WorldWideScience

Sample records for green sulfur bacteria

  1. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  2. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole-genome gene family and single gene sequence comparisons yielded similar phylogenetic trees of the sequenced chromosomes indicating a concerted vertical evolution of large gene sets. Chromosomal synteny of genes is not preserved in the phylum Chlorobi. The accessory genome is characterized by anomalous oligonucleotide usage and endows the strains with individual features for transport, secretion, cell wall, extracellular constituents, and a few elements of the biosynthetic apparatus. Giant genes are a peculiar feature of the genera Chlorobium and Prosthecochloris. The predicted proteins have a huge molecular weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment.

  3. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence...

  4. Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) utilize various combinations of sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for anaerobic photoautotrophic growth. Genome sequence data is currently available for 12 strains of GSB. We present here a genome-based survey of the distribution and...

  5. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...

  6. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    Directory of Open Access Journals (Sweden)

    Niels-UlrikFrigaard

    2011-05-01

    Full Text Available Green sulfur bacteria (GSB constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5’-phosphosulfate reductase (APR or polysulfide reductase-like complex 3 (PSRLC3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes.

  7. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metab...

  8. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    CERN Document Server

    Saikin, Semion K; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

    2014-01-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal ve...

  9. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria

    CERN Document Server

    Huh, Joonsuk; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

    2013-01-01

    Phototrophic organisms such as plants, photosynthetic bacteria and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have multiple functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be amongst the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level we introduce an atomistic model that mimic a complete light-harvesting apparatus of green sulfur bacteria. The model contains about 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the...

  10. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They...... utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in...... other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the...

  11. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent

    Science.gov (United States)

    Oyaizu, H.; Debrunner-Vossbrinck, B.; Mandelco, L.; Studier, J. A.; Woese, C. R.

    1987-01-01

    Ribosomal RNA sequence comparisons define a phylogenetic grouping, the green non-sulfur bacteria and relatives (GNS), known to contain the genera Chloroflexus, Herpetosiphon and Thermomicrobium--organisms that have little phenotypic similarity. The unit is phylogenetically deep, but entirely distinct from any other eubacterial division (phylum). It is also relatively ancient--branching from the common eubacterial stem earlier than any other group of eubacteria reported thus far. The group phenotype is predominantly thermophilic, and its thermophilic members, especially Thermomicrobium, are more slowly evolving than Herpetosiphon, a mesophile. The GNS unit appears significantly older than either the green sulfur bacteria or the cyanobacteria--making it likely that organisms such as Chloroflexus, not the cyanobacteria, generated the oldest stromatolites, which formed over three billion years ago.

  12. Both Forward and Reverse TCA Cycles Operate in Green Sulfur Bacteria*

    OpenAIRE

    TANG, KUO-HSIANG; Blankenship, Robert E

    2010-01-01

    The anoxygenic green sulfur bacteria (GSBs) assimilate CO2 autotrophically through the reductive (reverse) tricarboxylic acid (RTCA) cycle. Some organic carbon sources, such as acetate and pyruvate, can be assimilated during the phototrophic growth of the GSBs, in the presence of CO2 or HCO3?. It has not been established why the inorganic carbonis required for incorporating organic carbon for growth and how the organic carbons are assimilated. In this report, we probed carbon flux during auto...

  13. Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

    Science.gov (United States)

    Saikin, Semion K.; Khin, Yadana; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alán; Tang, Joseph Kuo-Hsiang

    2014-05-01

    Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean.

  14. Mutation-induced perturbation of the special pair P840 in the homodimeric reaction center in green sulfur bacteria

    Science.gov (United States)

    Azai, Chihiro; Sano, Yuko; Kato, Yuki; Noguchi, Takumi; Oh-oka, Hirozo

    2016-01-01

    Homodimeric photosynthetic reaction centers (RCs) in green sulfur bacteria and heliobacteria are functional homologs of Photosystem (PS) I in oxygenic phototrophs. They show unique features in their electron transfer reactions; however, detailed structural information has not been available so far. We mutated PscA-Leu688 and PscA-Val689 to cysteine residues in the green sulfur bacterium Chlorobaculum tepidum; these residues were predicted to interact with the special pair P840, based on sequence comparison with PS I. Spectroelectrochemical measurements showed that the L688C and V689C mutations altered a near-infrared difference spectrum upon P840 oxidation, as well as the redox potential of P840. Light-induced Fourier transform infrared difference measurements showed that the L688C mutation induced a differential signal of the S-H stretching vibration in the P840+/P840 spectrum, as reported in P800+/P800 difference spectrum in a heliobacterial RC. Spectral changes in the 131-keto C=O region, caused by both mutations, revealed corresponding changes in the electronic structure of P840 and in the hydrogen-bonding interaction at the 131-keto C=O group. These results suggest that there is a common spatial configuration around the special pair sites among type 1 RCs. The data also provided evidence that P840 has a symmetric electronic structure, as expected from a homodimeric RC. PMID:26804137

  15. Temperature and Carbon Assimilation Regulate the Chlorosome Biogenesis in Green Sulfur Bacteria

    CERN Document Server

    Tang, Joseph Kuo-Hsiang; Pingali, Sai Venkatesh; Enriquez, Miriam M; Huh, Joonsuk; Frank, Harry A; Urban, Volker S; Aspuru-Guzik, Alan

    2013-01-01

    Green photosynthetic bacteria adjust the structure and functionality of the chlorosome - the light absorbing antenna complex - in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of Cba. tepidum grows slower and incorporates less BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays: (a) smaller cross-sectional radius and overall size; (b) simplified BChl c homologues with smaller side chains; (c) blue-shifted Qy absorption maxima and (d) a sigmoid-shaped circular dichroism (CD) spectra. Using a theoretical model we analyze how the observed spectral modifications can be assoc...

  16. Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria.

    Science.gov (United States)

    Chew, Aline Gomez Maqueo; Bryant, Donald A

    2007-02-01

    The green sulfur bacterium Chlorobium tepidum synthesizes three types of (bacterio)chlorophyll ((B)Chl): BChl a(P), Chl a(PD), and BChl c(F). During the synthesis of all three molecules, a C-8 vinyl substituent is reduced to an ethyl group, and in the case of BChl c(F), the C-8(2) carbon of this ethyl group is subsequently methylated once or twice by the radical S-adenosylmethionine enzyme BchQ. The C. tepidum genome contains homologs of two genes, bchJ (CT2014) and CT1063, that are highly homologous to genes, bchJ and AT5G18660, and that have been reported to encode C-8 vinyl reductases in Rhodobacter capsulatus and Arabidopsis thaliana, respectively. To determine which gene product actually encodes a C-8 vinyl reductase activity, the bchJ and CT1063 genes were insertionally inactivated in C. tepidum. All three Chls synthesized by the CT1063 mutant of C. tepidum have a C-8 vinyl group. Using NADPH but not NADH as reductant, recombinant BciA reduces the C-8 vinyl group of 3,8-divinyl-protochlorophyllide in vitro. These data demonstrate that CT1063, renamed bciA, encodes a C-8 divinyl reductase in C. tepidum. The bchJ mutant produces detectable amounts of Chl a(PD), BChl a(P), and BChl c(F), all of which have reduced C-8 substituents, but the mutant cells secrete large amounts of 3,8-divinyl-protochlorophyllide a into the growth medium and have a greatly reduced BChl c(F) content. The results suggest that BchJ may play an important role in substrate channeling and/or regulation of Chl biosynthesis but show that it is not a vinyl reductase. Because only some Chl-synthesizing organisms possess homologs of bciA, at least two types of C-8 vinyl reductases must occur. PMID:17148453

  17. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  18. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea.

    Science.gov (United States)

    Marschall, Evelyn; Jogler, Mareike; Hessge, Uta; Overmann, Jörg

    2010-05-01

    The Black Sea chemocline represents the largest extant habitat of anoxygenic phototrophic bacteria and harbours a monospecific population of Chlorobium phylotype BS-1. High-sensitivity measurements of underwater irradiance and sulfide revealed that the optical properties of the overlying water column were similar across the Black Sea basin, whereas the vertical profiles of sulfide varied strongly between sampling sites and caused a dome-shaped three-dimensional distribution of the green sulfur bacteria. In the centres of the western and eastern basins the population of BS-1 reached upward to depths of 80 and 95 m, respectively, but were detected only at 145 m depth close to the shelf. Using highly concentrated chemocline samples from the centres of the western and eastern basins, the cells were found to be capable of anoxygenic photosynthesis under in situ light conditions and exhibited a photosynthesis-irradiance curve similar to low-light-adapted laboratory cultures of Chlorobium BS-1. Application of a highly specific RT-qPCR method which targets the internal transcribed spacer (ITS) region of the rrn operon of BS-1 demonstrated that only cells at the central station are physiologically active in contrast to those at the Black Sea periphery. Based on the detection of ITS-DNA sequences in the flocculent surface layer of deep-sea sediments across the Black Sea, the population of BS-1 has occupied the major part of the basin for the last decade. The continued presence of intact but non-growing BS-1 cells at the periphery of the Black Sea indicates that the cells can survive long-distant transport and exhibit unusually low maintenance energy requirements. According to laboratory measurements, Chlorobium BS-1 has a maintenance energy requirement of approximately 1.6-4.9.10(-15) kJ cell(-1) day(-1) which is the lowest value determined for any bacterial culture so far. Chlorobium BS-1 thus is particularly well adapted to survival under the extreme low-light conditions of the Black Sea, and can be used as a laboratory model to elucidate general cellular mechanisms of long-term starvation survival. Because of its adaptation to extreme low-light marine environments, Chlorobium BS-1 also represents a suitable indicator for palaeoceanography studies of deep photic zone anoxia in ancient oceans. PMID:20236170

  19. Dominance of a clonal green sulfur bacterial population in a stratified lake

    DEFF Research Database (Denmark)

    Gregersen, Lea H; Habicht, Kirsten S; Peduzzi, Sandro; Tonolla, Mauro; Canfield, Donald E; Miller, Mette; Cox, Raymond P; Frigaard, Niels-Ulrik

    2009-01-01

    For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity...

  20. Sulfur-oxidizing bacteria in environmental technology.

    Science.gov (United States)

    Pokorna, Dana; Zabranska, Jana

    2015-11-01

    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed. PMID:25701621

  1. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E; Jones, A Daniel; Bryant, Donald A

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C...... carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant...... growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of...

  2. Reduction of malachite green to leucomalachite green by intestinal bacteria.

    Science.gov (United States)

    Henderson, A L; Schmitt, T C; Heinze, T M; Cerniglia, C E

    1997-10-01

    Intestinal microfloras from human, rat, mouse, and monkey fecal samples and 14 pure cultures of anaerobic bacteria representative of those found in the human gastrointestinal tract metabolized the triphenylmethane dye malachite green to leucomalachite green. The reduction of malachite green to the leuco derivative suggests that intestinal microflora could play an important role in the metabolic activation of the triphenylmethane dye to a potential carcinogen. PMID:9327576

  3. Reduction of malachite green to leucomalachite green by intestinal bacteria.

    OpenAIRE

    Henderson, A. L.; Schmitt, T C; Heinze, T M; Cerniglia, C. E.

    1997-01-01

    Intestinal microfloras from human, rat, mouse, and monkey fecal samples and 14 pure cultures of anaerobic bacteria representative of those found in the human gastrointestinal tract metabolized the triphenylmethane dye malachite green to leucomalachite green. The reduction of malachite green to the leuco derivative suggests that intestinal microflora could play an important role in the metabolic activation of the triphenylmethane dye to a potential carcinogen.

  4. Influence of Purple Sulfur Bacteria on the biogeochemistry of Carbon and Sulfur Isotopes in Crystal Lake, OH

    Science.gov (United States)

    Meyer, A.; Nichols, D. L.; Cheng, S.

    2013-12-01

    Crystal Lakes are a series of four interconnected mesotrophic, moulin-induced glacial lakes in west-central Ohio. The study site, Main Lake (a.k.a. Crystal Lake), is the largest and deepest lake among them. It is about 5 ha with a maximum depth of 11.9 meters and a mean depth of 3.8 meters. Thermal stratification develops during the warmer months. Photosynthesis, which preferentially uptakes lighter isotopes, is the primary pathway for carbon and sulfur isotope fractionation in natural waters. Photosynthesizers present at Crystal Lake include green algae, diatoms, cyanobacteria, and purple sulfur bacteria (PSB). Phytoplankton growth is limited by nutrient availability, influencing the extent of fractionation. Purple sulfur bacteria (PSB) utilize sulfide as an electron donor instead of water. The layer of concentrated PSB population exists between oxic and anoxic water in lakes where sufficient light and sulfide are present. These bacteria impact the levels of several sulfur compounds and isotopic composition within lake systems by oxidizing sulfide to sulfate. Field parameters collected in warmer months show turbidity and chlorophyll peaks around 6 m with variations caused by temperature, light, and nutrient availability. The dissolved oxygen minimum and the redox and sulfate maxima generally correspond with the turbidity and chlorophyll peaks, indicating the presence of a PSB layer. This layer occurs at the boundary between the metalimnion and hypolimnion. Sulfide concentrations increased from a maximum of 0.02 mg/L in May to a maximum of 9.25 mg/L in August. In May sulfide was only found at 10.4 m and below while in August it was present at 6 m and below. Sulfate values remain relatively constant with a maximum at the layer of PSB, then decline with depth where Sulfide is abundant. ?13C-DIC values peak at 6 m corresponding with the layer of PSB. This peak may be due to the influence of PSB on carbon isotope fractionation. The carbon isotope composition of phytoplankton is to be determined. The isotopic composition of different sulfur species, SO42- , S0 and S2-, and seasonal variation are being analyzed. Exploration of the potential role of PSB on sulfur isotopic composition and their affect on the sulfur isotopic distribution in the lake system is in progress. Currently, no sulfur isotopic composition measurements through PSB or systematic studies of the impact of fractionation between sulfate and sulfide by PSB exist in the literature. Since PSB affect the equilibrium of the system, more than just sulfate and sulfide should be considered.

  5. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja; Jørgensen, Bo Barker

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface. We...

  6. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  7. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja; Jørgensen, Bo Barker

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface.We observed the chemotactic patterns of single filaments in a transparent agar medium and scored their reversals and the glided distances between reversals. Filaments within the preferred microenvironment g...

  8. Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Chew, Aline Gomez Maqueo; Li, Hui; Maresca, Julia A; Bryant, Donald A

    2003-01-01

    Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative...... ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated...

  9. Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum.

    OpenAIRE

    Wahlund, T M; Madigan, M T

    1993-01-01

    The thermophilic green sulfur bacterium Chlorobium tepidum grew with N2, NH4+, or glutamine as the sole nitrogen source under phototrophic (anaerobic-light) conditions. Growth on N2 required increased buffering capacity to stabilize uncharacterized pH changes that occurred during diazotrophic growth. Increased sulfide levels were stimulatory for growth on N2. Levels of nitrogenase activity (acetylene reduction) in N2-grown C. tepidum cells were very high, among the highest ever reported for a...

  10. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    JØrgensen, BB; Gallardo, VA

    1999-01-01

    Thioploca spp. are multicellular, filamentous, colorless sulfur bacteria inhabiting freshwater and marine sediments. They have elemental sulfur inclusions similar to the phylogenetically closely related Beggiatoa, but in contrast to these they live in bundles surrounded by a common sheath. Vast communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate, and then glide down 5-15 cm deep into the sediment through their sheaths to oxidize sulfide formed by intensive sulfate reduction. New major occurrences have bren found in recent years, both in lakes and in the ocean, and have stimulated the interest in these fascinating bacteria. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  11. Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland

    Directory of Open Access Journals (Sweden)

    Raffaele PEDUZZI

    2004-08-01

    Full Text Available Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107 cells ml-1. The most abundant taxa in the chemocline are large- and small-celled purple sulfur bacteria, which account for up to 35% of all bacteria, and sulfate- reducing bacteria that represent up to 23% of all bacteria. Depending on the season, as much as 45% of all bacteria in the chemocline are associated in aggregates consisting of different populations of small-celled purple sulfur bacteria of the genus Lamprocystis (up to 35% of all bacteria and sulfate-reducing bacteria of the family Desulfobulbaceae (up to 12% of all bacteria that are almost completely represented by bacteria closely related to Desulfocapsa thiozymogenes. Their association in aggregates is restricted to small-celled purple sulfur bacteria of the genus Lamprocystis, but not obligate since non-associated cells of bacteria related to D. thiozymogenes are frequently found, especially under limited light conditions in winter and early summer. Aggregate formation and concomitant growth enhancement of isolates of both partners of this association suggests synergistic interactions that might resemble a sulfide-based source-sink relationship between the sulfate-reducing bacterium that is able to sustain growth by a disproportionation of inorganic sulfur compounds (sulfur, thiosulfate, sulfite, with the purple sulfur bacteria acting as a biotic scavenger. The availability of these isolates opens up the door for future studies considering other facets of potential interactions in aggregates since both types of organisms are metabolically highly versatile and interactions may not be limited to sulfur compounds only.

  12. Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, N-U; Matsuura, K

    1999-01-01

    In photosynthetic green sulfur bacteria excitation energy is transferred from large bacteriochlorophyll (BChl) c chlorosome antennas via small BChl a antennas to the reaction centers which then transfer electrons from cytochrome c to low-potential iron-sulfur proteins. Under oxidizing conditions a reversible mechanism is activated in the chlorosomes which quenches excited BChl c. We used flash-induced cytochrome c oxidation to investigate the effect of this quenching on photosynthetic electron t...

  13. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

    2002-12-01

    Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

  14. Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, N-U; Matsuura, K

    1999-01-01

    In photosynthetic green sulfur bacteria excitation energy is transferred from large bacteriochlorophyll (BChl) c chlorosome antennas via small BChl a antennas to the reaction centers which then transfer electrons from cytochrome c to low-potential iron-sulfur proteins. Under oxidizing conditions a...... center as a consequence of the quenching mechanism which is activated by O2. This reversible uncoupling of the chlorosome antenna might prevent formation of toxic reactive oxygen species from photosynthetically produced reductants under aerobic conditions. The green filamentous bacterium Chloroflexus...

  15. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    Science.gov (United States)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  16. Synergy in Sulfur Cycle: The Biogeochemical Significance of Sulfate Reducing Bacteria in Syntrophic Associations

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    and anaerobic sulfur bacteria.Zentralkbakt fur Bakteriologie International Journal for Microbiology and Hygiene C3, 466-474. Loka Bharathi, P.A., Oak, S., Chandramohan, D., 1991.Sulfate-reducing bacteria of Mangrove Swamps-II Their Ecology and Physiology...

  17. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

  18. Reduction of hexavalent chromium with elemental sulfur by sulfur-oxidizing bacteria. Bakuteria ni yoru rokka kuromu no kangen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Hiroshi; Murata, Hiroyuki; Sato, Hayato (Iwate Univ., Iwate (Japan) Faculty of Engineering)

    1989-11-25

    The reduction of hexavalent chromium (Cr{sub 6+}) by use of sulfurous acid formed by sulfur-oxidizing bacteria was investigated. The test bacteria were collected from a neutralization plant at the abandoned Matsuo mine and cultured for long period in iron free 9K medium with elemental sulfur, then the experiment on the reduction of Cr{sup 6+} was conducted. The bacteria oxidized elemental sulfur to sulfate, and main strains of them must be Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Cr{sup 6+} was reduced when the bacteria were cultured on elemental sulfur. It could be due to sulfurous acid formed as a intermediate during the oxidation of elemental sulfur to sulfate by the bacteria. Cr{sup 6+} inhibited the sulfur-oxidizing ability of the bacteria, but the oxidation rate of elemental sulfur increased remarkably after the reduction of Cr{sup 6+}. The rate of Cr{sup 6+} reduction increased with heightening the inoculum size and the concentration of elemental sulfur, and with lowering the pH. 14 refs., 8 figs.

  19. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a

    DEFF Research Database (Denmark)

    Pedersen, Marie Ø; Pham, Lan; Steensgaard, Dorte B; Miller, Mette

    2008-01-01

    Green sulfur bacteria possess two light-harvesting antenna systems, the chlorosome and the Fenna-Matthews-Olson (FMO) protein. In addition to self-aggregated bacteriochlorophyll (BChl) c, chlorosomes of Chlorobium tepidum contain a small amount of BChl a (ratio 100:1). The chlorosomal BChl a is associated with CsmA, a 6.2 kDa protein that accounts for more than 50% of the protein content of chlorosomes. This CsmA-BChl a complex is located in the chlorosome baseplate with the hydrophilic C-termin...

  20. Electric current generation by sulfur-reducing bacteria in microbial-anode fuel cell

    Science.gov (United States)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2012-10-01

    Sulfur - reducing bacteria are a part of normal microflora of natural environment. Their main function is supporting of reductive stage of sulfur cycle by hydrogen sulfide production in the process of dissimilative sulfur-reduction. At the same time these bacteria completely oxidize organic compounds with CO2 and H2O formation. It was shown that they are able to generate electric current in the two chamber microbial-anode fuel cell (MAFC) by interaction between these two processes. Microbial-anode fuel cell on the basis of sulfur- and ferric iron-reducing Desulfuromonas acetoxidans bacteria has been constructed. It has been shown that the amount of electricity generation by investigated bacteria is influenced by the concentrations of carbon source (lactate) and ferric iron chloride. The maximal obtained electric current and potential difference between electrodes equaled respectively 0.28-0.29 mA and 0.19-0.2 V per 0.3 l of bacterial suspension with 0.4 g/l of initial biomass that was grown under the influence of 0.45 mM of FeCl3 and 3 g/l of sodium lactate as primal carbon source. It has also been shown that these bacteria are resistant to different concentrations of silver ions.

  1. Bacteria involved in sulfur amendment oxidation and acidification processes of alkaline 'alperujo' compost.

    Science.gov (United States)

    García-de-la-Fuente, R; Cuesta, G; Sanchís-Jiménez, E; Botella, S; Abad, M; Fornes, F

    2011-01-01

    Eight strains of sulfur oxidizing bacteria were isolated from alkaline 'alperujo' compost, seven being identified as Paracoccus thiocyanatus and one as Halothiobacillus neapolitanus. This was the first time that P. thiocyanatus was isolated from mature compost. Acidification capability of isolated strains was compared with type strains H. neapolitanus CIP104769, Thiobacillus denitrificans CIP104767 and Thiomonas intermedia CIP104401. Indigenous P. thiocyanatus strains were as much as or more efficient for acidifying compost than type strains. Sulfur oxidizing population naturally occurring in compost showed maximum acidification efficiency and no extra effect was found with the help of type strains. pH reduction caused by S? was paralleled by a decrease in CaCO3 and an increase in CaSO4 and salinity levels. A remarkable increase in cultivable sulfur oxidizing bacteria population along with the acidification process was also recorded. Amended compost showed a range of chemical and biological characteristics suitable for use as container media constituent. PMID:20970324

  2. Microbial ecology of halo-alkaliphilic sulfur bacteria:

    OpenAIRE

    Foti, M.J.

    2007-01-01

    The research of this thesis focussed on the investigation of the microbial diversity in soda lakes, giving a special attention to the micro-organisms involved in the sulphur cycle. The present PhD was part of a bigger project aiming to develop a biological process for the removal of hydrogen sulphide under halo-alkaliphilic conditions. In this new process, sulphide is mainly oxidized to elemental sulphur by sulphur-oxidizing bacteria (SOB). However, a small percentage of unwanted sulphate is ...

  3. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  4. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    OpenAIRE

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk...

  5. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem.

    Science.gov (United States)

    Haaijer, Suzanne C M; Harhangi, Harry R; Meijerink, Bas B; Strous, Marc; Pol, Arjan; Smolders, Alfons J P; Verwegen, Karin; Jetten, Mike S M; Op den Camp, Huub J M

    2008-12-01

    The freshwater nature reserve De Bruuk is an iron- and sulfur-rich minerotrophic peatland containing many iron seeps and forms a suitable habitat for iron and sulfur cycle bacteria. Analysis of 16S rRNA gene-based clone libraries showed a striking correlation of the bacterial population of samples from this freshwater ecosystem with the processes of iron reduction (genus Geobacter), iron oxidation (genera Leptothrix and Gallionella) and sulfur oxidation (genus Sulfuricurvum). Results from fluorescence in situ hybridization analyses with a probe specific for the beta-1 subgroup of Proteobacteria, to which the genera Leptothrix and Gallionella belong, and newly developed probes specific for the genera Geobacter and Sulfuricurvum, supported the clone library data. Molecular data suggested members of the epsilonproteobacterial genus Sulfuricurvum as contributors to the oxidation of reduced sulfur compounds in the iron seeps of De Bruuk. In an evaluation of anaerobic dimethyl sulfide (DMS)-degrading activity of sediment, incubations with the electron acceptors sulfate, ferric iron and nitrate were performed. The fastest conversion of DMS was observed with nitrate. Further, a DMS-oxidizing, nitrate-reducing enrichment culture was established with sediment material from De Bruuk. This culture was dominated by dimorphic, prosthecate bacteria, and the 16S rRNA gene sequence obtained from this enrichment was closely affiliated with Hyphomicrobium facile, which indicates that the Hyphomicrobium species are capable of both aerobic and nitrate-driven DMS degradation. PMID:18754044

  6. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    OpenAIRE

    Janssen, A. J. H.; Lens, P.N.L.; A. J. M. Stams; Plugge, C. M.; Sorokin, D. Y.; Muyzer, G.; Dijkman, H; Zessen, E., van; Luimes, F.J.T.; Buisman, C. J. N.

    2009-01-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and...

  7. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Strotmann, B.; Gallardo, VA; Jørgensen, BB

    2000-01-01

    A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population dynamics. The Thioploca population was described by its biomass, total number and diameter of sheaths, number of trichomes and species per sheath, and abundance and depth distribution of different morphologic...

  8. Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii? †

    OpenAIRE

    Nguyen, Anh Vu; Thomas-Hall, Skye R.; Malnoë, Alizée; Timmins, Matthew; Mussgnug, Jan H; Rupprecht, Jens; Kruse, Olaf; Hankamer, Ben; Schenk, Peer M.

    2008-01-01

    Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followed by real-time quantitative reverse transcription-PCR and protein analyses. The present work provide...

  9. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E; Jones, A Daniel; Bryant, Donald A

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crt...

  10. Metabolic Flux Analysis of the Mixotrophic Metabolisms in the Green Sulfur Bacterium Chlorobaculum tepidum*

    OpenAIRE

    Feng, Xueyang; TANG, KUO-HSIANG; Blankenship, Robert E; Tang, Yinjie J.

    2010-01-01

    The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO2 and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a 13C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612...

  11. Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system.

    Science.gov (United States)

    Russ, Lina; Speth, Daan R; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran

    2014-11-01

    Fixed nitrogen is released by anaerobic ammonium oxidation (anammox) and/or denitrification from (marine) ecosystems. Nitrite, the terminal electron acceptor of the anammox process, occurs in nature at very low concentrations and is produced via (micro)aerobic oxidation of ammonium or nitrate reduction. The coupling of sulfide-dependent denitrification to anammox is particularly interesting because besides hydrogen, sulfide is the most important reductant at the chemocline of anoxic marine basins and is abundant within sediments. Although at ?M concentrations, sulfide may be toxic and inhibiting anammox activity, a denitrifying microorganism could convert sulfide and nitrate at sufficiently high rates to allow anammox bacteria to stay active despite an influx of sulfide. To test this hypothesis, a laboratory scale model system containing a co-culture of anammox bacteria and the autotrophic denitrifier Sulfurimonas denitrificans?DSM1251 was started. Complementary techniques revealed that the gammaproteobacterial Sedimenticola sp. took over the intended role of Su.?denitrificans. A stable coculture of anammox bacteria and Sedimenticola sp. consumed sulfide, nitrate, ammonium and CO2 . Anammox bacteria contributed 65-75% to the nitrogen loss from the reactor. The cooperation between anammox and sulfide-dependent denitrification may play a significant role in environments where sulfur cycling is active and where actual sulfide concentrations stay below ?M range. PMID:24750895

  12. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions.

    Science.gov (United States)

    Kalanetra, Karen M; Joye, Samantha B; Sunseri, Nicole R; Nelson, Douglas C

    2005-09-01

    Large spherical sulfur bacteria, 180-375 microm in diameter, were found regularly and in abundance in surface sediments collected from hydrocarbon seeps (water depth 525-640 m) in the Gulf of Mexico. These bacteria were characterized by a thin 'shell' of sulfur globule-filled cytoplasm that surrounded a central vacuole (roughly 80% of biovolume) containing high concentrations of nitrate (average 460 mM). Approximately 800 base pairs of 16S rRNA gene sequence data, linked to this bacterium by fluorescent in situ hybridization, showed 99% identity with Thiomargarita namibiensis, previously described only from sediments collected off the coast of Namibia (Western Africa). Unlike T. namibiensis, where cells form a linear chain within a common sheath, the Gulf of Mexico strain occurred as single cells and clusters of two, four and eight cells, which were clearly the product of division in one to three planes. In sediment cores maintained at 4 degrees C, which undoubtedly experienced a diminishing flux of hydrogen sulfide over time, the Thiomargarita-like bacterium remained viable for up to 2 years. During that long period, each cell appeared to undergo (as judged by change in biovolume) one to three reductive divisions, perhaps as a dispersal strategy in the face of diminished availability of its putative electron donor. PMID:16104867

  13. Metabolic adaptation and trophic strategies of soil bacteria—C1- metabolism and sulfur chemolithotrophy in Starkeya novella

    OpenAIRE

    UlrikeKappler

    2013-01-01

    The highly diverse and metabolically versatile microbial communities found in soil environments are major contributors to the global carbon, nitrogen, and sulfur cycles. We have used a combination of genome –based pathway analysis with proteomics and gene expression studies to investigate metabolic adaptation in a representative of these bacteria, Starkeya novella, which was originally isolated from agricultural soil. This bacterium was the first facultative sulfur chemolithoautotroph that wa...

  14. Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum.

    OpenAIRE

    Wahlund, T M; Madigan, M T

    1995-01-01

    The broad-host-range IncQ group plasmids pDSK519 and pGSS33 were transferred by conjugation from Escherichia coli into the thermophilic green sulfur bacterium Chlorobium tepidum. C. tepidum exconjugants expressed the kanamycin and ampicillin-chloramphenicol resistances encoded by pDSK519 and pGSS33, respectively. Ampicillin resistance was a particularly good marker for selection in C. tepidum. Both pDSK519 and pGSS33 were stably maintained in C. tepidum at temperatures below 42 degrees C and ...

  15. EFFECT OF LIGNIN ON ENZYMATIC SACCHARIFICATION OF HARDWOOD AFTER GREEN LIQUOR AND SULFURIC ACID PRETREATMENTS

    Directory of Open Access Journals (Sweden)

    Douyong Min,

    2012-02-01

    Full Text Available Red maple, sweet gum, trembling aspen, red alder, and Eucalyptus globulus samples were pretreated with dilute sulfuric acid and green liquor before enzymatic saccharification. Substrates showed different levels of delignification and sugar recovery, depending on the applied pretreatments and the syringaldehyde/vanillin ratio (S/V. Three major conclusions were drawn in this research. First, lignin is the greatest contributor to recalcitrance of hardwood to enzymatic saccharification. Second, a high S/V ratio is a useful indicator of high delignification during a pretreatment process. Third, green liquor pretreatment is a promising pretreatment method because of a high delignification degree and sugar recovery. In addition, xylan also contributes to the recalcitrance of hardwoods toward enzymatic saccharification.

  16. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  17. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland.

    DEFF Research Database (Denmark)

    Habicht, Kirsten Silvia; Miller, Mette

    2011-01-01

    Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme.

  18. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Habicht, Kirsten S.; Miller, Mette

    2011-01-01

    Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme

  19. Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria

    Scientific Electronic Library Online (English)

    Caroline Morini, Calil; Gisele Mattos, Oliveira; Karina, Cogo; Antonio Carlos, Pereira; Fernanda Klein, Marcondes; Francisco Carlos, Groppo.

    2014-06-11

    Full Text Available Little is known about the effects of stress hormones on the etiologic agents of halitosis. Thus, the aim of this study was to evaluate in vitro the effects of adrenaline (ADR), noradrenaline (NA) and cortisol (CORT) on bacteria that produce volatile sulfur compounds (VSC), the major gases responsibl [...] e for bad breath. Cultures of Fusobacterium nucleatum (Fn), Porphyromonas endodontalis (Pe), Prevotella intermedia (Pi) and Porphyromonas gingivalis (Pg) were exposed to 50 µM ADR, NA and CORT or equivalent volumes of sterile water as controls for 12 and 24 h. Growth was evaluated based on absorbance at 660 nm. Portable gas chromatography was used to measure VSC concentrations. Kruskal-Wallis and the Dunn post-hoc test were used to compare the groups. For Fn, ADR, NA and CORT significantly reduced bacterial growth after 12 h and 24 h (p 0.05). In the Pi cultures, ADR, NA and CORT increased H2S (p

  20. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp, off the coast of Chile

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB; Fossing, HA; Ramsing, NB

    1996-01-01

    The filamentous sulfur bacteria Thioploca spp, produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm dean into the sediment, The structure of the Thioploca communities off the Bay of...... Concepcion was investigated,vith respect to biomass, species distribution, and three-dimensional orientation of the sheaths, Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone, The maximum wet weight of sheaths, 800 g m(-2), was found at a depth of 90 m, The...... bacterial filaments within the sheaths contributed about 10% of this weight, The highest density of filaments was found within the uppermost I cm of the mat, On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp, from mixed populations containing...

  1. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments.

    Science.gov (United States)

    Aoyagi, Tomo; Kimura, Makoto; Yamada, Namiha; Navarro, Ronald R; Itoh, Hideomi; Ogata, Atsushi; Sakoda, Akiyoshi; Katayama, Yoko; Takasaki, Mitsuru; Hori, Tomoyuki

    2015-01-01

    Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM) amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25?C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration significantly increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas sp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. These oxidizers also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III) reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2-96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine sediments. PMID:26042094

  2. Malachite green-INT (MINT) method for determining active bacteria in sewage.

    OpenAIRE

    Dutton, R.J.; Bitton, G.; Koopman, B.

    1983-01-01

    A membrane filtration method was developed to determine the proportion of active (respiring) bacteria at various stages of sewage treatment. Samples were incubated in the presence of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) and, after fixation, passed through membrane filters. Filters were counterstained with malachite green and then were examined by bright-field microscopy. The contrast between bacteria and the filter background was greatly improved by drying an...

  3. Who Is in There? Exploration of Endophytic Bacteria within the Siphonous Green Seaweed Bryopsis (Bryopsidales, Chlorophyta)

    OpenAIRE

    Hollants, Joke; LEROUX, Olivier; Leliaert, Frédérik; Decleyre, Helen; Clerck, Olivier de; Willems, Anne

    2011-01-01

    Associations between marine seaweeds and bacteria are widespread, with endobiotic bacterial-algal interactions being described for over 40 years. Also within the siphonous marine green alga Bryopsis, intracellular bacteria have been visualized by electron microscopy in the early '70s, but were up to now never molecularly analyzed. To study this partnership, we examined the presence and phylogenetic diversity of microbial communities within the cytoplasm of two Bryopsis species by combining fl...

  4. Green ruthenium(4) sulfate forming under electrochemical dissolution of Fe-Ru-S alloys in sulfuric acid solution

    International Nuclear Information System (INIS)

    Methods of gel-chromatography, spectrophotometry and redox reactions were used to study green ruthenium(4) sulfate, forming in sulfuric acid solutions under electrochemical dissolution of Fe-Ru-S alloys at Ea 1.7 V. 16 refs.; 2 figs

  5. A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria

    DEFF Research Database (Denmark)

    Pedersen, Marie Ø; Linnanto, Juha; Frigaard, Niels-Ulrik; Nielsen, Niels Christian; Miller, Mette

    In contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in ...

