WorldWideScience
 
 
1

Mobilization of sulfur by green sulfur bacteria : physiological and molecular studies on Chlorobaculum parvum DSM 263  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Green sulfur bacteria are photolithotrophs that use inorganic sulfur compounds as electron donors for photosynthesis. Elemental, solid sulfur is one of the electron donors used. Sulfur is produced by green sulfur bacteria during the oxidation of sulfide to sulfate, and during the oxidation of thiosulfate to sulfur and sulfate. Green sulfur bacteria have been known for long, and the genomes of 12 strains have been sequenced. Yet, it is not clear how green sulfur bacteria can access elemental s...

Dona?, Clelia

2011-01-01

2

Comparative genomics of green sulfur bacteria.  

Science.gov (United States)

Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole-genome gene family and single gene sequence comparisons yielded similar phylogenetic trees of the sequenced chromosomes indicating a concerted vertical evolution of large gene sets. Chromosomal synteny of genes is not preserved in the phylum Chlorobi. The accessory genome is characterized by anomalous oligonucleotide usage and endows the strains with individual features for transport, secretion, cell wall, extracellular constituents, and a few elements of the biosynthetic apparatus. Giant genes are a peculiar feature of the genera Chlorobium and Prosthecochloris. The predicted proteins have a huge molecular weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment. PMID:20099081

Davenport, Colin; Ussery, David W; Tümmler, Burkhard

2010-06-01

3

Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system  

DEFF Research Database (Denmark)

Green sulfur bacteria oxidize sulfide and thiosulfate to sulfate with extracellular globules of elemental sulfur as intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245 or the two dsrCABL clusters (CT0851-CT0854, CT2247-2250) abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsrU/CT2246 had no effect. The DSR system also seems to be involved in formation of thiosulfate, because thiosulfate is released from wild type cells during sulfide oxidation, but not from the dsr mutants. The dsr mutants incapable of complete substrate oxidation oxidized sulfide and thiosulfate about twice as fast as the wild type, while having only slightly lower growth rates (70-80% of wild type). The increased oxidation rates seem to compensate for the incomplete substrate oxidation to satisfy the requirement for reducing equivalents during growth. A mutant in which two sulfide:quinone oxidoreductases (sqrB/CT0117 and sqrD/CT1087) were deleted, exhibited a decreased sulfide oxidation rate (~50% of wild type), yet formation and consumption of sulfur globules were not affected. The observation that mutants lacking the DSR system maintain efficient growth, suggests that the DSR system is dispensable in environments with sufficient sulfide concentrations. Thus, the DSR system in GSB may have been acquired by horizontal gene transfer in a response to a need for improved substrate utilization in sulfide-limiting habitats.

Holkenbrink, Carina; Ocón Barbas, Santiago

2011-01-01

4

Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria.  

Science.gov (United States)

Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR) is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5'-phosphosulfate reductase or polysulfide reductase-like complex 3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from Proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes. PMID:21833341

Gregersen, Lea H; Bryant, Donald A; Frigaard, Niels-Ulrik

2011-01-01

5

Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria  

Directory of Open Access Journals (Sweden)

Full Text Available Green sulfur bacteria (GSB constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5’-phosphosulfate reductase (APR or polysulfide reductase-like complex 3 (PSRLC3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes.

Niels-UlrikFrigaard

2011-05-01

6

Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria  

DEFF Research Database (Denmark)

Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR) is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5'-phosphosulfate reductase or polysulfide reductase-like complex 3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from Proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes.

Gregersen, Lea Haarup; Bryant, Donald A.

2011-01-01

7

NMR Spectroscopic Studies Oflight-Harvesting Bacteriochlorophylls Purified from Green Sulfur Photosynthetic Bacteria  

Science.gov (United States)

NMR measurements of homologously and epimerically pure bacteriochlorophyll(BChl)s c and e purified from green sulfur photosynthetic bacteria were performed. Four nitrogen atoms in BChls c and e were isotopically labeled by cultivation of green photosynthetic sulfur bacteria in a 15N-containing medium. 15N NMR measurements indicated that the chemical shift of the N22 atom in 31R-8-ethyl-12-ethyl-BChl e was much lower-field shifted than that in 31R-8-ethyl-12-ethyl-BChl c. The low-field shifts observed in BChl e indicate the 7-formyl group in BChl e affects electronic states of the nitrogen atoms in the chlorin macrocycle of light-harvesting BChls in green photosynthetic sulfur bacteria.

Hirai, Yuki; Saga, Yoshitaka

2013-09-01

8

Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light  

CERN Document Server

Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures - photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal ve...

Saikin, Semion K; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

2014-01-01

9

Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria  

CERN Document Server

Phototrophic organisms such as plants, photosynthetic bacteria and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have multiple functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be amongst the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level we introduce an atomistic model that mimic a complete light-harvesting apparatus of green sulfur bacteria. The model contains about 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the...

Huh, Joonsuk; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

2013-01-01

10

Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light  

Science.gov (United States)

Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light-absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex. The latter strategy may be used by the species recently found near hydrothermal vents in the Pacific Ocean. PMID:24862580

Saikin, Semion K.; Khin, Yadana; Huh, Joonsuk; Hannout, Moataz; Wang, Yaya; Zare, Farrokh; Aspuru-Guzik, Alan; Tang, Joseph Kuo-Hsiang

2014-01-01

11

Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.  

Science.gov (United States)

Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria, the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level, we introduce an atomistic model that mimics a complete light-harvesting apparatus of green sulfur bacteria. The model contains approximately 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate, and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the transfer between collective excited states of pigments can result in robust energy funneling to the initial excitation conditions and temperature changes. Moreover, the same mechanism describes the coexistence of multiple time scales of excitation dynamics frequently observed in ultrafast optical experiments. While our findings support the hypothesis of supertransfer, the model reveals energy transport through multiple channels on different length scales. PMID:24405318

Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

2014-02-01

12

A Microsensor Study of the Interaction between Purple Sulfur and Green Sulfur Bacteria in Experimental Benthic Gradients.  

Science.gov (United States)

> Abstract The interaction between the purple sulfur bacterium Thiocapsa roseopersicina and the green sulfur bacterium Prosthecochloris aestuarii was studied in a gradient chamber under a 16-hours light-8-hours dark regime. The effects of interaction were inferred by comparing the final outcome of a mixed culture experiment with those of the respective axenic cultures using the same inoculation densities and experimental conditions. Densities of bacteria were deduced from radiance microprofiles, and the chemical microenvironment was investigated with O2, H2S, and pH microelectrodes. P. aestuarii always formed a biofilm below the maximal oxygen penetration depth and its metabolism was strictly phototrophic. In contrast, T. roseopersicina formed a bilayer in both the mixed and the axenic culture. The top layer formed by the latter organism was exposed to oxygen, and chemotrophic sulfide oxidation took place during the dark periods, while the bottom layer grew phototrophically during the light periods only. In the mixed culture, the relative density of P. aestuarii was lower than in the axenic culture, which reflects the effects of the competition for sulfide. However, the relative density of T. roseopersicina was actually higher in the mixed culture than in the corresponding axenic culture, indicating a higher growth yield on sulfide in the mixed culture experiment. Several hypotheses are proposed to explain the effects of the interaction. PMID:10227875

Pringault; de Wit R; Kühl

1999-04-01

13

Green sulfur bacteria from hypersaline Chiprana Lake (Monegros, Spain): habitat description and phylogenetic relationship of isolated strains.  

Science.gov (United States)

The 'Salada de Chiprana' (Chiprana Lake) is a hypersaline (30-73 per thousand), permanent and shallow lake of endorheic origin in a semi-arid region of the Ebro depression (Aragon, Spain). Magnesium sulfate and sodium chloride represent the main salts of this athalassohaline environment. Anoxic conditions occurred periodically in the bottom layers of the lake during the study period. When stratified, high sulfide concentrations (up to 7 mM) were measured in the hypolimnion. Physical and chemical conditions gave rise to the development of very dense green sulfur bacteria blooms (10.7 mg l(-1) of BChl c and 16.7 mg l(-1) of BChl d) at 0.5-1 m from the bottom. Microscopic observations revealed that cells morphologically similar to Chlorobium vibrioforme were dominant in the phototrophic bacterial community, but Prosthecochloris aestuarii was also found sometimes at lower concentrations, as revealed by both microscopic observation and flow cytometric analyses. Deep agar dilution series allowed to obtain several axenic cultures of phototrophic bacteria. They were identified according to their morphology, pigment composition and phylogenetic relationships (16S rDNA sequence analysis). Two of the sequenced strains (CHP3401 and CHP3402) belonged to the green sulfur bacteria and were related to Prosthecochloris aestuarii SK413(T) and Chlorobium vibrioforme DSM260(T), respectively. HPLC analyses of both natural samples and Chlorobium vibrioforme isolates indicated that these strains contained both BChl c and BChl d. Phylogenetic results suggested that Chlorobium vibrioforme strains DSM260(T) and CHP3402, all sequenced strains of Prosthecochloris aestuarii and strain CIB2401 constitute a separate cluster of green sulfur bacteria, all of them isolated from marine to hypersaline habitats. PMID:16228510

Vila, Xavier; Guyoneaud, Rémy; Cristina, Xavier P; Figueras, Jordi B; Abella, Charles A

2002-01-01

14

Communities of green sulfur bacteria in marine and saline habitats analyzed by gene sequences of 16S rRNA and Fenna-Matthews-Olson protein.  

