WorldWideScience

Sample records for Helium 5

  1. Solar flare accelerated isotopes of hydrogen and helium. [observed by IMP-4 and IMP-5

    Anglin, J. D.; Dietrich, W. F.; Simpson, J. A.

    1973-01-01

    Measurements of solar flare hydrogen, deuterium, tritium, helium-3, and helium-4 in the energy range approximately 10 to 50 MeV per nucleon obtained with instrumentation on the IMP-4 and IMP-5 satellites are reported and studies based on these results which place several constraints on theories of solar flare particle acceleration are discussed. A brief review of previous work and the difficulties in studying the rare isotopes of hydrogen and helium is also included. Particular emphasis is placed on the fact that the information to be obtained from the solar flare products of high energy interactions is not available through either solar wind observations where both the acceleration mechanism and the coronal source of the nuclear species are different, or optical measurements of solar active regions.

  2. Production of helium projectile fragments in 16O-emulsion interactions at 4.5 A GeV/c

    Zhang Dong-Hai; Li Zhen-Yu; Li Jun-Sheng; Wu Feng-Juan

    2004-01-01

    The measurements of partial production cross sections of the multiple helium projectile fragments emitted at 4.5A GeV/c 16O-Em interactions are reported. We have studied the production rate of helium projectile fragments due to fragmentation of 16O ions and compared it with that obtained from different projectiles at various energies. The dependence of on the mass number of the incident beams is formulated. The multiplicity distributions of the helium fragments produced in 16O-Em interactions at different energies exhibit Koba-Nielson-Olesen (KNO) scaling.The correlation of helium projectile fragments and target fragments is also investigated and it is found that the average of target fragments is increased with the decrease of the number of helium fragments in peripheral interactions.

  3. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    Erinc Erdem

    2014-12-01

    Full Text Available An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  4. Commissioning report of the MuCool 5 Tesla solenoid coupled with helium refrigerator

    Geynisman, Michael; /Fermilab

    2010-05-01

    MuCool 5T solenoid was successfully cooled down and operated coupled with MTA 'Brown' refrigerator. The system performed as designed with substantial performance margin. All process alarms and interlocks, as well as ODH and fire alarms, were active and performed as designed. The cooldown of the refrigerator started from warm conditions and took 44 hours to accumulate liquid helium level and solenoid temperature below 5K. Average liquid nitrogen consumption for the refrigerator precool and solenoid shield was measured as 20 gal/hr (including boil-off). Helium losses were small (below 30 scfh). The system was stable and with sufficient margin of performance and ran stably without wet expansion engine. Quench response demonstrated proper operation of the relieving devices and pointed to necessity of improving tightness of the relieving manifolds. Boil-off test demonstrated average heat load of 3 Watts for the unpowered solenoid. The solenoid can stay up to 48 hours cold and minimally filled if the nitrogen shield is maintained. A list of improvements includes commencing into operations the second helium compressor and completion of improvements and tune-ups for system efficiency.

  5. Antiprotonic helium

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  6. Development efforts on helium vessel for 5 cell - 650 MHz SRF cavity at RRCAT

    The work focuses on the development of helium vessel which houses a 5 cell - 650 MHz SRF niobium cavity and serves as a helium bath to maintain the cavity at 2 K. The vessel has provision for changing the axial length of the cavity for tuning purpose by using a tuning mechanism and a large bellow. Titanium has been chosen as a material of construction of the vessel due to its coefficient of thermal expansion being close to that of niobium. Efforts have been initiated to understand the functional requirements, design requirements, acceptance criteria for design and analysis, non-destructive examination requirements, inspection and testing requirements, manufacturing technology of the titanium vessel and its integration with the SRF cavity. The welding assumes a special significance as titanium is highly reactive and ductility of the weld joint is lost in the presence of air and other impurities. A trial vessel has been conceptualised having typical sizes and geometries. The manufacturing features of vessel are based on ASME B and PV Code, Section VIII Division-1 and manufacturing of this vessel has been started at an Indian industry. Quality assurance plan for this work is developed. The paper describes the work done at RRCAT on the functional and integration requirements, overall design requirements, design methodology to achieve code conformance, manufacturing technology and QAP being used in the development of helium vessel. (author)

  7. Properties of V-(8-9)Cr-(5-6)Ti alloys irradiated in the dynamic helium charging experiment

    Chung, H.M.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1996-10-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in vanadium alloy specimens by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in lithium-filled capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties and density change in V-8Cr-6Ti and V-9Cr-5Ti. Compared to tensile properties of the alloys irradiated in the non-DHCE (helium generation negligible), the effect of helium on tensile strength and ductility of V-8Cr-6Ti and V-9Cr-5Ti was insignificant after irradiation and testing at 420, 500, and 600{degrees}C. Both alloys retained a total elongation of >11 % at these temperatures. Density change was <0.48% for both alloys.

  8. Thermal-hydraulic system study of a high pressure, high temperature helium loop using RELAP5-3D code

    Highlights: ► A thermal-hydraulic system analysis for a high pressure, high temperature helium loop has been investigated. ► The loop belongs to the Helium Loop Karlsruhe (HELOKA) facility, which contains the European Helium Cooled Pebble Beds Test Blanket Module (HCPB TBM) as the test module. ► The loop including all components has been modeled using the system code REALP5-3D, and the main control strategy has been implemented as well. ► With this model, the loop dynamics in conditions relevant for blanket module operation have been demonstrated. - Abstract: The thermal-hydraulic system analysis for the Helium Loop Karlsruhe (HELOKA) facility, a high pressure, high temperature experimental helium loop having the European Helium Cooled Pebble Beds Test Blanket Module (HCPB TBM) as the test module, was investigated. Using the system code REALP5-3D, all components in the loop are modeled as well as the main control strategy. With this model, the loop dynamics in conditions relevant for blanket module operation are simulated and analyzed.

  9. Single electron capture in collisions of Nq+ (q =5, 6, 7)ions with helium

    Wang Fei; Wang Miao-Miao

    2011-01-01

    Close-coupling calculations are carried out for cross sections of the single electron capture in collisions of Nq+(q=5,6,7) ions with helium atoms in the collision velocity range from 0.3 a.u.to 1.8 a.u.The relative importances of the single ionization (SI) to the single capture (SC) are investigated for the Nq+(q =5,6,7) projectiles,respectively.The SI/SC cross section ratio for the N7+ projectile obtained from our calculations is in excellent agreement with the experimental data.The ratio curves also show us distinct behaviours when the charge of the projectile is different.The partial electron capture cross sections for different projectiles indicate that the electron on the target He atom tends to be captured by the projectile into its lower orbital of the outer shell with the decreasing projectile charge.

  10. Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators

    Homan, Jonathan; Linza, Robert; Garcia, Sam; Vargas, Gerardo; Lauterbach, John; Ganni, Venkatarao (Rao); Sidi-Yekhlef, Ahmed; Creel, Jonathan; Norton, Robert; Urbin, John; Howe, Don

    2008-01-01

    Two helium refrigerators, each rated for 3.5KW at 20K, are used at NASA s Johnson Space Center (JSC) in Building No. 32 to provide cryo-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. Equipment refurbishment and upgrades to the controls of these refrigerators were recently completed. This paper describes some of the mechanical and control issues that necessitated the equipment refurbishment and controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle "floating pressure" control technology. The upgrades -- the controls philosophy change-over to the floating pressure control technology and the newly refurbished equipment -- have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e.: at various loads in the vacuum chambers). Capabilities, configuration, and performance data pre, and post, upgrading will be presented.

  11. A 6 kW at 4.5 K helium refrigerator for CERN's Cryogenic Test Station

    For purposes of testing the present LEP superconducting resonant cavities and the future LHC magnets, CERN built a test station the cryogenic power of which is presently supplied by a dedicated 6 kW at 4.5 K helium refrigerator. The thermodynamic cycle is discussed and special emphasis is put on a new cryogenic expansion turbine operating in the liquid phase. Information is given about: the cycle screw compressors' performances, the general performance of the refrigerator, the expected efficiency enhancement due to the liquid turbine, an off-design turn down operation

  12. π-Helium-4 scattering experiment at 5GeV/c. Data processing

    The context of this work is an experiment realised at CERN, with the object to search pre-existing isobaric states in helium nucleus, by means of the study of scattering reactions of π- with simultaneous observation of recoil nucleus (3He or 3H) and forward pion. In this work, only the study of recoil detectors is done. This one, described with many details consists of a set of four wire chamber planes, two planes of semiconductors and two scintillators planes. The performances of this set of detectors are presented in regard to identification of recoil particle, energy and recoil angle measurements. A 'missing mass' analysis of the events of the experiment is done. Preliminary results of elastic and inelastic scattering are given. For elastic scattering a qualitative comparison is done with the multiple scattering Glauber formalism

  13. Effect of helium and DPA's on tensile properties of V-5Ti and V-3Ti-1Si

    Specimens of the alloys V-5Ti and V-3Ti-1Si were irradiated in a mixed-spectrum fission reactor in reactor grade liquid sodium to a fast neutron fluence of 3.8 x 1025m-2 (E>0.1 MeV), which corresponds to 6.2 dpa. Irradiation temperatures were 500, 600 and 700 deg C. Some of the specimens were pre-injected with helium to 100 appm at approx 50 deg C by means of a cyclotron. In addition, part of the specimens were doped with boron-10 to concentrations of 100 and 600 appm. Tensile testing, at temperatures equal to the irradiation temperatures and at a strain rate of 10-4 s-1, showed an increase in strength and reduced elongation at 500 deg C and to a lesser extent at 600 deg C. These changes are caused by displacement damage. Helium, pre-injected as well as produced by transmutation of boron-10, did not have a significant influence on the tensile properties. Cavities seen in the irradiated materials at low concentrations, were not preferentially located on grain boundaries. There was no apparent deleterious effect of lithium, which is also a transmutation product of boron-10. (author). 12 refs.; 8 figs.; 3 tabs

  14. Liquid helium

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  15. Helium cryogenics

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  16. High nuclear polarization of helium-3 at low and high pressure by metastability exchange optical pumping at 1.5 Tesla

    Abboud, M; Maitre, X; Tastevin, G; Nacher, P J; Abboud, Marie; Sinatra, Alice; Maitre, Xavier; Tastevin, Genevieve; Nacher, Pierre-Jean

    2003-01-01

    We perform metastability exchange optical pumping of helium-3 in a strong magnetic field of 1.5 T. The achieved nuclear polarization, from 80% at 1.33 mbar to 25% at 67 mbar, shows a substantial improvement at high pressures with respect to standard low-field optical pumping. The specific mechanisms of metastability exchange optical pumping at high field are investigated, advantages and intrinsic limitations are discussed. From a practical point of view, our results open the way to alternative technological solutions for polarized helium-3 applications and in particular for magnetic resonance imaging of human lungs.

  17. Does One Need a 4.5 K Screen in Cryostats of Superconducting Accelerator Devices Operating in Superfluid Helium? Lessons from the LHC

    Lebrun, Ph; Tavian, L

    2014-01-01

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large proj...

  18. Effect of dynamically charged helium on tensile properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-1Si

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)

    1996-04-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm He/dpa by the decay of tritium during irradiation to 18-31 dpa at 424-600{degrees}C in the lithium-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-5Ti, V-4Cr-4Ti, V-3Ti-1Si. The effect of helium on tensile strength and ductility was insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room temperature ductility of DHCE specimens was higher than that on non-DHCE specimens, whereas strength was lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to results of tritium-trick experiments, in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE.

  19. Fast leak of a channel filled with helium at a pressure of 2 bars (channel H5)

    The loss of seal of a helium-filled channel opening the entire cross section of the front part leads to a fast leak. The channel fills to the upper generatrix of the leak orifice and part of the helium contained in the channel escapes into the circuit. The pressure drop in the reflector can lead to reactor and main pump shutdown. On the other hand, the Cooling Circuit Shutdown Bar circuit pumps remain in operation. This paper evaluates the consequences of an incident of this nature for the reactor and the surrounding experimental zones

  20. Helium cryopumping for fusion applications

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm2 of charcoal, compared to 5.8 l/s/cm2 for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event

  1. Transient characteristic analyses of ex-vessel coolant pipe break for Chinese helium-cooled solid breeder TBM based on RELAP5 code

    Chinese helium-cooled solid breeder (CH HCSB) test blanket module (TBM) with helium cooling system and secondary cooling water system was modeled and thermal-hydraulic behavior and safety performance of the system were assessed using the RELAP5/MOD3.4 code. According to the accident sequences of ITER accident analysis specification for TBM, the transient analysis of the design basis ex-vessel coolant pipe break accident was carried out. The influences of different break locations, leak areas and plasma shutdown processes on the first wall of TBM were compared. The results indicate that it is much more danger when the pipe break occurs at the downstream side of the helium circulator compared with that at upstream side. The results also show that the accident consequence is worse in case of smaller area break than that in case of larger area break. In case of much more severe accident that the ex-vessel break leads to the break of TBM the first wall, the results reveal that the decay heat can be removed to cool down TBM by natural circulation and radiation. The first wall melting can be avoided if the method to shutdown plasma within 3 seconds in case of ex-vessel break is adopted. (authors)

  2. Metastability Exchange Optical Pumping of Helium-3 at High Pressures and 1.5 T: Comparison of two Optical Pumping Transitions

    Abboud, Marie; Sinatra, Alice; Tastevin, Geneviève; Nacher, Pierre-Jean; Maître, Xavier

    2005-01-01

    4 pages; proceeding 13th international laser physics workshop LasPhys'04, Trieste, July 12-16 2004 At low magnetic field, metastability exchange optical pumping of helium-3 is known to provide high nuclear polarizations for pressures around 1 mbar. In a recent paper, we demonstrated that operating at 1.5 T can significantly improve the results of metastability exchange optical pumping at high pressures. Here, we compare the performances of two different optical pumping lines at 1.5 T, and ...

  3. Helium behaviour in nuclear glasses

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3He+ ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 1016 at. cm-3 atm.-1. The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*1021 at. cm-3, corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D0exp(-Ea/kBT), where D0 = 2.2*10-2 and 5.4*10-3 cm2 s-1 and Ea = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*1019 at. g-1, corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted with helium at high

  4. Effects of helium on titanium films and the helium diffusion

    SONG YingMin; LUO ShunZhong; LONG XingGui; AN Zhu; LIU Ning; PANG HongChao; WU XingChun; YANG BenFu; ZHENG SiXiao

    2008-01-01

    Using direct current-magnetron sputtering, Helium-trapped Ti films with a He/Ar mixture was studied. The relative helium content, helium depth profiles for the Ti films and crystallization capacity were analyzed by Enhanced Proton Backscattering Spectrometry (EPBS) and X-ray diffraction (XRD). It was found that helium diffusion enhanced as more helium trapping into Ti films, and the He holding ratios were 95.9%, 94.9%, 93.9%, 82.8% when the Ti films with the He/Ti of concentrations of 9.7 at.Q, 19.5 at.Q, 19.7 at.Q, 48.3 at.% were measured again 4 months later, respectively. The diffraction peaks be-came weak and wider, the peak of (002) plane was shifted to smaller diffraction angles and the relevant interplanar spacing d(hkl) increased gradually as more helium trapping into Ti films. The main peak was made trending to the (101) plane by both higher deposition temperature and more helium trapping.