  6. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic processes in saline alkaline lakes

    Science.gov (United States)

    Tuttle, Michele L.; Goldhaber, Martin B.

    1993-07-01

    The sulfur geochemistry of the lacustrine Paleogene Green River Formation (Colorado, Utah, and Wyoming, USA) is unlike that of most marine and other lacustrine rocks. Distinctive chemical, isotopic, and mineralogical characteristics of the formation are pyrrhotite and marcasite, high contents of iron mineral sulfides strikingly enriched in 34S, cyclical trends in sulfur abundance and ? 34S values, and long-term evolutionary trends in ? 34S values. Analyses that identified and quantified these characteristics include carbonate-free abundance of organic carbon (0.13-47 wt%), total iron (0.31-13 wt%), reactive iron (>70% of total iron), total sulfur (0.02-16 wt%), acid-volatile monosulfide (S Av), disulfide (S Di > 70% of total sulfur), sulfate (S SO4) and organosulfur (S Org); isotopic composition of separated sulfur phases (? 34S Di,Av up to +49‰); and mineralogy, morphology and paragenesis of sulfide minerals. Mineralogy, morphology, ? 34S Di,Av, and ? 34S Org have a distinctive relation, reflecting variable and unique depositional and early diagenetic conditions in the Green River lakes. When the lakes were brackish, dissimilatory sulfate-reducing bacteria in the sediment produced H 2S, which initially reacted with labile iron to form pyrite framboids and more gradually with organic matter to form organosulfur compounds. During a long-lived stage of saline lake water, the amount of sulfate supplied by inflow decreased and alkalinity and pH of lake waters increased substantially. Extensive bacterial sulfate reduction in the water column kept lake waters undersaturated with sulfate minerals. A very high H 2S:SO 4 ratio developed in stagnant bottom water aided by the high pH that kinetically inhibited iron sulfidization. Progressive removal of H 2S by coeval formation of iron sulfides and organosulfur compounds caused the isotopic composition of the entire dissolved sulfur reservoir to evolve to ? 34S values much greater than that of inflow sulfate, which is estimated to have been +20‰ A six-million-year interval within Lake Uinta cores records this evolution as well as smaller systematic changes in ? 34S, interpreted to reflect ~ 100,000-year lake-level cycles. When porewater was exceptionally reducing, unstable FeS phases eventually recrystallized to pyrrhotite during diagenesis. A much later reaction related to weathering altered pyrrhotite to marcasite.

  7. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    Science.gov (United States)

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past. PMID:22433067

  8. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Albert J.H. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Shell Global Solutions Int. B.V., Amsterdam (Netherlands)], E-mail: albert.janssen@wur.nl; Lens, Piet N.L. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Stams, Alfons J.M.; Plugge, Caroline M. [Laboratory of Microbiology, Wageningen University, Wageningen (Netherlands); Sorokin, Dimitri Y. [Department of Biotechnology, Delft (Netherlands); Institute of Microbiology, Russian Academy of Science, Moscow (Russian Federation); Muyzer, Gerard [Department of Biotechnology, Delft (Netherlands); Dijkman, Henk; Van Zessen, Erik [Paques B.V., Balk (Netherlands); Luimes, Peter [Industriewater Eerbeek B.V. Eerbeek (Netherlands); Buisman, Cees J.N. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands)

    2009-02-01

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual COD{sub organic} and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH{sub 4} (80-90 vol.%), CO{sub 2} (10-20 vol.%) and H{sub 2}S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H{sub 2}S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.

  9. Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Caroline Morini Calil

    2014-06-01

    Full Text Available Little is known about the effects of stress hormones on the etiologic agents of halitosis. Thus, the aim of this study was to evaluate in vitro the effects of adrenaline (ADR, noradrenaline (NA and cortisol (CORT on bacteria that produce volatile sulfur compounds (VSC, the major gases responsible for bad breath. Cultures of Fusobacterium nucleatum (Fn, Porphyromonas endodontalis (Pe, Prevotella intermedia (Pi and Porphyromonas gingivalis (Pg were exposed to 50 µM ADR, NA and CORT or equivalent volumes of sterile water as controls for 12 and 24 h. Growth was evaluated based on absorbance at 660 nm. Portable gas chromatography was used to measure VSC concentrations. Kruskal-Wallis and the Dunn post-hoc test were used to compare the groups. For Fn, ADR, NA and CORT significantly reduced bacterial growth after 12 h and 24 h (p 0.05. In the Pi cultures, ADR, NA and CORT increased H2S (p < 0.05. Catecholamines and cortisol can interfere with growth and H2S production of sub-gingival species in vitro. This process appears to be complex and supports the association between stress and the production of VSC.

  10. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification

    International Nuclear Information System (INIS)

    In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual CODorganic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH4 (80-90 vol.%), CO2 (10-20 vol.%) and H2S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H2S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass

  11. Development of an online sulfur-oxidizing bacteria biosensor for the monitoring of water toxicity.

    Science.gov (United States)

    Gurung, Anup; Kang, Woo-Chang; Shin, Beom-Soo; Cho, Ju Sik; Oh, Sang-Eun

    2014-12-01

    A toxicity monitoring system based on the metabolic properties of sulfur-oxidizing bacteria (SOB) in continuous and fed-batch modes has been applied for the detection of nitrite (NO2 (-)-N). In this study, the effects of different concentrations of NO2 (-)-N (0.1 to 5 mg/L) on the SOB bioreactors were tested. We found that 5 mg/L NO2 (-)-N was very toxic to the SOB bioreactors in both continuous (R1) and fed-batch (R2) modes, showing complete inhibition of SOB activity within 2 h of operation. R1 and R2 were operated in different ways; however, the EC inhibition and recovery patterns were very similar. The EC rate increased with an increasing NO2 (-)-N concentration in both continuous and fed-batch modes. The addition of 5 mg/L NO2 (-)-N in continuous mode decreased the average EC rate by 14.38?±?2.1 ?S/cm/min; while in fed-batch mode, the EC rate decreased by 23 ?S/cm/min. Although the toxicity monitoring system could detect 0.5-5 mg/L NO2 (-)-N, it could not detect 0.1 mg/L NO2 (-)-N in either continuous or fed-batch operation. Thus, the SOB biosensor method presented is useful to detect toxic agents such as NO2 (-)-N within a few minutes or hours. PMID:25253265

  12. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    Science.gov (United States)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  13. Isolation of lactic acid bacteria for its possible use in the fermentation of green algerian olives

    Directory of Open Access Journals (Sweden)

    Nour-Eddine, Karam

    2004-12-01

    Full Text Available This study was undertaken with the aim of obtaining lactic acid bacteria with the ability to ferment olives for possible use as starter cultures. For this reason, 32 isolates of lactic acid bacteria isolated from the spontaneous fermentation of green olives were characterized and identified on the basis of morphological and biochemical criteria. 14 of them were identified as Lactococcus lactis, 11 isolates as Lactobacillus plantarum and 7 isolates as Enterococcus sp. Of the 18 isolates examined for antagonistic activity, 3 isolates of Lactobacillus plantarum and one isolate of Enterococcus sp. were able to give distinct zones of inhibition against 5 indicator strains of lactic acid bacteria isolated in this study. Cell free supernatant of Lactobacillus plantarum OL9 was active against Gram-positive bacteria (Lactobacillus, Enterococcus and Propionibacterium and also against one Gram-negative bacteria strain of spoilage significance (Erwinia.Este estudio se emprendió con el objetivo de obtener bacterias del ácido láctico con capacidad para utilizarse como cultivo iniciador en la fermentación de aceitunas. Por esta razón, 32 cepas de bacterias del ácido láctico procedentes de fermentaciones espontáneas de aceitunas verdes se caracterizaron e identificaron en función de criterios morfológicos y bioquímicos. Catorce cepas se identificaron como Lactococcus lactis, 11 cepas como Lactobacillus plantarum y 7 cepas como Enterococcus sp. De las 18 cepas que se examinaron para detectar actividades antagónicas, se encontró que 3 cepas de Lactobacillus plantarum y una de Enterococcus sp. mostraban zonas de inhibición contra 5 cepas indicadoras de bacterias del ácido láctico aisladas en este estudio. El sobrenadante libre de células Lactobacillus plantarum OL9 fue activo contra diversas bacterias Gram-positivas (Lactobacillus, Enterococcus y Propionibacterium y contra una cepa de bacteria Gram-negativa relacionada con alteraciones (Erwinia.

  14. A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria

    DEFF Research Database (Denmark)

    Pedersen, Marie Ø.; Linnanto, Juha; Frigaard, Niels-Ulrik; Nielsen, Niels Chr.; Miller, Mette

    photosynthesis at very low light intensities. Encasing the chlorosome pigments is a protein-lipid monolayer including an additional antenna complex: the baseplate, a two-dimensional paracrystalline structure containing the chlorosome protein CsmA and bacteriochlorophyll a (BChl a). In this article, we review......In contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in a...... recently discovered aerobic phototroph. Chlorosomes are the only antenna system, in which the major light-harvesting pigments are organized in self-assembled supramolecular aggregates rather than on protein scaffolds. This unique feature is believed to explain why some green bacteria are able to carry out...

  15. Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland

    DEFF Research Database (Denmark)

    Habicht, Kirsten S.; Miller, Mette; Cox, Raymond P.; Frigaard, Niels-Ulrik; Tonolla, Mauro; Peduzzi, Sandro; Falkenby, Lasse Gaarde; Andersen, Jens S.

    2011-01-01

    Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in respons...

  16. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge

    OpenAIRE

    Bitton, Gabriel; Koopman, Ben

    1982-01-01

    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabol...

  17. Predictive and Interpretive Simulation of Green Fluorescent Protein Expression in Reporter Bacteria

    OpenAIRE

    Leveau, Johan H J; Lindow, Steven E.

    2001-01-01

    We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual me...

  18. Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

    Directory of Open Access Journals (Sweden)

    Nelson L. Brock

    2013-05-01

    Full Text Available Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP via competing pathways releasing either methanethiol (MeSH or dimethyl sulfide (DMS. Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC–MS. Feeding experiments with [2H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [2H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [2H3]methionine and 34SO42?, synthesized from elemental 34S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction.

  19. Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum.

    Science.gov (United States)

    Matsuo, Yoshihide; Suzuki, Makoto; Kasai, Hiroaki; Shizuri, Yoshikazu; Harayama, Shigeaki

    2003-01-01

    Many green algae cannot develop normally when they are grown under axenic conditions. Monostroma oxyspermum, for example, proliferates unicellularly in an aseptic culture, but develops into a normal foliaceous gametophyte in the presence of some marine bacteria. More than 1000 bacterial strains were isolated from marine algae and sponges and assayed for their ability to induce the morphogenesis of unicellular M. oxyspermum. Fifty bacterial strains exhibiting morphogenesis-inducing activity against unicellular M. oxyspermum were isolated. The partial gyrB (approximately 1.2 kbp) and 16S rDNA (approximately 1.4 kbp) sequences of about 40 active strains were determined, and their phylogenetic relationships were analysed. All these strains were located within the Cytophaga-Flavobacterium-Bacteroides (CFB) complex, and most of these strains were clustered in a clade comprising Zobellia uliginosa. On the other hand, these bacteria also exhibited morphogenetic activity against germ-free spores of Ulva pertusa, Ulva conglobata and Enteromorpha intestinalis. Moreover, these bacteria induced the release of spores from the leafy young gametophyte of M. oxyspermum. These results indicate that strains belonging to several groups in the CFB complex play an important role in the normal development of green algae in the marine coastal environment. PMID:12542710

  20. Sulfur Oxygenase Reductase (Sor in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    Directory of Open Access Journals (Sweden)

    Claudia Janosch

    2015-10-01

    Full Text Available The sulfur oxygenase reductase (Sor catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr gene cluster, three tetrathionate hydrolase (tth genes, three sulfide quinonereductase (sqr, as well as the doxD component of a thiosulfate quinonereductase (tqo were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.

  1. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    International Nuclear Information System (INIS)

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl ?-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  2. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  3. Antibiotic Resistant Bacteria As Bio-Indicator Of Polluted Effluent In The Green Turtles, In Oman

    OpenAIRE

    Al-Bahry, Saif N.; Mahmoud, Ibrahim Y.; Al-Zadjali, Maheera; Elshafie, Abdulkader; Al-Harthy, Asila; Al-Alawi, Wafaa

    2011-01-01

    Abstract Antibiotic resistant bacteria were studied as bio-indicators of marine polluted effluents during egg-laying in green turtles. A non-invasive procedure for sampling oviductal fluid was used to test for exposure of turtles to pollution in Ras Al-Hadd, Oman, which is one of the most important nesting beaches in the world. Each sample was obtained by inserting a 15 cm sterile swab gently into the cloacal vent as the sphincter muscle is relaxed and the cloacal lining is unfolde...

  4. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry

    Science.gov (United States)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-02-01

    Zero-field and in-field Mössbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  5. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  6. CO2 assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria

    DEFF Research Database (Denmark)

    Storelli, Nicola; Peduzzi, Sandro; Saad, Maged; Frigaard, Niels-Ulrik; Perret, Xavier; Tonolla, Mauro

    2013-01-01

    Lake Cadagno is characterized by a compact chemocline that harbors high concentrations of various phototrophic sulfur bacteria. Four strains representing the numerically most abundant populations in the chemocline were tested in dialysis bags in situ for their ability to fix CO?. The purple sulfur bacterium Candidatus 'Thiodictyon syntrophicum' strain Cad16(T) had the highest CO? assimilation rate in the light of the four strains tested and had a high CO? assimilation rate even in the dark. The ...

  7. Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall

    OpenAIRE

    Frederick T. Guilford; Sutton, John S.; Kilburn, Kaye H; Vincent Bolton; John Shane; Straus, David C; Hooper, Dennis G.

    2010-01-01

    Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard...

  8. Chemolithotrophic Bacteria in Copper Ores Leached at High Sulfuric Acid Concentration

    OpenAIRE

    Vasquez, M.; Espejo, R. T.

    1997-01-01

    Extensive bacterial growth was observed when copper sulfide ores were leached with 0.6 N sulfuric acid. The bacterial population developed in this condition was examined by characterization of the spacer regions between the 16S and 23S rRNA genetic loci obtained after PCR amplification of the DNA extracted from the leached ore. The spacers observed had the sizes found in strains of "Leptospirillum ferrooxidans" and Thiobacillus thiooxidans, except for a larger one, approximately 560 bp long, ...

  9. Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Hollants, Joke; Leroux, Olivier; Leliaert, Frederik; Decleyre, Helen; De Clerck, Olivier; Willems, Anne

    2011-01-01

    Associations between marine seaweeds and bacteria are widespread, with endobiotic bacterial-algal interactions being described for over 40 years. Also within the siphonous marine green alga Bryopsis, intracellular bacteria have been visualized by electron microscopy in the early '70s, but were up to now never molecularly analyzed. To study this partnership, we examined the presence and phylogenetic diversity of microbial communities within the cytoplasm of two Bryopsis species by combining fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Sequencing results revealed the presence of Arcobacter, Bacteroidetes, Flavobacteriaceae, Mycoplasma, Labrenzia, Phyllobacteriaceae and Xanthomonadaceae species. Although the total diversity of the endobiotic communities was unique to each Bryopsis culture, Bacteroidetes, Mycoplasma, Phyllobacteriaceae, and in particular Flavobacteriaceae bacteria, were detected in several Bryopsis samples collected hundreds of kilometres apart. This suggests that Bryopsis closely associates with well-defined endophytic bacterial communities of which some members possibly maintain an endosymbiotic relationship with the algal host. PMID:22028882

  10. Transient electron paramagnetic resonance spectroscopy on green-sulfur bacteria and heliobacteria at two microwave frequencies.

    Science.gov (United States)

    van der Est, A; Hager-Braun, C; Leibl, W; Hauska, G; Stehlik, D

    1998-12-01

    Spin polarized transient EPR spectra taken at X-band (9 GHz) and K-band (24 GHz) of membrane fragments of Chlorobium tepidum and Heliobacillus mobilis are presented along with the spectra of two fractions obtained in the purification of reaction centers (RC) from C. tepidum. The lifetime of P+. is determined by measuring the decay of the EPR signals following relaxation of the initial spin polarization. All samples except one of the RC fractions show evidence of light induced charge separation and formation of chlorophyll triplet states. The lifetime of P+. is found to be biexponential with components of 1.5 ms and 30 ms for C. tepidum and 1.0 and 4.5 ms for Hc. mobilis at 100 K. In both cases, the rates are assigned to recombination from F-X. The spin polarized radical pair spectra for both species are similar and those from Hc. mobilis at room temperature and 100 K are identical. In all cases, an emission/absorption polarization pattern with a net absorption is observed. A slight narrowing of the spectra and a larger absorptive net polarization is found at K-band. No out-of-phase echo modulation is observed. Taken together, the recombination kinetics, the frequency dependence of the spin polarization and the absence of an out-of-phase echo signal lead to the assignment of the spectra to the contribution from P+. to the state P+.F-X. The origin of the net polarization and its frequency dependence are discussed in terms of singlet-triplet mixing in the precursor. It is shown that the field-dependent polarization expected to develop during the 600-700 ps lifetime of P+.A-.0 is in qualitative agreement with the observed spectra. The identity that the acceptor preceding FX and the conflicting evidence from EPR, optical methods and chemical analyses of the samples are discussed. PMID:9838060

  11. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria

    CERN Document Server

    Fujita, Takatoshi; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alan

    2013-01-01

    Chlorosomes are the largest and most efficient natural light-harvesting antenna systems. They contain thousands of pigment molecules - bacteriochlorophylls (BChls)- that are organized into supramolecular aggregates and form a very efficient network for excitonic energy migration. Here, we present a theoretical study of excitation energy transfer (EET) in the chlorosome based on experimental evidence of the molecular assembly. Our model for the exciton dynamics throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of supramolecular structure, and electronic structure calculations of the excited states. The simulation results reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to se...

  12. Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria

    CERN Document Server

    Fujita, Takatoshi; Saikin, Semion K; Aspuru-Guzik, Alan

    2012-01-01

    Chlorosomes are likely the largest and most efficient natural light-harvesting photosynthetic antenna systems. They are composed of large numbers of bacteriochlorophylls organized into supramolecular aggregates. We explore the microscopic origin of the fast excitation energy transfer in the chlorosome using the recently-resolved structure and atomistic-detail simulations. Despite the dynamical disorder effects on the electronic transitions of the bacteriochlorophylls, our simulations show that the exciton delocalizes over the entire aggregate in about 200 fs. The memory effects associated to the dynamical disorder assist the exciton diffusion through the aggregates and enhance the diffusion coefficients as a factor of two as compared to the model without memory. Furthermore, exciton diffusion in the chlorosome is found to be highly anisotropic with the preferential transfer towards the baseplate, which is the next functional element in the photosynthetic system.

  13. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1

    DEFF Research Database (Denmark)

    Kjaer, B; Frigaard, N-U; Yang, F; Zybailov, B; Miller, M; Golbeck, J H; Scheller, H V

    1998-01-01

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of.......7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous to...

  14. Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta)

    OpenAIRE

    Hollants, J.; Leroux, O.; Leliaert, F.; Decleyre, H.; De Clerck, O.; Willems, A

    2011-01-01

    Associations between marine seaweeds and bacteria are widespread, with endobiotic bacterial-algal interactions being described for over 40 years. Also within the siphonous marine green alga Bryopsis, intracellular bacteria have been visualized by electron microscopy in the early ‘70s, but were up to now never molecularly analyzed. To study this partnership, we examined the presence and phylogenetic diversity of microbial communities within the cytoplasm of two Bryopsis species by combining fl...

  15. Molecular Characterization of Novel Red Green Nonsulfur Bacteria from Five Distinct Hot Spring Communities in Yellowstone National Park

    OpenAIRE

    Boomer, Sarah M.; Lodge, Daniel P.; DUTTON, BRYAN E.; Pierson, Beverly

    2002-01-01

    We characterized and compared five geographically isolated hot springs with distinct red-layer communities in Yellowstone National Park. Individual red-layer communities were observed to thrive in temperatures ranging from 35 to 60°C and at pH 7 to 9. All communities were dominated by red filamentous bacteria and contained bacteriochlorophyll a (Bchl a), suggesting that they represented novel green nonsulfur (GNS) bacteria. The in vivo absorption spectra of individual sites were different, wi...

  16. Existing and emerging technologies that exploit sulfur cycling bacteria in subsurface petroleum reservoir microbial communities (Invited)

    Science.gov (United States)

    Hubert, C. R.

    2013-12-01

    Fossil fuels remain by far our most important energy resources, providing around 90% of global primary energy supply. In the coming decadal transition between petroleum reliance and a more sustainable energy future we must increasingly view our vital petroleum reserves as microbial ecosystems that can be engineered to responsibly and creatively meet the energy needs of societies worldwide. In this way, the bioenergy agenda must interface with the traditional geoenergy industry and the challenges it faces. Bioengineering and deep biosphere geomicrobiology focus on the ecophysiology and biogeography of microorganisms in subsurface habitats including marine sediments and petroleum reservoirs. Understanding microbial communities in fossil fuel deposits will allow their distribution and catalytic potential to be exploited as geobiotechnologies that target known problem areas including sulfur cycle management related to biodesulfurization of heavy oils and reservoir souring control via nitrate injection, as well as promising emerging directions such as understanding subsurface geofluid dispersal vectors that could enable microbes to be used as bio-indicators in offshore oil and gas exploration. Results related to different research themes within contemporary petroleum geomicrobiology and bioengineering at Newcastle University will be presented with a focus on microorganisms involved in sulfur cycling that are commonly detected in different oil field microbial communities including mesophilic sulfide-oxidizing Epsilonproteobacteria and thermophilic sulfate-reducers belonging to the genus Desulfotomaculum.

  17. Artificial photosynthesis modeled on green bacteria; Ryokushoku kogosei saikin wo moderu toshita jinko kogoseikei no sosei

    Energy Technology Data Exchange (ETDEWEB)

    Tamiaki, Hitoshi [Ritsumeikan University, Kyoto (Japan). Dept. of Bioscience and Biotechnology

    1999-12-16

    An artificial antenna system formed by novel synthetic zinc-chlorins was prepared as a model of extramembranous light-harvesting apparatus of photosynthetic green bacteria. Self-aggregates of the model compounds in aqueous solution of several surfactant and in non-polar organic solvents gave similar supramolecular structures with natural antennae, indicating that peptides are not important for construction of the antenna core part. Energy transfer from the self-aggregates to a bacteriochlorin was observed, which mimicked function of natural antennae, i. e., energy migrating from bacteriochlorophyll-c aggregates to bacteriochlorophyll-a. Elucidation of the supramolecular structure revealed that order self-assembly is necessary for ultra-fast and highly efficient energy transfer in the photosynthetic antennae. (author)

  18. Green Synthesis and Characterization of Silver Nanoparticles for Antimicrobial Activity Against Burn Wounds Contaminating Bacteria

    Science.gov (United States)

    Rout, Anandini; Jena, Padan K.; Sahoo, Debasish; Parida, Umesh K.; Bindhani, Birendra K.

    2014-04-01

    Silver nanoparticles (AgNPs) were prepared from the plant extract of N. arbor-tristis under atmospheric conditions through green synthesis and characterized by various physicochemical techniques like UV-Visible spectroscopy, IR Spectra, energy dispersive X-ray spectrometry (EDS), X-ray diffraction and transmission electron microscopy (TEM) and the results confirmed the synthesis of homogeneous and stable AgNPs by the plant extracts. The antimicrobial activity of AgNPs was investigated against most common bacteria found in burn wound Staphylococcus epidermidis and Pseudomonas aeruginosa. In these tests, Mueller Hinton agar plates were used with AgNPs of various concentrations, supplemented in liquid systems. P. aeruginosa was inhibited at the low concentration of AgNPs, whereas the growth-inhibitory effect on S. epidermidis was mild. These results suggest that AgNPs can be used as effective growth inhibitors of various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

  19. Characterization of lactic acid bacteria from naturally-fermented Manzanilla Aloreña green table olives.

    Science.gov (United States)

    Abriouel, Hikmate; Benomar, Nabil; Cobo, Antonio; Caballero, Natacha; Fernández Fuentes, Miguel Ángel; Pérez-Pulido, Rubén; Gálvez, Antonio

    2012-12-01

    Manzanilla Aloreña (or Aloreña) table olives are naturally fermented traditional green olives with a denomination of protection (DOP). The aim of this study was to search for lactic acid bacteria (LAB) with technological properties of interest for possible inclusion in a starter or protective culture preparation or also as probiotics. A collection of 144 LAB obtained from Aloreña green table olives naturally-fermented by four small-medium enterprises (SMEs) from Málaga (Spain), including lactobacilli (81.94%), leuconostocs (10.42%) and pediococci (7.64%) were studied. REP-PCR clustering and further identification of strains by sequencing of phes and rpo genes revealed that all lactobacilli from the different SMEs were Lactobacillus pentosus. Pediococci were identified as Pediococcus parvulus (SME1) and leuconostocs as Leuconostoc pseudomesenteroides (SME1 and SME4). Genotyping revealed that strains were not clonally related and exhibited a considerable degree of genomic diversity specially for lactobacilli and also for leuconostocs. Some strains exhibit useful technological properties such as production of antimicrobial substances active against pathogenic bacteria such as Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Streptococcus mutans and Salmonella enterica, utilization of raffinose and stachyose, production of bile salt hydrolase, phytase and haeme-dependent catalase activities, growth at 10 °C and in the presence of 6.5% NaCl, good acidifying capacity and also resistance to freezing. However, none of the isolates showed protease or amylase activity, and also did not exhibit biogenic amine production from histidine, ornithine, cysteine or tyrosine. On the basis of data obtained, selected strains with potential traits were tested for their survival at low pH and their tolerance to bile salts, and the survival capacity demonstrated by some of the analysed strains are encouraging to further study their potential as probiotics. PMID:22986194

  20. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations.

    OpenAIRE

    Madigan, M. T.; Takigiku, R; Lee, R. G.; Gest, H.; J. M. Hayes

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacter...

  1. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Directory of Open Access Journals (Sweden)

    Ghabbour, N.

    2011-03-01

    Full Text Available A total of 177 strains of lactic acid bacteria (LAB were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%, Lactobacillus pentosus (25.99%, Lactobacillus brevis (9.61% and Pediococcus pentosaceus (19.77%. All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3% were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo- 4-chloro-3-indolyl ?-D-glucuronide (X-Gluc as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis.

    Un total de 177 cepas de bacterias ácido lácticas (LAB fueron aisladas en las primeras etapas de la fermentación de aceitunas verdes marroquíes Picholine, incluyendo Lactobacillus plantarum (44.63%, Lactobacillus pentosus (25.99%, Lactobacillus brevis (9.61% y Pediococcus pentosaceus (19.77%. Todos los aislados fueron evaluados mediante su tolerancia a extractos de hojas de olivo y oleuropeína. La mayoría de los aislados (85,3% degradaron oleuropeína, cuando fueron evaluados usando oleuropeína o 5-Bromo-4-cloro- 3-indolil ?-D-glucuronido (X-Gluc como sustrato. La capacidad de biodegradación de las cepas seleccionadas para cada especie fue confirmada mediante análisis por HPLC.

  2. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    FrançoisThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  3. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu

    2012-12-06

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  4. Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lucia; Mannelli, Francesca; Viti, Carlo; Adessi, Alessandra; De Philippis, Roberto [Department of Agricultural Biotechnology, University of Florence, Piazzale delle Cascine 24, I 50144 Florence (Italy)

    2010-11-15

    Seventeen purple non-sulfur bacterial strains, isolated from the trophic lake Averno, Naples, Italy, were phylogenetically classified and their H{sub 2}-producing performances were tested utilizing various synthetic substrates and the fermentation broth derived from the spontaneous fermentation of vegetable residues. All the strains showed the capability to produce hydrogen on at least one of the four carbon substrates tested (malic, lactic, acetic and succinic acid). On lactate, Rhodopseudomonas palustris strain AV33 showed the best maximum production rate (50.7 {+-} 2.6 mL (H{sub 2}) L{sup -1} h{sup -1}), with a mean rate, calculated on the whole period of production, of 17.9 mL {+-} 0.7 (H{sub 2}) L{sup -1} h{sup -1}. In the presence of acetate, AV33 produced only few mL of H{sub 2}, but intracellularly accumulated poly-{beta}-hydroxybutyrate up to a concentration of 21.4 {+-} 3.4% (w/w) of cell dry weight. Rp. palustris AV33 also produced H{sub 2} on the fermentation broth supplemented with Fe, with a maximum production rate of 16.4 {+-} 2.3 mL (H{sub 2}) L{sup -1} h{sup -1} and a conversion yield of 44.2%. (author)

  5. CO2 assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria

    DEFF Research Database (Denmark)

    Storelli, Nicola; Peduzzi, Sandro; Saad, Maged; Frigaard, Niels-Ulrik; Perret, Xavier; Tonolla, Mauro

    2013-01-01

    Lake Cadagno is characterized by a compact chemocline that harbors high concentrations of various phototrophic sulfur bacteria. Four strains representing the numerically most abundant populations in the chemocline were tested in dialysis bags in situ for their ability to fix CO?. The purple sulfur...... bacterium Candidatus 'Thiodictyon syntrophicum' strain Cad16(T) had the highest CO? assimilation rate in the light of the four strains tested and had a high CO? assimilation rate even in the dark. The CO? assimilation of the population represented by strain Cad16(T) was estimated to be up to 25% of the...

  6. Natural polysulfides- reactive sulfur species from Allium with applications in medicine and agriculture

    OpenAIRE

    Anwar, Awais

    2009-01-01

    Natural sulfur compounds from plants, bacteria, fungi and animals frequently exhibit interesting biological activities, such as antioxidant, antimicrobial and anticancer activity. Considering the recent developments in medicine (e.g. oxidative stress in ageing, antibiotic resistant bacteria, and selective anticancer agents) and Agriculture (e.g. 'green'; pesticides), several of these compounds have become the focus of interdisciplinary research. Among the various sulfur agents isolated to dat...

  7. Screening of antagonistic bacteria against the green mold disease (Trichoderma harzianum Rifai of Grey Oyster Mushroom (Pleurotus pulmonarius (Fr. Quel.

    Directory of Open Access Journals (Sweden)

    Nualsri, C.

    2005-01-01

    Full Text Available A total of 174 strains of bacteria antagonistic against the green mold (Trichoderma harzianum, isolated from cultivating bags and fruiting bodies of the mushrooms, were screened for effects on mushroom mycelia and ability to control the green mold disease. Twenty-eight of them promoted the primodia formation of the Pleurotus pulmonarius mycelia on agar plates. Twenty-two isolates were selected and further tested in a mushroom house. Cell suspension of each isolate was prepared and sprayed onto the spawn surface of P. pulmonarius. Fifteen isolates shortened the times required from watering to 2nd and 3rd flushing and increased yield of the basidiocarps by 1.1-34.3% over 30 days. Six isolates of bacteria which showed an inhibitory effect against T. harzianum, enhanced primordia formation and increased yield of P. pulmonarius were selected and used for control testing in a cultivation house. The suspension of each isolate was sprayed onto the spawn surface immediately after exposure to the air in the mushroom house, followed by spore suspension of T. harzianum two days later. The number of infected bags was counted at 30 days after inoculation and the cumulative yield was compared after 60 days. The results showed that bacteria isolate B012-022 was highly effective in suppressing the green mold disease.Only 6.7% of the cultivating bags were found to be infected by T. harzianum when bacteria isolate B012-022 was applied. Cumulative yield obtained from 900 g of 94% sawdust + 5% rice bran + 1% Ca(OH2 was 300.0 g/bag after 60 days, 71.1% higher than the bags infected by the green mold and without bacterial spraying. Identification of the six bacterial isolates showed all to be Bacillus spp.

  8. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1

    DEFF Research Database (Denmark)

    Kjaer, B; Frigaard, N-U; Yang, F; Zybailov, B; Miller, M; Golbeck, J H; Scheller, H V

    1998-01-01

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaquinone-7/reaction center. No other quinones were detected in the isolated reaction centers, whereas membrane preparations also contained chlorobiumquinone. The possible involvement of quinones in electron ...

  9. Augmentation of potential phosphate solubilizing bacteria (PSB stimulate growth of green mustard (Brasica caventis Oed. in marginal soil

    Directory of Open Access Journals (Sweden)

    SULIASIH

    2006-01-01

    Full Text Available The potential of phosphate solubilizing bacteria/PSB (Bacillus megaterium, B. pantothenticus, Chromobacterium lividum and Klebsiella aerogenes were used as biofertilizer to increase the fresh leaf production of green mustard (Brasica caventis Oed.. An experiment was conducted at green house condition. The experiment were used 18 treatments such as single isolate of potential PSB (A,B,C,D, inoculants contain two isolates of potential PSB (E,F,G,H,I,J, inoculants contain three isolates of potential PSB (K, L, M, N, inoculants contain four isolate of potential PSB (O, chemistry fertilizer (P = control 1, organic fertilizer (Q = control 2, and without fertilizer (R = control 3. The treatments were arranged in Completely Randomized Design (CRD with 5 replications. The result showed that the inoculants of potential PSB increased the fresh plant production of green mustard. The mix of four isolates of potential PSB (inoculants O was the best to increase the fresh plant production of green mustard until 32.87% than other PSB inoculants, 207.84% than control 1,217.23% than control 2, and 930.60% than control 3.

  10. Antibiotic resistant bacteria as bio-indicator of polluted effluent in the green turtles, Chelonia mydas in Oman.

    Science.gov (United States)

    Al-Bahry, Saif N; Mahmoud, Ibrahim Y; Al-Zadjali, Maheera; Elshafie, Abdulkader; Al-Harthy, Asila; Al-Alawi, Wafaa

    2011-03-01

    Antibiotic resistant bacteria were studied as bio-indicators of marine polluted effluents during egg-laying in green turtles. A non-invasive procedure for sampling oviductal fluid was used to test for exposure of turtles to pollution in Ras Al-Hadd, Oman, which is one of the most important nesting beaches in the world. Each sample was obtained by inserting a 15 cm sterile swab gently into the cloacal vent as the sphincter muscle is relaxed and the cloacal lining is unfolded to the outside. Forty turtles were sampled. A hundred and thirty-two species of bacteria from 7 genera were isolated. The dominant isolate was Citrobacter. Among the isolates 60.6% were multiple resistant to 15 tested antibiotics. The dominant resistance to antibiotics was ampicillin followed by streptomycin and sulphamethoxazole. Sampling oviductal fluid for resistant bacteria to antibiotics is valuable way to assess exposure to polluted effluents during feeding and migratory in turtles. Polluted effluents using bacteria as bio-indicator may influence reproductive potential in this endangered species. PMID:21237506

  11. New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria

    OpenAIRE

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars Kongsbak; Bjørn, Sara Petersen; Givskov, Michael; Molin, Søren

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variant...

  12. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors.