Science.gov (United States)

Communities of green sulfur bacteria were studied in selected marine and saline habitats on the basis of gene sequences of 16S rRNA and the Fenna- Matthews-Olson (FMO) protein. The availability of group-specific primers for both 16S rDNA and the fmoA gene, which is unique to green sulfur bacteria, has, for the first time, made it possible to analyze environmental communities of these bacteria by culture-independent methods using two independent genetic markers. Sequence results obtained with fmoA genes and with 16S rDNA were largely congruent to each other. All of the 16S rDNA and fmoA sequences from habitats of the Baltic Sea, the Mediterranean Sea, Sippewissett Salt Marsh (Massachusetts, USA), and Bad Water (Death Valley, California, USA) were found within salt-dependent phylogenetic lines of green sulfur bacteria established by pure culture studies. This strongly supports the existence of phylogenetic lineages of green sulfur bacteria specifically adapted to marine and saline environments and the exclusive occurrence of these bacteria in marine and saline habitats. The great majority of clone sequences belonged to different clusters of the Prosthecochloris genus and probably represent different species. Evidence for the occurrence of two new species of Prosthecochloris was also obtained. Different habitats were dominated by representatives from the Prosthecochloris group and different clusters or species of this genus were found either exclusively or as the clearly dominant green sulfur bacterium at different habitats. PMID:17236159

Alexander, Boris; Imhoff, Johannes F

2006-12-01

15

Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure, and electronic structure calculations of the excited states. We characterized the optical properties...

Fujita, Takatoshi; Huh, Joonsuk; Saikin, Semion K.; Brookes, Jennifer Clare; Aspuru-guzik, Alan

2014-01-01

16

Temperature and Carbon Assimilation Regulate the Chlorosome Biogenesis in Green Sulfur Bacteria  

CERN Document Server

Green photosynthetic bacteria adjust the structure and functionality of the chlorosome - the light absorbing antenna complex - in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of Cba. tepidum grows slower and incorporates less BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays: (a) smaller cross-sectional radius and overall size; (b) simplified BChl c homologues with smaller side chains; (c) blue-shifted Qy absorption maxima and (d) a sigmoid-shaped circular dichroism (CD) spectra. Using a theoretical model we analyze how the observed spectral modifications can be assoc...

Tang, Joseph Kuo-Hsiang; Pingali, Sai Venkatesh; Enriquez, Miriam M; Huh, Joonsuk; Frank, Harry A; Urban, Volker S; Aspuru-Guzik, Alan

2013-01-01

17

Fluorescence detected magnetic resonance (FDMR) of green sulfur photosynthetic bacteria Chlorobium sp.  

Science.gov (United States)

Fluorescence Detected Magnetic Resonance (FDMR) spectra have been measured for whole cells and isolated chlorosomal fractions for the green photosyntheic bacteria Chlorobium phaeobacteroides (containing bacteriochlorophyll e, and isorenieratene as major carotenoid) and Chlorobium limicola (containing bacteriochlorophyll c, and chlorobactene as major carotenoid). The observed transition at 237 MHz (identical in both bacteria) and > 1100 MHz can be assigned, by analogy with published data on other carotenoids, to the 2E and D + E transitions, respectively, of Chlorobium carotenoids. Their zero field splitting (ZFS) parameters are estimated to be: |D|=0.0332 cm(-1) and |E|=0.0039 cm(-1) (chlorobactene), and |D|=0.0355 cm(-1) and |E|=0.0039 cm(-1) (isorenieratene). In the intermediate frequency range 300-1000 MHz the observed transitions can be assigned to chlorosomal bacteriochlorophylls c and e, and to bacteriochlorophyll a located in the chlorosome envelope and water-soluble protein. The bacteriochlorophyll e triplet state measured in 750 nm fluorescence (aggregated chlorosomal BChl e) is characterised by the ZFS parameters: |D|=0.0251 cm(-1) and |E|=0.0050 cm(-1). PMID:24311209

Psencík, J; Searle, G F; Hála, J; Schaafsma, T J

1994-04-01

18

Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria.  

Science.gov (United States)

We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments. PMID:24504540

Fujita, Takatoshi; Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alán

2014-06-01

19

Electron transfer in reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum.  

Science.gov (United States)

Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K. PMID:10852720

Schmidt, K A; Neerken, S; Permentier, H P; Hager-Braun, C; Amesz, J

2000-06-20

20

The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria.  

Science.gov (United States)

The absorbance spectrum of the Fenna-Matthews-Olson protein--a component of the antenna system of Green Sulfur Bacteria--is always one of two types, depending on the species of the source organism. The FMO from Prosthecochloris aestuarii 2K has a spectrum of type 1 while that from Chlorobaculum tepidum is of type 2. The previously reported crystal structures for these two proteins did not disclose any rationale that would explain their spectral differences. We have collected a 1.3 A X-ray diffraction dataset of the FMO from Prosthecochloris aestuarii 2K, which has allowed us to identify an additional Bacteriochlorophyll-a molecule with chemical attachments to both sides of the central magnesium atom. A new analysis of the previously published X-ray data for the Chlorobaculum tepidum FMO shows the presence of a Bacteriochlorophyll-a molecule in an equivalent location but with a chemical attachment from only one side. This difference in binding is shown to be predictive of the spectral type of the FMO. PMID:19437128

Tronrud, Dale E; Wen, Jianzhong; Gay, Leslie; Blankenship, Robert E

2009-05-01

 
 
 
 
21

Composition and optical properties of reaction centre core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum.  

Science.gov (United States)

Photosynthetically active reaction centre core (RCC) complexes were isolated from two species of green sulfur bacteria, Prosthecochloris (Ptc.) aestuarii strain 2K and Chlorobium (Chl.) tepidum, using the same isolation procedure. Both complexes contained the main reaction centre protein PscA and the iron-sulfur protein PscB, but were devoid of Fenna-Matthews-Olson (FMO) protein. The Chl. tepidum RCC preparation contained in addition PscC (cytochrome c). In order to allow accurate determination of the pigment content of the RCC complexes, the extinction coefficients of bacteriochlorophyll (BChl) a in several solvents were redetermined with high precision. They varied between 54.8 mM(-1) cm(-1) for methanol and 97.0 mM(-1) cm(-1) for diethylether in the Q(Y) maximum. Both preparations appeared to contain 16 BChls a of which two are probably the 13(2)-epimers, 4 chlorophylls (Chls) a 670 and 2 carotenoids per RCC. The latter were of at least two different types. Quinones were virtually absent. The absorption spectra were similar for the two species, but not identical. Eight bands were present at 6 K in the BChl a Q(Y) region, with positions varying from 777 to 837 nm. The linear dichroism spectra showed that the orientation of the BChl a Q(Y) transitions is roughly parallel to the membrane plane; most nearly parallel were transitions at 800 and 806 nm. For both species, the circular dichroism spectra were dominated by a strong band at 807-809 nm, indicating strong interactions between at least some of the BChls. The absorption, CD and LD spectra of the four Chls a 670 were virtually identical for both RCC complexes, indicating that their binding sites are highly conserved and that they are an essential part of the RCC complexes, possibly as components of the electron transfer chain. Low temperature absorption spectroscopy indicated that typical FMO-RCC complexes of Ptc. aestuarii and Chl. tepidum contain two FMO trimers per reaction centre. PMID:16228441

Permentier, H P; Schmidt, K A; Kobayashi, M; Akiyama, M; Hager-Braun, C; Neerken, S; Miller, M; Amesz, J

2000-01-01

22

Chirality-based signatures of local protein environments in two-dimensional optical spectroscopy of two species photosynthetic complexes of green sulfur bacteria: simulation study.  

Science.gov (United States)

Two-dimensional electronic chirality-induced signals of excitons in the photosynthetic Fenna-Matthews-Olson complex from two species of green sulfur bacteria (Chlorobium tepidum and Prosthecochloris aestuarii) are compared. The spectra are predicted to provide sensitive probes of local protein environment of the constituent bacteriochlorophyll a chromophores and reflect electronic structure variations (site energies and couplings) of the two complexes. Pulse polarization configurations are designed that can separate the coherent and incoherent exciton dynamics contributions to the two-dimensional spectra. PMID:18676650

Voronine, Dmitri V; Abramavicius, Darius; Mukamel, Shaul

2008-11-15

23

Experimental Study of Interactions between Purple and Green Sulfur Bacteria in Sandy Sediments Exposed to Illumination Deprived of Near-Infrared Wavelengths  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-?m grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquati...

Masse?, Astrid; Pringault, Olivier; Wit, Rutger

2002-01-01

24

A comparative study of the optical characteristics of intact cells of photosynthetic green sulfur bacteria containing bacteriochlorophyll c, d or e.  

Science.gov (United States)

Energy transfer and pigment arrangement in intact cells of the green sulfur bacteria Prosthecochloris aestuarii, Chlorobium vibrioforme and chlorobium phaeovibrioides, containing bacteriochlorophyll (BChl) c, d or e as main light harvesting pigment, respectively, were studied by means of absorption, fluorescence, circular dichroism and linear dichroism spectroscopy at low temperature. The results indicate a very similar composition of the antenna in the three species and a very similar structure of main light harvesting components, the chlorosome and the membrane-bound BChl a protein. In all three species the Qy transition dipoles of BChl c, d or e are oriented approximately parallel to the long axis of the chlorosome. Absorption and fluorescence excitation spectra demonstrate the presence of at least two BChl c-e pools in the chlorosomes of all three species, long-wavelength absorbing BChls being closest to the membrane. In C. phaeovibrioides, energy from BChl e is transferred with an efficiency of 25% to the chlorosomal BChl a at 6 K, whereas the efficiency of transfer from BChl e to the BChl a protein is 10%. These numbers are compatible with the hypothesis that the chlorosomal BChl a is an intermediary in the energy transfer from the chlorosome to the membrane. PMID:24414861

Otte, S C; van der Heiden, J C; Pfennig, N; Amesz, J

1991-05-01

25

Long-Term Population Dynamics of Phototrophic Sulfur Bacteria in the Chemocline of Lake Cadagno, Switzerland  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when the...