  5. Liquid hydrogen target cooled by circulating helium

    Structure and characteristics of a liquid hydrogen target, where hydrogen is liquefied with liquid helium flow using evaporation heat of liquid helium and vapour cold, are described. Good thermal insulation of liquid helium supply line permits to remove out of the target the most volumetric and heavy component - helium tank - and to supply liquid helium along spreaded pipeline from the Dewar helium flask. It results in considerable reduction of dimensions and weight, the structure simplification and work facilitation with the target. The target having a working volume of 400 mm length and 60 mm diameter was tested. Vacuum casing of the working volume was made of foam plastic, heat flow to the working volume is equal to 1.5 W. Achieving mode of operation including structure cooling and hydrogen liquefaction took approximately 3 h, liquid helium flow rate for liquefaction of 1 l hydrogen is 2.7 l. Liquid helium flow rate in the mode of operation was equal to 0.7 l/h, i.e. target operation period without adding liquid helium to the Dewar flask is 4-5 days. The target described is notable for simplicity in fabrication, reliability in operation and is very suitable for using in experiment as compared to existing targets with hydrogen liquefaction with liquid helium. Unit structure of the target enables to easily change its configuration relative to problems of concrete physical experiment

  6. Ionized helium afterglow study

    In order to take into account the characteristics of ionized helium, under relaxation conditions, in the determination of the unknown coefficients of the reaction rates and more particularly those of the recombination of H2+ ions, a method has been developed which consists in recovering, using a system of differential equations with coupled partial derivatives, the set of all the physical quantities which can at the moment be measured as a function of time in a helium after-discharge. The energy balance of the maxwellian electrons and the speed distribution function of the electrons were studied in details and calculated as a function of time and location in space. The non-maxwellian electrons were included in the calculations. Measurements were made over a large range of experimental conditions using 5 different diagnoses: UHF interferometry in the X band, UHF radiometry in the X band, mass spectrometry, optical absorption spectrometry and optical emission spectrometry. All experimental data, obtained at 293 deg K and at seven different pressures ranging from 5 to 100 Torr were perfectly reproduced by the proposed system of differential equations, with the same reaction rate coefficients and the same constants. The method developed here gives a complete solution for the helium after-discharge at room temperature over a wide range of experimental conditions. It underlines the important reactions within the ionized gas, gives the absolute value and the dependences of the electron-He2+ ion recombination coefficient and allows the determination of the elementary mechanisms causing these dependences. It also gives the coefficients and the reaction rates of all the other elementary mechanisms which, besides recombination, determine the relaxation of ionized helium

  7. Helium in inert matrix dispersion fuels

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO2, MgAl2O4, MgO and Al2O3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  8. Orion A helium abundance

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  9. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  10. Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report - Project A.5 and A.6

    This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01

  11. Helium anion formation inside helium droplets

    Jabbour Al Maalouf, Elias; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed.

  12. Electrons at helium interfaces

    Leiderer, Paul

    1984-01-01

    Two-dimensional layers of charges trapped at the boundaries between the various helium phases strongly interact with these interfaces at high electric fields. The coupling, which leads to an electrohydrodynamic instability, provides new methods for studying helium properties.

  13. Metallic helium in massive planets

    Stevenson, David J.

    2008-01-01

    In this issue of PNAS, Stixrude and Jeanloz (4) show that band closure in pure helium occurs at lower pressures than previously thought, provided the effect of high temperatures is taken into account. This suggests that helium behaves as a metal, at least at the highest pressures encountered in Jupiter and perhaps over a wider range of pressures in the many, often much hotter, planets of Jupiter’s mass and larger that are now evidently common in the universe (5). The full thermodynamic and tr...

  14. Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6

    ARD, K.E.

    2000-04-19

    This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

  15. Direct photoionization of excited helium

    The sensitivity of direct photoionization characteristics of the excited helium to the inclusion of the closed channels and to the choice of the structure models of the continuum and initial states in an energy region below the resonances converging to the second threshold is investigated. 37 refs.; 6 figs.; 5 tabs

  16. Helium anion formation inside helium droplets

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  17. Antiprotonic Helium Atoms

    Kartavtsev, O. I.

    1995-01-01

    Metastable antiprotonic helium atoms $^{3,4}\\! H\\! e\\bar pe$ have been discovered recently in experiments of the delayed annihilation of antiprotons in helium media. These exotic atoms survive for an enormous time (about tens of microseconds) and carry the extremely large total angular momentum $L\\sim 30-40$. The theoretical treatment of the intrinsic properties of antiprotonic helium atoms, their formation and collisions with atoms and molecules is discussed.

  18. Cooling with Superfluid Helium

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  19. Behavior of helium bubble in helium-doped stainless steel weldment for nuclear power plant

    The behavior of helium bubble in helium-doped austenitic stainless steel weldment was investigated using scanning electron microscopy, transmission electron microscopy and numerical calculation technique. The stainless steel was helium ion-implanted and welded by YAG laser apparatus. Helium ion implanting to the sample was carried out using 8 MeV implantation apparatus. The sample was doped 1.0x1019 atoms/m2 at 5 MeV and then doped 2.45x1019 atoms/m2 at 6 MeV. The region where helium bubbles formed in the heat-affected zone increased with increasing laser power. For low laser power, the helium concentration was above 10 appm in the weld metal and many large helium bubbles larger than 3 μm in diameter were observed at the bond region. The volume of weld metal increased and the size of helium bubble decreased with increasing laser power respectively. Number of fine helium bubbles below 0.1 μm in diameter were observed along the dendrite cell boundary in the weld metal. The increases of laser power and travel speed led to the initiation of cracking at the dendrite cell boundary in the weld metal, even at 2.9 appmHe. (author)

  20. Helium bubble kinetics during laser welding of helium-doped stainless steel

    Helium is generated within neutron-irradiated reactor components and entrapped in the stainless steel components. The repair of the components using conventional GTA welding practices is then exceedingly difficult, because of the creation of helium bubbles and weld cracking. In this research, the behavior of helium bubbles in austenitic stainless steel weldments was investigated using stainless steel helium ion-implanted and then welded using YAG Laser apparatus. Helium ion implanting of the sample was carried out using 8MeV implantation apparatus, the sample being doped 2.45χ1019/m2 at 6MeV and then doped 1χ1019/m2 at 5MeV. Helium bubbles are present at the bond region, heat-affected zone and weld metal. An increase of weld heat input causes the growth of helium bubbles and produce toe cracks and cracks along the dendrite cell boundary in the weld metal. The helium bubble phenomena can be simulated in the weld metal and in the heat-affected zone during repair welding using helium ion implanting technique. (author)

  1. The bending of the proton plus helium flux in primary cosmic rays measured by the ARGO-YBJ experiment in the energy range from 20 TeV to 5 PeV

    Montini, P

    2016-01-01

    The measurement of proton plus helium and all-particle energy spectra in the range $20\\,$ TeV to $5 \\,$PeV and $80 \\,$TeV to $5 \\,$PeV respectively are presented. Data taken by the ARGO-YBJ detector in the 2010 year have been analyzed. The ARGO-YBJ experiment (Tibet, P. R. China) has been taking data for more than five years by means of a full-coverage array of RPC detectors. The discrimination between showers produced by light and heavy primaries has been performed by looking at the lateral particle density close to the core region. A Bayesian unfolding technique was therefore applied to the measured quantities in order to evaluate the cosmic ray energy spectrum. The proton plus helium spectrum clearly shows a bending at about $1 \\,$PeV, while the all-particle spectrum is consistent with previous observations.

  2. Helium refrigeration considerations for cryomodule design

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads

  3. Helium the disappearing element

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  4. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition

    Staltsov, M.S.; Chernov, I.I.; Kalin, B.A.; Oo, Kyi Zin; Polyansky, A.A.; Staltsova, O.S.; Aung, Kyaw Zaw [National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow (Russian Federation); Chernov, V.M.; Potapenko, M.M. [A.A. Bochvar High-Technology Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2015-06-15

    The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He{sup +} ions up to a fluence of 5 ⋅ 10{sup 20} m{sup −2} at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles.

  5. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition

    The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He+ ions up to a fluence of 5 ⋅ 1020 m−2 at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles

  6. Helium behaviour in implanted boron carbide

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  7. The Descending Helium Balloon

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  8. Laser spectroscopy of antiprotonic helium and pionic helium

    ASACUSA (Atomic Spectroscopy and Collisions Using Slow Antiproton) experiment of CERN has observed two-photon spectroscopy by making non-linear transitions of the antiprotons which have occupied highly excited levels. The metastable antiproton helium atoms are studied by irradiating two laser light photons propagating in the counter direction. As the result, the spectrum of narrow line width was observed by making the Doppler width of the resonant transition to decrease. And the anti-proton helium transition frequency was measured with the accuracy of (2.3∼5) X10-9. The mass ratio of the antiproton and the electron has been decided to be Mp/me =1836.152674(23) from the comparison of quantum electrodynamics calculation and the present experimental result. The pion-Helium experiment instrument has been also constructed at the ring cyclotron of PSI (Paul Sherer Institute) toward the successful laser spectroscopy of this atom. When this atom is observed, the π- mass can be obtained with the accuracy higher than 6∼8 orders of magnitude which may contribute to the direct measurement of the upper limit value of muon neutrino mass in the Particle Data Book Mass although various difficulties may be encountered. This report describes briefly the laser spectroscopy at first and then the recent situation of the experiments. (S. Funahashi)

  9. Helium mobility in advanced nuclear ceramics

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3He ions at room temperature in the fluence range 2 * 1015 et 6 * 1016 cm-2. Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3He(d, p0)4He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC0.92 ≤ TiC0.96 ≤ TiN0.96; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10-18 - 2 * 10-17 m2 s-1 in TiC0.96 and 3.5 * 10-19 - 5.3 * 10-18 m2 s-1 in TiN0.96 between 1100 and 1600 C. The

  10. Doppler imaging of the helium-variable star a Cen

    Bohlender, David A; Hechler, P

    2010-01-01

    The helium-peculiar star a Cen exhibits line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. New high S/N, high-resolution spectra are used to perform a quantitative measurement of the abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and the magnetic field orientation. Doppler images have been created using programs described in earlier papers by Rice and others. An alternative surface abundance mapping code has been used to model the helium line variations after our Doppler imaging of certain individual helium lines produced mediocre results. We confirm the long-known existence of helium-rich and helium-poor hemispheres on a Cen and we measure a difference of more than two orders of magnitude in helium abundance from one side of the star to the other. Helium is overabundant by a factor of about 5 over much of the helium-rich hemispher...

  11. Helium bubbles in UO2

    A certain part of helium generated in MOX fuel could form additional bubbles in fuel pellets as a result of the combination of radiation defects and high temperature. In the present study, the helium infusion treatments were conducted at high temperature with highly pressurized helium for both polycrystalline UO2 fragments and hyperstoichiometric single crystal UO2+x particles. Annealing tests for polycrystalline UO2 were followed by the helium infusion treatment to evaluate formation of helium bubble. In case of as helium-infused polycrystalline sample, it was confirmed that helium bubbles were formed after slight oxidative annealing at more than 1573K. On the other hand, the cavity observed in as-helium-infused single crystal sample grew up to form a negative crystal. Formation mechanism of helium bubble and negative crystal were discussed. (author)

  12. Diffusion behaviors of helium atoms at two Pd grain boundaries

    XIA Ji-xing; HU Wang-yu; YANG Jian-yu; AO Bing-yun

    2006-01-01

    The diffusion behaviors of helium atoms at two symmetric grain boundaries (Σ5{210} and Σ3 {112}) of Pd were investigated using molecular dynamics simulations through an analytical embedded-atom method(MAEAM) model. The simulations demonstrate that the interstitial helium atoms are easily trapped at the grain boundaries and precipitated into clusters. Due to the closed-shell electronic configurations of both helium and palladium,Pd grain boundaries yield strong capability of retaining helium atoms. By calculating the mean square displacements(MSD) of an interstitial helium atom at the grain boundaries,the diffusion coefficients were determined,and the linear fits to Arrhenius relation. The diffusion activation energies of interstitial helium atom at these two Pd grain boundaries were also evaluated.

  13. Effect of weld thermal cycle, stress and helium content on helium bubble formation in stainless steels

    Helium bubble structure was examined on a helium-implanted stainless steel after applying thermal and stress cycle using a weld thermal and stress cycle simulator. Helium ions were implanted on Type 304 stainless steels up to 200 appm uniformly to a depth of 3.5 μm. The specimens were heated at various temperatures between 1073 and 1473 K for 2 s in Ar gas atmosphere. Tensile stresses from 0.5 to 8 MPa were applied during the thermal cycle. TEM observations revealed that size of the bubbles at grain boundaries was larger for the specimens with a higher tensile stress and with a higher annealing temperature. Densities of bubbles increased with increasing helium content. A theoretical model calculation showed a good agreement with the experimental results

  14. Asteroseismic estimate of helium abundance of 16 Cyg A, B

    Verma Kuldeep

    2015-01-01

    Full Text Available The helium ionization zone in a star leaves a characteristic signature on its oscillation frequencies, which can be used to estimate the helium content in the envelope of the star. We use the oscillation frequencies of 16 Cyg A and B, obtained using 2.5 years of Kepler data, to estimate the envelope helium abundance of these stars. We find the envelope helium abundance to lie in the range 0.231–0.251 for 16 Cyg A and 0.218–0.266 for 16 Cyg B.

  15. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    Yonemori, Seiya; Nakagawa, Yusuke; Ono, Ryo; Oda, Tetsuji

    2012-06-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals.

  16. Helium flooded cryopump with increased hydrogen and helium entrainment factor

    Superhigh-vacuum helium condensation-sorption pump with H2 and H entrainment factors 1.7 and 3.1 times respectively exceeding those in the known design cryopumps with the same diameters of casings and connecting flange flow sections is described. The N2 pumping-out rate is 6m3/s, the H2 one is 21 m3/s, the H2 pumping-out rate constitutes 12m3/s, the casing diameter is 0.5, the height - 0.8m, mass-35 kg. The pump is fabricated of titanium and aluminium

  17. Helium in Alberta

    1979-06-01

    Helium is found in small quantities in natural gas in Alberta and most natural gases throughout the world. This report outlines its properties and its present day uses such as the space program, welding of metals, controlled atmospheres for growing crystals for semi-conductors, chromatography, heat transfer, leak-testing, and research and medical-biological applications. It also appears that liquid helium will be necessary to provide a practical source of the low temperature necessary for the many potential applications of superconductivity. These offer many possibilities for savings in energy-related applications. This report also examines helium supply and demand in the USA, the principal source of supply to the Western world, Japan, which must import all its requirements, and Canada. Since the failure of Canadian Helium's Saskatchewan plant in 1977, Canada has no indigenous supply and no apparent sources which are viable under current technology. Alberta had 33.1 billion feet/sup 3/ of helium as of December 31, 1977 contained in its proved reserves of natural gas. None of this is economically recoverable under current commercial technology. By 1985, when a commercial plant would come on stream, 72% of the ultimate reserve of 47 Bcf will still be available. Alberta now has a process being field-tested which has an energy requirement only 25-30% of that of the presently available method. Should the test be successful, it will make possible the economic recovery of helium from the province's pipeline gases and the sale of the technology to other countries. 17 refs., 4 figs., 1 tab.

  18. Helium stars as supernova progenitors

    Waldman, Roni; Yungelson, Lev R.; Barkat, Zalman

    2007-01-01

    We follow the evolution of helium stars of initial mass $(2.2 - 2.5) M_\\odot$, and show that they undergo off-center carbon burning, which leaves behind ${\\mathbf \\sim 0.01 M_\\odot}$ of unburnt carbon in the inner part of the core. When the carbon-oxygen core grows to Chandrasekhar mass, the amount of left-over carbon is sufficient to ignite thermonuclear runaway. At the moment of explosion, the star will possess an envelope of several $0.1 M_{\\odot}$, consisting of He, C, and possibly some H...

  19. Helium transfer line installation details.

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  20. Is solid helium a supersolid?

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago

  1. Onset Properties of Supersolid Helium

    Yu, Yongle

    2010-01-01

    Supersolid helium has a rather low transition temperature and a small critical velocity, compared with liquid helium. These properties could be explained in terms of helium's spectrum structure and quantum jumps involving large momentum transfer. A grain in the solid helium possess valleys (local minima) in its many-body dispersion curve, and an exchange of large momenta with the grain's surroundings occurs in a jump between a level in one valley and another level in the neighboring valley. S...

  2. Helium Production and Possible Projection

    Steve Mohr; James Ward

    2014-01-01

    The future availability of helium has been raised as an issue in the literature. However, a disaggregated projection of helium production has not been attempted, presumably due to the difficult nature of accessing disaggregated historic production data to test the accuracy of this issue. This paper presents collated and estimated historic helium production statistics from 1921 to 2012 for each helium producing country in the world and by U.S. state. A high and regular growth projection of hel...

  3. Helium in Chemically Peculiar Stars

    Leone, F.

    1998-01-01

    For the purpose of deriving the helium abundances in chemically peculiar stars, the importance of assuming a correct helium abundance has been investigated for determining the effective temperature and gravity of main sequence B-type stars, making full use of the present capability of reproducing their helium lines. Even if the flux distribution of main sequence B-type stars appears to depend only on the effective temperature for any helium abundance, the effective temperature, gravity and he...

