined UASB-CW system treating municipal wastewater. The research was carried out in a field pilot plant constituted for an up-flow anaerobic sludge bed (UASB) digester as a pretreatment, followed by a surface flow constructed wetland (CW) and finally by a subsurface flow CW. While the UASB showed (pseudo) steady state operational conditions and generated a periodical purge of sludge, CWs were characterised by the progressive accumulation and mineralisation of retained solids. This paper analyses the evolution of HM removal from the water stream over time (over a period of 4.7 year of operation) and the accumulation of HMs in UASB sludge and CW sediments at two horizons of 2.7 and 4.0 year of operation. High removal efficiencies were found for some metals in the following order: Sn > Cr > Cu > Pb > Zn > Fe (63-94%). Medium removal efficiencies were registered for Ni (49%), Hg (42%), and Ag (40%), and finally Mn and As showed negative percentage removals. Removal efficiencies of total HMs were higher in UASB and SF units and lower in the last SSF unit. PMID:23942017

de la Varga, D; Díaz, M A; Ruiz, I; Soto, M

2013-10-01

 
 
 
 
101

A new efficient forest biowaste as biosorbent for removal of cationic heavy metals.  

Science.gov (United States)

Among various forest biowastes, chestnut bur had the highest uptake values of Cd(II) and Pb(II), and these values were higher than those of agricultural biowastes used as comparable biosorbents. This study is the first report showing the high potential of chestnut bur as biosorbent for the removal of cationic heavy metals. Pseudo-second-order equation satisfactorily described the biosorption behaviors of both metals. Biosorption rate of Pb(II) was 3.12 times higher than that of Cd(II). Langmuir model could fit the equilibrium isotherm data better than Freundlich model. The maximum uptake capacities of Cd(II) and Pb(II) were determined to be 34.77mg/g and 74.35mg/g, respectively. FTIR study showed that carboxyl group on the biosorbent was involved in biosorbing the cationic metals. In conclusion, abundant and cheap forest biowastes, especially chestnut bur, is a potent candidate for efficient biosorbent capable of removing toxic heavy metals from aqueous solutions. PMID:25467000

Kim, Namgyu; Park, Munsik; Park, Donghee

2014-10-25

102

Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.  

Science.gov (United States)

Surface properties of montmorillonite (MMT) and its adsorption characteristics for heavy metals have been investigated with nickel and copper as sorbate from aqueous solutions. Employing the potentiometric and mass titration techniques in batch experimental methods, the point of zero charge (PZC) and point of zero net proton charge (PZNPC) of MMT edges at different ionic strengths present pH(PZC) and pH(PZNPC) to be 3.4+/-0.2. A crossing point was observed for the proton adsorption vs. pH curves at different ionic strengths of KCl electrolyte and in investigating MMT remediation potentialities as sorbent for heavy metals polluted waters, the effects of heavy metal concentration, pH, MMT dosage, reaction time and temperature for Cu(2+) and Ni(2+) uptake were studied. The sorption of metal ions by MMT was pH dependent and the adsorption kinetics revealed sorption rate could be well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. Adsorption isotherms showed that the uptake of Cu(2+) and Ni(2+) could be described by the Langmuir model and from calculations on thermodynamic parameters, the positive Delta G degrees values at different temperatures suggest that the sorption of both metal ions were non-spontaneous. Change in enthalpy (Delta H degrees) for Ni(2+) and Cu(2+) were 28.9 and 13.27 kJ/mol K respectively, hence an endothermic diffusion process, as ion uptake increased with increase in temperature. Values of DeltaS degrees indicate low randomness at the solid/solution interface during the uptake of both Cu(2+) and Ni(2+) by MMT. Montmorillonite has a considerable potential for the removal of heavy metal cationic species from aqueous solution and wastewater. PMID:19131158

Ijagbemi, Christianah Olakitan; Baek, Mi-Hwa; Kim, Dong-Su

2009-07-15

103

Removal of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase  

Digital Repository Infrastructure Vision for European Research (DRIVER)

CaCO3 extracted from starfish by using the commercial protein lyase having ?-amylase, ?-amylase, and protease is applied to remove heavy metal ions. The extracted CaCO3 shows excellent characteristics in removing heavy metal ions such as Cu2+, Cd2+, Pb2+, and Cr6+ compared with conventional materials such as crab shells, sawdust, and activated carbon except for removing Zn2+. SEM images reveal that the extracted CaCO33 has a good morphology and porosity. We characterize the removal efficien...

Kyong-Soo Hong; Hak Myoung Lee; Jong Seong Bae; Myoung Gyu Ha; Jong Sung Jin; Tae Eun Hong; Jong Pil Kim; Euh Duck Jeong

2011-01-01

104

Removal of Selected Heavy Metals from Green Mussel via Catalytic Oxidation  

International Nuclear Information System (INIS)

Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/ 2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe2O3, and ZnO catalysts. The lethal dose of LD50 to rats of PAA is 1540 mg kg-1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 degree Celsius as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL-1 PAA and catalyzed with Fe2O3/ Al2O3 for up to 90 % mercury (Hg) removal. Using PAA with only 1 hour of reaction time, at room temperature (30-35 degree Celsius), pH 5-6 and salinity of 25-28 ppt, 90 % lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel. (author)

105

Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane-bound form  

International Nuclear Information System (INIS)

This study assesses the ability of mycelia of Rhizopus delemar (both free and immobilized on polyurethane foam) to remove heavy metals from single-ion solutions as well as from a mixture of them. All experiments were conducted using 0.5-5 mM solutions of CuSO4.5H2O, CoCl2.6H2O and FeSO4.7H2O. Mycelia immobilized on polyurethane foam cells showed some times increase in uptake compared with that of free cells. Metal ions accumulation from a mixed solution was decreased slightly for cobalt and iron and considerable for copper ions. Heavy metal uptake was examined in the immobilized column experiments and more than 92% heavy metal removal (mg heavy metals removed/mg heavy metals added) from a mixed solution was achieved during the 5 cycles. During these experiments, the dry weight of the immobilized cells was decreased by only 2%. These results showed that immobilized mycelia of Rhizopus delemar can be used repeatedly for removal of heavy metals from aqueous solutions. (orig.)

106

Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica  

International Nuclear Information System (INIS)

A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe3O4), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe3O4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 105 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe3O4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe3O4 is suitable for repeated use in heavy metal removal from different water matrices.ifferent water matrices.

107

The effect of weak chelating agents on the removal of heavy metals by precipitation processes  

International Nuclear Information System (INIS)

Particle size distributions and heavy metal removals are presented for hydroxide precipitation and sulfide precipitation of zinc and cadmium in the presence of several weak complexing agents, namely citrate, tartrate, and ammonia. The pH was held constant at pH 10.0 in these experiments. The presence of these weak complexing agents had little effect on the chemical equilibrium for both the hydroxide and sulfide systems due to their weak complexing ability with metal ions. The presence of the complexing agents does affect the particle size distribution, generally forming smaller particles. Particle size distributions are presented for the Zn(OH)/sub 2/, ZnS, Cd(OH)/sub 2/, and CdS systems (at pH 10.0) in the presence of the chelating agents citrate, tartrate, and ammonia. Sulfide precipitation exhibits a better particle size distribution and settling characteristics than the corresponding metal hydroxide precipitation for both zinc and cadmium

108

UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal  

Energy Technology Data Exchange (ETDEWEB)

Highlights: Black-Right-Pointing-Pointer Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. Black-Right-Pointing-Pointer The synergistic complexation was found in the adsorption studies. Black-Right-Pointing-Pointer The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materials in heavy metal removing processes.

Wang, Jingjing, E-mail: jjwang1@hotmail.com [Department of Polymer Materials and Engineering, School of Material Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China); Liu, Fang [Department of Polymer Materials and Engineering, School of Material Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China)

2012-11-01

109

UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal  

International Nuclear Information System (INIS)

Highlights: ? Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. ? The synergistic complexation was found in the adsorption studies. ? The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materialnsive and renewable sorbent materials in heavy metal removing processes.

110

The application of fish scales in removing heavy metals from energy-produced waste streams: the role of microbes  

International Nuclear Information System (INIS)

In energy production, heavy metals pose significant contamination hazards. For example, the petroleum industry generates wastes that are often high in heavy metal concentrations. Heavy metals are very toxic and extremely deleterious to humans, plants, and animals. Application of fish scale to remove heavy metals is a very recent innovation. It is an environmentally appealing and economically attractive alternative to current heavy metal adsorbing materials. Previously, the adsorption phenomenon on this exotic waste material was explained by only physical-chemical reactions. Biological effects on adsorption of heavy metals such as lead, arsenic, and chromium were studied using Atlantic Cod scale. The difference in results between nonsterilized and sterilized experiments shows the microbial contribution to heavy metal removal. Results show a wide range of microbial contribution in removing chromium cations. For lead and arsenic cations, the effect is less. Measurement of pH gives some indication of the microbial role in the biosorption process and of the presence of possible microbial species. (author)

111

Separation of heavy metals: Removal from industrial wastewaters and contaminated soil  

Energy Technology Data Exchange (ETDEWEB)

This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

Peters, R.W.; Shem, L.

1993-01-01

112

Separation of heavy metals: Removal from industrial wastewaters and contaminated soil  

Energy Technology Data Exchange (ETDEWEB)

This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

Peters, R.W.; Shem, L.

1993-03-01

113

Heavy metal removal from soils using magnetic separation: 1. Laboratory experiments  

Energy Technology Data Exchange (ETDEWEB)

The removal of Cu, Zn, and Cd from a sandy soil was investigated using iron filings as an adsorbent, and subsequently recovering the iron filings by magnetic separation. The best treatment was obtained by using 5% iron filings and 3 h contact time between iron filings and the soil. The metal removal efficiency from soil extracts was evaluated, using MetPLATE trademark, a toxicity test that is specific for heavy metals, and the 48 h Ceriodaphnia dubia acute toxicity test. The toxicity removal was generally higher than 95% for Cu after a single treatment. With regard to Zn-spiked soil, the toxicity removal was 96.1%, 70.0%, and 49.6% after single treatment at the input concentration of 200 mg/kg, 400 mg/kg, and 800 mg Zn{sup 2+}/kg soil, respectively. After two or three successive treatments, more than 90% of the toxicity was removed for 400 mg/kg and 800 mg/kg Zn-spiked soils. In the case of Cd-spiked soil, a single treatment removed 51.1% of the toxicity from 200 mg/kg Cd-spiked soil extracts while more than 90% of the toxicity was removed after two or three treatments. Chemical analysis and a mass balance study were also carried out to investigate the Cu distribution in the soil fractions. The results indicate that, before treatment, a large portion of Cu was immobilized in the soil matrix. Following magnetic separation, Cu was removed from both the soil matrix and extracts and was indeed adsorbed and concentrated on the iron filings. The retrieval of Cu by iron filings was further examined by energy dispersive X-ray spectroscopy (EDS). (Abstract Copyright [2007], Wiley Periodicals, Inc.)

Feng, Nan; Bitton, Gabriel; Yeager, Philip; Bonzongo, Jean-Claude [Laboratory of Environmental Microbiology and Toxicology, Department of Environmental Engineering Sciences, University of Florida, Gainesville (United States); Boularbah, Ali [Faculte des Sciences et Techniques Gueliz, Departement de Biologie, Universite Cadi Ayyad, Marrakech (Morocco)

2007-09-15

114

Heavy-metal removal from petroleum oily sludge using lemon- scented geraniums[General Conference  

Energy Technology Data Exchange (ETDEWEB)

Finding an acceptable method to manage oily sludge generated during petroleum processes is one of the challenges currently facing the petroleum industry. This study investigated the response of plants to heavy-metal removal from oily sludge to determine the feasibility of using phytoremediation technologies as a treatment method for oily sludge. In particular, scented geraniums (Pelargonium sp. Frensham) have shown a strong capability to survive harsh conditions such as poor soil, high/low temperatures, high heavy-metal concentrations and low water content. In response to this observation, this feasibility study placed scented geraniums in a series of pots containing oily sludge where heavy-metal concentrations were artificially increased up to 2000 ppm. Plants were grown in two systems over a period of 50 days. The first system included oily sludge and soil while the second system included oily sludge, soil and compost. The study revealed that the scented geraniums accumulated up to 1600 mg, 1000 mg, and 1200 mg, of cadmium, nickel and vanadium respectively per 1 kg of the plant's dry weight. The results suggest that phytoremediation technology may be a potential method for successfully treating or pretreating oily sludge in the field.

Badawieh, A.; Elektorowicz, M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

2006-07-01

115

Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal  

International Nuclear Information System (INIS)

Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) [poly(EGDMA-VIM)] hydrogel (average diameter 150-200 ?m) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and found to contain 5 EGDMA monomer units each VIM monomer unit. Poly(EGDMA-VIM) beads had a specific surface area of 59.8 m2/g. Poly(EGDMA-VIM) beads were characterized by swelling studies and scanning electron microscopy (SEM). These poly(EGDMA-VIM) beads with a swelling ratio of 78% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Cd(II), Hg(II) and Pb(II) were investigated in aqueous media containing different amounts of these ions (10-750 mg/l) and at different pH values (3.0-7.0). Chelation rate was very fast. The maximum chelation capacities of the poly(EGDMA-VIM) beads were 69.4 mg/g for Cd(II), 114.8 mg/g for Pb(II) and 163.5 mg/g for Hg(II). The affinity order on molar basis was observed as follows: Hg(II)>Cd(II)>Pb(II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms. pH significantly affected the chelation capacity of VIM incorporated beads. Chelation of heavy metal ions from synthetic wastewater was also studied. The chelation capacities are 45.6 mg/g for Cd(II), 74.2 mg/g for Hg(II) and 92.5 mg/g for Pb(II) at 0.5 mmol/l initial metal/g for Pb(II) at 0.5 mmol/l initial metal concentration. Regeneration of the chelating-beads was easily performed with 0.1 M HNO3. These features make poly(EGDMA-VIM) beads potential candidate adsorbent for heavy metal removal

116

Utilization of Nitrogen Containing Pregelled Starch Derivatives as Biodegradable Polymers for Heavy Metal Ions Removal  

Directory of Open Access Journals (Sweden)

Full Text Available Two type of nitrogen containing pregelled starch derivatives having amide groups (CONH2 were used in heavy metal ions removal from its solutions. These pregelled starch derivatives were carbamated pregelled starch (CPS and poly (methacrylamide-pregelled starch graft copolymer (PMamPSGC. Different factors affecting adsorption of metal ions onto these substrates such as metal ion concentration, pH, treatment time and temperature as well as type of starch derivatives were studied. Results obtained reflect the following findings: (a the adsorption values of both nitrogen containing starch derivatives in question increase by increasing the metal ion concentration up to 50 mmol L-1 then levels off, (b poly (methacrylamide-pregelled starch graft copolymer was selective adsorbent for Hg2+ at pH 0.5-1, (c The adsorption values on these pregelled starch derivatives at different metal ions follow the order: Hg2+ > Cu2+ > Zn2+ > Pb2+, (d The adsorption efficiency % of metal ions in case of poly (methacrylamide-pregelled starch graft copolymer is higher than that in case of carbamated pregelled starch irrespective of the metal ion used, (e The adsorption values is higher at 30?C then decreases by raising the temperature to 50 and 70?C and (f The adsorption values increase by increasing the treatment time up to 5 h then levels off.

Kh. M. Mostafa

2004-01-01

117

An immobilized cell bioprocess for the removal of heavy metals from aqueous flows  

International Nuclear Information System (INIS)

Microorganisms can be used to remove toxic heavy metals from liquid industrial wastes. In addition to the chemical toxicity of many of the latter, the production of long-lived nuclides from nuclear power programmes has introduced additional radiotoxicological hazards. Associated problems of the presence of contaminating, non-metal co-pollutants and the presentation of dilute, high-volume wastes have received little attention. Traditional biotechnological waste treatments have relied either on the use of non-living biomass ('biosorption') or on the accumulation of metals by living cells with the associated problems of metal toxicity effects and the requirements for cell viability or growth. Identification of an enzymically-mediated metal accumulation step can permit decoupling of cell growth from metal accumulation. Using pre-grown biomass immobilized in a flow-through filter ('bioreactor') the metal-accumulative bioprocess can be described accurately applying traditional Michaelis-Menten kinetics. The effect of co-pollutants can be then quantified in order to run the bioreactor in the most efficient way. (author)

118

Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge  

International Nuclear Information System (INIS)

The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (ctively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid leaching. These results suggest that bioleaching may be an alternative or adjunct to conventional physicochemical treatment of dewatered metal plating sludge for the removal hazardous heavy metals.

119

Optimization of heavy metal and suspended solids removal using groundwater treatment plant sludge (GWTPS)  

International Nuclear Information System (INIS)

Full text: A groundwater treatment plant located in Chicha, Kelantan, produced 5 tons of sludge daily that require offsite disposal. The sludge was found to contain high concentration of iron and manganese. An attempt was made to reuse the Groundwater Treatment Plant Sludge (GWTPS) for wastewater treatment purposes. This study is focusing on the effectiveness of GWTPS as an adsorbent in removing Zn and Cu, as well as coagulant in removing suspended solids. The characteristic of the freshly prepared GWTPS was analyzed by measuring its pH in distilled water and total Fe concentration. Adsorption study was conducted using GWTPS. Using batch test method, parameters such as pH, contact time, adsorbent dosage and initial concentration of sorbent was varied in order to find the optimum in removing Zn and Cu. The ability of GWTPS in removing Zn and Cu was further analyzed based on its removal efficiency. Recycled Ferric Chloride (RFC) and Recycled Ferrous Sulphate (RFS) are generated from GWTPS through a digestion process using Environmental Express Hot Block. The optimization of RFC and RFS was determined by varying the GWTPS dosage and contact time during digestion. Both RFC and RFS was tested for its efficiency as a coagulant in removing Zn, Cu and suspended solids by jar test method. It was found that GWTPS was effective in removing Zn and Cu. From the study it can be concluded that RFC and RFS, a coagulant derived from groundwater sludge, is effective in removing suspendr sludge, is effective in removing suspended solids that contain heavy metals such as Zn and Cu. (author)

120

Removal of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase  

Directory of Open Access Journals (Sweden)

Full Text Available CaCO3 extracted from starfish by using the commercial protein lyase having ?-amylase, ?-amylase, and protease is applied to remove heavy metal ions. The extracted CaCO3 shows excellent characteristics in removing heavy metal ions such as Cu2+, Cd2+, Pb2+, and Cr6+ compared with conventional materials such as crab shells, sawdust, and activated carbon except for removing Zn2+. SEM images reveal that the extracted CaCO33 has a good morphology and porosity. We characterize the removal efficiencies of the extracted CaCO3 for the heavy metal ions according to the concentrations, pH, temperatures, and conditions of empty bed contact times.

Kyong-Soo Hong

2011-10-01

 
 
 
 
121

Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand.  

Science.gov (United States)

High level of heavy metals in industrial sludge was the obstacle of sludge disposal and resource recycling. In this study, iminodisuccinic acid (IDS), a biodegradable chelating ligand, was used to remove heavy metals from industrial sludge generated from battery industry. The extraction of cadmium, copper, nickel, and zinc from battery sludge with aqueous solution of IDS was studied under various conditions. It was found that removal efficiency greatly depends on pH, chelating agent's concentration, as well as species distribution of metals. The results showed that mildly acidic and neutral systems were not beneficial to remove cadmium. About 68 % of cadmium in the sample was extracted at the molar ratio of IDS to heavy metals 7:1 without pH adjustment (pH 11.5). Copper of 91.3 % and nickel of 90.7 % could be removed by IDS (molar ratio, IDS: metals?=?1:1) with 1.2 % phosphoric acid effectively. Removal efficiency of zinc was very low throughout the experiment. Based on the experimental results, IDS could be a potentially useful chelant for heavy metal removal from battery industry sludge. PMID:25115899

Wu, Qing; Duan, Gaoqi; Cui, Yanrui; Sun, Jianhui

2014-08-14

122

Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water  

International Nuclear Information System (INIS)

Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

123

Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water  

Energy Technology Data Exchange (ETDEWEB)

Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N{sub 2} atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N{sub 2} atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods.

Ahmed, M.A. [Physics Department, Faculty of Science, Cairo University, Postal Code 12613, Giza (Egypt); Ali, S.M. [Chemistry Department, Faculty of Science, Cairo University, Postal Code 12613, Giza (Egypt); El-Dek, S.I. [Physics Department, Faculty of Science, Cairo University, Postal Code 12613, Giza (Egypt); Galal, A., E-mail: galal@sci.cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, Postal Code 12613, Giza (Egypt)

2013-06-01

124

Aligned nanogold assisted one step sensing and removal of heavy metal ions.  

Science.gov (United States)

We depict a novel strategy exploiting the chemistry of metal ion adsorption for detection and sequestration of toxic heavy metal from processed water using gold nanoparticles capped with 4-aminothiophenol. The interaction between 4-aminothiophenol capped gold nanoparticles and heavy metal ions was studied as a function of time and concentration using TEM, HRTEM, SEM, EDS, and I-V characterization. Experiments confirmed that pH is one of the crucial controlling parameters. Adsorption capacity was monitored using AAS, UV-vis spectroscopy and I-V measurement. In the absence of any alloy formation between Au and heavy metal ions, the desorption of the heavy metal ions from 4-aminothiophenol capped gold nanoparticles surface by pH modulation serves as a mean of collection of heavy metal ions. Experiments revealed that the concentration of heavy metal ions in processed water after adsorption is below the maximum permissible limit set by the WHO. PMID:21851947

Chauhan, Neha; Gupta, Shweta; Singh, Nahar; Singh, Sukhvir; Islam, Saikh S; Sood, Kedar N; Pasricha, Renu

2011-11-01

125

Synthesis of Mesoporous Adsorbent and its Application for Heavy Metal Ions Removal from Aqueous Solution  

International Nuclear Information System (INIS)

The mesoporous silicas were synthesized via the evaporation-induced self-assembly (EISA) in the experiment. Cetyltrimethyl ammonium bromide (CTAB) was used as the template, and the silicon source was tetraethoxyorthosilicate (TEOS). The mesoporous silicas were characterized by nitrogen adsorption-desorption analysis, FTIR, TEM and SEM. The mesoporous silicas (adsorbent) exhibited higher pore diameter (centered at 5.57 nm), BET surface area (457.3 m2·g-1) and pore volume (0.563 cm2·g-1). The mesoporous silicas were used as the adsorbent to remove the heavy metal ions from aqueous solution. The following order of equilibrium adsorption capacity for Cu2+, Co2+, Ag+ and As3+ on adsorbent was: Ag+>Cu2+>Co2+>As3+. Analysis of adsorption kinetics showed that Cu2+, Co2+, Ag+ and As3+ adsorption fit the pseudo-second-order nonlinear model significantly. The removal rate for heavy metal ions was high, and the adsorbent can be regenerated by acid treatment without altering its properties.

126

Phase-controlled preparation of iron (oxyhydr)oxide nanocrystallines for heavy metal removal  

International Nuclear Information System (INIS)

Obtaining cost-effective iron (oxyhydr)oxide nanocrystallines is the essential prerequisite for their future extensive applications in environmental remediation, such as the removal of heavy metals from contaminated waters. Here, various phases of iron (oxyhydr)oxide nanocrystallines were simply synthesized from the phase-controlled transformation of amorphous hydrous ferric- or ferrous-oxide in thermal solution with a certain ethanol/water ratio and with the presence of oleic acid. According to this method, goethite nanorods in diameter of 3–4 nm, hematite nanocubes sized 20–30 nm, and magnetite nanoparticles in diameter of 6–7 nm were successfully obtained. The final products of this transformation can be conveniently controlled by adjusting the reaction parameters, such as pH, temperature, and ethanol/water ratio. Due to the enhanced specific surface area and probably the modifications of the surface structure of nanocrystallines, the as-synthesized goethite nanorods and magnetite nanoparticles demonstrated extremely strong As(III) affinity, with 5.8 and 54 times of As(III) adsorption, respectively, higher than the micron-sized relatives. The cost-effective feature of as-synthesized nanocrystallines and their remarkably enhanced affinity toward arsenic made them potentially applicable for the removal of arsenic and such like heavy metals from the contaminated environment.

127

Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: estimate of metal removal efficiency.  

Science.gov (United States)

Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water. PMID:16908047

Löser, Christian; Zehnsdorf, Andreas; Hoffmann, Petra; Seidel, Heinz

2007-01-01

128

USE OF CLAY TO REMOVE HEAVY METALS FROM JEBEL CHAKIR LANDFILL LEACHATE  

Directory of Open Access Journals (Sweden)

Full Text Available Adsorptive removal of copper and nickel from Jebel Chakir landfill leachate onto smectite-rich clayey rock were carried out by both batch and column methods. The raw AYD clay was sampled in El Hamma area (Tunisia. The adsorbent employed was characterized by X-ray diffraction, specific surface area, cation exchange capacity and point of zero charge. Results showed that raw AYD clay possesses a high surface area owing to its mineralogical composition. An increase in the clay quantity from 0.5 to 5.5g generates a reduction in the quantity of metals adsorbed in the solid phase. The adsorption of heavy metals increases with a decrease in the pH leachate from 8.11 to 5.0. The column experiments showed that the addition of sand to the J. Aïdoudi clay can be useful for leachate depollution, but for a few volume due to the fine fraction of this clay (< 2µm = 89.6%. the comparison study of the heavy metals adsorption on raw AYD clay by the two modes of adsorption (batch and column showed that column test are better than that obtained by batch test.

ISLEM CHAARI

2011-06-01

129

The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue  

Directory of Open Access Journals (Sweden)

Full Text Available This study is deal with study the potential of Iraqi Rice Husk (IRH on the removal of three heavy metals pollutant which were (Mg, Mn and Mo ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26 % for heavy metal (Mg, Mn and Mo respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absorbance material bed height, pH and feeding temperature. Statistical model is achieved to find an expression relates the overall operating parameters with the removal efficiency for each metal ions used in this investigation in a general equation (each one alone. The samples of (IRH remaining after using it in the removal of (Mg, Mn and Mo heavy metal ions above from Simulated Synthetic Aqueous Solutions (SSAS to investigate the capitalized of it in different methods. Different benefits possess which are: remove the three toxic heavy metals ions contaminated the water, get rid of agricultural waste (IRH, in the same time, produce light and more benefit hydrocarbons from n-heptane isomerization using a type Y-zeolite catalyst synthesis from remaining (IRH and prepare a cheap and active rodenticide.

Mohammed Nsaif

2013-12-01

130

BIOSORPTIVE REMOVAL OF HEAVY METALS (Cd+2, Pb+2 AND Cu+2 FROM AQUEOUS SOLUTIONS BY CASSIA ANGUSTIFOLIA BARK  

Directory of Open Access Journals (Sweden)

Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. The aim of this present study was to investigate the removal of heavy metals (Cd+2, Pb+2 and Cu+2 using Cassia angustifolia bark. The objective was to evaluate the biosorbent for its metal uptake and study its batch equilibrium. The batch mode was carried out at varying initial pH (5 to 9, emperature (300C to 450C, metal ion concentration (20mg to 140mg/L and contact time (5 min to 240 min and desorption studies from pH 1 to 11. The equilibrium data obtained fit well in Langmuir and Freundlich isotherms. The results of the investigations show the efficacy of Cassia angustifolia bark as a low cost promising biosorbent for removal of heavy metals from industrial wastewaters.

MADHAVI G MULGUND,

2011-02-01

131

Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process  

International Nuclear Information System (INIS)

Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

132

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

Science.gov (United States)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01

133

Biological processes for environmental control of effluent streams in the nuclear fuel cycle. [Denitrification; removal of heavy metals  

Energy Technology Data Exchange (ETDEWEB)

Nitrates and radioactive heavy metals need to be removed from aqueous effluent streams in the fuel cycle. Biological methods are being developed for reducing nitrate or nitrite to N/sub 2/ gas and for decreasing dissolved metal concentration to less than 1 g/m/sup 3/. Fluidized-bed denitrification bioreactors are being tested. Removal of uranium from solution by Saccharomyces cerevisiae and Pseudomonas aeruginosa was studied. (DLC)

Shumate, II, S E; Hancher, C W; Strandberg, G W; Scott, C D

1978-01-01

134

Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon  

Energy Technology Data Exchange (ETDEWEB)

Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2{approx}10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin.

Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

2001-01-01

135

Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces  

International Nuclear Information System (INIS)

The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the systewaste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

136

Removal and treatment of radioactive, organochlorine and heavy metal contaminants from solid surfaces  

International Nuclear Information System (INIS)

The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are Generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria The O'Brien ampersand Gere Companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system that O'Brien ampersand Gere Companies developed removes fixed radioactive and hazardous surface contamination, while leaving the surface intact. Blasting residuals are dissolved and treated using physical/chemical processes. Bench- and pilot-scale testing of the soda blasting system was conducted between December 1993 and September 1994 on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Blasting residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtratitment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after blasting residuals treatment. Waste residuals volume was decreased by 71%

137

Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon  

International Nuclear Information System (INIS)

Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2?10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin

138

Hydrogen sulfide removal from coal gas by the metal-ferrite sorbents made from the heavy metal wastewater sludge  

International Nuclear Information System (INIS)

The metal-ferrite (chromium-ferrite and zinc-ferrite) sorbents made from the heavy metal wastewater sludge have been developed for the hydrogen sulfide removal from coal gas. The high temperature absorption of hydrogen sulfide from coal gas with the metal-ferrite sorbent in a fixed bed reactor was conducted in this study. The metal-ferrite powders were the products of the ferrite process for the heavy metal wastewater treatment. The porosity analysis results show that the number of micropores of the sorbents after sulfidation and regeneration process decreases and the average pore size increases due to the acute endothermic and exothermic reactions during the sulfidation-regeneration process. The FeS, ZnS, and MnS peaks are observed on the sulfided sorbents, and the chromium extraction of the CFR6 can fulfill the emission standard of Taiwan EPA. The suitable sulfidation temperature range for chromium-ferrite sorbent is at 500-600 deg. C. In addition, effects of various concentrations of H2 and CO were also conducted in the present work at different temperatures. By increasing the H2 concentration, the sulfur sorption capacity of the sorbent decreases and an adverse result is observed in the case of increasing CO concentration. This can be explained via water-shift reaction

139

Heavy metal removal and speciation transformation through the calcination treatment of phosphorus-enriched sewage sludge ash.  