Tonolla, Mauro; Peduzzi, Raffaele; Hahn, Dittmar

2005-01-01

26

Physiology of Haloalkaliphilic Sulfur-oxidizing Bacteria:  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided into three genera belonging to the γ subdivision of the Proteobacteria: Thioalkalimicrobium, Thioalkalivibrio and Thioalkalispira. Their taxonomy, metabolic diversity and the potential applicati...

Banciu, H. L.

2004-01-01

27

Energy transfer from carotenoid and FMO-protein in subcellular preparations from green sulfur bacteria. Spectroscopic characterization of an FMO-reaction center core complex at low temperature.  

Science.gov (United States)

The Fenna-Matthews-Olson (FMO)-protein and the FMO-reaction center (RC) core complex from the green sulfur bacterium Chlorobium tepidum were examined at 6 K by absorption and fluorescence spectroscopy. The absorption spectrum of the RC core complex was obtained by a subtraction method and found to have fiye peaks in the QY region, at 797, 808, 818, 834 and 837 nm. The efficiency of energy transfer from carotenoid to bacteriochlorophyll a in the RC core complex was 23% at 6 K, and from the FMO-protein to the core it was 35%. Energy transfer from the FMO-protein to the core complex was also measured in isolated membranes of Prosthecochloris aestuarii from the action spectra of charge separation. Again, a low efficiency of energy transfer was obtained, both at 6 K and at room temperature. PMID:24271823

Francke, C; Otte, S C; Miller, M; Amesz, J; Olson, J M

1996-10-01

28

Experimental study of interactions between purple and green sulfur bacteria in sandy sediments exposed to illumination deprived of near-infrared wavelengths.  

Science.gov (United States)

Sedimentary biofilms of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404, the purple sulfur bacterium Thiocapsa roseopersicina strain 5811, and a mixed culture of both were cultured in fine sand (100- to 300-microm grain size) within counter gradients of oxygen and sulfide. The artificial sediments were exposed to illumination deprived of near-infrared light (NIR) by filtering out the wavelengths longer than 700 nm to simulate the critical light conditions in submerged aquatic sediments. A 16 h of visible light-8 h of dark regimen was used. We studied the effects of these light conditions on the metabolisms of and interactions between both species by comparing the single species biofilms with the mixed biofilm. The photosynthesis rates of P. aestuarii were shown to be highly limited by the imposed light conditions, because the sulfide photooxidation rates were strongly stimulated when NIR was added. T. roseopersicina performed both aerobic chemosynthesis and photosynthesis, but the photosynthesis rates were low and poorly stimulated by the addition of NIR. This species decreased the penetration depth of oxygen in the sediment by about 1 mm by actively respiring oxygen. This way, the strict anaerobe P. aestuarii was able to grow closer to the surface in the mixed culture. As a result, P. aestuarii benefited from the presence of T. roseopersicina in the mixed culture, which was reflected by an increase in the biomass. In contrast, the density of the latter species was almost completely unaffected by the interaction. Both species coexisted in a layer of the same depth in the mixed culture, and the ecological and evolutionary implications of coexistence are discussed. PMID:12039757

Massé, Astrid; Pringault, Olivier; De Wit, Rutger

2002-06-01

29

Sulfur bacteria in wastewater stabilization ponds periodically affected by the 'red-water' phenomenon.  

Science.gov (United States)

Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the 'red-water' phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menzeh WSP and focused in particular on the different functional groups of sulfur bacteria. For this purpose, we used denaturing gradient gel electrophoresis of PCR-amplified fragments of the 16S rRNA gene and of different functional genes involved in microbial sulfur metabolism (dsrB, aprA, and pufM). Analyses of the 16S rRNA revealed a relatively high microbial diversity where Proteobacteria, Chlorobi, Bacteroidetes, and Cyanobacteria constitute the major bacterial groups. The dsrB and aprA gene analysis revealed the presence of deltaproteobacterial sulfate-reducing bacteria (i.e., Desulfobacter and Desulfobulbus), while the analysis of 16S rRNA, aprA, and pufM genes assigned the sulfur-oxidizing bacteria community to the photosynthetic representatives belonging to the Chlorobi (green sulfur bacteria) and the Proteobacteria (purple sulfur and non sulfur bacteria) phyla. These results point on the diversity of the metabolic processes within this wastewater plant and/or the availability of sulfate and diverse electron donors. PMID:22354366

Belila, Abdelaziz; Abbas, Ben; Fazaa, Imed; Saidi, Neila; Snoussi, Mejdi; Hassen, Abdennaceur; Muyzer, Gerard

2013-01-01

30

Growth of sulfate-reducing bacteria with sulfur as electron acceptor.  

Science.gov (United States)

In addition to three new isolates, six strains of representative species of sulfate-reducing bacteria were tested for their capacity to use elemental sulfur as an electron acceptor for growth. There was good growth and sulfide production by strain Norway 4 and the three isolates, two of which had been enriched with sulfur flower and one isolated from a culture with green sulfur bacteria. Slow but definite growth was observed with Desulfovibrio gigas. The type of strains of Desulfovibrio desulfuricans, D. vulgaris, and Desulfotomaculum nigrificans as well as Desulfomanoas pigra did not grow with sulfur. The four strains that grew well with sulfur flower were straight, nonsporulating rods and did not contain desulfoviridin. PMID:843165

Biebl, H; Pfennig

1977-02-01

31

Oxidative metabolism of inorganic sulfur compounds by bacteria.  

Science.gov (United States)

The history of the elucidation of the microbiology and biochemistry of the oxidation of inorganic sulfur compounds in chemolithotrophic bacteria is briefly reviewed, and the contribution of Martinus Beijerinck to the study of sulfur-oxidizing bacteria highlighted. Recent developments in the biochemistry, enzymology and molecular biology of sulfur oxidation in obligately and facultatively lithotrophic bacteria are summarized, and the existence of at least two major pathways of thiosulfate (sulfur and sulfide) oxidation confirmed. These are identified as the 'Paracoccus sulfur oxidation' (or PSO) pathway and the 'S4intermediate' (or S4I) pathway respectively. The former occurs in organisms such as Paracoccus (Thiobacillus) versutus and P. denitrificans, and possibly in Thiobacillus novellus and Xanthobacter spp. The latter pathway is characteristic of the obligate chemolithotrophs (e.g. Thiobacillus tepidarius, T. neapolitanus, T. ferrooxidans, T. thiooxidans) and facultative species such as T. acidophilus and T. aquaesulis, all of which can produce or oxidize tetrathionate when grown on thiosulfate. The central problem, as yet incompletely resolved in all cases, is the enzymology of the conversion of sulfane-sulfur (as in the outer [S-] atom of thiosulfate [-S-SO3-]), or sulfur itself, to sulfate, and whether sulfite is involved as a free intermediate in this process in all, or only some, cases. The study of inorganic sulfur compound oxidation for energetic purposes in bacteria (i.e. chemolithotrophy and sulfur photolithotrophy) poses challenges for comparative biochemistry. It also provides evidence of convergent evolution among diverse bacterial groups to achieve the end of energy-yielding sulfur compound oxidation (to drive autotrophic growth on carbon dioxide) but using a variety of enzymological systems, which share some common features. Some new data are presented on the oxidation of 35S-thiosulfate, and on the effect of other anions (selenate, molybdate, tungstate, chromate, vanadate) on sulfur compound oxidation, including observations which relate to the roles of polythionates and elemental sulfur as intermediates. PMID:9049021

Kelly, D P; Shergill, J K; Lu, W P; Wood, A P

1997-02-01

32

Diversity of sulfur-oxidizing bacteria in greenwater system of coastal aquaculture.  

Science.gov (United States)

Reduced sulfur compounds produced by the metabolism are the one of the major problems in aquaculture. In the present study, herbivorous fishes have been cultured as biomanipulators for secretions of slime, which enhanced the production of greenwater containing beneficial bacteria. The genes encoding soxB which is largely unique to sulfur-oxidizing bacteria (SOB) due to its hydrolytic function has been targeted for examining the diversity of SOB in the green water system of coastal aquaculture. Novel sequences obtained based on the sequencing of metagenomic clone libraries for soxB genes revealed the abundance of SOB in green water system. Phylogenetic tree constructed from aligned amino acid sequences demonstrated that different clusters have only 82-93% match with Roseobacter sp., Phaeobacter sp., Roseovarius sp., Sulfitobacter sp., Ruegeria sp., and Oceanibulbus sp. The level of conservation of the soxB amino acid sequences ranged from 42% to 71%. 16S rRNA gene analyses of enrichment culture from green water system revealed the presence of Pseudoxanthomonas sp., which has 97% similarity with nutritionally fastidious Indian strain of Pseudoxanthomonas mexicana-a sulfur chemolithotrophic gamma-proteobacterium. Our results illustrate the relevance of SOB in the functioning of the green water system of coastal shrimp aquaculture for oxidation of reduced sulfur compounds, which in turn maintain the sulfide concentration well within the prescribed safe levels. PMID:20069462

Krishnani, Kishore Kumar; Kathiravan, V; Natarajan, M; Kailasam, M; Pillai, S M

2010-11-01

33

[Colorless sulfur bacteria Thioploca from different sites in Lake Baikal].  