  4. Fine structure of helium and light helium-like ions

    Pachucki, Krzysztof; Yerokhin, Vladimir A.

    2010-01-01

    Calculational results are presented for the fine-structure splitting of the 2^3P state of helium and helium-like ions with the nuclear charge Z up to 10. Theoretical predictions are in agreement with the latest experimental results for the helium fine-structure intervals as well as with the most of the experimental data available for light helium-like ions. Comparing the theoretical value of the 2^3P_0-2^3P_1 interval in helium with the experimental result [T. Zelevinsky et al. Phys. Rev. Let...

  5. Broken symmetry makes helium

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  6. Dynamic Simulation of a Helium Liquefier

    Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time

  7. Thermal Performance of the XRS Helium Insert

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  8. Calculation of electron-helium scattering

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 33 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs

  9. Calculation of electron-helium scattering

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n {<=}3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3{sup 3} D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs.

  10. Ab initio potential energy curve for the helium atom pair and thermophysical properties of the dilute helium gas. I. Helium-helium interatomic potential

    Vogel, Eckhard; Bich, Eckard; Hellmann, Robert

    2007-01-01

    Abstract A helium-helium interatomic potential energy curve was determined from quantum-mechanical \\textit{ab initio} calculations. Very large atom-centred basis sets including a newly developed d-aug-cc-pV8Z basis set supplemented with bond functions and \\textit{ab initio} methods up to Full CI were applied. The aug-cc-pV7Z basis set of Gdanitz (\\emph{J. Chem. Phys.}, \\textbf{113}, 5145 (2000)) was modified to be more consistent with the aug-cc-pV5Z and aug-cc-pV6Z basis set...

  11. Linear electron chains at superfluid helium surface

    The unique one-dimensional system of linear electron chains at liquid helium surface is realized experimentally for the first time. The distortion of the surface of liquid helium covering the profiled dielectric substrate, and the holding electric field confining the electrons to the bottom of the created channels, are used to realize the system. The carrier mobility in the linear electron chains is measured in the temperature range 0.5-1.8 K at holding electric fields up to 1 kV/cm. It is shown that the electron mobility depends on substrate cleanness. For clean substrates the mobility increases with decreasing temperature. The results agree with the existing theory

  12. The pulsating extreme helium star BD + 1303224

    Ultraviolet flux variations are reported for the pulsating extreme helium star BD + 1303224 (V652 Her). Effective temperature and angular radius variations over a cycle are determined from static plane-parallel LTE model atmospheres. When compared with radius changes derived from ground-based spectroscopy, the angular radius variations indicate radial pulsations and correspond to a distance of 1.5 +- 0.1 kpc. BD + 1303224 is thought to be a helium-burning star of 0.7 Msolar masses, which has an envelope contracting as the helium-burning core grows; it is similar to HD 144941 and these two stars may constitute a new sub-class of the hydrogen-deficient stars. (author)

  13. Laser spectroscopic measurement of helium isotope ratios

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of 3He/4He = 10-7--10-5. The resonant absorption of 1083 nm laser light by the metastable 3He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of 4He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3σ detection limit of 3He in helium is 4 x 10-9. This demonstration required a 200 μL STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  14. Laser Spectroscopic Measurement of Helium Isotope Ratios

    Wang, L B; Holt, R J; Lu, Z T; O'Connor, T P; Sano, Y; Sturchio, N C

    2003-01-01

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of 3He/4He = 10^-7 - 10^-5. The resonant absorption of 1083 nm laser light by the metastable 3He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of 4He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3-sigma detection limit of 3He in helium is 4 x 10^-9. This demonstration required a 200 micro-L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  15. Helium gas permeability of Kapton polyimide film

    In a beam line for radioactive samples of a large-scale synchrotron radiation facility, it is necessary to protect the storage ring from contamination in a case of accident in a measurement chamber. For the purpose it has been proposed to separate the beam line from the storage ring using two sheets of polyimide film (Kapton), between which helium gas is introduced; the damage in the sheets could be detected by continuous helium gas leak monitoring. To examine whether this method is effective or not, helium permeation rate was measured for Kapton sheets of 25, 12.5 and 7.9 μm thickness at room temperatures. The obtained permeability was (7∼8)x10-16 mol·m-1·Pa-1·s-1, which is so high that the small defects in the sheets cannot be detected. Accordingly another detection method should be considered when Kapton is used as the separator. (author)

  16. The Weakest Link: Bonding between Helium Atoms

    Lohr, Lawrence L.; Blinder, S. M.

    2007-01-01

    A highly simplified model for helium dimers that reproduces their essential features without the need for elaborate computation is presented. The He-He potential is predicted to have minimum of 10.9 K at a nuclear separation of 5.61 bohrs.

  17. Neutral muonic helium(3)

    Neutral muonic helium, He++μ-e-, can be considered in two pieces. The (He++μ-)+-system is a hydrogenic ion halfway in size between an atom and a nucleus. It acts like a singly charged pseudo-nucleus to the electron surrounding it. The whole system appears like one hydrogen inside another. Neutral muonic helium can be formed in the ground state in which the coupling of the magnetic moments gives rise to a hyperfine structure (hfs). 3He++μ-e- has three spin one half particles interact without any restrictions by the Pauli exclusion principle. The level diagram of the ground state is shown. There is a large muonic hfs splitting corresponding to the He++μ- ion to be in one of the two spin states with total spin quantum number G = 0 and G = 1. To measure the atomic hfs superimposed on the G = 1 triplet state is the aim of this experiment. (Auth.)

  18. Antiprotonic helium atomcules

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  19. Education in Helium Refrigeration

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics... and so on.Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity

  20. Applications of Groundwater Helium

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  1. A reexamination of quenches in Helium 4 and Helium 3

    Karra, G.; Rivers, R. J.

    1998-01-01

    In the light of recent difficulties in observing vortices in quenches of liquid helium 4 to its superfluid state we re-examine the Zurek scenario for their production. We argue that experiments in helium 4 are unlikely to produce true vortices in the numbers originally anticipated, if at all, because of the wide Ginzberg regime and the slowness of the mechanical quenches. On the other hand, the observed production of unambiguous vortices in neutron-bombarded helium 3, with its narrow Ginzberg...

  2. Feasibility of lunar Helium-3 mining

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    -3 fusion were calculated using a predicted minimum energy price in 2040 of 30.4 Euro/MWh. Annual costs are between 427.7 to 1,347.9 billion Euro, with annual expected profit ranging from -724.0 to 260.0 billion Euro. Due to the large scale of the mission, it has also been evaluated for providing 0.1% and 1% of the global energy demand in 2040. For 1%, the annual costs are 45.6 to 140.3 billion Euro and the expected annual profits are -78.0 to 23.1 billion Euro. For 0.1%, the annual costs are 7.7 to 20.5 billion Euro. The annual expected profits are -14.3 to -0.8 billion Euro. Feasibility has been addressed in three aspects. Technically, the mission is extremely challenging and complex. However, most required technologies exist or could be developed within a reasonable time span. From a political and legal perspective, the current international treaties hardly provide any framework for a lunar mining operation. Financially, the mission only produces a net profit in the best case, and only for medium- to large-scale operations, which require a very large initial investment. To make lunar Helium-3 usage possible, further research should concentrate on the mining operation and costs of fusion plants, as their impact by far outranks all other mission elements. Different transportation concepts may be investigated nevertheless. Many - not only technical - challenges concerning Helium-3 mining are still to be addressed. Although only a starting point for further investigations, this study shows that, despite popular claims, lunar Helium-3 is unsuitable to provide a significant percentage of the global energy demand in 2040.

  3. Helium emanometry as an indicator of deeply buried uranium deposits

    Helium emanometry has considerable potential for locating deeply buried uranium deposits. In order to determine whether near surface helium-4 anomalies are present over and in close proximity to deeply buried uranium deposits, helium measurements were carried out at three sites having known uranium ore bodies: the Red Desert in Sweetwater County, Wyoming; Copper Mountain in Fremont County, Wyoming; and Spokane Mountain in Stevens Couty, Washington. At each research site, near surface soil and soil gas (probe) samples were collected. Borehole water and soil gas (collector) samples were also taken at selected locations. The samples were analyzed at the laboratory for their helium, light hydrocarbon, and nitrogen content. In most instances it was not necessary to correct the soil gas data. In determining the quantity of helium-4 present in the soil gas samples, the practical precision was +- 50 ppb. The reproducibility of the helium-4 analyses of the water samples varied from +- 5% to +- 20%. The total error in the calculated soil helium-4 levels ranged from 5% to 10% of the value. The calculated corrected soil, water and oil gas helium-4 results were analyzed employing statistical techniques in order to separate the background and anomalous populations. The anomalous population was divided into five subsets for purposes of data presentation. The data are then presented in the form of histograms, dot maps and anomaly contour density maps.One can conclude that the results from this study confirm that near surface helium anomalies are present in the gas of the soil micropores overlying three types of uranium deposits situated in widely differing geological environments. The data obtained from the soil gas (probe) helium samples are also encouraging in that anomalies were found to be present over portions of the known extent of each of the three deposits

  4. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    Jianqin, Zhang; Zhuo, Zhang; Rui, Ge

    2015-01-01

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders. After purification, the purified helium has an impurity content of less than 5ppm.

  5. Cavitation pressure in liquid helium

    Caupin, Frederic; Balibar, Sebastien

    2001-01-01

    Recent experiments have suggested that, at low enough temperature, the homogeneous nucleation of bubbles occurs in liquid helium near the calculated spinodal limit. This was done in pure superfluid helium 4 and in pure normal liquid helium 3. However, in such experiments, where the negative pressure is produced by focusing an acoustic wave in the bulk liquid, the local amplitude of the instantaneous pressure or density is not directly measurable. In this article, we present a series of measur...

  6. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    2010-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  7. Cavitation in liquid helium

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.

    1963-11-15

    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  8. High Efficiency Regenerative Helium Compressor Project

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  9. Helium abundance in the Orion A source

    The H, He 66α (22.4 GHz) and H, He 56α (36.5 GHz) recombination line observations were made at several positions of the central region of Orion A (R ∼ 3'). The observed relative helium abundance y' is found to increase with the angular distance from the nebular centre and to amount the mean value of 11.6% at the peripherycal positions. The comparison with the results of low frequency observations (H, He 109α, ν ∼ 5.0 GHz) shows that measurements towards the centre (y'=8-9%) is in agreement with the low frequency measurements of y', however y' at the peripherycal positions are higher than that at low frequency. The nebula model of a ''blister'' type is constructed to explain such behaviour. The conclusions are made that the actual helium abundance y in Orion A is ∼ 12%, the Orion Nebula expands and its radial velocity is ∼ 5 km/s

  10. Cosmogenic helium and neon extracted by crushing: A technique for discriminating between mantle and cosmogenic helium

    Moreira, Manuel; Madureira, Pedro

    2005-01-01

    The helium and neon isotopic compositions of olivines coming from a 11Ma old xenolith sampled at Mt. Hampton (West Antarctica) were analyzed by crushing and heating. The 4He/3He isotopic ratio obtained by crushing varies between 1340 and 6300 (R/Ra between 115 and 539) with 4He content around 3-5 10-10 ccSTP/g confirming that cosmogenic helium can be extracted by crushing [Scarsi, 2000; Yocochi et al., 2004]. The neon also shows a clear cosmogenic origin (20Ne/22Ne down to 7.7 and 21Ne/22Ne>0...

  11. Gas-chromatographic analysis of high-purity helium using a helium detector

    The limits of gas-chromatographic detection of neon, hydrogen, argon, nitrogen, krypton, and methane in helium have been determined using a helium ionization detector under saturation current conditions. The detection limits are restricted by the gas permeability of the detector Teflon body and the injection system. The dependence of extraction of impurity gases by cryogenic adsorption enrichment on their contents and enrichment time has been examined. the relative detection limit can be lowered by preconcentration of 3 x 10-5% for neon and to 4 x 10-7 to 2 x 10-8% for other gases

  12. Quantum cavitation in liquid helium

    Guilleumas, Montserrat; Barranco Gómez, Manuel; Jezek, Dora M.; Lombard, Roland J.; Pi Pericay, Martí

    1996-01-01

    Using a functional-integral approach, we have determined the temperature below which cavitation in liquid helium is driven by thermally assisted quantum tunneling. For both helium isotopes, we have obtained the crossover temperature in the whole range of allowed negative p essures. Our results are compatible with recent experimental results on 4He.

  13. Helium exhaust studies in the DIII-D tokamak

    Significant exhaust of thermal helium in a diverted, H-mode deuterium plasma has been demonstrated for the first time on the DIII-D tokamak using an in-vessel cryopump conditioned with an argon frost. The helium, introduced via gas puffing, is observed to reach the plasma core and then is readily removed from the plasma with a time constant of ∼8-15 energy confinement times. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Additional studies focusing on the recycling properties of helium relative to deuterium in the divertor region indicate some dependence of the helium concentration in the divertor pumping plenum on the divertor outer strike-point (OSP) position in Ohmic discharges. However, the helium concentration in the plenum appears to have little dependence on OSP position in beam-heated, ELMing H-mode discharges

  14. The Application and Improvement of Helium Turbines in the EAST Cryogenic System

    The helium cryogenic system supplies supercritical helium cooling capacity at 4.5 K for the superconducting magnets in the EAST superconducting tokamak. Four low-temperature helium turbines are used in the 2 kW helium refrigeration system, and their performance and reliability are critical for the continuous operation of the tokamak. The turbines were made by the Helium Mechanics Company in Russia. The start-up process is very unstable, easily broken, and thus testing and improvements are needed. In this paper, we analyze the structure of the helium turbine, make improvements, and describe the testing process and results of the improved helium turbines. Some of the operational experiences during the start-up process and tests are also presented. (fusion engineering)

  15. CERN Technical Training 2002: Learning for the LHC ! HeREF-2002 : Helium Refrigeration Techniques

    Davide Vitè

    2002-01-01

    Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2002 is a new course, in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2002 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2002 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (5 mornings and 2 afternoons), 21-25 October 2002. Estimated cost: 300.- CHF Language: Bilingual English-French. The course support will be in English, the...

  16. CERN Technical Training 2002: Learning for the LHC! HEREF-2002 : HELIUM REFRIGERATION TECHNIQUES

    Davide Vitè

    2002-01-01

    Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2002 is a new course, in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2002 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2002 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (5 mornings and 2 afternoons), 21-25 October, 2002. Estimated cost: 300.- CHF Language: Bilingual English-French. The course support will be in English, the ...

  17. On the Formation of (Anionic) Excited Helium Dimers in Helium Droplets

    Huber, Stefan E.; Mauracher, Andreas

    2014-01-01

    Metastable atomic and molecular helium anions exhibiting high-spin quartet configurations can be produced in helium droplets via electron impact. Their lifetimes allow detection in mass spectrometric experiments. Formation of atomic helium anions comprises collision-induced excitation of ground state helium and concomitant electron capture. Yet the formation of molecular helium anions in helium droplets has been an unresolved issue. In this work, we explore the interaction of excited helium a...

  18. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  19. Development of negative helium ion sources

    Ootsuka, Michio; Nakamura, Shin; Suzuki, Yozo; Amemiya, Kensuke; Tanaka, Masanobu; Takeuchi, Kazuhiro; Tokiguchi, Katsumi; Sato, Tadashi [Hitachi Ltd., Tokyo (Japan)

    2001-02-01

    On the basis of the cooperation of industries and universities, the local government of Fukui established Wakasa Bay Energy Research Center. An emphasis is placed on the application of accelerators. Two accelerators are scheduled, a tandem electrostatic accelerator (5MeV) and synchrotron (200MeV). The tandem accelerator requires helium ion currents to exceed 10 {mu} A. The use of Lithium vapors for charge exchange (electron attachment) is adopted for negative ion production. (M. Tanaka)

  20. Correlation of Helium Solubility in Liquid Nitrogen

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  1. Photoionization of helium dimers

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  2. Exotic helium molecules

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4He2(23S1-23P0) molecule, or a 4He2(23S1-23S1) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4He2(23S1-23S1) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  3. High resolution transient and permanent spectral hole burning in Ce$^{3+}$:Y$_2$SiO$_5$ at liquid helium temperatures

    Karlsson, Jenny; Serrano, Diana; Walther, Andreas; Rippe, Lars; Kröll, Stefan; Goldner, Philippe; Ferrier, Alban

    2016-01-01

    We perform hole burning with a low drift stabilized laser within the zero phonon line of the 4f-5d transition in Ce$^{3+}$:Y$_2$SiO$_5$ at 2K. The narrowest spectral holes appear for small applied magnetic fields and are $6\\pm4$ MHz wide (FWHM). This puts an upper bound on the homogeneous linewidth of the transition to $3\\pm2$ MHz, which is close to lifetime limited. The spin level relaxation time is measured to $72\\pm21$ ms with a magnetic field of 10 mT. A slow permanent hole burning mechanism is observed. If the excitation frequency is not changed the fluorescence intensity is reduced by more than 50$\\%$ after a couple of minutes of continuous excitation. The spectral hole created by the permanent hole burning has a width in the tens of MHz range, which indicates that a trapping mechanism occurs via the 5d-state.