Science.gov (United States)

On the basis of the heavy metal (Cd, As, Pb, Zn, Cu, Cr, and Ni) control problem during the thermochemical recovery of phosphorus (P) from sewage sludge (SS), P-enriched sewage sludge ash (PSSA) was calcined at 1100°C. The effect of organic chlorinating agent (PVC) and inorganic chlorinating agent (MgCl2) on the fixed rate of P removal and the speciation transformation of heavy metal was studied. The removal of heavy metals Cd, Pb, As, Zn, and Cr exhibited an increasing tendency with the addition of chlorinating agent (PVC). However, an obvious peak under 100gCl/kg of PSSA appeared for Cu, owing to the presence of carbon and hydrogen in PVC. MgCl2 was found to be more effective than PVC in the removal of most heavy metals, such that up to 98.9% of Cu and 97.3% of Zn was effectively removed. Analyses of heavy metal forms showed that Pb and Zn occurred in the residue fraction after calcination. Meanwhile, the residue fraction of Cr, Ni, Cd, and Cu exhibited a decreasing tendency with the increase in the added chlorinating agent (MgCl2). Losses of P from PSSA were around 16.6% without the addition of chlorinating agent, which were greatly reduced to around 7.7% (PVC) and to only 1.7% (MgCl2). PMID:25464279

Li, Rundong; Zhao, Weiwei; Li, Yanlong; Wang, Weiyun; Zhu, Xuan

2015-02-11

140

Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments  

DEFF Research Database (Denmark)

Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the targeted heavy,metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included. (C) 2014 Elsevier B.V. All rights reserved.

Pedersen, Kristine Bondo; Kirkelund, Gunvor Marie

2015-01-01

 
 
 
 
141

Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments.  

Science.gov (United States)

Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the targeted heavy metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included. PMID:25464314

Pedersen, Kristine Bondo; Kirkelund, Gunvor M; Ottosen, Lisbeth M; Jensen, Pernille E; Lejon, Tore

2015-02-11

142

REMOVAL OF HEAVY METALS BY SULFIDE PRECIPITATION IN THE PRESENCE OF COMPLEXING AGENTS (CHELATING AGENT, COMPLEXATION, PARTICLE SIZE)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Heavy metal removals and particle size distributions were presented for both hydroxide precipitation and sulfide precipitation of zinc, cadmium, copper, and nickel in the presence of various complexing agents. Both batch and continuous experiments were performed for synthetic and actual metal-containing wastewaters. Metal concentrations complexing agent concentrations, sulfide dosages, pH levels of the solutions, and reaction or residence times were varied to determine the reaction kinetics.^...

Ku, Young

1986-01-01

143

Application of Multiwalled Carbon Nanotube-Cyclodextrin Polymers in the Removal of Heavy Metals from Water  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of this study was to synthesize oxidized multiwalled carbon nanotube-cyclodextrin polymer and explore the possibility of using this polymer for the remediation of heavy metal contamination in the aquatic environment. Herein we report the results obtained from testing the polymer for the removal of lead and cobalt from synthetic water solutions. The performance of the polymer was matched against pristine and oxidized multiwalled carbon nanotubes. The polymer was found to perform better at lower concentrations (10 mg L-1 with adsorption capacities of 4.08 and 3.89 mg g-1 for lead and cobalt, respectively. These correspond to 68.0 and 64.8% removal of lead and cobalt, respectively. The maximum adsorption capacity of the polymer from the Langmuir isotherms was calculated to be 28.86 and 21.44 mg g-1 for lead and cobalt, respectively, at an initial concentration range of 10-50 mg L-1. Competitive adsorption studies revealed that lead is adsorbed better than cobalt. Furthermore, the adsorption capacity of the polymer is lower in the competitive adsorption than in the single metal ion adsorption, suggesting competition between the lead and cobalt ions.

R.W. Krause

2010-01-01

144

Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.  

Science.gov (United States)

In this work a batch-optimised mixture (w/w %: 6% leaves, 9% compost, 3% Fe(0), 30% silica sand, 30% perlite, 22% limestone) was investigated in a continuous fixed bed column reactor for the treatment of synthetic acid-mine drainage (AMD). A column reactor was inoculated with sulphate-reducing bacteria and fed with a solution containing sulphate and heavy metals (As(V), Cd, Cr(VI), Cu and Zn). At steady state, sulphate abatement was 50+/-10%, while metals were totally removed. A degradation rate constant (k) of 0.015+/-0.001h(-1) for sulphate removal was determined from column data by assuming a first order degradation rate. Reduction of AMD toxicity was assessed by using the nematode Caenorhabditis elegans as a test organism. A lethality assay was performed with the toxicants before and after the treatment, showing that only 5% of the animals were still alive after 48h in presence of the contaminants, while the percentage increased to 73% when the nematodes were exposed to the solution eluted from the column. PMID:19804893

Cruz Viggi, C; Pagnanelli, F; Cibati, A; Uccelletti, D; Palleschi, C; Toro, L

2010-01-01

145

Impact of vertical electrokinetic-flushing technology to remove heavy metals and polycyclic aromatic hydrocarbons from contaminated soil  

International Nuclear Information System (INIS)

Highlights: ? Heavy metals and PAHs were removed from contaminated soils by UESR. ? The treatment duration, initial soil water content and soil type was examined. ? Cadmium has the higher removal efficiency followed by zinc and lead. ? The removal efficiency of PAHs was poor compared to heavy metals. - Abstract: This study presents the feasibility of using the vertical electrokinetic-flushing technology for the simultaneous removal of cadmium (Cd), lead (Pb), zinc (Zn), as well as phenanthrene and pyrene from contaminated soils. Eight vertical bench-scale electrokinetic-flushing experiments were conducted analyzing the effect of treatment duration, initial soil water content and soil type. The highest removal efficiency was achieved for Cd (82%), followed by Zn (73%) and Pb (37%) from natural soil after 8 days of treatment with water content 60%. The study demonstrated that the metals were extracted from the soil mainly due to the dominated low pH conditions and vertically migrated from anode towards the cathode. Besides, it was found that the removal efficiency was increased in the experiments with higher treatment duration, while the higher soil water content further enhances metals removal. In terms of the organic pollutants, under the conditions conducted the electrokinetic-flushing treatment, low removal efficiency for phenanthrene (29%) and pyrene (19%) was achieved. However, it is noticeable that without the use of any solubilizing agent the organic polsolubilizing agent the organic pollutants could be removed following the movement of the pore fluid.

146

Molecular Characterization and Phylogenetic Analyses of Heavy Metal Removal Bacteria from the Persian Gulf  

Directory of Open Access Journals (Sweden)

Full Text Available A total of 35 heavy metals resistance and removal bacterial strains were isolated from samples of marine environment and enclosed industrial areas. All isolates were characterized by molecular method. The diversity of isolated bacteria was examined by the phylogenetic analysis of 16S rRNA gene sequences. The phylogenetic analysis of the sequences revealed seven main taxonomic lineages. The phylogenetic tree illustrated discrimination between isolated bacteria from wastewater, industrials area and marine environment. Results showed new genetic differences and relationship between marine and industrial strains. Some Pseudomonas strains isolated from marine environment were well differentiated from those of industrial wastewater. Members of the genera Delftia and Bacterium formed a monophyletic group within the subdivision of the class. There was a clear differentiation between two groups of Pseudomonas and other groups of bacteria in the phylogenetic tree.

H. Zolgharnein

2010-01-01

147

Long Term Estimates of Removal of Heavy Metals and PAH in Retention Basins  

DEFF Research Database (Denmark)

The paper describes a method for the long-term simulation of the discharge of pollutants to the environment from storm sewer overflows in combined sewer systems, which have a connected retention basins. This study covers heavy metals (Cd, Cu, Ni, Pb, Zn) and PAH. The method includes both the influence of the flow-dependant sedimentation and the variation of the settling velocity of the particles. The results show that including these effects lead to significant lower discharges of pollutants compared to conventional methods of estimation. As an example computations with a spectrum of basins which cover realistic sizes show that the long-term discharges of PAH are about half of the expected values without removal.

Larsen, Torben; Neerup-Jensen, O.

2004-01-01

148

Emulsion Liquid Membrane for the Removal of Some Heavy Metals from Aqueous Phosphate Medium  

International Nuclear Information System (INIS)

An emulsion liquid membrane (ELM) containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CYANEX 302) as carrier was prepared and used for the extraction of Cd(II), Cu(II) and Zn(II), from aqueous phosphate medium. The effect of the main parameters affecting the individual extraction and permeation of Cd(II) was separately investigated. The effects of these parameters on the permeation rate of Cd(II) are also studied and a permeation rate equation is deduced. The permeation of Zn(II), Cd(II) and Cu(II) when mixed together in equal molar concentrations was also investigated. The results are elaborated to assess the optimum conditions for the use of membrane technology for the removal of heavy metals which could be found in radioactive waste solutions and wastewater streams produced from phosphate industrial plants. (author)

149

Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media.  

Science.gov (United States)

The presence of arsenic and heavy metals in drinking water sources poses a serious health risk due to chronic toxicological effects. Constructed wetlands have the potential to remove arsenic and heavy metals, but little is known about pollutant removal efficiency and reliability of wetlands for this task. This lab-scale study investigated the use of vertical subsurface flow constructed wetlands for removing arsenic, boron, copper, zinc, iron and manganese from synthetic wastewater. Gravel, limestone, zeolite and cocopeat were employed as wetland media. Conventional gravel media only showed limited capability in removing arsenic, iron, copper and zinc; and it showed virtually no capability in removing manganese and boron. In contrast, alternative wetland media: cocopeat, zeolite and limestone, demonstrated significant efficiencies--in terms of percentage removal and mass rate per m3 of wetland volume--for removing arsenic, iron, manganese, copper and zinc; their ability to remove boron, in terms of mass removal rate, was also higher than that of the gravel media. The overall results demonstrated the potential of using vertical flow wetlands to remove arsenic and metals from contaminated water, having cocopeat, zeolite or limestone as supporting media. PMID:22049756

Allende, K Lizama; Fletcher, T D; Sun, G

2011-01-01

150

Crayfish Carapace Micro-powder (CCM): A Novel and Efficient Adsorbent for Heavy Metal Ion Removal from Wastewater  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Crayfish carapace, a plentiful waste in China, was applied to remove divalent heavy metal ions—copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb)—from wastewater. The adsorption capacities of crayfish carapace micro-powder (CCM) for heavy metal ions were studied with adsorbent dosages ranging from 0.5–2.5 g/L and with initial metal concentrations ranging from 50–250 mg/L. CCM particle size, initial solution pH (from 2.5–6.5), temperature (from 25–65 °C) and calcium level (from 3...

Xiaodong Zheng; Bin Li; Bo Zhu; Rui Kuang; Xuan Kuang; Baoli Xu; Meihu Ma

2010-01-01

151

BIOSORPTIVE REMOVAL OF HEAVY METALS (Cd+2, Pb+2 AND Cu+2) FROM AQUEOUS SOLUTIONS BY CASSIA ANGUSTIFOLIA BARK  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. The aim of this present study was to investigate the removal of heavy metals (Cd+2, Pb+2 and Cu+2) using Cassia angustifolia bark. The objective was to evaluate the biosorbent for its metal uptake and study its batch equilibrium. The batch mode was carried out at varying initial pH (5 to 9), emperature (300C to 450C), me...

MADHAVI G MULGUND,; Kininge, P. T.; M.M.PILLAI,; Sanandam, M. R.

2011-01-01

152

Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique  

International Nuclear Information System (INIS)

The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C0), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (?) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm2) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm2, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD5) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC proc and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%

153

Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique  

Energy Technology Data Exchange (ETDEWEB)

The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

2009-05-15

154

Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.  

Science.gov (United States)

The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C(0)), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (kappa) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5mA/cm(2)) and various interelectrode distance (1, 2 and 3cm). For solutions with 300mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55mA/cm(2), initial pH was 7.6, conductivity was 2.1mS/cm, duration of treatment was 10min and interelectrode distance was 1cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD(5)) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15min), and the removal rate reaches 95%. PMID:18799259

Merzouk, B; Gourich, B; Sekki, A; Madani, K; Chibane, M

2009-05-15

155

Adsorption materials for removal of heavy metals and petroleum hydrocarbons from contaminated leachates  

International Nuclear Information System (INIS)

Adsorption function and capacities, for heavy metals and selected hydrocarbons, of several low-cost and alternative bio-sorption materials have been investigated. The materials studied were residual products from the forest industry (saw dust, pine bark and fiber ash) and natural materials (peat moss, shrimp shells and seaweed). Batch tests and column experiments were carried out with both artificial solutions and highly contaminated leachate from an industrial landfill. Fiber ashes and peat showed the highest sorption capacity for metals among the materials studied in comparative batch tests. In these tests, artificial single metal solutions in concentration ranges of 1?10 mg/l, and liquid to solid ratios of 20 and 200 were used. The fiber ash removed lead by 99%, copper by 100%, zinc by 99% and chromium by 82%. Peat removed lead by 98%, copper by 94%, zinc by 73% and chromium by 88%. Metal removal from the landfill leachates was also studied in batch tests, where lead was reduced by ash and peat by 99% and 96% respectively, copper by 100% and 92%, zinc by 95% and 33%, cadmium by 88% and 40%. A net release of Al, Cr, Ca, Ba and K from ash was observed, whereas the peat removed chromium by 66% and aluminium by 85%. The lower performance of the adsorbents for complex solutions as real leachates, suggests competitive sorption of ions although the mechanisms of sorption are not yet fully understood. In initial batch studies for organic pollutants, the adsorption for diesrganic pollutants, the adsorption for diesel oil by ash and peat was 98% and 97% respectively, 97% and 92 % for the n-alkane C16, and 91% for n-C12 for both materials. Bark adsorbed diesel oil by 83%, and the lower value could be explained by the larger particle size of the bark. Several column tests with peat, a peat-ash mixture and bark have been carried out to investigate the adsorbents' behavior and sorption capacity under flowing conditions. Both simulated contaminated groundwater and real landfill leachates were used as eluents. Sorption capacities for the metals and break-through volumes of the solutions were obtained. For most of the metals studied (Cd, Pb, Zn, Cu, Ni) ground peat appeared to be the best adsorbent, both in degree of sorption and service time. The column with peat-ash mixture adsorbed Cd, Ni and Pb to a lower degree, but retained the metals for a longer time than the peat column. The adsorption rate was significantly higher when artificial solutions were used and the metals were adsorbed for a longer time: Cu and Ni for approximately 20% and Zn for 50% longer time. These results point out that laboratory tests can overestimate adsorbent's performance and experiments should be specific and using real leachates. High iron content showed no effect on the sorption capacity of Cd and Cu, but other metals as Ni, Pb, Zn were sorbed for a shorter time. To better understand the basic mechanisms and processes, column tests need to be complemented with batch tests for basic studies of adsorption and competitive mechanisms. (authors)

156

Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.  

Science.gov (United States)

US and international regulations pertaining to the control of bilge water discharges from ships have concentrated their attention to the levels of oil and grease rather than to the heavy metal concentrations. The consensus is that any discharge of bilge water (and oily water emulsion within 12 nautical miles from the nearest land cannot exceed 15 parts per million (ppm). Since there is no specific regulation for metal pollutants under the bilge water section, reference standards regulating heavy metal concentrations are taken from the ambient water quality criteria to protect aquatic life. The research herein presented discusses electro-coagulation (EC) as a method to treat bilge water, with a focus on oily emulsions and heavy metals (copper, nickel and zinc) removal efficiency. Experiments were run using a continuous flow reactor, manufactured by Ecolotron, Inc., and a synthetic emulsion as artificial bilge water. The synthetic emulsion contained 5000 mg/L of oil and grease, 5 mg/L of copper, 1.5 mg/L of nickel, and 2.5 mg/l of zinc. The experimental results demonstrate that EC is very efficient in removing oil and grease. For oil and grease removal, the best treatment and cost efficiency was obtained when using a combination of carbon steel and aluminum electrodes, at a detention time less than one minute, a flow rate of 1 L/min and 0.6 A/cm(2) of current density. The final effluent oil and grease concentration, before filtration, was always less than 10 mg/L. For heavy metal removal, the combination of aluminum and carbon steel electrodes, flow rate of 1 L/min, effluent recycling, and 7.5 amps produced 99% zinc removal efficiency. Copper and nickel are harder to remove, and a removal efficiency of 70% was achieved. PMID:24908614

Rincón, Guillermo J; La Motta, Enrique J

2014-11-01

157

Influence of the civil construction debris layer in heavy metals removal of the leachate submitted to recirculation in landfill  

Directory of Open Access Journals (Sweden)

Full Text Available Little is known about the ability of stabilized organic matter (old MSW and construction waste (RCC to retain heavy metals from leachate generated in landfills. The objective of this study was to assess the potential of MSW to remove old heavy metals in MSW leachate produced by freshly collected, and the effect of RCC in the concentration of heavy metals in effluents from MSW old. In three columns (CR, put a layer of RCC and then MSW old and, on the other three (SR, only MSW old. Analyzed in the leachate and effluent pH, EC, BOD and metals Zn, Cd, Cu and Pb. There were similar and efficient removal of BOD and heavy metals in both treatments. The presence of the layer of RCC was considered important to the overall improvement in effluent quality, but did not influence the concentration of metals in the effluent. The order of retention of metals in the columns was: Cu ~ Pb> Cd> Zn. With the exception of Cd and Zn, all other variables assessed in the effluent were below the maximum standards set in DN 01.08 COPAM / CERH for release effluent into water bodies.

Maike Rossmann

2010-08-01

158

Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells  

Directory of Open Access Journals (Sweden)

Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

Mokhlesur M. Rahman

2014-05-01

159

Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria  

Directory of Open Access Journals (Sweden)

Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms ? microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called ?sulfuretum?. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, ?obov locality and metallurgic plants (works Krompachy by use of the activity of SRB, mixed strains were isolated, cultivated, and their production of hydrogen sulphide was assessed. The cultures were then tested for the ability to precipitate copper and sulphates from a model solution.The bacteria were isolated from water samples from two localities: Východoslovenské ?eleziarne (works ? VS? and spring Gajdovka ? Gj. Isolation, cultivation and eliminating Cu2+ and SO42- was carried out under following conditions: statically, temperature 30 oC, pH 7,5, nutrient medium by J. Postgate (medium B, C and D and anaerobic conditions. Residual copper in the solution was measured by atomic absorption photometry. The concentracion of sulphates in the solution was measured by the nefelometric method.Our findings from the isolation of SRB from two Slovak water samples and testing the cultures for their ability to remove copper permit the following conclusions: SRB occur in sufficient numbers in sulphur mineral water from natural sources and in industrial waste waters reservoirs, the sulphate-reducing activity can be harnessed for the purification of some industrial waste waters.The nature possesses a great biological potential that can be exploited under certain conditions in the cleanup of environmental pollution resulting from the industrial activity in the past and present.

Ku?nierová Mária

2000-09-01

160

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

Science.gov (United States)

An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

Gay, E.C.

1995-10-03

 
 
 
 
161

Simultaneous removal of several heavy metals from aqueous solution by natural limestones  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Four natural limestone samples, collected from the Campanian-Maastrichtian limestones, Tunisia, were used as adsorbents for the removal of toxic metals in aqueous systems. The results indicated that high removal efficiency could be achieved by the present natural limestones. Among the metal ions studied, Pb2+ was the most preferably removed cation because of its high affinity to calcite surface. In binary system, the presence of Cu2+ effectively depressed the sorption of Cd2+ and Zn2+. Simila...

Sdiri A.; Higashi T.

2014-01-01

162

Removal of Heavy Metals from Industrial Wastewaters Using Local Alum and Other Conventional Coagulants-A Comparative Study  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The present study aimed at effective management and purification of industrial wastewaters using cheaper and locally available local alum for removal of heavy metals as a substitute to convectional coagulants. The effect of local alum, aluminum sulphate and ferric chloride on the metal contents of industrial wastewaters was investigated in the pH range of 5.9-7.5. Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminu...

Ogunfowokan, A. O.; Durosinmi, L. M.; Oyekunle, J. A. O.; Ogunkunle, O. A.; Igbafe, I. T.

2007-01-01

163

Removal of heavy metals from industrial wastewaters using amine-functionalized nanoporous carbon as a novel sorbent  

International Nuclear Information System (INIS)

Nano-porous carbon (NPC) was synthesized by hydrothermal condensation of fructose and characterized by X-ray powder diffraction and also nitrogen adsorption analysis. It was then modified with amino groups and used as a sorbent for the removal of heavy metal ions. The formation of amino-modified NPC was confirmed by X-ray powder diffraction, infrared spectroscopy, thermogravimetric and elemental analysis. NPC was applied for removal of Pb(II), Cd(II), Ni(II) and Cu(II) ions. The effects of sample pH and the adsorption kinetics were studied, and the adsorption capacity was determined. The sorbent was applied to the removal of heavy metal ions in industrial waste water samples. (author)

164

Removal Efficiency of Heavy Metals Using Various Resins and Natural Materials  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Heavy metals found in local water are an environmental concern. These metals are potentially harmful since they can bio-accumulate in organisms and have been classified as toxic and/or carcinogenic. In this study, water was collected from a shipyard located on a bayou. Various materials (chitosan, mixed bed and amphoteric resins) were tested to determine their efficiency for metal remediation. Inductively coupled plasma mass spectrometry (ICP/MS) was used to quantify the efficiency of t...

Cochran, M.; Beck, C. L.; Bruns, M. P.; Vaughan, P. P.

2012-01-01

165

Immobilization of Thiadiazole Derivatives on Magnetite Mesoporous Silica Shell Nanoparticles in Application to Heavy Metal Removal from Biological Samples  

International Nuclear Information System (INIS)

In this report magnetite was synthesized by a coprecipitation method, then coated with a layer of silica. Another layer of mesoporous silica was added by a sol-gel method, then 5-amino-1,3,4-thiadiazole-thiol (ATT) was immobilized onto the synthesized nanoparticles with a simple procedure. This was followed by a series of characterizations, including transmission electron microscopy (TEM), FT-IR spectrum, elemental analysis and XRD. Heavy metal uptake of the modified nanoparticles was examined by atomic absorption spectroscopy. For further investigation we chose Cu2+ as the preferred heavy metal to evaluate the amount of adsorption, as well as the kinetics and mechanism of adsorption. Finally, the capacity of our nanoparticles for the heavy metal removal from blood was shown. We found that the kinetic rate of Cu2+ adsorption was 0.05 g/mg/min, and the best binding model was the Freundlich isotherm.

166

Simultaneous removal of several heavy metals from aqueous solution by natural limestones  

Directory of Open Access Journals (Sweden)

Full Text Available Four natural limestone samples, collected from the Campanian-Maastrichtian limestones, Tunisia, were used as adsorbents for the removal of toxic metals in aqueous systems. The results indicated that high removal efficiency could be achieved by the present natural limestones. Among the metal ions studied, Pb2+ was the most preferably removed cation because of its high affinity to calcite surface. In binary system, the presence of Cu2+ effectively depressed the sorption of Cd2+ and Zn2+. Similarly Cu2+ strongly competed with Pb2+ to limestone surface. In ternary system, the removal further decreased, but considerable amount of Pb2+ and Cu2+ still occurred regardless of the limestone sample. The same behavior was observed in quadruple system, where the selectivity sequence was Pb2+ > Cu2+ > Cd2+ > Zn2+. From these results, it was concluded that the studied limestones have the required technical specifications to be used for the removal of toxic metals from wastewaters.

Sdiri A.

2014-07-01

167

Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters  

Energy Technology Data Exchange (ETDEWEB)

Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N{sub 2} at 77 K adsorption, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was {proportional_to}94% for Cd{sup 2+}, {proportional_to}92% for Cu{sup 2+}, {proportional_to}99% for Pb{sup 2+}, {proportional_to}97% for Zn{sup 2+}, {proportional_to}100% for NO{sub 3}{sup -} and {proportional_to}77% for PO{sub 4}{sup 3-} ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

Chiban, Mohamed; Soudani, Amina; Sinan, Fouad [Department of Chemistry, Faculty of Sciences, Agadir (Morocco); Tahrouch, Saida [Department of Biology, Faculty of Sciences, Agadir (Morocco); Persin, Michel [European Membrane Institute, CRNS, Montpellier (France)

2011-04-15

168

Optimization of pH and Retention Time on the Removal of Nutrients and Heavy Metal (Zinc) Using Immobilized Marine Microalga Chlorella marina  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The interaction of phosphorus and nitrogen on their removal by microalgae can be of great concern during their role as bioremediant of waste water. Microalgae play an imperative role in nutrient and heavy metal removal in wastewater by their biosorption mechanisms. The study was attempted to optimize the pH and retention time for nutrient and heavy metal (zinc) removal from aqueous solutions using immobilized marine microalga Chlorella marina as beads and powder. The study inferred tha...

Shenbaga Devi, A.; Ananth, S.; Nandakumar, R.; Jayalakshmi, T.; Santhanam, P.; Dinesh Kumar, S.; Balaji Prasath, B.

2013-01-01

169

Removal of Heavy Metal Ions (Pb2+, Cu2+ in Aqueous Solutions by Pterygota macrocarpa Sawdust  

Directory of Open Access Journals (Sweden)

Full Text Available The purpose of this study is the use of Pterygota macrocarpa sawdust as adsorbent for lead and copper removal into aqueous acid solutions. The results showed that the rate of removal is better for particle sizes lower than 0.5 mm, in the metal solutions at pH 3. The Langmuir, Freundlich and Temkin isotherms studies were allowed to determine the maximum capacity of adsorption of the sawdust; it is 115.61 and 24.02 mg g-1 for the lead and cooper removal, respectively. This study also showed that the metal ions removal is accompanied by a releasing of K+, Ca2+ and Mg2+ in the metal solutions. This use could constitute a way of valorisation of the sawdust, a main waste of the wood industry.

K. Adouby

2007-01-01

170

Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The effects of varying operating conditions on metals removal from aqueous solution using a novel platinum nanopartcles/Zeolite-4A adsorbent are reported in this paper. Characterization of the adsorbent showed successful production of platinum nanopartcles on Zeolite-4A using 3 Wt% platinum. The effects of operation conditions on metals removal using this adsorbent were investigated. The optimal metals adsorption was observed at pH 7, 0.1 g/10 mL dosage and 30 min contact time. Sorption data ...

Mehdizadeh, Sofia; Sadjadi, Sodeh; Ahmadi, Seyed Javad; Outokesh, Mohammad

2014-01-01

171

Design and simulation of an activated sludge unit associated to a continuous reactor to remove heavy metals  

Energy Technology Data Exchange (ETDEWEB)

A software was developed to design and simulate an activated sludge unit associated to a new technology to remove heavy metals from wastewater. In this process, a continuous high efficiency biphasic reactor operates by using particles of activated peat in conjugation with the sludge unit. The results obtained may be useful to increase the efficiency or to reduce the design and operational costs involved in a activated sludge unit. (author). 5 refs., 2 tabs.

D`Avila, J.S.; Nascimento, R.R. [Ambientec Consultoria Ltda., Aracaju, SE (Brazil)

1993-12-31

172

Heavy Metals Removal in Aqueous Solution by Activated Carbons Prepared from Coconut Shell and Seed Shell of the Palm Tree  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The purpose of this study is to convert locally vegetal materials such as coconut shell and seed shell of palm tree, which are low-cost, renewable and widely available into inexpensive adsorbent materials for heavy metal copper, lead and zinc removal from wastewater. Both raw materials were chemically activated by phosphoric acid (H3PO4). Various parameters such as adsorbent dose, pH and activation temperature of carbon were studied to establish optimum adsorption condit...

Gueu, S.; Yao, B.; Adouby, K.; Ado, G.

2006-01-01

173

MECHANISMS OF HEAVY METAL REMOVAL FROM ACID MINE DRAINAGE USING CHITIN  

Science.gov (United States)

Acid Mine Drainage (AMD) emanating from inactive or active mine sites contains elevated levels of toxic heavy metals, which can have an adverse impact to the surrounding environment. The major pathway involved in generation of AMD is weathering of pyritic mineral ores, where in s...

174

Preparation and characterization of polyethyleneglycolmethacrylate (PEGMA)-co-vinylimidazole (VI) microspheres to use in heavy metal removal.  

Science.gov (United States)

Polyethyleneglycolmethacrylate (PEGMA) and vinylimidazole (VI) were used in order to obtain microspheres of PEGMA-VI copolymers that can be used in heavy metal removal applications. The obtained copolymers were characterized and their use as sorbents in heavy metal removal was investigated. In the first part of the study, PEGMA-VI microspheres were prepared by suspension polymerization method. The obtained swellable microspheres with 10-50 microm average diameter did not have permanent porosity according to the morphological and physicochemical determinations. The sizes of microspheres became smaller with increasing VI and cross-linker ethyleneglycoldimethacrylate (EGDMA) contents and increasing agitation rate. The VI content, EGDMA ratio, pH and ionic strength were determined as the effective parameters on the swelling behavior of PEGMA-VI microspheres. In the second part of the study, Cu(II) ions were used as a model species in order to investigate the usability of the obtained PEGMA-VI microspheres in heavy metal removal. Adsorption capacities under optimum conditions were determined. The Cu(II) ion adsorption capacity increased by increasing the initial Cu(II) ion concentration, and it reached the maximum value (i.e., 30 mg Cu(II)/g PEGMA-VI microspheres) at 400 mg Cu(II)/L initial Cu(II) ion concentration under the determined optimum conditions. Microspheres were found to be reusable after desorption for several times. PMID:18620805

U?uzdo?an, Erdal; Denkba?, Emir Baki; Oztürk, Eylem; Tuncel, S Ali; Kabasakal, Osman S

2009-03-15

175

Removal of Heavy Metals from Simulated Wastewater Using Physically and Chemically Modified Palm Shell Activated Carbon  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The purpose of the present study is to investigate the adsorption efficiency of Activated Carbons (AC) derived from oil palm shell in an adsorption column for removal of beryllium, calcium, cadmium, cobalt, chromium, copper, iron, lithium, magnesium, manganese, molybdenum, nickel, lead, antimony, strontium, titanium, vanadium and zinc ions from aqueous solution. Three types of adsorbent were used for the metal removal, which undergoes physical and/or chemical tre...