Science.gov (United States)

The colorless sulfur bacteria Thioploca spp. found in Lake Baikal are probably a marker for the influx of subterranean mineralized fluids. Bacteria act as a biological filter; by consuming sulfide in their metabolism, they detoxicate it and maintain the purity of Lake Baikal's water. The bacteria were investigated by various techniques. According to analysis of the 16S rRNA gene fragment, Thioploca sp. from Frolikha Bay, Baikal belongs to the clade of freshwater species found in Lake Biwa and Lake Constance; it is most closely related to Thioploca ingrica. PMID:19334606

Zemskaia, T I; Chernitsyna, S M; Dul'tseva, N M; Sergeeva, V N; Pogodaeva, T V; Namsaraev, B B

2009-01-01

34

Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of the Ebro Delta: a combined morphological and molecular approach.  

Science.gov (United States)

The diversity of purple and green sulfur bacteria in the multilayered sediments of the Ebro Delta was investigated. Specific oligonucleotide primers for these groups were used for the selective amplification of 16S rRNA gene sequences. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis and sequenced, which yielded a total of 32 sequences. Six of the sequences were related to different cultivated members of the green sulfur bacteria assemblage, whereas seven fell into the cluster of marine or halophilic Chromatiaceae. Six sequences were clustered with the family Ectothiorhodospiraceae, three of the six being closely related to chemotrophic bacteria grouped together with Halorhodospira genus, and the other three forming a group related to the genus Ectothiorhodospira. The last thirteen sequences constituted a cluster where no molecular isolate from microbial mats has so far been reported. Our results indicate that the natural diversity in the ecosystem studied has been significantly underestimated in the past and point out the presence of novel species not related to all known purple sulfur bacteria. Furthermore, the detection of green sulfur bacteria, after only an initial step of enrichment, suggests that -- with the appropriate methodology -- several genera, such as Prosthecochloris, could be established as regular members of marine microbial mats. PMID:16329919

Martínez-Alonso, Maira; Van Bleijswijk, Judith; Gaju, Núria; Muyzer, Gerard

2005-05-01

35

Forster energy transfer in chlorosomes of green photosynthetic bacteria  

Science.gov (United States)

Energy transfer properties of whole cells and chlorosome antenna complexes isolated from the green sulfur bacteria Chlorobium limicola (containing bacteriochlorophyll c), Chlorobium vibrioforme (containing bacteriochlorophyll d) and Pelodictyon phaeoclathratiforme (containing bacteriochlorophyll e) were measured. The spectral overlap of the major chlorosome pigment (bacteriochlorophyll c, d or, e) with the bacteriochlorophyll a B795 chlorosome baseplate pigment is greatest for bacteriochlorophyll c and smallest for bacteriochlorophyll e. The absorbance and fluorescence spectra of isolated chlorosomes were measured, fitted to gaussian curves and the overlap factors with B795 calculated. Energy transfer times from the bacteriochlorophyll c, d or e to B795 were measured in whole cells and the results interpreted in terms of the Forster theory of energy transfer.

Causgrove, T. P.; Brune, D. C.; Blankenship, R. E.

1992-01-01

36

Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles  

DEFF Research Database (Denmark)

Thioploca spp. are multicellular, filamentous, colorless sulfur bacteria inhabiting freshwater and marine sediments. They have elemental sulfur inclusions similar to the phylogenetically closely related Beggiatoa, but in contrast to these they live in bundles surrounded by a common sheath. Vast communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate, and then glide down 5-15 cm deep into the sediment through their sheaths to oxidize sulfide formed by intensive sulfate reduction. New major occurrences have bren found in recent years, both in lakes and in the ocean, and have stimulated the interest in these fascinating bacteria. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

JØrgensen, BB; Gallardo, VA

1999-01-01

37

Quantitative proteomics of Chlorobaculum tepidum : insights into the sulfur metabolism of a phototrophic green sulfur bacterium  

DEFF Research Database (Denmark)

Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid gel-free, filter-aided sample preparation (FASP) protocol with an in-solution isotopic labeling strategy. Among the 2245 proteins predicted from the Cba. tepidum genome, approximately 970 proteins were detected in unlabeled samples, whereas approximately 630-640 proteins were detected in labeled samples comparing two different growth conditions. Wild-type cells growing on thiosulfate had an increased abundance of periplasmic cytochrome c-555 and proteins of the periplasmic thiosulfate-oxidizing SOX enzyme system when compared with cells growing on sulfide. A dsrM mutant of Cba. tepidum, which lacks the dissimilatory sulfite reductase DsrM protein and therefore is unable to oxidize sulfur globules to sulfite, was also investigated. When compared with wild type, the dsrM cells exhibited an increased abundance of DSR enzymes involved in the initial steps of sulfur globule oxidation (DsrABCL) and a decreased abundance of enzymes putatively involved in sulfite oxidation (Sat-AprAB-QmoABC). The results show that Cba. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism and other electron-transferring processes in response to the availability of reduced sulfur compounds.

Falkenby, Lasse Gaarde; Szymanska, Monika

2011-01-01

38

Sulfur bacteria in wastewater stabilization ponds periodically affected by the ‘red-water’ phenomenon:  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menzeh WSP and focused in particular on the different functional groups of sulfur bacteria. For this purpose, we used denaturing gradient gel electrophoresis of PCR-amplified fragments of the 16S rR...

Belila, A.; Abbas, B.; Fazaa, I.; Saidi, N.; Snoussi, M.; Hassen, A.; Muyzer, G.

2012-01-01

39

Sulfur bacteria in wastewater stabilization ponds periodically affected by the ‘red-water’ phenomenon  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menzeh WSP and focused in particular on the different functional groups of sulfur bacteria. For this purpose, we used denaturing gradient gel electrophoresis of PCR-amplified fragments of the 16S rR...

Belila, Abdelaziz; Abbas, Ben; Fazaa, Imed; Saidi, Neila; Snoussi, Mejdi; Hassen, Abdennaceur; Muyzer, Gerard

2013-01-01

40

Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland  

Directory of Open Access Journals (Sweden)

Full Text Available Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107 cells ml-1. The most abundant taxa in the chemocline are large- and small-celled purple sulfur bacteria, which account for up to 35% of all bacteria, and sulfate- reducing bacteria that represent up to 23% of all bacteria. Depending on the season, as much as 45% of all bacteria in the chemocline are associated in aggregates consisting of different populations of small-celled purple sulfur bacteria of the genus Lamprocystis (up to 35% of all bacteria and sulfate-reducing bacteria of the family Desulfobulbaceae (up to 12% of all bacteria that are almost completely represented by bacteria closely related to Desulfocapsa thiozymogenes. Their association in aggregates is restricted to small-celled purple sulfur bacteria of the genus Lamprocystis, but not obligate since non-associated cells of bacteria related to D. thiozymogenes are frequently found, especially under limited light conditions in winter and early summer. Aggregate formation and concomitant growth enhancement of isolates of both partners of this association suggests synergistic interactions that might resemble a sulfide-based source-sink relationship between the sulfate-reducing bacterium that is able to sustain growth by a disproportionation of inorganic sulfur compounds (sulfur, thiosulfate, sulfite, with the purple sulfur bacteria acting as a biotic scavenger. The availability of these isolates opens up the door for future studies considering other facets of potential interactions in aggregates since both types of organisms are metabolically highly versatile and interactions may not be limited to sulfur compounds only.

Raffaele PEDUZZI

2004-08-01

 
 
 
 
41

Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation  

Science.gov (United States)

Carbonates of the 1640 million years (Ma) old Barney Creek Formation (BCF), McArthur Basin, Australia, contain more than 22 different C 40 carotenoid derivatives including lycopane, ?-carotane, ?-carotane, chlorobactane, isorenieratane, ?-isorenieratane, renieratane, ?-renierapurpurane, renierapurpurane and the monoaromatic carotenoid okenane. These biomarkers extend the geological record of carotenoid derivatives by more than 1000 million years. Okenane is potentially derived from the red-colored aromatic carotenoid okenone. Based on a detailed review of the ecology and physiology of all extant species that are known to contain okenone, we interpret fossil okenane as a biomarker for planktonic purple sulfur bacteria of the family Chromatiaceae. Okenane is strictly a biomarker for anoxic and sulfidic conditions in the presence of light (photic zone euxinia) and indicates an anoxic/oxic transition (temporarily) located at less than 25 m depth and, with a high probability, less than 12 m depth. For the BCF, we also interpret renierapurpurane, renieratane and ?-renierapurpurane as biomarkers for Chromatiaceae with a possible contribution of cyanobacterial synechoxanthin to the renierapurpurane pool. Although isorenieratane may, in principle, be derived from actinobacteria, in the BCF these biomarkers almost certainly derive from sulfide-oxidizing phototrophic green sulfur bacteria (Chlorobiaceae). Biological precursors of ?-carotane, ?-carotane and lycopane are found among numerous autotrophic and almost all phototrophic organisms in the three domains of life. In the BCF, a paucity of diagnostic eukaryotic steroids suggests that algae were rare and, therefore, that cyanobacterial carotenoids such as ?-carotene, echinenone, canthaxanthin and zeaxanthin are the most likely source of observed ?-carotane. ?-Carotane may be derived from cyanobacteria, Chlorobiaceae and green non-sulfur bacteria (Chloroflexi), while the most likely biological sources for lycopane in the BCF are carotenoids of the lycopene, rhodopin and spirilloxanthin series abundant in purple sulfur bacteria.

Brocks, Jochen J.; Schaeffer, Philippe

2008-03-01

42

Motility patterns of filamentous sulfur bacteria, Beggiatoa spp.  