  4. High-resolution transient and permanent spectral hole burning in Ce3 +:Y2SiO5 at liquid helium temperatures

    Karlsson, Jenny; Nilsson, Adam N.; Serrano, Diana; Walther, Andreas; Goldner, Philippe; Ferrier, Alban; Rippe, Lars; Kröll, Stefan

    2016-06-01

    We perform hole burning with a low-drift stabilized laser within the zero phonon line of the 4 f -5 d transition in Ce3 +:Y2SiO5 at 2 K. The narrowest spectral holes appear for small applied magnetic fields and are 6 ±4 MHz wide (FWHM). This puts an upper bound on the homogeneous linewidth of the transition to 3 ±2 MHz, which is close to lifetime limited. The spin level relaxation time is measured to 72 ±21 ms with a magnetic field of 10 mT. A slow permanent hole burning mechanism is observed. If the excitation frequency is not changed the fluorescence intensity is reduced by more than 50 % after a couple of minutes of continuous excitation. The spectral hole created by the permanent hole burning has a width in the tens of MHz range, which indicates that a trapping mechanism occurs via the 5 d state.

  5. New experimental device for VHTR structural material testing and helium coolant chemistry investigation - High Temperature Helium Loop in NRI Rez

    Berka, Jan, E-mail: bej@cvrez.cz [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Matecha, Josef, E-mail: josef.matecha@ujv.cz [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Cerny, Michal [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Viden, Ivan, E-mail: ivan.viden@vscht.cz [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Sus, Frantisek [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Hajek, Petr [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic)

    2012-10-15

    The High Temperature Helium Loop (HTHL) is an experimental device for simulation of VHTR helium coolant conditions. The purpose of the HTHL is structural materials testing and helium coolant chemistry investigation. In the HTHL pure helium will be used as working medium and its main physical parameters are 7 MPa, max. temperature in the test section 900 Degree-Sign C and flow rate 37.8 kg/h. The HTHL consists of an active channel, the helium purification system, the system of impurities dosage (e.g. CO, CO{sub 2}, H{sub 2}, H{sub 2}O, O{sub 2}, N{sub 2}, and CH{sub 4}) and the helium chemistry monitoring system (sampling and on-line analysis and determination of impurities in the helium flow). The active channel is planned to be placed into the core of the experimental reactor LVR-15 which will serve as a neutron flux source (max. 2.5 Multiplication-Sign 10{sup 18} n/m{sup 2} s for fast neutrons). The HTHL is now under construction. Some of its main parts are finished, some are still being produced (active channel internals, etc.), some should be improved to work correctly (the helium circulatory compressor); certain sub-systems are planned to be integrated to the loop (systems for the determination of moisture and other impurities in helium, etc.). The start of the HTHL operation is expected during 2011 and the integration of the active channel into the LVR-15 core during 2012.

  6. Experimental loop for tests of helium cooled high heat flux components at 600 deg C/10 MPa helium inlet

    Helium loop is a tool for tests of divertor design options which meet the requirements for He -cooled fusion DEMO reactor. These tests include: divertor materials and joining technology selection, cooling regimes optimization, mockups thermal cycling for lifetime estimation. It is also possible to use loop in other areas of high temperature helium nuclear technology (blanket/ first wall mock-ups tests, fission helium reactors relevant experiments). Also as results of systematic mock-ups tests it is planned to create data base for validation of gas dynamic and thermal mechanic codes, used for simulation of processes in high heat flux components. Helium loop is able to test mock-ups at nominal helium inlet temperature 600 deg C and pressure 10 MPa. Possible pressure losses in mock-up are up to 0.5 MPa. First stage of such helium loop creation using tank-to-tank principle has finished at Efremov Institute in collaboration with FZK. At this stage stationery flow rate 24 g/s, which is provided by oil-free membrane compressor, was achieved. One more possible loop regime - gas pulses at 50 g/s and duration up to 120 s. Diagnostic system provides measuring more then 40 parameters such as pressure, flow rate and temperature. Mock-up heat loading is provided by e-beam of TSEFEY facility with applied power up to 60 kW at 27 keV beam energy. Results of finger like mock-ups of DEMO helium cooled divertor vertical target testing are presented. At next stage helium loop will be able to reach flow rate of 600 g/s (using helium circulating pump) that will provide heat removal from mock-ups up to 120 kW. The design solutions and R-and-D results of activity at this stage of loop creation are also presented. (author)

  7. Defect production and accumulation under hydrogen and helium ion irradiation

    The 316L stainless steel (316L SS) is a candidate material for the first wall of a fusion reactor, which will be irradiated with 14 MeV neutrons and escaped ions. This will produce helium and hydrogen in the matrix, which come both from the transmutation production and escaped ions of the plasma. The synergistic action of high-energy cascades and helium induces important damage, such as swelling, blistering and helium embrittlement. The hydrogen combines with the radiation defects to produce dense tiny bubbles (or voids) and substitutes for gaseous impurities (such as soluted oxygen, nitrogen, sulfur and phosphorus) which react with other composites Fe, Cr, Ni and Mo to form new phases, such as Cr2O3, (CrFe)2O3, (Fe5C2)28N, (CrMo)N, (Fe2Mo)12H and (FeNi)9S8. These induce mechanical property changes. The hydrogen combined with helium and high energy cascades will induce more serious damage than that of helium alone. To exhibit the synergistic action of helium and hydrogen, the 316L SS specimens were bombarded with helium, hydrogen and mixed ion beam with energy ranging from 27 to 38 keV to a dose of 1017-8 x 1018 ions/cm2 at 573 K. The results indicate that (a) for the helium ion irradiation, the threshold dose for blistering in the energy range 27-100 keV is higher than that for the 1.0 MeV helium ion irradiation. The surface effects play an important role in the blistering. (b) When specimens bombarded with the mixed beam of helium and hydrogen ions of 27 keV reached the same helium dose (6.4 x 1017 He+/cm2), the diameter and density of bubble on surface increase at a ratio of the hydrogen to helium increase. The more hydrogen ions implanted, the easier and more serious the blister is. (c) When the kinetic energy of the mixed beam decreases in the range 10-30 keV, the action of hydrogen ions on the blistering appears more evident. It seems that the hydrogen plays an important role in bubble formation and growth. (orig.)

  8. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.

    Radula-Janik, Klaudia; Kupka, Teobald

    2015-02-01

    The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. PMID:25228253

  9. Electronic properties of physisorbed helium

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  10. Electronic properties of physisorbed helium

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  11. The influence of electrostatic fields on films of liquid helium

    Prompted by the recent striking experimental results reported by Babkin and Hakonen that appeared to show that liquid helium-II does not wet magnesium fluoride, the authors have examined the effects that an inhomogeneous electrostatic field has on thin films of liquid helium at temperatures below 0.5 K. Their model includes the influence of gravity, surface tension, the electric field and the van der Waals interaction between the helium and its supporting substrate. The authors show that an inhomogeneous charge on the substrate can produce effects that mimic the surface profiles between wetted and non-wetted areas. The calculations also indicate that some special precautions may be necessary when studying films of liquid or solid helium on insulators

  12. Trapping fermionic and bosonic helium atoms

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  13. A pool type liquid helium cryopump

    Design and fabrication details of a pool type Liquid Helium Cryopump are described. It has got a liquid helium capacity of 5 litres and a/ pumping surface area of about 450 sq. cms. Three types of baffles having different geometries are used for radiation shield. Effect on pumping speed for argon, carbon dioxide and nitrogen gas using the baffles is determined at various pressures. The circular array baffle geometry provides the maximum pumping speed. Using circular array type baffle the maximum pumping speed for nitrogen, argon and carbon dioxide are 2700 1/s, 3600 1/s, 2550 1/s respectively at a pressure of 6.0 x 10-4 torr. The ultimate pressure obtained is 3.0 x 10-8 torr. (author)

  14. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro

    1997-03-01

    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  15. Perspectives on Lunar Helium-3

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  16. Microcellular Injection Molding Using Helium

    In comparison with conventional foaming process microcellular injection molding process has advantages such as small bubble size, the removal of sink mark, scale reliability, and weight lightening. So microcellular injection molded parts are applied to electrical product and automobile part. Conventional microcellular foaming process used carbon dioxide and nitrogen as a foaming agent. And it has been never researched and applied about microcellular injection molding process using helium. In this paper, we did a microcellular injection molding process using helium based on previous research result and made samples. From this we can certificate the possibility of microcellular continuous process using helium. Helium is lighter and faster in diffusion than carbon dioxide or nitrogen so through this technique, it can be solved the problem such as spray or labeling

  17. Implanting helium into nanocrystalline hydrogen storage alloy

    The possibility of implanting helium into LaNixAly alloy by high energy ball milling is explored. By analyzing the sample after ball milling, it is shown that Helium can be implanted into the material. Helium lies in the interfacial free volume rather than the crystal lattice. The implanted helium has high thermal stability. Quantity of Helium implanted by this method is very little

  18. Indigenous development of helium liquefier

    Helium Liquefiers/refrigerators have become an essential part of future accelerator developments in India. Apart from designing, systems operating at liquid helium temperature viz. 4.2 K or lower, require additional technical skills to make them work as designed. To get insight in these intricacies, development of helium liquefier was taken up at RRCAT. An indigenous helium liquefier has been developed. This system is based on reciprocating type expansion engine and uses cross counter flow type heat exchangers, based on high finned density copper tubes. The cyclic compressor is a four stage air cooled reciprocating type compressor. Its oil removal system is also designed and developed indigenously. Initially, a liquefaction rate of 6 lit/hr was achieved. More than 150 liters of liquid helium was collected during its maiden trial itself, while operating for more than 25 hours continuously. This liquefier has at present crossed a liquefaction rate of 10 lits/hr by further tuning and reducing thermal in-leaks. Based on the experience gained in the present system and validation of design parameters under actual working conditions, a second model is being designed, which will be able to produce about 35 lit/hr of liquid helium. Further work is also being initiated to develop aluminium plate fin heat exchangers for developing helium liquefiers of larger capacity in the range of 100-200 lits/hr. Design, development and performance details of indigenous development of helium liquefier will be presented and ongoing efforts to increase the liquefaction capacity will be discussed. (author)

  19. Numerical study of helium solubility and helium bubble stability in mercury

    Highlights: • Helium solubility in mercury was numerically evaluated and its small value was experimentally confirmed. • Mass-diffusion dominated bubble evolution is simulated and the bubbles were shown to be stable. • The study indicates that small bubble injection into the mercury target for cavitation damage mitigation is feasible. - Abstract: Dispersing small helium bubbles in the liquid mercury target of the high-power spallation neutron sources was proposed to add compressibility to the target made of liquid mercury. The pressure rise from proton beam deposition is reduced due to added compressibility, which in turn mitigates cavitation damage to the target boundary. A gas volume fraction of ∼0.5% with a nominal bubble diameter of ∼30 μm is desired for optimal pressure pulse relaxation at the beam power of >1 MW. Initial gas injection experiments performed in the Oak Ridge National Laboratory encountered difficulty in obtaining the required volume fraction in mercury. Gas dissolution and diffusion in mercury were candidate mechanisms for this behavior. To clarify this, the solubility of helium in mercury is evaluated in this study and compared to the available experimental data. The results indicate that helium has very small solubility in mercury and that the solubility increases with system temperature. Based on the predicted solubility values, bubble size evolution due to mass diffusion is simulated numerically. Mass diffusion induced bubble size evolution does not significantly affect bubble behavior for conditions expected in high power spallation targets

  20. Behavior of weld defects in laser weldment of helium-doped stainless steel

    Helium is generated within neutron-irradiated reactor components and entrapped in the stainless steel components. The repair of the components using conventional GTA welding practices is exceedingly difficult by entrapped helium, because of the initiation of helium bubbles and weld cracking. In this research, the behavior of helium bubble in the austenitic stainless steel weldment was investigated by utilizing stainless steels ion-implanted with helium and then welded by YAG laser apparatus. Helium ion implanting to the sample was carried out using 8MeV implantation apparatus, and the sample was doped with 2.45 x 1019 atoms/m2 dose at 6MeV and then doped with 1 x 1019 atoms/m2 dose at 5MeV. Helium bubbles are present at the bond region, heat-affected zone and weld metal. The increase of laser power causes the growth of helium bubble, toe cracks and cracks along the dendrite cell boundary in the weld metal. The helium bubble phenomena can be reproduced in the weld metal and in the heat-affected zone during repair welding using helium ion implanting technique. (author)

  1. Liquid helium vessel thermal heat load calculation and modification of the liquid helium cryostat for improved thermal performances

    A room temperature bore superconducting (SC) solenoid magnet has been developed at Control Instrumentation Division (CnID) for carrying out liquid PbLi Magneto Hydro Dynamic (MHD) and corrosion experimental studies for ITER TBM. The SC solenoid magnet is designed to generate central bore magnetic field of 4 Tesla in a bore diameter of 300 mm and length of 800 mm with a field uniformity of 0.5% or better. The SC magnet is made up of low temperature NbTi copper composite wire whose critical temperature (Tc) is 9.8 K. The SC magnet needs to be cooled to liquid helium temperature (4.2 K) for its stable operation. Considering the operational requirement, an adiabatically stable SC magnet is under development. The adiabatically cooled SC magnet is completely immersed inside the liquid helium vessel. As the latent heat of vaporisation of liquid helium is less, heat load on liquid helium vessel needs to be reduced. In this paper we discuss about the liquid helium cryostat developed with conduction cooled thermal shield. Various heat loads on the liquid helium cryostat is calculated. Design modification of the existing cryostat to reduce the heat load and improved thermal performance is discussed. (author)

  2. An investigation of high fractions of metastable helium atoms

    X.P.Feng(冯贤平); B.W.James

    2003-01-01

    Penning type discharge was adopted to excite helium atoms. It is suitable for generating high densitymetastables at a range from 0.1 mTorr to 0.5 Tort. The highest metastable density of 3.5 × 1010 cm-3was observed at a static gas pressure of 0.5 Torr. The highest fraction of metastables (N21s/NHe) of 10-3in a low gas pressure was obtained. The variation of the magnetic field strength on the discharge doesnot result in a significant density change of the metastable helium atoms. When no magnetic field wasapplied, no discharge took place.

  3. Asteroseismic estimate of helium abundance of a solar analog binary system

    Verma, Kuldeep; Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Faria, João P.; Monteiro, Mário J. P. F. G. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Basu, Sarbani [Astronomy Department, Yale University, P. O. Box 208101, New Haven, CT 065208101 (United States); Mazumdar, Anwesh [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Université Paris XI-CNRS (UMR8617), Batiment 121, F-91405 Orsay Cedex (France); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); García, Rafael A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Metcalfe, Travis S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2014-08-01

    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 yr of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range of 0.231 to 0.251 and that of 16 Cyg B lies in the range of 0.218 to 0.266.