    Science.gov (United States)

    Sorokin, D Y; van den Bosch, P L F; Abbas, B; Janssen, A J H; Muyzer, G

    2008-10-01

    Thiopaq biotechnology for partial sulfide oxidation to elemental sulfur is an efficient way to remove H(2)S from biogases. However, its application for high-pressure natural gas desulfurization needs upgrading. Particularly, an increase in alkalinity of the scrubbing liquid is required. Therefore, the feasibility of sulfide oxidation into elemental sulfur under oxygen limitation was tested at extremely haloalkaline conditions in lab-scale bioreactors using mix sediments from hypersaline soda lakes as inoculum. The microbiological analysis, both culture dependent and independent, of the successfully operating bioreactors revealed a domination of obligately chemolithoautotrophic and extremely haloalkaliphilic sulfur-oxidizing bacteria belonging to the genus Thioalkalivibrio. Two subgroups were recognized among the isolates. The subgroup enriched from the reactors operating at pH 10 clustered with Thioalkalivibrio jannaschii-Thioalkalivibrio versutus core group of the genus Thioalkalivibrio. Another subgroup, obtained mostly with sulfide as substrate and at lower pH, belonged to the cluster of facultatively alkaliphilic Thioalkalivibrio halophilus. Overall, the results clearly indicate a large potential of the genus Thiolalkalivibrio to efficiently oxidize sulfide at extremely haloalkaline conditions, which makes it suitable for application in the natural gas desulfurization. PMID:18677474

  13. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium.

    Science.gov (United States)

    Anandham, R; Sridar, R; Nalayini, P; Poonguzhali, S; Madhaiyan, M; Sa, Tongmin

    2007-01-01

    The use of Rhizobium inoculant for groundnut is a common practice in India. Also, co-inoculation of Rhizobium with other plant growth-promoting bacteria received considerable attention in legume growth promotion. Hence, in the present study we investigated effects of co-inoculating the sulfur (S)-oxidizing bacterial strains with Rhizobium, a strain that had no S-oxidizing potential in groundnut. Chemolithotrophic S-oxidizing bacterial isolates from different sources by enrichment isolation technique included three autotrophic (LCH, SWA5 and SWA4) and one heterotrophic (SGA6) strains. All the four isolates decreased the pH of the growth medium through oxidation of elemental S to sulfuric acid. Characterization revealed that these isolates tentatively placed into the genus Thiobacillus. Clay-based pellet formulation (2.5 x 10(7) cf ug(-1) pellet) of the Thiobacillus strains were developed and their efficiency to promote plant growth was tested in groundnut under pot culture and field conditions with S-deficit soil. Experiments in pot culture yielded promising results on groundnut increasing the plant biomass, nodule number and dry weight, and pod yield. Co-inoculation of Thiobacillus sp. strain LCH (applied at 60 kg ha(-1)) with Rhizobium under field condition recorded significantly higher nodule number, nodule dry weight and plant biomass 136.9 plant(-1), 740.0mg plant(-1) and 15.0 g plant(-1), respectively, on 80 days after sowing and enhanced the pod yield by 18%. Also inoculation of S-oxidizing bacteria increased the soil available S from 7.4 to 8.43 kg ha(-1). These results suggest that inoculation of S-oxidizing bacteria along with rhizobia results in synergistic interactions promoting the yield and oil content of groundnut, in S-deficit soils. PMID:16574388

  14. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli and Pseudomonas putida. The new Gfp variants should be useful for in situ studies of temporal gene expression.

  15. Use of green fluorescent protein to monitor survival of genetically engineered bacteria in aquatic environments.

    OpenAIRE

    Leff, L. G.; Leff, A A

    1996-01-01

    Many methods for detecting model genetically engineered microorganisms (GEMs) in experimental ecosystems rely on cultivation of introduced cells. In this study, survival of Escherichia coli was monitored with the green fluorescent protein (GFP) gene. This approach allowed enumeration of GEMs by both plating and microscopy. Use of the GFP-marked GEMs revealed that E. coli persisted in stream water at higher densities as determined microscopically than as determined by CFU enumeration. The GFP ...

  16. Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria

    International Nuclear Information System (INIS)

    The interactions between Fe(II-III) hydroxysulphate GR(SO42-) and sulphate reducing bacteria (SRB) were studied. The considered SRB, Desulfovibrio desulfuricans subsp. aestuarii ATCC 29578, were added with GR(SO42-) to culture media. Different conditions were envisioned, corresponding to various concentrations of bacteria, various sources of sulphate (dissolved SO42- + GR(SO42-) or GR(SO42-) alone) and various atmospheres (N2:H2 or N2:CO2:H2). In the first part of the study, CO2 was deliberately omitted so as to avoid the formation of carbonated compounds, and GR(SO42-) was the only source of sulphate. Cell concentration increases from ?4 x 107 to ?7 x 108 cells/mL in 2 weeks. The evolution with time of the iron compounds, monitored by Raman spectroscopy and X-ray diffraction, showed the progressive formation of a FeS compound, the Fe(III)-containing mackinawite. This result is consistent with the association GR(SO42-)/SRB/FeS observed in rust layers formed on steel in seawater. In the presence of CO2 and additional dissolved sulphate species, a rapid growth of the bacteria could be observed, leading to the total transformation of GR(SO42-) into mackinawite, found in three physico-chemical states (nanocrystalline, crystalline stoichiometric FeS and Fe(III)-containing), and siderite FeCO3.

  17. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).

    Science.gov (United States)

    Etique, Marjorie; Jorand, Frédéric P A; Zegeye, Asfaw; Grégoire, Brian; Despas, Christelle; Ruby, Christian

    2014-04-01

    Green rusts (GRs) are mixed Fe(II)-Fe(III) hydroxides with a high reactivity toward organic and inorganic pollutants. GRs can be produced from ferric reducing or ferrous oxidizing bacterial activities. In this study, we investigated the capability of Klebsiella mobilis to produce iron minerals in the presence of nitrate and ferrous iron. This bacterium is well-known to reduce nitrate using an organic carbon source as electron donor but is unable to enzymatically oxidize Fe(II) species. During incubation, GR formation occurred as a secondary iron mineral precipitating on cell surfaces, resulting from Fe(II) oxidation by nitrite produced via bacterial respiration of nitrate. For the first time, we demonstrate GR formation by indirect microbial oxidation of Fe(II) (i.e., a combination of biotic/abiotic processes). These results therefore suggest that nitrate-reducing bacteria can potentially contribute to the formation of GR in natural environments. In addition, the chemical reduction of nitrite to ammonium by GR is observed, which gradually turns the GR into the end-product goethite. The nitrogen mass-balance clearly demonstrates that the total amount of ammonium produced corresponds to the quantity of bioreduced nitrate. These findings demonstrate how the activity of nitrate-reducing bacteria in ferrous environments may provide a direct link between the biogeochemical cycles of nitrogen and iron. PMID:24605878

  18. Characterizing mechanisms of extracellular electron transport in sulfur and iron-oxidizing electrochemically active bacteria isolated from marine sediments

    Science.gov (United States)

    Rowe, A. R.; Bird, L. J.; Lam, B. R.; Nealson, K. H.

    2014-12-01

    Lithotrophic reactions, including the oxidation of mineral species, are often difficult to detect in environmental systems. This could be due to the nature of substrate or metabolite quantification or the rapid consumption of metabolic end products or intermediates by proximate biological or abiotic processes. Though recently genetic markers have been applied to detecting these processes in environmental systems, our knowledge of lithotrophic markers are limited to those processes catalyzed by organisms that have been cultured and physiologically characterized. Here we describe the use of electrochemical enrichment techniques to isolate marine sediment-dwelling microbes capable of the oxidation or insoluble forms of iron and sulfur including both the elemental species. All the organisms isolated fall within the Alphaproteobacteria and Gammaproteobacteria and are capable of acquiring electrons from an electrode while using either oxygen or nitrate as a terminal electron acceptor. Electrochemical analysis of these microbes has demonstrated that, though they have similar geochemical abilities (either sulfur or iron oxidation), they likely utilize different biochemical mechanisms demonstrated by the variability in dominant electron transfer modes or interactions (i.e., biofilm, planktonic or mediator facilitated interactions) and the wide range of midpoint potentials observed for dominant redox active cellular components (ranging from -293 to +50 mV vs. Ag/AgCl). For example, organisms isolated on elemental sulfur tended to have higher midpoint potentials than iron-oxidizing microbes. A variety of techniques are currently being applied to understanding the different mechanisms of extracellular electron transport for oxidizing an electrode or corresponding insoluble electron donor including both genomic and genetic manipulation experiments. The insight gained from these experiments is not limited to the physiology of the organisms isolated but will also aid in identification of genetic targets to better understand the ecologic importance of lithotrophs and the role solid substrates may play in their metabolism.

  19. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria.

    OpenAIRE

    Giovannoni, S J; Rappé, M S; Vergin, K L; Adair, N L

    1996-01-01

    Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of ...

  20. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  1. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Nagaraj Bharath

    2015-01-01

    Full Text Available Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg, Prevotella intermedia (Pi, Fusobacterium nucleatum (Fn and Aggregatibacter actinomycetemcomitans (Aa. Materials and Methods: Minimum inhibitory concentrations (MICs and minimum bactericidal concentrations (MBC were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 ?g/ml whereas Fn showed sensitive at concentration of 3.125 ?g/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  2. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. PMID:25797103

  3. Isolation and phylogenetic characterization of iron-sulfur-oxidizing heterotrophic bacteria indigenous to nickel laterite ores of Sulawesi, Indonesia: Implications for biohydrometallurgy

    Science.gov (United States)

    Chaerun, Siti Khodijah; Hung, Sutina; Mubarok, Mohammad Zaki; Sanwani, Edy

    2015-09-01

    The main objective of this study was to isolate and phylogenetically identify the indigenous iron-sulfur-oxidizing heterotrophic bacteria capable of bioleaching nickel from laterite mineral ores. The bacteria were isolated from a nickel laterite mine area in South Sulawesi Province, Indonesia. Seven bacterial strains were successfully isolated from laterite mineral ores (strains SKC/S-1 to SKC/S-7) and they were capable of bioleaching of nickel from saprolite and limonite ores. Using EzTaxon-e database, the 16S rRNA gene sequences of the seven bacterial strains were subjected to phylogenetic analysis, resulting in a complete hierarchical classification system, and they were identified as Pseudomonas taiwanensis BCRC 17751 (98.59% similarity), Bacillus subtilis subsp. inaquosorum BGSC 3A28 (99.14% and 99.32% similarities), Paenibacillus pasadenensis SAFN-007 (98.95% and 99.33% similarities), Bacillus methylotrophicus CBMB 205 (99.37% similarity), and Bacillus altitudinis 41KF2b (99.37% similarity). It is noteworthy that members of the phylum Firmicutes (in particular the genus Bacillus) predominated in this study, therefore making them to have the high potential to be candidates for the bioleaching of nickel from laterite mineral ores. To our knowledge, this is the first report on the predominance of the phylum Firmicutes in the Sulawesi laterite mineral ores.

  4. New aromatic biomarkers in sulfur-rich coal

    Energy Technology Data Exchange (ETDEWEB)

    Gorchs, R.; Olivella, M.A.; Heras, F.X.C. de las [Escola Universitaria Politecnica de Manresa, Catalonia (Spain)

    2003-12-01

    A molecular study of linear, branched and isoprenyl alkylbenzene skeletons and alkenylbenzenes in the soluble fraction extracted from a sulfur-rich Utrillas coal was carried out using gas chromatography-mass spectrometry (GC-MS). The presence of C{sub 24}-C{sub 28} diaromatic compounds, not previously reported in coals, suggests that photosynthetic green sulfur bacteria may have made an input of organic matter to these coals. The unsaturated linear alkenylbenzenes and isoprenyl (C{sub 15} and C{sub 20}) alkylbenzene skeletons are also described for the first time in the soluble fraction of geological samples. (author)

  5. Antioxidant efficacy of crude methanol extract of ashitaba green tea against radiation induced oxidative stress in E.coli K12 bacteria

    International Nuclear Information System (INIS)

    This study was undertaken to evaluate the antioxidant activity of methanol crude extract of ashitaba green tea (G). The DPPH scavenging assay was evaluated for green tea extract to determine its radical scavenging capacity. The bacteria was pretreated with ashitaba green tea extract, quercetin (Q) and (-) epigallocatechin -3-gallate (E) at below MIC level. Oxidative stress was induced at 0.4 Gy using gamma radiation. The antioxidant efficacy of ashitaba green tea was evaluated through enzyme antioxidant studies like SOD (Superoxidedismutase) and CAT (Catalase). The oxidative stress marker Thiobarbituric acid-reactive substance (TBARS) was also evaluated. Further the protective efficacy of the(G) was confirmed by colony forming units (CFU) study. Among the tested compounds the crude extract of ashitaba (G) exhibited excellent antioxidant activity in comparison with quercetin and (-) epigallocatechin -3-gallate. (abstract)

  6. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short precursors now gives us easy access to these extended molecules. PMID:26886879

  7. A Green and Highly Efficient Solvent-free Synthesis of Novel Calicx[4]resorcinarene Derivatives Using Tungstate Sulfuric Acid

    International Nuclear Information System (INIS)

    A facile and simple procedure for the synthesis of novel and known calix[4]resorcinarene derivatives were developed via a reaction of arylaldehydes with resorcinol in the presence of catalytic amounts of tungstate sulfuric acid (TSA) under solvent-free conditions. This eco-friendly method has many appealing attributes, such as excellent yields, short reactions times, use of safe and recoverable catalyst, and simple work-up procedures. TSA was characterized by powdered X-ray diffraction (XRD), X-ray fluorescence (XRF) and FTIR spectroscopy

  8. A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Pau Richard N

    2003-12-01

    Full Text Available Abstract Background The transition metal molybdenum is essential for life. Escherichia coli imports this metal into the cell in the form of molybdate ions, which are taken up via an ABC transport system. In E. coli and other Proteobacteria molybdenum metabolism and homeostasis are regulated by the molybdate-responsive transcription factor ModE. Results Orthologues of ModE are widespread amongst diverse prokaryotes, but not ubiquitous. We identified probable ModE-binding sites upstream of genes implicated in molybdenum metabolism in green sulphur bacteria and methanogenic Archaea as well as in Proteobacteria. We also present evidence of horizontal transfer of nitrogen fixation genes between green sulphur bacteria and methanogenic Archaea. Conclusions Whereas most of the archaeal helix-turn-helix-containing transcription factors belong to families that are Archaea-specific, ModE is unusual in that it is found in both Archaea and Bacteria. Moreover, its cognate upstream DNA recognition sequence is also conserved between Archaea and Bacteria, despite the fundamental differences in their core transcription machinery. ModE is the third example of a transcriptional regulator with a binding signal that is conserved in Bacteria and Archaea.

  9. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vaibhavkumar N. [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India); Jha, Sanjay [Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, 395007 (India); Kailasa, Suresh Kumar, E-mail: sureshkumarchem@gmail.com [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India)

    2014-05-01

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ? 3 nm and showed bright blue fluorescence under UV-light (?{sub ex} = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ? 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells.

  10. Green Fluorescent Protein-Labeled Monitoring Tool To Quantify Conjugative Plasmid Transfer between Gram-Positive and Gram-Negative Bacteria

    OpenAIRE

    Arends, Karsten; Schiwon, Katarzyna; Sakinc, Türkan; Hübner, Johannes; Grohmann, Elisabeth

    2012-01-01

    On the basis of pIP501, a green fluorescent protein (GFP)-tagged monitoring tool was constructed for quantifying plasmid mobilization among Gram-positive bacteria and between Gram-positive Enterococcus faecalis and Gram-negative Escherichia coli. Furthermore, retromobilization of the GFP-tagged monitoring tool was shown from E. faecalis OG1X into the clinical isolate E. faecalis T9.

  11. Synthesis of self-aggregative zinc chlorophylls possessing polymerizable esters as a atable model compound for main light-harvesting antennas of green photosynthetic bacteria

    OpenAIRE

    Reiko Shibata; Kazuya Nishihara; Hitoshi Tamiaki

    2006-01-01

    Zinc bacteriochlorophyll-d derivatives possessing a polymerizable moiety at the 17-propionate were prepared as model compounds of natural occurring chlorophylls in the main peripheral antennas of green photosynthetic bacteria (chlorosomes). The synthetic compounds self-aggregated in nonpolar organic solvents as well as in the solid state to give large oligomers similar to chlorosomal J-aggregates. Such introduction of the polymerizable groups in the ester did not suppress the ability of ...

  12. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    OpenAIRE

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon ...

  13. Purification of water polluted with oil and sulfurous closed-ring and aromatic compounds contained in oil and oil products using bacteria relating to thiosphaera

    International Nuclear Information System (INIS)

    The intensity of natural purification (self-purification) of reservoirs polluted with oil and oil products is determined by microorganisms. Hydrocarbon-oxidizing microorganisms are constant natural constituent of biocenose in reservoirs. However, as a result of outflows, the oil and oil products concentration exceeds maximum values allowing normal vital functions of microorganisms resulting in breaking micro-biocenose suppression of vital functions of bacteria. In this regard, elective anaerobic microorganisms of Thiosphaera are worthy of notice. We found out that bacteria belonging to Thiosphaera pantotropha decomposed oil at high oil concentrations in water (at oil concentration like 1 liter of oil in 1 liter of water). And this is when aerobic microorganisms lose their vital functions at maximum concentration of 20 g of oil in 1 liter of water. To intensify the process of oil decomposition we emulsified oil with aqueous solutions of salts. Thiosphaera pantotropha are found out to decompose oil in a wide range of ratio between oil and aqueous solutions of salts: from 1:10 to 10:1. The water solutions salinity made from 20 g/l to 80 g/l. It must be noticed that, since the Thiosphaera pantotropha are elective anaerobes and decompose oil both in presence and in absence of oxygen, it is not necessary anymore to conduct the process under strictly anaerobic conditions and to supply additional oxygen. This makes it possible to simplify the process of biodegradation of oil and to make this process practically more feasible and economically more profitable being compared to the processes based on the use of other species of bacteria. We found out that Thiosphaera decompose sulfurous closed-ring and aromatic compounds in oil which are chemically and thermally stable and can be hardly decomposed, and possess extremely poisonous properties, as well. The use of microorganisms of Thiosphaera pantotropha allows to purify waters polluted with oil and oil products both during planned purification of old impurities and in cases of emergency, in cases of oil outflows. (authors)

  14. Developing a Biofilm of Sulfur Oxidizing Bacteria, Starting-up and Operating a Bioscrubber Treating H2S

    Directory of Open Access Journals (Sweden)

    Gholamreza Moussavi

    2007-01-01

    Full Text Available Development of an acclimatized SOB biofilm, startup and performance of a fixed bed bioscrubber packed with corrugated tube parts as a media having high specific surface area was investigated. Bioscrubber was a cylindrical Plexiglas air-and water-tight column with 10 L in working bed volume. Sludge from a tannery wastewater treatment plant was used as a seed for SOB separation, acclimation and enrichment. Enriched acclimatized SOB were applied as inoculum for biofilm development, which was carried out by recirculating the prepared microbial suspension through the bed. Thickness of the developed biofilm was 56 μm in which active acidophilic autotrophic H2S oxidizing bacteria were completely predominated. Activity measurements showed highest biodegradation rate of biofilm at liquid pH around 3. Due to employing an efficient specialized biofilm, startup period of the reactor was quite short and H2S removal efficiency just 12 h after starting up reached above of 92% and increased to 96% at day 3 of starting up while inlet H2S concentration gradually was increased to around 30 ppm. At the end of start up pH of the recycle liquid was modified to the optimal value of 3±0.5 in which biofilm demonstrated the highest activity in terms of OUR after which removal efficiency increased around 3% while other operating conditions were consistent. Furthermore, performance of the bioscrubber was evaluated at various inlet H2S concentrations ranging from 30 to 150 ppmv. It was indicated that the inlet H2S concentrations in studied range did not affect the performance of the bioscrubber so that the removal efficiency of H2S was greater than 99.4% at all concentrations. These observations suggested that the development of an efficient specialized SOB biofilm on a media with high specific surface area will decrease the startup course and achieve high removal efficiency in the bioscrubber treating H2S. In addition, operation in acidic recycle liquid will overcome use of alkaline to adjust the pH, which reduce the operation cost of the control system.

  15. Benevolent behavior of Kleinia grandiflora leaf extract as a green corrosion inhibitor for mild steel in sulfuric acid solution

    Science.gov (United States)

    Pitchaipillai, Muthukrishnan; Raj, Karthik; Balasubramanian, Jeyaprabha; Periakaruppan, Prakash

    2014-11-01

    The ethanolic extract of Kleinia grandiflora leaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and X-ray diffraction analysis. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 308 to 328 K. The inhibition efficiency was observed to increase with increasing concentration of the extract. Polarization curves revealed that the Kleinia grandiflora leaf extract is a mixed inhibitor. Impedance diagrams revealed that an increase of Kleinia grandiflora leaf extract concentration increased the charge transfer resistance and decreased the double-layer capacitance. The adsorption process obeys Langmuir's model, with a standard free energy of adsorption (? G ads) of -18.62 kJ/mol. The obtained results indicate that the Kleinia grandiflora leaf extract can serve as an effective inhibitor for the corrosion of mild steel in a sulfuric acid medium.

  16. Macro-benefits from boron, zinc and sulfur application in Indian SAT a step for grey to green revolution in agriculture

    Directory of Open Access Journals (Sweden)

    TJ Rego

    2006-08-01

    Full Text Available The semi-arid tropics (SAT, spread over 11.6 million KM square worldwide, is home to millions of poor people. The soils are low in fertility and degraded to varying extent. The climate is characterized by undependable rainfall, high average temperature and water stress situations for crop growth. The SAT is densely populated and a large number of poor in this region depend on agriculture. The green revolution in Asia bypassed the large tracts of rainfed systems. ICRISAT is committed to improve livelihoods of millions of poor living in the SAT by undertaking agricultural research for impact in a partnership mode. The new watershed model emphasize the management of water as an entry point for improving livelihoods through convergence of natural resource-based activities. ICRISAT's on-farm community watershed research in Asia revealed that the SAT's subsistence agricultural systems have soils depleted not only in macronutrients but also in micronutrients such as zinc and boron, and secondary nutrients like sulfur beyond the critical limits. Widespread (80-100% deficiencies of micro and secondary nutrients were observed in farmers' field in Andhra Pradesh, India. Substantial increase in yields by 20 to 80% due to micronutrient amendments, and a further increase by 70 to 120% due to micronutrients and adequate nitrogen (N and phosphorus (P amendments in a number of crops (maize, sorghum, mung bean, pigeonpea, castor, chickpea in farmers' fields were observed. Besides minimizing land degradation, increased use efficiency of the inputs such as N and P fertilizers, as well as rainwater, resulted in increased profits and increased productivity. These natural resource management (NRM interventions are integrated with improved genotypes to harness the full benefits in the watershed. The integrated genetic and natural resource management (IGNRM approach adopted in watersheds will thus make the grey to green revolution a reality.

  17. Reconstitution of an Active Magnesium Chelatase Enzyme Complex from the bchI, -D, and -H Gene Products of the Green Sulfur Bacterium Chlorobium vibrioforme Expressed in Escherichia coli

    OpenAIRE

    Petersen, Bent L.; Jensen, Poul Erik; Gibson, Lucien C D; Stummann, Bjarne M.; Hunter, C. Neil; Henningsen, Knud W.

    1998-01-01

    Magnesium-protoporphyrin chelatase, the first enzyme unique to the (bacterio)chlorophyll-specific branch of the porphyrin biosynthetic pathway, catalyzes the insertion of Mg2+ into protoporphyrin IX. Three genes, designated bchI, -D, and -H, from the strictly anaerobic and obligately phototrophic green sulfur bacterium Chlorobium vibrioforme show a significant level of homology to the magnesium chelatase-encoding genes bchI, -D, and -H and chlI, -D, and -H of Rhodobacter sphaeroides and Synec...

  18. Skin Bacteria Diversity and Spatial Distribution in Litoria genimaculata (GREEN- EYED TREE FROG Body Parts and its Bd-Inhibitory Activity -abstract-

    Directory of Open Access Journals (Sweden)

    Martha L Silva-Velasco

    2014-12-01

    Full Text Available Several amphibian skin bacteria have shown inhibitory activity against the pathogenic fungus Batrachochytrium dendrobatidis (Bd. However‚ little is known about the spatial distribution of these inhibitory bacteria on amphibian skin‚ or their diversity. We looked at the diversity and distribution of skin bacteria of the green-eyed tree frog Litoria genimaculata. This stream-dwelling species from North Queensland rainforest declined in the early 1990s but has since recovered to pre-decline range population sizes. Swabs were taken from 5 body parts (hands‚ feet‚ legs and dorsal and ventral surfaces and inoculated onto agar plates for isolation of bacterial colonies. Bd- inhibitory activity was tested in challenge essays. Results show that feet had the highest number of bacterial isolates with Bd inhibitory activity followed by hands and legs with similar numbers of bacterial isolates and ventral body parts in that order. The dorsal surface had the lowest number of Bd inhibitory isolates. No sampled frogs were infected with Bd according to PCR assays‚ although Bd is endemic at the site. Information from morphological observations and Gram stains will be used to classify the bacterial isolates. Results will be analyzed for any patterns of distribution across the body of the frogs. Possible associations between body parts and bacterial isolates with and without Bd-inhibitory activity will be examined. This study will contribute to knowledge of the community structure of skin bacteria in frogs. Characterization of skin bacteria diversity is one of the first steps in understanding the role of amphibian skin bacteria in the resistance of the hosts to chytridiomycosis.

  19. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    International Nuclear Information System (INIS)

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λex = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells

  20. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors

    OpenAIRE

    Sorokin, D.Y.; Bosch, P.L.F., van den; Abbas, B.; Janssen, A.J.H.; Muyzer, G.

    2008-01-01

    Thiopaq biotechnology for partial sulfide oxidation to elemental sulfur is an efficient way to remove H2S from biogases. However, its application for high-pressure natural gas desulfurization needs upgrading. Particularly, an increase in alkalinity of the scrubbing liquid is required. Therefore, the feasibility of sulfide oxidation into elemental sulfur under oxygen limitation was tested at extremely haloalkaline conditions in lab-scale bioreactors using mix sediments from hypersaline soda la...

  1. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors :

    OpenAIRE

    Sorokin, D.Y.; Van den Bosch, P.L.F.; Abbas, B.; Janssen, A.J.H.; Muyzer, G.

    2008-01-01

    Thiopaq biotechnology for partial sulfide oxidation to elemental sulfur is an efficient way to remove H2S from biogases. However, its application for high-pressure natural gas desulfurization needs upgrading. Particularly, an increase in alkalinity of the scrubbing liquid is required. Therefore, the feasibility of sulfide oxidation into elemental sulfur under oxygen limitation was tested at extremely haloalkaline conditions in lab-scale bioreactors using mix sediments from hypersaline soda la...

  2. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    Science.gov (United States)

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-07-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 ? values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

  3. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by...... actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the...

  4. Diversity and enumeration of halophilic and alkaliphilic bacteria in Spanish-style green table-olive fermentations.

    Science.gov (United States)

    Lucena-Padrós, Helena; Ruiz-Barba, José Luis

    2016-02-01

    The presence and enumeration of halophilic and alkaliphilic bacteria in Spanish-style table-olive fermentations was studied. Twenty 10-tonne fermenters at two large manufacturing companies in Spain, previously studied through both culture dependent and independent (PCR-DGGE) methodologies, were selected. Virtually all this microbiota was isolated during the initial fermentation stage. A total of 203 isolates were obtained and identified based on 16S rRNA gene sequences. They belonged to 13 bacterial species, included in 11 genera. It was noticeable the abundance of halophilic and alkaliphilic lactic acid bacteria (HALAB). These HALAB belonged to the three genera of this group: Alkalibacterium, Marinilactibacillus and Halolactibacillus. Ten bacterial species were isolated for the first time from table olive fermentations, including the genera Amphibacillus, Natronobacillus, Catenococcus and Streptohalobacillus. The isolates were genotyped through RAPD and clustered in a dendrogram where 65 distinct strains were identified. Biodiversity indexes found statistically significant differences between both patios regarding genotype richness, diversity and dominance. However, Jaccard similarity index suggested that the halophilic/alkaliphilic microbiota in both patios was more similar than the overall microbiota at the initial fermentation stage. Thus, up to 7 genotypes of 6 different species were shared, suggesting adaptation of some strains to this fermentation stage. Morisita-Horn similarity index indicated a high level of codominance of the same species in both patios. Halophilic and alkaliphilic bacteria, especially HALAB, appeared to be part of the characteristic microbiota at the initial stage of this table-olive fermentation, and they could contribute to the conditioning of the fermenting brines in readiness for growth of common lactic acid bacteria. PMID:26678130

  5. Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy

    Science.gov (United States)

    Lichtenberg, H.; Prange, A.; Modrow, H.; Hormes, J.

    2007-02-01

    In this `feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of `standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts.

  6. Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy

    International Nuclear Information System (INIS)

    In this 'feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of 'standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts

  7. Green chemistry methods in sulfur dyeing: application of various reducing D-sugars and analysis of the importance of optimum redox potential.

    Science.gov (United States)

    Blackburn, Richard S; Harvey, Anna

    2004-07-15

    The importance of sulfur dyeing of cellulosic fibers, particularly cotton, is realized economically throughout the dyeing industry. At the present time, dyeing with sulfur dyes requires the use of various auxiliaries, many of which have adverse effects on the environment. The most damaging of these is the reducing agent sodium sulfide, required to reduce the dye molecules to a water-soluble leuco form to enable adsorption and diffusion into the fiber. In this study, attempts have been made to replace the sodium sulfide used within the sulfur dyeing process with a variety of environmentally friendly reducing sugars. The redox potential of various hexose and pentose monosaccharides and reducing disaccharides was recorded and compared. Subsequently, cotton was dyed with the world's most important sulfur dye, C. I. Sulfur Black 1, using the reducing sugars under alkaline conditions, and compared to dyeings secured by employing commercial sulfide reducing agents. It was observed that reducing sugars gave comparable, and in many cases superior, color strength and wash fastness results, with respect to the commercial sulfide-based reducing agents, which still account for the vast majority of sulfur dyeing processes and that pose significant environmental concern. Employment of reducing sugars in sulfur dyeing could provide a sustainable, nontoxic, biodegradable, cost-effective alternative to sodium polysulfide and sodium hydrogen sulfide. Comparison of the redox potential of reducing sugars against the color strength of the dyeings secured demonstrated that there was an optimum redox potential of around -650 mV for maximum color strength achieved. The same redox potential also conferred the lowest color loss upon washing. These observations were attributed to reduction of the polymeric dye molecules to an optimum size for fiber affinity and diffusion into the fiber, but which would also confer maximum wash fastness upon oxidation. PMID:15298216

  8. Sulfur as a Matrix for the Development of Microbial Biofilm Communities

    Science.gov (United States)

    Parker, C.; Bell, E.; Johnson, J. E.; Ma, X.; Stamps, B. W.; Rideout, J.; Johnson, H. A.; Vuono, D.; Spear, J. R.; Hanselmann, K.

    2013-12-01

    The high temperature, low oxygen, and high sulfide concentration of many hot springs select for a low diversity of organisms. The stringent requirements for growth and survival limit the types of interactions, which allow the microbial sulfur metabolism to be examined in depth. We combined geochemical, microbial and molecular data to understand mat development in the warm, oxygen-poor sulfidic Stinking Spring, Utah, USA. The upper flow zone of this spring has a variety of observable microbial biofilm structures that are linked to the activities of both sulfide-oxidizing and oxygenic bacteria. The diverse architecture of the microbial assemblages consist of bulbous ridge structures on the bottom of the streambed, floating mats that cover a large portion of the water surface area, and two morphologically different streamers; green long filaments and white shorter filaments, which both contain large amounts of elemental sulfur. We performed structural analysis using phase contrast and epifluorescence microscopy, and SEM coupled with EDS mapping. Amplicon sequenced 16S rRNA genes analyzed by QIIME and ARB indicated that the predominant organisms present were the cyanobacterial genus Leptolyngbya, and an ?-Proteobacteria closely related to the sulfur oxidizing genus Sulfurovum. Metagenomic analysis was conducted on six libraries from three locations using MG-RAST to analyze for genes associated with sulfur metabolism, specifically sulfur oxidation (sox) genes. The presence of sox genes and the microbial sulfur deposition strategy changes downstream as the sulfide concentration decreases. When sulfide is low, the streamers themselves become white and shorter with elemental sulfur deposited intracellularly, and diatoms seem to dominate over cyanobacteria, but do not form associations with the streamer structures. We propose that the microbial biofilms and green streamers present in the sulfide-rich section of the stream are formed in a multi-step process. Initial growth of cyanobacteria on bottom sulfur mats form green bulbous ridges that rise from the streambed by gas produced inside the mat. The bulbous features then break off and form floating mats. This is followed by colonization of remnant filaments by the proposed Sulfurovum. A repeating cycle ensues, in which the Sulfurovum produce a crust of elemental sulfur that the cyanobacteria must migrate past. This slowly builds up a core of elemental sulfur strings sheathed in cyanobacteria. Together, the co-habitation and interactions between sulfide-oxidizing bacteria and photosynthetic cyanobacteria construct visible physical structures that can potentially be preserved in the rock record.

  9. Safe use of genetically modified lactic acid bacteria in food: Bridging the gap between consumers, green groups, and industry

    Scientific Electronic Library Online (English)

    Wilbert, Sybesma; Jeroen, Hugenholtz; Willem M., de Vos; Eddy J., Smid.

    2006-07-15

    Full Text Available Within the European Union (EU), the use of genetically modified organisms (GMOs) in food production is not widely applied and accepted. In contrast to the United States of America, the current EU legislation limits the introduction of functional foods derived from GMOs that may bring a clear benefit [...] to the consumer. Genetically modified lactic acid bacteria (GM-LAB) can be considered as a different class of GMOs, and the European Union is preparing regulations for the risk assessment of genetically modified microorganisms. Since these procedures are not yet implemented, the current risk assessment procedure is shared for GMOs derived from micro organisms, plants, or animals. At present, the use of organisms in food production that have uncontrolled genetic alterations made through random mutagenesis, is permitted, while similar applications with organisms that have controlled genetic alterations are not allowed. The current paper reviews the opportunities that genetically modified lactic acid bacteria may offer the food industry and the consumer. An objective risk profile is described for the use of GM-LAB in food production. To enhance the introduction of functional foods with proven health claims it is proposed to adapt the current safety assessment procedures for (GM)-LAB and suggestions are made for the related cost accountability. A qualified presumption of safety as proposed by SANCO (EU SANCO 2003), based on taxonomy and on the history of safe use of LAB applied in food, could in the near future be applied to any kind of LAB or GM-LAB provided that a series of modern profiling methods are used to verify the absence of unintended effects of altered LAB that may cause harm to the health of the consumer.

  10. Sulfur plumes off Namibia

    Science.gov (United States)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  11. Physico-Chemical and Microbial Quality of Locally Composted and Imported Green Waste Composts in Oman

    OpenAIRE

    SAIFELDIN A.F. EL-NAGERABI; ABDULKADIR E. ELSHAFIE; Al-Bahry, Saif N.; Hasina S. AlRawahi; Huda AlBurashdi

    2011-01-01

    In this work the physical, chemical and microbial properties of four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super along with four imported GWC (Florabella, Mikskaar, Potgrond, and Shamrock) were studied to evaluate the quality of these composts with the acceptable standards. All composts showed normal physical properties, except the bad smell from sulfur reducing bacteria in Almukhasib, light brown color Plantex and one viable weed seed in Shamr...

  12. The Microbial Karst Sulfuric Acid Dynamo

    Science.gov (United States)

    Lyon, E.; Meyer, K.; Koffman, B.; Galdenzi, S.; Macalady, J.