DEFF Research Database (Denmark)

The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface.We observed the chemotactic patterns of single filaments in a transparent agar medium and scored their reversals and the glided distances between reversals. Filaments within the preferred microenvironment glided distances shorter than their own length between reversals that anchored them in their position as a microbial mat. Filaments in the oxic region above the mat or in the sulfidic, anoxic region below the mat glided distances longer than the filament length between reversals. This reversal behavior resulted in a diffusion-like spreading of the filaments. A numerical model of such gliding filaments was constructed based on our observations. The model was applied to virtual filaments in the oxygen- and sulfide-free zone of the sediment, which is a main habitat of Beggiatoa in the natural environment. The model predicts a long residence time of the virtual filament in the suboxic zone and explains why Beggiatoa accumulate high nitrate concentrations in internal vacuoles as an alternative electron acceptor to oxygen.

Dunker, Rita; RØy, Hans

2011-01-01

43

[Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation  

Energy Technology Data Exchange (ETDEWEB)

Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

2002-12-01

44

Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria  

Science.gov (United States)

The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

1993-01-01

45

Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io  

Science.gov (United States)

Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs, deepsea hydrothermal vents, soda and high salinity lakes, and cryo-environments. Furthermore, the StRB and SrRB have Astrobiological significance as these anaerobic extremophiles may represent the dominant relic life forms that inhabited our planet during the extensive volcanic activity in the Earth's early evolutionary period.

Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

2001-01-01

46

A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria.  

Science.gov (United States)

The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families. PMID:21498017

Salman, Verena; Amann, Rudolf; Girnth, Anne-Christin; Polerecky, Lubos; Bailey, Jake V; Høgslund, Signe; Jessen, Gerdhard; Pantoja, Silvio; Schulz-Vogt, Heide N

2011-06-01

47

The 16S rDNA Phylogenetic Composition of Bacteria Implicated in Sulfur Redox Cycles and Associated Sulfur Isotope Fractionation  

Science.gov (United States)

The reduction of sulfate ion to sulfide species by sulfate reducing bacteria (SRB) is accompanied by sulfur isotope fractionation, measured in terms of changes in the ?^{34}S values for sulfate and sulfide ions relative to a defined standard. In open environments, the S-isotope compositions of sulfate and sulfide can be affected by loss from the system of sulfide species as gaseous H2S, insoluble metal sulfides such as FeS2, organic complexes or by re-oxidation. The S-isotope fractionation accompanying bacterial sulfate reduction in nature is often much larger than the maxima obtained in chemical and bacterial sulfate reduction experiments in the laboratory. One mechanism postulated for the large natural S-isotope selectivity depends on repetitive reduction-oxidation cycles. In turn, this would require a level of tolerance to oxygen by SRB in the sedimentary environment, contrary to laboratory experience with SRB strains. Bird Lake (The Coorong, South Australia) is a small calcareous, evaporative lake, where average ?^{34}S (?^{34}Ssulfate - ?^{34}Ssulfide) values for groundwater at 16 of the 27 sites sampled periodically since 1974, vary from 15.0 ‰ to 62.3 ‰ within the range -1.8 ‰ to 70.6 ‰. Wide fluctuations in ?34Ssulfide values at individual sites are the significant factor affecting the variability of ?^{34}S values. Values for ?18Osulfate are elevated over that of the sulfate source to an unusual extent, reflecting re-oxidation of sulfur species and O- isotope exchange between some of these species and water. One aspect of investigations at Bird Lake was the evaluation of bacterial populations in subsurface sediments and their role in sulfur cycling. To achieve this, microcosms were established with subsurface sediment and incubated under a nitrogen atmosphere, for up to 119 days. These were sampled at various times to determine sulfur species concentrations and sulfur isotope fractionation and to generate 16S rDNA clone libraries. Results indicated cyclic fluctuations of both sulfate concentration and ?^{34}S values and a narrowing of population diversity; including decreases in numbers of alpha and gamma-proteobacteria, succession in species of SRB, the later appearance of sulfur-reducing bacteria and the presence of potentially sulfur- oxidizing bacteria throughout the incubation. The occurrence of these bacterial types indicates a complex sulfur redox cycle occurring in a supposedly anaerobic environment. The implication of these findings is that natural bacterial sulfate reduction is not a simple uni-directional process but a very complex redox system, even in a discrete molecular environment that would normally be considered uniformly anaerobic.

Bicknell, B. T.; Batts, J. E.; Krouse, H. R.

2006-12-01

48

Electric current generation by sulfur-reducing bacteria in microbial-anode fuel cell  

Science.gov (United States)

Sulfur - reducing bacteria are a part of normal microflora of natural environment. Their main function is supporting of reductive stage of sulfur cycle by hydrogen sulfide production in the process of dissimilative sulfur-reduction. At the same time these bacteria completely oxidize organic compounds with CO2 and H2O formation. It was shown that they are able to generate electric current in the two chamber microbial-anode fuel cell (MAFC) by interaction between these two processes. Microbial-anode fuel cell on the basis of sulfur- and ferric iron-reducing Desulfuromonas acetoxidans bacteria has been constructed. It has been shown that the amount of electricity generation by investigated bacteria is influenced by the concentrations of carbon source (lactate) and ferric iron chloride. The maximal obtained electric current and potential difference between electrodes equaled respectively 0.28-0.29 mA and 0.19-0.2 V per 0.3 l of bacterial suspension with 0.4 g/l of initial biomass that was grown under the influence of 0.45 mM of FeCl3 and 3 g/l of sodium lactate as primal carbon source. It has also been shown that these bacteria are resistant to different concentrations of silver ions.

Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

2012-10-01

49

Structure, Function and Reconstitution of Antenna Complexes of Green Photosynthetic Bacteria  

Energy Technology Data Exchange (ETDEWEB)

Most chlorophyll-type pigments in a photosynthetic organism function as an antenna, absorbing light and transferring excitations to a photochemical reaction center where energy storage takes place by a series of chemical reactions. The green photosynthetic bacteria are characterized by large antenna complexes known as chlorosomes, in which pigment-pigment interactions are of dominant importance. The overall objective of this project is to determine the mechanisms of excitation transfer and regulation of this unique antenna system, including how it is integrated into the rest of the photosynthetic energy transduction apparatus. Techniques that are being used in this research include biochemical analysis, spectroscopy, microscopy, X-ray structural studies, and reconstitution from purified components. Our recent results indicate that the chlorosome baseplate structure, which is the membrane attachment site for the chlorosome to the membrane, is a unique pigment-protein that contains large amounts of carotenoids and small amounts of bacteriochlorophyll a. Reconstitution of directed energy transfer in chlorosomes will be carried out using purified baseplates and oligomeric pigments. The integral membrane B808-866 antenna complex from Chloroflexus aurantiacus and the Fenna-Matthews-Olson protein-reaction center complex from green sulfur bacteria will be characterized by spectroscopic and structural techniques.

Blankenship, Robert E.

2005-06-10

50

The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering  

International Nuclear Information System (INIS)

The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

51

Macplocimine A, a new 18-membered macrolide isolated from the filamentous sulfur bacteria Thioploca sp.  

Science.gov (United States)

Macplocimine A (1), a rare naturally occurring 18-membered macrolide, was isolated from the marine-derived filamentous sulfur bacteria Thioploca sp. The structure was determined by a combination of spectroscopic techniques, including HRESIMS, 1D and 2D NMR analyses. 1 features a thymine group, which is attached to an aromatic fused 18-membered macrolide ring structure derived from a polyketide synthase biosynthetic pathway. PMID:23778115

Li, Xiang; Vanner, Stephanie; Wang, Wenliang; Li, Yongchang; Gallardo, Victor Ariel; Magarvey, Nathan A

2013-07-01

52

Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and...

Janssen, A. J. H.; Lens, P. N. L.; Stams, A. J. M.; Plugge, C. M.; Sorokin, D. Y.; Muyzer, G.; Dijkman, H.; Zessen, E.; Luimes, F. J. T.; Buisman, C. J. N.

2009-01-01

53

Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem.  

Science.gov (United States)

The freshwater nature reserve De Bruuk is an iron- and sulfur-rich minerotrophic peatland containing many iron seeps and forms a suitable habitat for iron and sulfur cycle bacteria. Analysis of 16S rRNA gene-based clone libraries showed a striking correlation of the bacterial population of samples from this freshwater ecosystem with the processes of iron reduction (genus Geobacter), iron oxidation (genera Leptothrix and Gallionella) and sulfur oxidation (genus Sulfuricurvum). Results from fluorescence in situ hybridization analyses with a probe specific for the beta-1 subgroup of Proteobacteria, to which the genera Leptothrix and Gallionella belong, and newly developed probes specific for the genera Geobacter and Sulfuricurvum, supported the clone library data. Molecular data suggested members of the epsilonproteobacterial genus Sulfuricurvum as contributors to the oxidation of reduced sulfur compounds in the iron seeps of De Bruuk. In an evaluation of anaerobic dimethyl sulfide (DMS)-degrading activity of sediment, incubations with the electron acceptors sulfate, ferric iron and nitrate were performed. The fastest conversion of DMS was observed with nitrate. Further, a DMS-oxidizing, nitrate-reducing enrichment culture was established with sediment material from De Bruuk. This culture was dominated by dimorphic, prosthecate bacteria, and the 16S rRNA gene sequence obtained from this enrichment was closely affiliated with Hyphomicrobium facile, which indicates that the Hyphomicrobium species are capable of both aerobic and nitrate-driven DMS degradation. PMID:18754044

Haaijer, Suzanne C M; Harhangi, Harry R; Meijerink, Bas B; Strous, Marc; Pol, Arjan; Smolders, Alfons J P; Verwegen, Karin; Jetten, Mike S M; Op den Camp, Huub J M

2008-12-01

54

Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria.  