Nur Azreen Fuadi; Ahmmed Saadi Ibrahem; Kamariah Noor Ismail

2014-01-01

176

Fungal Biomass as Biosorbent for Removal of Heavy Metal from Industrial Wastewater Effluent  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, selective biosorption of Cu ions by micro-organism from industrial wastewater were investigated. Micro-organism was isolated and in the study a micro-organism which was identified as A. lentulus was used. In this study, the effects of dilution and nutrient supplementation for efficient Cu(II removal from effluents and initial concentration of metal ion on the biosorption capacity were investigated. Under supplementations, comparatively faster Cu(II removal by Aspergillus lentulus was observed resulting in 97-99.8% removal in 120 h.

Shipra Jha

2014-01-01

177

Removal of heavy metals from Water Rinsing of Plating Baths by Electrodialysis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

During the chromic plating of parts, the baths become more and more poor in chromic acid and rich in metallic impurities such as Cu2+, Zn2+, Fe3+ and Cr3+ which makes the bath useless. Also, the water used to rinse parts contains chromic acid and metallic impurities. As it is known that chromic acid is relatively expensive and very toxic, so its recovery has double interest: economic and environmental. Its reuse is possible after removal of metallic impurities. In this work, we studied the po...

Delimi R.; Boutemine N.; Benredjem Z.

2013-01-01

178

Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests  

Science.gov (United States)

Experimental and modeling investigations were conducted to examine the effect of hydrogen peroxide treatment on hydrothermally produced biochar (hydrochar) from peanut hull to remove aqueous heavy metals. Characterization measurements showed that hydrogen peroxide modification increased the oxygen-c...

179

Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate  

International Nuclear Information System (INIS)

The effectiveness and mechanisms of naphthalene and metal removal from artificially contaminated soil by FeEDTA/FeEDDS-activated persulfate were investigated through batch experiments. Using FeEDTA-activated persulfate, higher naphthalene removal from the soil at 7 h was achieved (89%), compared with FeEDDS-activated persulfate (75%). The removal was mainly via the dissolution of naphthalene partitioned on mineral surfaces, followed by activated persulfate oxidation. Although EDDS is advantageous over EDTA in terms of biodegradability, it is not preferable for iron chelate-activated persulfate oxidation since persulfate was consumed to oxidize EDDS, resulting in persulfate inadequacy for naphthalene oxidation. Besides, 55 and 40% of naphthalene were removed by FeEDTA and FeEDDS alone, respectively. Particularly, 21 and 9% of naphthalene were degraded in the presence of FeEDTA and FeEDDS alone, respectively, which caused by electrons transfer among dissolved organic matter, Fe2+/Fe3+ and naphthalene. Over 35, 36 and 45% of Cu, Pb and Zn were removed using FeEDTA/FeEDDS-activated persulfate. -- Highlights: ? FeEDTA/FeEDDS-activated persulfate oxidation removed PAH and heavy metal from soil. ? More naphthalene was removed by FeEDTA-activated persulfate compared to FeEDDS. ? Persulfate was consumed to oxidize EDDS in FeEDDS-activated persulfate oxidation. ? Metals can be extracted from soil by free EDTA/EDDS dissociated from FeEDTA/FeEDDS. Naphthalene oxidation can be induced by e? transfer among Fe2+, DOM and naphthalene. -- This study focuses on the potencies and mechanisms of naphthalene and metal removal from contaminated soil by FeEDTA/FeEDDS-activated persulfate

180

Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Concentrations of trace metallic element as well as macronutrients were measured in water and plants from pond water. The aquatic macrophyte Salvinia sp. was evaluated for its trace metals removal potential in river water under laboratory conditions. The experiment were performed using several healt [...] hy acclimatized plants Salvinia sp. The water and grown plants were collected from ponds. For the trace element removal´s test, 30-35 grams of fresh aquatic plants were grown in river water into a greenhouse for ten weeks. Control plants were also grown during the experiment. Every two weeks, both plants and water samples were collected. After the end of each experiment, the growth rate was calculated. Trace element concentrations in plants and pond water were obtained using TXRF techniques. Values for the elements (K, Ca, Ti, Fe, Cr, Mn, Cu, Zn and Sr) concentrations in plant dry weight have been obtained after deducting metal contents of control plants. For each trace element, the aquatic Salvinia sp. plant showed to possess different affinity for the incorporation of the metals in its biomass. Results suggest the use of aquatic macrophytes Salvinia sp. for metal abatement in dilute wastewaters.

F. R., Espinoza-Quiñones; C. E., Zacarkim; S. M., Palacio; C. L., Obregón; D. C., Zenatti; R. M., Galante; N., Rossi; F. L., Rossi; I. R. A., Pereira; R. A., Welter; M. A., Rizzutto.

2005-09-01

 
 
 
 
181

Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water  

International Nuclear Information System (INIS)

Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the ?-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions. - Highlights: ? Optimization of radiation dose for grafting reaction of polyethylene with binary monomers. ? Chelating functionalization of grafted film with various amine compounds. ? Characterization of both grafted and chelating functionaliz grafted and chelating functionalized films. ? Proposed mechanism for both grafting and chelating functionalization reaction. ? Application of the synthesized films for the removal of arsenic and some heavy metals from contaminated water.

182

Innovative developments in the selective removal and reuse of heavy metals from wastewaters  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Sulphide precipitation of heavy metal containing wastewaters results in low effluent concentrations. However, sulphide precipitation is not widely applied in practice because the dosing of sulphide cannot adequately be controlled. A new process was developed where the combination of a sulphide-selective electrode (pS-electrode) and pH electrode controls the sulphide addition. Precipitation experiments were performed on a laboratory-scale in batch and continuous reactor systems with synthetic ...

Veeken, A. H. M.; Rulkens, W. H.

2003-01-01

183

Removal of heavy metals from sewage sludge by extraction with organic acids  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable treatment because it recycles both nutrients and organic matter. However the high levels of heavy metals in sludge frequently prevent the reuse of sludge compost in agriculture. The extraction of hea...

Veeken, A.; Hamelers, B.

1999-01-01

184

Removal of heavy metals and dyes by supported nano zero-valent iron on barium ferrite microfibers.  

Science.gov (United States)

The binary nano zero-valent iron/barium ferrite (NZVI/BFO) microfibers with uniform diameters and high porosity were prepared by the organic gel-thermal selective reduction process. The composite microfibers are fabricated from nano zero-valent iron and nano BaFe12O19 grains. The effects of pH, adsorbent dosage, and contact time on the adsorption of heavy metals and dyes have been investigated. The adsorption isotherms of heavy metals and dyes on the microfibers are well described by the Langmuir model, in which the estimated adsorption capacities are 14.5, 29.9, 68.3 and 110.4 mg/g for Pb(II), As(V), Congo red and methylene blue, respectively. After five cycles, these microfibers still exhibit a high removal efficiency for As(V), Pb(II), Congo red and methylene blue. The enhanced adsorption characteristics can be attributed to the porous structure, strong surface activity and electronic hopping. Therefore, the magnetic NZVI/BFO microfibers can be used as an efficient, fast and high capacity adsorbent for heavy metals and dyes removal. PMID:24758012

Yang, Xinchun; Shen, Xiangqian; Jing, Maoxiang; Liu, Ruijiang; Lu, Yi; Xiang, Jun

2014-07-01

185

Optimization of pH and Retention Time on the Removal of Nutrients and Heavy Metal (Zinc Using Immobilized Marine Microalga Chlorella marina  

Directory of Open Access Journals (Sweden)

Full Text Available The interaction of phosphorus and nitrogen on their removal by microalgae can be of great concern during their role as bioremediant of waste water. Microalgae play an imperative role in nutrient and heavy metal removal in wastewater by their biosorption mechanisms. The study was attempted to optimize the pH and retention time for nutrient and heavy metal (zinc removal from aqueous solutions using immobilized marine microalga Chlorella marina as beads and powder. The study inferred that pH 6 was found to optimum for removal of all nutrients except nitrite. However, for heavy metal removal, the pH 8 was found to be suitable for biosorbent studies. Further, the present experiment inferred that the 24 h incubation was enough for nutrients and zinc removal while using immobilized microalga C. marina beads.

A. Shenbaga Devi

2013-01-01

186

An intelligent displacement pumping film system: a new concept for enhancing heavy metal ion removal efficiency from liquid waste.  

Science.gov (United States)

A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (?-Zr(HPO4)2; ?-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni(2+) ions from wastewater. It is expected that the space between ?-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni(2+) ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni(2+) ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni(2+) ions and/or other heavy metal ions from wastewater in various industrial processes. PMID:24813663

Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti

2014-06-15

187

[Research on low-level Hg(II) removal from water by the heavy metal capturing agent].  

Science.gov (United States)

Treatment of mercury containing wastewater using conventional approach is considered to be difficult to bring down its concentration to meet the discharge standard. In this study, we utilized dithiocarbamate (DTCR-2), 2,4,6-trimercaptotriazine(TMT-18B), Na2S and Ca(OH)2+ as the advanced treatment agents to remove low-level Hg2+ from water. Due to its better treatment effect, DTCR-2 was finally chosen as the most ideal option. The influence of pH value, dosage of DTCR-2, reaction time, initial Hg2+ concentration as well as other heavy metal ions on the Hg2+ removal were studied. The results showed that DTCR-2 had high removal efficiency under the following conditions: 100 microg x L(-1) of initial Hg2+ concentration, pH 8.0, 1.0 times stoichiometric ratio of DTCR-2 dosage and 10 min of reaction time, leading to 41.36 microg x L(-1) of residual Hg2+ concentration which was below the national discharge standard (50 microg x L(-1)). Moreover, three heavy metal ions including Cd2+, Pb2+ and Cu2+, inhibited the DTCR-2 capturing capacity towards Hg2+ and the inhibition effects followed this order: Cu2+ > Pb2+ > Cd2+, while Zn2+ promoted the Hg2+ removal. From this study, we could provide theoretical support for process design to deal with wastewater containing low mercury concentration using DTCR-2. PMID:24288994

Hu, Yun-jun; Sheng, Tian-tian; Xue, Xiao-qin; Tan, Li-sha; Xu, Xin-hua

2013-09-01

188

Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sediments  

DEFF Research Database (Denmark)

Comparisons of cell and stack designs for the electrodialytic removal of heavy metals from two harbour sediments, were made. Multivariate modelling showed that sediment properties and experimental set-ups had the highest influence on the heavy metal removal indicating that they should be modelled and analysed separately. Clean-up levels of Cu, Pb and Zn were significantly higher for the cell designs, implying that longer time and relatively more electric charge and energy would be necessary to achieve similar clean-up levels in the stack design experiments.In the studied experimental domain, the optimal current density for the 2- and 3-compartment cells was 0.12mA/cm2 (center value) removing the highest quantity of Cu, Pb and Zn per Wh. The highest percentages removed were 82% Cu, 81% Pb and 92% Zn were however achieved at higher current density. For the stack experiments conducted at same electric charge per unit sediment, energy consumption was a magnitude higher and the highest clean-up levels were 21% Cu,42% Pb and 73% Zn.

Pedersen, Kristine B.; Ottosen, Lisbeth M.

2014-01-01

189

Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans  

International Nuclear Information System (INIS)

Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application

190

Determination of Heavy Metal Removal Efficiency of Chrysopogon zizanioides (Vetiver using Textile Wastewater Contaminated Soil  

Directory of Open Access Journals (Sweden)

Full Text Available A pot culture study was conducted using textile wastewater contaminated soil which was amended with Vermicompost (VC in various proportions for a period of two months. The plant used for the study was Chrysopogon zizanioides (Vetiver to investigate the accumulation of heavy metals in their roots. Physico-chemical parameters like pH, EC, TKN, P, K, TOC and metals like Pb, Cd and Cu and microbial population of the textile wastewater contaminated soil were analyzed initially (0 day and finally (60th day. The growth parameters of vetiver like root length, shoot length, fresh weight and dry weight were also recorded initially and finally. Based on the data C. zizanioides (Vetiver tolerated and accumulated the greatest amount of heavy metals. C. zizanioides could uptake more lead than the other metals. The effect of vermicompost on the growth of C. zizanioides showed that the biomass was increased when the vermicompost concentration was increased. The microbial population like bacteria, actinomycetes and fungi was more in the rhizosphere soil than in non-rhizosphere soil.

P. Lakshmanaperumalsamy

2011-01-01

191

Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water  

Science.gov (United States)

Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the ?-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions.

Chowdhury, M. N. K.; Khan, M. W.; Mina, M. F.; Beg, M. D. H.; Khan, Maksudur R.; Alam, A. K. M. M.

2012-10-01

192

Fabrication of chelating diethylenetriaminated pan micro and nano fibers for heavy metal removal  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, commercial acrylic fibers were modified with diethylenetriamine to prepare metal chelating fibers. The effects of process parameters on the efficiency of the reaction were investigated. FTIR spectroscopy and TGA analysis were used to confirm the chemical changes made to the fibers during the reaction. The ability of the modified fibers for removal of Pb (II, Cu (II and Ce (IV ions from aqueous media was determined. The modified fibers showed a slight decrease in mechanical properties compared to raw ones. Furthermore, the acrylic micro fibers were electrospun to nanofibers and the ability of modified nanofibers for the adsorption of the metal ions was studied.

Abdouss Majid

2012-01-01

193

Heavy metals removal from wastewaters using organic solid waste-rice husk.  

Science.gov (United States)

In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5-6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g(-1), respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15-20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed. PMID:23381799

Sobhanardakani, S; Parvizimosaed, H; Olyaie, E

2013-08-01

194

Functional Oxide Nanomaterials and Nanocomposites for the Removal of Heavy Metals and Dyes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Water scarcity and its contamination with toxic metal ions and organic dyes represent a serious worldwide problem in the 21st century. A wide range of conventional approaches have been used to remove these contaminants from waste. Recently, nanotechnology has been given great scope for the fabrication of desirable nanomaterials with large surface-to-volume ratios and unique surface functionalities to treat these pollutants. Amongst these, oxide-based nanomaterials emer...

Sarika Singh; Barick, K. C.; Bahadur, D.

2013-01-01

195

Removal of heavy metals using different polymer matrixes as support for bacterial immobilisation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Great attention is focused on the microbial treatment of metal contaminated environments. Three bacterial strains, 1C2, 1ZP4 and EC30, belonging to genera Cupriavidus, Sphingobacterium and Alcaligenes, respectively, showing high tolerance to Zn and Cd, up to concentrations of 1000 ppm, were isolated from a contaminated area in Northern Portugal. Their contribution to Zn and Cd removal from aqueous streams using immobilised alginate, pectate and a synthetic cross-linked polymer was assessed. I...

Pires, Carlos; Marques, Ana P. G. C.; Guerreiro, Anto?nio; Magan, Naresh; Castro, Paula M. L.

2011-01-01

196

Fungal Biomass as Biosorbent for Removal of Heavy Metal from Industrial Wastewater Effluent  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study, selective biosorption of Cu ions by micro-organism from industrial wastewater were investigated. Micro-organism was isolated and in the study a micro-organism which was identified as A. lentulus was used. In this study, the effects of dilution and nutrient supplementation for efficient Cu(II) removal from effluents and initial concentration of metal ion on the biosorption capacity were investigated. Under supplementations, comparatively ...

Shipra Jha; Ritu Chauhan; Dikshit, S. N.

2014-01-01

197

Fabrication of chelating diethylenetriaminated pan micro and nano fibers for heavy metal removal  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study, commercial acrylic fibers were modified with diethylenetriamine to prepare metal chelating fibers. The effects of process parameters on the efficiency of the reaction were investigated. FTIR spectroscopy and TGA analysis were used to confirm the chemical changes made to the fibers during the reaction. The ability of the modified fibers for removal of Pb (II), Cu (II) and Ce (IV) ions from aqueous media was determined. The modified fibers showed a slight decrease in mechan...

Abdouss Majid; Shoushtari Mousavi Ahmad; Haji Aminoddin; Moshref Behnam

2012-01-01

198

Accumulation of Heavy Metal Ions from Tanneries Wastes: An Approach For Chromium Removal Using Activated Charcoal  

Directory of Open Access Journals (Sweden)

Full Text Available The environment is under increasing pressure from solid and liquid wastes emanating from the leather industry. These are inevitable by-products of the leather manufacturing process and causes significant pollution unless treated in some way prior to discharge. The tanneries wastes samples were collected from Lahore Pakistan. The samples were digested by wet oxidation method and the concentrations of metals: Cr, Co, Cu, Cd, Mn, Zn, Ni and Pb were estimated in sediments and liquid waste samples by atomic absorption spectrophotometer. The results show that the concentrations of these metals were higher than the values given by the national environmental quality standards. Selective separation of Cr ion from other metals was investigated in sediment sample TS2 by adsorption method using low cost natural adsorbent activated charcoal. The adsorption studies were carried out under the optimized conditions of adsorption like pH, shaking time and amount of adsorbent. The concentration of Cr after removal was determined by atomic absorption spectrophotometer. The adsorption equilibrium data were fitted in adsorption isotherm equations like: Freundlich, and Dubinin-Radushkevich equations at temperatures ranges from 303 to 318 K. Thermodynamic parameters ?H, ?S and ?G were also calculated. The values of sorption free energy were estimated by employing D-R equation. The percent removal data show that about 99% removal was achieved by employing low cost adsorbent. This method can be employed on industrial scale for the treatment of solid and liquid waste before discharge into the main streams.

H. Tahir

2012-09-01

199

Modification of Salix americana willow bark for removal of heavy metal ions from aqueous solutions  

Directory of Open Access Journals (Sweden)

Full Text Available Salix americana willow bark is a waste arising in the process of wicker decortication that so far has not found any practical application. The bark can adsorb metal ions, because in its composition among others are phenolic groups which may be involved in the removal of metal ions from water solutions. The results of sorption of copper(II and zinc(II on modified willow bark of Salix americana were presented. The bark was modified with nitric and sulfuric acids at concentrations ranging from 5 to 15%. The best adsorption results were obtained using 15% nitric acid for modification. Adsorption of metal ions from aqueous solutions at concentrations raging from 20 to 100 mg/dm3 was studied. It was found that an increase in the initial concentration of copper(II and zinc(II resulted in an increase in their adsorption on the modified cortex.

Rypi?ska Iwona

2014-12-01

200

Removal of heavy metals from Water Rinsing of Plating Baths by Electrodialysis  

Directory of Open Access Journals (Sweden)

Full Text Available During the chromic plating of parts, the baths become more and more poor in chromic acid and rich in metallic impurities such as Cu2+, Zn2+, Fe3+ and Cr3+ which makes the bath useless. Also, the water used to rinse parts contains chromic acid and metallic impurities. As it is known that chromic acid is relatively expensive and very toxic, so its recovery has double interest: economic and environmental. Its reuse is possible after removal of metallic impurities. In this work, we studied the possibility of metallic impurities elimination from the chromic acid. The influence of the current density and the circulating solution flow rate on the process efficiency has been studied. The elimination rates obtained in the presence of ion exchange textile are superior to those obtained in the absence of textile. The analysis of the results showed that for the three metallic impurities studied (Cu2+, Fe3+ and Zn2+, the purification rate increases versus the applied current density and solution flow rate. The importance of the elimination of the three metal cations is as the following order: Cu2+ >Zn2+ >Fe3+.

Delimi R.

2013-04-01

 
 
 
 
201

The use of ionizing radiation and ion exchange resins in the removal of heavy metals from waste water  

International Nuclear Information System (INIS)

The removal of heavy metal ions from waste water using gamma-radiation and a polymeric membrane prepared by radiation graft copolymerization of vinyl acetate (VAc) onto low density polyethylene films was investigated for the cases of zinc and iron ions. These metal ions were reduced by the hydrated electrons and hydrogen atoms to lower or zero valence state and eventually precipitate out of solution. parameter analysis includes the effect metal ion concentration, Ph, degree of grafting and irradiation dose. The maximum precipitation of the unirradiated metal ions was achieved at Ph 10, while the least precipitation occurred at Ph 3. Irradiation at Ph 5.5 resulted in more precipitation of iron than zinc. Both elements were adsorbed by different adsorbents granular activated carbon (GAC), powdered activated carbon (PAC), amberlite IR-120 plus, dowex-1- exchangers and grafted membranes). The combined treatment by irradiation plus adsorption showed more removal percent, especially for powdered activated carbon (PAC). Also, the grafted membranes showed a removal percent of 98% at high degree of grafting

202

The application of polymer inclusive membranes for removal of heavy metal ions from waste solutions  

Directory of Open Access Journals (Sweden)

Full Text Available Purpose: The aim of the conducted studies was to determine the possibility of selective separation and precipitation of metal ions from polimetalic solution containing nickel(II, cobalt(II, cadmium(II and zinc(II cations using polymer inclusive membranes. 1-decylimidazole was used in membrane as a carrier of ions. The influence of chloride anions concentration on the process has also been investigated.Design/methodology/approach: Polymer inclusive membranes (PIM containing cellulose acetate as a matrix, orto-nitrophenyl octyl ether (ONPOE as a plasticizer and 1-decylimidazole as a carrier were used in investigations. The membrane processes were carried out in a membrane module for 24 hours.Findings: The results obtained point out a significant influence of chloride anions concentration on separation process of certain metal ions. It was observed that zinc(II ions are isolated most effectively from the solution containing 2M of chloride anions. About 88% of Zn(II, 5.5% of Co(II, 6.5% of Cd(II and below 1% of Ni(II were separated from such a solution.Research limitations/implications: The obtained results show that it is possibility of the selective extraction of heavy metal ions from polymetallic chloride solutions in membrane processes. The aqueous solution containing 2M of chloride ions was used in the investigation.Practical implications: The results show that Zn(II can be effectively recovered from solutions containing Co(II, Cd(II and Ni(II. This process would allow the utilization of waste solutions containing the heavy metal ions. The results of the study presented in the paper can be used in the utilization process of the spent batteries and accumulators.Originality/value: The innovative issue shown in this paper concerns the usage of 1-decylimidazole in selective separation of nickel(II, cobalt(II, cadmium(II and zinc(II ions in membrane process using PIM.

B. Gajda

2012-12-01

203

Efficient removal of the organochlorine pesticide and heavy-metal residues in Epimedium brevicornum Maxim by supercritical fluid extraction.  

Science.gov (United States)

A method involving depuration of 12 organochlorine pesticides (OCPs) and 7 heavy metals from Epimedium brevicomum Maxim was developed using supercritical fluid extraction (SPE). The pesticides in the study consisted of alpha, beta-, gamma-, and delta-Benzene hexachloride, Pentachloronitrobenzene (PCNB), Pentachloroaniline (PCA), Heptachlor (HEPT), Methyl -pentachlorophenyl sulfide (MPCPS), pp'-DDE[1,1-dichloro-2, 2-bis (p-chlorophenyl) ethylene], op'-DDT [1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane], pp'-DDD [1,1-dichloro-2-2-bis(p-chlorophenyl)]ethane, pp'-DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane]. A series of experiments was conducted to optimize the final extraction conditions as following: pure CO2, extraction pressure of 15 Mpa, extration temperature of 60 degrees C, extraction time of 10 min, flow rate at 55 kg/h. A GC method with electron capture detection was employed to determination of the OCPs, and an atomic absorption spectrometry (AAS) was designed for the determination of 7 heavy metals including of Pb, Cd, Cu, Fe, Zn, As, Hg in Epimedium brevicomum Maxim. A HPLC method was developed for the quantitative determination of active constituents. The SFE was used to remove the organochlorine pesticide and heavy metals from Epimedium brevicornum Maxim, receiving high decontamination rate of pesticide residue and low loss of active constituents. PMID:18254243

Zhao, Chunjie; Bai, Lu; Li, Huanxin; Li, Fei; Xin, Chunhong

2007-12-01

204

Molecular Characterization of Some Novel Marine Alicyclobacillus Strains, Capable of Removing Lead from a Heavy Metal Contaminated Sea Spot  

Directory of Open Access Journals (Sweden)

Full Text Available Sea water from heavy metal contaminated area in the Mediterranean, was analyzed for its heavy metal contents and their concentrations. It was observed that lead has the highest concentration (0.48 ppm among the remaining heavy metal concentrations. Four different Gram-positive, rod-shaped and spore forming Alicyclobacillus (formally Bacillus isolates were isolated from the same sea spot. Phenotypic characterization of pure cultures were examined for motility, Gram reaction, spore morphology, catalase and oxidase production. Scanning electron micrograph showed that cells of both strains were occurring singly or in short chains. Randomly Amplified Polymorphic DNA (RAPD analysis showed a great deal of differentiation among the isolates, revealing that each of them has its own DNA fingerprint. A dendrogram showing the genetic similarity among the sea isolates, clustered them into two main groups at 30% of genetic similarity. Partial sequencing of the 16S rDNA of 2, representative isolates revealed that both of them are novel Alicyclobacillus strains S2 and S4. The isolates had the ability to remove lead from contaminated solutions. A promising strain, S4, showed a valuable uptake levels, 64 and 65.3% at 0.5 and 0.9 ppm of pb2+, respectively, after only 2 h of exposure to lead. This strain can be later used efficiently for the bioremediation of lead in contaminated water bodies.

Eman A.H. Mohamed

2009-01-01

205

Removal of Heavy Metals from Simulated Wastewater Using Physically and Chemically Modified Palm Shell Activated Carbon  

Directory of Open Access Journals (Sweden)

Full Text Available The purpose of the present study is to investigate the adsorption efficiency of Activated Carbons (AC derived from oil palm shell in an adsorption column for removal of beryllium, calcium, cadmium, cobalt, chromium, copper, iron, lithium, magnesium, manganese, molybdenum, nickel, lead, antimony, strontium, titanium, vanadium and zinc ions from aqueous solution. Three types of adsorbent were used for the metal removal, which undergoes physical and/or chemical treatment. In physical treatment, raw palm shell was burned at 600°C for 5 h. All the adsorbents undergo physical treatment, with only the first adsorbent unblended, while the second adsorbent was blended. The third adsorbent underwent physical and chemical treatments where the physically treated AC was mixed with solvents for 24 h, then washed and dried. The solvent used for the third adsorbent were acetone and benzene. The results indicated that removal of metal ions by adsorption spawned different activities for different adsorbents. It is indicated that for overall adsorption efficiency, AC derived by combining physical and chemical treatment showed a maximum adsorption capacity with the least area under graph; 1371, calculated using trapezoidal equation. The physical treatment produced high carbon content by carbonization and high surface area by size reduction, while the chemical treatment enhanced the development of carbon surface by generating more pores, thus increasing the number of adsorption sites.

Nur Azreen Fuadi

2014-01-01

206

Removal of heteroatoms and metals from heavy oils by bioconversion processes  

Energy Technology Data Exchange (ETDEWEB)

Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

Kaufman, E.N.

1996-06-01

207

Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english This research focuses on understanding biosorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. A new composite biosorbent has been prepared by coating chitosan onto acid treated oil palm shell charcoal (AOPSC). Chitosan loading [...] on the AOPSC support is about 21% by weight. The shape of the adsorbent is nearly spherical with particle diameter ranging 100~150 µm. The adsorption capacity of the composite biosorbent was evaluated by measuring the extent of adsorption of chromium metal ions from water under equilibrium conditions at 25ºC. Using Langmuir isotherm model, the equilibrium data yielded the following ultimate capacity values for the coated biosorbent on a per gram basis of chitosan: 154 mg Cr/g. Bioconversion of Cr (VI) to Cr (III) by chitosan was also observed and had been shown previously in other studies using plant tissues and mineral surfaces. After the biosorbent was saturated with the metal ions, the adsorbent was regenerated with 0.1 M sodium hydroxide. Maximum desorption of the metal takes place within 5 bed volumes while complete desorption occurs within 10 bed volumes. Details of preparation of the biosorbent, characterization, and adsorption studies are presented. Dominant sorption mechanisms are ionic interactions and complexation.

Nomanbhay, Saifuddin M; Palanisamy, Kumaran.

2005-04-15

208

Application of chemically modified rice husk for the removal of heavy metals from aqueous solution.  

Science.gov (United States)

The removal efficiency of lead, cadmium and zinc from aqueous solution on adsorption by using rice husk, a non-conventional material in its natural and chemically modified form has been presented in this paper. It has been observed that rate of adsorption is dependent on the nature of the adsorbent, adsorbent dose, particle size of the adsorbent, concentration, pH, contact time, temperature, etc. Under identical experimental condition chemically modified rice husk was found to possess greater adsorption capacity for all metals than untreated rice husk and chemically modified rice husk ash. Chemically modified rice husk could remove 99.8% Pb, 95% Cd and 97% Zn from aqueous solution at room temperature. PMID:21114100

Kayal, N; Sinhia, P K; Kundu, D

2010-01-01

209

Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal  

International Nuclear Information System (INIS)

The influence of initial cation concentration, temperature and pH was investigated to optimize Pb2+, Cu2+ and Zn2+ removal from aqueous solutions using acid formaldehyde pre-treated chestnut shell as adsorbent. Experiments were planned according to an incomplete 33 factorial experimental design. Under the optimal conditions selected, the metal ion adsorption equilibrium was satisfactorily described by the Langmuir isotherm model. The maximum pre-treated chestnut shell adsorption capacity was obtained for Pb2+ ions, 8.5 mg g-1, and the order of cation affinity was Pb2+ > Cu2+ > Zn2+. A model that considered the effect of axial dispersion was successfully used to describe the fixed-bed adsorption behaviour of Pb2+, Cu2+ and Zn2+ ions at the flow rates essayed. Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopies showed that the functional groups involved in metal ions binding included carboxyl, hydroxyl, ether, alcoholic and amino groups.