    2004-12-01

    The original model for sulfuric acid speleogenesis attributes limestone dissolution to the oxidation of gaseous H2S to sulfuric acid on limestone cave walls (Egemeier 1981). This model has recently been reexamined in Lower Kane Cave, Wyoming (USA), where the most intense limestone dissolution appears to be the result of microbial colonization of limestone surfaces below the water table (Engel et al. 2004). In contrast, sulfuric acid speleogenesis in the Frasassi Caves (Italy) is equally intense above and below the water table, and is mediated not only by sulfur-oxidizing bacteria but by a complex community of sulfur cycling microorganisms including diverse sulfate-reducing bacteria. The sulfate-reducing bacteria were identified in 16S rDNA clone libraries from both cave walls and cave stream biofilms. These findings suggest a new model for sulfuric acid speleogenesis in which a full range of oxidants and reductants available to indigenous sulfur-cycling microbial communities control the extent of sulfur recycling and sulfuric acid production at limestone surfaces.

  13. Survival of potential probiotic lactic acid bacteria on fermented green table olives during packaging in polyethylene pouches at 4 and 20 °C.

    Science.gov (United States)

    Blana, Vasiliki A; Polymeneas, Napoleon; Tassou, Chrysoula C; Panagou, Efstathios Z

    2016-02-01

    The survival of selected lactic acid bacteria (LAB) with in vitro probiotic potential was studied during storage of cv. Halkidiki green olives previously subjected to inoculated Spanish-style fermentation. After fermentation olives were packed in polyethylene pouches, covered with freshly prepared brine (9%, w/v, NaCl), acidified with 2‰ (w/v) citric acid and 1.5‰ (w/v) ascorbic acid, and stored at 4 and 20 °C for 357 days. Four packing treatments were studied, namely olives previously fermented by (i) the indigenous microbiota (control); (ii) Lactobacillus pentosus B281; (iii) Lactobacillus plantarum B282; and (iv) a co-culture of both LAB strains. Microbiological analyses were performed on the olives in parallel with physicochemical changes (pH, titratable acidity, salt content, aw and colour) at the early (day 1), middle (day 197) and final stage (day 357) of storage, as well as sensory evaluation at the end of the storage. The survival of probiotic strains was confirmed by Pulsed Field Gel Electrophoresis (PFGE). LAB decreased throughout storage reaching a final population of ca. 3.5-4.0 log CFU/g and 4.5-5.0 log CFU/g at 4 and 20 °C, respectively. The pH values ranged between 3.90 and 4.61 during storage depending on packaging condition. PFGE analysis revealed that L. pentosus B281 and L. plantarum B282 showed a high survival rate with a recovery of 100 and 96%, respectively, at 4 °C, and less than 20% for both strains at 20 °C. Finally, in the packing treatment with a co-culture of both strains, L. pentosus dominated over L. plantarum throughout storage at both temperatures. PMID:26678132

  14. Macro-benefits from boron, zinc and sulfur application in Indian SAT a step for grey to green revolution in agriculture

    OpenAIRE

    TJ Rego; SP Wani; KL Sahrawat; G Pardhasaradhi

    2006-01-01

    The semi-arid tropics (SAT), spread over 11.6 million KM square worldwide, is home to millions of poor people. The soils are low in fertility and degraded to varying extent. The climate is characterized by undependable rainfall, high average temperature and water stress situations for crop growth. The SAT is densely populated and a large number of poor in this region depend on agriculture. The green revolution in Asia bypassed the large tracts of rainfed systems. ICRISAT is committed to impro...

  15. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    Science.gov (United States)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    Our understanding of environmental microbiology has been greatly enhanced by community genome sequencing of DNA recovered directly the environment. Community genomics provides insights into the diversity, community structure, metabolic function, and evolution of natural populations of uncultivated microbes, thereby revealing dynamics of how microorganisms interact with each other and their environment. Recent studies have demonstrated the potential for reconstructing near-complete genomes from natural environments while highlighting the challenges of analyzing community genomic sequence, especially from diverse environments. A major challenge of shotgun community genome sequencing is identification of DNA fragments from minor community members for which only low coverage of genomic sequence is present. We analyzed community genome sequence retrieved from biofilms in an acid mine drainage (AMD) system in the Richmond Mine at Iron Mountain, CA, with an emphasis on identification and assembly of DNA fragments from low-abundance community members. The Richmond mine hosts an extensive, relatively low diversity subterranean chemolithoautotrophic community that is sustained entirely by oxidative dissolution of pyrite. The activity of these microorganisms greatly accelerates the generation of AMD. Previous and ongoing work in our laboratory has focused on reconstrucing genomes of dominant community members, including several bacteria and archaea. We binned contigs from several samples (including one new sample and two that had been previously analyzed) by tetranucleotide frequency with clustering by Self-Organizing Maps (SOM). The binning, evaluated by comparison with information from the manually curated assembly of the dominant organisms, was found to be very effective: fragments were correctly assigned with 95% accuracy. Improperly assigned fragments often contained sequences that are either evolutionarily constrained (e.g. 16S rRNA genes) or mobile elements that are not expected to reflect the tetranucleotide frequency signature of the host genome. Four unknown tetranucleotide frequency clusters with significant sequence (6 Mb total) were noted and analyzed further. Based on phylogenetic markers and BLAST results, these clusters represent low abundance bacteria including Acintobacteria, Firmicutes, and Proteobacteria. Functional analysis of these clusters revealved that the low- abundance bacteria harbor genes that could potentially encode important ecosystem functions such as sulfur utilization (e.g. polysulfide reductase) and polymer degradation (e.g. chitinase and glycoside hydrolase). We conclude that ESOM clustering of tetranucleotide frequency patterns is an effective method for rapidly binning shotgun community genomic sequences and a valuable tool for analyzing minor community members, which despite their low abundance may play crucial ecological roles.

  16. Biological and Abiological Sulfur Reduction at High Temperatures †

    OpenAIRE

    Belkin, Shimshon; Wirsen, Carl O.; Jannasch, Holger W.

    1985-01-01

    Reduction of elemental sulfur was studied in the presence and absencè of thermophilic sulfur-reducing bacteria, at temperatures ranging from 65 to 110°C, in anoxic artificial seawater media. Above 80°C, significant amounts of sulfide were produced abiologically at linear rates, presumably by the disproportionation of sulfur. These rates increased with increasing temperature and pH and were enhanced by yeast extract. In the same medium, the sulfur respiration of two recent thermophilic isolate...

  17. Sulfur Mustard

    Science.gov (United States)

    ... mustard is also known as “mustard gas or mustard agent,” or by the military designations H, HD, and ... length of time that people are exposed. Sulfur mustard is a powerful irritant and blistering agent that damages the skin, eyes, and respiratory (breathing) ...

  18. Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus

    DEFF Research Database (Denmark)

    Melø, T B; Frigaard, N-U; Matsuura, K; Razi Naqvi, K

    2000-01-01

    Electronic energy transfer processes in chlorosomes isolated from the green sulphur bacterium Chlorobium tepidum and from the green filamentous bacterium Chloroflexus aurantiacus have been investigated. Steady-state fluorescence excitation spectra and time-resolved triplet-minus-singlet (Tm...... bacteriochlorophyll a (BChla) transfer their triplet excitation to the Car's with nearly 100% efficiency. The lifetime of the Car triplet states is approximately 3 micros, appreciably shorter than that of the Car triplets in the light-harvesting complex II (LHCII) in green plants and in other antenna systems. In both...

  19. Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus

    DEFF Research Database (Denmark)

    Melø, T B; Frigaard, N-U; Matsuura, K; Razi Naqvi, K

    2000-01-01

    Electronic energy transfer processes in chlorosomes isolated from the green sulphur bacterium Chlorobium tepidum and from the green filamentous bacterium Chloroflexus aurantiacus have been investigated. Steady-state fluorescence excitation spectra and time-resolved triplet-minus-singlet (TmS) spectra, recorded at ambient temperature and under non-reducing or reducing conditions, are reported. The carotenoid (Car) pigments in both species transfer their singlet excitation to bacteriochlorophyll c...

  20. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and...... phototrophic sulfide oxidizers. Investigations bridging geology and microbiology have found strong evidence for disproportionating bacteria participating in and enhancing the rate at which pyrite forms and being partly responsible for the isotopic signatures of sulfidic minerals in recent and old sediments...

  1. Sulfur in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Uzhdavini, E.P.; Murzakaev, F.G.

    1984-02-01

    Various aspects of the problem of sulfur pollution of the environment are reviewed. Particular consideration is given to sources of sulfur pollution; the diffusion of sulfur-containing compounds in emissions from industrial plants; and applications of sulfur compounds in industry. Possible ways to control sulfur pollutants are examined. 6 references.

  2. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    International Nuclear Information System (INIS)

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pKa value. (paper)

  3. Uses of lunar sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  4. Sulfur Upwelling off the African Coast

    Science.gov (United States)

    2002-01-01

    Though these aquamarine clouds in the waters off the coast of northern Namibia may look like algae blooms, they are in fact clouds of sulfur produced by anaerobic bacteria on the ocean's floor. This image of the sulfur-filled water was taken on April 24, 2002, by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite. The anaerobic bacteria (bacteria that can live without oxygen) feed upon algae carcasses that exist in abundance on the ocean's floor off of Namibia. As the bacteria ingest the algae husks, they produce hydrogen sulfide, which slowly builds up in the sea-floor sediments. Eventually, the hydrogen sulfide reaches the point where the sediment can no longer contain it, and it bubbles forth. When this poisonous chemical reaches the surface, it combines with the oxygen in the upper layers of the ocean to create clouds of pure sulfur. The sulfur causes the Namibian coast to smell like rotten eggs, and the hydrogen sulfide will often kill fish and drive lobsters away. For more information, read: A Bloom By Any Other Name A high-resolution (250 meters per pixel) image earlier on the 24th taken from the Moderate-Resolution Imaging Spectroradiometer (MODIS) shows additional detail in the plumes. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. MODIS image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  5. Split of sodium and sulfur in a Kraft mill and internal production of sulfuric acid and sodium hydroxide

    OpenAIRE

    Lundblad, Helena

    2012-01-01

    The removal of lignin in a Kraft pulp mill, with the aim to utilize the lignin as more value added green product than just firing lignin in black liquor, is possible with a LignoBoost plant. The LignoBoost plant uses sulfuric acid in the process and this results in an increased net input of sulfur to the pulp mills recovery cycle. The sodium/sulfur balance in a Kraft pulp mill is an important factor to be able to run a mill optimal. The increased input of sulfur into the mill when implementin...

  6. Organic Sulfur Gas Production in Sulfidic Caves

    Science.gov (United States)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic groundwater, this environment may prove to be important to the global sulfur cycle and its influence of the global radiation budget.

  7. Methylotrophic bacteria symbiosis with the higher plants as means of minimization of the lower hydrocarbons concentration during artificial ecosystem gas exchange

    Science.gov (United States)

    Berkovich, Yuliy; Smolyanina, Svetlana; Moukhamedieva, Lana; Mardanov, Robert; Doronina, Nina; Ivanova, Ekaterina

    Plant growth unit should be included in the LSS for the space vehicles for vitamin greens supply and psychological support of cosmonauts during long-term missions. The lower hydrocarbons such as methane, methanol, methylated sulfuric compounds and methylated amines, ethylene and so on, are the natural products of human and plant metabolism and usually considered as the air pollutions. It is shown, that one way to decrease the lower hydrocarbons concentration in the artificial ecosystems could be colonization of the plants by methylotrophic bacteria. The aerobic methylotrophic bacteria possess unique ability to use methane and its oxidized or replaced derivatives without food damage and human, animals or plants infection. We have found that methylotrophic bacteria are the phyto-symbiotic bacteria: they stimulate growth and development of the colonized plants because of synthesizing cytokinins and auxins, and vitamin B12.Two collection strains of the obligate methylotrophic bacteria - Methylovorus mays C and Methylomonas metanica S - were chosen because of their high activity to assimilate the lower hydrocarbons due to functioning of methanoldehydrogenase, methanmonooxigenase and ribulose monophosphate cycle enzymes system.Colonization of the leaf cabbage Brassica chinensis L. by these strains led to approximately 30 % reduce of methanol and methane concentration in the air inside phytotron. Experimental estimations of the influence of methylotrophic bacteria on leafy greens growth and development are obtained.

  8. Greening economy, greening people

    OpenAIRE

    Bandzeladze, T.

    2013-01-01

    Green economy is one that generates increasing prosperity while maintaining the natural systems that sustain us. The greening of economies is not generally a drag on growth but rather a new engine of growth; that it is a net generator of decent jobs, and that it is also a vital strategy for the elimination of persistent poverty. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/31039

  9. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania

    Directory of Open Access Journals (Sweden)

    Krevs A.

    2011-08-01

    Full Text Available Physical-chemical parameters and the vertical distribution of bacteria and organic matter production-destruction processes were studied during midsummer stratification in two karst lakes (Kirkilai and Ramunelis located in northern Lithuania. The lakes were characterized by high sulfate concentrations (369–1248 mg·L-1. The O2/H2S intersection zone formed at 2–3 m depth. In Lake Kirkilai, the highest bacterial densities (up to 8.7 × 106 cell·mL-1 occurred at the O2/H2S intersection zone, whereas in Lake Ramunelis the highest densities were observed in the anoxic hypolimnion (up to 11 × 106 cell·mL-1. Pigment analysis revealed that green sulfur bacteria dominated in the microaerobic–anaerobic water layers in both lakes. The most intensive development of sulfate-reducing bacteria was observed in the anaerobic layer. Photosynthetic production of organic matter was highest in the upper layer. Rates of sulfate reduction reached 0.23 mg S2?·dm3·d-1 in the microaerobic-anaerobic water layer and 1.97 mg S2?·dm3·d-1 in sediments. Karst lakes are very sensitive to organic pollution, because under such impact in the presence of high sulfate amounts, sulfate reduction may become very intensive and, consequently, the increase in hydrogen sulfide and development of sulfur cycle bacteria may reduce the variety of other hydrobionts.

  10. Sulfur Particles on the Early Earth

    Science.gov (United States)

    Hasenkopf, C. A.; Dewitt, H.; Trainer, M. G.; Farmer, D.; Jimenez, J. L.; McKay, C. P.; Toon, O. B.; Tolbert, M. A.

    2010-12-01

    Understanding the atmosphere of the early Earth during the Archean, the period of time approximately 4 - 2.45 billion years ago, is an important part of understanding the conditions under which life originated and developed. The presence of sulfur mass independent fractionation (S-MIF) in Archean sediments is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with ?methanogenic bacteria could provide a source of CH4 to the atmosphere. Implications for the early Earth are discussed.

  11. Green Tea

    Science.gov (United States)

    ... steamed to produce green tea. Green tea and green tea extracts, such as its component EGCG, have traditionally been used to prevent and treat a variety of cancers, including breast, stomach, and skin cancers, and for mental alertness, ...

  12. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses. The...... adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only the...... definition of the concept defined during the summer house study. Learning from these single residential units, the paper ends by questioning the potential of the concept of Sensation of Green concerning a larger urban typology....

  13. Chlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation.

    Science.gov (United States)

    Jokel, Martina; Kosourov, Sergey; Battchikova, Natalia; Tsygankov, Anatoly A; Aro, Eva Mari; Allahverdiyeva, Yagut

    2015-08-01

    The flavodiiron proteins (FDPs) are involved in the detoxification of oxidative compounds, such as nitric oxide (NO) or O(2) in Archaea and Bacteria. In cyanobacteria, the FDPs Flv1 and Flv3 are essential in the light-dependent reduction of O(2) downstream of PSI. Phylogenetic analysis revealed that two genes (flvA and flvB) in the genome of Chlamydomonas reinhardtii show high homology to flv1 and flv3 genes of the cyanobacterium Synechocystis sp. PCC 6803. The physiological role of these FDPs in eukaryotic green algae is not known, but it is of a special interest since these phototrophic organisms perform oxygenic photosynthesis similar to higher plants, which do not possess FDP homologs. We have analyzed the levels of flvA and flvB transcripts in C. reinhardtii cells under various environmental conditions and showed that these genes are highly expressed under ambient CO(2) levels and during the early phase of acclimation to sulfur deprivation, just before the onset of anaerobiosis and the induction of efficient H(2) photoproduction. Importantly, the increase in transcript levels of the flvA and flvB genes was also corroborated by protein levels. These results strongly suggest the involvement of FLVA and FLVB proteins in alternative electron transport. PMID:26063391

  14. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  15. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R. S.; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  16. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    “Sensation of Green is about the mental process like touching, seeing, hearing, or smelling, resulting from the immediate stimulation of landscape forms, plants, trees, wind and water. Sensation of Green triggers a feeling of scale, cheerfulness, calmness and peace. The spatial performance of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses. The idea of the concept is a mutual participation of nature in architecture meaning that landscape features become tools to design a built space. The paper develops the concept further focusing on the scale of a single residential unit. The paper argues that the concept of Sensation of Green is flexible to adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only the Sensation of Green? Three existing examples are agents to this discussion. The first example is a Danish summer house. The other two are international urban examples. While the summer house articulates the original meaning of Sensation of Green, the urban examples illustrate its urban context. The first example is a tiny Danish summer house from 1918 . The second example is ‘House before House’ , in Tokyo. The third example is a prefabricated house ‘CHU’ . The analysis evaluates the characteristics of diverse tones of green – from green image to green sensation. The analysis is based on the original definition of the concept defined during the summer house study. Learning from these single residential units, the paper ends by questioning the potential of the concept of Sensation of Green concerning a larger urban typology.

  17. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  18. Chlorosomes: antenna organelles in photosynthetic green bacteria

    DEFF Research Database (Denmark)

    Frigaard, N.-U.; Bryant, D. A.

    that cover the spectrum of the complex intracellular structures of prokaryotes: proteasomes, phycobilisomes, chlorosomes, gas vesicles, carboxysomes, magnetosomes, intracytoplasmic membranes, membrane-bound nucleoids, anammoxosomes, and cytoarchitecture of Epulopiscium spp. Cameos of selected...

  19. Advanced sulfur control concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

    1995-11-01

    Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

  20. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  1. Green tea

    Science.gov (United States)

    ... suggests that taking seven doses of a certain green tea chemical over three days improves some breathing tests in ... However, men who consume high amounts of phytoestrogens, chemicals found in green tea, have a lower risk of developing lung ...

  2. Green skills

    OpenAIRE

    Vona, Francesco; Marin, Giovanni; Consoli, Davide; Popp, David

    2015-01-01

    The catchword ‘green skills’ has been common parlance in policy circles for a while, yet there is little systematic empirical research to guide public intervention for meeting the demand for skills that will be needed to operate and develop green technology. The present paper proposes a data-driven methodology to identify green skills and to gauge the ways in which the demand for these competences responds to environmental regulation. Accordingly, we find that green skills are high-level anal...

  3. Green growth

    OpenAIRE

    Zysman, John; Huberty, Mark; Behrens, Arno; Colijn, Bert; Tol, Richard S.J.; Núñez Ferrer, Jorge.; Aglietta, Michel; Hourcade, Jean-Charles

    2012-01-01

    Green growth is now a central theme of the international climate change negotiations. The Rio+20 Conference in June will concentrate on green growth as one of its main priorities. The Europe 2020 strategy has identified green growth as a fundamental pillar of EU economic policy. This Forum takes stock of the academic discussion and examines the theoretical and empirical underpinning of the concepts of green growth and employment through environmental policy.

  4. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionac...

  5. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    Science.gov (United States)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  6. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries

    Science.gov (United States)

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-02-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g‑1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.

  7. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-01-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5?mAh g(-1) at 0.2?C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles. PMID:26842015

  8. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    OpenAIRE

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  9. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  10. Sulfur Dioxide Emissions

    Science.gov (United States)

    This indicator presents regional and national sulfur dioxide (SO2) emissions data for 1990, 1996 to 2002, and 2005. SO2 emissions (combined with atmospheric fate and transport processes) determine corresponding ambient SO2 concentration levels ...

  11. Molybdenum-sulfur system

    International Nuclear Information System (INIS)

    T-X and P-T projections of the molybdenum sulfur system are plotted with respect to metastable phases on the basis of literary and experimental data. The following phases : MoS3, Mo2S5, MoS2; Mo2S3, Mo3S4 are described in the molybdenum-sulfur system. It is shown that literary data on phase equilibria on molybdenum-sulfur system published before 1985 are contradictory. The main disadvantage of the data is the violation of the thermodynamic equilibrium principle. When comparing the P-T and T-X phase diagram projections of the molybdenum-sulfur system the papers are preferred which note equilibrium partial pressures of components along with the temperatures of phase transformations

  12. Sulfur and climate changes

    International Nuclear Information System (INIS)

    The sulfur released by some industries and by the phytoplankton acts on the environment: it cools the earth while forming tiny particles which spread the solar light and send it back towards space. The resulting cooling compensates partly the global warming due to greenhouse effect. The sulfur compounds are also liable for the acid rains, the mist formation and the rarefaction of atmospheric ozone. 3 refs., 4 figs

  13. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and...... sulfate. Thus the overall process is comparable to the fermentation of organic compounds such as glucose and is consequently often described as 'inorganic fermentation'. The process is primarily carried out by microorganisms with phylogenetic affiliation to the so called sulfate-reducing bacteria within...... the delta subclass of Proteobacteria. The organisms grow with sulfate as their external electron acceptor and low-molecular weight organic compounds or hydrogen as energy sources. Studies of the biochemistry of a few isolates indicate that the disproportionating microbes reverse the sulfate reduction...

  14. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  15. Green facades:

    OpenAIRE

    van der Winden, J.; Smits, E

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Knowledge of living organisms applied in buildings can prevent crucial designer mistakes. Therefore this manual provides information on vegetated facades. Green facade, vertical green, green wall, vertical gardens, vegetation walls and living walls; these are all different terms used to describe a vegetated facade. To make things clear about the terminology, three main groups of vegetated facades a...

  16. Green Jobs

    OpenAIRE

    Deschenes, Olivier

    2013-01-01

    In recent years the prospect of 'green jobs' or 'green growth' policies have become increasingly prominent, proposed to solve both the environmental challenges associated with global climate change and the persistent unemployment problems observed in many industrialized countries. This short article begins by describing the conceptual, definitional, and measurement issues related to green jobs. I then review the existing evidence from the primarily simulation-based studies that attempt to ass...

  17. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  18. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    Science.gov (United States)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 ?mol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 ?mol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  19. Production of sulfuric acid and installation therefor

    OpenAIRE

    Arpentinier, Philippe; Dumont, Marie-Noëlle; Kalitventzeff, Boris

    1998-01-01

    In the production of sulfuric acid by (a) oxidizing a sulfurous material with an oxidant to obtain sulfur dioxide, (b) catalytically oxidizing this with oxygen to obtain sulfur trioxide and (c) producing sulfuric acid and a waste gas, at least part of the waste gas is recycled to the first step. The fabrication of sulfuric acid consists of: (a) producing sulfur dioxide from a sulfur based material and an oxidant; (b) converting catalytically the sulfur dioxide into trioxide in a catalytic con...

  20. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  1. Green tea

    Science.gov (United States)

    ... genital warts. Do not confuse green tea with oolong tea or black tea. Oolong tea and black tea are made from the same ... effects. Green tea is not fermented at all. Oolong tea is partially fermented, and black tea is fully ...

  2. Green energy

    International Nuclear Information System (INIS)

    The Norwegian Ministry of Petroleum and Energy is considering a compulsory, green certificate market for renewable energy. This market will stimulate the development of renewable energy sources. In some ways, green certificates is subsidising and instigating the development of energy sources that would otherwise be unprofitable. A green certificate proves that a certain quantity of energy, which is usually electricity, has been produced, and that it is based on renewable energy sources. In the EU there are two driving forces behind the concentration on green energy: the liberalization of the European energy market, and EU's quantitative emission restrictions. However, there is a difference of opinion about the usefulness of a green certificate market if the goal is to increase the production of renewable energy

  3. Green consumerism

    DEFF Research Database (Denmark)

    de Groot, Judith I.M.; Schuitema, Geertje; Garson, Carrie Lee

    Our presentation will focus on the influence of product characteristics and values on green consumerism. Although generally a majority of consumers support the idea of purchasing green products, we argue, based on social dilemma theory, that proself product characteristics and egoistic and...... biospheric values influence the importance of such ‘green’ product characteristics on purchasing intentions. In two within-subjects full-factorial experimental studies (N = 100 and N = 107), we found that purchase intentions of products were only steered by green characteristics if prices were low and the...... brand was familiar. Green product characteristics did not influence purchase intentions at all when these proself product characteristics were not fulfilled (i.e., high prices and unfamiliar brands). The importance of proself and green product characteristics on purchasing intentions was also...

  4. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling

    DEFF Research Database (Denmark)

    Pellerin, André; Bui, Thi Hao; Rough, Mikaella; Mucci, Alfonso; Canfield, Donald Eugene; Wing, Boswell A.

    2015-01-01

    The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits the......, informed by the chemistry of sulfur intermediate compounds in Mangrove Lake, reveals that sulfate reduction produces a relatively small intrinsic fractionation and that an active reoxidative sulfur cycle increases the fractionation of the measured values. Based on the model results, the reoxidative cycle...... of Mangrove Lake appears to include sulfide oxidation to elemental sulfur followed by the disproportionation of the elemental sulfur to sulfate and sulfide. This model also indicates that the reoxidative sulfur cycle of Mangrove Lake turns over from 50 to 80% of the sulfide produced by microbial...

  5. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ...standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17...standards for sulfur oxides (sulfur dioxide). (a) The level of the...measured in the ambient air as sulfur dioxide (SO2 ). (b) The...

  6. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ...standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4...standards for sulfur oxides (sulfur dioxide). Link to an amendment published...measured in the ambient air as sulfur dioxide by the reference method...

  7. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ...quality standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5...quality standard for sulfur oxides (sulfur dioxide). (a) The level of...measured in the ambient air as sulfur dioxide by the reference method...

  8. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA sequence data, these bacteria are closely related to the marine filamentous sulfur bacteria Thioploca, abundant in the upwelling area off Chile and Peru. Similar to Thioploca, the giant bacteria oxidize sulfide with nitrate that is accumulated to less than or equal to 800 millimolar in a central vacuole.

  9. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  10. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  11. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...... predicted variation in greenness is positively associated with year-on-year changes in luminosity: If a unit of observation experiences a predicted variation in greenness that lies 1 standard deviation below the global mean, on average 1.5 - 2.5 light pixels out of 900 are extinguished that year. Finally...

  12. Zeolites Remove Sulfur From Fuels

    Science.gov (United States)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  13. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajkovi? Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  14. Sulfur Dioxide Pollution Monitor.

    Science.gov (United States)

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  15. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris

  16. Green Tea

    Science.gov (United States)

    ... evidence is not definitive, experts suggest that concentrated green tea extracts be taken with food, and that people discontinue use and consult a health care practitioner if they have a liver disorder or ...

  17. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  18. Green towers and green walls

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture and Planning, Vancouver, BC (Canada)

    2006-07-01

    North American cities face many major environmental and health issues such as urban heat island effect, the intensity of storms, microclimate around buildings, imperviousness of sites, poor air quality and increases in respiratory disease. Several new technologies are starting to address global impacts and community level issues as well as the personal health and comfort of building occupants. These include green towers, living walls, vegetated rooftops and ecological site developments. This paper examined these forms of eco-development and presented their benefits. It discussed green walls in Japan; green towers in Malaysia, Singapore and Great Britain; green facades of climbing plants; active living walls in Canada; and passive living walls in France and Canada. It also discussed thermal walls; thematic walls; vertical gardens and structured wildlife habitat. Last, it presented testing, monitoring, research and conclusions. The Centre for the Advancement of Green Roof Technology is setting up a program to test thermal performance, to assess plant survival and to monitor green walls at the British Columbia Institute of Technology in Vancouver, Canada as much of the research out of Japan is only available in Japanese script. It was concluded that green architecture can provide shade, food, rainwater, shelter for wildlife and mimic natural systems. 15 refs.

  19. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  20. Sulfur recovery - Cenovus, Foster Creek

    Energy Technology Data Exchange (ETDEWEB)

    Allende-Garcia, Roberto [Cenovus (Canada)

    2011-07-01

    Government regulations on sulfur levels in gas have constricted oil and gas industries to develop and implement facilities along their transportation and refining infrastructures capable of recovering sulfur efficiently from circulating gas and oil. This presentation shows the process of sulfur recovery with the issues and possible solutions applied at a Cenovus facility in Foster Creek. Sulfur recovery is made possible by use of scavenger products, which react with existing sulfur. These scavenger chemicals play a crucial role in efficiency and unwanted residual solid deposition in sulfur recovery units. Since January 2010, given a decrease in sulfur recovery efficiency, technical investigations have been conducted simultaneously in-situ and in an Alberta sulfur research facility to determine the most cost effective scavenger materials to use. Reasonable solid deposition is observed when the unit is opened. Future steps in improving sulfur recovery cover the selection of regenerative recovery systems with 90% sulfur removal, independent of sulfur species. Some suitable alternative processes are presented and compared as possible future possibilities.

  1. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  2. Membrane damage of bacteria by silanols treatment

    Scientific Electronic Library Online (English)

    Yun-mi, Kim; Samuel, Farrah; Ronald H, Baney.

    2007-04-15

    Full Text Available Antimicrobial action of silanols, a new class of antimicrobials, was investigated by transmission electron microscopy and fluorescent dye studies. Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa and Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis were trea [...] ted by silanols at concentration of less than 0.2 wt% for one hour. Membrane damage of the bacteria by the silanol treatment was clearly observed by transmission electron microscopy. Separation of the cytoplasmic membrane from the outer membrane for E. coli and disorganized cytoplasmic membrane of the Gram-positive bacteria were observed when compared to the control. Fluorescent dyes, green-fluorescent nucleic acid stain (Syto 9) and the red-fluorescent nucleic acid stain (Propidium iodide), were used to monitor membrane damage of the bacteria by Confocal microscopy and Spectrophotometer. A reduction of the green fluorescent emission was detected for silanol treated bacteria indicating membrane damage of the bacteria and supporting the hypothesis that their viability loss may be due to their membrane damage analogus to alcohols

  3. Sulfur activation at Hiroshima

    International Nuclear Information System (INIS)

    After the atomic bomb explosion in Hiroshima, Yamasaki and Sugimoto were able to measure the fast neutron activation of sulfur in the mastic holding insulators on electric poles (Appendix 5-2). Details of the sample collection and measurement procedure have been described by Hamada. The activation reaction 32S(n,p) 32P has a neutron energy threshold of about 2.5 MeV. The 32P decays by beta-particle emission with a half-life of 14.2 days. In 1958, Yamasaki revised his original data by correcting for self-absorption in the samples and by using new half-life data. The revised sulfur activation data were first compared by Kerr to calculated sulfur activation versus ground range using the one-dimensional, isotropic source output provided for Hiroshima by Preeg. A comparison similar to Kerr's of the measured activation data with calculations is shown. The results were discouraging. The transport calculation using the Preeg source is higher than the measured data by over a factor of two close to the hypocenter. Another discouraging aspect is the scatter in the measured sulfur data points. For example, there are points at larger ground ranges that have higher activities than smaller ground ranges. One normally expects the variation to be a rather smooth, nearly exponential decrease with distance. Because the sulfur activation is by high-energy neutrons and because the geometry of the insulators on the electric poles is simple enough to permit accurate calculations, good agreement between calculation and measurement would lend credence to the procedures being used to reassess the doses to the survivors. Fortunately, a number of developments led to better agreement. The Preeg source was an early, one-dimensional model of the Hiroshima bomb. Whalen and his colleagues at LANL made two-dimensional, coupled radiation and hydrodynamic calculations for the Hiroshima bomb that were better suited to its cylindrical symmetry. They provided an energy- and angle-dependent output of neutrons and gamma rays from the Hiroshima weapon that is used as the source term for the calculation of the free-field, air-over-ground, neutron, prompt gamma ray, and secondary radiation fields in the new dosimetry system (chapter 2,3 and 9). Furthermore, since the comparison in 1981, Hamada made additional corrections to the sulfur activation data. These corrections include a more complete analysis of the self-absorption of the samples, an analysis of their purity, revised locations, and an estimate of the uncertainty in the reported activities. The work reported here uses the two-dimensional output calculation of the Hiroshima explosion to calculate the sulfur activation and compares the results with Hamada's revision of the measurements. Because the axis of the bomb was not vertical when it exploded, the sulfur activation is not simply a function of ground range; it is a function of both the range and the azimuthal location of the insulator with respect to the bomb trajectory

  4. Behaviorally Green

    DEFF Research Database (Denmark)

    Sunstein, Cass; Reisch, Lucia A.

    Careful attention to ‘choice architecture’ promises to open up new possibilities for environmental protection—possibilities that may be more effective than the standard tools of economic incentives, mandates, and bans. How, for example, do consumers choose between environmentally friendly products...... suggestion, inertia, and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive to consumers. In deciding whether to establish green...... defaults, choice architects should consider consumer welfare and a wide range of other costs and benefits. Sometimes thatassessment will argue strongly in favor of green defaults, particularly when both economic and environmental considerations point in their direction. But when choice architects lack...

  5. Green banking

    Directory of Open Access Journals (Sweden)

    Maja Drobnjaković

    2013-06-01

    Full Text Available There is an urgent need to march towards “low - carbon economy”. Global challenges of diminishing fossil fuel reserves, climate change, environmental management and finite natural resources serving an expanding world population - these reasons mean that urgent action is required to transition to solutions which minimize environmental impact and are sustainable. We are at the start of the low - carbon revolution and those that have started on their low - carbon journey already are seeing benefits such as new markets and customers, improved economic, social and environmental performance, and reduced bills and risks. Green investment banks offer alternative financial services: green car loans, energy efficiency mortgages, alternative energy venture capital, eco - savings deposits and green credit cards. These items represent innovative financial products.

  6. Green banking

    Directory of Open Access Journals (Sweden)

    Maja Drobnjakovi?

    2013-07-01

    Full Text Available There is an urgent need to march towards “low - carbon economy”. Global challenges of diminishing fossil fuel reserves, climate change, environmental management and finite natural resources serving an expanding world population - these reasons mean that urgent action is required to transition to solutions which minimize environmental impact and are sustainable. We are at the start of the low - carbon revolution and those that have started on their low - carbon journey already are seeing benefits such as new markets and customers, improved economic, social and environmental performance, and reduced bills and risks. Green investment banks offer alternative financial services: green car loans, energy efficiency mortgages, alternative energy venture capital, eco - savings deposits and green credit cards. These items represent innovative financial products.

  7. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  8. Lunar Sulfur Capture System

    Science.gov (United States)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor downstream of an in-ISRU process such as hydrogen reduction. The lunar-soil-sorbent trap is held at a temperature significantly lower than the operating temperature of the hydrogen reduction or other ISRU process in order to maximize capture of contaminants, but is held at a high enough temperature to allow moisture to pass through without condensing. The lunar soil benefits from physical beneficiation to remove ultrafine particles (to reduce pressure drop through a fixed bed reactor) and to upgrade concentrations of iron and/or calcium compounds (to improve reactivity with gaseous contaminants).