  4. Performance of the Helium Circulation System on a Commercialized MEG

    T, Takeda; M, Okamoto; T, Miyazaki; K, Katagiri

    2012-12-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  5. Performance of the Helium Circulation System on a Commercialized MEG

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  6. Transient Characteristic Analyses of Ex-vessel Coolant Pipe Break for Chinese Helium-cooled Solid Breeder TBM Based on RELAP5 Code%基于RELAP5的中国氦冷固态包层真空室外破口瞬态特性分析

    王杰; 苏光辉; 田文喜; 秋穗正; 向斌; 张国书; 冯开明

    2013-01-01

    利用RELAP5/MOD3.4对中国氦冷固态包层、氦气冷却剂回路和二次侧水冷系统进行建模和系统热工水力安全评价.依据ITER事故分析制定的事故序列,对设计基准真空室外破口进行了瞬态分析,并对比了不同破口位置、面积和停堆方式对第一壁的影响.结果表明:真空室外破口发生在风机的下游较上游危险,且小破口较大破口更危险;若真空室外破口同时包层第一壁破口,也可通过自然循环和辐射换热带走衰变热冷却包层;真空室外破口事故中采用聚变停堆系统的3 s停堆方式,可避免第一壁熔化.%Chinese helium-cooled solid breeder (CH HCSB) test blanket module (TBM) with helium cooling system and secondary cooling water system was modeled and thermal-hydraulic behavior and safety performance of the system were assessed using the RELAP5/MOD3.4 code.According to the accident sequences of ITER accident analysis specification for TBM,the transient analysis of the design basis ex-vessel coolant pipe break accident was carried out.The influences of different break locations,leak areas and plasma shutdown processess on the first wall of TBM were compared.The results indicate that it is much more danger when the pipe break occurs at the downstream side of the helium circulator compared with that at upstream side.The results also show that the accident consequence is worse in case of smaller area break than that in case of larger area break.In case of much more severe accident that the ex-vessel break leads to the break of TBM the first wall,the results reveal that the decay heat can be removed to cool down TBM by natural circulation and radiation.The first wall melting can be avoided if the method to shutdown plasma within 3 seconds in case of ex-vessel break is adopted.

  7. Fermilab central helium liquefier operations

    This chapter discusses the use of liquid helium to cool the Fermilab superconducting accelerator. Liquid from the Central Helium Liquefier (CHL) is transported in a six kilometer circular transfer line and each satellite withdraws the amount required to boost its refrigeration capacity to the necessary level. Topics considered include the compressor, the heater, the control system, gas storage, liquid storage, the nitrogen reliquefier, gas purification, initial and early operation, and recent operation. The liquid helium is warmed to near ambient temperature in the satellite heat exchangers. The satellite compressors return the excess inventory to the CHL via a 20 bar gas header. This gas is injected into the high pressure supply to the cold box. Some turbine instabilities have been experienced, including the destruction of a turbine during the initial start-up

  8. Magnetically insulated helium ion diode

    Wessel, F.J.; Heidbrink, W.W.; Drum, S.; Hoang, K.; Layton, P. (Physics Department, University of California, Irvine, California 92717 (US))

    1990-01-01

    A gas-puff magnetically insulated ion diode is under development as a pulsed source of high-energy alpha particles for magnetic fusion experiments. The diode is patterned after the Cornell gas-puff diode (J. B. Greenly, M. Ueda, G. D. Rondeau, and D. A. Hammer, J. Appl. Phys. {bold 63}, 1872 (1988)), but with modifications to accomodate higher voltages ({lt}1 MeV) and operation in helium. The diode is designed to yield current densities approaching 200 A/cm{sup 2} one meter downstream from the source; in our first test of the new source, a helium beam was obtained.

  9. Helium reionization and the thermal proximity effect

    Meiksin, Avery; Brown, Calum K; 10.1111/j.1365-2966.2009.15667.x

    2010-01-01

    We examine the temperature structure of the intergalactic medium IGM) surounding a hard radiation source, such as a Quasi-Stellar Object (QSO), as it responds to the onset of helium reionization by the source. We model the reionization using a radiative transfer (RT) code coupled to a particle-mesh (PM) N-body code. Neutral hydrogen and helium are initially ionized by a starburst spectrum, which is allowed to gradually evolve into a power law spectrum (fnu ~ nu^(-0.5)). Multiple simulations were performed with different times for the onset and dominance of the hard spectrum, with onset redshifts ranging from z = 3.5 to 5.5. The source is placed in a high-density region to mimic the expected local environment of a QSO. Simulations with the source placed in a low-density environment were also performed as control cases to explore the role of the environment on the properties of the surrounding IGM. We find in both cases that the IGM temperature within the HeIII region produced exceeds the IGM temperature before...

  10. Intense-field multiphoton ionization of helium

    The dynamics of multiphoton ionization of helium are investigated through numerical integration of the two-electron time-dependent Schroedinger equation. Using this work as a benchmark, a new single-active-electron model is introduced that gives agreement with He ionization rates to within a few per cent on average, and gives good agreement with He harmonic generation spectra over a laser intensity range of 0.5x1014 to 8.0x1014 W cm-2, and frequencies corresponding to four- and five-photon ionization. (author). Letter-to-the-editor

  11. Central helium density measurements in PLT

    The central helium density in PLT has been deduced from measurements of the ratio of d-3He to d-d fusion reactions during deuterium neutral beam injection. The inward transport time for 3He puffed at the edge plasma was 10 → 30 msec. The decay time of the central 3He density increased with electron density, varying from 0.3 sec to greater than 1.0 sec over the density range of (1 → 5) x 1013 cm-3

  12. Helium retention properties of plasma facing materials

    In a fusion reactor, the continuous removal of helium from the core plasma is needed in order to sustain the ignition condition. For this purpose, it has been proposed to place helium selective pumping metals, which can trap more helium than hydrogen, in the vicinity of the divertor. In this study, the helium and hydrogen trapping properties of nickel, tungsten, molybdenum, SS 304 and Inconel 625 were examined. Namely, the dependencies of irradiation temperature on the amount of trapped helium and hydrogen were obtained by thermal desorption spectroscopy (TDS), after helium or hydrogen plasma irradiation. In those metals, nickel showed the most suitable selective pumping capability. Nickel had the helium selective pumping property above 100 C. The maximum amount of trapped helium was (2-3) x 1016 He/cm2 at an irradiation temperature of 200 C and 600 C. The optimum temperature becomes about 600 C when nickel is used for a selective pumping material. (orig.)

  13. Pierre Gorce working on a helium pump.

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  14. Primary population of antiprotonic helium states

    Révai, J.; Shevchenko, N.V.(Nuclear Physics Institute, Řež, 25068, Czech Republic)

    2003-01-01

    A full quantum mechanical calculation of partial cross-sections leading to different final states of antiprotonic helium atom was performed. Calculations were carried out for a wide range of antiprotonic helium states and incident (lab) energies of the antiproton.

  15. Calculations of line absorption for the Voigt profile and some specific lines of helium

    Kato, I.; Yonehara, A.

    1980-07-01

    Calculations of the line absorption for the 396.5- , 361.4- , 318.7- , 492.2- , 587.6- , and 447.1-nm lines of helium have been performed for the Voigt profile. These results can be used to measure the absolute concentration of helium metastable atoms and several other excited atoms by the reabsorption method.

  16. The effect of primordial hydrogen/helium fractionation on the solar neutrino flux

    Wheeler, J. C.; Cameron, A. G. W.

    1975-01-01

    If hydrogen and helium are immiscible below some critical temperature, gravitational separation could occur in the proto-sun, resulting in a nearly pure helium core and a nearly pure hydrogen shell. We have constructed solar models according to this scenario and find the neutrino flux reduced to 1.5-3 SNU.

  17. Evolution of defects in silicon carbide implanted with helium ions

    Zhang, Chonghong; Song, Yin; Yang, Yitao; Zhou, Chunlan; Wei, Long; Ma, Hongji

    2014-05-01

    Effects of accumulation of radiation damage in silicon carbide are important concerns for the use of silicon carbide in advanced nuclear energy systems. In the present work lattice damage in silicon carbide crystal (4H type) implanted with 100 keV 4He+ ions was investigated with Rutherford backscattering spectrometry in channeling geometry (RBS/c) and positron beam Doppler broadening spectrometry (PBDB). Helium implantation was performed at the specimen temperature of 510 K to avoid amorphization of the SiC crystal. Fluences of helium ions were selected to be in the range from 1 × 1016 to 3 × 1016 ions cm-2, around the dose threshold for the formation of observable helium bubbles under transmission electron microscopes (TEM). The RBS/c measurements show distinctly different annealing behavior of displaced Si atoms at doses below or above the threshold for helium bubble formation. The RBS/c yield in the peak damage region of the specimen implanted to 3 × 1016 He-ions cm-2 shows an increase on the subsequently thermal annealing above 873 K, which is readily ascribed to the extra displacement of Si atoms due to helium bubble growth. The RBS/c yield in the specimen implanted to a lower ion fluence of 1.5 × 1016 He-ions cm-2 decreases monotonously on annealing from ambient temperatures up to 1273 K. The PBDB measurements supply evidence of clustering of vacancies at temperatures from 510 to 1173 K, and dissociation of vacancy clusters above 1273 K. The similarity of annealing behavior in PBDB profiles for helium implantation to 1 × 1016 and 3 × 1016 ions cm-2 is ascribed to the saturation of trapping of positrons in vacancy type defects in the damaged layers in the specimens helium-implanted to the two dose levels.

  18. Irradiation damage effects on helium migration in sintered uranium dioxide

    In this study, the effects of radiation on helium migration are investigated through the analysis of polycrystalline uranium dioxide samples irradiated at fluences up to 5 × 1015 at. cm−2 with 8 MeV iodine ions. Following irradiation, samples are implanted with 500 keV 3He+ ions at fluences in the range of 1016 at. cm−2. Three nuclear reaction analysis (NRA) techniques are subsequently implemented using the 3He(2H,1H)4He reaction. The influence of temperature using NRA was first studied based upon 3He depth profile changes and the on-line monitoring of helium release. The effect of the sample microstructure was also investigated at the grain scale by performing analyses of the helium spatial distribution with a nuclear microprobe. Neither substantial helium release nor depth profile changes are observed at temperatures below 900 °C in irradiated samples. Following annealing at temperatures above 1000 °C, a substantial proportion of the implanted helium is released from the samples. From this temperature upwards, the two dimensional He cartographies reveal that the gas has been preferentially released in the vicinity of grain boundaries. These results can be interpreted in the light of previous studies in terms of gas precipitation and re-solution. Helium precipitation is enhanced in irradiated samples up to 900 °C because of the presence of irradiation induced defects. At temperatures in excess of 1000 °C, the precipitated helium is partly returned to the matrix hence it is preferentially released in regions adjacent to grain boundaries, which appear to act as defect sinks.

  19. THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES

    Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12C and 16O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, vCJ = 1.5 × 109 cm s–1. Though gravitationally unbound, the ashes still have unburned helium (≈80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of 56Ni. We also find a new set of solutions that can propagate in even thinner helium layers when 16O is present at a minimum mass fraction of ≈0.07. Driven by energy release from α captures on 16O and subsequent elements, these slow detonations only create ashes up to 28Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario

  20. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  1. Charged Condensate and Helium Dwarf Stars

    Gabadadze, Gregory; Rosen, Rachel A.

    2008-01-01

    White dwarf stars composed of carbon, oxygen or heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, whi...

  2. Atomic spectra in a helium bubble

    Nakatsukasa, Takashi; Yabana, Kazuhiro; Bertsch, George F.

    2002-01-01

    Density functional theory (DFT) is applied to atomic spectra under perturbations of superfluid liquid helium. The atomic DFT of helium is used to obtain the distribution of helium atoms around the impurity atom, and the electronic DFT is applied to the excitations of the atom, averaging over the ensemble of helium configurations. The shift and broadening of the D1 and D2 absorption lines are quite well reproduced by theory, suggesting that the DFT may be useful for describing spectral perturb...

  3. Study of the hadron-helium and helium-helium scattering at high energy

    Multiple scattering Glauber's theory is used to calculate the hadron-helium and helium-helium elastic differential cross-section. The theory is very sensitive to the 4He wave functions. We use better 4He wave functions than experimental ones. These wave functions have correct asymptotic shape. In some calculations, we take into account the spin effects and the 4He, S, S' and D states contribution. At high energy, we use inelastic corrections, to complete the differential cross-section. A study of the diffractive and coherent p-4He → 4He-X dissociation is developed. We use Humble's amplitudes with a peripherical character and an helicity structure. The agreement with experimental results is good for 24 to 400 GeV

  4. Helium distribution functions in tokamak plasmas

    Two different methods are used to obtain information on the helium distribution. The first method is a machine that measures the velocity distribution of neutral helium particles escaping from the plasma (NPA). The second method is charge exchange spectroscopy that measures the helium density and temperature as a function of time and place from the Doppler broadened intensity of He lines. (orig./HP)

  5. Helium compounds and solidification of α particles

    Helium is not rare gas in the universe, and also not inert gas, for there are Helium com- pounds, α-Particles emitted from plutonium can be solidified based on the formation of helium compounds, then, the coefficient expansion of plutonium is negligible with such a solidification, otherwise, will be remarkable to 6.8%. (author)

  6. 21 CFR 184.1355 - Helium.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is...

  7. 21 CFR 582.1355 - Helium.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe...

  8. Why Helium Ends in "-Ium"

    Jensen, William B.; Holme, Thomas; Cooper, Melanie; White, Carol

    2004-01-01

    Edward Frankland and Norman Lockyer researched upon a gaseous spectra in relation to the physical constitution of the sun and named it as "helium" (from Greek "helios" meaning "sun"). Since Lockyer apparently never formally proposed the name in print, it is not known why he chose to use a metallic end "ium".

  9. Liquid helium level measurement system

    The Liquid Helium level measurement system at the PLF, Mumbai has been recently upgraded. Monitoring liquid helium levels is crucial for steady operation of superconducting Linac booster. A Superconducting wire (NbTi) based sensor (American Magnetic make) is used to measure the liquid helium level. Resistance of the sensor changes with the liquid level and the change in resistance is measured using a four wire readout. The Electronics hardware is developed around Silicon lab module C8051F020, which has a 12 bit ADC on board. The sensor is excited with 80 mA constant current and the voltage across the sensor is measured using 12 bit ADC and processed further to get resistance. The measured resistance is converted to fractional level (0 to 100 %) and can be displayed on the LCD panel of the local unit as well as on the remote PC through serial communication. Each unit is capable of reading upto four level sensors. One of the important features of this measurement system is the auto calibration with a single button for all the four level sensors. Two control stations are designed, developed and successfully installed to monitor helium levels in all eight cryostats of the Linac. (author)

  10. Liquid helium fluid dynamics studies

    The present report describes the work carried out under the sponsorship of the Division of High Energy Physics. The report is divided into sections according to the original grant proposal (hydrodynamic studies of single phase helium; two phase flow studies; component development studies; and new research areas). Following the text is a listing of publications which have resulted from work under the grant

  11. Precision spectroscopy of the helium atom

    Shui-ming HU; Zheng-Tian LU; Zong-Chao YAN

    2009-01-01

    Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally.Comparison between theory and experiment of the helium spectroscopy in ls2p3pJ can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

  12. Trapping and release of helium in tungsten

    Lhuillier, Pierre-Emile; Belhabib, Taieb; Desgardin, Pierre; Courtois, Blandine; Sauvage, Thierry; Barthe, Marie-France; Thomann, Anne-Lise; Brault, Pascal; Tessier, Yves

    2011-01-01

    The behavior of tungsten under irradiation and helium implantation is a major stake of the materialrelated issues of fusion reactors. In this perspective the fate of helium in tungsten was studied by mean of several characterization techniques. The aim of this study is to highlight the trapping mechanisms of helium in tungsten and their correlation with implantation-induced defects. Helium was implanted into tungsten at two different energies, 0.32 and 60 keV. The helium was studied as a func...

  13. Helium refrigeration systems for super-conducting accelerators

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed

  14. Semi-Analytical Analysis of Helium Synthesis in Brane Cosmology

    Fabris, J C

    2003-01-01

    The problem of primordial nucleosynthesis of helium in brane cosmology is studied using a semi-analytical method, where the Fermi-Dirac statistic is ignored. This semi-analytical method agrees with a more complete numerical calculation with a precision of order of 10% or better. The quadratic term for the matter density is the only source considered in the modified Einstein equations predicted by the brane configuration. This hypothesis is justified a posteriori. An agreement between theoretical and observational values for the helium abundance is obtained if the fundamental mass scale in five dimensions is of the order of $M \\sim 5\\times10^3 GeV$.

  15. Helium refrigeration systems for super-conducting accelerators

    Ganni, V.