210

Removal of heavy-metal pollutants from ground water using a reverse-osmosis/coupled-transport hybrid system  

International Nuclear Information System (INIS)

Two membrane processes - reverse osmosis (RO) and coupled transport (CT) - are useful in removing heavy metals from aqueous solutions and producing purified water. Each process has advantages. RO produces clean water reliably and relatively inexpensively. However, the pollutants are removed nonselectively and cannot be appreciably concentrated. CT removes pollutants selectively and can concentrate them by several orders of magnitude, but CT suffers from limited reliability and performs poorly at low pollutant concentrations. By combining these two unit processes in a hybrid process, it is possible to capitalize on the advantages of each process and to minimize their disadvantages. The RO/CT hybrid process the authors are developing removes more than 98% of the uranium and chromium in a contaminated groundwater stream - reducing concentrations of each pollutant to less than 100 ppb. These pollutants are simultaneously recovered as a concentrate at metal-ion concentrations greater than 1 wt% in relatively pure form. The hybrid process promises to be reliable and to reduce treatment costs below that for costs if either CT or RO were used alone. Even more importantly, the high selectivity of the hybrid process minimizes the volume of waste requiring disposal

211

Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater.  

Science.gov (United States)

Use of biological macromolecules for wastewater remediation process has become the topic of intense research mostly driven by growing concerns about the depletion of petroleum oil reserves and environmental problems. So in view of technological significance of cellulosic biopolymers in various fields, the present study is an attempt to synthesize cellulosic biopolymers based graft copolymers using free radical polymerization. The resulting cellulosic polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. Furthermore, modified cellulosic biopolymer was used in removal of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) toxic metal ions from wastewater. The effects of pH, contact time, temperature and metal ions concentration were studied in batch mode experiments. Langmuir and Dubinin-Radushkevich (D-R) models were used to show the adsorption isotherm. The maximum monolayer capacity qm calculated using Langmuir isotherm for Cu(2+), Zn(2+), Cd(2+), Pb(2+) metal ions were 1.209, 0.9623, 1.2609 and 1.295mmol/g, respectively. The thermodynamic parameters ?H° and ?G° values for metal ions adsorption on modified cellulosic biopolymer showed that adsorption process was spontaneous as well as exothermic in nature. PMID:24704540

Singha, A S; Guleria, Ashish

2014-06-01

212

Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars.  

Science.gov (United States)

Rice husk biochar (RHBC) and dairy manure biochar (DMBC) were prepared as sorbents for simultaneously removing Pb, Cu, Zn, and Cd from aqueous solutions. DMBC was more effective in removing all the four heavy metals than RHBC, with the removal capacities of above 486 mmol kg(-1) for each metal, much higher than those of RHBC (65.5-140 mmol kg(-1)). RHBC showed stronger competition for metal removal than DMBC when the four metals coexisted, with Pb the least affected and Cd the most inhibited. When each metal was 1mM in the multi-metal system, the metal removal by RHBC was reduced by 38.4-100%, much higher than that reduced by 2-40.9% for DMBC. The stronger competition for metals removal by RHBC was due to the fact that all metals competed only for the ionized phenolic-O(-) groups, while the removal of metals by DMBC resulted not only from the complexation with ionized hydroxyl-O(-) groups but also from the precipitation of metals with CO3(2-) and/or PO4(3-) that were rich in DMBC, resulting in less competition. The different mechanisms for the removal of metals by the two biochars were evidenced by the instrumental analysis of XRD, FTIR, and SEM as well as chemical modeling of Visual MINTEQ. Results indicated the waste biomass can be converted into value-added biochar as sorbents for removal of heavy metals and the removal ability varies with different biochar feedstock sources where the mineral components such as CO3(2-), PO4(3-) originated from the feedstock play an important role in the sorption nature of biochar. PMID:23591132

Xu, Xiaoyun; Cao, Xinde; Zhao, Ling

2013-08-01

213

High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions  

Science.gov (United States)

The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2.6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions.

Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

2013-07-01

214

Removal of Heavy Metals and Organic Contaminants from Aqueous Streams by Novel Filtration Methods  

Energy Technology Data Exchange (ETDEWEB)

The removal of hazardous waste, generated by the dismantling of nuclear weapons is a problem that requires urgent attention by the US Department of Energy. Low levels of radioactive contaminants combined with organic solvent residues have leaked from aging containers into the soil and underground water in the surrounding area. Due to the complexity of the problem, it is evident that traditional adsorption methods are ineffective, since the adsorbent tends to saturate with the aqueous component. It has become apparent that a much more aggressive approach is required which involves the use of specially designed materials. We have investigated the potential of solids that combine high surface area/high pore volume and high electrical conductivity, a rare combination of properties found in a single material. In this program we examined the potential of newly developed materials for the trapping of organic solvents within specially engineered cavities without allowing the material to become saturated with water. Catalytically grown carbon nanofibers are a set of novel structures that are produced by the decomposition of selected carbon-containing gases over metal particles. These materials consist of extremely small graphite platelets stacked in various orientations with respect to the fiber axis. Such an arrangement results in a unique structure that is composed of an infinite number of extremely short and narrow pores, suitable for sequestering small molecules. In addition, when the graphene layers are aligned parallel to the fiber axis, an unusual combination of high surface area and low electrical resistivity solids are attained. We have attempted to capitalize on this blend of properties by using such structures for the selective removal of organic contaminants from aqueous streams. Experimental results indicate that nanofibers possessing a structure in which the graphite platelets are aligned perpendicular to the fiber axis and possessing a high degree of structural perfection exhibit superior selective adsorption properties with respect to removal of alcohols from aqueous medial over that displayed by active carbon. Furthermore, we have attempted to take advantage of the high electrical conductivity as well as the high availability of edges, and we have used these materials for the removal of metal ions from solution. Preliminary results indicate that graphite nanofibers can, in the presence or absence of an applied electric field, capture metal ions from solution. In addition, it has been found that certain types of nanofibers can absorb substantial amounts of water both in the vapor and liquid phase.

Rodriguez, N.M.

2000-08-01

215

Removal of Heavy Metals and Organic Contaminants from Wwater by Novel Filtration Methods. Final report  

International Nuclear Information System (INIS)

The removal of hazardous waste, generated by the dismantling of nuclear weapons is a problem that requires urgent attention by the US Department of Energy. Low levels of radioactive contaminants combined with organic solvent residues have leaked from aging containers into the soil and underground water in the surrounding area. Due to the complexity of the problem, it is evident that traditional adsorption methods are ineffective, since the adsorbent tends to saturate with the aqueous component. It has become apparent that a much more aggressive approach is required which involves the use of specially designed materials. We have investigated the potential of solids that combine high surface area/high pore volume and high electrical conductivity, a rare combination of properties found in a single material. In this program we examined the potential of newly developed materials for the trapping of organic solvents within specially engineered cavities without allowing the material to become saturated with water. Catalytically grown carbon nanofibers are a set of novel structures that are produced by the decomposition of selected carbon-containing gases over metal particles. These materials consist of extremely small graphite platelets stacked in various orientations with respect to the fiber axis. Such an arrangement results in a unique structure that is composed of an infinite number of extremely short and narrow pores, suitable for sequestering small molecules. In addition, when the graphene layers are aligned parallel to the fiber axis, an unusual combination of high surface area and low electrical resistivity solids are attained. We have attempted to capitalize on this blend of properties by using such structures for the selective removal of organic contaminants from aqueous streams. Experimental results indicate that nanofibers possessing a structure in which the graphite platelets are aligned perpendicular to the fiber axis and possessing a high degree of structural perfection exhibit superior selective adsorption properties with respect to removal of alcohols from aqueous medial over that displayed by active carbon. Furthermore, we have attempted to take advantage of the high electrical conductivity as well as the high availability of edges, and we have used these materials for the removal of metal ions from solution. Preliminary results indicate that graphite nanofibers can, in the presence or absence of an applied electric field, capture metal ions from solution. In addition, it has been found that certain types of nanofibers can absorb substantial amounts of water both in the vapor and liquid phase

216

In situ XANES study of removal of heavy metals from laboratory wasteliquid by the ferrite process  

International Nuclear Information System (INIS)

Heavy metals in the laboratory wasteliquid can be recovered as stable and economic ferrite by the ferrite process. The spectrum of X-ray absorption near edge structure (XANES) specifically shows that 92% of Cr(OH)3 and 8% of CrCl2 in the original laboratory wasteliquid are converted to 70% of Cr2O3 and 30% of CrCl2 in the precipitates by the ferrite process. The concentrations of total chromium, lead and zinc in the laboratory wasteliquid also dropped from 383,000, 20.9 and 277 ppb, respectively, to lower than the effluent standards of the Environmental Protection Administration (EPA) in Taiwan. The XRD (X-ray diffraction) analysis shows that the chromium ferrite is achieved at pH > 9. On the other hand, the XANES spectra of the in situ experiment show there were 52% of Fe3O4 in the precipitates

217

Synthesis of monodisperse Fe3O4 - silica core-shell microspheres and their application for removal of heavy metal ions from water  

International Nuclear Information System (INIS)

Monodisperse Fe3O4 - silica core-shell microspheres have been successfully prepared by using a two step method. Due to their exceptional properties, these composite microspheres can be removed conveniently from water via an external magnet. These composite microspheres can be applied to remove heavy metal ions from industrial wastewater because the surface of the microspheres is covered with SiO2, and the SiO2 is inactive and can adsorb heavy metal ions (such as Hg2+, Pb2+). Furthermore, the interaction between SiO2 and heavy metal ions is reversible, which means that the adsorbed ions can be removed from SiO2 in weak acidic deionized water with the assistance of ultrasound radiation. It is noteworthy that the adsorption ability of the composite microspheres is so strong that any further modification of the composite microspheres is unnecessary. On the basis of the above points, we consider that the synthesized Fe3O4 - silica composite microspheres can be used as a useful recyclable tool for heavy metal ion removal. This work provides a potential and unique technique for heavy metal ion removal from industrial wastewater.

218

Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles  

International Nuclear Information System (INIS)

This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions with novel nanoparticle sorbents (Fe3O4, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe3O4, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g?1, for ZnO, CuO, and Fe3O4, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd2+ > Pb2+ > Cu2+ > Ni2+, while the following order was determined in multiple component solutions: Pb2+ > Cu2+ > Cd2+ > Ni2+. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the expewas found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd2+ and Pb2+ was adsorption, whereas both Cu2+ and Ni2+ sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

219

Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials  

International Nuclear Information System (INIS)

Polish bituminous (PB) and South African (SA) coal fly ash (FA) samples, derived from pilot-scale circulated fluidized bed (CFB) combustion facilities, were utilized as raw materials for the synthesis of zeolitic products. The two FAs underwent a hydrothermal activation with 1 M NaOH solution. Two different FA/NaOH solution/ratios (50, 100 g/L) were applied for each sample and several zeolitic materials were formed. The experimental products were characterized by means of X-ray diffraction (XRD) and energy dispersive X-ray coupled-scanning electron microscope (EDX/SEM), while X-ray fluorescence (XRF) was applied for the determination of their chemical composition. The zeolitic products were also evaluated in terms of their cation exchange capacity (CEC), specific surface area (SSA), specific gravity (SG), particle size distribution (PSD), pH and the range of their micro- and macroporosity. Afterwards the hybrid materials were tested for their ability of adsorbing Cr, Pb, Ni, Cu, Cd and Zn from contaminated liquids. Main parameters for the precipitation of the heavy metals, as it was concluded from the experimental results, are the mineralogical composition of the initial fly ashes, as well as the type and the amount of the produced zeolite and specifically the mechanism by which the metals ions are hold on the substrate.

220

Heavy metal removal from produced water using retorted shale; Remocao de metais pesados em aguas produzidas utilizando xisto retortado  

Energy Technology Data Exchange (ETDEWEB)

The Production of oil and gas is usually accompanied by the production of large volume of water that can have significant environmental effects if not properly treated. In this work, the use of retort shale was investigated as adsorbent agent to remove heavy metals in produced water. Batch adsorption studies in synthetic solution were performed for several metal ions. The efficiency removal was controlled by solution pH, adsorbent dosage, and initial ion concentration and agitation times. Two simple kinetic models were used, pseudo-first- and second-order, were tested to investigate the adsorption mechanisms. The equilibrium data fitted well with Langmuir and Freundlich models. The produced water samples were treated by retorted shale under optimum adsorption conditions. Synchrotron radiation total reflection X-ray fluorescence was used to analyze the elements present in produced water samples from oil field in Rio Grande do Norte, Brazil. The removal was found to be approximately 20-50% for Co, Ni, Sr and above 80% for Cr, Ba, Hg and Pb. (author)

Pimentel, Patricia M.; Melo, Marcos A.F.; Melo, Dulce M.A.; Silva Junior, Carlos N.; Assuncao, Ary L.C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Anjos, Marcelino J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

2004-07-01

 
 
 
 
221

Application of the artificial intelligence to estimate the constructed wetland response to heavy metal removal  

International Nuclear Information System (INIS)

Current design approaches lack essential parameters necessary to evaluate the removal of metals contained in wastewater which is discharged to constructed wetlands. As a result, there is no guideline for an accurate design of constructed wetlands. An artificial intelligence approach was used to assess constructed wetland design. For this purpose concentrations of bioavailable mercury were evaluated in conditions where initial concentrations of inorganic mercury, chloride concentrations and pH values changed. Fuzzy knowledge base was built based on results obtained from previous investigations performed in a greenhouse for floating plants, and from computations for mercury speciation. The Fuzzy Decision Support System (FDSS) used the knowledge base to find parameters that permit to generate the highest amount of mercury available for plants. The findings of this research can be applied to wetlands and all natural processes where correlations between them are uncertain. (author)

222

Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA.  

Science.gov (United States)

Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II)=3:1 and at pH=4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA. PMID:25464318

Wu, Qing; Cui, Yanrui; Li, Qilu; Sun, Jianhui

2015-02-11

223

Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica)  

International Nuclear Information System (INIS)

The removal of Cr(VI), Pb(II), Hg(II) and Cu(II), by treated sawdust has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Adsorption capacity for treated sawdust, i.e. Cr(VI) (111.61 mg/g), Pb(II) (52.38 mg/g), Hg(II) (20.62 mg/g), and Cu(II) (5.64 mg/g), respectively. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on treated sawdust satisfies not only the Langmuir assumptions but also the Freundlich assumptions. The applicability of Lagergren kinetic model has also been investigated. The adsorption follows first-order kinetics. Thermodynamic constant (kad), standard free energy (?Go), enthalpy (?Ho) and entropy (?So) were calculated for predicting the nature of adsorption. The percentage adsorption increases with pH to attain a maximum at pH 6 and thereafter it decreases with further increase in pH. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed

224

Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent.  

Science.gov (United States)

The removal of Cd(II), Pb(II), Hg(II), Cu(II), Ni(II), Mn(II) and Zn(II) by carbon aerogel has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on carbon aerogel satisfies not only the Langmuir assumptions but also the Freundlich assumptions, i.e. multilayer formation on the surface of the adsorbent with an exponential distribution of site energy. The applicability of the Lagergren kinetic model has also been investigated. Thermodynamic constant (K(ad)), standard free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were calculated for predicting the nature of adsorption. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed. PMID:15878798

Meena, Ajay Kumar; Mishra, G K; Rai, P K; Rajagopal, Chitra; Nagar, P N

2005-06-30

225

New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media  

Energy Technology Data Exchange (ETDEWEB)

Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N?-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

2013-09-15

226

New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media  

International Nuclear Information System (INIS)

Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N?-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

227

Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats  

Science.gov (United States)

Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr2O72- and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl- and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl-, NO3-, and SO42-) except for PO43- for the pH change.

Wang, Jianqiang; Luo, Chao; Qi, Genggeng; Pan, Kai; Cao, Bing

2014-10-01

228

Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems.  

Science.gov (United States)

Ternary and quaternary ion-exchange equilibria have been studied between heavy metal solution (Pb(2+), Cd(2+), Cu(2+)) and Na-form of clinoptilolite. The value of the ion-exchange equilibrium constant was estimated using the Langmuir, Competitive Langmuir, and thermodynamic sorption models. For each isotherm, calculations were done taking into account the concentration of ions in both phases. Additionally, for the thermodynamic isotherm, two other cases were considered: activity of ions in the liquid phase and concentration in the solid phase; activity of ions in both phases. The activity coefficients of ions in the liquid phase were determined using Pitzer's model; activity coefficients in the solid phase were estimated by Wilson's model. It was found that the exchange capacity for a given M(2+) is not constant and differs in one- or multi-component systems. The results show that the equilibrium model based on the law of mass action, which considers nonideal behavior of both phases, allows one to achieve the best approach to the real multi-component equilibrium data in all studied systems. PMID:15743627

Petrus, Roman; Warcho?, Jolanta K

2005-03-01

229

Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.  

Science.gov (United States)

Kinetic and equilibrium sorption experiments were conducted on removal of divalent heavy metals (Pb(II), Cu(II), Zn(II), Cd(II)) and trivalent arsenic (As(III)) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The removal efficiencies of Pb, Cu, Zn, Cd, and As by the scoria (size=0.1-0.2mm, dose=60gL(-1)) were 94, 70, 63, 59, and 14%, respectively, after a reaction time of 24h under a sorbate concentration of 1mM and the solution pH of 5.0. A careful examination on ionic concentrations in sorption batches suggested that sorption behaviors of heavy metals onto scoria are mainly controlled by cation exchange. On the other hand, arsenic appeared to be sensitive to specific sorption onto hematite (a minor constituent of scoria). Equilibrium sorption tests indicated that the removal efficiency for heavy metals increases with increasing pH of aqueous solutions, which is resulted from precipitation as hydroxides. Similarly, multi-component systems containing heavy metals and arsenic showed that the arsenic removal increases with increasing pH of aqueous solutions, which can be attributed to coprecipitation with metal hydroxides. The empirically determined sorption kinetics were well fitted to a pseudo-second order model, while equilibrium sorption data for heavy metals and arsenic onto scoria were consistent with the Langmuir and Freundlich isotherms, respectively. Natural scoria studied in this work is an efficient sorbent for concurrent removal of divalent heavy metals and arsenic. PMID:19828237

Kwon, Jang-Soon; Yun, Seong-Taek; Lee, Jong-Hwa; Kim, Soon-Oh; Jo, Ho Young

2010-02-15

230

Magnetic adsorbents for actinide and heavy metal removal from waste water  

Energy Technology Data Exchange (ETDEWEB)

Magnetic adsorbents can be applied to the treatment of waste water in various physical forms. For example, barium ferrite (BaO{center_dot}Fe{sub 2}O{sub 3}) has been used successfully as powder, granules or pellets. Iron ferrite, or magnetite, a naturally occurring ore, can also be used in much the same manner. However, natural magnetic needs activation to have the same capacity as freshly prepared ferrite. Furthermore, ferrites have been used solely in a batch mode because of their finely divided nature. To permit utilization of activated magnetite in a column mode with good water flow-through properties, magnetic resins were prepared. In this work, the authors discovered a synergistic effect in using the magnetic resin in a column mode in conjunction with an external magnetic field for concentration of plutonium and americium from waste water. Thus ferrities in a column made surrounded by a magnetic field greatly surpasses the metal removal capacity of ferrite used in a batch mode.

Kochen, R.L. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Navratil, J.D. [Rust Federal Services, Inc., Golden, CO (United States)

1994-08-01

231

Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite  

Science.gov (United States)

Removal of heavy metals is very important with respect to environmental considerations. This study investigated the sorption of copper (Cu) and zinc (Zn) in single and binary aqueous systems onto laboratory prepared hydroxyapatite (HA) surfaces. Batch experiments were carried out using synthetic HA at 30 °C. Parameters that influence the adsorption such as contact time, adsorbent dosage and pH of solution were investigated. The maximum adsorption was found at contact time of 12 and 9 h, HA dosage of 0.4 and 0.7 g/l and pH of 6 and 8 for Cu and Zn, respectively, in single system. Adsorption kinetics data were analyzed using the pseudofirst-, pseudosecond-order and intraparticle diffusion models. The results indicated that the adsorption kinetic data were best described by pseudosecond-order model. Langmuir and Freundlich isotherm models were applied to analyze adsorption data, and Langmuir isotherm was found to be applicable to this adsorption system, in terms of relatively high regression values. The removal capacity of HA was found to be 125 mg of Cu/g, 30.3 mg of Zn/g in single system and 50 mg of Cu/g, 15.16 mg of Zn/g in binary system. The results indicated that the HA used in this work proved to be effective material for removing Cu and Zn from aqueous solutions.

Ramesh, S. T.; Rameshbabu, N.; Gandhimathi, R.; Nidheesh, P. V.; Srikanth Kumar, M.

2012-09-01

232

Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method  

Energy Technology Data Exchange (ETDEWEB)

While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

2010-01-15

233

Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method  

International Nuclear Information System (INIS)

While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO3) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

234

Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.  

Science.gov (United States)

In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

2013-01-01

235

Influence of the composition and removal characteristics of organic matter on heavy metal distribution in compost leachates.  

Science.gov (United States)

Compost leachates were collected to investigate the influence of the composition and removal of volatile fatty acids (VFAs), humic-like substances (HSs), and dissolved organic nitrogen (DON) on heavy metal distribution during the leachate treatment process. The results showed that acetic and propionic acids accounted for 81.3 to 93.84% of VFAs, and that these acids were removed by the anaerobic-aerobic process. Humic- and fulvic-like substances were detected by excitation-emission matrix spectroscopy coupled with parallel factor analysis, and their content significantly decreased after the anaerobic and membrane treatments. DON in compost leachates ranged from 26.53 mg L(-1) to 919.46 mg L(-1), comprised of dissolved free amino acids and the protein-like matter bound to humic- and fulvic-like substances, and was removed by the aerobic process. Correlation analysis showed that Mn, Ni, and Pb were bound to VFAs and protein-, fulvic-, and humic-like substances in the leachates. Co was primarily bound to fulvic- and humic-like matter and inorganic sulfurs, whereas Cu, Zn, and Cd interacted with inorganic sulfur. PMID:24595753

He, Xiao-Song; Xi, Bei-Dou; Li, Dan; Guo, Xu-Jing; Cui, Dong-Yu; Pan, Hong-Wei; Ma, Yan

2014-06-01

236

Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.  

Science.gov (United States)

Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus, all the results suggested that ZrP-001 offers excellent potential for lead removal from contaminated water. PMID:17336317

Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X

2007-06-01

237

Heavy Metals Removal from Swine Wastewater Using Constructed Wetlands with Horizontal Sub-Surface Flow  

Directory of Open Access Journals (Sweden)

Full Text Available The removal efficiency of Cu and Zn from swine wastewater was evaluated as effected by three variables: the hydraulic retention time (HRT (24, 48, 72 and 96 hours, two different plant species (Typha domingensis Pers. and Eleocharis cellulosa and two different sizes of filter media (5 and 15 mm using a horizontal sub-surface flow constructed wetland. From the results, a significant difference was observed in the removal efficiency of Cu and Zn with respect to different hydraulic retention times. The best results were obtained in the HRT of 96 hours for Zn where 96% removal of Zn with Typha domingensis Pers. specie with gravel of 15 mm (experimental unit 6 was achieved. For Cu, at 72 hours of HRT, the efficiency was nearly 100% in five of the six study units (1, 2, 3, 5 and 6. In contrast, in experimental unit 4 with gravel of 15 mm and without plants, only 86% Cu removal was achieved.

María C. Ponce-Caballero

2012-08-01

238

The potential of melt-mixed polypropylene-zeolite blends in the removal of heavy metals from aqueous media  

Science.gov (United States)

The continued deterioration of the water quality in natural water sources such as rivers and lakes has led to tensions amongst relevant stakeholders to such an extent that cooperative water resource management is being regarded as an ideal solution to culminate conflicts and maximise the benefits. The desire to develop technologies that combine the three most important aspects of integrated water resource management (namely social, economic and environmental) has been encouraged by relevant authorities. This paper therefore reports the application of clinoptilolite-polypropylene (CLI-PP) blends/composites for the removal of lead from aqueous media. Just like many other heavy metals, lead poses a threat to water and soil quality as well as to plant and animal health. The findings on the adsorption behaviour of clinoptilolite-polypropylene composites with respect to Pb 2+ are also reported here, with the aim of extending its application to wastewater and environmental water purification. The batch equilibrium adsorption method was employed and the influence of contact time, pH, initial metal-ion concentration, temperature and pretreatment was determined. The optimum pH was found to be between pH 6 and pH 8 while the maximum sorption of lead at optimal pH was 95%. No big difference was observed between the adsorption behaviour of composites functionalised with 20% and 30% clinoptilolite, respectively. The pretreatment with HCl and NaCl made a slight difference to the adsorption capacity of composites.

Motsa, Machawe M.; Thwala, Justice M.; Msagati, Titus A. M.; Mamba, Bhekie B.

239

A comparative study of alginate beads and an ion-exchange resin for the removal of heavy metals from a metal plating effluent.  

Science.gov (United States)

The capacity of dry protonated calcium alginate beads to sorb metals from an industrial effluent was studied and compared with a commercial ion-exchange resin (Lewatit TP 207). Both sorbents decreased zinc, nickel, iron and calcium concentrations in the effluent, and released sodium during treatment. Alginate beads removed lower amounts of heavy metals than the resin, but exhibited faster uptake kinetics. Zinc desorption from the sorbents was achieved in 30 minutes using 0.1 M HCl or 0.1 M H(2)SO(4). Desorption ratios with these acids varied between 90 and 100% for alginate, and 98 to 100% for the ion-exchange resin. Reusability tests with HCl showed that alginate beads can stand acid desorption and recover binding capacity. Overall, the comparison of dry protonated alginate beads with the resin supports the potential of the biosorbent for the treatment of industrial effluents. PMID:18642155

Silva, Rui M P; Manso, Joao P H; Rodrigues, Joaquim R C; Lagoa, Ricardo J L

2008-09-01

240

Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal.  

Science.gov (United States)

Polyacrylonitrile (PAN) nanofiber mats were prepared by electrospinning and they were further modified to contain amidino diethylenediamine chelating groups on their surface via heterogeneous reaction with diethylenetriamine (DETA). The obtained aminated PAN (APAN) nanofiber mats were evaluated for their chelating property with four types of metal ions, namely Cu(II), Ag(I), Fe(II), and Pb(II) ions. The amounts of the metal ions adsorbed onto the APAN nanofiber mats were influenced by the initial pH and the initial concentration of the metal ion solutions. Increasing the contact time also resulted in a monotonous increase in the adsorbed amounts of the metal ions, which finally reached equilibria at about 10 h for Cu(II) ions and about 5 h for Ag(I), Fe(II), and Pb(II) ions. The maximal adsorption capacities of the metal ions on the APAN nanofiber mats, as calculated from the Langmuir model, were 150.6, 155.5, 116.5, and 60.6 mg g(-1), respectively. Lastly, the spent APAN nanofiber mats could be facilely regenerated with a hydrochloric acid (HCl) aqueous solution. PMID:21117629

Kampalanonwat, Pimolpun; Supaphol, Pitt

2010-12-01

 
 
 
 
241

Heavy metals precipitation in sewage sludge  

Digital Repository Infrastructure Vision for European Research (DRIVER)

There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another advantage is the application of the sludge as soil improver. The use of chemical precipitation to remove dissolved heavy metals from sewage sludge implies a high cost for chemicals. This work shows, f...

Marchioretto, M. M.; Rulkens, W. H.; Bruning, H.

2005-01-01

242

REMOVAL OF HEAVY METALS AND ORGANIC CONTAMINANTS FROM AQUEOUS STREAMS BY NOVEL FILTRATION METHODS  

Science.gov (United States)

Catalytically grown carbon nanofibers are a novel material that is produced by the decomposition of selected hydrocarbons over metal particles. The material consists of graphite platelets perfectly aligned and stacked in various directions with respect to the fiber axis. Such an ...

243

Design of high efficiency fibers for ion exchange and heavy metal removal  

Science.gov (United States)

Ion exchange materials coated on glass fiber substrates have a number of advantages over the conventional ion exchange beads. These include simplification of the overall synthesis including faster more efficient functionalization and elimination of toxic solvents. Other benefits include the ability to be fabricated in the form of felts, papers, or fabrics, improving media contact efficiency and enhancing both the rates of reaction and regeneration. In addition, physical and mechanical requirements of strength and dimensional stability are achieved by use of glass fiber substrates. Investigations were focused on design of: (1) polymeric cationic exchange fibers and their application for lead and mercury removal, (2) polymeric anionic exchange fibers and their application for arsenate removal, (3) enhancement of anionic fiber selectivity for monovalent ions over divalent ions through bulkier triaklylamine functional groups, and (4) polymeric mercaptyl fibers for the application of arsenite removal. The design and characterization of a cationic exchange fiber is described. Dynamic mode (breakthrough) experiments for calcium, lead, and mercury ion solutions are also presented. The second system consists of the preparation and characterization of anionic exchange fibers with equilibrium adsorption isotherms and dynamic mode kinetic experiments for arsenate removal. Modification of the resin with bulkier functional groups (trimethylamine, triethylamine, tripropylamine, tributylanmine), thereby effecting a change in the selectivity from divalent species to monovalent species, is considered in the separation of nitrates from sulfates. The ability of a thiol group to bind to the highly toxic arsenite ion (as is done in proteins and enzymes) provided the model used to chemically modify and characterize a polyvinyl alcohol mercaptyl fibrous system, coated on a fiberglass substrate, for the purpose of arsenite (As3+) removal from water. Physical/chemical aspects of naturally occurring thiols and disulfides was used to draw parallels to observations found with the polyvinyl alcohol mercaptyl system and its reactivity towards arsenite. The ability of these systems to chelate arsenite was presented through equilibrium adsorption isotherms. All fibrous systems were characterized through a variety of techniques such as scanning electron microscopy, diffuse reflectance infrared spectroscopy, elemental analysis, analytical analysis, and thermal analysis of the copolymer.