Science.gov (United States)

Within the last 10 years, numerous SSU rRNA sequences have been collected from natural populations of conspicuous, vacuolate, colorless sulfur bacteria, which form a phylogenetically cohesive cluster (large-vacuolate sulfur bacteria clade) in the gamma-Proteobacteria. Currently, this clade is composed of four named or de facto genera: all known Thioploca and Thiomargarita strains, all vacuolate Beggiatoa strains, and several strains of vacuolate, attached filaments, which bear a superficial similarity to Thiothrix. Some of these vacuolate bacteria accumulate nitrate for respiratory purposes. This clade encompasses the largest known prokaryotic cells (Thiomargarita namibiensis) and several strains that are important in the global marine sulfur cycle. Here, we report additional sequences from five pure culture strains of Beggiatoa spp., including the only two cultured marine strains (nonvacuolate), which firmly establish the root of this vacuolate clade. Each of several diverse metabolic motifs, including obligate and facultative chemolithoautotrophy, probable mixotrophy, and seemingly strict organoheterotrophy, is represented in at least one of the nonvacuolate strains that root the vacuolate clade. Because the genus designation Beggiatoa is interspersed throughout the vacuolate clade along with other recognized or de facto genera, the need for taxonomic revision is clear. PMID:16788728

Ahmad, Azeem; Kalanetra, Karen M; Nelson, Douglas C

2006-06-01

55

Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.  

Science.gov (United States)

Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion. PMID:25353947

Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

2014-10-01

56

INFLUENCE OF ELEMENTAL SULFUR, ORGANIC MATTER, SULFUR OXIDIZING BACTERIA AND CABRONITE ALONE OR IN COMBINATION ON COWPEA PLANTS AND THE USED SOIL  

Directory of Open Access Journals (Sweden)

Full Text Available A field experiment was carried out at the Abis Experimental Farm, Faculty of Agriculture, Alexandria University. The soil (clay loam was treated with sulfur oxidizing bacteria (S.O.B., municipal refuse compost (O.M, elemental sulfur (E.S and Cabronite, each alone or in combination. Seeds of cowpea were inoculated with the specific root nodule bacteria (Okadin before planting.According to the obtained results the following results could be concluded:All the used treatments i.e E.S; O.M; Cabronite and S.O.B. each alone or in combination significantly increased the dry weights of cowpea plants and also increased the roots, shoots and seeds as well the used soil content of S, P, K, N, Fe, Mn, Zn and Cu.The application of elemental sulfur with S.O.B. to the soil improved the availability and plant uptake of macro and micro nutrients by cowpea plants as well nutrients content of the used soil.Application of O.M maximized the role of sulfur and S.O.B.It could be concluded that the best treatment which clearly affected growth, nodulation, seed yield and nutrients content of cowpea plants as well as the elemental content of the used soil was elemental sulfur (E.S + organic matter (O.M and sulfur oxidizing bacteria (S.O.B. treatment.

El-Halfawi M. H.

2010-10-01

57

EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS  

Directory of Open Access Journals (Sweden)

Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

S. A. Ibrahim

2011-12-01

58

Chemolithotrophic sulfur-oxidizing bacteria from the galapagos rift hydrothermal vents.  

Science.gov (United States)

Three distinct physiological types of sulfur-oxidizing bacteria were enriched and isolated from samples collected at several deep-sea hydrothermal vents (2,550 m) of the Galapagos Rift ocean floor spreading center. Twelve strains of the obligately chemolithotrophic genus Thiomicrospira were obtained from venting water and from microbial mats covering surfaces in the immediate vicinity of the vents. From these and other sources two types of obligately heterotrophic sulfur oxidizers were repeatedly isolated that presumably oxidized thiosulfate either to sulfate (acid producing; 9 strains) or to polythionates (base producing; 74 strains). The former were thiobacilli-like, exhibiting a thiosulfate-stimulated increase in growth and CO(2) incorporation, whereas the latter were similar to previously encountered pseudomonad-like heterotrophs. The presence of chemolithotrophic sulfur-oxidizing bacteria in the sulfide-containing hydrothermal water supports the hypothesis that chemosynthesis provides a substantial primary food source for the rich populations of invertebrates found in the immediate vicinity of the vents. PMID:16345831

Ruby, E G; Wirsen, C O; Jannasch, H W

1981-08-01

59

Chemolithotrophic bacteria in copper ores leached at high sulfuric Acid concentration.  

Science.gov (United States)

Extensive bacterial growth was observed when copper sulfide ores were leached with 0.6 N sulfuric acid. The bacterial population developed in this condition was examined by characterization of the spacer regions between the 16S and 23S rRNA genetic loci obtained after PCR amplification of the DNA extracted from the leached ore. The spacers observed had the sizes found in strains of "Leptospirillum ferrooxidans" and Thiobacillus thiooxidans, except for a larger one, approximately 560 bp long, that was not observed in any of the strains examined, including those of Thiobacillus ferrooxidans. The bacteria with this last spacer were selected after culturing in mineral and elemental sulfur media containing 0.7 N sulfuric acid. The spacer and the 16S ribosomal DNA of this isolate were sequenced and compared with those in species commonly found in bioleaching processes. Though the nucleotide sequence of the spacer showed an extensive heterologous region with T. thiooxidans, the sequence of its 16S rDNA gene indicated a close relationship (99.85%) with this species. These results indicate that a population comprised of bacterial strains closely related to T. thiooxidans and of another strain, possibly related to "L. ferrooxidans," can develop during leaching at high sulfuric acid concentration. Iron oxidation in this condition is attributable to "L. ferrooxidans" and not T. ferrooxidans, based on the presence of spacers with the "L. ferrooxidans" size range and the absence of spacers characteristic of T. ferrooxidans. PMID:16535497

Vasquez, M; Espejo, R T

1997-01-01

60

Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain.  

Science.gov (United States)

A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could also be used as sole electron source. Complexed ferric iron was slowly reduced to ferrous iron in the dark, with hydrogen as electron source. Similar to Chlorobium limicola, the phototrophic bacterium contained bacteriochlorophyll c and chlorobactene as photosynthetic pigments, and also resembled representatives of this species morphologically. On the basis of 16S rRNA sequence comparisons, this organism clusters with Chlorobium, Prosthecochloris, and Pelodictyon species within the green sulfur bacteria phylum. Since the phototrophic partner in the coculture KoFox is only moderately related to the other members of the cluster, it is proposed as a new species, Chlorobium ferrooxidans. The chemoheterotrophic partner bacterium, strain KoFum, was isolated in pure culture with fumarate as sole substrate. The strain was identified as a member of the epsilon-subclass of the Proteobacteria closely related to "Geospirillum arsenophilum" on the basis of physiological properties and 16S rRNA sequence comparison. The "Geospirillum" strain was present in the coculture only in low numbers. It fermented fumarate, aspartate, malate, or pyruvate to acetate, succinate, and carbon dioxide, and could reduce nitrate to dinitrogen gas. It was not involved in ferrous iron oxidation but possibly provided a thus far unidentified growth factor to the phototrophic partner. PMID:10415173

Heising, S; Richter, L; Ludwig, W; Schink, B

1999-08-01

 
 
 
 
61

Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepcion, Chile  

DEFF Research Database (Denmark)

A population of filamentous sulfur bacteria Thioploca spp. living in the Bay of Concepcion, Chile, and the adjoining shelf area was sampled for 14 mo at 4 to 6 wk intervals to investigate the influence of seasonal variations in upwelling intensity and oxygen concentrations on the population dynamics. The Thioploca population was described by its biomass, total number and diameter of sheaths, number of trichomes and species per sheath, and abundance and depth distribution of different morphological forms, e.g. trichome diameters and ratios of cell-length to diameter. Throughout the summer of 1996, oxygen concentrations in the bottom water were near zero, nitrate was 10 to 20 mu M and the biomass was high, up to 160 g m(-2) wet weight without sheaths. During winter, the biomass declined due to higher oxygen concentrations under reduced upwelling intensity. The depth distribution of Thioploca spp, changed strongly with seasonal variations, but the population structure remained mainly unchanged. During the 'El Nino' event in 1998, with high oxygen and low primary production the biomass was very low. In the Bay of Concepcion 2 populations of filamentous sulfur bacteria were observed, filaments with short cells in sheaths, populating the upper 7 cm of the sediment, and filaments without sheaths living at the sediment surface.

Schulz, HN; Strotmann, B.

2000-01-01

62

Sulfur  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Sulfur is a necessary dietary component that can be toxic at excessive concentrations. Animal bodies are about 0.15% sulfur by weight ([NRC, 1988] and [NRC, 1998]). Sulfur is incorporated into many essential molecules, including biotin, chondroitin sulfate, cartilage mucopolysaccharides, co-enzyme A, fibrinogen, glutathione, heparin, lipoic acid, mucins, and thiamine ([NRC, 1988], [NRC, 1996] and [NRC, 1998]). In addition to these biologically active compounds, sulfur is an intricate componen...

Hall, Jeffery

2007-01-01

63

Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle.  