    2015-12-01

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM's). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  16. A design for a pinhole scanning helium microscope

    We present a simplified design for a scanning helium microscope (SHeM) which utilises almost entirely off the shelf components. The SHeM produces images by detecting scattered neutral helium atoms from a surface, forming an entirely surface sensitive and non-destructive imaging technique. This particular prototype instrument avoids the complexities of existing neutral atom optics by replacing them with an aperture in the form of an ion beam milled pinhole, resulting in a resolution of around 5 microns. Using the images so far produced, an initial investigation of topological contrast has been performed

  17. Helium refrigeration systems for super-conducting accelerators

    Ganni, V. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606, USA Email: ganni@jlab.org (United States)

    2015-12-04

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  18. One-dimensional electron system over liquid helium

    Kovdrya, Yu. Z.; Nikolaenko, V. A.; Gladchenko, S. P.

    2000-07-01

    A system close to a one-dimensional (1D) electron system on superfluid helium is realized in the experiments. A profiled substrate with a small dielectric constant is used to create a set of parallel channels on the surface of liquid helium. The mobility of carriers was measured in this system in the temperature range 0.5-1.8 K. For clean substrates the electron mobility increases with decreasing temperature and reaches high values at low temperatures. The results of experiments are found to be in a good agreement with the existing theory.

  19. Effect of helium on tensile properties of vanadium alloys

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  20. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  1. LRO-LAMP Observations of Lunar Exospheric Helium

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.

    2015-11-01

    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  2. Chromatographic method of measurement of helium concentration in underground waters for dating in hydrological questions

    Research methods which use natural environmental indicators are widely applied in hydrology. Different concentrations of indicators and their isotopic components in ground waters allow to determine the genesis of waters and are valuable source of information about the water flow dynamics. One of the significant indicator is helium. The concentration of 4He (helium) in ground water is a fine indicator in water dating in a range from a hundreds to millions of years (Aeschbach-Hertig i in., 1999; Andrews i in., 1989; Castro i in., 2000; Zuber i in., 2007). 4He is also used for dating young waters of age about 10 years (Solomon i in., 1996). Thesis consist the description of elaborated in IFJ PAN in Krakow chromatographic measurement method of helium concentration in ground waters in aim of dating. Chapter 1 contain short introduction about ground water dating and chapter 2 description of helium property and chosen applications of helium for example in technology and earthquake predictions. Helium sources in ground waters are described in chapter 3. Helium concentration in water after infiltration (originated from atmosphere) to the ground water system depends mainly on the helium concentration coming from the equilibration with the atmosphere increased by additional concentration from '' excess air ''. With the increasing resistance time of ground water during the flow, radiogenic, non-atmospheric component of helium dissolves also in water. In chapter 4 two measurement methods of helium concentration in ground waters were introduced: mass spectrometric and gas chromatographic method. Detailed description of elaborated chromatographic measurement method of helium concentration in ground water contain chapter 5. To verify developed method the concentration of helium in ground waters from the regions of Krakow and Busko Zdroj were measured. For this waters the concentrations of helium are known from the earlier mass spectrometric measurements. The results of

  3. Helium solubility in imperfect ionic crystals

    In the context of the intended use of helium as a coolant in high temperature gas cooled reactors a study is undertaken into helium interaction with crystals at the stage preceding the process of helium clusters formation. Experimental and theoretical investigations of helium solubility in imperfect ionic crystals CaF2, SrF2, KBr are carried out along with the degassing kinetics in the temperature range of 500-1200 K. An analysis is made for possible mechanisms of the occurrence of observed oscillations in helium solubility at temperature variations. The solution heat for helium atoms in cation vacancies and the energy of impurity-vacancy cluster dissociation are calculated. The reason for a catastrophic increase of dissolved helium concentration with saturation pressure is discussed

  4. HeREF-2003 : Helium Refrigeration Techniques

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  5. HeREF-2003: Helium Refrigeration Techniques

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  6. Applicability of Henry's Law to helium solubility in olivine

    Jackson, C.; Parman, S. W.; Kelley, S. P.; Cooper, R. F.

    2013-12-01

    Applicability of Henry's Law to helium solubility in olivine We have experimentally determined helium solubility in San Carlos olivine across a range of helium partial pressures (PHe) with the goal of quantifying how noble gases behave during partial melting of peridotite. Helium solubility in olivine correlates linearly with PHe between 55 and 1680 bar. This linear relationship suggests Henry's Law is applicable to helium dissolution into olivine up to 1680 bar PHe, providing a basis for extrapolation of solubility relationships determined at high PHe to natural systems. This is the first demonstration of Henry's Law for helium dissolution into olivine. Averaging all the data of the PHe series yields a Henry's coefficient of 3.8(×3.1)×10-12 mol g-1 bar-1. However, the population of Henry's coefficients shows a positive skew (skewness = 1.17), i.e. the data are skewed to higher values. This skew is reflected in the large standard deviation of the population of Henry's coefficients. Averaging the median values from each experiment yields a lower Henry's coefficient and standard deviation: 3.2(× 2.3)×10-12 mol g-1 bar-1. Combining the presently determined helium Henry's coefficient for olivine with previous determinations of helium Henry's coefficients for basaltic melts (e.g. 1) yields a partition coefficient of ~10-4. This value is similar to previous determinations obtained at higher PHe (2). The applicability of Henry's Law here suggests helium is incorporated onto relatively abundant sites within olivine that are not saturated by 1680 bar PHe or ~5×10-9 mol g-1. Large radius vacancies, i.e. oxygen vacancies, are energetically favorable sites for noble gas dissolution (3). However, oxygen vacancies are not abundant enough in San Carlos olivine to account for this solubility (e.g. 4), suggesting the 3x10-12 mol g-1 bar-1 Henry's coefficient is associated with interstitial dissolution of helium. Helium was dissolved into olivine using an externally heated

  7. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author)

  8. Internally-cooled cabled superconductors cooled with helium II

    Niobium-titanium superconductors maintained at sublambda temperatures provide an alternative to helium cooled niobium-3-tin superconductors operating in the 4.2 to 5 K temperature range. The subject paper examines the replacement of supercritical HeI with subcooled HeII in a slightly modified MIT-12 T test coil. Both steady-state and transient heat loads are considered

  9. Stopping Power of Solid Argon for Helium Ions

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.;

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  10. Crossed-beam time-of-flight study of metastable helium in collisions with helium, neon, and argon

    Absolute total integral velocity-resolved cross sections have been measured for collisions of helium singlet (21S0) and triplet (23S1) metastables with ground-state helium, neon, and argon in the thermal velocity range of 1.0 to 3.5 x 105 cm/sec. Additional measurements on the He+-Ne system with a large input acceptance angle at the detector failed to show previously predicted sharply-rising velocity structure in the inelastic transfer cross sections. The measurements were taken with a crossed-beam time-of-flight apparatus

  11. Variable helium diffusion characteristics in fluorite

    Wolff, R.; Dunkl, I.; Kempe, U.; Stockli, D.; Wiedenbeck, M.; von Eynatten, H.

    2016-09-01

    Precise analysis of the diffusion characteristics of helium in fluorite is crucial for establishing the new fluorite (U-Th-Sm)/He thermochronometer (FHe), which potentially provides a powerful tool for dating ore deposits unsuitable for the application of conventional geochronometers. Incremental helium outgassing experiments performed on fluorites derived from a spectrum of geological environments suggest a thermally activated volume diffusion mechanism. The diffusion behaviour is highly variable and the parameters range between log D0/a2 = 0.30 ± 0.27-7.27 ± 0.46 s-1 and Ea = 96 ± 3.5-182 ± 3.8 kJ/mol. Despite the fact that the CaF2 content of natural fluorites in most cases exceeds 99 weight percent, the closure temperature (Tc) of the fluorite (U-Th-Sm)/He thermochronometer as calculated from these diffusion parameters varies between 46 ± 14 °C and 169 ± 9 °C, considering a 125 μm fragment size. Here we establish that minor substitutions of calcium by rare earth elements and yttrium (REE + Y) and related charge compensation by sodium, fluorine, oxygen and/or vacancies in the fluorite crystal lattice have a significant impact on the diffusivity of helium in the mineral. With increasing REE + Y concentrations F vacancies are reduced and key diffusion pathways are narrowed. Consequently, a higher closure temperature is to be expected. An empirical case study confirms this variability: two fluorite samples from the same deposit (Horni Krupka, Czech Republic) with ca. 170 °C and ca. 43 °C Tc yield highly different (U-Th-Sm)/He ages of 290 ± 10 Ma and 79 ± 10 Ma, respectively. Accordingly, the fluorite sample with the high Tc could have quantitatively retained helium since the formation of the fluorite-bearing ores in the Permian, despite subsequent Mesozoic burial and associated regional hydrothermal heating. In contrast, the fluorite with the low Tc yields a Late Cretaceous age close to the apatite fission track (AFT) and apatite (U-Th)/He ages (AHe

  12. Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal miracle in sheep.

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2015-03-01

    In underwater diving, decompression schedules are based on compartmental models of nitrogen and helium tissue kinetics. However, these models are not based on direct measurements of nitrogen and helium kinetics. In isoflurane-anesthetized sheep, nitrogen and helium kinetics in the hind limb (n = 5) and brain (n = 5) were determined during helium-oxygen breathing and after return to nitrogen-oxygen breathing. Nitrogen and helium concentrations in arterial, femoral vein, and sagittal sinus blood samples were determined using headspace gas chromatography, and venous blood flows were monitored continuously using ultrasonic Doppler. The experiment was repeated at different states of hind limb blood flow and cerebral blood flow. Using arterial blood gas concentrations and blood flows as input, parameters and model selection criteria of various compartmental models of hind limb and brain were estimated by fitting to the observed venous gas concentrations. In both the hind limb and brain, nitrogen and helium kinetics were best fit by models with multiexponential kinetics. In the brain, there were no differences in nitrogen and helium kinetics. Hind limb models fit separately to the two gases indicated that nitrogen kinetics were slightly faster than helium, but models with the same kinetics for both gases fit the data well. In the hind limb and brain, the blood:tissue exchange of nitrogen is similar to that of helium. On the basis of these results, it is inappropriate to assign substantially different time constants for nitrogen and helium in all compartments in decompression algorithms. PMID:25525213

  13. Confined helium on Lagrange meshes

    Baye, Daniel

    2015-01-01

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  14. Helium atom scattering from surfaces

    1992-01-01

    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  15. Rapidly pulsed helium droplet source

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  16. Elusive structure of helium trimers

    Stipanović, Petar; Boronat, Jordi

    2016-01-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the po...

  17. Muon transfer from deuterium to helium

    Augsburger, M A; Breunlich, W H; Cargnelli, M; Chatellard, D; Egger, J P; Gartner, B; Hartmann, F J; Huot, O; Jacot-Guillarmod, R; Kammel, P; King, R; Knowles, P; Kosak, A; Lauss, B; Marton, J; Mühlbauer, M; Mulhauser, F; Petitjean, C; Prymas, W; Schaller, L A; Schellenberg, L; Schneuwly, H; Tresch, S; Von Egidy, T; Zmeskal, J

    2003-01-01

    We report on an experiment at the Paul Scherrer Institute, Villigen, Switzerland measuring x rays from muon transfer from deuterium to helium. Both the ground state transfer via the exotic dmu3,4He* molecules and the excited state transfer from mud* were measured. The use of CCD detectors allowed x rays from 1.5 keV to 11 keV to be detected with sufficient energy resolution to separate the transitions to different final states in both deuterium and helium. The x-ray peaks of the dmu3He* and dmu4He* molecules were measured with good statistics. For the D2+3He mixture, the peak has its maximum at E_dmu3He = 6768 +- 12 eV with FWHM Gamma_dmu3He = 863 +- 10 eV. Furthermore the radiative branching ratio was found to be kappa_dmu3He = 0.301 +- 0.061. For the D_2+4He mixture, the maximum of the peak lies at E_dmu4He = 6831 +- 8 eV and the FWHM is Gamma_dmu4He = 856 +- 10 eV. The radiative branching ratio is kappa_dmu4He = 0.636 +- 0.097. The excited state transfer is limited by the probability to reach the deuterium...

  18. Effect of helium on separation performance of cryogenic distillation column cascade for fusion reactor

    The effect of helium in the feed stream on separation performance of the cryogenic distillation columns was discussed in a probable case. The column cascade at Los Alamos National Laboratory was chosen in the present study. The new data for solubility of helium in liquid hydrogen isotopes was used in the present study. Column (2) is mainly affected by the presence of helium in the fuel stream. If the helium percentage in the feed stream is 1%, the column performance can be assured by increasing the condenser load: a larger inner diameter of the column; larger flow rate of the refrigerant gas; and larger heat transfer area at the condenser should be considered. If the percentage is 5%, both the column pressure and condenser load must be doubled in the steady-state operation. These results qualitatively agreed with the simulation results by Kinoshita in which the old data for solubility of helium were used. (author)

  19. Detecting scintillations in liquid helium

    Huffman, P. R.; McKinsey, D. N.

    2013-09-01

    We review our work in developing a tetraphenyl butadiene (TPB)-based detection system for a measurement of the neutron lifetime using magnetically confined ultracold neutrons (UCN). As part of the development of the detection system for this experiment, we studied the scintillation properties of liquid helium itself, characterized the fluorescent efficiencies of different fluors, and built and tested three detector geometries. We provide an overview of the results from these studies as well as references for additional information.

  20. Acoustic streaming in superfluid helium

    Quantitative measurements of acoustic streaming velocity in liquid helium as a function of sound intensity (up to the cavitation threshold), frequency (1, 3, and 10 MHz), and temperature (1.43 K< or =T< or =2.19 K) are reported. A transition to superfluid turbulence, several flow regions and flow fluctuations are observed. Comparison with the predictions of the second-order Khalatnikov two- fluid hydrodynamic equations indicates good functional and quantitative agreement

  1. Magnetically insulated helium ion diode

    A gas-puff magnetically insulated ion diode is under development as a pulsed source of high-energy alpha particles for magnetic fusion experiments. The diode is patterned after the Cornell gas-puff diode [J. B. Greenly, M. Ueda, G. D. Rondeau, and D. A. Hammer, J. Appl. Phys. 63, 1872 (1988)], but with modifications to accomodate higher voltages (2 one meter downstream from the source; in our first test of the new source, a helium beam was obtained

  2. The Chemical Evolution of Helium

    Balser, D S

    2006-01-01

    We report on measurements of the 4He abundance toward the outer Galaxy HII region S206 with the NRAO Green Bank telescope. Observations of hydrogen and helium radio recombination lines between 8-10 GHz were made toward the peak radio continuum position in S206. We derive 4He/H = 0.08459 +/- 0.00088 (random) +/- 0.0010 (known systematic), 20% lower than optical recombination line results. It is difficult to reconcile the large discrepancy between the optical and radio values even when accounting for temperature, density, and ionization structure or for optical extinction by dust. Using only M17 and S206 we determine dY/dZ = 1.41 +/- 0.62 in the Galaxy, consistent with standard chemical evolution models. High helium abundances in the old stellar population of elliptical galaxies can help explain the increase in UV emission with shorter wavelength between 2000 and 1200 Angstrom, called the UV-upturn or UVX. Our lower values of dY/dZ are consistent with a normal helium abundance at higher metallicity and suggest ...

  3. Helium Contamination Through Polymeric Walls

    Gabal, M.; Lozano, M. P.; Oca, A.; Pina, M. P.; Sesé, J.; Rillo, C.

    The concentration of impurities in helium gas is an important parameter for a recovery andliquefaction plant. A low level of impurities is necessary to maintain an optimum liquefaction rate inany kind of liquefier. The main origin of the impurities is the air contamination that enters into the helium mainstream at some point in the recovery cycle. In this work we have: i) identifiedthe main sources forimpurities in anexperimental helium recovery plant, ii) quantified the contamination rate and iii) proposeda mitigation strategy.An analysis of the He impurities composition revealsa nitrogen/oxygenratio different to the one existing in air. This observation is in accordance with the permeability values for nitrogenand oxygen through the polymer materials used in the plant.Experimental on line measurements for oxygen content in the He mainstream with sensitivity below 1 ppm, have been performed after recirculation through metal and polymericpipelines, respectively, to validate our hypothesis. In addition, the dependence of the impurities concentration with the Heretention time in the recovery gasbag has beenevaluated. Finally some operational recommendations are given for practical applications.

  4. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  5. Absolute calibration of TFTR helium proportional counters

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  6. Helium isotope characteristics of Andean geothermal fluids and lavas

    Hilton, D. R.; Hammerschmidt, K.; Teufel, S.; Friedrichsen, H.