Dominguez, Lourdes

244

Heavy Metals Removal in Aqueous Solution by two Delta-diketones  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This research presents the elimination of lead, coppers, zinc and iron by complexation with ?-diketones particularly, 1, 3, 5-triphenylpentane-1,5-dione and 3-furyl-1,5-diphenylpentane-1, 5-dione in liquid biphasic system (water/dichloromethane). Various factors (pH, nature and concentration in metal ions, time of contact, chelating capacity and temperature) influencing this interaction were examined. The use of these molecules in the complexation optimal conditions (Temperature = 35°C, Mas...

Fanou, D.; Yao, B.; Siaka, S.; Ado, G.

2007-01-01

245

Accumulation of Heavy Metal Ions from Tanneries Wastes: An Approach For Chromium Removal Using Activated Charcoal  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The environment is under increasing pressure from solid and liquid wastes emanating from the leather industry. These are inevitable by-products of the leather manufacturing process and causes significant pollution unless treated in some way prior to discharge. The tanneries wastes samples were collected from Lahore Pakistan. The samples were digested by wet oxidation method and the concentrations of metals: Cr, Co, Cu, Cd, Mn, Zn, Ni and Pb were estimated in sediments and liquid waste samples...

Tahir, H.; Yasmeen, G.; Akhtar, N.; Sultan, M.; Qadri, M.

2012-01-01

246

Estimation and removal of selected heavy metal ions from tanneries liquid waste and sediments  

International Nuclear Information System (INIS)

Concentration of potentially toxic and general metals Cu, Co, Cr, Cd, Mn, Zn, Ni and Pb in sediments and liquid waste samples of selected tanneries ware measured by atomic absorption spectrophotometer, after digestion with nitric acid. The corresponding analytical data revealed elevated concentrations of above mentioned metals compared to the permissible levels including chromium which steels into the sediments. Selective separation of chromium in sediment from other metal ions has been investigated using activated charcoal and employing batch technique. The effects of adsorbent concentration, pH, shaking time and percentage reduction in chromium concentration (93 - 99 %) with temperature have been studied. The adsorption equilibrium data were fitted in Freundlich, Dubinin, Redushkevich and Virial isotherms equations at temperatures 303K to 318K. Thermodynamic parameters delta H-zero degree, delta S- zero degree and delta G zero degree were calculated using Virial isotherm expression. The values of free energy of adsorption delta G decrease with increase in temperature and show endothermic nature of adsorption of Chromium on activated charcoal. (authors)

247

Heavy Metals Removal in Aqueous Solution by two Delta-diketones  

Directory of Open Access Journals (Sweden)

Full Text Available This research presents the elimination of lead, coppers, zinc and iron by complexation with ?-diketones particularly, 1, 3, 5-triphenylpentane-1,5-dione and 3-furyl-1,5-diphenylpentane-1, 5-dione in liquid biphasic system (water/dichloromethane. Various factors (pH, nature and concentration in metal ions, time of contact, chelating capacity and temperature influencing this interaction were examined. The use of these molecules in the complexation optimal conditions (Temperature = 35°C, Mass ratio Cmetal/Cextractant = 4, Contact time = 30 min and pH 4, led to the elimination of more than 70% of lead, iron, coppers and zinc.

D. Fanou

2007-01-01

248

Isolation of purple nonsulfur bacteria for the removal of heavy metals and sodium from contaminated shrimp ponds  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english In order to determine whether waters used for the shrimp cultivation contained toxic levels of heavy metals (HMs) and sodium (Na), analysis was carried out on 31 shrimp ponds in areas of southern Thailand. Purple nonsulfur bacteria (PNB) were also isolated from the same ponds to investigate if they [...] could be used for bioremediation of the above contaminants. The highest HMs concentrations of the sediment samples in mg/kg dry weight were found as follows: 0.75 cadmium (Cd), 62.63 lead (Pb), 34.60 copper (Cu) and 58.50 zinc (Zn). However, all sediment samples met Hong Kong standards for dredged sediment. In contrast, contamination of Cu (9-30 µg/L) and Zn (140-530 µg/L) exceeding the standard guidelines for marine aquatic animal set by the Pollution Control Department, Thailand, were found in 32 and 61% of water samples, respectively. Two metal resistant PNB isolates, NW16 and KMS24, were selected from the 120 PNB isolates obtained. Both isolates reduced the levels of HMs by up to 39% for Pb, 20% for Cu, 7% for Cd, 5% for Zn and 31% for Na from water that contained the highest levels of HMs found and 3% NaCl when cultured with either microaerobic-light or aerobic-dark conditions. The isolate NW16 removed a greater percentage of the HMs than the isolate KMS24, but the isolate KMS24 was able to survive better under a greater variety of environmental conditions. Both strains were therefore suitable to use for further investigating their abilities to remediate water contaminated with HMs and Na.

Saijai, Panwichian; Duangporn, Kantachote; Banjong, Wittayaweerasak; Megharaj, Mallavarapu.

2010-07-15

249

Post-annealing treatment for Cu-TiO2 nanotubes and their use in photocatalytic methyl orange degradation and Pb(II) heavy metal ions removal  

Science.gov (United States)

TiO2 nanotubes were synthesized via electrochemical anodization of Ti foil at 60 V for 1 h in a bath with electrolytes composed of ethylene glycol containing 5 wt.% of NH4F and 1 vol.% of H2O2. The incorporation of optimum Cu2+ ions (1.30 at.%) into TiO2 nanotubes were prepared by using wet impregnation method to improve their photocatalytic methyl orange degradation and Pb(II) heavy metal removal. The small Cu2+ ions were successfully diffused into lattice of TiO2 nanotubes by conducting post-annealing treatment at 400 °C for 4 h in argon atmosphere after wet impregnation. In this manner, optimum Cu2+ ions played a crucial role in suppressing the recombination of charge carriers by forming inter-band states (mismatch of the band energies) within the lattice of Cu-TiO2. The experimental results showed that a maximum of 80% methyl orange removal and 97.3% Pb(II) heavy metal removal at pH 11 under UV irradiation for 5 h. Besides, it was noticed that photocatalytic Pb(II) heavy metal removal was strong dependence on pH of the solution because of the amphoteric character of Cu-TiO2 in an aqueous medium.

Sreekantan, Srimala; Mohd Zaki, Syazwani; Lai, Chin Wei; Tzu, Teoh Wah

2014-07-01

250

Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles  

International Nuclear Information System (INIS)

We prepared novel Fe3O4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd2+, Zn2+, Pb2+ and Cu2+) from aqueous solution. We investigated the adsorption capacity of Fe3O4-APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe3O4-APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd2+, Zn2+, Pb2+ and Cu2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

251

Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum  

Directory of Open Access Journals (Sweden)

Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

Jaber SALEHZADEH

2013-11-01

252

Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal  

International Nuclear Information System (INIS)

With cetyltrimethylammonium (CTAB) and tetramethylammonium hydroxide (TMAOH) as hybrid surfactant templates, a mesoporous adsorbent (adsorbent C) was synthesized in ethanol via the integration of 'One-step' procedure and 'Evaporation-Induced Self-Assembly' procedure. During the synthesis, TMAOH served as the subsidiary structure-directing agent. Adsorbent C exhibited higher pore diameter (centered at 6.1 nm), BET surface area (421.9 m2/g) and pore volume (0.556 cm3/g) than the other two adsorbents only using P123 (adsorbent A) or CTAB (adsorbent B) as the surfactant. The adsorbents were also characterized by XRD and FTIR spectroscopy. The adsorption of copper, zinc, lead, iron, silver and manganese ions on adsorbent C was investigated by contrast tests with adsorbent A and B. The experimental data showed that adsorbent C possessed better adsorption properties than the counterparts. The order of adsorption capacity for six metal ions was Mn2+ 2+ 2+ 2+ 2+ +. The kinetic and thermodynamic properties and the regeneration capacity of adsorbent C were also discussed

253

The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles  

International Nuclear Information System (INIS)

A numerical model BAEROSOL for solving the general dynamic equation (GDE) of aerosols is presented. The goal was to model the capture of volatilized metals by sorbents under incinerator-like conditions. The model is based on algorithms presented by Jacobson and Turco [Aerosol Science and Technology 22 (1995) 73]. A hybrid size bin was used to model growth and formation of particles from the continuum phase and the coagulation of existing particles. Condensation and evaporation growth were calculated in a moving size bin approach, where coagulation and nucleation was modeled in the fixed size bin model of the hybrid grid. To account for the thermodynamic equilibrium in the gas phase, a thermodynamic equilibrium code CET89 was implemented. The particle size distribution (PSD) calculated with the model was then compared to analytical solutions provided for growth, coagulation and both combined. Finally, experimental findings by Rodriguez and Hall [Waste Management 21 (2001) 589-607] were compared to the PSD predicted by the developed model and the applicability of the model under incineration conditions is discussed

254

Determination of Heavy Metal Removal Efficiency of Chrysopogon zizanioides (Vetiver) using Textile Wastewater Contaminated Soil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A pot culture study was conducted using textile wastewater contaminated soil which was amended with Vermicompost (VC) in various proportions for a period of two months. The plant used for the study was Chrysopogon zizanioides (Vetiver) to investigate the accumulation of heavy metals in their roots. Physico-chemical parameters like pH, EC, TKN, P, K, TOC and metals like Pb, Cd and Cu and microbial population of the textile wastewater contaminated soil were analyzed initially (0 day) and...

Lakshmanaperumalsamy, P.; Rathinamala, J.; Jayashree, S.

2011-01-01

255

COPRECIPITATION AND ADSORPTION FOR REMOVAL OF CADMIUM, LEAD, AND ZINC BY THE LIME - SODA ASH WATER SOFTENING PROCESS (CRYSTALLIZATION, HEAVY METAL, CALCIUM-CARBONATE)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The crystallization kinetics for the precipitation of calcium carbonate and magnesium hydroxide in the presence of cadmium, lead, and zinc were studied. The kinetics for the precipitation have been studied in a continuous reactor operated under MSMPR (mixed suspension mixed product removal) conditions. Reactor residence times, effluent alkalinity conditions, and initial heavy metal concentrations (acting as impurity) were varied to determine these kinetics. The crystal size distribution was m...

Chang, Tsun-kuo

1985-01-01

256

Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system  

International Nuclear Information System (INIS)

This study investigated the activities of prepared and commercial V2O5-WO3 catalysts for simultaneous removals of NO and polycyclic aromatic hydrocarbons (PAHs) and the influences of particulates, heavy metals, SO2, and HCl on the performances of catalysts. The experiments were carried out in a laboratory-scale waste incineration system equipped with a catalyst reactor. The DREs of PAHs by prepared and commercial V2O5-WO3 catalysts were 64% and 72%, respectively. Increasing the particulate concentrations in flue gas suppressed the DRE of PAHs, but increasing the carbon content on surface of catalysts promotes the NO conversions. The DRE of PAHs by the catalysts was significantly decreased by the increased concentrations of heavy metal Cd, but was promoted by high concentration of Pb. The influence level of SO2 was higher than HCl on the performances of V2O5-WO3 catalysts for PAHs removal, but was lower than HCl for NO removal. Prepared and commercial V2O5-WO3 catalysts have similar trends on the effects of particulates, heavy metals, SO2, and HCl. The results of ESCA analysis reveal that the presences of these pollutants on the surface of catalysts did not change the chemical state of V and W.

257

A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.  

Science.gov (United States)

The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application. PMID:25243917

Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

2015-03-01

258

A case of multiple sclerosis improvement following removal of heavy metal intoxication: lessons learnt from Matteo's case.  

Science.gov (United States)

Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system (CNS) provoking disability and neurological symptoms. The exact causes of SM are unknown, even if it is characterized by focal inflammatory lesions in CNS accompanied by autoimmune reaction against myelin. Indeed, many drugs able to modulate the immune response of patients have been used to treat MS. More recently, toxic metals have been proposed as possible causes of neurodegenerative diseases. The objective of this study is to investigate in vivo the impact of heavy metal intoxication in MS progression. We studied the case of a patient affected by MS, who has been unsuccessfully treated for some years with current therapies. We examined his levels of toxic heavy metals in the urine, following intravenous "challenge" with the chelating agent calcium disodium ethylene diamine tetraacetic acid (EDTA).The patient displayed elevated levels of aluminium, lead and mercury in the urine. Indeed, he was subjected to treatment with EDTA twice a month. Under treatment, the patient revealed in time improved symptoms suggestive of MS remission. The clinical data correlated with the reduction of heavy metal levels in the urine to normal range values. Our case report suggests that levels of toxic metals can be tested in patients affected by neurodegenerative diseases as MS. PMID:22438029

Fulgenzi, Alessandro; Zanella, Sante Guido; Mariani, Mario Mauro; Vietti, Daniele; Ferrero, Maria Elena

2012-06-01

259

Porous Ca-based bead sorbents for simultaneous removal of SO2, fine particulate matters, and heavy metals from pilot plant sewage sludge incineration.  

Science.gov (United States)

In this study, a porous calcium-based sorbent was prepared for simultaneous removal of SO2, particulate matter (PM), and heavy metals generated during incineration of sewage sludge. The prepared sorbent was confirmed to have a 3-dimensional-network pore structure, a high specific surface area of 68.5m(2)/g, and gas permeability of 1.12×10(-10)m(2). Laboratory-scale tests indicated that there was an improvement in the performance of SO2 removal as the porosity and the specific surface area of the sorbent increased. Additionally, increasing reaction temperature led to greater SO2 removal. Meanwhile, the SL-4 and LS-3 sorbents prepared in this study were installed for operation during pilot tests treating the sewage sludge combustion gas generated by a fluidized incinerator in order to compare and evaluate their feasibility for use in industrial applications. The results showed that the reactivity between SO2 and the starting material of the sorbent (Ca(OH)2>CaCO3), as well as the high specific surface area of the sorbent, were confirmed to be critical factors that improved the performance of SO2 removal. Notably, the results confirmed that both fine PM (?1?m) and heavy metals were simultaneously removed with increasing efficiency over the time of operation. PMID:25261759

Han, Yosep; Hwang, Gukhwa; Kim, Donghyun; Park, Soyeon; Kim, Hyunjung

2015-02-11

260

Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.  

Science.gov (United States)

In the Taxco mining area, sulfide mineral oxidation from inactive tailings impoundments and abandoned underground mines has produced acid mine drainage (AMD; pH 2.2-2.9) enriched in dissolved concentrations (mg l?¹) sulfate, heavy metals, and arsenic (As): SO?²? (pH 1470-5454), zinc (Zn; 3.0-859), iron (Fe; pH 5.5-504), copper (Cu; pH 0.7-16.3), cadmium (Cd; pH 0.3-6.7), lead (Pb; pH mine area using indigenous calcareous shale. This geologic material consists of a mixture of calcite, quartz, muscovite, albite, and montmorillonite. Results of batch leaching test indicate that calcareous shale significantly increased the pH (to values of 6.6-7.4) and decreased heavy metal and As concentrations in treated mine leachates. Calcareous shale had maximum removal efficiency (100%) for As, Pb, Cu, and Fe. The most mobile metals ions were Cd and Zn, and their average percentage removal was 87% and 89%, respectively. In this natural system (calcareous shale), calcite provides a source of alkalinity, whereas the surfaces of quartz and aluminosilicate minerals possibly serve as a preferred locus of deposition for metals, resulting in the neutralizing agent (calcite) beings less rapidly coated with the precipitating metals and therefore able to continue its neutralizing function for a longer time. PMID:20523977

Romero, F M; Núñez, L; Gutiérrez, M E; Armienta, M A; Ceniceros-Gómez, A E

2011-02-01

 
 
 
 
261

Heavy metals hyper accumulation in plants  

International Nuclear Information System (INIS)

The possibility of growing heavy-metal-hyper accumulating plants in highly polluted environments is a novel strategy, currently named phyto remediation. This process could be very reliable both to remove (and often to utilize again) with low costs heavy metals from water and soil and to enhance the landscape beauty in environments otherwise unlikely enjoyable

262

In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with an edible biopolymer poly(?-glutamic acid) (PGA) were synthesized by coprecipitation...

Bs, Inbaraj; Bh, Chen

2012-01-01

263

Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples elec...

Salihu Lukman; Mohammed Hussain Essa; Nuhu Dalhat Mu'azu; Alaadin Bukhari

2013-01-01

264

Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon  

International Nuclear Information System (INIS)

The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl2 activated coir pith carbon is effective for the removal of toxic pollutants from water

265

Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.  

Science.gov (United States)

The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water. PMID:16406295

Namasivayam, C; Sangeetha, D

2006-07-31

266

Capacidade da Lemna aequinoctialis para acumular metais pesados de água contaminada / Ability of Lemna aequinoctialis for removing heavy metals from wastewater  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese A capacidade das plantas em tolerar e absorver quantidades elevadas de metais pesados é usada como uma tecnologia promissora para limpeza de resíduos perigosos em ambientes altamente contaminados. O desempenho da macrófita L. aequinoctialis em absorver metais pesados foi estudado durante sua floraçã [...] o em dois períodos de amostragem diferentes. As amostras de L. aequinoctialis e água foram coletadas por 800 horas em intervalos de 48 horas. A quantidade de Ni, Cu, Co, Cr, Mn, Zn e Fe presente na L. aequinoctialis e água foram determinados por espectrometria de absorção atômica com chama (FAAS). Os resultados foram avaliados pelas técnicas de estatística de componentes principais (PCA), análise de agrupamento hierárquico (HCA) e boxplot. Os resultados mostram que a rizofiltração da L. aequinoctialis remove altas quantidades de metais pesados na seguinte ordem Cr > Ni > Cu > Fe > Zn > Mn. No entanto, observou-se que mudanças significativas na composição química, pH e condutividade elétrica da água alteram a capacidade de absorção da L. aequinoctialis. Abstract in english Plant ability for tolerating and accumulating high amount of heavy metal is used as a promissory technology for removing contaminants from highly polluted environments. The ability of the macrophyte L. aequinoctialis to remove heavy metal was studied in two different sampling times during its flower [...] ing. Samples of plant tissue L. aequinoctialis and water were collected for 800 hours at 48 hour intervals. Concentrations of Ni, Cu, Co, Cr, Mn, Zn, and Fe present in L. aequinoctialis and water were determined by flame atomic absorption spectrometry (FAAS). Data were subjected to the techniques of principal components analysis (PCA), hierarchical cluster analysis (HCA) and boxplot. We found that rhizofiltration of L. aequinoctialis removes high amount of heavy metal in this order: Cr >Ni>Cu> Fe > Zn >Mn. Only significant changes in chemical composition of the water, pH and electrical conductivity alter the absorption capacity of L. aequinoctialis.

Mauro Célio da Silveira, Pio; Katiuscia dos Santos de, Souza; Genilson Pereira, Santana.

2013-06-01

267

Self-assembled 3D flower-like ?-Fe{sub 2}O{sub 3} microstructures and their superior capability for heavy metal ion removal  

Energy Technology Data Exchange (ETDEWEB)

Hierarchically 3D flower-like ?-Fe{sub 2}O{sub 3} microstructures have been synthesized through a urea-assisted hydrothermal synthetic route. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-prepared product was consisted of hierarchically flow-like microstructures assembled from nanopetal subunits. The effects of the urea and NaOH on the morphology of the products were systematically studied, and a possible formation mechanism of the ?-Fe{sub 2}O{sub 3} microflowers was proposed based on the experimental results. These flower-like ?-Fe{sub 2}O{sub 3} microstructures were used as adsorbent for water treatment, and the results revealed excellent performance for heavy metal ion removal. With maximum capacities of 41.46 and 33.82 mg g{sup ?1} for As(V) and Cr(VI), respectively, such flower-like ?-Fe{sub 2}O{sub 3} microstructures are expected to be an attractive adsorbent for the removal of heavy metal ions from water. - Graphical abstract: Display Omitted - Highlights: • 3D flower-like hematite microstructures were synthesized by a hydrothermal method. • The formation mechanism of flower-like microstructures was proposed. • Effective removal of As(V) and Cr(VI) from aqueous solution.

Liang, Hanfeng; Xu, Binbin; Wang, Zhoucheng, E-mail: zcwang@xmu.edu.cn

2013-09-16

268

Studies on the Use of Supported Liquid Membrane Technique for Removal of Heavy Metals from Water Effluents  

International Nuclear Information System (INIS)

The present work is directed to develop, assess and establish different systems for the removal and recovery of Co, Ni, Zn and Cd from aqueous solutions using supported liquid membrane (SLM) technique. The individual permeation of Co(II) and Ni(II) from aqueous chloride solutions through SLM using CYANEX 301 in kerosene supported on cellulose acetate membrane was studied based on the optimum conditions for separation obtained by liquid-liquid extraction experiments. Application studies of the investigated system were carried out on the permeation of four heavy elements (Co(II), Ni(II), Zn(II) and Cd(II) ) of equal concentrations when mixed together in real water samples from different origins. For this purpose, samples from Ismailia canal, El-Manzala lake, sea water and drinking water were selected for these experiments. The results obtained show that complete removal of Zn(II) from aqueous chloride medium of ph 3 from El-Manzala lake water is obtained at different temperature degrees and the removal of a large amounts of Co(II), Cd(II) and Ni(II) from drinking water is also possible.

269

Bioremoval of heavy metals by bacterial biomass.  

Science.gov (United States)

Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed. PMID:25471624

Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

2015-01-01

270

Removal of Heavy Metals from Aqueous Solution Using Novel Nanoengineered Sorbents: Self-Assembled Carbamoylphosphonic Acids on Mesoporous Silica  

Energy Technology Data Exchange (ETDEWEB)

Self-assembled monolayers of carbamoylphosphonic acids (acetamide phosphonic acid and propionamide phosphonic acid) on mesoporous silica supports were studied as potential absorbents for heavy and transition metal ions in aqueous wastes. The adsorption capacity, selectivity, and kinetics of the materials in sequestering metal ions, including Cd2+, Co2+, Cu2+, Cr3+, Pb2+, Ni2+, Zn2+, and Mn2+, were measured in batch experiments with excess sodium ion. The solution pH ranged from 2.2 to 5.5. The kinetics study shows that the adsorption reached equilibrium in seconds, indicating that there is little resistance to mass transfer, intraparticle diffusion, and surface chemical reaction. The competitive adsorption study found the phosphonic acid-SAMMS to have an affinity for divalent metal ions in decreasing order of Pb2+ > Cu2+ > Mn2+ > Cd2+ > Zn2+ > Co2+ > Ni2+. The measured Cd2+ adsorption isotherm was of the Langmuirian type and had a saturation binding capacity of 0.32 mmol/g.

Yantasee, Wassana; Lin, Yuehe; Fryxell, Glen E.; Busche, Brad J.; Birnbaum, Jerome C.

2003-08-01

271

Fluoride free new nano-particles-Mn-Biotite synthesis for removal of some toxic heavy metals, Th(IV) and U(VI) from aqueous solutions  

International Nuclear Information System (INIS)

The present paper aims to synthesize new family of fluoride free Mn- Biotite type having the optimized formula NaMn/sub 2.5/(Al,Si)/sub 4/O/sub 10/(OH)/sub 2/. The free fluoride Mn- Biotite was prepared carefully by using solid- state reaction technique using nominal compositions of individual oxides in the main formula for the potential removal of some heavy metals and some radioactive elements from aqueous solution. The crystal structure of Mn-Biotite was well characterized via powder X-ray diffraction (XRD). The particle size was estimated and found to be 54 nm. Analysis of XRD profile indicated that Mn- Biotite is belonging mainly to the monoclinic crystal structure. Infrared spectroscopy (IR) showed the most intensive absorption peaks for monoclinic phase observed at 3420, 2360, 1620, 1440cm/sup -1/. Furthermore the morphological microstructure was investigated by SE-microscopy (SEM), the estimated grain size was found to be in between (0.8-7.7) micro m. Electron spin resonance (ESR) proved that Mn-biotite has paramagnetic behavior. Also DC- electrical conductivity and TGA were investigated. In conclusion results suggest that the synthesized Mn- biotite can be used as good ion exchanger with high performance to remove heavy metals and some radioactive species from wastewater. (author)

272

Application of Gamma Radiation to Enhance Heavy Metals Removal Efficiency to Bacteria Isolated from Ronpiboon District, Nakhon Sri Thamarat Province, Thailand  

International Nuclear Information System (INIS)

The objective of this study was to isolate soil bacteria capable to te move 4 heavy metals, namely, arsenic (As(III)), lead Pb(II) and cadmium f ron old tin mine in Ronpiboon district, Nakhon Sri Thamarat. It was found that there were bacteria which capable to resist arsenic, lead and copper 11, 15, 8 and 2 ileitis, respectively[evacuate;y. The arsenic removal efficiency of these bacteria was evaluated at the low concentration of 1 u g/l. with the results of 7-61%. The lead and copper removal efficiencies at 10 mg/l were found at the range pf 9-98% and 8-40%, respectively. Six isolates of bacteria (KRD, KRH, KRM, KCD13 and KCD14) were selected to be irradiated by gamma radiation at the levels of 2-10 kGy. The heavy metals resistance was found increase in the range of of 125-16% for arsenic, 0-50% for copper, 0-18% for lead and 0-17% for cadmium, respectively. Also ut was found that the low temperature at 4 and -40 degree Celsius can prolong the bacterial survival up to 6 months. Later the arsenic removal experiment in liquid medium was conducted and it was found that the mutants can perform slightly better than wild type only >17%. It was due to the initial concentration of arsenic was too high (10 mg/l). The preliminary study of arsenic removal in soil was also conducted using pack-bed reactor. We found the proper ratio of pack material (soil and gravel) was 1:1 to promote the liquid and air circulation. The suitable medium was found to be acidified mo lass solution which were found promote the growth of tested bacterial isolates.

273

Synthesis of LTA zeolite on corundum supports: Preliminary assessment for heavy metal removal from waste water; Sintesis de zeolita LTA sobre soportes de corindon: Evaluacion preliminar para la eliminacion de metales pesados de efluentes acuosos  

Energy Technology Data Exchange (ETDEWEB)

The effectiveness of materials based on LTA Zeolite as active phase, for their incorporation into systems aimed at the removal of heavy metals on waste water is evaluated in a preliminary way. This type of Zeolite with the main channel of a minimum free diameter of 0,41 nm and a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio is an interesting molecular sieve, which in turn display a high ion exchange capacity. From this point of view, LTA Zeolite crystals were obtained in situ by hydrothermal synthesis and characterized by x ray diffraction (XRD) and scanning electron microscopy (SEM). We have studied the effect of hydrothermal synthesis time at 378 K. Likewise, the removal capacity of heavy metal from the active phase was evaluated in as a first step on diluted solutions of cooper salts at slightly acidic pH ({approx} 4,7). (Author) 28 refs.

Jacas, A.; Ortega, P.; Velasco, M. J.; Camblor, M. A.; Rodriguez, M. A.

2012-11-01

274

The effect of the presence of metatartaric acid on removal effectiveness of heavy metal ions on chelating ion exchangers.  

Science.gov (United States)

The paper presents experimental results and their evaluation for the sorption of copper(II), zinc(II), cobalt(II) and nickel(II) complexes with metatartaric acid on chelating ion exchangers with different functional groups. The literature lacks the data concerning sorption of heavy metal ions in the presence of metatartaric acid on ion exchangers. The effect of important parameters such as the value of pH, the metal(II) ion and ligand concentration as well as their molar ratio and the type of functional group of the ion exchanger used was studied. It was found that the time of 60 min was sufficient for sorption to attain equilibrium. The equilibrium sorption capacities for copper(II), zinc(II), cobalt(II) and nickel(II) complexes with metatartaric acid were 37.35 mg/g, 32.02 mg/g, 32.78 mg/g and 28.31 mg/g on Lewatit TP 207 and 42.15 mg/g, 34.32 mg/g, 27.76 mg/g and 21.70 mg/g on Lewatit TP 260, respectively. The sorption optimum pH was 7. Temperature does not affect the sorption process significantly. The sorption data were well fitted by the Langmuir adsorption model whereas kinetics of the sorption process was well described by the pseudo second order kinetics equation. PMID:21879555

Hubicki, Zbigniew; Geca, Marzena; Ko?ody?ska, Dorota

2011-01-01

275

Mushrooms store heavy metals  

International Nuclear Information System (INIS)

Heavy metals like lead and cadmium, but also radioactive cesium are accumulated in varying degrees by different types of mushrooms. So those mushrooms are suitable biological indicators of the load of these pollutants in the soil, and complement physical and chemical measurements. The article is about measurements and effects in biological objects. (orig./PW)

276

Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of meta...