  9. Green networking

    CERN Document Server

    Krief, Francine

    2012-01-01

    This book focuses on green networking, which is an important topic for the scientific community composed of engineers, academics, researchers and industrialists working in the networking field. Reducing the environmental impact of the communications infrastructure has become essential with the ever increasing cost of energy and the need for reducing global CO2 emissions to protect our environment.Recent advances and future directions in green networking are presented in this book, including energy efficient networks (wired networks, wireless networks, mobile networks), adaptive networ

  10. Green times

    International Nuclear Information System (INIS)

    The authors, founding members of the ''Green Party'' have in mind to make a very personal contribution to a better understanding of the present political situation which, although it seems to have reached a deadlock, still offers positive chances and prospects. New approaches in policy are mentioned which may help to overcome the present state of resignation of many adolescents and adults. Among other things, they describe themselves setting out for new pathways, the ''Greens'' in Parliament, prospect for the future, opportunities of the ecologically oriented economic policy. Finally, they call upon the reader to think and develop further under the motto ''What we all can do''. (HSCH)

  11. Not everything green has green

    International Nuclear Information System (INIS)

    Last week (March 2009) Slovak government extended the preferential treatment of renewable energy. Companies that will produce electricity from biomass, water, wind, solar and underground thermal springs, have guaranteed that they will receive a decently paid at least the next 15 years. It promises them a new government bill on the promotion of renewable energy. So far, the State guaranteed the purchase of green power for only one year in advance. And because it is more expensive than electricity from coal or uranium, green investment firms feared. Fifteen guarantees give assurance. The government will guarantee only purchase green electricity, but also biomethane to produce heat. So, who wants an ordinary agrarian biogas from waste and adjust to such a gas. Slovak gas industry will have to buy it into its network. Biomethane is not in domestic terms only on paper.

  12. Automatically Green

    DEFF Research Database (Denmark)

    S. Sunstein, Cass; Reisch, Lucia

    reasons include the power of suggestion; inertia and procrastination; and loss aversion. If well-chosen, green defaults are likely to have large effects in reducing the economic and environmental harms associated with various products and activities. Such defaults may or may not be more expensive to...

  13. Going Green

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.  Created: 4/18/2008 by National Center for Environmental Health (NCEH), ATSDR.   Date Released: 5/8/2008.

  14. Buying Green

    Science.gov (United States)

    Layng, T. V. Joe

    2010-01-01

    In "Buying Green," Joe Layng recognizes that, like all choices we make, our decisions as consumers are more likely to be influenced by their short-term consequences for us as individuals (price, quality) than they are by their long-term consequences for society (environmental impact). He believes that the equation can be tilted in favor of greener…

  15. Predatory prokaryotes: Predation and primary consumption evolved in bacteria

    OpenAIRE

    Guerrero, Ricardo; Pedrós-Alió, Carlos; Esteve, Isabel; Mas, Jordi; Chase, David; Margulis, Lynn

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 μm wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for V...

  16. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease

    OpenAIRE

    Tracey A. Rouault

    2012-01-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model o...

  17. Sulfur isotopic composition of mangroves.

    Science.gov (United States)

    Okada, N; Sasaki, A

    1997-07-01

    Abstract Sulfur isotope ratios of mangrove leaves of 19 species were compared to discuss the species-specific characteristics of sulfur uptake and assimilation. The members of Rhizophora and Bruguiera always show remarkable enrichments of the light isotope, giving negative ?(34)S values in most cases. The elaborated root systems of such species seem to be closely related to their sulfur absorbing systems as an adaptation to their anaerobic soil conditions. PMID:22087482

  18. Microbial stabilization of sulfur-laden sorbents. Technical report, March 1, 1994--May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K.W.

    1994-09-01

    Clean coal technologies that involve limestone for sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur can result in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide, sulfite, or various polythionate species serve as growth substrates for sulfur-oxidizing bacteria, which have the potential to convert all sulfur to sulfate. This quarter work continued with the solid phase of a spent slurry from an inhibited scrubber. The material was primarily CaSO{sub 3}{center_dot}1/2H{sub 2}O. The authors did not detect growth of any bacterial strain in salts medium with the solid phase as the source of sulfur. However, unlike strains of Thiobacillus neapolitanus, the isolate TQ, was not inhibited by the solid phase. Evidence suggests that this organism grows slowly on low concentrations of sulfite.

  19. Process for removing sulfur from sulfur-containing gases

    International Nuclear Information System (INIS)

    This patent describes a process for reducing the level of sulfur dioxide in a sulfur dioxide- containing gas. It comprises preparing an aqueous slurry comprising a calcium alkali together with a calcium-reactive silica or alumina, the calcium alkali and calcium-reactive silica or alumina being introduced into the slurry in a form consisting essentially of a high calcium fly ash, which are present in amounts sufficient to allow for the formation of a sulfur dioxide-absorbing component which includes a calcium silicate or calcium aluminate; heating the slurry to a temperature between about 50 degrees and 200 degrees C. for between about 0.1 and about 24 hours to facilitate in the formation of the sulfur dioxide-absorbing component; contacting the gas with the slurry in a manner sufficient to allow for the absorption of sulfur dioxide by the absorbing component; and separating the absorbing component in the form of spent solids from the gas

  20. Process for removing sulfur from sulfur-containing gases

    International Nuclear Information System (INIS)

    This patent describes a process for reducing the level of sulfur dioxide in a sulfur dioxide- containing gas. It comprises preparing an aqueous slurry comprising a calcium alkali together with a calcium-reactive silica or alumina which are present in amounts sufficient to allow for the formation of a sulfur dioxide-absorbing component which includes a calcium silicate or calcium aluminate; heating the slurry to a temperature between about 120 degrees and 180 degrees C. to facilitate in the formation of the sulfur dioxide-absorbing component; contacting the gas with the slurry in a manner sufficient to allow for the absorption of sulfur dioxide by the absorbing component; and separating the absorbing component in the form of spent solids from the gas

  1. Green Computing

    Directory of Open Access Journals (Sweden)

    K. Shalini

    2013-01-01

    Full Text Available Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer and its parts have been espousing the green cause to help protect environment from computers and electronic waste in any way.Research continues into key areas such as making the use of computers as energy-efficient as Possible, and designing algorithms and systems for efficiency-related computer technologies.

  2. Green shopping

    DEFF Research Database (Denmark)

    Thøgersen, John

    2011-01-01

    Findings suggesting that consumers buy “green” products, such as organic foods, for selfish reasons are usually accepted at face value. In this article, the author argues that the evidence backing this claim is questionable and that it reflects post hoc rationalizations and self-presentation biases......” consumers do. On the basis of Schwartz’s comprehensive Picture Value Questionnaire, it is also found that buying organic food is strongly, consistently, and positively related to unselfish values (i.e., universalism) but not selfish values (e.g., status, security, pleasure). This suggests that consumers at......’s beliefs about intangible private benefits in a way that justifies (bolsters) one’s purchasing decision. A survey study among a representative sample of approximately 4,000 respondents from four European countries (Denmark, Germany, United Kingdom, and Italy) confirmed that this is exactly what “green...

  3. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    International Nuclear Information System (INIS)

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD

  4. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    Science.gov (United States)

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD. PMID:17825485

  5. Green Computing

    OpenAIRE

    Shalini, K; K. Naga Prasanthi

    2013-01-01

    Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer a...

  6. Green citizenship

    OpenAIRE

    Dean, Hartley

    2001-01-01

    This paper firstly describes the influence that environmentalism and ecologism have had upon thinking about citizenship before secondly, moving on to discuss conventional models of citizenship and potential models of Green citizenship. The discussion focuses on the competing moral discourses that inform our understanding of citizenship and concludes by arguing in favour of an eco-socialist citizenship model that would embrace, on the one hand, an ethic of co-responsibility by which collective...

  7. Green toxicology.

    Science.gov (United States)

    Maertens, Alexandra; Anastas, Nicholas; Spencer, Pamela J; Stephens, Martin; Goldberg, Alan; Hartung, Thomas

    2014-01-01

    Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology`s novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical`s lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops, the Green Toxicology concept is currently spreading internationally and is being refined via an iterative process. PMID:25061898

  8. ;Every dogma has its day': a personal look at carbon metabolism in photosynthetic bacteria.

    Science.gov (United States)

    Ormerod, John

    2003-01-01

    Dogmas are unscientific. What is perhaps the greatest biological dogma of all time, the 'unity of biochemistry' is, in the main, still having its day. According to present knowledge, the exceptions to this dogma are mere details when seen in relation to the biosystem as a whole. Nevertheless the exceptions are scientifically interesting and the understanding of them has led to a better comprehension of photosynthesis and ecology. Until the discovery of (14)C, photosynthetic CO(2) fixation was like a slightly opened black box. With (14)C in hand scientists mapped out the path of carbon in green plant photosynthesis in the course of a few years. The impressive reductive pentose phosphate cycle was almost immediately assumed to be universal in autotrophs, including anoxygenic phototrophs, in spite of the odd observation to the contrary. A new dogma was born and held the field for about two decades. Events began to turn when green sulfur bacteria were found to contain ferredoxin-coupled ketoacid-oxidoreductases. This led to the formulation of a novel CO(2)-fixing pathway, the reductive citric acid cycle, but its general acceptance required much work by many investigators. However, the ice had now been broken and after some years a third mechanism of CO(2) fixation was discovered, this time in Chloroflexus,and then a fourth in the same genus. One consequence of these discoveries is that it has become apparent that oxygen is an important factor that determines the kind of CO(2)-fixing mechanism an organism uses. With the prospect of the characterization of hordes of novel bacteria forecast by molecular ecologists we can expect further distinctive CO(2) fixation mechanisms to turn up. PMID:16228573

  9. Green Gold

    International Nuclear Information System (INIS)

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  10. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d-1 and 1.33 d-1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  11. Emissions of biogenic sulfur gases from a danish estuary

    Science.gov (United States)

    Barker Jørgensen, Bo; Okholm-Hansen, Bolette

    The diurnal variations in sulfur emission were studied at seven sites in a Danish estuary, Norsminde Fjord. The sites comprised grass vegetation, intertidal mud flats, accretions of green algae, an exposed shore and a river outlet. Direct measurements of emission rates from soil and water were done by a dynamic flux chamber technique in connection with gas Chromatographie detection and separation of the cryogenically trapped sulfur gases. Sulfur gas concentrations in air and sea water were measured together with emission rates at 0.5-1 h intervals over 25-40 h periods. DMS was the most important sulfur gas released from grass and algae, while mostly H 2S was released from intertidal mud flats. OCS, CH 3SH and CS 2 were released from most sites at lower rates. Emission of DMS followed the daylight variations, often with a delay towards maximum emission rates in the evening. H 2S was mostly emitted at night or in short outbursts during low tides. Total sulfur emission rates were 1-10?mol Sm -2 d -1. Extreme rates of 335?mol DMSm -2 d -1 were measured over decomposing green algae ( Ulva lactuca). H 2S emission fractions were < 10 -6 to 2.10 -4. H 2S was detected, along with DMS, CH 3SH, OCS and CS 2, in the oxic seawater of the estuary at diurnal mean concentrations of 0.1-6.5nmol S/ol -1. This may indicate a more widespread occurrence of H 2S in shallow, near-shore waters at nanomolar levels.

  12. Centrifugal enrichment of sulfur isotopes

    International Nuclear Information System (INIS)

    This work contains the results of the research for the complete cycle of the centrifuge enrichment process of all sulfur isotopes. As a result of this work there was obtained, and made available (by centrifuge enrichment process), for the first time hundreds of grams of all the isotopes of sulfur to high enrichment. (author)

  13. Efeito de extratos de própolis verde sobre bactérias patogênicas isoladas do leite de vacas com mastite / Effect of green propolis extracts on patogenic bacteria isolated from milk of cows with mastitis

    Scientific Electronic Library Online (English)

    Marcelo Souza, PINTO; José Eurico de, FARIA; Dejair, MESSAGE; Sérvio Túlio Alves, CASSINI; Carmen Silva, PEREIRA; Marilú Martins, GIOSO.

    Full Text Available A sensibilidade, in vitro, de amostras de Staphylococcus aureus, Staphylococcus sp. coagulase negativos, Streptococcus agalactiae e bactérias do grupo dos coliformes, isoladas do leite de vacas com mastite, a diferentes extratos de própolis, na concentração de 100 mg/ml, foi avaliada pela técnica do [...] antibiograma em discos de papel de filtro com sobrecamada de meio de cultura. Os resultados mostraram que o extrato etanólico de própolis comercial, os extratos etanólico e, em menor proporção, o metanólico inibiram o crescimento das amostras de bactérias Gram-positivas, Staphylococcus aureus, Staphylococcus sp. coagulase negativos e Streptococcus agalactiae. Os extratos obtidos através da água, do acetato de etila e do clorofórmio não inibiram nenhuma amostra bacteriana, assim como os veículos etanol e metanol puros utilizados como controle. A bactéria Gram-negativa testada, do tipo coliforme, não apresentou sensibilidade a nenhum dos extratos. Verificaram-se diferenças significativas (p Abstract in english In vitro, the sensitivity to different propolis extracts, at a concentration of 100 mg/ml, of Staphylococcus aureus, Staphylococcus sp. coagulase negative, Streptococcus agalactiae and bacteria of the coliform group, isolated from the milk of cows with mastitis, was evaluated using the technique of [...] an agar disk diffusion with a medium doublelayer. The results showed that the commercial propolis, the ethanolic extract, and, in a minor proportion, the methanolic extract inhibited the growth of the Gram positive bacteria, Staphylococcus aureus, Staphylococcus sp. coagulase negative and Streptococcus agalactiae. The extracts obtained through water, etila acetate and chloroform did not inhibit any bacterial strains, nor did the pure ethanol and methanol vehicles that were utilized as controls. The Gram negative bacterium tested, from the coliform group, did not show sensitivity to any extract. Bacterial strains of the same species collected from different sources presented significant differences in sensitivity to the extracts (p

  14. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...... that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural...... characteristics of green architecture. The paper argues that this greenification of facades is insufficient. The green is only a skin cladding the exterior envelope without having a spatial significance. Through the paper it is proposed to flip the order of words from green architecture to architectural green...

  15. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic.

    OpenAIRE

    Naganawa, R; Iwata, N.; Ishikawa, K.; Fukuda, H.; Fujino, T.; Suzuki, A.

    1996-01-01

    Ajoene, a garlic-derived sulfur-containing compound that prevents platelet aggregation, exhibited broad-spectrum antimicrobial activity. Growth of gram-positive bacteria, such as Bacillus cereus, Bacillus subtilis, Mycobacterium smegmatis, and Streptomyces griseus, was inhibited at 5 micrograms of ajoene per ml. Staphylococcus aureus and Lactobacillus plantarum also were inhibited below 20 micrograms of ajoene per ml. For gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae...

  16. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite; Aislamiento y caracterizacion de bacterias en aguas de la mina de ratones y su comportamiento con pirita

    Energy Technology Data Exchange (ETDEWEB)

    Merino, J. L.; Saez, R. M.

    1974-07-01

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs.

  17. Sulfur meter speeds coal blending

    International Nuclear Information System (INIS)

    The sulfur content has become the most important criterion that industry looks at when purchasing coal. The exact amount of sulfur in coal being processed by a preparation plant must be known and, if possible, controlled by blending coal streams of various sulfur contents. Present techniques, however, of measuring the sulfur in coal involve laborious and time-consuming sampling and chemical analysis (12 to 24 hr), and the results usually are not available until the following day. By then, the coal barges or trains are already on the way to their destinations. A new nuclear sulfur meter is expected to overcome these difficulties and help lead to true automation in coal preparation plants. Initially developed by the Bureau of Mines' Morgantown Energy Research Center (MERC) at Morgantown, W. Va., and completed after reorganization of the center by the US Energy Research and Development Administration (ERDA), the meter can scan coal to produce a reading within 2 min to an accuracy of 0.04 percent sulfur. The meter is expected to soon result in an element-ash-moisture-Btu meter that would rapidly detect the sulfur, sodium, potassium, and overall mineral content of the coal, as well as its ash and Btu content

  18. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    OpenAIRE

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shr...

  19. Green chemistry

    International Nuclear Information System (INIS)

    The depletion of world fossil fuel reserves and the involvement of greenhouse gases in the global warming has led to change the industrial and energy policies of most developed countries. The goal is now to reserve petroleum to the uses where it cannot be substituted, to implement renewable raw materials obtained from plants cultivation, and to consider the biodegradability of molecules and of manufactured objects by integrating the lifetime concept in their expected cycle of use. The green chemistry includes the design, development and elaboration of chemical products and processes with the aim of reducing or eliminating the use and generation of harmful compounds for the health and the environment, by adapting the present day operation modes of the chemical industry to the larger framework of the sustainable development. In addition to biofuels, this book reviews the applications of green chemistry in the different industrial processes in concern. Part 1 presents the diversity of the molecules coming from renewable carbon, in particular lignocellulose and the biotechnological processes. Part 2 is devoted to materials and treats of the overall available technological solutions. Part 3 focusses on functional molecules and chemical intermediates, in particular in sugar- and fats-chemistry. Part 4 treats of biofuels under the aspects of their production and use in today's technologies. The last part deals with the global approaches at the environmental and agricultural levels. (J.S.)

  20. Green urbanity

    Directory of Open Access Journals (Sweden)

    Alenka Fikfak

    2012-01-01

    Full Text Available Tourism and other culture-based types of small business, which are the leitmotif in the planning of the Europark Ruardi, are becoming the guiding motif in the spatial development of urban centres that are influenced by dynamic transformation processes. The system should build upon the exploitation of both local and regional environmental features. This would encourage the quest for special environmental features, with an emphasis on their conservation, i.e. sustainable development, and connections in a wider context.The Europark is seen as a new strategic point of the Zasavje Region (the region of the central Sava Valley, which is linked to other important points in a region relevant for tourism. Due to the "smallness" of the region and/or the proximity of such points, development can be fast and effective. The interaction of different activities in space yields endless opportunities for users, who choose their own goals and priorities in the use of space. Four theme areas of the Europark area planning are envisaged. The organisation of activities is based on the composition of the mosaic field patterns, where green fields intertwine with areas of different, existing and new, urban functions. The fields of urban and recreation programmes are connected with a network of green areas and walking trails, along which theme park settings are arranged.

  1. Green chemistry

    International Nuclear Information System (INIS)

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  2. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  3. Green shipping management

    CERN Document Server

    Lun, Y H Venus; Wong, Christina W Y; Cheng, T C E

    2016-01-01

    This book presents theory-driven discussion on the link between implementing green shipping practices (GSP) and shipping firm performance. It examines the shipping industry’s challenge of supporting economic growth while enhancing environmental performance. Consisting of nine chapters, the book covers topics such as the conceptualization of green shipping practices (GSPs), measurement scales for evaluating GSP implementation, greening capability, greening and performance relativity (GPR), green management practice, green shipping network, greening capacity, and greening propensity. In view of the increasing quest for environment protection in the shipping sector, this book provides a good reference for firms to understand and evaluate their capability in carrying out green operations on their shipping activities.

  4. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite

    International Nuclear Information System (INIS)

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs

  5. DEGRADATION KINETICS OF MONOSACCHARIDES IN HYDROCHLORIC, SULFURIC, AND SULFUROUS ACID

    OpenAIRE

    Yan Shi; Tomoya Yokoyama,; Takuya Akiyama; Makoto Yashiro,; Yuji Matsumoto

    2012-01-01

    The degradation kinetics of monosaccharides during sulfurous acid treatment was compared to hydrochloric acid and to sulfuric acid treatments. Reaction conditions corresponded to the range found in previous research to allow for the production of hemicelluloses-derived monosaccharides through hydrolysis of wood. Degradation behavior of monosaccharides during treatment with each acid was expressed by a second-order reaction rate constant with respect to substrate and acid concentrations, and t...

  6. The Determinants of Green Radical and Incremental Innovation Performance: Green Shared Vision, Green Absorptive Capacity, and Green Organizational Ambidexterity

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    This study proposes a new concept, green organisational ambidexterity, that integrates green exploration learning and green exploitation learning simultaneously. Besides, this study argues that the antecedents of green organisational ambidexterity are green shared vision and green absorptive capacity and its consequents are green radical innovation performance and green incremental innovation performance. The results demonstrate that green exploration learning partially mediates the positive ...

  7. Deep sulfur cycle

    Science.gov (United States)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with ?34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (?34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to ?34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with ?34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, ?34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2.8 - +5.2‰ with majority between +3 and +5), Krakatau (+1.5 - +8.6‰ with a cluster around +3 - +5), and Augustine (+8 - +12‰) show larger variations among arc magmas than previously known, (4) olivine-hosted melt inclusions from a FAMOUS lava (519-4-1) range from -9.5 to +10.5‰, and (5) undegassed submarine glasses from Samoa (with M. Jackson) appear to show separate ranges for individual islands, including Vailulu clustering around -1.9 to +2.1‰ and Malumalu ranging from -0.9 to -12.1‰. Overall, the results clearly show that low temperature signatures are not completely erased during recycling and isotopic exchange with the mantle infinite reservoir, and that mantle-derived melts still display large isotopic variations for small sampling scales, similar to observations on other isotope systems. Canfield, D. E. (2004) Amer. Jour. Sci., 304, 839-861. Rouxel, O. et al., (2009) Goldschmidt Conf. Abstract.

  8. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  9. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  10. Green business will remain green

    International Nuclear Information System (INIS)

    It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

  11. Sulfur, ultraviolet radiation, and the early evolution of life.

    Science.gov (United States)

    Kasting, J F; Zahnle, K J; Pinto, J P; Young, A T

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. We suggest here that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. The concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, which is a strong function of temperature. Hence, it would have depended on the magnitude of the atmospheric greenhouse effect. Surface temperatures of 45 degrees C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. Two additional requirements are that the ocean was saturated with sulfite and bisulfite, and that linear S8 chains must tend to reform rings faster than they are destroyed by photolysis. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur. PMID:2685712

  12. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO2) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  13. Sulfur metabolism in Beggiatoa alba.

    OpenAIRE

    Schmidt, T. M.; Arieli, B.; Cohen, Y.; Padan, E.; Strohl, W R

    1987-01-01

    The metabolism of sulfide, sulfur, and acetate by Beggiatoa alba was investigated under oxic and anoxic conditions. B. alba oxidized acetate to carbon dioxide with the stoichiometric reduction of oxygen to water. In vivo acetate oxidation was suppressed by sulfide and by several classic respiratory inhibitors, including dibromothymoquinone, an inhibitor specific for ubiquinones. B. alba also carried out an oxygen-dependent conversion of sulfide to sulfur, a reaction that was inhibited by seve...

  14. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  15. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  16. Green Roofs and Green Building Rating Systems

    Directory of Open Access Journals (Sweden)

    Liaw

    2015-01-01

    Full Text Available The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED and Ecology, Energy, Waste, and Health (EEWH rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationship between green coverage and the credits of the rating systems, evaluated the credits efficiency, and performed cost analysis. As an example, we used a university building in Keelung, Northern Taiwan. The findings suggest that with EEWH, the proposed green coverage is 50–75%, whereas with LEED, the proposed green coverage is 100%. These findings have implications for the application of green roofs in green building.

  17. The green building envelope: vertical greening:

    OpenAIRE

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve the environment in urban areas and is becoming a key design consideration in modern building developments. Vertical greening of structures offers large surfaces with vegetation and at the same time...

  18. Central Region Green Infrastructure

    Data.gov (United States)

    Minnesota Department of Natural Resources — This Green Infrastructure data is comprised of 3 similar ecological corridor data layers ? Metro Conservation Corridors, green infrastructure analysis in counties...

  19. Green’s Symmetries in Finite Digraphs

    Directory of Open Access Journals (Sweden)

    Allen D. Parks

    2011-08-01

    Full Text Available The semigroup DV of digraphs on a set V of n labeled vertices is defined. It is shown that DV is faithfully represented by the semigroup Bn of n ´ n Boolean matrices and that the Green’s L, R, H, and D equivalence classifications of digraphs in DV follow directly from the Green’s classifications already established for Bn. The new results found from this are: (i L, R, and H equivalent digraphs contain sets of vertices with identical neighborhoods which remain invariant under certain one-sided semigroup multiplications that transform one digraph into another within the same equivalence class, i.e., these digraphs exhibit Green’s isoneighborhood symmetries; and (ii D equivalent digraphs are characterized by isomorphic inclusion lattices that are generated by their out-neighborhoods and which are preserved under certain two-sided semigroup multiplications that transform digraphs within the same D equivalence class, i.e., these digraphs are characterized by Green’s isolattice symmetries. As a simple illustrative example, the Green’s classification of all digraphs on two vertices is presented and the associated Green’s symmetries are identified.

  20. Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum

    Directory of Open Access Journals (Sweden)

    FrankStewart

    2011-06-01

    Full Text Available Thioautotrophic endosymbionts in the Domain Bacteria mediate key sulfur transformations in marine reducing environments. However, the molecular pathways underlying symbiont metabolism and the extent to which these pathways are expressed in situ are poorly characterized for almost all symbioses. This is largely due to the difficulty of culturing symbionts apart from their hosts. Here, we use pyrosequencing of community RNA transcripts (i.e., the metatranscriptome to characterize enzymes of dissimilatory sulfur metabolism in the model symbiosis between the coastal bivalve Solemya velum and its intracellular thioautotrophic symbionts. High-throughput sequencing of total RNA from the symbiont-containing gill of a single host individual generated 1.6 million sequence reads (500 Mbp. Of these, 43,735 matched Bacteria protein-coding genes in BLASTX searches of the NCBI database. The taxonomic identities of the matched genes indicated relatedness to diverse species of sulfur-oxidizing Gammaproteobacteria, including other thioautotrophic symbionts and the purple sulfur bacterium Allochromatium vinosum. Manual querying of these data identified 28 genes from diverse pathways of sulfur energy metabolism, including the dissimilatory sulfite reductase (Dsr pathway for sulfide oxidation to sulfite, the APS pathway for sulfite oxidation, and the Sox pathway for thiosulfate oxidation. In total, reads matching sulfur energy metabolism genes represented 7% of the Bacteria mRNA pool. Together, these data highlight the dominance of thioautotrophy in the context of symbiont community metabolism, identify the likely pathways mediating sulfur oxidation, and illustrate the utility of metatranscriptome sequencing for characterizing community gene transcription of uncultured symbionts.

  1. Energy generation and the sulfur-carbon cycles: Final technical report for period March 1981 thru February 1985

    International Nuclear Information System (INIS)

    The aim of this research was to understand the role of anaerobic bacteria in natural and man-influenced carbon cycles in nature. The major goal was to elucidate how sulfur metabolism influenced organic decomposition in aquatic sediments. The research compared these processes in two different anaerobic ecosystems: the sulfate-depleted sediments of Lake Mendota, Wisconsin and the sulfate-saturated sediments of Great Salt Lake, Utah. The approach was both ecological and physiological, and employed both in situ characterization of carbon and sulfur metabolism with radiotracers and laboratory species isolation-characterization studies with pure and defined mixed cultures to demonstrate the prevalent environmental paths of carbon electrons, and sulfur during the anaerobic decomposition of organic matter. The significance of this research encompassed fundamental knowledge of the carbon sulfur cycles, applied knowledge on the microbial genesis of flammable gas and oil and extended knowledge on the diversity and metabolic activity of obligately anaerobic bacteria in nature. 13 refs

  2. Influence of heterogeneous sulfur atoms on the negative differential resistance effect in polythiophene

    International Nuclear Information System (INIS)

    In this work, we have carried out theoretical investigations aiming to clarify the effects of sulfur heteroatoms on the transport characteristics in polythiophene. Sulfur atoms in polythiophene are demonstrated to influence the structure and transport process by two aspects: the electron hopping between carbon atoms on both sides of the sulfur atom as well as the effective confinement of ? electrons from the sulfur atom. Based on the static Su-Schrieffer-Heeger model and the nonequilibrium Green's function formalism, we simulate the electron transportation in a metal/polythiophene/metal structure. The simulation results show that the electron hopping via sulfur atoms is responsible for the observed negative differential resistance (NDR) behavior in the I-V curves. The NDR disappears if the electron transport channels from carbon to carbon via sulfur atoms are forbidden. The weaker the effective confinement of ? electrons and the electron hopping between carbon atoms on both sides of the sulfur atom are, the higher is the peak-to-valley ratio of the NDR and the wider the voltage range where the current remains at low levels. These results can help in understanding the NDR effect in polythiophene

  3. The Determinants of Green Radical and Incremental Innovation Performance: Green Shared Vision, Green Absorptive Capacity, and Green Organizational Ambidexterity

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-11-01

    Full Text Available This study proposes a new concept, green organisational ambidexterity, that integrates green exploration learning and green exploitation learning simultaneously. Besides, this study argues that the antecedents of green organisational ambidexterity are green shared vision and green absorptive capacity and its consequents are green radical innovation performance and green incremental innovation performance. The results demonstrate that green exploration learning partially mediates the positive relationships between green radical innovation performance and its two antecedents—green shared vision and green absorptive capacity. In addition, this study indicates that green exploitation learning partially mediates the positive relationships between green incremental innovation performance and its two antecedents—green shared vision and green absorptive capacity. Hence, firms have to increase their green shared vision, green absorptive capacity, and green organisational ambidexterity to raise their green radical innovation performance and green incremental innovation performance.

  4. Optimizing stratospheric sulfur geoengineering by seasonally changing sulfur injections

    Science.gov (United States)

    Laakso, Anton; Partanen, Antti-Ilari; Kokkola, Harri; Lehtinen, Kari; Korhonen, Hannele

    2015-04-01

    Solar radiation management (SRM) by stratospheric sulfur injection has been shown to have potential in counteracting global warming if reducing of greenhouse gases has not been achieved fast enough and if climate warming will continue. Injecting large amounts of sulfate particles to the stratosphere would increase the reflectivity of the atmosphere and less sunlight would reach the surface. However, the effectivity (per injected sulphur mass unit) of this kind of geoengineering would decrease when amount of injected sulfur is increased. When sulfur concentration increases, stratospheric particles would grow to larger sizes which have larger gravitational settling velocity and which do not reflect radiation as efficiently as smaller particles. In many previous studies, sulfur has been assumed to be injected along the equator where yearly mean solar intensity is the highest and from where sulfur is spread equally to both hemispheres. However, the solar intensity will change locally during the year and sulfate has been assumed to be injected and spread to the hemisphere also during winter time, when the solar intensity is low. Thus sulfate injection could be expected to be more effective, if sulfur injection area is changed seasonally. Here we study effects of the different SRM injection scenarios by using two versions of the MPI climate models. First, aerosol spatial and temporal distributions as well as the resulting radiative properties from the SRM are defined by using the global aerosol-climate model ECHAM6.1-HAM2.2-SALSA. After that, the global and regional climate effects from different injection scenarios are predicted by using the Max Planck Institute's Earth System Model (MPI-ESM). We carried out simulations, where 8 Tg of sulfur is injected as SO2 to the stratosphere at height of 20-22 km in an area ranging over a 20 degree wide latitude band. Results show that changing the sulfur injection area seasonally would lead to similar global mean shortwave radiative forcing (-4.41 W/m2 at top of atmosphere) as if sulfur is injected only to the equator (-4.40 W/m2). However zonal mean distribution would be different and forcing is concentrated relatively more to the midlatitudes and less to the equator. Cooling effect from the geoengineering and warming effect from the increased greenhouse gas has been shown in many studies to lead to cooling in the equator and warming in the poles compared the preindustrial conditions. Changing the injection area seasonally might prevent this from happening and lead globally to more homogeneous temperature change.

  5. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp.

    Science.gov (United States)

    Sim, Min Sub; Ono, Shuhei; Donovan, Katie; Templer, Stefanie P.; Bosak, Tanja

    2011-08-01

    Sulfur isotope effects produced by microbial dissimilatory sulfate reduction are used to reconstruct the coupled cycling of carbon and sulfur through geologic time, to constrain the evolution of sulfur-based metabolisms, and to track the oxygenation of Earth's surface. In this study, we investigate how the coupling of carbon and sulfur metabolisms in batch and continuous cultures of a recently isolated marine sulfate reducing bacterium DMSS-1, a Desulfovibrio sp ., influences the fractionation of sulfur isotopes. DMSS-1 grown in batch culture on seven different electron donors (ethanol, glycerol, fructose, glucose, lactate, malate and pyruvate) fractionates 34S/ 32S ratio from 6‰ to 44‰, demonstrating that the fractionations by an actively growing culture of a single incomplete oxidizing sulfate reducing microbe can span almost the entire range of previously reported values in defined cultures. The magnitude of isotope effect correlates well with cell specific sulfate reduction rates (from 0.7 to 26.1 fmol/cell/day). DMSS-1 grown on lactate in continuous culture produces a larger isotope effect (21-37‰) than the lactate-grown batch culture (6‰), indicating that the isotope effect also depends on the supply rate of the electron donor and microbial growth rate. The largest isotope effect in continuous culture is accompanied by measurable changes in cell length and cellular yield that suggest starvation. The use of multiple sulfur isotopes in the model of metabolic fluxes of sulfur shows that the loss of sulfate from the cell and the intracellular reoxidation of reduced sulfur species contribute to the increase in isotope effects in a correlated manner. Isotope fractionations produced during sulfate reduction in the pure culture of DMSS-1 expand the previously reported range of triple sulfur isotope effects ( 32S, 33S, and 34S) by marine sulfate reducing bacteria, implying that microbial sulfur disproportionation may have a smaller 33S isotopic fingerprint than previously thought.

  6. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: ? Carbon-wrapped sulfur composite was obtained via an in situ sulfur deposition route. ? Sulfur–carbon composite suppresses the shuttle effect during charging. ? Sulfur–carbon composite shows enhanced cyclability and rate capability. ? Sulfur–carbon composite retains structural integrity and low impedance during cycling. - Abstract: An in situ sulfur deposition route has been developed for synthesizing sulfur–carbon composites as cathode materials for lithium–sulfur batteries. This facile synthesis method involves the precipitation of elemental sulfur at the interspaces between carbon nanoparticles in aqueous solution at room temperature. The product has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge–discharge measurements, and electrochemical impedance spectroscopy. The sulfur–carbon composite cathode with 75 wt.% active material thus obtained exhibits a remarkably high first discharge capacity of 1116 mAh g?1 with good cycle performance, maintaining 777 mAh g?1 after 50 cycles. The significantly improved electrochemical performance of the sulfur–carbon composite cathode is attributed to the carbon-wrapped sulfur network structure, which suppresses the loss of active material during charging/discharging and the migration of the polysulfide ions to the anode (i.e., shuttling effect). The integrity of the cathode structure during cycling is reflected in low impedance values observed after cycling. This facile in situ sulfur deposition route represents a low-cost approach to obtain high-performance sulfur–carbon composite cathodes for rechargeable Li–S batteries.

  7. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  8. Green nanotechnology

    Science.gov (United States)

    Smith, Geoff B.

    2011-10-01

    Nanotechnology, in particular nanophotonics, is proving essential to achieving green outcomes of sustainability and renewable energy at the scales needed. Coatings, composites and polymeric structures used in windows, roof and wall coatings, energy storage, insulation and other components in energy efficient buildings will increasingly involve nanostructure, as will solar cells. Nanostructures have the potential to revolutionize thermoelectric power and may one day provide efficient refrigerant free cooling. Nanomaterials enable optimization of optical, opto-electrical and thermal responses to this urgent task. Optical harmonization of material responses to environmental energy flows involves (i) large changes in spectral response over limited wavelength bands (ii) tailoring to environmental dynamics. The latter includes engineering angle of incidence dependencies and switchable (or chromogenic) responses. Nanomaterials can be made at sufficient scale and low enough cost to be both economic and to have a high impact on a short time scale. Issues to be addressed include human safety and property changes induced during manufacture, handling and outdoor use. Unexpected bonuses have arisen in this work, for example the savings and environmental benefits of cool roofs extend beyond the more obvious benefit of reduced heat flows from the roof into the building.