    1993-12-01

    The first comprehensive helium isotope survey of the Andes is reported here. We have sampled geothermal fluids and phyric lava flows from the Southern (svz) and Central (cvz) Volcanic Zones, the volcanically active Puna region and the Precordillera, Salta Basin, Longitudinal Valley and the aseismic region between the two volcanic zones. Although the active areas are characterized by significant differences in crustal age and thickness, the svz, cvz and Puna are characterized by a wide and overlapping range in He-3/He-4 ratios (for fluids and phenocrysts) from predominantly radiogenic values to close to the Mid-Ocean Ridge Basalt (MORB) ratio. The measured ranges in He-3/He-4 ratios (R) (reported normalised to the air He-3/He-4 -- R(sub A)) are: svz (0.18 less than R/R(sub A) less than 6.9); cvz (0.82 less than R/R(sub A) less than 6.0); and Puna (1.8 less than R/R(sub A) less than 5.4). Modification of magmatic He-3/He-4 ratios by water/rock interactions (fluids) or post-eruptive grow-in of radiogenic He-4 or preferential diffusive loss of He-3 (phenocrysts) is considered unlikely; this means that the wide range reflects the helium isotope characteristics of magma bodies in the Andean crust. The mechanism controlling the He-3/He-4 ratios appears to be a mixing between mantle (MORB-like) helium and a radiogenic helium component derived from radioactive decay within the magma (magma aging) and/or interaction with He-4-rich country rock: a process expected to be influenced by pre-eruptive degassing of the mantle component. Assimilation of lower crust is also capable of modifying He-3/He-4 ratios, albeit to a much lesser extent. However, it is possible that the highest measured values in each zone were established by the addition of lower crustal radiogenic helium to MORB helium. In this case, the higher 'base level' ratios of the svz would reflect the younger crustal structure of this region. In contrast to helium, there is no overlap in the Sr or Pb isotope

  7. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling

    Reaction rate theory analysis has been conducted to investigate helium effects on the formation kinetics of interstitial type dislocation loops (I-loops) and helium bubbles in reduced-activation-ferritic/martensitic steel during irradiation, by focusing on the nucleation and growth processes of the defect clusters. The rate theory model employs the size and chemical composition dependence of thermal dissociation of point defects from defect clusters. In the calculations, the temperature and the production rate of Frenkel pairs are fixed to be T = 723 K and PV = 10−6 dpa/s, respectively. And then, only the production rate of helium atoms was changed into the following three cases: PHe = 0, 10−7 and 10−5 appm He/s. The calculation results show that helium effect on I-loop formation quite differs from that on bubble formation. As to I-loops, the loop formation hardly depends on the existence of helium, where the number density of I-loops is almost the same for the three cases of PHe. This is because helium atoms trapped in vacancies are easily emitted into the matrix due to the recombination between the vacancies and SIAs, which induces no pronounced increase or decrease of vacancies and SIAs in the matrix, leading to no remarkable impact on the I-loop nucleation. On the other hand, the bubble formation depends much on the existence of helium, in which the number density of bubbles for PHe = 10−7 and 10−5 appm He/s is much higher than that for PHe = 0. This is because helium atoms trapped in a bubble increase the vacancy binding energy, and suppress the vacancy dissociation from the bubble, resulting in a promotion of the bubble nucleation. And then, the helium effect on the promotion of bubble nucleation is very strong, even the number of helium atoms in a bubble is not so large

  8. Performance test of a helium refrigerator for the cryogenic hydrogen system in J-PARC

    Tatsumoto, H; Kato, T; Ohtsu, K; Hasegawa, S; Maekawa, F; Futakawa, M

    2009-01-01

    In J-PARC, a cryogenic hydrogen system, which plays a role in providing supercritical hydrogen with a pressure of 1.5 MPa and a temperature of 20 K to three moderators, has been designed. The performance test of the helium refrigeration system that is a part of the cryogenic hydrogen system was conducted independently. The helium refrigeration system was cooled down to 18 K within 4.5 hours, and the refrigerator power of 6.45 kW at 15.6 K was confirmed. The performance test results verified that the helium refrigerator satisfied the performance requirements.

  9. On charged impurity structures in liquid helium

    The thermoluminescence spectra of impurity-helium condensates (IHC) submerged in superfluid helium have been observed for the first time. Thermoluminescence of impurity-helium condensates submerged in superfluid helium is explained by neutralization reactions occurring in impurity nanoclusters. Optical spectra of excited products of neutralization reactions between nitrogen cations and thermoactivated electrons were rather different from the spectra observed at higher temperatures, when the luminescence due to nitrogen atom recombination dominates. New results on current detection during the IHC destruction are presented. Two different mechanisms of nanocluster charging are proposed to describe the phenomena observed during preparation and warm-up of IHC samples in bulk superfluid helium, and destruction of IHC samples out of liquid helium.

  10. Precipitation in low energy helium irradiated molybdenum

    The precipitation of low energy helium injected into molybdenum has been monitored by thermal helium desorption spectrometry (THDS). Precipitates nucleating at vacancies have been studied in the range from n = 1 to n = 2500 He per precipitate. The behaviour of the growing precipitates with respect to helium trapping, self-interstitial capture and emission, and helium release is discussed against the background of results of TEM work done for precipitates with n > 500 He. Evidence is found for (i) 'trap mutation' at n = 10 He, i.e. formation of bound self-interstitials around the helium filled vacancy, and (ii) emission of at least one of these 'mutation produced self-interstitials' (MPI) at n approx. 12 He. For larger precipitates (n > 20 He) the emission of single MPI is not apparent. At n = 1000 signs of helium binding to MPI-loops punched out by the precipitates are observed in the spectra. (author)

  11. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    Jianqin, Zhang; Shaopeng, Li; Zhuo, Zhang; Rui, Ge

    2015-01-01

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders...

  12. 43 CFR 16.2 - Applications for helium disposition agreements.

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Applications for helium disposition... HELIUM § 16.2 Applications for helium disposition agreements. The application for a helium disposition... Secretary to determine that the proposal will conserve helium that will otherwise be wasted, drained,...

  13. Transparent Helium in Stripped Envelope Supernovae

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-01-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main S...

  14. Pair Correlations in Superfluid Helium 3

    Vollhardt, D.

    1997-01-01

    In 1996 Lee, Osheroff and Richardson received the Nobel Prize for their 1971 discovery of superfluid helium 3 -- a discovery which opened the door to the most fascinating system known in condensed matter physics. The superfluid phases of helium 3, originating from pair condensation of helium 3 atoms, turned out to be the ideal test-system for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defe...

  15. Capture of slow antiprotons by helium atoms

    Revai, J.; Shevchenko, N.V.(Nuclear Physics Institute, Řež, 25068, Czech Republic)

    2004-01-01

    A consistent quantum mechanical calculation of partial cross-sections leading to different final states of antiprotonic helium atom was performed. For the four-body scattering wave function, corresponding to the initial state, as well as for the antiprotonic helium wave function, appearing in the final tate, adiabatic approximations was used. Calculations were carried out for a wide range of antiprotonic helium states and incident energies of the antiproton. Obtained energy dependances of som...

  16. Critical Landau Velocity in Helium Nanodroplets

    Brauer, N. B.; Smolarek, S.; Loginov, E.; Mateo, D; A. Hernando; Pi, M.; Barranco, M.; Buma, W. J.; M. Drabbels

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecu...

  17. A New Method for Measurement of Helium Mass Flow Rate in the Cryogenic System of TORE SUPRA

    Ouyang Zhengrong; Pascal Reynaud

    2005-01-01

    The TORE SUPRA Tokamak was built by EURATOM-CEA association. The NbTi conductor of superconducting coils is inserted in a tight enclosure filled with pressurized superfluid helium of 0.125 MPa at 1.8 K [1]. The thick casing is cooled to 4.5 K by 1.8 MPa in 4.5 K supercritical helium circulation. Around this thick casing, a 80 K thermal shield protects the parts at very low temperatures from the thermal radiation, which is cooled by pressurized helium at 80 K and 1.8 MPa. A new measurement method for helium mass flow rate of 80 K shield and 4.5 K casing is described in this paper. The commissioning was done on the two helium loops of the cryoplant: the supercritical 4.5 K thick casing and 80 K shields. The purpose is to improve control of the 4.5 K and 80 K refrigeration loops.

  18. Solid lubrication technology of HTGR under helium

    Because Helium is used as coolant in High Temperature Gas-cooled Reactor (HTGR), the change of tribological properties of HTGR structure component under Helium is a big problem. Under Helium, tribological properties of material becomes worse and fluid lubrication can not be used. Bonded solid lubrication film and fusion sintering solid film are used in control rod and can solve the tribological problem well. Methods of replenishment solid lubricant are discussed for continuously operating friction components. The necessity and possibility for solid lubrication film used in Helium fan is also discussed

  19. Low evaporation helium cryostat with a refrigerator

    Improvement of a helium cryostat for a superconducting magnet is reported. A small refrigerator pre-cools the magnet and removes heat load. A gas filled thermal switch cools a helium vessel and thermally insulates the vessel when the refrigerator stops. Nb3Sn wires are used in the helium vessel to avoid resistive heating. The evaporation rate of the liquid helium is 1.0 - 1.7 1/day (with external current of 28A), when a magnet (maximum field 7T in 25mm bore) is set in the cryostat. (author)

  20. Trapping fermionic and bosonic helium atoms

    Stas, R. J. W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof-are cooled to a temperature around 1 mK and form the starting point of the presented studies. The studies include an investigation of cold ionizing collisions in the absence of resonant light, an i...

  1. Helium supply demand in future years

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  2. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation.

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2-5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4-0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  3. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2–5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4–0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  4. Helium stratification in HD 145792: a new Helium strong star

    Catanzaro, G

    2007-01-01

    In this paper we report on the real nature of the star HD 145792, classified as He weak in {\\it ``The General Catalogue of Ap and Am stars''}. By means of FEROS@ESO1.52m high resolution spectroscopic data, we refined the atmospheric parameters of the star, obtaining: T$_{\\rm eff}$ = 14400 $\\pm$ 400 K, $\\log g$ = 4.06 $\\pm$ 0.08 and $\\xi$ = 0 $^{+0.6}$ km s$^{-1}$. These values resulted always lower than those derived by different authors with pure photometric approaches. Using our values we undertook an abundance analysis with the aim to derive, for the first time, the chemical pattern of the star's atmosphere. For metals a pure LTE synthesis (ATLAS9 and SYNTHE) has been used, while for helium a hybrid approach has been preferred (ATLAS9 and SYNSPEC). The principal result of our study is that HD 145792 belongs to He strong class contrary to the previous classification. Moreover, helium seems to be vertically stratified in the atmosphere, decreasing toward deepest layers. For what that concerns metals abundanc...

  5. Transport simulations of the ignited ITER with high helium fraction

    Becker, G.

    1994-04-01

    Computer simulations with special versions of the one dimensional BALDUR predictive transport code are carried out to investigate the particle confinement of helium and hydrogen, the energy confinement and the burn control in the high density scenario of the ITER (CDA) physics phase. The code uses empirical transport coefficients for ELMy H mode plasmas, an improved model of the scrape-off layer (SOL), an impurity radiation model for helium and iron, and fast burn control by neutral beam injection feedback. A self-sustained thermonuclear burn is achieved for hundreds of seconds. The necessary radiation corrected energy confinement time τE is found to be 4.2 s, which is attainable according to the ITER H mode scaling. In the ignited ITER, a significant dilution of the DT fuel by helium takes place. Steady state helium fractions of up to 8% are obtained, which are found to be compatible with self-sustained burn. The SOL model yields self-consistent electron densities and temperatures at the separatrix (ne = 5.8 × 1019 m-3, Te = 80 eV)

  6. Dielectric tracking in liquid helium

    Measurements of the breakdown field of typical magnet insulators of thickness < 0.7 mm, under conditions in which the breakdown is by surface tracking across the narrow dimension, yield values which are characteristic of helium gas at the saturated vapour pressure for temperatures above the lambda point. Below the lambda point, the breakdown field rises again, but does not attain its 4.2 K value. Measurements also show that the tracking strength of a surface badly contaminated with metal particles is not appreciably less than that for a clean surface. (author)

  7. Helium refrigerator maintenance and reliability at the OPAL cold neutron source

    Thiering, Russell; Taylor, David; Lu, Weijian

    2012-06-01

    Australia's first Cold Neutron Source (CNS) is a major asset to its nuclear research program. The CNS, and associated helium refrigerator, was commissioned in 2006 and is operated at the Open Pool Light Water nuclear Reactor (OPAL). The OPAL CNS operates a 20K, 5 kW Brayton cycle helium refrigerator. In this paper relevant experiences from helium refrigerator operation, maintenance and repair are presented along with the lessons learnt from a series of technical investigations. Turbine failure, due to volatile organic species, is discussed along with the related compressor oil degradation and oil separation efficiency.

  8. Design of subcooled helium II refrigerator with helium-3 cold compressor

    This paper will study the possibility of a He II refrigerator made up of three cold compressors by making use of helium-3 characteristics. This system is compact enough to fit inside a small cold box, so it can be easily connected with an existing helium-4 refrigerator. The authors designed the compressors, calculated the He II cooling capacity, 4.4 K refrigeration load, required inventory of helium-3, and Carnot efficiency. Though helium-3 is expensive, the required inventory of helium-3 to be filled inside this He II refrigerator was calculated to be small enough to prove practicality of constructing this refrigerator

  9. Helium-cooled high temperature reactors

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg

  10. Nuclear fusion and the helium supply problem

    Highlights: ► Fusion power plants will require helium as cryogenic medium and as coolant. ► High losses are expected: for a power plant like DEMO ≈ 2 t p.a. ► The same power plant is expected to produce only ≈0.6 t p.a. ► Global helium resources are finite: fusion will therefore exacerbate an already difficult situation. ► The “back-stop” technology will be the extraction helium of helium from the atmosphere. -- Abstract: The natural resources required for the operation of fusion power plants are – with the possible exception of the neutron multiplier beryllium – readily available. On the other hand, the supply of helium, which is required as cryogenic medium and coolant, may be a problem due to losses during operation and decommissioning. Helium is a rare element obtained as a by-product in the extraction of natural gas. The danger exists that the natural gas will be used up without the helium being conserved. We estimate the helium demand for a global 30% base-load contribution of fusion to electricity supply and also calculate the amount produced by the power plants themselves

  11. Nanofabrication with a helium ion microscope

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  12. Nanofabrication with a helium ion microscope

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  13. Helium Speech: An Application of Standing Waves

    Wentworth, Christopher D.

    2011-01-01

    Taking a breath of helium gas and then speaking or singing to the class is a favorite demonstration for an introductory physics course, as it usually elicits appreciative laughter, which serves to energize the class session. Students will usually report that the helium speech "raises the frequency" of the voice. A more accurate description of the…

  14. 30 CFR 256.11 - Helium.

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Helium. 256.11 Section 256.11 Mineral Resources... Helium. (a) Each lease issued or continued under these regulations shall be subject to a reservation by the United States, under section 12(f) of the Act, of the ownership of and the right to extract...

  15. LOX Tank Helium Removal for Propellant Scavenging

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  16. Helium-flow measurement using ultrasonic technique

    Sondericker, J. H.

    1983-08-01

    The ideal cryogenic instrumentation for the colliding beam accelerator helium distribution system does not add pressure drop to the system, functions over the entire temperature range, has high resolution, and delivers accurate mass flow measurement data. The design and testing of an ultrasonic flowmeter which measures helium flow under different temperatures are described.

  17. Anomalous wetting of helium on cesium

    The authors report studies of the anomalous wetting of a cesium substrate by a liquid helium film by means of the technique of third sound. A hysteretic pre-wetting transition is observed as a function of the amount of helium in the experimental cell. 10 refs., 2 figs

  18. Helium distribution in a mantle shear zone from the Josephine Peridotite

    Recanati, A.; Kurz, M. D.; Warren, J. M.; Curtice, J.