Salehzadeh, Jaber

2013-01-01

277

Use of low cost dead biomasses in the removal of heavy metal toxic/radiotoxic ions from aqueous wastes- a radiotracer study  

International Nuclear Information System (INIS)

In an environmental context, accelerating pollution by toxic metal ions, metalloids, radionuclides and organometal (loid)s has provided the impetus for the research to look into the biotechnological potential of utilizing several low cost dead biomasses/agricultural byproducts to replace existing expensive technologies. Unlike organic pollutants which are biodegradable, these metallic contaminants tend to persist rather indefinitely in the environment, and are eventually accumulated through the food chain thus posing a serious threat to plants, animal and man. The use of radiotracer technique by several workers and ourselves in the study of adsorption uptake or ions (cations and anions) from aqueous solutions by metals/metals oxide surfaces at micro down to tracer level concentrations had been quite rewarding. In continuation of this work the present studies were directed to assess the uptake behaviour of abundantly available low cost dead biomasses [e.g. Rice hulls (oryza sativa L),] Mango (mangifera indica) and Neem (azadirachta indica)barks] towards some heavy metal (Hg2+, Cd2+, Cr2+, Zn2+ and Ce3+) toxic and radiotoxic (Sr2+ and Csl+)ions from aqueous solutions at low ionic concentrations (10-2-10-8 mol dm-3). In all these studies the adsorptive solution was labeled by a suitable radiotracer of the metal ion and the uptake of ions by the three biosorbents e uptake of ions by the three biosorbents was assessed through monitoring of the decrease in radioactivity of the bulk. A parametric study through change of temperature, pH and addition of other co-ions/complexing agents has helped in deducing the thermodynamic parameters and mechanism of the uptake of the ions. The extent of removal of metal ions by these dead biomasses is quite high in most cases and the nature of the uptake appears to be exchange type. These findings show that the agricultural byproducts (dead biomasses) can be utilized in the development of waste water treatment technology for removal of heavy metal toxic and radiotoxic ions. (author)

278

Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.  

Science.gov (United States)

Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused. PMID:23945878

Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

2013-10-21

279

Soil treatment to remove uranium and related mixed radioactive heavy metal contaminants. Seventh quarterly technical progress report, July 1, 1994--September 30, 1994  

International Nuclear Information System (INIS)

The objective of this project is to design and develop a physico-chemical treatment process for the removal of uranium and heavy metals from contaminated soil to achieve target contamination levels below 35 pCi/g of soil and a target for non-radioactive heavy metals below concentration levels permissible for release of the soil. The work will involve bench-scale and pilot-scale tests, using chelation-flotation, chemical leaching and ultrasonic leaching techniques, in conjunction with cross-flow microfiltration and filter-press operations. The effectiveness of an integrated process to treat leachates generated from soil processing will be demonstrated. Process flow-sheets suitable for in-situ and ex-situ applications will be developed and preliminary costs will be provided for the soil and leachate treatment technologies. The Task 2 Topical Report (milestone No. 4) summarizing contaminant removal results obtained from bench-scale studies using Fernald uranium soils and Chalk River Laboratories Chemical Pit soils was completed and issued on August 8, 1994. The results have shown that the soils containing uranium (about 400 pCi/g of soil) and strontium-90 (about 1200 pCi/g of soil) can be decontaminated to the target level of 35 pCi/g of treated soil in the presence of an ultrasonic field. Preliminary results obtained from the in-situ soil leaching tests are the average strontium-90 concentration in the cell was about 250 pCi/g; and the use of a dilute mineral acid (0. 1and the use of a dilute mineral acid (0. 1 mol/L HCl) removed in excess of 85% of strontium-90 originally present in the soil

280

Sonochemical synthesis and characterization of CdS/ZnS core-shell nanoparticles and application in removal of heavy metals from aqueous solution  

Science.gov (United States)

In the present work, CdS/ZnS core-shell nanoparticles have been successfully synthesized with the aid of Cd(NO3)2 and Zn(NO3)2?6H2O as the starting reagents in presence of ultrasonic irradiation. Besides, the effects of preparation parameters such as ultrasonic power, irradiation time and precursor concentration on the morphology CdS/ZnS core-shell nanoparticles and removal of heavy metals (Hg2+, Pb2+) were studied by SEM images and batch adsorption mode. The as-synthesized products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution field-emission transmission electron microscope (HRTEM), photoluminescence spectroscopy (PL), scanning electronic microscopy (SEM), spectra energy dispersive analysis of X-ray (EDS) and ultraviolet-visible (UV-Vis) techniques.

Amiri, O.; Hosseinpour-Mashkani, S. M.; Mohammadi Rad, M.; Abdvali, F.

2014-02-01

 
 
 
 
281

Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash.  

Science.gov (United States)

Recently because of increasing of the environmental awareness and demands, several attempts were carried out for the conversion of by-products of natural materials, especially agricultural wastes, to highly sorption capacity materials. In recent years, attention has been focused on the utilization of unmodified or modified agro-residues as sorbents for removal of pollutants. Various modifications have been reported to enhance sorption capacities for heavy metals. The present study deals with the adsorption equilibrium of iron, manganese, lead and arsenic ions from aqueous solutions on copolymer of Al(+3), Si(+4) and Fe(+3) using batch techniques. The influence of various parameters, such as agitation time, sorbent mass and pH of sorbate solution were investigated. Under this study the maximum adsorption capacity of iron and aluminum copolymer impregnated with silica (PAlFeClSi) for lead, iron, manganese and arsenic are found to be 416, 222, 158, 146 mg/g, respectively. PMID:19709808

Abo-El-Enein, S A; Eissa, M A; Diafullah, A A; Rizk, M A; Mohamed, F M

2009-12-30

282

Marine macroalga Sargassum horneri as biosorbent for heavy metal removal: roles of calcium in ion exchange mechanism.  

Science.gov (United States)

Brown seaweed Sargassum horneri, a troublesome biomass scattered along the seashore, was utilized as a biosorbent for Pb(II) removal from aqueous solutions. The Pb(II) adsorption by brown seaweed was enhanced by pretreatment with CaCl(2), and the Langmuir adsorption isotherm equation showed a maximum capacity of a Q(max) of 0.696 mmol/g and a b value of 94.33 L/mmol. Results obtained from the mass-balance equation derived from the simulation model of the Langmuir adsorption isotherm suggested that the adsorption performance of brown seaweed biosorbent was sufficient to reduce the concentration of Pb(II) to meet the range of WHO guideline. The mechanism, as elucidated using pH monitoring, adsorption rate and ion exchange model, involved the rapid pH change of metal solutions that led to high reaction rate and Pb(II) uptake in the first 30 min of the biosorption process. The energy X-ray analysis's result confirmed the sharp reduction of calcium content in the biosorbent after Pb(II) adsorption. The amount of calcium ions released from the biosorbent was about 1.5 times the amount of Pb(II) adsorbed and proved the role of calcium in the ion exchange mechanism. These adsorption equilibrium and mechanistic studies provide useful information for system design and performance prediction of biosorption processes. PMID:18725741

Southichak, B; Nakano, K; Nomura, M; Chiba, N; Nishimura, O

2008-01-01

283

Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions  

International Nuclear Information System (INIS)

Highlights: ? A new silica-supported dithiocarbamate adsorbent (Si-DTC) was synthesized following a novel synthesis route by anchoring the chelating agent of macromolecular dithiocarbamate (MDTC) to the chloro-functionalized silica matrix(SiCl). ? By adopting this method, it could make more efforts to increase the nucleophilic reactivity of polyamine with carbon disulfide under strong alkaline condition and avoid the degradation of silica matrix. ? The new adsorbent were used to absorb Pb(II), Cd(II), Cu(II) and Hg(II) which are known to be common heavy metal ions from polluted aqueous solutions. ? The dithiocarbamate groups and the amino groups in Si-DTC both take part in the adsorption process for M(II) from aqueous solutions but the adsorption mechanism of Hg(II) onto Si-DTC is quite different from that of Pb(II), Cd(II) or Cu(II) onto Si-DTC, which is testified by the XPS and FT-IR results. - Abstract: Silica-supported dithiocarbamate adsorbent (Si-DTC) was synthesized by anchoring the chelating agent of macromolecular dithiocarbamate (MDTC) to the chloro-functionalized silica matrix (SiCl), as a new adsorbent for adsorption of Pb(II), Cd(II), Cu(II) and Hg(II) from aqueous solution. The surface characterization was performed by FT-IR, XPS, SEM and elemental analysis indicating that the modification of the silica surface was successfully performed. The effects of media pH, adsorption time, initial metal ion concentration and adsorption temperature on adsornd adsorption temperature on adsorption capacity of the adsorbent had been investigated. Experimental data were exploited for kinetic and thermodynamic evaluations related to the adsorption processes. The characteristics of the adsorption process were evaluated by using the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption isotherms and adsorption capacities were found to be 0.34 mmol g-1, 0.36 mmol g-1, 0.32 mmol g-1 and 0.40 mmol g-1 for Pb(II), Cd(II), Cu(II) and Hg(II), respectively. The adsorption mechanism of Hg(II) onto Si-DTC is quite different from that of Pb(II), Cd(II) or Cu(II) onto Si-DTC, which is demonstrated by the XPS and FT-IR results.

284

Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation  

International Nuclear Information System (INIS)

Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.

285

Prediction of Heavy Metal Removal by Different Liner Materials from Landfill Leachate: Modeling of Experimental Results Using Artificial Intelligence Technique  

Digital Repository Infrastructure Vision for European Research (DRIVER)

An intensive study has been made to see the performance of the different liner materials with bentonite on the removal efficiency of Cu(II) and Zn(II) from industrial leachate. An artificial neural network (ANN) was used to display the significant levels of the analyzed liner materials on the removal efficiency. The statistical analysis proves that the effect of natural zeolite was significant by a cubic spline model with a 99.93% removal efficiency. Optimization of liner materials was achiev...

Nurdan Gamze Turan; El, Emine Beril G. Xfc M. Xfc X. F.; Okan Ozgonenel

2013-01-01

286

Removal of Some Heavy Metals from their Aqueous Solutions using 2- Acrylamido-2-Methyl-1-Propane Sulfonic Acid/Polyvinyl Alcohol Copolymer Hydrogels Prepared by Gamma Irradiation  

International Nuclear Information System (INIS)

2-acrylamido-2-methyl-1- propane sulfonic acid (AMPS) and Poly vinyl alcohol (PVA) were used to synthesis a series of functional copolymer hydrogels by means of gamma-radiations induced copolymerization and crosslinking. Factors affecting the hydrogel preparation were optimized. The prepared hydrogels were characterized by studying their swelling characteristics. The possibility of using the prepared hydrogel in the field of water treatment was evaluated by investigating their ability to recover some heavy me tal ions from their aqueous solutions. The prepared hydrogel showed a promising capability to chelate metal ions such as: Cu+2, Mn+2 and Ni+2 from their aqueous solutions. The obtained data show that the chelating ability of the prepared hydrogels increases by increasing the AMPS content in the hydrogel as well as the increment in the ph of the solution and the metal ion concentration. The prepared hydrogel was able to remove as much as 230 mg of Ni, 160 mg of Mn and 140 mg of Cu per gram of dry gel at the optimum conditions. The prepared PVA/AMPS copolymer hydrogels are chemically stable enough to be reused for at least 5 times with the same efficiency.

287

Synthesis and adsorption behavior of chitosan-coated MnFe2O4 nanoparticles for trace heavy metal ions removal  

Science.gov (United States)

Chitosan-coated MnFe2O4 nanoparticles (CCMNPs) of uniform size were synthesized by an eco-friendly method. The obtained product was characterized by XRD, TEM, FTIR and SQUID. The results show that NaOH played a key role in the formation of CCMNPs. The as-prepared CCMNPs with a saturation magnetization of 16.5 emu/g were used as magnetic nanoadsorbents to remove toxic Cu(II) and Cr(VI) ions from aqueous solution. Factors influencing the adsorption of heavy metal ions, such as pH value, agitation time and initial metal concentration were investigated. The maximum adsorption capacities of Cu(II) and Cr(VI) on CCMNPs were 22.6 and 15.4 mg/g, respectively. The competitive adsorption of Cu(II) and Cr(VI) from binary solution by CCMNPs was also studied, and the result shows that the affinity between Cu(II) and CCMNPs was much higher than that between Cr(VI) and CCMNPs.

Xiao, Yanzhen; Liang, Hanfeng; Chen, Wei; Wang, Zhoucheng

2013-11-01

288

Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions.  

Science.gov (United States)

In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions. PMID:14637348

Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi

2004-02-01

289

Desarrollo de membranas de quitosano y diseño de un equipo para la eliminación de metales pesados del agua Chitosan membrane development and design of equipment for the removal of heavy metals from water  

Directory of Open Access Journals (Sweden)

Full Text Available El presente estudio comparó la eficiencia de la filtración con membranas de quitosano 1,75% m/v, entrecruzadas con glutaraldehído (0,08% m/v y sin entrecruzar, para estimar la capacidad de remoción de iones de cadmio, cromo y cobre de disoluciones modelo. Además, se diseñó un equipo de bajo costo para la experimentación con las membranas elaboradas. La finalidad de la investigación era emplear materiales biodegradables para remover metales pesados de aguas, mediante una técnica de bajo consumo energético y, por otra parte, generar soluciones baratas, efectivas y aplicables a problemas específicos. Se elaboraron dos fichas técnicas con información sobre las membranas y se encontró que el cromo fue el metal removido en mayor medida por las membranas entrecruzadas, ajustándose al modelo de isoterma de Freundlich. Sin embargo, no se encontró relación entre el tamaño de poro de las membranas y el grado de entrecruzamiento.A filtration technique with 1,75% m/v chitosan membranes crosslinked with glutaraldehyde (0,08% v/v was used to quantify the removal capacity of chromium, copper and cadmium ions from water. A simple and low cost filtration system was developed to use with prepared membranes.The main goal was to use biodegradable materials for removing heavy metals from water, through a low energy consumption, cheap, and specific method.As a result, two data sheets were prepared for the membranes. It was found out that chromium was the metal with the highest removal from water, by using a crosslinked membrane. Metal adsorption was best adjusted to the Freundlich isotherm model, better than Langmuir isotherm model.However, it was found no correlation between pore size and crosslinking degree.

Jesús Mora Molina

2012-11-01

290

Lipid lather removes metals.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Metal contamination has been linked to birth defects, cancer, skin lesions, retardation, learning disabilities, liver and kidney damage, and a host of other maladies, and the United States alone will spend some $7 trillion over the next five years or so to clean up sites contaminated with metals. Until recently, there have only been a few time-consuming, costly methods for dealing with metal contamination in soils, but research developed at the University of Arizona uses biosurfactants, lipid...

Frazer, L.

2000-01-01

291

Inorganic particulates in removal of toxic heavy metal ions: Part-X. removal behaviour of aluminum hydroxide for Hg(II) - a radiotracer study  

International Nuclear Information System (INIS)

The present paper deals with a study on the removal behaviour of amorphous-type aluminum hydroxide for Hg(II) at micro to tracer level concentrations from aqueous solutions by employing the radiotracer technique. The solid/solution interface study was carried out for various physico-chemical parameters, e.g., effect of concentration, temperature and pH. The effect of the presence of several added cations/anions towards its removal behaviour was also assessed

292

Development of a low-cost alternative for metal removal from textile wastewater  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Heavy metals (Cd, Cr, Cu, Pb and Zn) found in textile wastewater are removed by a combination of adsorption using volcanic rock as adsorbent, sulfide precipitation and phytoremediation techniques. The integrated system for metal removal combining anaerobic bioreactor as main treatment step and a polishing step composed by algae, duckweed and water hyacinth ponds for heavy metal removal from industrial wastewater. The maximum of the metal removal was achieved in the bioreactor where metal sulp...

Sekomo Birame, C.

2012-01-01

293

Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48  

International Nuclear Information System (INIS)

Ordered mesoporous silica with hexagonal and cubic structure, type MCM-41 and MCM-48 respectively, were synthesized under basic media using pure silica, cetyltrimethylammonium bromide and tetramethylammonium hydroxide, for MCM-41 and tetraethylorthosilica, cetyltrimethylammonium and NaOH for MCM-48. The expanded materials were prepared by post-synthesis method with N-N dimethyldodecylamine (DMDDA) and dodecylamine (DDA). Small angle X-ray diffraction, nitrogen adsorption-desorption measurements, FT-IR and thermogravimetry were used to characterize the samples. The expanded materials were tested for adsorption of Cd2+, Co2+, Cu2+ and Pb2+ in aqueous solution. Aminated materials were found to be fast adsorbents for metallic ions cation with affinity for Cu2+, Pb2+, than for Cd2+ and Co2+ from single solution. In mixed metallic ions cation solutions, competition by the adsorption sites is likely to occur, the adsorption preference is for Cu2+and Pb2+. The kinetic of the reaction is very rapid and follow pseudo-second order and clearly indicated that Langmuir model describe better the for metal ions adsorption on aminated mesoporous material than Freundlich model.

294

Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method  

International Nuclear Information System (INIS)

Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed to the electrode compartments. Even though the matrices were very different the remediation was successful in all cases. After treatment the Cd concentration in the ashes allowed for spreading at agricultural land and the limiting concentration of 0.8 mg Cd/kg for the wastewater sludge was almost reached (0.84 and 0.88 mg Cd/kg). The main differences of the waste products influencing the remediation process were: the sludges had a high content of organic particles that were mobilized by electrophoresis and fouled the anion exchange membrane; the straw-ash contained a lot of chloride, which formed anionic complexes with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrixin remediated matrix

295

Effect of two heavy metals, cadmium and nickel, on the organic load removal efficiency in a laboratory UASB reactor  

International Nuclear Information System (INIS)

Experiments were carried out in three up flow anaerobic sludge blanket, UASB, reactors each with 3 L capacity, four hours of hydraulic retention time, (HRT) and volumetric organic load of 4,8 g/L/d. After the initial start phase, which was of 4.000 hours for the three reactors, they were affected in the following way: the first reactor was continuously feed with 5 mg/L of cadmium chloride, the second one was continuously feed with 10 mg/L of nickel chloride and the last one was not affected and served as reference. Efficiency in organic load removal was measured as oxygen chemical demand (OCD), the first reactor changed from 60% in the start phase (phase one) to 18% in the cadmium-affected phase (phase two), efficiency in removal (OCI) in reactor two varied from 60 to 24% and the last one did not change in a noticeable manner. Reactor one accumulated cadmium in the mud, whereas reactor two did not do that with nickel

296

Separation of heavy metals from aqueous solutions using ''biosorbents''--development of contacting devices for uranium removal  

International Nuclear Information System (INIS)

The objective of this work is to evaluate the utility of a mixed culture of denitrifying bacteria for the separation of uranium from process wastewaters. The selection of this culture was based upon the knowledge that wastewaters generated in a number of nuclear-materials processing operations require treatment to remove both nitrate and uranium. The effects of process variables on the rate of uranium accumulation and equilibrium distribution were studied. Several methods for contacting the biosorbent with aqueous uranium solutions were examined. These included suspended cells or flocs in stirred-tank reactors and films of cells or inert particles in columnar reactors. Results indicating the equilibrium distribution of uranium between the biosorbent and liquid phases are presented as a sorption isotherm. Saturation of the biosorbent with uranium was attained at a biosorbent-phase uranium concentration of about 0.14g uranium/g dry cells. 11 refs

297

Metals Removal from Recovered base Oil using Chitosan Biopolymers  

Digital Repository Infrastructure Vision for European Research (DRIVER)

It was common to use solvent extraction to recover base oil from used lubricants. Although, significant amount of contaminants removal was achieved by using solvent extraction, some problems arised which need to be resolved. The recovered base oil from solvent extraction was still in the darkish color with stink odor and only minimum heavy metals were removed. As an alternative, an adsorption method which used chitosan to remove metals and contaminants was being investigated. This paper prese...

Ahmad, A.; Ripin, A.; Ali, M. W.; Jamil, S. M.

2010-01-01

298

Inorganic particulates in removal of toxic heavy metal ions. Part 10. Removal behavior of aluminum hydroxide for Hg(II). A radiotracer study  

International Nuclear Information System (INIS)

The removal behavior of amorphous aluminum hydroxide for Hg(II) ions from aqueous solutions was investigated by employing a radiotracer technique at micro down to trace level concentrations. The batch type experiments were performed to obtain various physico-chemical parameters, viz., effect of sorptive concentration, temperature and pH. It was observed that the increase in sorptive concentration (from 1 x 10-8 to 1 x 10-2 mol x dm-3), temperature (from 303 to 333 K) and pH (from 3.4 to 10.3) apparently favored the uptake of Hg(II) by this solid. Similarly, the presence of anions (six fold) viz., oxalate, phosphate, glycine and EDTA also enhanced the uptake behavior of aluminum hydroxide for Hg(II). Whereas, the added cations viz., Na+, K+, Ba2+, Sr2+, Mg2+, Cd2+ and Fe3+ more or less suppressed the removal behavior of the adsorbent. Further, the adsorption process followed the classical Freundlich adsorption isotherm and deductions of various thermodynamic data revealed that the uptake of Hg(II) on aluminum hydroxide followed the ion-exchange type mechanism and thermodynamically it was found to be endothermic in nature. (author)

299

Preparation and characterization of sodium iron titanate ion exchanger and its application in heavy metal removal from waste waters  

International Nuclear Information System (INIS)

The ion exchange properties of sodium iron titanates, namely, NaFeTiO4, Na2Fe2Ti6O16 and iron-doped sodium nonatitanate were investigated. Conventional solid state and sol-gel methods were used in the synthesis of the sodium iron titanates. Structural characterization of the materials was performed with powder X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and with inductively coupled plasma optical emission spectrometry (ICP-OES). Based on TG analyses, the novel iron-doped sodium nonatitanate was proven to be a member of the layered titanate family. The different sodium iron titanates were compared based on the efficiency in separating Ni from aqueous streams by conducting batch experiments with a batch factor of 1000 ml/g. Iron-doped sodium nonatitanate exhibited the best ion exchange performance compared to the other sodium iron titanates studied. It was found to be selective for nickel over potassium and showed 99% removal efficiency for Ni

300

Heavy Metal Pumps in Plants  

Energy Technology Data Exchange (ETDEWEB)

The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

Harper, J.F.

2000-10-01

 
 
 
 
301

Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent  

International Nuclear Information System (INIS)

A novel magnetic nano-adsorbent has been developed by the covalent binding of polyacrylic acid (PAA) on the surface of Fe3O4 nanoparticles and the followed amino-functionalization using diethylenetriamine (DETA) via carbodiimide activation. Transmission electron microscopy image showed that the amino-functionalized Fe3O4 nanoparticles were quite fine with a mean diameter of 11.2 ± 2.8 nm. X-ray diffraction analysis indicated that the binding process did not result in the phase change of Fe3O4. Magnetic measurement revealed they were nearly superparamagnetic with a saturation magnetization of 63.2 emu/g Fe3O4. The binding of DETA on the PAA-coated Fe3O4 nanoparticles was demonstrated by the analyses of Fourier transform infrared (FTIR) spectroscopy and zeta potential. After amino-functionalization, the isoelectric point of PAA-coated Fe3O4 nanoparticles shifted from 2.64 to 4.59. The amino-functionalized magnetic nano-adsorbent shows a quite good capability for the rapid and efficient adsorption of metal cations and anions from aqueous solutions via the chelation or ion exchange mechanisms. The studies on the adsorption of Cu(II) and Cr(VI) ions revealed that both obeyed the Langmuir isotherm equation. The maximum adsorption capacities and Langmuir adsorption constants were 12.43 mg/g and 0.06 L/mg for Cu(II) ions and 11.24 mg/g and 0.016 for Cu(II) ions and 11.24 mg/g and 0.0165 L/mg for Cr(VI) ions, respectively

302

Removal of heavy metals during flue gas scrubbing in incineration plants equipped with Lewatite selective ion exchangers TP 207 and TP 214; Schwermetallentfernung bei der Rauchgaswaesche von Verbrennungsanlagen mit Lewatit Selektiv-Ionenaustauschern TP 207 und TP 214  

Energy Technology Data Exchange (ETDEWEB)

The most frequently applied technology for pollutant removal from flue gases of waste treatment plants is dry, quasi-dry, or wet scrubbing methods. The advantages of the dry or quasi-dry methods in terms of investment costs have to be compared with the drawbacks of relatively high concentrations of heavy metals or mercury in the offgas and in the waste products. The outgoing materials streams of the scrubbing units can be treated with various methods. The paper focuses on the removal of heavy metals using selective ion exchangers. (orig./CB) [Deutsch] Bei der Reinigung von Rauchgasen aus Verbrennungsanlagen sind prinzipiell trockene, quasitrockene oder nasse Verfahren verbreitet. Dem Investitionskostenvorteil der trockenen und quasitrockenen Einduesungsverfahren stehen die Nachteile der meist hoeheren Restkonzentrationen im Reingas und der hohen Reststoffmengen mit Schwermetall- oder Quecksilberkontaminationen gegenueber. Die Abstroeme der verschiedenen Waescher koennen nach mehreren Methoden behandelt werden. In diesem Aufsatz wird speziell die Entfernung von Schwermetallen mit Selektiv-Ionenaustauschern beschrieben. (orig./SR)

Mauer, D.; Hoffmann, H.; Schnegg, U.

1997-12-31

303

Inorganic particulates in removal of toxic heavy metal ions: efficient removal of cadmium ions from aqueous solutions by hydrous manganese oxide  

International Nuclear Information System (INIS)

Adsorption of cadmium ions from aqueous solutions of Cd(NO3)2 on hydrous manganese oxide (HMO) has been studied as a function of the contact time, concentration (10-2-10-7 M), temperature (303-333 K) and pH (2.80-11.80) of the Cd(II) solution employing 'radiotracer technique'. The results on adsorption of Cd(II) on HMO show that the removal process is essentially complete in ca. 2 h and the steady state values of adsorption at various concentrations agree well with the classical Freundlich adsorption isotherm. The temperature and pH of the bulk solution markedly affect the extent of adsorption and the process is thermodynamically irreversible. The exposure of HMO to neutrons and ?-radiations from a 11.1 GBq (Ra-Be) neutron source having 1.72 Gy/h dose rate or to a high radiation ?-cell (having mean dose rate 4.66 kGy/h) has practically no significant effect on the adsorption capacity of HMO. (orig.)

304

Biosorption of heavy metals and uranium from dilute solutions  

International Nuclear Information System (INIS)

Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

305

Uso de biomassa seca de aguapé (Eichornia crassipes visando à remoção de metais pesados de soluções contaminadas = Use of water hyacinth (Eichornia crassipes dry biomass for removing heavy metals from contaminated solutions  

Directory of Open Access Journals (Sweden)

Full Text Available O presente trabalho avaliou a eficiência da biomassa seca de aguapé (Eichornia crassipes na remoção dos metais pesados cádmio (Cd, chumbo (Pb, cromo (Cr, cobre (Cu, zinco (Zn e níquel (Ni de soluções preparadas com estes metais. O delineamento utilizado foi inteiramente casualizado, com cinco tratamentos (soluções com diferentes concentrações dos metais pesados e quatro repetições. A biomassa seca permaneceu nas soluções dos tratamentos por um período de 48h, e nos intervalos de 1; 2; 3; 6; 12; 24; 36 e 48h após a instalação do experimento, coletaram-se alíquotas de cada tratamento,determinando-se a maior remoção de cada metal pesado pela biomassa seca do aguapé. Foi realizada digestão nitroperclórica na biomassa seca e determinação dos teores dos metais na biomassa e nas alíquotas por espectrometria de absorção atômica, modalidade chama. Paraos metais Cd, Pb, Cr, Cu e Zn ocorreu remoção significativa pela massa seca do aguapé nos diferentes tratamentos, enquanto para o Ni não foi encontrada diferença significativa. Dessa forma, conclui-se que a biomassa seca produzida, a partir do aguapé Eichornia crassipes, é um excelente material para a remoção, tanto em pequena como em grande escala, de corpos hídricos contaminados com metais pesados.The present work evaluated the efficiency of the dry biomass of water hyacinth (Eichornia crassipes in the removal of heavy metalscadmium (Cd, lead (Pb, chromium (Cr, cupper (Cu, zinc (Zn and nickel (Ni from solutions prepared with these metals. The delineation used was entirely randomized, with five treatments (solutions with different concentrations of heavy metals and fourrepetitions. The dry biomass remained in the treatment solutions for a period of 48h. In the intervals of 1; 2; 3; 6; 12; 24; 36 and 48h after experiment installation, samples were collected of each treatment, determining the greater removal for each heavy metal by water hyacinth dry biomass. Nitro-perchloric digestion was conducted in the dry biomass, and metal levels were determined in the dry biomass and in the samples by atomic absorption spectrometry, flame modality. The metals Cd, Pb, Cr, Cu e Zn were removed by waterhyacinth dry biomass in the different treatments, whereas for Ni removal did not occur. The water hyacinth Eichornia crassipes is an excellent material for removal, in small and larger scales, of water bodies contaminated with heavy metals.

Affonso Celso Gonçalves Junior

2009-01-01

306

Removal of Heavy Metal Ions (Pb2+, Cu2+) in Aqueous Solutions by Pterygota macrocarpa Sawdust  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The purpose of this study is the use of Pterygota macrocarpa sawdust as adsorbent for lead and copper removal into aqueous acid solutions. The results showed that the rate of removal is better for particle sizes lower than 0.5 mm, in the metal solutions at pH 3. The Langmuir, Freundlich and Temkin isotherms studies were allowed to determine the maximum capacity of adsorption of the sawdust; it is 115.61 and 24.02 mg g-1 for the lead and cooper removal, respectively. This stu...

Adouby, K.; Koffi Akissi, L. C.; Eboua Wandan, N.; Yao, B.

2007-01-01

307

Heavy metals extraction from anaerobically digested sludge.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper reports on the chemical extraction efficiency in the removal of heavy metals from sludge from an activated-sludge system, which receives as influent both industrial and municipal wastewater. Utilizing a series of chemical extractants in a sequential order comprised the first phase of the research, called sequential chemical extraction (SCE). The work started with the well-known Tessier method followed by Veeken and by Sims and Kline SCE schemes. Afterwards, modified versions of Tes...

Marchioretto, M. M.; Bruning, H.; Loan, N. T. P.; Rulkens, W. H.

2001-01-01

308

Role of free living, immobilized and non-viable biomass of Nostoc muscorum in removal of heavy metals: An impact of physiological state of biosorbent.  