Science.gov (United States)

Marine Group A (MGA) is a deeply branching and uncultivated phylum of bacteria. Although their functional roles remain elusive, MGA subgroups are particularly abundant and diverse in oxygen minimum zones and permanent or seasonally stratified anoxic basins, suggesting metabolic adaptation to oxygen-deficiency. Here, we expand a previous survey of MGA diversity in O2-deficient waters of the Northeast subarctic Pacific Ocean (NESAP) to include Saanich Inlet (SI), an anoxic fjord with seasonal O2 gradients and periodic sulfide accumulation. Phylogenetic analysis of small subunit ribosomal RNA (16S rRNA) gene clone libraries recovered five previously described MGA subgroups and defined three novel subgroups (SHBH1141, SHBH391, and SHAN400) in SI. To discern the functional properties of MGA residing along gradients of O2 in the NESAP and SI, we identified and sequenced to completion 14 fosmids harboring MGA-associated 16S RNA genes from a collection of 46 fosmid libraries sourced from NESAP and SI waters. Comparative analysis of these fosmids, in addition to four publicly available MGA-associated large-insert DNA fragments from Hawaii Ocean Time-series and Monterey Bay, revealed widespread genomic differentiation proximal to the ribosomal RNA operon that did not consistently reflect subgroup partitioning patterns observed in 16S rRNA gene clone libraries. Predicted protein-coding genes associated with adaptation to O2-deficiency and sulfur-based energy metabolism were detected on multiple fosmids, including polysulfide reductase (psrABC), implicated in dissimilatory polysulfide reduction to hydrogen sulfide and dissimilatory sulfur oxidation. These results posit a potential role for specific MGA subgroups in the marine sulfur cycle. PMID:24030600

Wright, Jody J; Mewis, Keith; Hanson, Niels W; Konwar, Kishori M; Maas, Kendra R; Hallam, Steven J

2014-02-01

64

EFFECT OF LIGNIN ON ENZYMATIC SACCHARIFICATION OF HARDWOOD AFTER GREEN LIQUOR AND SULFURIC ACID PRETREATMENTS  

Directory of Open Access Journals (Sweden)

Full Text Available Red maple, sweet gum, trembling aspen, red alder, and Eucalyptus globulus samples were pretreated with dilute sulfuric acid and green liquor before enzymatic saccharification. Substrates showed different levels of delignification and sugar recovery, depending on the applied pretreatments and the syringaldehyde/vanillin ratio (S/V. Three major conclusions were drawn in this research. First, lignin is the greatest contributor to recalcitrance of hardwood to enzymatic saccharification. Second, a high S/V ratio is a useful indicator of high delignification during a pretreatment process. Third, green liquor pretreatment is a promising pretreatment method because of a high delignification degree and sugar recovery. In addition, xylan also contributes to the recalcitrance of hardwoods toward enzymatic saccharification.

Douyong Min,

2012-02-01

65

"Paraffin wax-overlay of pour plate", a method for the isolation and enumeration of purple non-sulfur bacteria.  

Science.gov (United States)

A modification of pour plate technique with an overlay of wax was used for isolation and enumeration of purple non-sulfur bacteria (PNSB) with equal efficiency as that of agar shake culture. The total count of PNSB ranged from 10(5)-10(8) CFU g dry soil(-1) and belonged to the genera of Rhodobacter, Rhodopseudomonas, Rhodocista and Rubrivivax. PMID:15488284

Archana, A; Sasikala, Ch; Ramana, Ch V; Arunasri, K

2004-12-01

66

Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland  

DEFF Research Database (Denmark)

Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme

Habicht, Kirsten S.; Miller, Mette

2011-01-01

67

Comparative proteomics and activity of a green sulfur bacterium across the water column of Lake Cadagno, Switzerland.  

DEFF Research Database (Denmark)

Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme.

Habicht, Kirsten Silvia; Miller, Mette

2011-01-01

68

Influence of Gamma Radiation in Combination with Biocides on Sulfur Reducing Bacteria  

International Nuclear Information System (INIS)

The counts of sulfur reducing bacteria (SRB) of the water samples collected from a gas treatment plant of a petroleum field in middle delta-Egypt were determined. The data showed a significant counts of (SRB) in the collected samples and there was a mild increase in the bacterial counts through the system stages which revealed the presence of appropriate conditions required for the growth of (SRB) microflora. Three groups of non-oxidizing biocides were screened for their bactericidal activities. It was found that the biocides IA and IB were slightly superior in respect to the antibacterial efficacy compared to their analogues of aldehydic and cationic forms, respectively. So, these biocides were selected for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria treatment using the minimum effective dose of both radiation and biocides, and to eliminate their negative impacts, This treatment demonstrated that it is possible to minimize the amount of chemical biocides that are injected into targeted systems and released to the environment by exposing the waste water to ionizing radiation after biocides addition

69

Prosthecochloris indica sp. nov., a novel green sulfur bacterium from a marine aquaculture pond, Kakinada, India.  

Science.gov (United States)

A green sulfur bacterium, strain JAGS6T was isolated from a marine aquaculture pond located near Kakinada on the east coast of India. Cells of strain JAGS6T were Gram-negative, non-motile, coccoid, 1-1.2 microm in diameter, with prosthecae. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that strain JAGS6T clusters with members of the genus Prosthecochloris and the sequence similarity with the nearest relative, Prosthecochloris vibrioformis, is 96.7%. Cultures of strain JAGS6T are green in color and the cells contain bacteriochlorophyll c and most likely carotenoids of the chlorobactene series as photosynthetic pigments. Strain JAGS6T is mesophilic, halotolerant (up to 7% NaCl) and is obligately phototrophic, utilizing sulfide but not thiosulfate as a photosynthetic electron donor. Sulfur globules are deposited outside the cells during oxidation of sulfide. On the basis of 16S rRNA gene sequence analysis and its morphological and physiological characteristics, strain JAGS6T is distinct from described species of the genus Prosthecochloris and we propose to describe it as a new species, Prosthecochloris indica, sp. nov. The type strain is JAGS6T (=JCM 13299T=ATCC BAA1214T). PMID:19436133

Anil Kumar, Pinnaka; Naga Radha Srinivas, Tanuku; Sasikala, Chintalapati; Venkata Ramana, Chintalapati; Süling, Jorg; Imhoff, Johannes

2009-04-01

70

Effect of green tea on volatile sulfur compounds in mouth air.  

Science.gov (United States)

Many food products are claimed to be effective in controlling halitosis. Halitosis is caused mainly by volatile sulfur compounds (VSCs) such as H(2)S and CH(3)SH produced in the oral cavity. Oral microorganisms degrade proteinaceous substrates to cysteine and methionine, which are then converted to VSCs. Most treatments for halitosis focus on controlling the number of microorganisms in the oral cavity. Since tea polyphenols have been shown to have antimicrobial and deodorant effects, we have investigated whether green tea powder reduces VSCs in mouth air, and compared its effectiveness with that of other foods which are claimed to control halitosis. Immediately after administering the products, green tea showed the largest reduction in concentration of both H(2)S and CH(3)SH gases, especially CH(3)SH which also demonstrated a better correlation with odor strength than H(2)S; however, no reduction was observed at 1, 2 and 3 h after administration. Chewing gum, mints and parsley-seed oil product did not reduce the concentration of VSCs in mouth air at any time. Toothpaste, mints and green tea strongly inhibited VSCs production in a saliva-putrefaction system, but chewing gum and parsley-seed oil product could not inhibit saliva putrefaction. Toothpaste and green tea also demonstrated strong deodorant activities in vitro, but no significant deodorant activity of mints, chewing gum or parsley-seed oil product were observed. We concluded that green tea was very effective in reducing oral malodor temporarily because of its disinfectant and deodorant activities, whereas other foods were not effective. PMID:18388413

Lodhia, Parth; Yaegaki, Ken; Khakbaznejad, Ali; Imai, Toshio; Sato, Tsutomu; Tanaka, Tomoko; Murata, Takatoshi; Kamoda, Takeshi

2008-02-01

71

Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation.  

Science.gov (United States)

Novel, vacuolate sulfur bacteria occur at shallow hydrothermal vents near White Point, Calif. There, these filaments are attached densely to diverse biotic and abiotic substrates and extend one to several centimeters into the surrounding environment, where they are alternately exposed to sulfidic and oxygenated seawater. Characterizations of native filaments collected from this location indicate that these filaments possess novel morphological and physiological properties compared to all other vacuolate bacteria characterized to date. Attached filaments, ranging in diameter from 4 to 100 microm or more, were composed of cylindrical cells, each containing a thin annulus of sulfur globule-filled cytoplasm surrounding a large central vacuole. A near-complete 16S rRNA gene sequence was obtained and confirmed by fluorescent in situ hybridization to be associated only with filaments having a diameter of 10 microm or more. Phylogenetic analysis indicates that these wider, attached filaments form within the gamma proteobacteria a monophyletic group that includes all previously described vacuolate sulfur bacteria (the genera Beggiatoa, Thioploca, and Thiomargarita) and no nonvacuolate genera. However, unlike for all previously described vacuolate bacteria, repeated measurements of cell lysates from samples collected over 2 years indicate that the attached White Point filaments do not store internal nitrate. It is possible that these vacuoles are involved in transient storage of oxygen or contribute to the relative buoyancy of these filaments. PMID:15574952

Kalanetra, Karen M; Huston, Sherry L; Nelson, Douglas C

2004-12-01

72

Changes in hydrogen production and polymer accumulation upon sulfur-deprivation in purple photosynthetic bacteria  

Energy Technology Data Exchange (ETDEWEB)

The work investigated physiological conditions directing cellular metabolism toward either H{sub 2}-production or storage polymer accumulation in purple photosynthetic bacteria. Hydrogen-producing cultures of the purple anoxygenic photosynthetic bacterium Rhodospirillum rubrum were resuspended in media lacking sulfur (S) nutrients. S-deprived cultures displayed lack of growth, cessation of bacteriochlorophyll and protein accumulation, and inhibition of H{sub 2} evolution. Cell volume increased substantially and large amounts of polymer were found to accumulate extracellularly. Poly-{beta}-hydroxybutyrate (PHB) content increased about 3.5-fold within 24 h of S-deprivation. Most cells remained viable after 100 h of S-deprivation and cultures were capable of resuming growth and H{sub 2}-production when supplemented with sulfate. Transcript levels, protein amount, and activity of the nitrogenase enzyme, which are responsible for H{sub 2}-production, decreased with a halftime of about 15 h upon S-deprivation. In addition, the nitrogenase NifH subunits were modified by ADP-ribosylation, indicating post-translational inactivation. Comparative aconitase activity measurements of control and S-deprived cells failed to indicate a general stress to Fe-S proteins, as aconitase, a Fe-S protein in the citric acid cycle sensitive to oxidative stress, maintained activity throughout the course of the S-deprivation. In contrast to nifH transcriptional down-regulation, expression of cysK (encoding cysteine synthase) was upregulated in response to S-deprivation. The described physiology is not specific to R. rubrum, as Rhodobacter sphaeroides and Rhodopseudomonas palustris exhibited a similar response to S-deprivation. It is suggested that manipulation of the supply of S-nutrients may serve as a tool for the alternative production of H{sub 2} or PHB in purple photosynthetic bacteria, thus affording opportunities to design photobiological systems that serve in both energy conversion and storage processes. (author)

Melnicki, Matthew R. [Agricultural and Environmental Chemistry, University of California, 111 Koshland Hall, MC-3102, Berkeley, CA 94720 (United States); Eroglu, Ela [Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 (United States); Melis, Anastasios [Agricultural and Environmental Chemistry, University of California, 111 Koshland Hall, MC-3102, Berkeley, CA 94720 (United States); Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 (United States)

2009-08-15

73

Characterization of BciB: a ferredoxin-dependent 8-vinyl-protochlorophyllide reductase from the green sulfur bacterium Chloroherpeton thalassium.  