  9. Formation of elemental sulfur upon radiolysis of aqueous sulfure dioxide solutions

    International Nuclear Information System (INIS)

    During radiation-chemical decomposition of sulfur dioxide in aqueous solutions the yield of elementary sulfur, depending on sulfur dioxide concentration, pH and introduced addition of sulfuric acid, was measured. The curve of sulfur accumulation features the presence of an induction period and a distinctly pronounced maximum. It has been shown experimentally that in the course of sulfur dioxide radiolysis the reactions of reducing particles and products of SO2 reduction play an essential role

  10. Analysis of the sulfur origin and sulfur isotopic compositions of acid rain

    International Nuclear Information System (INIS)

    Acid rain has been one of the most serious environment problems in the world and the study of sulfur isotope can help us find the sulfur source, composition and have important significance for research to harness acid rain. This paper mainly revolves around three aspects to introduce the significance of sulfur isotopic study, they are sulfur isotopes in coals, sulfur isotopic compositions of surface water and sulfur isotopes in wheat. (authors)

  11. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in combination with (15)N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min(-1) mg of protein(-1). Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min(-1) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min(-1) mg of protein(-1) and could be increased to 10.7 nmol min(-1) mg of protein(-1) after the trichomes were starved for 45 h. Incorporation of (14)CO(2) was at a rate of 0.4 to 0.8 nmol min(-1) mg of protein(-1), which is half the rate calculated from sulfide oxidation. [2-(14)C]acetate incorporation was 0.4 nmol min(-1) mg of protein(-1), which is equal to the CO(2) fixation rate, and no (14)CO(2) production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-(14)C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.

  12. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  13. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number of...

  14. New Fluorescein Precursors for Live Bacteria Detection.

    Science.gov (United States)

    Guilini, Celia; Baehr, Corinne; Schaeffer, Etienne; Gizzi, Patrick; Rufi, Frédéric; Haiech, Jacques; Weiss, Etienne; Bonnet, Dominique; Galzi, Jean-Luc

    2015-09-01

    Swiftness, reliability, and sensitivity of live bacteria detection in drinking water are key issues for human safety. The most widespread used indicator of live bacteria is a caged form of carboxyfluorescein in which 3' and 6' hydroxyl groups are masked as acetate esters (CFDA). This derivatization altogether abolishes fluorescein fluorescence and renders the molecule prone to passive diffusion through bacterial membranes. Once in the cytoplasm, acetate groups from CFDA are removed by bacterial hydrolases and fluorescence develops, rendering live but not dead cells detectable. Yet the reagent, carboxyfluorescein diacetate, still possesses a free carboxyl group whose ionization constant is such that the majority of the probe is charged at physiological pH. This unfavors probe permeation through membranes. Here, we prepare several chemical modifications of the carboxyl moiety of CFDA, in order to neutralize its charge and improve its passive diffusion through membranes. We show that the ethylamido derivative of the 5-carboxyl group from 5-carboxy-fluorescein diacetate or from Oregon green diacetate or from Oregon green diacetoxymethylester are stable molecules in biological media, penetrate into bacterial cells and are metabolized into fluorescent species. Only live bacteria are revealed since bleached samples are not labeled. Other derivatives with modification of the 5-carboxyl group with an ester group or with a thiourea-based moiety were almost inefficient probes. The most interesting probe, triembarine (5-ethylaminocarboxy-oregon green, 3',6'diacetoxymethyl ester) leads to 6-10 times more sensitive detection of bacteria as compared to CFDA. Addition of contrast agents (trypan blue or brilliant blue R) improve the signal-to-noise ratio by quenching extracellular fluorescence while bromophenol blue quenches both intracellular and extracellular fluorescence, allowing standardization of detections. PMID:26260548

  15. Anaerobic degradation of benzoate by sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.P.; Adorno, M.A.T.; Moraes, E.M.; Varesche, M.B.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Biological Processes Laboratory

    2004-07-01

    Anaerobic processes are an efficient way to degrade aromatic compounds in industrial wastewater, such as phenol, cresol and benzoate. This study characterized the bacteria that degrades benzoate, an anaerobic degradation intermediate of several complex aromatic compounds. In particular, the study assessed the capacity to use benzoate with sulfate reducing bacteria in mesophilic conditions. Biofilm from polyurethane foam matrices of a fixed bed reactor was used as the cellular inoculum to treat industrial wastewater containing organic peroxide. Dilution techniques were used to purify the material and obtain cultures of cocci. The benzoate consumption capacity in sulfidogenic conditions was observed when the purified inoculum was applied to batch reactors with different benzoate/sulfate relations. Results indicate that purification was positive to bacteria that can degrade aromatic compounds. Desulfococcus multivorans bacteria was identified following the physiologic and kinetic experiments. The 0.6 benzoate/sulfate relation was considered ideal for complete consumption of carbon and total use of sulfur. 10 refs., 3 figs.

  16. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh.

    Science.gov (United States)

    Wilbanks, Elizabeth G; Jaekel, Ulrike; Salman, Verena; Humphrey, Parris T; Eisen, Jonathan A; Facciotti, Marc T; Buckley, Daniel H; Zinder, Stephen H; Druschel, Gregory K; Fike, David A; Orphan, Victoria J

    2014-11-01

    Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500??m. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while ?(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria. PMID:24428801

  17. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Evaluation of the Effect of Green Tea Extract on Mouth Bacterial Activity in the Presence of Propylene Glycol

    OpenAIRE

    Abdolhossein Moghbel; Ahmad Farjzadeh; Nasrin Aghel; Homaun Agheli; Nafiseh Raisi

    2012-01-01

    Background: Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections..Objectives: To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load..Materials and Methods: Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also...

  19. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide

    Science.gov (United States)

    Zheng, Dong; Zhang, Xuran; Wang, Jiankun; Qu, Deyu; Yang, Xiaoqing; Qu, Deyang

    2016-01-01

    The polysulfide ions formed during the first reduction wave of sulfur in Li-S battery were determined through both in-situ and ex-situ derivatization of polysulfides. By comparing the cyclic voltammetric results with and without the derivatization reagent (methyl triflate) as well as the in-situ and ex-situ derivatization results under potentiostatic condition, in-situ derivatization was found to be more appropriate than its ex-situ counterpart, since subsequent fast chemical reactions between the polysulfides and sulfur may occur during the timeframe of ex-situ procedures. It was found that the major polysulfide ions formed at the first reduction wave of elemental sulfur were the S4 2 - and S5 2 - species, while the widely accepted reduction products of S8 2 - and S6 2 - for the first reduction wave were in low abundance.

  20. Green Roofs and Green Building Rating Systems

    OpenAIRE

    Liaw; Chao-Hsien

    2015-01-01

    The environmental benefits for green building from the Leadership in Energy and Environment Design (LEED) and Ecology, Energy, Waste, and Health (EEWH) rating systems have been extensively investigated; however, the effect of green roofs on the credit-earning mechanisms is relatively unexplored. This study is concerned with the environmental benefits of green roofs with respect to sustainability, stormwater control, energy savings, and water resources. We focused on the relationsh...

  1. GREEN MARKETING : GREEN ENVIRONMENT - STRATEGIES AND CHALLENGES

    OpenAIRE

    Bhurelal Patidar; Dinesh Kumar Gupta; Prakash Garg

    2014-01-01

    -Green marketing is a phenomenon which has developed particular import in the modern market. This concept has enabled for the re-marketing and packing of existing products which already adhere to such guidelines. Additionally, the development of green marketing has opened the door of opportunity for companies to co-brand their products into separate line, lauding the green-friendliness of some while ignoring that of others. Such marketing techniques as will be explained are as...

  2. An ancient divergence among the bacteria. [methanogenic phylogeny

    Science.gov (United States)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  3. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels

    Directory of Open Access Journals (Sweden)

    Sabine Crunaire

    2014-06-01

    Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

  4. Darwin y las bacterias / Darwin and bacteria

    Scientific Electronic Library Online (English)

    Walter, Ledermann D.

    2009-02-01

    Full Text Available Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en [...] el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva. Abstract in english As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never t [...] ook knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  5. Darwin y las bacterias Darwin and bacteria

    Directory of Open Access Journals (Sweden)

    Walter Ledermann D

    2009-02-01

    Full Text Available Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva.As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  6. Sulfur isotope signatures in New Zealand

    International Nuclear Information System (INIS)

    The role of sulfur in cloud formation makes it a crucial ingredient in the global climate change debate. So it is important to be able to measure sulfur in the atmosphere and identify where it came from. (author)

  7. Antibotulinal efficacy of sulfur dioxide in meat.

    OpenAIRE

    Tompkin, R. B.; Christiansen, L. N.; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulf...

  8. Two stage sorption of sulfur compounds

    International Nuclear Information System (INIS)

    This patent describes a method for reducing the sulfur content of exhaust gases from the combustion of hydrocarbons. It comprises rapidly heating an alkali- or alkaline-earth-based sorbent powder to a temperature near its vaporization point so that the sorbent becomes an activated sorbent comprising part vapor and part liquid; injecting the activated sorbent into a sulfur-containing gas stream so as to form sulfur-containing sorbent; and quenching and collecting the sulfur-containing sorbent

  9. Efficient Electrolytes for Lithium–Sulfur Batteries

    OpenAIRE

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polyme...

  10. Anaerobic microbial degradation of methylated sulfur compounds

    OpenAIRE

    Maarel, Marc Jos Elise Cornelis van der,

    1996-01-01

    Dimethylsulfide (DMS) is one of the most abundant organic sulfur compounds in the marine environment and is thought to play an important role in the formation of cloud condensation nuclei through its atmospheric oxidation products methanesulfonic acid and sulfuric acid. DMS also forms a crucial link in the global sulfur cycle because it is the main sulfur species that is transported from marine to terrestrial environments. The precursor of DMS in marine environments is the osmolyte dimethylsu...

  11. Sulfur Dioxide and Material Damage

    Science.gov (United States)

    Gillette, Donald G.

    1975-01-01

    This study relates sulfur dioxide levels with material damage in heavily populated or polluted areas. Estimates of loss were determined from increased maintenance and replacement costs. The data indicate a decrease in losses during the past five years probably due to decline in pollution levels established by air quality standards. (MR)

  12. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NOx) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  13. Cospeciation of chemoautotrophic bacteria and deep sea clams

    OpenAIRE

    Peek, Andrew S; Feldman, Robert A; Lutz, Richard A; Vrijenhoek, Robert C

    1998-01-01

    Vesicomyid clams depend entirely on sulfur-oxidizing endosymbiotic bacteria for their nutriment. Endosymbionts that are transmitted cytoplasmically through eggs, such as these, should exhibit a phylogenetic pattern that closely parallels the phylogeny of host mitochondrial genes. Such parallel patterns are rarely observed, however, because they are obscured easily by small amounts of horizontal symbiont transmission or occasional host switching. The present symbiont genealogy, based on bacter...

  14. Metal and sulfur composition of iron-molybdenum cofactor of nitrogenase.

    OpenAIRE

    Nelson, M J; Levy, M A; Orme-Johnson, W.H.

    1983-01-01

    The sulfur content of N-methylformamide solutions of cofactor from Clostridium pasteurianum nitrogenase has been determined to be 11.9 (+/- 0.9) mol per mol of molybdenum. This number was determined radiochemically, using iron-molybdenum cofactor isolated from molybdenum-iron protein from bacteria grown on 35SO4. A total of 3.2 (+/- 0.2) mol of sulfur per mol of molybdenum was found to be present in cysteine and methionine, probably arising from contaminating proteins not intrinsic to the cof...

  15. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  16. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  17. Recovery of sulfur from native ores

    Energy Technology Data Exchange (ETDEWEB)

    Womack, J.T.; Wiewiorowski, T.K.; Astley, V.C.; Perez, J.W.; Headington, T.A.

    1992-03-17

    This patent describes a process for removing elemental sulfur from ores containing elemental sulfur. It comprises crushing a sulfur-containing ore to a coarse particle size wherein ore particles produced during crushing enable substantially all of the sulfur to be liberated during a heating step and to produce an ore gangue that is substantially not susceptible to flotation: forming an aqueous ore slurry containing about 50-80% by weight of solids from the crushed ore and adjusting the pH to at least a pH of about 8.0; heating the aqueous ore slurry formed in step (b) under elevated pressure to a temperature of about 240{degrees} - 315{degrees} F. for sufficient time to melt and liberate elemental sulfur contained in the ore to produce liberated molten sulfur and ore gangue, wherein the slurry is heated while agitating the slurry at sufficient velocity to substantially maintain the ore, ore gangue and liberated molten sulfur in suspension; cooling the heated slurry sufficiently to resolidify the liberated molten sulfur; conditioning the aqueous slurry of step (d) with a flotation aid; separating the condition aqueous slurry of ore gangue and resolidified sulfur in a flotation unit to produce a sulfur-rich flotation concentrate overstream; and recovering the sulfur-rich flotation concentrate and separating the sulfur therefrom.

  18. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  19. Species Numbers in Bacteria

    OpenAIRE

    Dykhuizen, Daniel

    2005-01-01

    A modified biological species definition (BSD), i.e., that bacteria exchange genes within a species, but not usually between species, is shown to apply to bacteria. The formal definition of bacterial species, which is more conservative than the modified BSD, is framed in terms of DNA hybridization. From this I estimate there are a million species of bacteria in 30 grams of rich forest topsoil and propose that there will be at least a billion species worldwide.

  20. Learning Chemistry from Bacteria

    OpenAIRE

    Clardy, Jon

    2013-01-01

    Dr. Jon Clardy Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University All animals, including humans, originated and evolved on a planet already teeming with bacteria, and the two kingdoms of life have been competing and cooperating through their joint history. Although bacteria are most familiar as pathogens, some bacteria produce small molecules that are essential for the biology of animals and other eukaryotes. This lecture explores some of...

  1. Chemical communication among bacteria

    OpenAIRE

    Taga, Michiko E; Bassler, Bonnie L.

    2003-01-01

    Cell–cell communication in bacteria is accomplished through the exchange of chemical signal molecules called autoinducers. This process, called quorum sensing, allows bacteria to monitor their environment for the presence of other bacteria and to respond to fluctuations in the number and/or species present by altering particular behaviors. Most quorum-sensing systems are species- or group-specific, which presumably prevents confusion in mixed-species environments. However, some quorum-sensing...

  2. Multidrug Resistance in Bacteria

    OpenAIRE

    Nikaido, Hiroshi

    2009-01-01

    Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur b...

  3. Interspecies communication in bacteria

    OpenAIRE

    Federle, Michael J.; Bassler, Bonnie L.

    2003-01-01

    Until recently, bacteria were considered to live rather asocial, reclusive lives. New research shows that, in fact, bacteria have elaborate chemical signaling systems that enable them to communicate within and between species. One signal, termed AI-2, appears to be universal and facilitates interspecies communication. Many processes, including virulence factor production, biofilm formation, and motility, are controlled by AI-2. Strategies that interfere with communication in bacteria are bein...

  4. Phylogenomics of Oceanic Bacteria

    OpenAIRE

    Viklund, Johan

    2013-01-01

    The focus of this thesis has been the phylogenomics and evolution of the Alphaproteobacteria. This is a very diverse group which encompasses bacteria from intraceullar parasites, such as the Rickettsiales, to freeliving bacteria such as the most abundant bacteria on earth, the SAR11. The genome sizes of the Alphaproteobacteria range between 1 Mb and 10 Mb. This group is also connected to the origin of the mitochondria. Several studies have placed the SAR11 clade together with the Rickettsiale...

  5. ALGAE-BACTERIA INTERACTION IN A LIGHT-DARK CYCLE (JOURNAL VERSION)

    Science.gov (United States)

    Nutrient and population dynamics accompanying algae-bacteria interaction were observed in unialgal, 18-liter batch cultures during a light-dark cycle. The green alga Chlorella vulgaris, and the nitrogen fixing blue-green Anabaena flos-aquae were inoculated with an aquatic communi...

  6. Durability of incinerator ash waste encapsulated in modified sulfur cement

    International Nuclear Information System (INIS)

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs

  7. Bacteria-Antagonists

    International Science & Technology Center (ISTC)

    Development of Biological Control Agents Through Use of Recombinant Antagonistic Bacteria Possessing Variable Mechanisms of Antagonisms, High Colonizing Capacity and Marker Traits for their Monitoring in Nature

  8. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo

    2016-02-17

    An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries. PMID:26378622

  9. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    OpenAIRE

    Kamyshny, Alexey; Druschel, Gregory; Mansaray, Zahra F; Farquhar, James

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in ...

  10. Improvement of Energy Capacity with Vitamin?C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Kim, Jin Won; Ocon, Joey D; Kim, Ho-Sung; Lee, Jaeyoung

    2015-09-01

    A graphene-based cathode design for lithium-sulfur batteries (LSB) that shows excellent electrochemical performance is proposed. The dual-layered cathode is composed of a sulfur active layer and a polysulfide absorption layer, and both layers are based on vitamin?C treated graphene oxide at various degrees of reduction. By controlling the degree of reduction of graphene, the dual-layered cathode can increase sulfur utilization dramatically owing to the uniform formation of nanosized sulfur particles, the chemical bonding of dissolved polysulfides on the oxygen-rich sulfur active layer, and the physisorption of free polysulfides on the absorption layer. This approach enables a LSB with a high specific capacity of over 600?mAh?gsulfur (-1) after 100?cycles even under a high current rate of 1C (1675?mA?gsulfur (-1) ). An intriguing aspect of our work is the synthesis of a high-performance dual-layered cathode by a green chemistry method, which could be a promising approach to LSBs with high energy and power densities. PMID:25925659

  11. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile

    DEFF Research Database (Denmark)

    Zopfi, Jakob; JØrgensen, Bo Barker

    2007-01-01

    The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The ?34S-values of pyrite down to -38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.

  12. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile.

    DEFF Research Database (Denmark)

    Zopfi, Jakob; Michael E., Böttcher

    2008-01-01

    The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The ?34S-values of pyrite down to -38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.

  13. Constitutive and Inducible Green Fluorescent Protein Expression in Bartonella henselae

    OpenAIRE

    Lee, Anthea K.; Falkow, Stanley

    1998-01-01

    The green fluorescent protein (GFP) gene was expressed on a plasmid in B. henselae, and GFP-expressing bacteria were visualized by fluorescence microscopy. HEp-2 cells infected with GFP-expressing bacteria were separated from uninfected cells with a fluorescence activated cell sorter. Promoter fusions of B. henselae chromosomal DNA to gfp were examined by flow cytometry, and a B. henselae groEL promoter fusion which induced expression at 37°C was isolated.

  14. LIGHTWEIGHT GREEN ROOF SYSTEMS

    Science.gov (United States)

    Applying a Lightweight Green Roof System to a building can achieve in managing storm water runoff, decreasing heat gain, yielding energy savings, and mitigating the heat island effect. Currently, Most green roof systems are considerably heavy and require structural reinforceme...

  15. Blue-green algae

    Science.gov (United States)

    “Blue-green algae” describes a large and diverse group of simple, plant-like organisms found in salt water and some large fresh water lakes. Blue-green algae products are used for many conditions, ...

  16. Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering

    OpenAIRE

    English, J. M.; Toon, O. B.; M. J. Mills

    2012-01-01

    Recent microphysical studies suggest that geoengineering by continuous stratospheric injection of SO2 gas may be limited by the growth of the aerosols. We study the efficacy of SO2, H2SO4 and aerosol injections on aerosol mass and optical depth using a three-dimensional general circulation model with sulfur chemistry and sectional aerosol microphysics (WACCM/CARMA). We find increasing injection rates o...

  17. Green Buildings and Health

    OpenAIRE

    Allen, Joseph G.; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S.; Eitland, Erika Sita; John D. Spengler

    2015-01-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits re...

  18. GREEN MARKETING - AN OVERVIEW

    OpenAIRE

    Arthi; S. Bulomine Reg; Anthony Rahul Golden.S

    2014-01-01

    In today's business world environmental issues plays an important role in marketing. All most all the governments around the world have concerned about green marketing activities that they have attempted to regulate them. There has been little attempt to academically examine environmental or green marketing. It introduces the terms and concepts of green marketing, briefly discuss why going green is important and also examine some of the reason that organizations are adopting a...

  19. Sulfur cycling in contaminated aquifers: What can we learn from oxygen isotopes in sulfate? (Invited)

    Science.gov (United States)

    Knoeller, K.; Vogt, C.; Hoth, N.

    2009-12-01

    Bacterial reduction of dissolved sulfate (BSR) is a key process determining the natural attenuation in many contaminated aquifers. For example, in groundwater bodies affected by acid mine drainage (AMD) BSR reduces the contaminant load by producing alkalinity and facilitating a sustainable fixation of sulfur in the sediment. In aquifers contaminated with petroleum hydrocarbons sulfate may act as a terminal electron acceptor for the anaerobic oxidation of the organic contaminants to carbon dioxide and water. Due to the isotope selectivity of sulfate reducing bacteria, BSR shows the most pronounced isotope fractionation within the sulfur cycle. While sulfur displays a straightforward kinetic enrichment in the residual sulfate described by the enrichment factor epsilon (?), the mechanism of oxygen isotope fractionation is still being discussed controversially. Nevertheless, it is agreed on that oxygen isotope exchange between ambient water and residual sulfate occurs during BSR in natural environments. With respect to this potential isotope exchange, the fractionation parameter theta (?) is introduced instead of the kinetic enrichment factor epsilon (?). The dual isotope system considering both sulfate-sulfur and sulfate-oxygen isotope fractionation and the respective fractionation parameters ? and ? provides an excellent tool for the recognition and quantification of BSR. Beyond that, the dual isotope approach may help identify and estimate interfering sulfur transformations such as re-oxidation and disproportionation processes which is especially vital for the understanding of the overall natural attenuation potential of the investigated aquifers. We present two examples from different field studies showing the benefits of applying the combination of sulfur and oxygen isotopes in dissolved sulfate to reveal the details of the sulfur cycle. The first case study is concerned with the evaluation of the potential for BSR in an AMD-affected aquifer close to an abandoned lignite mine. Due to the heterogeneous isotopic composition of the sulfate source (oxidation of sedimentary sulfide), sulfur isotopes alone are inappropriate for the recognition of BSR. Only the application of oxygen isotopes in sulfate provides clear evidence for the activity of sulfate reducing bacteria. However, the obtained small ? value indicates a significant influence of sulfide re-oxidation. In the second example we applied the dual isotope system to investigate the relevance of BSR for natural biodegradation in an aquifer contaminated with BTEX. Isotope fractionation parameters were determined in column experiments operated under near in situ conditions. The differences between field derived and experimental fractionation parameters revealed essential information on the occurrence of sulfur transformations competing with the actual biodegradation reactions. Most important of those processes is the re-oxidation of reduced sulfur species consuming electron acceptors that would be relevant for contaminant oxidation.

  20. Visualizing bacteria in nematodes using fluorescent microscopy.

    Science.gov (United States)

    Murfin, Kristen E; Chaston, John; Goodrich-Blair, Heidi

    2012-01-01

    Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic (1-3). One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis (4). Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects (5). For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage (6-8). Recently, several other nematode species have been shown to utilize bacteria to kill insects (9-13), and investigations have begun examining the interactions between the nematodes and bacteria in these systems (9). We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila (14). Similar methods have been used to investigate other nematode-bacterium associations (9) (,) (15-18)and the approach therefore is generally applicable. The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization (14) (,) (16) (,) (19). Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues (14) (,) (16) (,) (19-21). This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication (22)or grinding (23), which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes (21) (,) (24). Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization (17) (,) (18), and is less laborious than other methods, including sonication (22) (,) (25-27)and individual nematode dissection (28) (,) (29). PMID:23117838

  1. The green agenda

    CERN Document Server

    Calder, Alan

    2009-01-01

    This business guide to Green IT was written to introduce, to a business audience, the opposing groups and the key climate change concepts, to provide an overview of a Green IT strategy and to set out a straightforward, bottom line-orientated Green IT action plan.

  2. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  3. What Is Green?

    Science.gov (United States)

    Pokrandt, Rachel

    2010-01-01

    Green is a question with varying answers and sometimes no answer at all. It is a question of location, resources, people, environment, and money. As green really has no end point, a teacher's goal should be to teach students to question and consider green. In this article, the author provides several useful metrics to help technology teachers…

  4. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  5. Show Me the Green

    Science.gov (United States)

    Norbury, Keith

    2013-01-01

    Gone are the days when green campus initiatives were a balm to the soul and a drain on the wallet. Today's environmental initiatives are all about saving lots of green--in every sense of the word. The environmental benefits of green campus projects--whether wind turbines or better insulation--are pretty clear. Unfortunately, in today's…

  6. Aerobic Anoxygenic Phototrophic Bacteria

    OpenAIRE

    Yurkov, Vladimir V.; Beatty, J Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynt...

  7. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods

    OpenAIRE

    Beheshti-Maal, K; Rasooli, I; SM Sharafi

    2010-01-01

    Background and Objectives: Acetic acid bacteria (AAB) are useful in industrial production of vinegar. The present study aims at isolation and identification of acetic acid bacteria with characterization, optimization, and evaluation of their acetic acid productivity."nMaterials and Methods: Samples from various fruits were screened for presence of acetic acid bacteria on glucose, yeast extract, calcium carbonate (GYC) medium. Carr medium supplemented with bromocresol green was used for distin...

  8. Occurrence of Lactic Acid Bacteria During the Different Stages of Vinification and Conservation of Wines

    OpenAIRE

    Lafon-Lafourcade, S.; Carre, E.; Ribéreau-Gayon, P.

    1983-01-01

    We showed that the growth of lactic acid bacteria during alcoholic fermentation depends on the composition of the must. We illustrated how the addition of sulfur dioxide to the must before fermentation and the temperature of storage both affect the growth of these bacteria in the wine. Whereas species of Lactobacillus and Leuconostoc mesenteroides were isolated from grapes and must, Leuconostoc oenos was the only species isolated after alcoholic fermentation. This organism was responsible for...

  9. Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant

    International Nuclear Information System (INIS)

    Structure, electronic, and transport properties of sulfur dioxide (SO2) molecule adsorbed on pure and Cr doped zigzag graphene nanoribbons (ZGNRs) are investigated by means of first principle density functional theory and nonequilibrium Green's function computations. It is found that Cr doped ZGNR is more sensitive to SO2 molecule than pure ZGNR. The pure ZGNRs with and without SO2 molecule show similar I–V curves, but the current of Cr doped ZGNR will significant increase after SO2 molecule adsorption.

  10. Blue-green algae

    Science.gov (United States)

    ... liver poisons (microcystins) produced by certain bacteria, and heavy metals. Choose only products that have been tested and ... contaminants, such as liver-damaging substances called microcystins, toxic metals, and harmful bacteria, are POSSIBLY SAFE for most ...

  11. GREEN MARKETING : GREEN ENVIRONMENT - STRATEGIES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Bhurelal Patidar

    2014-05-01

    Full Text Available -Green marketing is a phenomenon which has developed particular import in the modern market. This concept has enabled for the re-marketing and packing of existing products which already adhere to such guidelines. Additionally, the development of green marketing has opened the door of opportunity for companies to co-brand their products into separate line, lauding the green-friendliness of some while ignoring that of others. Such marketing techniques as will be explained are as a direct result of movement in the minds of the consumer market

  12. Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach.

    Science.gov (United States)

    He, Bin; Li, Wen-Cui; Yang, Chao; Wang, Si-Qiong; Lu, An-Hui

    2016-01-26

    We have developed an electrolysis approach that allows effective and uniform incorporation of sulfur inside the micropores of carbon nanosheets for advanced lithium-sulfur batteries. The sulfur-carbon hybrid can be prepared with a 70 wt % sulfur loading, in which no nonconductive sulfur agglomerations are formed. Because the incorporated sulfur is electrically connected to the carbon matrix in nature, the hybrid cathode shows excellent electrochemical performance, including a high reversible capacity, good rate capability, and good cycling stability, as compared to one prepared using the popular melt-diffusion method. PMID:26736137

  13. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  14. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    International Nuclear Information System (INIS)

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 6–8 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S0 nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 6–8 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UV–vis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.

  15. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases

    Energy Technology Data Exchange (ETDEWEB)

    Drotar, A.; Burton, G.A. Jr.; Tavernier, J.E.; Fall, R.

    1987-07-01

    A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated (i) with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and (ii) in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers.

  16. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    Science.gov (United States)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  17. Inactivation of biofilm bacteria.

    OpenAIRE

    LeChevallier, M. W.; Cawthon, C D; Lee, R. G.

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found ...

  18. A novel process to treat spent petroleum catalyst using sulfur-oxidizing lithotrophs.

    Science.gov (United States)

    Kim, Dong J; Mishra, Debaraj; Ahn, Jong G; Chaudhury, Gautam R; Ralph, David E

    2009-12-01

    A novel process was developed using sulfur-oxidizing bacteria to extract metal values like Ni, V and Mo from spent petroleum catalyst. Bacteria were grown in elemental sulfur media for five day and after filtering, the filtrate was used for leaching purpose. Effect of different parameters such as contact time, particle size, pulp density and lixiviant composition were studied to find out the extent of metal leaching during the leaching process. XRD analysis proved the existence of V in oxide form, Ni in sulfide form, Mo both in oxide as well as sulfide forms, and sulfur in elemental state only. In all the cases studied Ni and V showed higher leaching efficiency compared to Mo. The low Mo leaching rate may be either due to formation of impervious sulfur layer or refractoriness of sulfides or both. Leaching kinetics followed dual rate, initial faster followed by slower. Dissolution mechanism was explained on the basis of both surface and pore diffusion rate. The leaching kinetics followed 1st order reaction rate. Finally, multiple linear regression analysis was carried out to compare the observed and calculated leaching percentage values for three metals. PMID:20183517

  19. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  20. Sulfur dioxide residue in sulfur-fumigated edible herbs: The fewer, the safer?

    Science.gov (United States)

    Duan, Su-Min; Xu, Jun; Bai, Ying-Jia; Ding, Yan; Kong, Ming; Liu, Huan-Huan; Li, Xiu-Yang; Zhang, Qing-Shan; Chen, Hu-Biao; Liu, Li-Fang; Li, Song-Lin

    2016-02-01

    The residual content of sulfur dioxide is frequently regarded as the exclusive indicator in the safety evaluation of sulfur-fumigated edible herbs. To examine the feasibility of such assessment criteria, here the variations in residual sulfur dioxide content during sulfur-fumigation and the potential mechanisms involved were investigated, using Angelicae Sinensis Radix (ASR) as a model herb. The residual sulfur dioxide content and ten major bioactive components in sulfur-fumigated ASR samples were dynamically examined at 13 successive time points within 72 h sulfur-fumigation. The relationship between the content variation tendency of sulfur dioxide and the ten chemicals was discussed. The results suggested that sulfur dioxide-involved chemical transformation of the original components in ASR might cause large consumption of residual sulfur dioxide during sulfur-fumigation. It implies that without considering the induced chemical transformation of bioactive components, the residual sulfur dioxide content alone might be inadequate to comprehensively evaluate the safety of sulfur-fumigated herbs. PMID:26304328

  1. Metatranscriptomic Analysis of Sulfur Oxidation Genes in the Endosymbiont of Solemya Velum

    OpenAIRE

    Stewart, Frank James; Dmytrenko, Oleg; DeLong, Edward F.; Cavanaugh, Colleen Marie

    2011-01-01

    Thioautotrophic endosymbionts in the Domain Bacteria mediate key sulfur transformations in marine reducing environments. However, the molecular pathways underlying symbiont metabolism and the extent to which these pathways are expressed in situ are poorly characterized for almost all symbioses. This is largely due to the difficulty of culturing symbionts apart from their hosts. Here, we use pyrosequencing of community RNA transcripts (i.e., the metatranscriptome) to characterize enzymes of di...

  2. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    OpenAIRE

    Wing, Boswell A.; Halevy, Itay

    2014-01-01

    Microbes can discriminate among metabolites that differ only in the stable isotopes of the same element. This stable isotope fractionation responds systematically to environmental variables like extracellular metabolite concentrations and to physiological ones like cell-specific metabolic rates. These observable characteristics define a stable isotope phenotype, as exemplified by the rich database of experimental sulfur isotope fractionations from sulfate-respiring bacteria and archaea. We de...

  3. [Selective extraction of metals from zinc concentrate by association of chemolithotrophic bacteria].

    Science.gov (United States)

    Vardanian, N S; Vardanian, A K

    2011-01-01

    Ability for selective extraction of copper and zinc from zinc concentrate using association of chemolithotrophic bacteria was investigated. In the presence of bacterial association, the rate of desalinization of zinc, copper, and iron was increased 3-fold, 4-5-fold, and 2-fold, respectively. Zinc, copper, and iron were levigated with the most significant rate. It was revealed that addition of Fe3+ 2 g/l resulted in reduction of iron desalinization and in 3-fold increase of desalinization rate of copper at constant dissolution rate of mineral zinc. It is suggested that the intensification of copper desalinization is connected with the activity of sulfur-oxidizing bacteria able to activate the mineral surface via elimination of passivation layer of elemental sulfur. It was concluded that sulfur-oxidizing bacteria play a significant role in copper desalinization from zinc concentrate. A unique strain of mesophile sulfur-oxidizing bacteria was isolated from desalinization pulp of zinc concentrate; in the perspective, it may serve as efficient candidate for performing of selective extraction of copper from zinc concentrate. PMID:22232898

  4. Sulfur isotope composition of selected Polish coals

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A.G.; Wierzchnicki, R.; Derda, M.; Mikolajczuk, A.

    2002-07-01

    Literature studies show that there are few data on sulfur isotope ratio in available the Polish coals. Elaboration of a method for the separation of sulfur from coal and measurement of sulfur isotope ratio of Polish coals is the scope of this work. The aim of the study was the preparation of coal samples and extraction of the particular form of sulfur. The stable compounds (Ag{sub 2}S and BaSO{sub 4}) were converted into sulfur dioxide. Sulfur isotope ratio in the gas phase was determined using a mass spectrometer. Samples were taken from selected Polish coal mines. Hard coal from Upper Silesia Basin, one sample from the Bogdanka coal-mine and one sample of lignite from the Belchatow coal-mine.

  5. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.; Givskov, Michael Christian; Williams, P.; Camara, M.

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  6. Bacteria-surface interactions

    OpenAIRE

    Tuson, Hannah H.; Weibel, Douglas B.

    2013-01-01

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing an...

  7. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  8. SULFUR COMPOUNDS IN PETROLEUM HYDROCARBON STREAMS

    OpenAIRE

    Antoaneta Pavlova; Pavlina Ivanova; Teodora Dimova

    2012-01-01

    Determination of concentrations of sulfur compounds in different petroleum samples is a true analytical challenge. Only analytical procedures based on gas chromatography can meet the sensitivity and accuracy requirements dictated by up-to-date petroleum industry.The objective of this work is to develop the method for the quantifying of sulfur compounds in petroleum hydrocarbon streams. The optimum parameters for the GC-SCD method are found in order to determine of sulfur compounds in petroleu...