Science.gov (United States)

Biosorption of Pb and Cd by using free living, immobilized living and non—viable forms of Nostocmuscorum was studied as a function of pH (3—8), contact time (5—240 min) and metal concentration (10—100 &mgr;g ml—1), to find out the most efficient physiological formfor metal removal. Results revealed that optimum conditions for biosorption of both the metals by different states of biosorbentwere almost same (contact time— 30 min, metal concentration— 100 &mgr;g ml—1 and pH— 5.1 and 6, for Pb and Cd, respectively) however, the immobilized biomass of N. muscorum was found to be more suitable for the development of an efficient biosorbent as evident from theqmax(1000 mg g—1protein) and Kf (0.08 mg g—1protein) values obtained from the Langmuir and Freundlich isotherms. A pseudo second order kinetics was found more suitable for describing the nature of biosorption of both the metals by all the three forms of N. muscorum. An analysis of correlation revealed that as the metal concentration increases, the removal of Pb and Cd by N. muscorum also increases significantly. The regression analysis showed that the rate of removal of Pb by free living and dead biomass was 1.89 and 1.58 times higher than the rate of removal of Cd by respective biomass. In contrast, the rate of removal of Cd by immobilized biomass was 1.46 times higher than that of Pb. PMID:25535721

Dixit, S; Singh, D P

2014-01-01

309

A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane  

Energy Technology Data Exchange (ETDEWEB)

Highlights: Black-Right-Pointing-Pointer Materials are effective and selective in simultaneous removal of heavy metal ions. Black-Right-Pointing-Pointer Use of composite adsorbent of both materials may result in more effective material. Black-Right-Pointing-Pointer Seeds biomass has various functional groups involves in metal removal. Black-Right-Pointing-Pointer Attainment of sorption equilibrium is rapid for the seeds biomass. Black-Right-Pointing-Pointer Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5-8.

Obuseng, Veronica; Nareetsile, Florence [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana); Kwaambwa, Habauka M., E-mail: hmkwaambwa@yahoo.com [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana)

2012-06-12

310

A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane  

International Nuclear Information System (INIS)

Highlights: ? Materials are effective and selective in simultaneous removal of heavy metal ions. ? Use of composite adsorbent of both materials may result in more effective material. ? Seeds biomass has various functional groups involves in metal removal. ? Attainment of sorption equilibrium is rapid for the seeds biomass. ? Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5–8.

311

Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl{sub 2} activated coir pith carbon  

Energy Technology Data Exchange (ETDEWEB)

The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl{sub 2} activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl{sub 2} activated coir pith carbon is effective for the removal of toxic pollutants from water.

Namasivayam, C. [Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore 641 046 (India)]. E-mail: cnamasi@yahoo.com; Sangeetha, D. [Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore 641 046 (India)

2006-07-31

312

Development and evaluation of Mn oxide-coated composite adsorbent for the removal and recovery of heavy metals from coal processing wastewater. Final report, December 1995  

Energy Technology Data Exchange (ETDEWEB)

The overall objective of this research was to evaluate a Mn oxide-coated granular activated carbon (MnGAC) for the removal and recovery of metals from wastewaters. The composite adsorbent was prepared by coating M-n-oxide onto granular activated carbon. Three coating methods (adsorption, precipitation, and dry oxidation) were developed and studied in this research. The adsorbent (MnTOG) prepared by a dry oxidation method had the highest Cu(II) adsorption capacity of the three synthesis methods. In multiple adsorption/regeneration cycle tests, MnTOG had better Cu(II) removal relative to those adsorbents prepared by other methods. MnTOG had the ability to remove Cu(II) and Cd(II) to trace level (< 4 ug/L) in a column process at least through 3000 and 1400 BV, respectively. Cd(II) removal was hindered by the presence of Cu(II). However, Cu(II) removal was only slightly reduced by the presence of Cd(II). Cu(II) adsorption in batch and fixed-bed processes onto MnTOG was successfully modeled with a homogeneous surface diffusion model (HSDM). However, the HSDM could only successfully describe the adsorption of Cd(II) onto MnTOG in the batch process, but not the fixed-bed process. M-n oxide can be deposited on GAC to create a composite adsorbent with an increased Cu(II) or Cd(II) adsorption capacity. Composite adsorbent (MnGAC) has the potential to become an efficient way to remove metals from metal contaminated wastewater.

Fan, Huan Jung; Anderson, P.R.

1995-12-31

313

FINAL REPORT. NEW STRATEGIES FOR DESIGNING BIOADSORBANTS FOR METAL REMOVAL: SELECTION OF ANTIBODIES AND PEPTIDES WITH HIGH SPECIFICITY FOR HEAVY METALS AND THEIR CELL SURFACE EXPRESSION  

Science.gov (United States)

The broad, long term objective of the research plan is to develop exquisitely selective polypeptide metal chelators for the remediation of aqueous systems. A variety of polypeptide chelators will be developed and optimized ranging from antibodies to small peptides. Then, through ...

314

Bioremediation of Heavy Metals in Liquid Media Through Fungi Isolated from Contaminated Sources  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Wastewater particularly from electroplating, paint, leather, metal and tanning industries contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and biosorption at low cost and in eco-friendly way. An attempt was, therefore, made to isolate fungi from sites contaminated with heavy metals for higher tolerance and removal of heavy metals from wastewater. Seventy-six fungal isolates tolerant to he...

Joshi, P. K.; Swarup, Anand; Maheshwari, Sonu; Kumar, Raman; Singh, Namita

2011-01-01

315

Removal of Heavy Metals (Fe3+, Cu2+, Zn2+, Pb2+, Cr3+ and Cd2+) from Aqueous Solutions by Using Hebba Clay and Activated Carbon  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The adsorption capacity of hebba clay and activated carbon towards (Fe3+, Cu2+, Zn2+, Pb2+, Cr3+, Cd2+) metal ions was studied. The adsorption capacity was investigated by batch experiment. The effect of weight of hebba was studied and the results showed that the removal percentages increased as the weight of sorbent increased. The effect of contact time was also studied and the results showed that the removal percentages increased as the contact time increased. The effect of pH of the soluti...

Shama, S. A.; Gad, M. A.

2010-01-01

316

Removal of Heavy Metals Fe3+, Cu2+, Zn2+, Pb2+, Cr3+ and Cd2+ from Aqueous Solutions by Using Eichhornia Crassipes  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The adsorption capacity of Eichhornia Crassipes towards metal ions such as Fe3+, Cu2+, Zn2+, Pb2+, Cr3+ and Cd2+, was studied. The adsorption capacity was investigated by batch experiments. The results showed that the removal percentages increased as the weight of sorbent increased, except for Fe3+ and Zn2+. The effect of contact time was also studied and the results showed that the removal percentages increased as the contact time increased for Cr3+, Zn2+ and Pb2+, but for Fe3+, Cu2+ and Cd2...

Shama, S. A.; Moustafa, M. E.; Gad, M. A.

2010-01-01

317

Heavy metals in air depositions  

International Nuclear Information System (INIS)

A new way to calculate critical pollutant loads is presented. This paper describes a methodological approach, including modelling procedure, for assessing the critical loads of heavy metals and the findings produced by a monitoring programme designed to establish the amount of several heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) resulting from wet and dry deposition. An innovative system is used to collect cry deposits at a sampling located in Northern Italy (Bologna urban area, Italy). Rating total deposition flows against critical loads makes it possible to identify exceedence areas

318

Heavy metals in edible mushrooms  

International Nuclear Information System (INIS)

It has been reported that edible mushrooms are able to enrich the concentrations of several heavy metals. The Cd has especially drawn attention due to its high toxicity. By using particle induced X-ray emission (PIXE) analysis for the determination of the heavy metals it is possible to obtain a screening of the content of a wide number of elements. By analysing different species it is shown that one or a few elements may be characteristic for a single species. It is especially remarkable that several species of the family Agaricaceae are enriching Ag to a very high degree (up to 200 ppm). (author)

319

Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution  

Energy Technology Data Exchange (ETDEWEB)

Research highlights: > Nanocomposite made of multi-walled carbon nanotubes and chitosan was prepared and characterized. > The characterization confirmed the homogenous and well distribution of the MWCNTs within the chitosan matrix. > MWCNTs/chitosan nanocomposite was used for the removal of copper, zinc, cadmium and nickel ions from aqueous solution. > The results showed that nanocomposite could remove successfully most of the metal ions from solution with high efficiency. - Abstract: Multi-walled carbon nanotubes (MWCNTs) were modified with chitosan, and a homogenous nanocomposite was obtained. The morphological properties of the MWCNTs/chitosan nanocomposite were studied with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The morphological results indicate the successful modification and the formation of MWCNTs/chitosan nanocomposites. The MWCNTs/chitosan nanocomposite was packed inside a glass column and used for the removal of copper, zinc, cadmium, and nickel ions from aqueous solution. The MWCNTs/chitosan nanocomposite showed a great efficiency for the removal of the target metal ions from the aqueous solution. The results suggested that this novel MWCNTs/chitosan nanocomposite could be used for different environmental applications.

Salam, Mohamed Abdel, E-mail: masalam16@hotmail.com [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Makki, Mohamad S.I.; Abdelaal, Magdy Y.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia)

2011-02-03

320

Short-term uptake of heavy metals by periphyton algae  

Energy Technology Data Exchange (ETDEWEB)

The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

Vymazal, J.

1984-12-31

 
 
 
 
321

Phytoremediation of Heavy Metals in Aqueous Solutions  

Directory of Open Access Journals (Sweden)

Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

Felix Aibuedefe AISIEN

2010-12-01

322

Applicability of Moringa oleifera Lam. pie as an adsorbent for removal of heavy metals from waters Aplicabilidade da torta de Moringa oleifera Lam. como adsorvente para remoção de metais pesados de águas  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study evaluated the efficacy of moringa seeds (Moringa oleifera Lam.) as an adsorbent material for removing toxic heavy metals such as cadmium, lead, and chromium from contaminated solutions. The effect of the adsorbent mass was investigated at two pH conditions (5.0 and 7.0). The optimized conditions were 0.300 g of adsorbent at pH 5.0, used for the isotherms construction, and linearized according to Langmuir and Freundlich models. Results showed that cadmium adsorption was similar in b...

Gonc?alves Junior, Affonso C.; Meneghel, Ana P.; Fernanda Rubio; Leonardo Strey; Dragunski, Douglas C.; Coelho, Gustavo F.

2013-01-01

323

Heavy metals in trees and energy crops - a literature review  

International Nuclear Information System (INIS)

This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

324

Phytoextraction of heavy metals from mine soils using hyperaccumulator plants.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Phytoextraction is an environmental-friendly and cost-effective technology that uses metal hyperaccumulator plants to remove heavy metals from soils. The metals are absorbed by the roots, transported and accumulated in the aerial parts of the plants, which can be harvested and eliminated. The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addi...

Pe?rez Esteban, Javier; Escola?stico, Consuelo; Ruiz Ferna?ndez, Juan; Masaguer Rodri?guez, Alberto; Moliner Aramendia, Ana Mari?a

2010-01-01

325

Mosses accumulate heavy metals from the substrata of coal ash  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators) can be used for phytoremediation (removal of contaminants from soils) or phytomining (growing a crop of plants to harvest the metals). Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia). The content of various heavy meta...

Vukojevi? Vanja; Sabovljevi? Marko; Jovanovi? S.

2005-01-01

326

Heavy Metal Stars  

Science.gov (United States)

La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing atomic mass and hence, increasing positive charge of the nuclei, the electric repulsion between the nuclei becomes stronger and stronger. In fact, the fusion process only works up to a certain mass limit, corresponding to the element Iron [2]. All elements that are heavier than Iron cannot be produced via this path. But then, how were those heavy elements we now find on the Earth produced in the first place? From where comes the Zirconium in artificial diamonds, the Barium that colours fireworks, the Tungsten in the filaments in electric bulbs? Which process made the Lead in your car battery? Beyond iron The production of elements heavier than Iron takes place by adding neutrons to the atomic nuclei . These neutral particles do not feel any electrical repulsion from the charged nuclei. They can therefore easily approach them and thereby create heavier nuclei. This is indeed the way the heaviest chemical elements are built up. There are actually two different stellar environments where this process of "neutron capture" can happen. One place where this process occurs is inside very massive stars when they explode as supernovae . In such a dramatic event, the build-up proceeds very rapidly, via the so-called "r-process" ( "r" for rapid ). The AGB stars But not all heavy elements are created in such an explosive way. A second possibility follows a more "peaceful" road. It takes place in rather normal stars, when they burn their Helium towards the end of their lives. In the so-called "s-process" ( "s" for slow ), heavier elements are then produced by a rather gentle addition of neutral neutrons to atomic nuclei. In fact, roughly half of all the elements heavier than Iron are believed to be synthesized by this process during the late evolutionary phases of stars. This process takes place during a specific stage of stellar evolution, known as the "AGB" phase [3]. It occurs just before an old star expels its gaseous envelope into the surrounding interstellar s

2001-08-01

327

Heavy metals and the origin of life  

Science.gov (United States)

The functional value of heavy metals in proto-cells was immense and involved critical roles in catalysis of molecular synthesis, translation, electrical neutrality and conduction, energy capture, cross-linking and precipitation (stabilizers of protective cell walls), and to a limited extent, osmotic pressure control. Metals must have modulated the evolutionary choices of the types of building blocks, such as ribose sugars as a constituent of RNA, or the the chirality and enantiopurity of many biomolecules. The formation of an enclosing membrane led to intracellular prokaryotic life (believed to have originated in an anaerobic environment) and much enhanced control over primary metabolism, the uptake and incorporation of heavy metals and the management of biomolecules (especially RNA, DNA and proteins) that were formed. Cells of the most primitive organisms (archaebacteria) reveal complex mechanisms designed specifically to deal with selective pressures from metal-containing environments including intra- and extra-cellular sequestration, exclusion by cell wall barrier, removal through active efflux pumps, enzymatic detoxification, and reduction in sensitivity of cellular targets to metal ions. Adaptation to metals using a variety of chromosomal, and transposon and plasmid-mediated systems began early in the evolution of life on Earth. Recent studies, however, show that the roles played by many heavy metals have changed over time. Divalent lead, for instance, has relinquished its unique catalytic role in the conversion of carbohydrates into ribose in the prebiotic world. The putative elements that dominated the primordial biochemistry were V, Mo, W, Co, Fe(II) and Ni; with the development of oxygenated atmosphere, these elements gave way to Zn, Cu and Fe(Ill) in their metabolic functions.

Nriagu, J.

2003-05-01

328

Adsorption of Heavy Metal from Recovered base Oil using Zeolite  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Recovery of used lubricating oil by extraction produced organic sludge and recovered base oil, but this oil has metallic content such as magnesium and zinc. In this study, purification of recovered base oil by using adsorption process to remove heavy metals was performed. Zeolite was used as an adsorbent. The parameters studied were contact time, amount of zeolite, temperature and their interactions. The results showed that zinc removal was higher than that of the magnesium. The optimum magne...

Ahmad, A.; Ripin, A.; Ali, S. M. W.

2010-01-01

329

Induction of in vitro roots cultures of Thypha latifolia and Scirpus americanus and study of their capacity to remove heavy metals  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english We have established the conditions to obtain in vitro root cultures of Thypha latifolia and Scirpus americanus and have investigated their capacity to remove Pb(II), Mn(II) and Cr(III) from the culture medium. The best conditions for the in vitro culture growth were: an inoculum of 0.2 g of T. latif [...] olia roots and 0.05 g of S. americanus roots (fresh weight), Murashige-Skoog medium and 2 mg L-1of indolacetic acid. The T. latifolia and S. americanus root cultures were cultivated onto media containing Cr (15 µg L-1), Pb (60 µg L-1) or Mn (1.8 mg L-1). Both species were able to remove Pb and Cr near to 100% and 71-100% of Mn from the medium solution during the 6-8 days of experimentation. According to metal concentrations removed from the medium containing the growing root mass, the in vitro root culture of S. americanus can be considered as an accumulator for Pb (157.73 µg g-1), Cr (55.6 µg g-1) and Mn (5000 µg g-1).

María del Socorro, Santos-Díaz; María del Carmen, Barrón-Cruz; María Catalina, Alfaro-De la Torre.

2007-07-15

330

Phytoremediation efficiency of pondweed (Potamogeton crispus in removing heavy metals (Cu, Cr, Pb, As and Cd from water of Anzali wetland  

Directory of Open Access Journals (Sweden)

Full Text Available Plant-based remediation (i.e. phytoremediation is one of the most significant eco-sustainable techniques to cope with devastating consequences of pollutants. In the present study, the potential of a wetland macrophyt (i.e. Potamogeton crispus for the phytoremediation of heavy metals (i.e. Cu, Cr, Pb, As and Cd in the Anzali wetland was evaluated. The results showed that P. crispus tends to accumulate notable amounts of Cu, Cr, Pb, As and Cd according to their assayed concentrations as follows: 8.2 µg g-1 dw, 0.97 µg g-1 dw, 6.04 µg g-1 dw, 2.52 µg g-1 dw and 0.34 µg g-1 dw, respectively. Further accurate perception of the phytoremediation efficiency were conducted using both bioconcentration factor and translocation factor. The average of the highest bioconcentration factors was presented in a descending order as: 2.9×103, 1.9×103, 1.17×103, 0.68×103 and 0.46×103 for the Cu, Cr, Pb, Cd and As, respectively. Based on the results, P. crispus presents high potential to absorb all the alluded metals except for As and partly Cd. Correspondingly, the mean values of translocation factor were reported in the range of 0.41 to 2.24. Eventually, relying on the observed findings, the results support the idea that P. crispus species would be employed as the prospective candidate for the phytoremediation processes in Anzali wetland.

Hajar Norouznia

2014-08-01

331

Radiation synthesis of inter polymer polyelectrolyte complex chitosan/ acrylic acid hydrogel and its application for removal of some heavy metals and phenolic compounds  

International Nuclear Information System (INIS)

Copolymer hydrogels composed of chitosan and acrylic acid (AAc) were synthesized by using gamma- irradiation and their swelling behaviour, thermal property, were investigated. Chitosan/AAc copolymer hydrogel exhibited relatively high equilibrium water content and also showed reasonable sensitivity to ph. The removal of Cu(II). Co(II) and Cr(III), from aqueous solution by the prepared chitosan/AAc (0.6/4) copolymer composition was examined by batch equilibrium technique. The adsorption capacities of the chitosan/AAc (0.8/ 2, wt/wt) copolymer towards phenol, and 2,6-dimethylphenol were 26.7, 12.5 mg/ g polymer, respectively. The effect of treatment time, initial feed concentration and temperature on the metal and phenolic compound uptake were investigated at different ph values

332

Effect of ultrasonic treatment on heavy metal decontamination in milk.  

Science.gov (United States)

Ultrasound has been found useful in increasing the efficiency and consumer safety in food processing. Removal of heavy metal (lead, mercury, and arsenic) contamination in milk is extremely important in regions of poor ecological environment - urban areas with heavy motor traffic or well established metallurgical/cement industry. In this communication, we report on the preliminary studies on the application of low frequency (20kHz) ultrasound for heavy metal decontamination of milk without affecting its physical, chemical, and microbiological properties. PMID:24746508

Porova, Nataliya; Botvinnikova, Valentina; Krasulya, Olga; Cherepanov, Pavel; Potoroko, Irina

2014-11-01

333

Heavy metal displacement in chelate-irrigated soil during phytoremediation  

Science.gov (United States)

Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

2003-03-01

334

Biosorption of heavy metals under anaerobic conditions. Final report  

International Nuclear Information System (INIS)

The precipitation of heavy metals as hydroxides is the standard technique for the decontamination of waste water streams polluted by these elements. On the other side, progress in research has been made concerning the biosorption onto dead biomass and bioprecipitation supported by physiologically active bacteria. As the aim of this study, a flexible strategy has been envisaged cleaning a waste water with definite heavy metal load underlying the process mentioned above. Suitable bacteria were enriched and the process was tested in a technical plant. As result, a very high efficiency of heavy metal elimination has been found. The field of application covered by the acquired process is identical with the whole range of the waste water streams polluted by heavy metals. In addition, a second stage may be necessary if there are any further contaminants to be removed. (orig.)

335

EFFICIENCY OF NANOFILTRATION PROCESS BY METAL ION REMOVAL FROM MODEL WATER  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Heavy metal ions in water can harm health and load the environment and living organisms, already when they are present in low concentrations. Among many conventional treatment methods, membrane separation processes, i.e. nanofiltration (NF) enables efficient heavy metal ion removal from wastewaters. Nanofiltration membranes should be able to reject multivalent cations, (including heavy metal ions), while the monovalent ions pass through the membrane. The experimental part of the diploma ...

S?panbauer, Aleksandra

2010-01-01

336

Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin  

International Nuclear Information System (INIS)

Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

337

Heavy Metal Risk Management: Case Analysis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

To prepare measures for practical policy utilization and the control of heavy metals, hazard control related institutions by country, present states of control by country, and present states of control by heavy metals were examined. Hazard control cases by heavy metals in various countries were compared and analyzed. In certain countries (e.g., the U.S., the U.K., and Japan), hazardous substances found in foods (e.g., arsenic, lead, cadmium, and mercury) are controlled. In addition, the Joint...

Kim, Ji Ae; Lee, Seung Ha; Choi, Seung Hyun; Jung, Ki Kyung; Park, Mi Sun; Jeong, Ji Yoon; Hwang, Myung Sil; Yoon, Hae Jung; Choi, Dal Woong

2012-01-01

338

The reactive surface of Castor leaf [Ricinus communis L.] powder as a green adsorbent for the removal of heavy metals from natural river water  

Science.gov (United States)

In this study, a green adsorbent was successfully applied to remove toxic metals from aqueous solutions. Dried minced castor leaves were fractionated into 63-?m particles to perform characterization and extraction experiments. Absorption bands in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 1544, 1232 and 1350 cm-1 were assigned to nitrogen-containing groups. Elemental analysis showed high nitrogen and sulfur content: 5.76 and 1.93%, respectively. The adsorption kinetics for Cd(II) and Pb(II) followed a pseudo-second-order model, and no difference between the experimental and calculated Nf values (0.094 and 0.05 mmol g-1 for Cd(II) and Pb(II), respectively) was observed. The Ns values calculated using the modified Langmuir equation, 0.340 and 0.327 mmol g-1 for Cd(II) and Pb(II), respectively, were superior to the results obtained for several materials in the literature. The method proposed in this study was applied to pre-concentrate (45-fold enrichment factor) and used to measure Cd(II) and Pb(II) in freshwater samples from the Paraná River. The method was validated through a comparative analysis with a standard reference material (1643e).

Martins, Amanda E.; Pereira, Milene S.; Jorgetto, Alexandre O.; Martines, Marco A. U.; Silva, Rafael I. V.; Saeki, Margarida J.; Castro, Gustavo R.

2013-07-01

339

Decay heat removal analyses in heavy-liquid-metal-cooled fast breeding reactors. Development of the thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors  

International Nuclear Information System (INIS)

The feasibility study on future commercial fast breeder reactors in Japan has been conducted at JNC, in which various plant design options with all the possible coolant and fuel types are investigated to determine the conditions for the future detailed study. Lead-bismuth eutectic coolant has been selected as one of the possible coolant options. During the phase-I activity of the feasibility study in FY1999 and FY2000, several plant concepts, which were cooled by the heavy liquid metal coolant, were examined to evaluate the feasibility mainly with respect to economical competitiveness with other coolant reactors. A medium-scale (300 - 550 MWe) plant, cooled by a lead-bismuth natural circulation flow in a pool type vessel, was selected as the most possible plant concept for the heavy liquid metal coolant. Thus, a conceptual design study for a lead-bismuth-cooled, natural-circulation reactor of 400 MWe has been performed at JNC to identify remaining difficulties in technological aspect and its construction cost evaluation. In this report, a thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors is described. A Multi-dimensional Steam Generator analysis code (MSG) was applied to evaluate the natural circulation plant by combination with a flow-network-type, plant dynamics code (Super-COPD). By using this combined multi-dimensional plant dynamics code, decay heat removals, ULOHS and UTOP accidents were evaluated for the 100 MWe STAR-LM conwere evaluated for the 100 MWe STAR-LM concept designed by ANL. In addition, decay heat removal by the Primary Reactor Auxiliary Cooling System (PRACS) in the 400 MWe lead-bismuth-cooled, natural-circulation reactor, being studied at JNC, was analyzed. In conclusion, it becomes clear that the combined multi-dimensional plant dynamics code is suitably applicable to analyses of lead-bismuth-cooled, natural-circulation reactors to evaluate thermal-hydraulic phenomena during steady-state and transient conditions. (author)

340

Robust removal of heavy metals from water by intercalation chalcogenide [CH3NH3]2xMnxSn3-xS6·0.5H2O  

Science.gov (United States)

The intercalation chalcogenide, [CH3NH3]2xMnxSn3-xS6·0.5H2O (x = 0.5-1.1) (CMS), was synthesized by simply hydrothermal method, which exhibited excellent adsorption properties for the removal of Cd2+/Pb2+. CNS analysis, SEM-EDX, ICP-OES, TG-DTG, XPS, N2 physical-adsorption and XRD were used to characterize the crystal structure, chemical composition and micro-morphologies of CMS material. The results indicated that the CH3NH3+ ions intercalated between the layers can exchange with heavy metal ions in the solution. The pH effect on Cd2+/Pb2+ adsorption was slight and the suitable pH value for Cd2+/Pb2+ removal by CMS materials was between 2 to 7. The equilibrium times were 7 h for 200 mg/L Cd2+ and 2 h for 400 mg/L Pb2+, respectively, and the adsorption kinetics was in agreement with pseudo-second-order kinetic model. The adsorption capacities of the CMS for Cd2+ and Pb2+ were 515 mg/g for Cd2+ and 1053 mg/g at 20 °C, respectively. The Freundlich isotherm was applied to describe the adsorption process, which fit the experimental dates well. Competitive adsorption results showed that the presence of 1 M Na+, Ca2+ or Mg2+ exerted slightly inhibiting effect on Cd2+/Pb2+ adsorption. The reaction temperature also affected the adsorption capacity of CMS. The adsorbed CMS can be considered as an excellent permanent waste form without the risk of lease of heavy metals.

Li, Jian-Rong; Wang, Xu; Yuan, Baoling; Fu, Ming-Lai; Cui, Hao-Jie

2014-11-01

 
 
 
 
341

Heavy metal uptake of Geosiphon pyriforme  

Science.gov (United States)

Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

Scheloske, Stefan; Maetz, Mischa; Schüßler, Arthur

2001-07-01

342

Changes of heavy metal chemical bonds in thermally treated soils  

International Nuclear Information System (INIS)

The cleaning performance of thermal decontamination methods for heavy metals is reviewed by means of a 8-step sequential extraction process. With the help of this extraction process different soils of varying contents (acidity, proportion of clay, carbonates, C/org, heavy metals and KAK) are treated thermally at temperature levels of 300 C, 600 C, 800 C and 1000 C. Thereafter, the changes of the typical forms of heavy metal bonds in soil are determined. It was proven that a decontamination in the strict sense of the word does not occur because the heavy metals zinc, lead, chrome, nickel and copper, with the exception of cadmium, cannot be removed at a temperature of 1000 C. A further conclusion is that a successful decontamination in form of a mineral incorporation of heavy metals is not feasible unless temperatures exceed 600 C. Still, a considerable proportion of heavy metals remains mobile also over longer time in soils with a low level of clay (e.g. Podzol) or a high proportion of carbonate even if temperatures exceed 600 C. (orig.)

343

Hazards of heavy metal contamination.  

Science.gov (United States)

The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. Cadmium compounds are currently mainly used in re-chargeable nickel-cadmium batteries. Cadmium emissions have increased dramatically during the 20th century, one reason being that cadmium-containing products are rarely re-cycled, but often dumped together with household waste. Cigarette smoking is a major source of cadmium exposure. In non-smokers, food is the most important source of cadmium exposure. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. Many individuals in Europe already exceed these exposure levels and the margin is very narrow for large groups. Therefore, measures should be taken to reduce cadmium exposure in the general population in order to minimize the risk of adverse health effects. The general population is primarily exposed to mercury via food, fish being a major source of methyl mercury exposure, and dental amalgam. The general population does not face a significant health risk from methyl mercury, although certain groups with high fish consumption may attain blood levels associated with a low risk of neurological damage to adults. Since there is a risk to the fetus in particular, pregnant women should avoid a high intake of certain fish, such as shark, swordfish and tuna; fish (such as pike, walleye and bass) taken from polluted fresh waters should especially be avoided. There has been a debate on the safety of dental amalgams and claims have been made that mercury from amalgam may cause a variety of diseases. However, there are no studies so far that have been able to show any associations between amalgam fillings and ill health. The general population is exposed to lead from air and food in roughly equal proportions. During the last century, lead emissions to ambient air have caused considerable pollution, mainly due to lead emissions from petrol. Children are particularly susceptible to lead exposure due to high gastrointestinal uptake and the permeable blood-brain barrier. Blood levels in children should be reduced below the levels so far considered acceptable, recent data indicating that there may be neurotoxic effects of lead at lower levels of exposure than previously anticipated. Although lead in petrol has dramatically decreased over the last decades, thereby reducing environmental exposure, phasing out any remaining uses of lead additives in motor fuels should be encouraged. The use of lead-based paints should be abandoned, and lead should not be used in food containers. In particular, the public should be aware of glazed food containers, which may leach lead into food. Exposure to arsenic is mainly via intake of food and drinking water, food being the most important source in most populations. Long-term exposure to arsenic in drinking-water is mainly related to increased risks of skin cancer, but also some other cancers, as well as other skin lesions such as hyperkeratosis and pigmentation changes. Occupational exposure to arsenic, primarily by inhalation, is causally associated with lung cancer. Clear exposure-response relationships and high risks have been observed. PMID:14757716

Järup, Lars

2003-01-01

344

A biosystem for removal of metal ions from water  

Energy Technology Data Exchange (ETDEWEB)

The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

Kilbane, J.J. II.