    2012-12-01

    A previous study of oceanic mylonites suggested that peridotite helium concentrations are correlated with the degree of high-temperature ductile deformation in the mantle. In order to test this result, this study combines helium measurements with characterization of the deformation state of harzburgite samples in a small (6 m width) ductile mantle shear zone from the Josephine Peridotite, Oregon, USA. All measurements were made by coupled in vacuo crushing and melting, demonstrating that most of the helium (>80%) resides within the solid phases rather than fluid or melt inclusions. The present study confirms the influence of deformation on helium contents, but only at the highest shear strain (γ>20) are helium contents significantly higher. The highest helium concentration, by roughly a factor of two, is found in the center-most sample, which also has grain size reduction by a factor of ∼4. Dislocations and sub-grain boundaries are present in all samples and do not correlate with helium concentrations. Mineralogy also appears to have a negligible influence in this shear zone, as modal mineralogy is relatively homogeneous, with all samples being harzburgites. These observations suggest that the increase in helium concentration is related to grain size reduction, with grain boundaries proposed as an additional storage site for helium in the mantle. The present data also characterize the isotopic composition of the Josephine Peridotite: 3He/4He=6.7±0.2 Ra (n=33, between 6.3 and 7.1 Ra). The presence of cosmogenic 3He in the matrix is indicated by the helium isotopic composition released by melting: 3He/4He=8.5±0.3 Ra (n=10; from 7.9 to 10.9). This corresponds to an exposure age of 10 Kyr, which is approximately concordant with the end of the last glacial maximum. Very little radiogenic helium is present in the samples, suggesting extremely low uranium and thorium contents ([U]<0.3 ppb). Helium isotope measurements in four samples outside the shear zone suggest

  19. Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS

    Hurley, Dana M.; Cook, Jason C.; Benna, Mehdi; Halekas, Jasper S.; Feldman, Paul D.; Retherford, Kurt D.; Hodges, R. Richard; Grava, Cesare; Mahaffy, Paul; Gladstone, G. Randall; Greathouse, Thomas; Kaufmann, David E.; Elphic, Richard C.; Stern, S. Alan

    2016-07-01

    Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 ± 5% of the helium to the lunar exosphere. The remaining 36 ± 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 ± 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate.

  20. Carbon Shell or Core Ignitions in White Dwarfs Accreting from Helium Stars

    Brooks, Jared; Schwab, Josiah; Paxton, Bill

    2016-01-01

    White dwarfs accreting from helium stars can stably burn at the accreted rate and avoid the challenge of mass loss associated with unstable Helium burning that is a concern for many Type Ia supernovae scenarios. We study binaries with helium stars of mass $1.25 M_\\odot\\le M_{\\rm{He}} \\le 1.8 M_\\odot$, which have lost their hydrogen rich envelopes in an earlier common envelope event and now orbit with periods ($P_{\\rm orb}$) of several hours with non-rotating $0.84$ and $1.0 M_\\odot$ C/O WDs. The helium stars fill their Roche lobes (RLs) after exhaustion of central helium and donate helium on their thermal timescales (${\\sim}10^5$yr). As shown by others, these mass transfer rates coincide with the steady helium burning range for WDs, and grow the WD core up to near the Chandrasekhar mass ($M_{\\rm Ch}$) and a core carbon ignition. We show here, however, that many of these scenarios lead to an ignition of hot carbon ashes near the outer edge of the WD and an inward going carbon flame that does not cause an explo...

  1. Contribution to the experimental study of the polarized liquid helium-3

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M2) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  2. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  3. Permeability of Hollow Microspherical Membranes to Helium

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  4. Global helium particle balance in LHD

    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 1022 He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked

  5. Determination of helium in beryl minerals

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author)

  6. Exotic helium molecules; Molecules exotiques d'helium

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  7. A GM cryocooler with cold helium circulation for remote cooling

    Wang, Chao; Brown, Ethan

    2014-01-01

    A GM cryocooler with new cold helium circulation system has been developed at Cryomech. A set of check valves connects to the cold heat exchanger to convert a small portion of AC oscillating flow in the cold head to a DC gas flow for circulating cold helium in the remote loop. A cold finger, which is used for remote cooling, is connected to the check valves through a pair of 5 m long vacuum insulated flexible lines. The GM cryocooler, Cryomech model AL125 having 120 W at 80 K, is employed in the testing. The cold finger can provide 50 W at 81 K for the power input of 4.1 kW and 70.5 W at 81.8 K for the power input of 6 kW. This simple and low cost design is very attractive for some applications in the near future.

  8. The Hottest Horizontal-Branch Stars in Omega Centauri: Late Hot Flasher vs. Helium Enrichment

    Moehler, S.; Dreizler, S.; Lanz, T.; Bono, G.; Sweigart, A V.; Calamida, A.; Monelli, M.; Nonino, M.

    2007-01-01

    UV observations of some massive globular clusters uncovered a significant population of very hot stars below the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot flasher scenario here stars experience the helium flash while on the white dwarf cooling curve or by the helium-rich sub-population recently postulated to exist in some clusters. Spectroscopic analyses of blue hook stars in omega Cen and NGC 2808 support the late hot flasher scenario, but the stars contain much less helium than expected and the predicted C, N enrichment could not be verified from existing data. We want to determine effective temperatures, surface gravities and abundances of He, C, N in blue hook and canonical extreme horizontal branch (EHB) star candidates. Moderately high resolution spectra of stars at the hot end of the blue horizontal branch in the globular cluster omega Cen were analysed for atmospheric parameters (T(sub eff), log g) and abundances using LTE and Non-LTE model atmospheres. In the temperature range 30,000 K to 50,000 K we find that 37% of our stars are helium-poor (log nHe/nH less than -2), 49% have solar helium abundance within a factor of 3 (-1.5 less than or equal to log nHe/nH less than or equal to -0.5) and 14% are helium rich (log nHe/nH greater than -0.4). We also find carbon enrichment in step with helium enrichment, with a maximum carbon enrichment of 3% by mass. At least 30% of the hottest HB stars in omega Centauri show helium abundances well above the predictions from the helium enrichment scenario (Y = 0.42 corresponding to log nHe/nH approximately equal to -0.74). In addition the most helium-rich stars show strong carbon enrichment as predicted by the late hot flasher scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence.

  9. Electric response in superfluid helium

    Chagovets, Tymofiy V.

    2016-05-01

    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  10. In Beam Tests of Implanted Helium Targets

    McDonald, J E; Ahmed, M W; Blackston, M A; Delbar, T; Gai, M; Kading, T J; Parpottas, Y; Perdue, B A; Prior, R M; Rubin, D A; Spraker, M C; Yeomans, J D; Weissman, L; Weller, H R; Delbar, Th.; Conn, LNS/U; Duke, TUNL/

    2006-01-01

    Targets consisting of 3,4He implanted into thin aluminum foils (approximately 100, 200 or 600 ug/cm^2) were prepared using intense (a few uA) helium beams at low energy (approximately 20, 40 or 100 keV). Uniformity of the implantation was achieved by a beam raster across a 12 mm diameter tantalum collimator at the rates of 0.1 Hz in the vertical direction and 1 Hz in the horizontal direction. Helium implantation into the very thin (approximately 80-100 ug/cm^2) aluminum foils failed to produce useful targets (with only approximately 10% of the helium retained) due to an under estimation of the range by the code SRIM. The range of low energy helium in aluminum predicted by Northcliffe and Shilling and the NIST online tabulation are observed on the other hand to over estimate the range of low energy helium ions in aluminum. An attempt to increase the amount of helium by implanting a second deeper layer was also carried out, but it did not significantly increase the helium content beyond the blistering limit (ap...

  11. Present activities of the Helium Supply System for ITER HCCR TBM

    The HCCR (Helium Cooled Ceramic Reflector) is designed cooling down by the helium cooling system (HCS) with high temperature and pressure (300-500 .deg. C, 8 MPa) helium gas and its mass flow rate is 1.5 kg/s during normal operation. The scaled-down helium supply system (HeSS) had been constructed and modified to obtain thermal-hydraulics test data, operational experience and to validate the HCS design in 2011-2013. The first HeSS was constructed in 2012, however more than 2 MW of heating power is required to heat up room temperature to 300 .deg. C for normal operation helium flow condition of the HCS (=1.5 kg/s). In 2013, a recuperator was installed in the HeSS facility to reduce the required heating power from 2 MW to 150 kW and to control helium mass flow rate and the temperature more effectively, yet the circulator was able up to 0.5 kg/s of helium mass flow which is only one third of normal operation condition of HCS. In present status, a full-scale helium circulator is developing in Jinsolturbo Co. and the real-scale circulator will be installed in the HeSS facility by end of 2014. To solve the revealed problems and to make full-scale mass flow rate, the full-scale circulator is developing by Jinsolturbo Co and it will be installed in the HeSS facility by 2014

  12. Kilohertz laser ablation for doping helium nanodroplets

    Mudrich, M; Müller, S; Dvorak, M; Buenermann, O; Stienkemeier, F

    2007-01-01

    A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and stable enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected.

  13. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT(regsign) model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  14. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  15. Simulation study on retention and reflection from tungsten carbide under high fluence of helium ions

    We have studied, by a Monte Carlo simulation code ACAT-DIFFUSE, the fluence-dependence of the amount of retained helium atoms in tungsten carbide at room temperature under helium ion bombardment. The retention behavior may be understood qualitatively in terms of irradiation-dependent diffusion coefficient assumed and range. The emission processes from tungsten carbide under helium ion irradiation derived were compared with each other. We have discussed the retention curves for incident energy of 5 keV at incident angles of 0deg and 80deg and of 500 eV at 0deg. The energy spectra of helium atoms reflected from tungsten carbide for incident energy of 500 eV at 0deg and 80deg were compared with those from graphite and tungsten. (author)

  16. Evaluation of helium impurity impacts on Spent Nuclear Fuel project processes (OCRWM)

    This document identifies the types and quantities of impurities that may be present within helium that is introduced into multi-canister overpacks (MCO)s by various SNF Project facilities, including, but not limited to the Cold Vacuum Drying (CVD) Facility (CVDF). It then evaluates possible impacts of worst case impurity inventories on MCO drying, transportation, and storage processes. Based on the evaluation results, this document: (1) concludes that the SNF Project helium procurement specification can be a factor-of-ten less restrictive than a typical vendor's standard offering (99.96% pure versus the vendor's 99.997% pure standard offering); (2) concludes that the CVDF's current 99.5% purity requirement is adequate to control the quality of the helium that is delivered to the MCO by the plant's helium distribution system; and (3) recommends specific impurity limits for both of the above cases

  17. Cryogenic Thermal Studies on Terminations for Helium Gas Cooled Superconducting Cables

    Kim, Chul Han; Kim, Sung-Kyu; Graber, Lukas; Pamidi, Sastry V.

    Details of the design of terminations for testing a superconducting DC monopole cable cooled with gaseous helium are presented. The termination design includes a liquid nitrogen chamber to reduce heat influx into the helium section through current leads. Thermal studies on the assembly of the two terminations and a 1 m or 30 m cable cryostat were performed at variable mass flow rates of helium gas. Measurements of temperature profile for the test system without the superconducting cable showed temperature rise between 5 K and 20 K depending on the mass flow rate. The temperature profile across the test system was used to estimate the heat load from different components of the system. Results with and without the liquid nitrogen in current lead section were compared to estimate the savings provided by the liquid nitrogen on the head of the helium circulation system. Suggestions for improving the design to enable fully gas cooled terminations are presented.

  18. 21 CFR 868.1640 - Helium gas analyzer.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a...

  19. Crystal structure and density of helium to 232 kbar

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  20. Crystal structure and density of helium to 232 kbar

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency

  1. The maintenance record of the KSTAR helium refrigeration system

    Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB no.1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there is another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

  2. Genetic changes in Mammalian cells transformed by helium cells

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/μm). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs

  3. Genetic changes in Mammalian cells transformed by helium cells

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  4. The Helium Cryogenic System for the ATLAS Experiment

    Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2000-01-01

    The magnetic configuration of the ATLAS detector is generated by an inner superconducting solenoid and three air-core toroids (the barrel and two end-caps), each of them made of eight superconducting coils. Two separated helium refrigerators will be used to allow cool-down from ambient temperature and steady-state operation at 4.5 K of all the magnets having a total cold mass of about 600 tons. In comparison with the preliminary design, the helium distribution scheme and interface with the magnet sub-systems are simplified, resulting in a considerable improvement of the operational easiness and the overall reliability of the system at some expense of the operational flexibility. The paper presents the cryogenic layout and the basic principles for magnets cool-down, steady state operation and thermal recovery after a fast energy dump.

  5. Testing electron correlation in Helium using attosecond pulses

    Ruiz, Camilo [Centro de Laseres Pulsados (CLPU), Plaza de la Merced s/n, Salamanca 37008 (Spain)

    2011-07-01

    Using a full quantum model beyond the one dimensional model, we are able to study the double correlated double ionization of Helium in several regimes. For example in the near IR, we have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a {lambda}=800 nm laser, with intensity I=4.5 x 10{sup 14} W/cm{sup 2}. We observe a finger-like structure in the correlated electron momentum distribution that can be interpreted as a signature of the microscopic dynamics in the recollision process. To study related process such as the excitation by recollision we make use of attosecond pulses to probe the dynamics of ionization. In this paper we introduce this novel technique to study the interaction that could lead increase the accuracy of the description of the correlated processes.

  6. Testing electron correlation in Helium using attosecond pulses

    Using a full quantum model beyond the one dimensional model, we are able to study the double correlated double ionization of Helium in several regimes. For example in the near IR, we have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a λ=800 nm laser, with intensity I=4.5 x 1014 W/cm2. We observe a finger-like structure in the correlated electron momentum distribution that can be interpreted as a signature of the microscopic dynamics in the recollision process. To study related process such as the excitation by recollision we make use of attosecond pulses to probe the dynamics of ionization. In this paper we introduce this novel technique to study the interaction that could lead increase the accuracy of the description of the correlated processes.

  7. Neovascular glaucoma after helium ion irradiation for uveal melanoma

    Neovascular glaucoma developed in 22 of 169 uveal melanoma patients treated with helium ion irradiation. Most patients had large melanomas; no eyes containing small melanomas developed anterior segment neovascularization. The mean onset of glaucoma was 14.1 months (range, 7-31 months). The incidence of anterior segment neovascularization increased with radiation dosage; there was an approximately three-fold increase at 80 GyE versus 60 GyE of helium ion radiation (23% vs. 8.5%) (P less than 0.05). Neovascular glaucoma occurred more commonly in larger tumors; the incidence was not affected by tumor location, presence of subretinal fluid, nor rate of tumor regression. Fifty-three percent of patients had some response with intraocular pressures of 21 mmHg or less to a combination of antiglaucoma treatments

  8. Linear electron chains on the surface of superfluid helium

    Kovdrya, Yu. Z.; Nikolaenko, V. A.; Gladchenko, S. P.; Sokolov, S. S.

    1998-11-01

    A unique one-dimensional system of linear electron chains on the liquid helium surface is realized experimentally for the first time. This system is created by using the distortion of the helium surface and covering the profiled dielectric substrate in a confining electric field holding electrons in the liquid channels being formed. The carrier mobility in linear electric chains is measured in the temperature interval 0.5-1.8K in confining fields up to 1 kV/cm. It is shown that the electron mobility depends on the purity of the substrate surface. For clean substrates, the mobility increases with decreasing temperature in the entire investigated temperature range. The results of measurements are found to be in accord with the existing theory.

  9. Equation of state of fluid helium at high temperatures and densities

    CAI Lingcang; CHEN Qifeng; GU Yunjun; ZHANG Ying; ZHOU Xianming; JING Fuqian

    2005-01-01

    Hugoniot curves and shock temperatures of gas helium with initial temperature 293 K and three initial pressures 0.6, 1.2, and 5.0 Mpa were measured up to 15000 K using a two-stage light-gas gun and transient radiation pyrometer. It was found that the calculated Hugoniot EOS of gas helium at the same initial pressure using Saha equation with Debye-Hückel correction was in good agreement with the experimental data. The curve of the calculated shock wave velocity with the particle velocity of gas helium which is shocked from the initial pressure 5 Mpa and temperature 293 K, I.e., the D~u relation, D = C0+λu (u < 10 km/s, λ = 1.32) in a low pressure region, is approximately parallel with the fitted D~u (λ = 1.36) of liquid helium from the experimental data of Nellis et al. Our calculations show that the Hugoniot parameterλis independent of the initial density ρ0. The D~u curves of gas helium will transfer to another one and approach a limiting value of compression when their temperature elevates to about 18000 K and the ionization degree of the shocked gas helium reaches 10-3.

  10. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.