  9. Spent fuel reprocessing process by selective sulfurization

    International Nuclear Information System (INIS)

    For the recovery of nuclear materials from spent oxide fuel, a novel reprocessing process by selective sulfurization method was examined. This process consists of 1) voloxidation, 2) selective sulfurization and 3) selective dissolution steps. The advantages of the process are, 1) low temperature sulfurization reaction, 2) consumption of reactants only for the sulfurization of fission products, 3) recycle of oxide fuel materials. Sulfurization behavior of uranium oxides and fission products such as rare-earths (Ln2O3), with CS2 was investigated by XRD analysis as well as thermodynamic consideration. The sulfurization behavior of PuO2 was also investigated by using CeO2 as a stand-in of PuO2. The results are summarized as follows; 1) At voloxidation step, UO2 was found to be oxidized to U3O8 by the heat treatment in air at 1273 K, while a part of U3O8 changed to rare-earth doped UO2 solid solution in the pressure of rare-earths. 2) Rare-earth oxides were selectively sulfurized by CS2 at temperatures lower than 775 K, while U3O8 was reduced to UO2 without sulfurization. 3) Cerium oxide CeO2 showed a similar sulfurization behavior to that of UO2 at temperature range from 573 to 773 K. 4) The sulfurized rare-earths selectively dissolved into nitric acid, while UO2 did not. 5) Sulfurization behaviors of other fission products such as cesium, strontium, platinum group were discussed by thermodynamic consideration. 6) From the above results, process for recycling nuclear materials as oxides (UO2 and PuO2) by selective sulfurization was proposed. (author)

  10. Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries

    Science.gov (United States)

    Reed, L.

    1978-01-01

    The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.

  11. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ...introduced as fresh feed to the cracking unit. For sulfuric acid production units, the nitrogen in the air feed shall not be included... (xiv) Sulfuric acid production unit means...hydrogen sulfide, organic sulfides and...

  12. Phylogenetic analysis on the soil bacteria distributed in karst forest

    Scientific Electronic Library Online (English)

    JunPei, Zhou; Ying, Huang; MingHe, Mo.

    2009-12-01

    Full Text Available Phylogenetic composition of bacterial community in soil of a karst forest was analyzed by culture-independent molecular approach. The bacterial 16S rRNA gene was amplified directly from soil DNA and cloned to generate a library. After screening the clone library by RFLP, 16S rRNA genes of representa [...] tive clones were sequenced and the bacterial community was analyzed phylogenetically. The 16S rRNA gene inserts of 190 clones randomly selected were analyzed by RFLP and generated 126 different RFLP types. After sequencing, 126 non-chimeric sequences were obtained, generating 113 phylotypes. Phylogenetic analysis revealed that the bacteria distributed in soil of the karst forest included the members assigning into Proteobacteria, Acidobacteria, Planctomycetes, Chloroflexi (Green nonsulfur bacteria), Bacteroidetes, Verrucomicrobia, Nitrospirae, Actinobacteria (High G+C Gram-positive bacteria), Firmicutes (Low G+C Gram-positive bacteria) and candidate divisions (including the SPAM and GN08).

  13. Green growth in fisheries

    DEFF Research Database (Denmark)

    Nielsen, Max; Ravensbeck, Lars; Nielsen, Rasmus

    2014-01-01

    Climate change and economic growth have gained a substantial amount of attention over the last decade. Hence, in order to unite the two fields of interest, the concept of green growth has evolved. The concept of green growth focuses on how to achieve growth in environment-dependent sectors, without...... harming the environment. Fishery is an environment-dependent sector and it has been argued that there is no potential for green growth in the sector owing to global overexploitation, leaving no scope for production growth. The purpose of this paper is to explain what green growth is and to develop a...... conceptual framework. Furthermore, the aim is to show that a large green growth potential actually exists in fisheries and to show how this potential can be achieved. The potential green growth appears as value-added instead of production growth. The potential can be achieved by reducing overcapacity...

  14. Sulfuric Acid Speleogenesis: Microbial Karst and Microbial Crust

    Science.gov (United States)

    Engel, A. S.; Bennett, P. C.; Stern, L. A.

    2001-12-01

    Sulfuric acid speleogenesis is a fundamental mechanism of karst formation, and is potentially responsible for the formation of some of the most extensive cave systems yet discovered. Speleogenesis occurs from the rapid dissolution of the host limestone by sulfuric acid produced from biotic and abiotic sulfide oxidation, and with the release of carbon dioxide, secondary gypsum crusts form. This crust develops predominately on the cave walls, often preserving original bedding indicators, until it finally collapses under its own weight to expose fresh limestone for dissolution. While this general speleogenetic process can be inferred from secondary residues in some caves, directly observing this process is difficult, and involves entry into an extreme environment with toxic atmospheres and low pH solutions. Kane Cave, Big Horn County, WY, offers the unique opportunity to study microbe-rock interactions directly. Kane Cave presently contains 3 springs that discharge hydrogen sulfide-rich waters, supporting thick subaqueous mats of diverse microbial communities in the stream passage. Condensation droplets and elemental sulfur form on subaerially exposed gypsum surfaces. Droplets have an average pH of 1.7, and are dominated by dissolved sulfate, Ca, Mg, Al, and Si, with minor Sr and Fe, and trace Mn and U. SEM and EDS examination of the crusts reveal the presence of C, O, and S, as well as authigenic, doubly-terminated quartz crystals. An average ? 13C value of -36 ‰ suggests that the crusts are biogenic and are composed of chemoautotrophic microorganisms. Enrichment cultures of biofilms and acid droplets rapidly produce sulfuric acid, demonstrating the dominance of sulfur-oxidizing bacteria. Colonization of gypsum surfaces by acidophilic microorganisms enhances acid dissolution of the limestone, and hence the growth of the cave itself. Limestone dissolution also results in mineralized crusts and biofilms that accumulate insoluble residues, which serve as sources of nutrient Fe, P, and N to the microbes. Other elements, such as Si, increase in concentration in the acid solutions and low-temperature mineral precipitation occurs. >http://www.geo.utexas.edu/chemhydro/Annette/karstgeo.htm

  15. Green growth in fisheries

    DEFF Research Database (Denmark)

    Nielsen, Max; Ravensbeck, Lars; Nielsen, Rasmus

    2014-01-01

    Climate change and economic growth have gained a substantial amount of attention over the last decade. Hence, in order to unite the two fields of interest, the concept of green growth has evolved. The concept of green growth focuses on how to achieve growth in environment-dependent sectors, without harming the environment. Fishery is an environment-dependent sector and it has been argued that there is no potential for green growth in the sector owing to global overexploitation, leaving no scope ...

  16. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    Science.gov (United States)

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. PMID:26650451

  17. Green electricity buyer's guide

    International Nuclear Information System (INIS)

    The electricity produced in whole or in large part from renewable energy sources like wind, small hydro electricity and solar energy, is generally referred to as green electricity. The authors designed this buyer's guide to assist customers in their understanding of green electricity, as the customers can now choose their electricity supplier. The considerations and steps involved in the purchasse of green electricity are identified, and advice is provided on ways to maximize the benefits from the purchase of green electricity. In Alberta and Ontario, customers have access to a competitive electricity market. The emphasis when developing this guide was placed firmly on the large buyers, as they can have enormous positive influence on the new market for green electricity. The first chapter of the document provides general information on green electricity. In chapter two, the authors explore the opportunity for environmental leadership. Chapter three reviews the basics of green electricity, which provides the link to chapter four dealing with the creation of a policy. Purchasing green electricity is dealt with in Chapter five, and maximizing the benefits of green electricity are examined in Chapter Six. 24 refs., 3 tabs

  18. Oxidative stress enhances the expression of sulfur assimilation genes: preliminary insights on the Enterococcus faecalis iron-sulfur cluster machinery regulation

    Scientific Electronic Library Online (English)

    Gustavo Pelicioli, Riboldi; Christine Garcia, Bierhals; Eduardo Preusser de, Mattos; Ana Paula Guedes, Frazzon; Pedro Alves, d?Azevedo; Jeverson, Frazzon.

    2014-07-01

    Full Text Available The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorgani [...] c prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.

  19. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    Science.gov (United States)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  20. Bacterial Disproportionation of Elemental Sulfur Inferred from a Field Study of Stable-Isotope Fractionations between Elemental Sulfur and Pyrite

    Science.gov (United States)

    Hardisty, D.; Pratt, L. M.; Olyphant, G. A.; Bell, J.; Johnson, A.

    2011-12-01

    Elemental sulfur (ES) is a common product of pyrite oxidation during acid mine drainage (AMD), but bacterial disproportionation of ES has not previously been inferred in acidic environments. Pore water profiles were collected seasonally within a coal-mine waste deposit, Minnehaha, in Southwest Indiana that has been abandoned for over 30 years. Geochemical characterization and modeling were used to assess how the interactions between the sulfur and iron cycle are affected by seasonally dynamic hydrologic conditions. Pore waters were collected seasonally and concentrations of Fe-species and sulfur isotopic compositions of sulfate were determined. Additionally, a sediment core was collected and used for sequential extraction and isotopic characterization of solid-phase sulfur species including elemental sulfur (?34Ses), pyrite (?34Spy), acid-volatile sulfides, water-soluble sulfates, and acid-soluble sulfates. The dominant disulfide phase was found to be pyrite through x-ray diffraction of an additional sediment core. Sulfur isotope fractionations between ?34Spy and ?34Ses (?34Ses-py) of up to -33% are inferred to indicate bacterial disproportionation of ES in the presence of a non-limiting sulfide 'scrub' Fe(III). The initial isotopic composition, following formation from pyrite oxidation, is inferred from ?34Spy, found to be ? 8.75% at the study site. Although ES has previously been found to accumulate in acidic Fe(III)-rich pore waters, ES is typically assumed to account for less than 1% of the oxidized sulfur pool and measurements of the ES isotopic composition are often neglected during field studies of acid AMD. The pore waters at Minnehaha were seasonally suboxic with sharp transitions from Fe(III)- to Fe(II)- dominated conditions near the phreatic surface. It is hypothesized that the sulfide product of ES disproportionation, fractionated by up to -8.6%, is immediately re-oxidized to ES near the redox gradient via reaction with Fe(III). Sulfide re-oxidation allows for the accumulation of isotopically light ES that can then become subject to further sulfur disproportionation. A mass-balance model for ES, incorporating seasonally varying rates for pyrite oxidation, ES disproportionation, and ES oxidation, was developed in order to determine the potential and conditions necessary for extensive recycling of ES by disproportionating bacteria to produce ES enriched in 32S compared to the pyrite source. Simulations run for 32 seasonal cycles resulted in a ?34Ses-py of -16.4.% and an ES concentration of 170 ppm, which is consistent with average values obtained from the sediment core. The findings suggest that ES disproportionation is likely an important microbial process in AMD that should be considered at similar mining waste deposits experiencing seasonally varying hydrologic conditions and that ?34Ses-py can be used to estimate multiple cycles of ES disproportionation in oxic settings where the original source of ES is pyrite oxidation.

  1. Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

    OpenAIRE

    Brock, Nelson L.; Citron, Christian A; Zell, Claudia; Berger, Martine; Wagner-Döbler, Irene; Petersen, Jörn; Brinkhoff, Thorsten; Simon, Meinhard; Dickschat, Jeroen S

    2013-01-01

    Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP) via competing pathways releasing either methanethiol (MeSH) or dimethyl sulfide (DMS). Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP) were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextra...

  2. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g−1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries

  3. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup ?1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  4. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP; Paerl, HW; Zopfi, J.; Schulz, HN; Teske, A.; Strotmann, B.; Gallardo, VA; Jørgensen, BB

    1999-01-01

    min(-1) mg of protein(-1) and could be increased to 10.7 nmol min(-1) mg of protein(-1) after the trichomes were starved for 45 h. Incorporation of (14)CO(2) was at a rate of 0.4 to 0.8 nmol min(-1) mg of protein(-1), which is half the rate calculated from sulfide oxidation. [2-(14)C......]acetate incorporation was 0.4 nmol min(-1) mg of protein(-1), which is equal to the CO(2) fixation rate, and no (14)CO(2) production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells...... internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in...

  5. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Science.gov (United States)

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  6. 40 CFR 52.795 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 false Control strategy: Sulfur dioxide. 52.795 Section 52.795...52.795 Control strategy: Sulfur dioxide. (a) Revised APC-13...Pollution Control regulations (sulfur dioxide emission limitation) is...

  7. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for residues. ...Specific Tolerances § 180.444 Sulfur dioxide; tolerances for residues. ...sulfite residues of the fungicide sulfur dioxide (determined as (SO2 ))...

  8. 40 CFR 52.2575 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 false Control strategy: Sulfur dioxide. 52.2575 Section 52.2575...52.2575 Control strategy: Sulfur dioxide. (a) Part D—Approval...Administrator approved the Wisconsin sulfur dioxide control plan. (1) Part...

  9. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 false Control strategy: Sulfur dioxide. 52.724 Section 52.724...52.724 Control strategy: Sulfur dioxide. (a) Part D—Conditional...attainment and maintenance of the sulfur dioxide standard, and the...

  10. The isotopic composition of sulfur and the genesis of mirabilite from the Miocene Oya formation, Tochigi Prefecture

    International Nuclear Information System (INIS)

    The sulfur isotope ratios of mirabilite and gypsum from a pumice tuff formation of the Miocene ''green tuff'' group in Oya, Tochigi Prefecture, are remarkably light, being -16 to -20 in delta 34S per mil value relative to the meteoritic sulfur. Comparative isotopic values are observed for pyrites in the formation, which are considered to be of the syngenetic or diagenetic origin. The SO42- in the sulfate minerals is possibly derived from the near-surface oxidation of the biogenic sulfides. (Mori, K.)

  11. Sulfur removal from a gas stream

    International Nuclear Information System (INIS)

    There is disclosed a process for removing sulfur compounds from a gas stream. The process involves passing the gas stream containing the sulfur compounds through a mass of porous material that has deposited upon it a metal oxide, the improvement comprises the continuous or intermittent addition of an oxidizing agent and an amine

  12. Sulfur recovery plant and process using oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Palm, J.W.

    1989-01-17

    This patent describes a process for the recovery of sulfur from a gaseous stream containing hydrogen sulfide, the process comprising the steps of: (a) introducing a thermal reaction mixture comprising (1) the gaseous stream containing hydrogen sulfide, and (2) an oxygen-enriched stream of air or pure oxygen into a combustion zone of a Claus furnace; (b) combusting the thermal reaction mixture in the Claus furnace to thereby produce hot combustion gases comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; (c) introducing the hot combustion gases into a Claus catalytic reactor; (d) subjecting the hot combustion gases in the catalytic reactor to Claus reaction conditions in the presence of a Claus catalyst to thereby produce a Claus plant gaseous effluent stream comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; (e) introducing the Claus plant gaseous effluent into a condenser to thereby produce liquid sulfur, which is recovered, and a gaseous condenser effluent, which comprises hydrogen sulfide, sulfur dioxide, carbon dioxide and water; (f) converting substantially all sulfur species in the gaseous condenser effluent to hydrogen sulfide, to thereby form a condenser effluent comprising hydrogen sulfide, carbon dioxide and water; (g) removing water from the condenser effluent from step (f); and (h) moderating the temperature in the Claus furnace by returning at least a portion of the dried condenser effluent from step (g), as a diluent stream, to a combustion zone of the Claus furnace in step (a) above.

  13. Sulfur recovery plant and process using oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Palm, J.W.

    1989-07-18

    This patent describes a process for recovery of sulfur from a gaseous stream containing hydrogen sulfide. The process consists the steps of: introducing a thermal reaction mixture comprising the gaseous stream containing hydrogen sulfide, and an oxygen-enriched stream of air or pure oxygen into a combustion zone of a Claus furnace; combusting the thermal reaction mixture in the Claus furnace to thereby produce hot combustion gases comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; introducing the hot combustion gases into a Claus catalytic reactor; subjecting the hot combustion gases in the catalytic reactor to Claus reaction conditions in the presence of a Claus catalyst to thereby produce a Claus plant gaseous effluent stream comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; introducing the Claus plant gaseous effluent into a condenser to thereby produce liquid sulfur, which is recovered, and a gaseous condenser effluent, which comprises hydrogen sulfide, sulfur dioxide, carbon dioxide and water and which is divided into a recycle portion and a tailgas portion; converting substantially all sulfur species in the recycle portion of the gaseous condenser effluent to hydrogen sulfide to thereby form condenser effluent comprising hydrogen sulfide, carbon dioxide and water; removing water from the recycle portion of the condenser; and moderating the temperature in the Claus furnace by returning at least a portion of the dried recycle condenser, as a diluent stream, to a combustion zone of the Claus furnace.

  14. Pyrolysis of high sulfur Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    B.P. Baruah; Puja Khare [RRL Jorhat, Assam (India). Coal Chemistry Division

    2007-12-15

    Pyrolysis experiments under laboratory conditions for five numbers of high sulfur coal samples from the states of Meghalaya and Nagaland, India, were carried out at temperatures of 450, 600, 850, and 1000{sup o}C, respectively. The yield of products and thermal release of sulfur from these coals are investigated. The distribution of sulfur in the pyrolyzed products, i.e., char/coke, gas, and tar, is also reported. Hydrocarbon and sulfurous gases released at different temperatures were analyzed by a gas chromatograph (GC) with an FID (flame ionized detector) and an FPD (flame photometric detector), respectively. H{sub 2}S evolution during coal pyrolysis was found to be a function of temperature up to 850{sup o}C. The low concentration of SO{sub 2} detected for some of the samples is due to decomposition of inorganic sulphates present. Evolution of methane for the coals tested increases with the increase of temperature. Maximum sulfur release was found in the range of 600-850{sup o}C and has a decreasing tendency from 850-1000{sup o}C, which might be due to the incorporation of sulfur released into the coal matrix. Activation energies for sulfur release were found in the range of 38-228 kJ mol{sup -1}, which were higher than the reported activation energies for lignites and bituminous coals mainly due to highly stable organic sulfur functionalities. 52 refs., 9 figs., 6 tabs.

  15. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  16. Stabilized sulfur binding using activated fillers

    Science.gov (United States)

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  17. Ambient Air Monitoring for Sulfur Compounds

    Science.gov (United States)

    Forrest, Joseph; Newman, Leonard

    1973-01-01

    A literature review of analytical techniques available for the study of compounds at low concentrations points up some of the areas where further research is needed. Compounds reviewed are sulfur dioxide, sulfuric acid, ammonium sulfate and bisulfate, metal sulfates, hydrogen sulfide, and organic sulfides. (BL)

  18. From green architecture to architectural green:Facade versus space

    OpenAIRE

    Earon, Ofri

    2011-01-01

    The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architec...

  19. Sustainable green urban planning: the Green Credit Tool

    OpenAIRE

    Cilliers, E.J.; Diemont, E.; Stobbelaar, D.J.; Timmermans, W.

    2010-01-01

    Purpose – The Green Credit Tool is evaluated as a method to quantify the value of green-spaces and to determine how these green-space-values can be replaced or compensated for within urban spatial planning projects. Design/methodology/approach – Amersfoort Local Municipality created the Green Credit Tool to ensure protection and enhancement of the urban green totality. The tool is described and evaluated based on three core elements: the value matrix, the collection of values and green compen...

  20. Green management and green technology - exploring the causal relationship

    OpenAIRE

    Nogareda, Jazmin Seijas; Ziegler, Andreas

    2006-01-01

    In this paper, we analyze potential endogeneity problems in former econometric studies which regress corporate environmental performance such as green technology activities on green management. Based on evolutionary theory and the resource-based view of the firm, we discuss in the first step that green technology could also influence green management and that unobserved firm characteristics could simultaneously influence green management and green technology. Contrary to existing studies, we ...

  1. Customers’ Intention to Use Green Products: the Impact of Green Brand Dimensions and Green Perceived Value

    Directory of Open Access Journals (Sweden)

    Doszhanov Aibek

    2015-01-01

    Full Text Available This study aimed to identify the relationships between green brand dimension (green brand awareness, green brand image, and green brand trust, green perceived value and customer’s intention to use green products. Data was collected through structured survey questionnaire from 384 customers of three hypermarkets in Kuala-Lumpur. Data was analyzed based on multiple regression analysis. The results indicate that there are significant relationships between green brand awareness, green brand trust, green perceived value, and customer’s intention to use green products. However, green brand image was not found to have significant relationship with customer’s intention to use green products. The discussion presented suggestions for marketers and researchers interested in green branding.

  2. The Greening Dutchman

    DEFF Research Database (Denmark)

    Arnold, Marlen Gabriele; Hockerts, Kai

    2011-01-01

    ‘green flagging’ as a groundbreaking corporate sustainability innovation strategy. This paper describes how Philips uses this approach in its Green Flagship Program (GFP). Philips' GFP is particularly interesting since it sets specific targets across all its business units, thus driving the integration...

  3. Green Buildings and Health.

    Science.gov (United States)

    Allen, Joseph G; MacNaughton, Piers; Laurent, Jose Guillermo Cedeno; Flanigan, Skye S; Eitland, Erika Sita; Spengler, John D

    2015-09-01

    Green building design is becoming broadly adopted, with one green building standard reporting over 3.5 billion square feet certified to date. By definition, green buildings focus on minimizing impacts to the environment through reductions in energy usage, water usage, and minimizing environmental disturbances from the building site. Also by definition, but perhaps less widely recognized, green buildings aim to improve human health through design of healthy indoor environments. The benefits related to reduced energy and water consumption are well-documented, but the potential human health benefits of green buildings are only recently being investigated. The objective of our review was to examine the state of evidence on green building design as it specifically relates to indoor environmental quality and human health. Overall, the initial scientific evidence indicates better indoor environmental quality in green buildings versus non-green buildings, with direct benefits to human health for occupants of those buildings. A limitation of much of the research to date is the reliance on indirect, lagging and subjective measures of health. To address this, we propose a framework for identifying direct, objective and leading "Health Performance Indicators" for use in future studies of buildings and health. PMID:26231502

  4. The Green Revolution.

    Science.gov (United States)

    Huke, Robert E.

    1985-01-01

    Modern agriculture's green revolution refers to a complex package that includes improved seeds and a wide range of efficient management practices. The genetic history of and technological developments that led to the green revolution are described, and its impact discussed. (RM)

  5. Green technology in Taiwan

    International Nuclear Information System (INIS)

    Taiwan is striving for leadership in the field of green Technologies. Solar cells and Light Emitting Diodes (LED) are the best examples of successful Taiwanese green technologies. Electronic vehicles and smart grids are giving new impetus to the Taiwanese export of high-quality technology.

  6. Manufacturing Green Consensus

    DEFF Research Database (Denmark)

    Gulsrud, Natalie Marie; Ooi, Can Seng

    In an increasingly global economy, being green, or having an environmentally sustainbale place brand, provides a competitive advantage. Singapore, long known as the ``garden city´´ has been a leader in green city imaging since the founding of the equatorial city-state, contributing, in large part...

  7. Green by Default

    DEFF Research Database (Denmark)

    Sunstein, Cass R.; Reisch, Lucia

    2013-01-01

    The article offers information on the two sources of energy including green energy and gray energy. It discusses several facts which includes lower levels of greenhouse gases and conventional pollutants, relationship between economic incentives and underlying preferences and potential effects of...... green default rules.....

  8. Green Cleaning Label Power

    Science.gov (United States)

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  9. Greening the Future

    Science.gov (United States)

    Williamson, Norma Velia

    2011-01-01

    Because educators vicariously touch the future through their students, the author believes that they sometimes have the uncanny ability to see the future. One common future forecast is the phenomenal growth of green jobs in the emerging green economy, leading to the creation of the "Reach of the Sun" Solar Energy Academy at La Mirada High School…

  10. Green for rarity

    International Nuclear Information System (INIS)

    Green diamonds once recovered from Witwatersrand gold/uranium deposits, are now a thing of the past with the modernisation of extraction metallurgy methods. The green colouration has been shown to be due to radiation from uranium present in the ore

  11. Introduction: Experimental Green Strategies

    DEFF Research Database (Denmark)

    Peters, Terri

    2011-01-01

    Defining new ways in which archietcts are responding to the challenge of creating sustainable architecture , Experimental Green Strategies present a state of the art in applied ecological architectural research.......Defining new ways in which archietcts are responding to the challenge of creating sustainable architecture , Experimental Green Strategies present a state of the art in applied ecological architectural research....

  12. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  13. Lighting: Green Light.

    Science.gov (United States)

    Maniccia, Dorine

    2003-01-01

    Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…

  14. The sulfur cycle in a permanently meromictic haloalkaline lake

    Science.gov (United States)

    Pinkart, Holly C.; Simonsen, Brita; Peyton, Brent; Mormile, Melanie

    2006-08-01

    Soap Lake is a haloalkaline lake located in central Washington. This lake is a remnant of the Missoula flood events that created the landscape of western Montana, the southeastern portion of Washington state, and much of Oregon. It is 15,000 - 20,000 years old, and has maintained a stable meromixis for the last 10,000 years. This carbonate lake is characterized by a brackish mixolimnion, and a monimolimnion with a salinity of ~14%. The pH of both layers of the lake is approximately 10. Both layers also have a high concentration of dissolved sulfate, with the mineral mirabilite (Na IISO 4•10H IIO) found in the monimolimnion sediments. Sulfide concentrations in the monimolimnion exceed 100 mM. As part of the mission of the NSF Soap Lake Microbial Observatory, microorganisms involved in the sulfur cycle in this lake were studied in terms of their diversity and function. High rates of sulfate reduction were measured in both layers of the lake, with new species of sulfate-reducing bacteria seen in both areas. A particularly novel psychrophilic sulfur oxidizer was isolated from the monimolimnion. This organism has the ability to induce the formation of mirabilite, which was assumed to be an abiotically deposited evaporite mineral. This is the first evidence for a biogenic origin of this mineral. This leads to the possibility that related sulfate minerals, such as those reported on the Mars surface, may have a biogenic origin.

  15. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard; Adamsen, Anders Peter; Petersen, Søren O

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination with acidification, on sulfur transformations in slurry and emissions of volatile sulfur compounds (VSC) during storage of fresh and aged cattle slurry. When pH was lowered to 5.5 it resulted in an almost compl...

  16. Sulfur's price collapse to force market changes

    International Nuclear Information System (INIS)

    Price drops for sulfur over the past 2 years of 50-66% at most major consuming locations are prompting a major industry restructuring, according to Fertecon, a U.K.-based research organization that follows worldwide sulfur production for the fertilizer industry. A recently completed Fertecon study of the cost of producing and marketing sulfur indicates that the attrition in worldwide sulfur-mining capacity has now mostly run its course. Moreover, the burden of balancing the market will fall firmly on major producers of sulfur in the sour-gas industry, especially Canada. The paper discusses supply and demand realities, regional analysis, the role of sour gas, and the outlook for the future

  17. On Maximal Green Sequences

    CERN Document Server

    Brüstle, Thomas; Pérotin, Matthieu

    2012-01-01

    Maximal green sequences are particular sequences of quiver mutations which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-Cordova-Vafa in the context of supersymmetric gauge theory. Our aim is to initiate a systematic study of these sequences from a combinatorial point of view. Interpreting maximal green sequences as paths in various natural posets arising in representation theory, we prove the finiteness of the number of maximal green sequences for cluster finite quivers, affine quivers and acyclic quivers with at most three vertices. We also give results concerning the possible numbers and lengths of these maximal green sequences. Finally we describe an algorithm for computing maximal green sequences for arbitrary valued quivers which we used to obtain numerous explicit examples that we present.

  18. Green Valley Galaxies

    CERN Document Server

    Salim, Samir

    2015-01-01

    The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

  19. Ionizing radiation resistant bacteria

    International Nuclear Information System (INIS)

    The living being are not equal face to ionizing radiations. The palm of resistance goes to some bacteria. The champion at any category, the Deinococcus radiodurans, tolerates radiations doses whom one thousandth would kill a man. Two reasons to this fact: after irradiation, the DNA replication is stopped in order that the bacteria can use a repair process called multiple recombination. It cuts intact pieces of a injured chromosome and recombines them with other intact pieces, reconstituting a functional chromosome. It has also an ability to endure the extended action of oxygen, large source of damages for DNA. (N.C.)

  20. Going Green: Greening Your Marketing Efforts

    Science.gov (United States)

    Germain, Carol Anne

    2009-01-01

    There is no doubt that the "Going Green" movement is in full swing. With global warming and other ecological concerns, people are paying closer attention to environmental issues and striving to live in a more sustainable world. For libraries, this is a perfect opportunity to be active in a campus-wide program and simultaneously promote library…

  1. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  2. Networking Opportunities for Bacteria

    OpenAIRE

    Dwyer, Daniel J.; Kohanski, Michael A; James J Collins

    2008-01-01

    In this post-genomic era, our capacity to explore biological networks and predict network architectures has been greatly expanded, accelerating interest in systems biology. Here, we highlight recent systems biology studies in bacteria, consider the challenges ahead, and suggest opportunities for future studies in bacterial models.

  3. Interactions between diatoms and bacteria in laboratory biofilm model communities

    OpenAIRE

    Buhmann, Matthias Torben

    2015-01-01

    Sunlit zones of benthic shallow water habitats belong to the most diverse and productive ecosystems on earth. Here, almost all submerged surfaces are covered by photoautotrophic biofilms that form the basis of benthic food-webs. These biofilms consist of microbial communities that are comprised of photoautotrophic microorganisms, such as diatoms, green algae or cyanobacteria, which via photosynthesis provide the energy for associated heterotrophic microorganisms, mostly bacteria. In this clos...

  4. A sulfur isotopic study of alabandites from some manganese ore deposits in Japan

    International Nuclear Information System (INIS)

    Alabandites from Pretertiary bedded- and Tertiary vein-type manganese deposits in Japan have been examined for their sulfur isotopic composition. delta34 S(CDT) value ranges widely from -31 to +11 per mil in 12 specimens taken from 10 bedded type deposits. While the mineral is no more than a minor constituent in most of the deposits, the isotopic features clearly indicate that these alabandites are of bacteriogenic sedimentary origin, thus raising an important constraint for the genesis of this group of deposits. A cluster of delta34 S around -30 per mil implies an open-system, steady-state reduction (Schwarcz and Burnie, 1973) from a source SO42- with the isotopic level of ca. +20 per mil. The inferred source is likely to have been in the Triassic sea. Current conjectures upon the age of host sedimentary rocks of the deposits concerned are in favor of this view. Alabandites from the Tertiary (Miocene) vein type deposits show only a minor variation in delta34 S, +4 to +5 per mil. The data are very similar to the average isotopic composition of sulfides of the Miocene, ''Green Tuff'' mineralization represented by the kuroko type deposits. The remarkable consistency in sulfur isotopic composition of the Green Tuff mineralization over an extensive area may require a huge, common reservoir of sulfur in some form, which still remains an enigma. (author)

  5. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical gardening. 9 refs., 1 fig.

  6. A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time, sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g?1 at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g?1 at 0.1 C and 578 mA h g?1 at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries

  7. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at logged in order to quantify the impact of microbial metabolism on limestone dissolution rate. We found an order of magnitude of variability in limestone dissolution rates that were closely tied to microbial metabolism. In monocultures, limestone dissolution was inhibited by excessive reduced sulfur as T. unzii prefers to store sulfur internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments during these periods. In both monoculture and LKC environmental cultures, dissolution rates were highest when sulfur-substrate was limited and CO2 was supplied with no organic carbon. Under these conditions ?13C values were as much as 20‰ higher than abiotic conditions and signifies autotrophic carbon fixation which discriminates against 13C. 16S rRNA sequences confirm that autotrophic SOB dominate within this reactor. In contrast, when acetate was supplied with no supplied CO2, ?13C was relatively constant, maintaining values between -31‰ and as low as -37‰. This signifies heterotrophic metabolism where lighter 12C is preferentially consumed resulting in lighter CO2 in the headspace. 16S rRNA sequences confirm that heterotrophic sulfur-reducing bacteria dominate the community within this reactor. When both acetate and CO2 were supplied the heterotrophic behavior appeared to dominate the system which resulted in a significant drop (15‰) in ?13C and a correlative drop in limestone dissolution rate. These results suggest that chemoautotrophy increases the rate of SAS and CO2 flux within the cave environment while heterotrophy leads to slower SAS or even calcite precipitation. Furthermore, changes in carbon substrate (CO2 vs. Acetate) or sulfur substrate concentrations caused an immediate microbial response that could be observed in all measured chemical variables.

  8. Selling the green dream

    International Nuclear Information System (INIS)

    The article discusses the marketing and sales of energy generated from renewable energy sources. To purchase environmental energy in the USA, the consumer need do no more than tick a box on a sheet of paper. But, it is not just households that opt for green energy: businesses are also willing customers. A factor in the success in selling green energy to big business is that the retail price of wind power can be held constant over periods of several years, whereas fossil fuel prices can fluctuate wildly. Details of sources and sales of the top ten companies selling green energy are given

  9. Green syntheses, v.1

    CERN Document Server

    Tundo, Pietro

    2014-01-01

    Introduction to the Green Syntheses SeriesPietro Tundo and John AndraosApplication of Material Efficiency Metrics to Assess Reaction Greenness-Illustrative Case Studies from Organic SynthesesJohn AndraosReaction 1: Synthesis of 3-Benzyl-5-Methyleneoxazolidin-2-one from N-Benzylprop-2-yn-1-Amine and CO2Qing-Wen Song and Liang-Nian HeReaction 2: Synthesis of the 5-Membered Cyclic Carbonates from Epoxides and CO2Qing-Wen Song, Liang-Nian HePart I: Green Methods for the Epoxidation of

  10. White is green

    Science.gov (United States)

    Glicksman, Hal

    1998-12-01

    Green is the center of the visible spectrum and the hue to which we are most sensitive. In RGB color, green is 60 percent of white. When we look through a prism at a white square, as Goethe did, we see white between yellow and cyan, just where green appears in the spectrum of Newton. Additional arguments were published previously and appear at www.csulb.edu/-percept, along with the Percept color chart of the hue/value relationships. A new argument, derived from the perception of leaves, is presented here. The Percept color chart transformed into a color wheel is also presented.

  11. Green or golden landscapes

    OpenAIRE

    Ponte e Sousa, Clara; Castro, Maria da Conceição

    2012-01-01

    In Mediterranean urban green spaces the green colour of lawns is the image that marks in the landscape. The Mediterranean gardens were invaded by turfgrass. The same green “carpet” is present in front of the Prado museum in Madrid, in front of the Eiffel Tower in Paris, or in front of the Jerónimos Monastery in Lisbon. However, in the driest climates like the Portuguese as Mediterranean one, the landscape summer colour is golden. Since a long time the anglo-saxonic image of gardens with perfe...

  12. Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Fællestrand, Denmark

    Science.gov (United States)

    Farquhar, James; Canfield, Don E.; Masterson, Andrew; Bao, Huiming; Johnston, David

    2008-06-01

    This study investigates the sulfur and oxygen isotope fractionations of dissimilatory sulfate reduction and works to reconcile the relationships between the oxygen and sulfur isotopic and elemental systems. We report results of experiments with natural populations of sulfate-reducing bacteria using sediment and seawater from a marine lagoon at Fællestrand on the northern shore of the island of Fyn, Denmark. The experiments yielded relatively large magnitude sulfur isotope fractionations for dissimilatory sulfate reduction (up to approximately 45‰ for 34S/32S) with higher ?18O accompanying higher ?34S, similar to that observed in previous studies. The seawater used in the experiments was spiked by addition of 17O-labeled water and the 17O content of residual sulfate was found to depend on the fraction of sulfate reduced in the experiments. The 17O data provides evidence for recycling of sulfur from metabolic intermediates and for an 18O/16O fractionation of ?25-30‰ for dissimilatory sulfate reduction. The close correlation between the 17O data and the sulfur isotope data suggests that isotopic exchange between cell water and external water (reactor water) was rapid under experimental conditions. The molar ratio of oxygen exchange to sulfate reduction was found to be about 2.5. This value is slightly lower than observed in studies of natural ecosystems [e.g., Wortmann U. G., Chernyavsky B., Bernasconi S. M., Brunner B., Böttcher M. E. and Swart P. K. (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta71, 4221-4232]. Using recent models of sulfur isotope fractionations we find that our combined sulfur and oxygen isotopic data places constraints on the proportion of sulfate recycled to the medium (78-96%), the proportion of sulfur intermediate sulfite that was recycled by way of APS to sulfate and released back to the external sulfate pool (?70%), and also that a fraction of the sulfur intermediates between sulfite and sulfide were recycled to sulfate. These parameters can be constrained because of the independent information provided by ?18O, ?34S, ?17O labels, and ?33S.