1990-01-01

345

Research advances in heavy metal biosorption  

International Nuclear Information System (INIS)

Biosorption of heavy metal has wide applications. The mechanisms of heavy metal biosorption, including complexation, ion exchange, microprecipitation and oxidation reduction, are presented. Thermodynamics and dynamics of biosorption are also discussed. Key factors of influencing biosorption, such as pH values, coexistence ions and temperature are explained. The research directions are explored. (authors)

346

Heavy metal uptake by agro based waste materials  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english Presence of heavy metals in the aquatic systems has become a serious problem. As a result, there has been a great deal of attention given to new technologies for removal of heavy metal ions from contaminated waters. Biosorption is one such emerging technology which utilized naturally occurring waste [...] materials to sequester heavy metals from industrial wastewater. The aim of the present study was to utilize the locally available agricultural waste materials for heavy metal removal from industrial wastewater. The wastewater containing lead and hexavalent chromium was treated with biomass prepared from ficus religiosa leaves. It was fund that a time of one hr was sufficient for sorption to attain equilibrium. The equilibrium sorption capacity after one hr was 16.95 ± 0.75 mg g-1 and 5.66 ± 0.43 mg g-1 for lead and chromium respectively. The optimum pH was 4 for lead and 1 for chromium. Temperature has strong influence on biosorption process. The removal of lead decreased with increase in temperature. On the other hand chromium removal increased with increase in temperature up to 40ºC and then started decreasing. Ion exchange was the major removal mechanism along with physical sorption and precipitation. The biosorption data was well fitted to Langmuir adsorption model. The kinetics of biosorption process was well described by the pseudo 2nd order kinetics model. It was concluded that adsorbent prepared from ficus religiosa leaves can be utilized for the treatment of heavy metals in wastewater

Suleman, Qaiser; Anwar R, Saleemi; Muhammad, Mahmood Ahmad.

2007-07-15

347

Effect of heavy metals on soil fungi  

Science.gov (United States)

Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

Sosak-?widerska, Bo?ena

2010-05-01

348

The composite sorbents selective for heavy non-ferrous metals  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The nickel, zinc and cadmium removal from aqueous solutions by polymer-inorganic com-posite Dowex Marathon C – iron hydroxide sorbent was studied at dynamic conditions. The total dynamic capacity of composite sorbent to metals under investigation is 1.5 – 2.3 times greater than the same value of basic Dowex Marathon C cation exchanger (analog ??-2×8). The use of compo-site sorbent for aftertreatment of wastewater with compound salt background allows reducing heavy metal concentration b...

???????, ?. ?.; Ikanina, E. V.

2013-01-01

349

MOLECULAR CHARACTERIZATION OF A NOVEL HEAVY METAL UPTAKE TRANSPORTER FROM HIGHER PLANTS & ITS POTENTIAL FOR USE IN PHYTOREMEDIATION  

Science.gov (United States)

Soils with high levels of heavy metals such as Cd, Cr and Pb are detrimental to human and animal health. Many human disorders have been attributed to environmental contamination by heavy metals. Removal of heavy metals from highly contaminated soils is therefore a very costly but...

350

Desarrollo de membranas de quitosano y diseño de un equipo para la eliminación de metales pesados del agua Chitosan membrane development and design of equipment for the removal of heavy metals from water  

Digital Repository Infrastructure Vision for European Research (DRIVER)

El presente estudio comparó la eficiencia de la filtración con membranas de quitosano 1,75% m/v, entrecruzadas con glutaraldehído (0,08% m/v) y sin entrecruzar, para estimar la capacidad de remoción de iones de cadmio, cromo y cobre de disoluciones modelo. Además, se diseñó un equipo de bajo costo para la experimentación con las membranas elaboradas. La finalidad de la investigación era emplear materiales biodegradables para remover metales pesados de aguas, mediante una t?...

Jesús Mora Molina; Luis Chaves Barquero; Mario Araya Marchena; Ricardo Starbird Pérez

2012-01-01

351

Growth and Heavy Metals Accumulation Potential of Microalgae Grown in Sewage Wastewater and Petrochemical Effluents  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Microalgae exhibit a number of heavy metal uptake process by different metabolism. In this study, the ability of microalgae for removal of heavy metal from wastewater was studied. Growth and biochemical contents of microalgae were determined by spectrophotometer. Heavy metal analysis of wastewater effluents were performed by atomic absorption spectrophotometer before and after treatment at laboratory scale. The growth of Scenedesmus bijuga and Oscillatoria quadripunctulata in se...

Thirugnanamoorthy, K.; Selvaraju, M.; Ajayan, K. V.

2011-01-01

352

Study of hybrid membrane processes for separation of heavy metals from water and wastewater  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The removal of heavy metals from industrial waste water or from groundwater is a big challenge for the industry. It';s not possible to discharge industrial wastewater contaminated with heavy metals directly into rivers, water reservoirs or into the sea, because the heavy metals present a considerable danger to the ecosystem. Indirect discharge of this wastewater into municipal sewage treatment plants may have a major effect on the activated sludge and hinder the efficiency of the plants. The ...

Erwe, Torsten

2010-01-01

353

Evaluación de la eficiencia de una batería de filtros empacados en zeolita en la remoción de metales pesados presentes en un licor mixto bajo condiciones de laboratorio Evaluation of efficiency of a filter battery packaging zeolite in the removal of heavy metals in a mixed liquor under laboratory conditions  

Directory of Open Access Journals (Sweden)

Full Text Available En este artículo se muestran resultados de investigación obtenidos en la remoción de los metales pesados, plomo, níquel, cromo, cadmio y mercurio, presentes en una solución compuesta por licor mixto proveniente de la planta de tratamiento de aguas residuales de San Fernando y una solución preparada con metales pesados con una concentración conocida, mediante el uso de una batería de filtros empacados en zeolita clinoptilolita. La experimentación se desarrolló bajo condiciones controladas de caudal y pH, a temperatura ambiente. Se encontró que la eficiencia de los filtros bajo las condiciones específicas de diseño es significativamente alta en la remoción de los metales pesados evaluados en la solución acuosa. Se encontró, además, que sin importar el valor de la concentración inicial, se obtuvo una remoción importante en los contaminantes luego de pasar por los filtros con una mayor eficiencia en la remoción del mercurio.This article shows the research results on the removal of five heavy metals (lead, nickel, chromium, cadmium and mercury present in a liquor made of a mixture of wastewater from San Fernando wastewater treatment plant and a solution prepared with known concentrations of heavy metals, using a series of batery filters packed with zeolita clinoptilolita. The experiments were run under controlled conditions of flow and pH, at room temperature. It was found that the removal efficiency was significantly high under the specified design conditions; also, it was found an important removal of the contaminants after passing through the filters, independently of the initial concentration, with the highest observed removal for mercury.

Diana Rocío Acevedo Cifuentes

2011-01-01

354

Evaluación de la eficiencia de una batería de filtros empacados en zeolita en la remoción de metales pesados presentes en un licor mixto bajo condiciones de laboratorio / Evaluation of efficiency of a filter battery packaging zeolite in the removal of heavy metals in a mixed liquor under laboratory conditions  

Scientific Electronic Library Online (English)

Full Text Available SciELO Colombia | Language: Spanish Abstract in spanish En este artículo se muestran resultados de investigación obtenidos en la remoción de los metales pesados, plomo, níquel, cromo, cadmio y mercurio, presentes en una solución compuesta por licor mixto proveniente de la planta de tratamiento de aguas residuales de San Fernando y una solución preparada [...] con metales pesados con una concentración conocida, mediante el uso de una batería de filtros empacados en zeolita clinoptilolita. La experimentación se desarrolló bajo condiciones controladas de caudal y pH, a temperatura ambiente. Se encontró que la eficiencia de los filtros bajo las condiciones específicas de diseño es significativamente alta en la remoción de los metales pesados evaluados en la solución acuosa. Se encontró, además, que sin importar el valor de la concentración inicial, se obtuvo una remoción importante en los contaminantes luego de pasar por los filtros con una mayor eficiencia en la remoción del mercurio. Abstract in english This article shows the research results on the removal of five heavy metals (lead, nickel, chromium, cadmium and mercury) present in a liquor made of a mixture of wastewater from San Fernando wastewater treatment plant and a solution prepared with known concentrations of heavy metals, using a series [...] of batery filters packed with zeolita clinoptilolita. The experiments were run under controlled conditions of flow and pH, at room temperature. It was found that the removal efficiency was significantly high under the specified design conditions; also, it was found an important removal of the contaminants after passing through the filters, independently of the initial concentration, with the highest observed removal for mercury.

Diana Rocío, Acevedo Cifuentes; Sandra Milena, Builes Felizzola; Carlos Andrés, Ordóñez Ante; Idalia Jacqueline, López Sánchez.

2011-01-01

355

Biorreagentes: aplicações na remoção de metais pesados contidos em efluentes líquidos por biossorção/bioflotação / Bioreagents: their use in the removal of heavy metals from liquid streams by biosorption/ bioflotation  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese Esse trabalho tem o objetivo de apresentar uma análise dos principais aspectos sobre o uso de biomassas como biorreagentes na remoção de metais pesados contidos em efluentes líquidos. As vantagens de se utilizarem biossorventes ao invés de sorventes convencionais estão notadamente na relação custo-b [...] enefício inerente a essa tecnologia contemporânea. Algas, bactérias, fungos e materiais biológicos em geral (casca de coco, madeira, turfa, etc.) têm revelado avidez na captura de íons metálicos em ambientes aquosos, sendo que sua ubiqüidade diminui o custo total de sistemas de tratamento. Exemplos de pesquisas e patentes são discutidos, demonstrando o sucesso dessa tecnologia emergente. Abstract in english The objective of this work is to present a review concerning the use of biomass as bioreagents in the removal of heavy metals while treating liquid effluents. The advantages of using these biosorbents instead of conventional sorbents lie on the cost benefit relations inherent in this recent technolo [...] gy. Algae, bacteria, fungi and biological materials (coconut shells, wood, peat etc.) have shown avidity for metal ion uptaking in aqueous environments and their ubiquity decreases the overall treatment system cost. Research and patent examples are discussed, showing the success of this emergent technology.

Bruno Abreu, Calfa; Maurício Leonardo, Torem.

2007-09-01

356

Heavy metals in municipal solid waste deposits  

Energy Technology Data Exchange (ETDEWEB)

Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

Flyhammar, P.

1997-12-01

357

Determination of heavy metals in sludge  

International Nuclear Information System (INIS)

The determination of heavy metals in sludge has been investigated. The sludge was separated from waste water sewage by precipitation. The heavy metals analysis has been done using neutron activation (NAA) and x-ray fluorescence. The existence of some metals (Cu, Fe, Ca, K, and Ti) is very important for plants. Otherwise, Pb and Cr had polluted the environment. The results are compared with sheep dung, rubbish and cow dung that are used as natural fertilizer. It is found that the sludge has a low concentration of heavy metals than other. Tow standard samples derived from IAEA have been analyzed with our samples. It is found that our sludge contains some concentration of heavy metals less than the standard. It is found that the increase of Cu and Zn concentration due to uses of pesticides. (author)

358

Optimización del Proceso de Remoción de Metales Pesados de Agua Residual de la Industria Galvánica por Precipitación Química Optimization of the Removal Processs of Heavy Metals from Raw Water of Galvanic Industry by Chemical Precipitation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Se han estudiado las condiciones óptimas requeridas para remover metales pesados del agua residual de una industria galvánica, que contiene cromo (435 mg/L), zinc (720 mg/L), hierro (168 mg/L) y níquel (24 mg/L). Se usó agua preparada en el laboratorio (agua sintética) y agua de la industria misma (agua cruda). El tratamiento se hizo mediante precipitación química, usando sosa para ajustar el pH y cloruro férrico como aditivo coagulante en un equipo de prueba de jarras. Las condicione...

Eduardo Soto; Miranda, Rosa Del C.; Sosa, Ce?sar A.; Loredo, Jose? A.

2006-01-01

359

Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid  

International Nuclear Information System (INIS)

Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5 M sulfuric acid in 2 h.

360

Method of heavy metal trapping and separating  

International Nuclear Information System (INIS)

The use is described of pearl cellulose and the derivatives thereof for heavy metal sorption and separation. At pH 3 to 8, an aqueous solution containing heavy metals of the transition and post-transition metals of the 4th to 7th periods, this to advantage U, Cu, Pb, Cd, Hg, is passed through a layer of pearl cellulose with sorption-active hydroxyl, phosphate, carboxy methyl, amine, acetamide, imidazole, guanidine or thiol groups. Metal separation proceeds at pH 1 to 9; at pH 0.1 to 1 cellulose regenerates. (B.S.)

 
 
 
 
361

A new biotechnology for recovering heavy metal ions from wastewater  

International Nuclear Information System (INIS)

This paper reports that bio-recovery systems has developed a new sorption process for removing toxic metal ions from water. This process is based upon the natural, very strong affinity for biological materials, such as the cell walls of plants and microorganisms, for heavy metal ions such as uranium, cadmium, cobalt, nickel, etc.. Biological materials, primarily algae, have been immobilized in a polymer to produce a biological ion exchange resin, AlgaSORB. The material has a remarkable affinity for heavy metal ions and is capable of concentrating these ions by a factor of may thousand-fold. Additionally, the bound metals can be stripped and recovered from the algal material in a manner similar to conventional resins

362

Heavy Metal Poisoning and Cardiovascular Disease  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act ...

Ferns, Gordon A.; Alissa, Eman M.

2011-01-01

363

Heavy Metal Compositions in Gaborone Industrial Effluent  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study assessed the compositions of five heavy metals in Gaborone Industrial effluent from five industrial premises; a brewery, pharmaceutical company, paints and chemical industry (commercial photography studios and a soap manufacturing company).The heavy metals monitored were Lead (Pb), Cadmium (Cd), Iron (Fe), Nickel (Ni) and Zinc (Zn). All the industries discharged during the study period a certain amount of Nickel although in very minute concentrations in relation to the Gaborone Cit...

Nkegbe, E.; Koorapetse, I.

2005-01-01

364

Quantification of uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in a stormwater retention pond and a biofilter  

DEFF Research Database (Denmark)

Strategies for reduction of micropollutant (MP) discharges from stormwater drainage systems require accurate estimation of the potential MP removal in stormwater treatment systems. However, the high uncertainty commonly affecting stormwater runoff quality modelling also influences stormwater treatment models. This study identified the major sources of uncertainty when estimating the removal of copper and zinc in a retention pond and a biofilter by using a conceptual dynamic model which estimates MP partitioning between the dissolved and particulate phases as well as environmental fate based on substance-inherent properties. The two systems differ in their main removal processes (settling and filtration/sorption, respectively) and in the time resolution of the available measurements (composite samples and pollutographs). The most sensitive model factors, identified by using Global Sensitivity Analysis (GSA), were related to the physical characteristics of the simulated systems (flow and water losses) and to the fate processes related to Total Suspended Solids (TSS). The model prediction bounds were estimated by using the Generalized Likelihood Uncertainty Estimation (GLUE) technique. Composite samples and pollutographs produced similar prediction bounds for the pond and the biofilter, suggesting a limited influence of the temporal resolution of samples on the model prediction bounds. GLUE highlighted model structural uncertainty when modelling the biofilter, due to disregard of plant-driven evapotranspiration, underestimation of sorption and neglect of oversaturation with respect to minerals/salts. The results of this study however illustrate the potential for the application of conceptual dynamic fate models base on substanceinherent properties, in combination with available datasets and statistical methods, to estimate the MP removal in different stormwater treatment systems and compare with environmental quality standards targeting the dissolved MP fraction.

Vezzaro, Luca; Eriksson, Eva

2012-01-01

365

Quantification of uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in a stormwater retention pond and a biofilter.  

Science.gov (United States)

Strategies for reduction of micropollutant (MP) discharges from stormwater drainage systems require accurate estimation of the potential MP removal in stormwater treatment systems. However, the high uncertainty commonly affecting stormwater runoff quality modelling also influences stormwater treatment models. This study identified the major sources of uncertainty when estimating the removal of copper and zinc in a retention pond and a biofilter by using a conceptual dynamic model which estimates MP partitioning between the dissolved and particulate phases as well as environmental fate based on substance-inherent properties. The two systems differ in their main removal processes (settling and filtration/sorption, respectively) and in the time resolution of the available measurements (composite samples and pollutographs). The most sensitive model factors, identified by using Global Sensitivity Analysis (GSA), were related to the physical characteristics of the simulated systems (flow and water losses) and to the fate processes related to Total Suspended Solids (TSS). The model prediction bounds were estimated by using the Generalized Likelihood Uncertainty Estimation (GLUE) technique. Composite samples and pollutographs produced similar prediction bounds for the pond and the biofilter, suggesting a limited influence of the temporal resolution of samples on the model prediction bounds. GLUE highlighted model structural uncertainty when modelling the biofilter, due to disregard of plant-driven evapotranspiration, underestimation of sorption and neglect of oversaturation with respect to minerals/salts. The results of this study however illustrate the potential for the application of conceptual dynamic fate models base on substance-inherent properties, in combination with available datasets and statistical methods, to estimate the MP removal in different stormwater treatment systems and compare with environmental quality standards targeting the dissolved MP fraction. PMID:21982280

Vezzaro, L; Eriksson, E; Ledin, A; Mikkelsen, P S

2012-12-15

366

Mobile heavy metal fractions in soils  

International Nuclear Information System (INIS)

A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

367

The removal of actinide metals from solution  

International Nuclear Information System (INIS)

A process is specified for removing actinide metals (e.g. uranium) from solutions. The solution is contacted with a substrate comprising the product obtained by reacting an inorganic solid containing surface hydroxyl groups (e.g. silica gel) with a compound containing a silane grouping, a nitrogen-containing group (e.g. an amine) and other specified radicals. After treatment, the actinide metal is recovered from the substrate. (U.K.)

368

Toxic effect of heavy metals on dermatophytes.  

Science.gov (United States)

For determining the toxic effect of heavy metals on dermatophytes, eight heavy metals were tested using colony diameter method. Cadmium showed high toxicity effects on isolated fungi at minimal inhibitory concentration of 27 ?g ml(-1) for Trichophyton mentagrophytes and of 20 ?g ml(-1) for Epidermophyton floccosum, while iron enhanced dermatophytic growth. Other heavy metals revealed variable effect on isolated fungi. Susceptibility of E. floccosum to the activity of tested metals was greater than those of T. mentagrophytes. In conclusion, cadmium and silver are regarded to be the effective metals to prevent the development of two isolated species of dermatophytes. Growth of fungi in the presence of iron was greater than control. PMID:20406401

Al-Janabi, Ali Abdul Hussein S

2011-07-01

369

Development of active barriers for removing heavy metals from mine water: Freiberg colliery, Sachsen; Entwicklung aktiver Barrieren fuer die Entfernung von Schwermetallen aus Grubenwaessern am Beispiel der Freiberger Grube, Sachsen  

Energy Technology Data Exchange (ETDEWEB)

Mine water treatment is costly, difficult, and requires extensive surface installations. The author explains the development of geochemical ('active') barriers of low-cost materials. The materials investigated were industrial residues (red sludge, fly ash, tinder residues, porous concrete residues), natural materials (bark, zeolite, bentonite, hydroxyl apatite), and commercial products (GEH, Ratio Pur MF-S). Investigations focused on density, specific surface, grain size, and acid neutralization capacity. In the final stage, experiments were made on heavy metal removal from a model water. [German] Einen grossen Anteil an der Schwermetallbelastung in Fluessen haben toxische Abwaesser aus Bergbaugebieten (Grubenwaesser). Die Moeglichkeit der Behandlung sind sehr aufwendig, kostenintensiv und nur 'ueber Tage' durchfuehrbar. Die vorliegende Arbeit erlaeutert die Behandlung von Grubenwaessern mit geochemischen ('aktiven') Barrieren. Es werden aktive Barrieren entwickelt, die in einen Schacht eingebracht werden koennen, um eine Schwermetallausbreitung zu unterbinden. In diesem Zusammenhang werden kostenguenstige Materialien untersucht, die Schadstoffe durch chemische und/oder physikalische Mechanismen aus Wasser entfernen koennen. Untersucht wurden industrielle Reststoffe (Rotschlamm, Flugasche, Zunderrueckstaende, Porenbetonabfall), natuerliche Materialien (Baumrinde, Zeolith, Bentonit, Hydroxylapatit) und kommerzielle Produkte (GEH, Ratio Pur MF-S). Die Materialien werden hinsichtlich der Dichte, der spezifischen Oberflaeche, der Korngroesse und der Saeureneutralisationskapazitaet charakterisiert. Anschliessend wurden Versuche zur Schwermetallentfernung aus einem Modellwasser durchgefuehrt. (orig.)

Zoumis, T.

2003-07-01

370

EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)  

Science.gov (United States)

Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

371

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

Energy Technology Data Exchange (ETDEWEB)

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman, Denis J. (Evans, GA); Berry, Christopher J. (Aiken, SC)

2011-03-15

372

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

Energy Technology Data Exchange (ETDEWEB)

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman; Denis J. (Evans, GA); Berry, Christopher J. (Aiken, SC)

2011-03-29

373

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

Energy Technology Data Exchange (ETDEWEB)

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman, Denis (Evans, GA); Berry, Christopher J. (Aiken, SC)

2009-01-06

374

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals  

Science.gov (United States)

Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

Brigmon, Robin L. (North Augusta, SC); Story, Sandra (Greenville, SC); Altman, Denis J. (Evans, GA); Berry, Christopher J. (Aiken, SC)

2011-05-03

375

Heavy metals and woody plants - biotechnologies for phytoremediation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Soil contamination by heavy metals is among the most serious danger for the environment, and new methods for its containment and removal are claimed, in particular for agricultural soils. Phytoremediation is an emerging, potentially effective technology applicable to restoration of contaminated soils and waters. Besides hyperaccumulator herbaceous plants, several woody species are now considered of interest to this aim. Many woody plants are fast growing, have deep roots, produce abundant bio...

Capuana M

2011-01-01

376

Deposition of sediment and associated heavy metals on floodplains  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In recent years, floodplains have become widely acknowledged as important natural sinks for sediments and associated substances like nutrients, PAHs, PCBs and heavy metals. The character of floodplains will change in the near future because of landscaping measures (excavation of secondary channels, lowering floodplains and removing minor embankments) and the rehabilitation of floodplain forests. In addition, climate and upstream land-use change will change the discharge frequency distribution...

Thonon, Ivo

2006-01-01

377

Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system.  

Science.gov (United States)

This work investigated the removal of metals from wastewater using a combined Membrane Bioreactor-Reverse Osmosis (MBR-RO) system. The concentrate produced by the RO system was treated by a fixed bed column packed with zeolite. The average metal removal accomplished by the MBR treating municipal wastewater was Cu(90%), Fe(85%), Mn(82%), Cr(80%), Zn(75%), Pb(73%), Ni(67%), Mg(61%), Ca(57%), Na(30%) and K(21%), with trivalent and divalent metals being more effectively removed than monovalent ones. The metal removal achieved by the MBR system treating wastewater spiked with Cu, Pb, Ni and Zn (4-12 mg L(-1) of each metal) was Pb(96%)>Cu(85%)>Zn(78%)>Ni(48%). The combined MBR-RO system enhanced metal removal from municipal wastewater to the levels of >90.9->99.8%, while for wastewater spiked with heavy metals the removal efficiencies were >98.4%. Fixed bed column packed with zeolite was effective for the removal of Cu, Pb and Zn from the RO concentrate, while Ni removal was satisfactory only at the initial stages of column operation. The presence of heavy metals increased inorganic fouling. PMID:22209586

Malamis, Simos; Katsou, Evina; Takopoulos, Konstantinos; Demetriou, Prokopis; Loizidou, Maria

2012-03-30

378

ACTINOMYCETES: TOLERANCE AGAINST HEAVY METALS AND ANTIBIOTICS  

Directory of Open Access Journals (Sweden)

Full Text Available Heavy metals can be both, essential as well as toxic for living beings. Micronutrients such as, Co, Fe, Mn have important role to play in living systems whereas, Pb Cd etc. pose harmful effects even at low concentrations. When these heavy metals get accumulated within the tissues of the organisms at various levels of the ecological chain, they cause decrease in the biomass and biological diversity by affecting the growth, morphology and activity of the organisms. Accumulation of heavy metals in soil also causes soil contamination, which can be overcome with the help of bioremediation. A large group of soil bacteria belonging to the Actinomycetes species are exposed to heavy metals in a variety of ways; although, they show resistance to heavy metals. The species of actinomycetes possess resistance for antibiotic synthesis as well. This makes the actinomycetes suitable agents for bioremediation. In this experiment, a total of 20 isolates from Shivpuri region of Madhya Pradesh were tested for the metal tolerance against selected heavy metals. After this, the most tolerant strains were tested to check their antibiotic susceptibility. Metal tolerance was tested by agar well diffusion method and tube dilution method. Out of the 20 isolates, Ash1, Ash 2, Ash 4,Ash 6, Ash 7, Ash 8, Ash 9, Ash 10, Ash 11, Ash 12, Ash 13, Ash 15 were resistant at 10 mM conc. of CuSo4, but their growth was inhibited at higher concentrations of metal salts. Isolates Ash 10, Ash 11, Ash 12, Ash 13, Ash 19, Ash 20 were found to be resistant at 10mM conc. of ZnSO4, but they were also inhibited at higher concentrations. For different concentrations of Pb(CH3COO2 most of the isolates showed same level of tolerance.

Smriti Singh, Shruti Pandey and Hotam Singh Chaudhary*

2014-09-01

379

Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO  

Science.gov (United States)

A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

Jadhav, Raja A. (Naperville, IL)

2009-07-07

380

Modeling of Chromium (III) Removal from Heavy Metals Mixture Solutions in Continuous Flow Systems: A Comparative Study between BDST and Yoon -Nelson Models  

International Nuclear Information System (INIS)

The aim of this work is to study modeling of chromium (III) removal from aqueous solution using activated carbon as adsorbent. Studies have been conducted in a continuous fixed bed packed column under different operating conditions such as bed height, flow rate, fluid velocity and fixed adsorbent particle size. The Yoon Nelson model was applied to experimental data to predict the breakthrough curves by calculating the rate constant k and 50 % breakthrough time, ?. The Bed Depth Service Time (BDST) was applied to determine BDST constant K and the capacity of adsorbent, No. Results obtained from both models are compared with the experimental breakthrough curves and a satisfactory agreement was noticed. Therefore, the Yoon - Nelson and BDST models were found suitable for determining the parameters of the column design. The Y 000 - Nelson model was found more accurate in representing the system in comparison with the BDST model although it is less complicated than other models

 
 
 
 
381

Polyphenol-SiO2 hybrid biosorbent for heavy metal removal. Yerba mate waste (Ilex paraguariensis) as polyphenol source: kinetics and isotherm studies.  

Science.gov (United States)

A low-cost biosorbent hybrid material ready for application was obtained in this work. Yerba mate (Ilex paraguariensis) milling residual dust was used as a polyphenol source by ethanolic extraction. Polyphenols were immobilized within a SiO(2) matrix to form an interpenetrated polymer after glutaraldehyde cross-linking. Pb(II), Cr(III) and Cr(VI) were chosen as model metals for adsorption. The hybrid materials were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and Nitrogen Adsorption Isotherms. Adsorption experimental data were analysed using Langmuir, Freundlich, Dubinin-Radushkevich, Temkin, Redlich-Peterson, Sips and Toth isotherm models along with the evaluation of adsorption energy and standard free energy (?G°). The adsorption was observed to be pH dependent. The main mechanism of metal adsorption was found to be a spontaneous charge associated interaction. Electron Spin Resonance (ESR) spectroscopy confirmed that Cr(VI) adsorption was an adsorption-coupled reaction and the adsorbed specie was Cr(V). The hybrid matrix probed its adsorption capacity of Cr(III) in a non-treated tannery wastewater. PMID:23006564

Copello, G J; Pesenti, M P; Raineri, M; Mebert, A M; Piehl, L L; de Celis, E Rubin; Diaz, L E

2013-02-01

382

Removal of gadolinium nitrate from heavy water  

Energy Technology Data Exchange (ETDEWEB)

Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss and a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).

Wilde, E.W.

2000-03-22

383

Remoção de metais pesados de efluentes aquosos pela zeólita natural escolecita - influência da temperatura e do pH na adsorção em sistemas monoelementares Heavy metals removal from wastewater by the natural zeolite scolecite - temperature and pH influence in single-metal solutions  

Directory of Open Access Journals (Sweden)

Full Text Available Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III, nickel(II, cadmium(II and manganese(II in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III > Cd(II > Ni(II > Mn(II, and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC and initial pH value (from 4 to 6 was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.

Ricardo Sarti Jimenez

2004-10-01

384

Removal of Retired Alkali Metal Test Systems  

Energy Technology Data Exchange (ETDEWEB)

This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

Brehm, W. F.; Church, W. R.; Biglin, J. W.

2003-02-26

385

Complex metallic stent removal: decade after deployment.  

Science.gov (United States)

Endobronchial involvement is a relatively uncommon but well-described presentation in Granulomatosis with polyangiitis (GPA). Self-expandable metallic stents (SEMs) should be reserved for the malignant airway disorder to maintain airway patency, but have been used for benign disease in specific cases. We present a case of longstanding endobronchial GPA with recurrent bronchial stenosis. Three SEMs were deployed in the distal left main bronchus 10 years prior. Two were removed in the standard manner, but the remaining stent SEM was completely embedded in the bronchial mucosa making its removal extraordinarily difficult. We placed an oversized silicone stent inside the stent leading to necrosis of the mucosa allowing for a less formidable removal of the embedded stent. Another silicone stent was temporarily placed. SEMs removal can be extremely complicated and should only be performed by experienced bronchoscopists in an institution with sufficient resources. PMID:25321459

Khemasuwan, Danai; Gildea, Thomas R; Machuzak, Michael S

2014-10-01

386

Biosorption of heavy metal and dyes : a promising technology leather wastewater treatment  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The presence of dyes and heavy metals is usual in industrial processes like chrome tanning in tannery industry and their removal may be an environmental pro