  13. Electronic structure of sulfur under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, A [Chiba-Keizai College, 4-3-30 Todoroki-cho, Inage-ku, Chiba 263-0021 (Japan)], E-mail: nisikawa@chiba-kc.ac.jp

    2008-07-15

    We have calculated the bandstructures and the total energies of the high-pressure phases of sulfur by means of the full potential linearized APW (FP-LAPW) method to investigate the structural stability. The tetragonal sulfur-II phase with spiral chain structure is a semiconductor with narrow energy gap, whereas the monoclinic sulfur-III with incommensurate modulation is metallic and the modulation yields a large dip near the Fermi-level of the density of states and contributes to the lowering of the bandstructure energy.

  14. Investigation of sugar sulfur carrier in nickel

    International Nuclear Information System (INIS)

    For the purposes of galvanotechnics it is necessary to have nickel which is easely subjected to the anode dissolving (the so called depolarized nickel). In the industry, nickel of such a quality is produced by the method of electrolytic sedimentation from the nickel solution in the presence of sulfur carriers, usually in the presence of saccharin. To study behaviour of saccharin in the process of electrolysis, investigations of saccharin labelled by sulfur-35 have been done. These investigations have permitted to determine the type and quantity of products of decomposition formed, as well as to determine possibilities for rising the quantity of introducer sulfur due to the variants of technological process

  15. Green Office 2015; Green Office 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ubachs, H.J.G. [Imtech, Eindhoven (Netherlands)

    2009-06-15

    The project Green Office 2015 is an integral, sustainable and multiple district development in which urban development, landscape, architecture, indoor and technology are integrated. The participants in this project show that integral design has an added value in comparison to a traditional design process. They want to enrich the building and building services sector with their shared knowledge and expertise on sustainable office buildings. [Dutch] Dit artikel beschrijft Het Green Office 2015 project: een integrale, duurzame en meervoudige gebiedsontwikkeling waarin stedenbouw, landschap, architectuur, interieur en technologie samengaan. Met dit project willen de participanten aantonen dat integraal ontwerpen meerwaarde oplevert ten opzichte van de traditionele manier van werken. Alle partijen willen ook, met hun gezamenlijke kennis en expertise, de bouw- en installatiesector verrijken met ideeen voor duurzame kantoorgebouwen.

  16. Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) Soda Lake.

    Science.gov (United States)

    Asao, Marie; Pinkart, Holly C; Madigan, Michael T

    2011-08-01

    Culture-based and culture-independent methods were used to explore the diversity of phototrophic purple bacteria in Soap Lake, a small meromictic soda lake in the western USA. Among soda lakes, Soap Lake is unusual because it consists of distinct upper and lower water bodies of vastly different salinities, and its deep waters contain up to 175 mM sulfide. From Soap Lake water new alkaliphilic purple sulfur bacteria of the families Chromatiaceae and Ectothiorhodospiraceae were cultured, and one purple non-sulfur bacterium was isolated. Comparative sequence analysis of pufM, a gene that encodes a key photosynthetic reaction centre protein universally found in purple bacteria, was used to measure the diversity of purple bacteria in Soap Lake. Denaturing gradient gel electrophoresis and subsequent phylogenetic analyses of pufMs amplified from Soap Lake water revealed that a significant diversity of purple bacteria inhabit this soda lake. Although close relatives of several of the pufM phylotypes obtained from cultured species could also be detected in Soap Lake water, several other more divergent pufM phylotypes were also detected. It is possible that Soap Lake purple bacteria are major contributors of organic matter into the ecosystem of this lake, especially in its extensive anoxic and sulfidic deep waters. PMID:21410624

  17. Analysis of magnetite crystals and inclusion bodies inside magnetotactic bacteria from different environmental locations

    Science.gov (United States)

    Oestreicher, Z.; Lower, B.; Lower, S.; Bazylinski, D. A.

    2011-12-01

    Biomineralization occurs throughout the living world; a few common examples include iron oxide in chiton teeth, calcium carbonate in mollusk shells, calcium phosphate in animal bones and teeth, silica in diatom shells, and magnetite crystals inside the cells of magnetotactic bacteria. Biologically controlled mineralization is characterized by biominerals that have species-specific properties such as: preferential crystallographic orientation, consistent particle size, highly ordered spatial locations, and well-defined composition and structure. It is well known that magnetotactic bacteria synthesize crystals of magnetite inside of their cells, but how they mineralize the magnetite is poorly understood. Magnetosomes have a species-specific morphology that is due to specific proteins involved in the mineralization process. In addition to magnetite crystals, magnetotactic bacteria also produce inclusion bodies or granules that contain different elements, such as phosphorus, calcium, and sulfur. In this study we used the transmission electron microscope to analyze the structure of magnetite crystals and inclusion bodies from different species of magnetotactic bacteria in order to determine the composition of the inclusion bodies and to ascertain whether or not the magnetite crystals contain elements other than iron and oxygen. Using energy dispersive spectroscopy we found that different bacteria from different environments possess inclusion bodies that contain different elements such as phosphorus, calcium, barium, magnesium, and sulfur. These differences may reflect the conditions of the environment in which the bacteria inhabit.

  18. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Kilic, Adem [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Calimlioglu, Beste; Toker, Yasemin [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey)

    2013-11-15

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased <50 ?g/L when the influent Cr(VI) was ?5 mg/L. -- Abstract: This study aims at evaluating simultaneous chromate and nitrate reduction using sulfur-based mixotrophic denitrification process in a column reactor packed with elemental sulfur and activated carbon. The reactor was supplemented with methanol at C/N ratio of 1.33 or 2. Almost complete denitrification was achieved at influent NO{sub 3}{sup ?}–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO{sub 3}{sup ?}–N/(L.d) when the bioreactor was fed with 75 mg/L NO{sub 3}{sup ?}–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 ?g/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed.

  19. Green Informatics: ICT for Green and Sustainability

    OpenAIRE

    Zacharoula S. Andreopoulou

    2012-01-01

    Green Informatics constitute a new term in the science of information that describes the utilization of informatics in the interest of the natural environment and the natural resources regarding sustainability and sustainable development. Nowadays, ICT has introduced the convergence of e-services with broadband network infrastructure, wireless technologies and mobile devices. The revolution of ICTs introduction in daily average life has also resulted in the increase of GHG, since the ’’carbon...

  20. Green Nail Syndrome

    Science.gov (United States)

    ... Derm App Skin Facts Aging and Sun Damage Beauty Myths Preventing Sun Damage Skin Cancer Detection Skin ... doubt, a nail sample can be taken for culture. Green nail syndrome responds well to treatment. Therapy ...

  1. Expanding the Green Revolution.

    Science.gov (United States)

    Mellor, John W.; Riely, Frank Z.

    1989-01-01

    Described are some of the successes of the Green Revolution in third-world nations. Discussed are research priorities; misconceptions; and improvements in management skills, training and education, infrastructure, and international trade. (CW)

  2. The Green Revolution Game.

    Science.gov (United States)

    Corbridge, Stuart

    1985-01-01

    The Green Revolution game helps college students learn about agrarian change in which people use science to transform nature. The rational and basic objectives of the game are discussed, and the game's strengths and weaknesses are examined. (RM)

  3. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  4. Green space as classroom

    DEFF Research Database (Denmark)

    Bentsen, Peter; Schipperijn, Jasper; Jensen, Frank Søndergaard

    2013-01-01

    More and more Danish teachers have started introducing curriculum-based outdoor learning as a weekly or biweekly ‘outdoor school’ day for school children. This move towards schooling in non-classroom spaces presents a challenge for green space managers. Basic managerial knowledge related to what......, who, when and where has thus far only been supported by anecdotal evidence, but seems fundamental to the decision-making of a range of green space providers. The present study aims to describe, characterise and discuss outdoor teachers’ use, preferences and ecostrategies in relation to green space. A...... nationwide survey was conducted among Danish teachers practising outdoor teaching (107 respondents), and it showed that a majority used and preferred forest areas. The outdoor teachers used mainly school grounds and local green space for their outdoor teaching with a majority using the same place or mostly...

  5. Green Sturgeon Acoustic Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database is used to hold tracking data for green sturgeon tagged in Central California. The data collection began in late 2002 and is ongoing.

  6. Measuring green jobs?

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Martinsen, Louise

    2012-01-01

    The report reviews the different initiatives aiming to measure aspects of “green” sectors, jobs and technologies. The report discusses whether the statistics collected under the present initiatives aimed at measuring these aspects increase insights into the fundamental questions motivating the...

  7. Green Consumption Behavior Antecedents

    DEFF Research Database (Denmark)

    Pagiaslis, Anastasios; Krystallis Krontalis, Athanasios

    2014-01-01

    The present study adds to the evolving literature on green consumer behavior by examining through statistically robust methods the effect and interrelationships of the key constructs of environmental concern, consumer environmental knowledge, beliefs about biofuels, and behavioral intention (i...

  8. Compliance for Green IT

    CERN Document Server

    Calder, Alan

    2009-01-01

    The growing range of Green IT regulations are challenging more and more organisations to take specific steps to ensure they are in compliance with sometimes complex regulations, ranging from cap & trade requirements through to regulations concerning IT equipment disposal.

  9. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  10. Sulfur-K? /sub emission studies on sulfur-bearing heterocycles

    International Nuclear Information System (INIS)

    Sulfur-K/? /sub x-ray fluorescence spectroscopy (XFS) has been used to study the electronic structure and bonding in sulfur-bearing heterocycles. XFS not only has the capability of experimentally measuring valence electron energies in molecular species, but can also provide intensity data which can help define the nature of the molecular orbitals defined by the electrons. This report discusses the feasibility of using XFS as an analytical tool for the determination of total and specific sulfur heterocycle content in samples. A variety of compounds were studied. These include thiophene, thiophene derivatives, tetranydrothiophene, several more complex saturated and unsaturated sulfur heterocycles, and heterocycles containing both sulfur and nitrogen. The sulfur-K/? /sub spectra were obtained using a double crystal spectrometer which provided an instrumental resolution of about 0.7 eV

  11. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    ShengS.Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  12. Quaternary Marine Sulfur Cycle Dynamics

    Science.gov (United States)

    Markovic, S.; Paytan, A.; Wortmann, U. G.

    2011-12-01

    Published data show a -0.8% change in marine sulfate ?34S ratios in the past 2 Ma. Prior to this period it was stable at ~ 22% for ~ 50Ma since the Eocene. Compared to the residence time of sulfate (>10 Ma) the observed change is large and implies a major disturbance of the marine sulfur cycle. However, the cause of the disturbance, as well as the timing of its onset are poorly constrained. Here we present a new set of ?34S ratios of marine sulfate for the last 3 Ma with a temporal resolution of ~300ka, which shows a linear decline from 22 to ~21% in the past 1.75Ma. This may represent a change in volcanic and hydrothermal activity, pyrite burial or erosion and weathering of exposed evaporites and sulfides, which are the main processes affecting sulfate ?34S. However, during this period there is no geological evidence for exceptional volcanic and hydrothermal activity and consequently, the observed negative shift reflects either a change in isotopic composition and volume of erosional input of sulfate to the ocean, or a decrease in pyrite burial. The isotopic composition of the input flux depends on the relative proportion of sulfide vs. sulfate weathering. Sedimentary sulfides are mostly concentrated in organic rich sediments on continental shelves. Existing sea level records suggest periodic sea level drops during glacial stages related to the formation of ice sheets. This could affect sulfur cycling in two ways: a) exposure to surface weathering and erosion agents of large parts of continental shelves increased global sulfide oxidation and thus the input flux of sulfate to the ocean and/or b) the reduction of shelf areas resulted in decreased pyrite burial. We explore the effects of these changes with a simple box model. The modeling results indicate that the observed isotopic shift requires a 150% increase of pyrite weathering or a 90% reduction of pyrite burial over the past 1.75Ma. When both of these processes change in concert the same effect is produced with the doubling of pyrite weathering and 50% decrease of pyrite burial. As pyrite burial and organic matter burial are intimately linked, a drastic decrease in pyrite burial should leave its mark in the carbon isotopic record which shows no evidence of a major change in carbon cycling. We thus propose that increased sulfide weathering, either from subaerial exposure, or as a result of increased winnowing might be the principal cause of the negative ?34S shift in the Quaternary.

  13. Can bacteria save the planet?

    OpenAIRE

    Hunter, Philip

    2010-01-01

    Bacteria might just hold the key to preserving the environment for our great grandchildren. Philip Hunter explores some of the novel ways in which systems biology and biotechnology are harnessing bacteria to produce renewable energy and clean up pollution.

  14. EFFECT OF SOIL SULFUR FERTILIZER AND SOME FOLIAR FERTILIZERS ON GROWTH AND YIELD OF BROCCOLI IN SALINE SOIL

    Directory of Open Access Journals (Sweden)

    Ali Husain JASIM

    2015-12-01

    Full Text Available Factorial experiment was conducted in the open fields of Agricultural College, Al-Qasim Green University during the agricultural seasons of 2013/2014 and 2014/2015 to study the effect of adding two levels of agricultural sulfur (control and add 100 kg.ha-1 and four levels of nutrient spray (without spray, high-potash fertilizer, high-phosphorus fertilizer and humic acid on growth and yield of broccoli under drip irrigation and polyethylene soil mulching in saline soil (9.6 dS.m-1. Randomized complete block design with three replicates was used. The results showed that agricultural sulfur led to increase number of leaves, leaf area, leaves chlorophyll content, diameter and weight of flower head compared to control. Spraying foliar fertilizer and its interaction with sulfur fertilizer also led to increase all of parameters above (except leaves chlorophyll content significantly compared to control treatment.

  15. From green architecture to architectural green : Facade versus space

    DEFF Research Database (Denmark)

    Earon, Ofri

    The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics of green architecture. The paper argues that this greenification of facades is insufficient. The green is only a skin cladding the exterior envelope without having a spatial significance. Through the paper it is proposed to flip the order of words from green architecture to architectural green. Architectural green could signify green architecture with inclusive interrelations between green and space, built andunbuilt, inside and outside. The aim of the term is to reflect a new focus in green architecture – its architectural performance. Ecological issues are not underestimated or ignored, but so far they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One is Dutch pavilion at Hannover (MVRDV, 2000). The second is MFO Park (Burckhardt + Partner AG, 2002). By the means of the examples, possible characteristics and performance of architectural green are discussed and evaluated. The paper argues that the notion of green as an architectural quality is not limited to the architecture of pavilions and can be applied in other architectural forms and functions. The paper ends by questioning the potential of architectural green in urbanity.

  16. GREEN MARKETING - A STUDY ON GREEN PRODUCT INTENTIONS OF CONSUMERS

    OpenAIRE

    SANGEETHA, B.

    2015-01-01

    The concept of Green Marketing is still in the stage of infancy. Even till date it has not been inculcated as a subject in identifying the key ideas in relation to the awareness of green products that may be most relevant to eco-friendly environment. This paper, will attempt to identify the extent to which consumers are concerned to purchase green products, to study the various factors which affect consumers purchasing green products, to evaluate attitudes of consumers regarding green product...

  17. Toward the green economy: Assessing countries' green power

    OpenAIRE

    Never, Babette

    2013-01-01

    The green power potential of a country is a central factor in the transformation to a green economy. This paper argues that green power will become a decisive factor for global change. Green power combines sustainability, innovation and power into one concept. By merging insights from political science, economics and innovation research, this paper develops a multidimensional, multilevel concept of green power that takes both resources and processes into account. A first empirical assessment ...

  18. Discretized Thermal Green's Functions

    OpenAIRE

    Granath, Mats; Sabashvili, Andro; Strand, Hugo U. R.; Östlund, Stellan

    2011-01-01

    We present a spectral weight conserving formalism for Fermionic thermal Green's functions that are discretized in imaginary time and thus periodic in imaginary ("Matsubara") frequency. The formalism requires a generalization of the Dyson equation and the Baym-Kadanoff-Luttinger-Ward functional for the free energy. A conformal transformation is used to analytically continue the periodized Matsubara Green's function to the continuous real axis in a way that conserves the disco...

  19. The Greening Dutchman

    DEFF Research Database (Denmark)

    Arnold, Marlen Gabriele; Hockerts, Kai

    2011-01-01

    Sustainability innovation research often focuses on the interrelation and the interaction of influencing factors and actors while neglecting the importance of firm internal initiatives. Based on a longitudinal case study of the Dutch company Royal Philips Electronics, we develop the concept of ‘green flagging’ as a groundbreaking corporate sustainability innovation strategy. This paper describes how Philips uses this approach in its Green Flagship Program (GFP). Philips' GFP is particularly inte...

  20. Green growth and transport

    OpenAIRE

    Perkins, Stephen

    2011-01-01

    Transport figures prominently on green growth agendas. The reason is twofold. First, transport has major environmental impacts in terms of greenhouse gas emissions, local air emissions and noise. And managing congestion more effectively is part of the broader agenda for more sustainable development and better use of resources invested in infrastructure. Second, a large part of public expenditure to stimulate green growth is directed at transport sector industries. This concerns most notably a...

  1. Theorizing Collective Green Actions

    OpenAIRE

    Chen, Wenshin

    2011-01-01

    The notion of “green” has gained increasing attention over the years. Many major companies have made significant attempt to better fit into the green concept. Are these corporate marketing endeavors purely based on their environmental consciousness or driven by their intention to gain social recognition which could in turn reshape their corporate image that better reflects the concerns of environments, climate change, and green IT issues? This question is interesting to explore because the...

  2. Achieving Green Computing

    OpenAIRE

    Deepak Kumar; Deepika,; Disha Papneja; Ipsita Vashista

    2014-01-01

    Since the computers have been made the focus have been on faster analysis, speedier calculations and solving more complex problems in less amount of time. But the time has come to change the prime focus from achieving high speed to go green. This change has been initiated by the various environment organization, industries and businesses. The aim of Green Computing is to reduce the Carbon footprints, conserve energy, manage E-waste, increase energy efficiency and at the same time reduce cost....

  3. Green's functions with applications

    CERN Document Server

    Duffy, Dean G

    2015-01-01

    This second edition systematically leads readers through the process of developing Green's functions for ordinary and partial differential equations. In addition to exploring the classical problems involving the wave, heat, and Helmholtz equations, the book includes special sections on leaky modes, water waves, and absolute/convective instability. The book helps readers develop an intuition about the behavior of Green's functions, and considers the questions of the computational efficiency and possible methods for accelerating the process.

  4. Lipoprotein sorting in bacteria.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and ?-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  5. Exopolysaccharides from marine bacteria

    Science.gov (United States)

    Chi, Zhenming; Fang, Yan

    2005-01-01

    Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives, textiles, Pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria, including their chemical compositions, properties and structures, together with their potential applications in industry.

  6. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  7. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.; Nielsen, Pia Kiil; Birk, Tina; Garde, Kristine; Kallipolitis, Birgitte H.; Krebs, Niels; Bagatolli, Luis

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... both food surface and bacteria upon surface decontamination by SonoSteam®. SonoSteam® is a recently developed method of food surface decontamination, which employs steam and ultrasound for effective heat transfer and short treatment times, resulting in significant reduction in surface bacteria. We...... employ differential scanning calorimetry, second harmonics generation imaging microscopy, two-photon fluorescence microscopy, and green fluorescence protein-expressing bacteria and compare our results with those obtained by traditional methods of food quality and safety evaluations. Our results show that...

  8. Surface layers of bacteria.

    OpenAIRE

    Beveridge, T. J.; Graham, L.L.

    1991-01-01

    Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance ...

  9. Lethal Mutagenesis of Bacteria

    OpenAIRE

    Bull, James J; Wilke, Claus O.

    2008-01-01

    Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutatio...

  10. Can entropy save bacteria?

    OpenAIRE

    Jun, Suckjoon

    2008-01-01

    This article presents a physical biology approach to understanding organization and segregation of bacterial chromosomes. The author uses a "piston" analogy for bacterial chromosomes in a cell, which leads to a phase diagram for the organization of two athermal chains confined in a closed geometry characterized by two length scales (length and width). When applied to rod-shaped bacteria such as Escherichia coli, this phase diagram predicts that, despite strong confinement, duplicated chromoso...

  11. Bacteria, food, and cancer

    OpenAIRE

    Rooks, Michelle G.; Garrett, Wendy S.

    2011-01-01

    Gut microbes are essential components of the human organism—helping us metabolize food into energy, produce micronutrients, and shape our immune systems. Having a particular pattern of gut microbes is also increasingly being linked to medical conditions including obesity, inflammatory bowel disease, and diabetes. Recent studies now indicate that our resident intestinal bacteria may also play a critical role in determining one's risk of developing cancer, ranging from protection against cancer...

  12. Bacteria, Phages and Septicemia

    OpenAIRE

    Gaidelyt?, Aušra; Vaara, Martti; Bamford, Dennis H

    2007-01-01

    The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such ph...

  13. Communication among Oral Bacteria

    OpenAIRE

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Dire...

  14. Regulatory RNAs in Bacteria

    OpenAIRE

    Waters, Lauren S; Storz, Gisela

    2009-01-01

    RNA regulators in bacteria are a heterogenous group of molecules that act by various mechanisms to modulate a wide range of physiological responses. One class comprises riboswitches, which are parts of the mRNAs they regulate. These leader sequences fold into structures amenable to conformational changes upon the binding of small molecules. Riboswitches thus sense and respond to the availability of various nutrients in the cell. Other small transcripts bind to proteins, among them global regu...

  15. RNA localization in bacteria

    OpenAIRE

    Keiler, Kenneth C.

    2011-01-01

    Bacteria localize proteins and DNA regions to specific subcellular sites, and several recent publications show that RNAs are localized within the cell as well. Localization of tmRNA and some mRNAs indicates that RNAs can be sequestered at specific sites by RNA binding proteins, or can be trapped at the location where they are transcribed. Although the functions for RNA localization are not yet completely understood, it appears that one function for RNA localization is to regulate RNA abundanc...

  16. Bacteria colonizing paper machines

    OpenAIRE

    Ekman, Jaakko

    2011-01-01

    Bacteria growing in paper machines can cause several problems. Biofilms detaching from paper machine surfaces may lead to holes and spots in the end product or even break the paper web leading to expensive delays in production. Heat stable endospores will remain viable through the drying section of paper machine, increasing the microbial contamination of paper and board. Of the bacterial species regularly found in the end products, Bacillus cereus is the only one classified as a pathogen. Cer...

  17. Bacteria are not Lamarckian

    OpenAIRE

    Danchin, Antoine

    2007-01-01

    Instructive influence of environment on heredity has been a debated topic for centuries. Darwin's identification of natural selection coupled to chance variation as the driving force for evolution, against a formal interpretation proposed by Lamarck, convinced most scientists that environment does not specifically instruct evolution in an oriented direction. This is true for multicellular organisms. In contrast, bacteria were long thought of as prone to receive oriented influences from their ...

  18. Bacteriophages of methanotrophic bacteria.

    OpenAIRE

    Tyutikov, F M; Bespalova, I A; Rebentish, B A; Aleksandrushkina, N N; Krivisky, A S

    1980-01-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated: 10 strains that specifically lysed only Methylosinus sporium strains, 2 strains that each lysed 1 of 5 Methylosinus trichosporium strains studied, and 11 strains that ly...

  19. Cytokinesis in Bacteria

    OpenAIRE

    Errington, Jeffery; Daniel, Richard A.; Scheffers, Dirk-Jan

    2003-01-01

    Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min pro...

  20. Growing Unculturable Bacteria

    OpenAIRE

    Stewart, Eric J.

    2012-01-01

    The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability...

  1. Synbiobacther : engineering ???therapeutic??? bacteria

    OpenAIRE

    Rodrigues, L. R.; Rodrigues, Joana L??cia; Machado, C. D.; Kluskens, Leon; M. Mota; Rocha, I.; Ferreira, E.C.

    2012-01-01

    SYNBIOBACTHER ??? Engineering ???therapeutic??? bacteria Rodrigues LR, Rodrigues JL, Machado CD, Kluskens L, Mota M, Rocha I, Ferreira EC IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal Statistics show that over 1.3 million persons will be diagnosed with breast cancer worldwide this year, hence this is an enormously important health risk, and progress leading to enhanced survival...

  2. SULFUR COMPOUNDS IN PETROLEUM HYDROCARBON STREAMS

    Directory of Open Access Journals (Sweden)

    Antoaneta Pavlova

    2012-03-01

    Full Text Available Determination of concentrations of sulfur compounds in different petroleum samples is a true analytical challenge. Only analytical procedures based on gas chromatography can meet the sensitivity and accuracy requirements dictated by up-to-date petroleum industry.The objective of this work is to develop the method for the quantifying of sulfur compounds in petroleum hydrocarbon streams. The optimum parameters for the GC-SCD method are found in order to determine of sulfur compounds in petroleum fractions. The present study is limited to fractions with final boiling point up to 100°C from the refining unit. Twelve petroleum samples are analyzed. The total sulfur contents of these samples are determined by GC-SCD and UV fluorescence detection. The data obtained are agreement.

  3. Environmental behavior and analysis of agricultural sulfur.

    Science.gov (United States)

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. © 2015 Society of Chemical Industry. PMID:26108794

  4. ROE Total Sulfur Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset identifies the amount of wet, dry, and total deposition of sulfur in kilograms per hectare from 1989 to 1991 at a set of point locations across the...

  5. ROE Total Sulfur Deposition 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset identifies the amount of wet, dry, and total deposition of sulfur in kilograms per hectare from 2011 to 2013 at a set of point locations across the...

  6. Effects of sulfur dioxide and heavy metals

    International Nuclear Information System (INIS)

    Produced from burning coal, sulfur dioxide persists not so much from home heating as in the furnaces of coal-fired, electric power-generating plants. Particulate emissions may be over 99% controlled, and sulfur dioxide may be 70-90% controlled in some countries, but older plants or newer facilities in developing countries often lack such technology. Even where controls exist, the tremendous amounts of coal burned still result in the emission of significant quantities of sulfur dioxide. And despite pollution control equipment in modern smelters, the sulfur dioxide and heavy metal particulate emissions can still damage neighboring vegetation. The problem is especially critical in developing countries where control technology is lacking, or in developed countries where control has a low priority

  7. Sulfur Dioxide variability in the Venus Atmosphere

    Science.gov (United States)

    Vandaele, A. C.; Korablev, O.; Mahieux, A.; Wilquet, V.; Chamberlain, S.; Belayev, D.; Encrenaz, Th.; Esposito, L.; Jessup, K. L.; Lefèvre, F.; Limaye, S.; Marcq, E.; Mils, F.; Parkinson, C.; Sandor, B.; Stolzenbach, A.; Wilson, C.

    2015-10-01

    Recent observations of sulfur oxides (SO2, SO, OCS, and H2 SO4) in Venus' mesosphere have generated controversy and great interest in the scientific community. These observations revealed u nexpected spatial patterns and spatial/temporal variability that have not been satisfactorily explained by models. Particularly intriguing are the layer of enhanced gas-phase SO2 and SO in the upper mesosphere, and variability in the maximum observed SO2 a bundance and the equator -to-pole SO2 abundance gradient, seemingly on multi-year cycles, that is not uniquely linked to local time variations. Sulfur oxide chemistry on Venus is closely linked to the global-scale cloud and haze layers, which are composed primarily of concentrated sulfuric acid. Consequently, sulfur oxide observations provide important insight into the ongoing chemical evolution of Venus' atmosphere, atmospheric dynamics, and possible volcanism.

  8. Early steroid sulfurization in surface sediments of a permanently stratified lake (Ace Lake, Antarctica)

    Science.gov (United States)

    Kok, Marika D.; Rijpstra, W. Irene C.; Robertson, Lisette; Volkman, John K.; Sinninghe Damstéé, Jaap S.

    2000-04-01

    Surface sediments (0-25 cm) from Ace Lake (eastern Antarctica), a saline euxinic lake, were analyzed to study the early incorporation of reduced inorganic sulfur species into organic matter. The apolar fractions were shown to consist predominantly of dimeric (poly)sulfide linked C 27-C 29 steroids. These steroid moieties were identified by GC-MS analysis of the apolar fractions after cleavage of polysulfide linkages using MeLi and MeI and after desulfurisation. The polar fractions contained the oligomeric analogues. The S-bound steroids are most likely formed by sulfur incorporation into steroidal ketones formed from ? 5 sterols by biohydrogenation by anaerobic bacteria. The concentrations of these sulfurised steroids increased with depth in the sediment. The sulfurisation reaction is completed in 1000-3000 years. Despite a wide range of functionalised lipids present in these sediments that are potentially available for sulfurisation, there is a very strong preference for the incorporation of sulfur into steroidal compounds. A predominance of sulfurised C 27 steroids contrasted with the distribution of free sterols, which showed a strong predominance of C 29 sterols. This indicates that the incorporation of sulfur is biased towards C 27 sterols. The results demonstrate that intermolecular sulfurisation of organic matter can occur in surface sediments at low temperatures and in the absence of light.

  9. Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis

    Science.gov (United States)

    Summers Engel, Annette; Stern, Libby A.; Bennett, Philip C.

    2004-05-01

    The sulfuric acid speleogenesis (SAS) model was introduced in the early 1970s from observations of Lower Kane Cave, Wyoming, and was proposed as a cave-enlargement process due to primarily H2S autoxidation to sulfuric acid and subaerial replacement of carbonate by gypsum. Here we present a reexamination of the SAS type locality in which we make use of uniquely applied geochemical and microbiological methods. Little H2S escapes to the cave atmosphere, or is lost by abiotic autoxidation, and instead the primary H2S loss mechanism is by subaqueous sulfur-oxidizing bacterial communities that consume H2S. Filamentous “Epsilonproteobacteria” and Gammaproteobacteria, characterized by fluorescence in situ hybridization, colonize carbonate surfaces and generate sulfuric acid as a metabolic byproduct. The bacteria focus carbonate dissolution by locally depressing pH, compared to bulk cave waters near equilibrium or slightly supersaturated with calcite. These findings show that SAS occurs in subaqueous environments and potentially at much greater phreatic depths in carbonate aquifers, thereby offering new insights into the microbial roles in subsurface karstification.

  10. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H2O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  11. Ocular Effects of Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Yunes Panahi

    2013-06-01

    Full Text Available Purpose: To review current knowledge about ocular effects of sulfur mustard (SM and the associated histopathologic findings and clinical manifestationsMethods: Literature review of medical articles (human and animal studies was accomplished using PubMed, Scopus and ISI databases. A total of 274 relevant articles in English were retrieved and reviewed thoroughly.Results: Eyes are the most sensitive organs to local toxic effects of mustard gas. Ocular injuries are mediated through different toxic mechanisms including: biochemical damages, biomolecular and gene expression modification, induction of immunologic and inflammatory reactions, disturbing ultrastructural architecture of the cornea, and long-lasting corneal denervation. The resulting ocular injuries can roughly be categorized into acute or chronic complications. Most of the patients recover from acute injuries, but a minority of victims will suffer from chronic ocular complications. Mustard gas keratopathy (MGK is a devastating late complication of SM intoxication that proceeds from limbal stem cell deficiency (LSCD.Conclusion: SM induces several different damaging changes in case of ocular exposure; hence leading to a broad spectrum of ocular manifestations in terms of severity, timing and form. Unfortunately, no effective strategy has been introduced yet to inhibit or restore these damaging changes.

  12. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi

    OpenAIRE

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-01-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2,...

  13. Anthropogenic sulfur dioxide emissions: 1850–2005

    OpenAIRE

    Smith, S.J.; J. Van Aardenne; Klimont, Z.; Andres, R.; A. Volke; S. Delgado Arias

    2010-01-01

    Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing...

  14. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-01

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. PMID:26585740

  15. Polymer Electrolytes for Lithium/Sulfur Batteries

    OpenAIRE

    The Nam Long Doan; Denise Gosselink; Yongguang Zhang; Mikhail Sadhu; Ho-Jae Cheang; Pu Chen; Yan Zhao

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  16. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  17. Biologically produced sulfur particles and polysulfide ions

    OpenAIRE

    Kleinjan, W. E.

    2005-01-01

    This thesis deals with the effects of particles of biologically produced sulfur (or 'biosulfur') on a biotechnological process for the removal of hydrogen sulfide from gas streams. Particular emphasis is given to the role of polysulfide ions in such a process. These polysulfide ions are formed from reaction of sulfide with biologically produced sulfur. The basic concepts of this H 2 S removal process were developed at the department of Environmental Technology of Wageningen University and the...

  18. Reactions between Methanethiol and Biologically Produced Sulfur

    OpenAIRE

    van Leerdam, R. C.; Bosch, P.L.F., van den; Lens, P.; Janssen, A. J. H.

    2011-01-01

    Recently, new biotechnological processes have been developed to enable the sustainable removal of organic and inorganic sulfur compounds from liquid and gaseous hydrocarbon streams. In comparison to existing technologies (e.g., caustic scrubbing or iron based redox technologies) far less chemicals are consumed, while reusable elemental sulfur is formed as the main end-product. This research shows that in these processes a number of consecutive reactions occur between methanethiol (MT) from th...

  19. Removing sulfur oxides from a gas

    Energy Technology Data Exchange (ETDEWEB)

    Bertolacini, R.J.; Hirschberg, E.H.; Modica, F.S.

    1983-03-08

    Sulfur oxides are removed from a gas with absorbents and then are removed from the absorbents by contact with a hydrocarbon in the presence of a cracking catalyst. The absorbents comprise an exhaustively-exchanged rare-earth-form zeolite and a free form of an inorganic oxide selected from the group consisting of the oxides of aluminum, magnesium, zinc, titanium, and calcium. The sulfur oxides are removed from the absorbents as a sulfurcontaining gas which comprises hydrogen sulfide.

  20. Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering

    Directory of Open Access Journals (Sweden)

    J. M. English

    2012-01-01

    Full Text Available Recent microphysical studies suggest that geoengineering by continuous stratospheric injection of SO2 gas may be limited by the growth of the aerosols. We study the efficacy of SO2, H2SO4 and aerosol injections on aerosol mass and optical depth using a three-dimensional general circulation model with sulfur chemistry and sectional aerosol microphysics (WACCM/CARMA. We find increasing injection rates of SO2 in a narrow band around the equator to have limited efficacy while broadening the injecting zone as well as injecting particles instead of SO2 gas increases the sulfate burden for a given injection rate, in agreement with previous work. We find that injecting H2SO4 gas instead of SO2 does not discernibly alter sulfate size or mass, in contrast with a previous study using a plume model with a microphysical model. However, the physics and chemistry in aircraft plumes, which are smaller than climate model grid cells, need to be more carefully considered. We find equatorial injections increase aerosol optical depth in the Northern Hemisphere more than the Southern Hemisphere, potentially inducing regional climate changes. We also find significant perturbations to tropospheric aerosol for all injections studied, particularly in the upper troposphere and near the poles, where sulfate burden increases by up to 100 times. This enhanced burden could have implications for tropospheric radiative forcing and chemistry. These results highlight the need to mitigate greenhouse gas emissions through means other than geoengineering, and to further study geoengineering before it can be seriously considered as a climate intervention option.