Science.gov (United States)

Two enzymes, BciA and BciB, are known to reduce the C-8 vinyl group of 8-vinyl protochlorophyllide, producing protochlorophyllide a, during the synthesis of chlorophylls and bacteriochlorophylls in chlorophototrophic bacteria. BciA from the green sulfur bacterium Chlorobaculum tepidum reduces the C-8 vinyl group using NADPH as the reductant. Cyanobacteria and some other chlorophototrophs have a second, nonhomologous type of 8-vinyl reductase, BciB, but the biochemical properties of this enzyme have not yet been described. In this study, the bciB gene of the green sulfur bacterium Chloroherpeton thalassium was expressed in Escherichia coli , and the recombinant protein was purified and characterized. Recombinant BciB binds a flavin adenine dinucleotide cofactor, and EPR spectroscopy as well as quantitative analyses of bound iron and sulfide suggest that BciB binds two [4Fe-4S] clusters, one of which may not be essential for the activity of the enzyme. Using electrons provided by reduced ferredoxin or dithionite, recombinant BciB was active and reduced the 8-vinyl moiety of the substrate, 8-vinyl protochlorophyllide, producing protochlorophyllide a. A structural model for BciB based on a recent structure for the FrhB subunit of F420-reducing [NiFe]-hydrogenase of Methanothermobacter marburgensis is proposed. Possible reasons for the occurrence and distribution of BciA and BciB among various chlorophototrophs are discussed. PMID:24151992

Saunders, Allison H; Golbeck, John H; Bryant, Donald A

2013-11-26

74

Expansion of ability of denitrification within the filamentous colorless sulfur bacteria of the genus Thiothrix.  

Science.gov (United States)

Filamentous sulfur bacteria of the genus Thiothrix are able to respire nitrate (NO3-?NO2-) under anaerobic growth. Here, Thiothrix caldifontis (G1(T), G3), Thiothrix unzii (A1(T), TN) and Thiothrix lacustris AS were shown to be capable of further reduction of nitrite and/or nitrous oxides (denitrification). In particular, in the genomes of these strains, excluding T. unzii TN, the nirS gene encoding periplasmic respiratory nitrite reductase was detected, and for T. lacustris AS the nirS expression was confirmed during anaerobic growth. The nirK gene, coding for an alternative nitrite reductase, and the nrfA gene, encoding nitrite reduction to ammonia, were not found in any investigated strains. All Thiothrix species capable of denitrification possess the cnorB gene encoding cytochrome c-dependent NO reductase but not the qnorB gene coding for quinol-dependent NO reductase. Denitrifying capacity ('full' or 'truncated') can vary between strains belonging to the same species and correlates with physical-chemical parameters of the environment such as nitrate, hydrogen sulfide and oxygen concentrations. Phylogenetic analysis revealed the absence of recent horizontal transfer events for narG and nirS; however, cnorB was subjected to gene transfer before the separation of modern species from a last common ancestor of the Thiothrix species. PMID:25074823

Trubitsyn, Ivan V; Belousova, Elena V; Tutukina, Maria N; Merkel, Alexander Y; Dubinina, Galina A; Grabovich, Margarita Y

2014-09-01

75

Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile.  

Science.gov (United States)

The filamentous sulfur bacteria Thioploca spp. produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm down into the sediment. The structure of the Thioploca communities off the Bay of Concepcion was investigated with respect to biomass, species distribution, and three-dimensional orientation of the sheaths. Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone. The maximum wet weight of sheaths, 800 g m(sup-2), was found at a depth of 90 m. The bacterial filaments within the sheaths contributed about 10% of this weight. The highest density of filaments was found within the uppermost 1 cm of the mat. On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp. from mixed populations containing Beggiatoa spp. Three distinct size classes of Thioploca spp. were found, two of which have been described previously as Thioploca araucae and Thioploca chileae. Many Thioploca filaments did not possess a visible sheath, and about 20% of the sheaths contained more than one Thioploca species. The three-dimensional sheath structure showed that Thioploca filaments can move from the surface and deep into the sediment. PMID:16535327

Schulz, H N; Jorgensen, B B; Fossing, H A; Ramsing, N B

1996-06-01

76

Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp, off the coast of Chile  

DEFF Research Database (Denmark)

The filamentous sulfur bacteria Thioploca spp, produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm dean into the sediment, The structure of the Thioploca communities off the Bay of Concepcion was investigated,vith respect to biomass, species distribution, and three-dimensional orientation of the sheaths, Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone, The maximum wet weight of sheaths, 800 g m(-2), was found at a depth of 90 m, The bacterial filaments within the sheaths contributed about 10% of this weight, The highest density of filaments was found within the uppermost I cm of the mat, On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp, from mixed populations containing Beggiatoa spp, Three distinct size classes of Thioploca spp. were found, two of which have been described previously as Thioploca araucae and Thioploca chileae. Many Thioploca filaments did not possess a visible sheath, and about 20% of the sheaths contained more than one Thioploca species. The three-dimensional sheath structure showed that Thioploca filaments can move from the surface and deep into the sediment.

Schulz, HN; JØrgensen, BB

1996-01-01

77

Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79°N)  

DEFF Research Database (Denmark)

Fjord sediments on the west coast of the arctic archipelago Svalbard were surveyed to understand whether large filamentous sulfur bacteria of the genus Beggiatoa thrive at seawater temperatures permanently near freezing. Two sediments had abundant populations of Beggiatoa, while at six sites, only sporadic occurrences were observed. We conclude that Beggiatoa, although previously unnoticed, are widespread in these arctic fjord sediments. Beggiatoa ranged in diameter from 2 to 52 ?m and, by those tested, stored nitrate in vacuoles at up to 260 mM. The 16S rRNA gene sequence of a 20-?m-wide filament is closely associated with other large, marine, nitrate-storing Beggiatoa. The Beggiatoa mostly occurred in the upper 2-5 cm of oxidized surface sediment between oxygen and the deeper sulfidic zone. In spite of a very low or an undetectable sulfide concentration, sulfate reduction provided abundant H2S in this zone. The total living biomass of Beggiatoa filaments at one study site varied over 3 years between 1.13 and 3.36 g m-2. Because of their large size, Beggiatoa accounted for up to 15% of the total prokaryotic biomass, even though the filament counts at this site were rather low, comprising <1/10 000 of the bacterial numbers on a cell basis.

JØrgensen, Bo Barker; Dunker, Rita

2010-01-01

78

Development of an online sulfur-oxidizing bacteria biosensor for the monitoring of water toxicity.  

Science.gov (United States)

A toxicity monitoring system based on the metabolic properties of sulfur-oxidizing bacteria (SOB) in continuous and fed-batch modes has been applied for the detection of nitrite (NO2 (-)-N). In this study, the effects of different concentrations of NO2 (-)-N (0.1 to 5 mg/L) on the SOB bioreactors were tested. We found that 5 mg/L NO2 (-)-N was very toxic to the SOB bioreactors in both continuous (R1) and fed-batch (R2) modes, showing complete inhibition of SOB activity within 2 h of operation. R1 and R2 were operated in different ways; however, the EC inhibition and recovery patterns were very similar. The EC rate increased with an increasing NO2 (-)-N concentration in both continuous and fed-batch modes. The addition of 5 mg/L NO2 (-)-N in continuous mode decreased the average EC rate by 14.38?±?2.1 ?S/cm/min; while in fed-batch mode, the EC rate decreased by 23 ?S/cm/min. Although the toxicity monitoring system could detect 0.5-5 mg/L NO2 (-)-N, it could not detect 0.1 mg/L NO2 (-)-N in either continuous or fed-batch operation. Thus, the SOB biosensor method presented is useful to detect toxic agents such as NO2 (-)-N within a few minutes or hours. PMID:25253265

Gurung, Anup; Kang, Woo-Chang; Shin, Beom-Soo; Cho, Ju Sik; Oh, Sang-Eun

2014-12-01

79

Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Little is known about the effects of stress hormones on the etiologic agents of halitosis. Thus, the aim of this study was to evaluate in vitro the effects of adrenaline (ADR), noradrenaline (NA) and cortisol (CORT) on bacteria that produce volatile sulfur compounds (VSC), the major gases responsibl [...] e for bad breath. Cultures of Fusobacterium nucleatum (Fn), Porphyromonas endodontalis (Pe), Prevotella intermedia (Pi) and Porphyromonas gingivalis (Pg) were exposed to 50 µM ADR, NA and CORT or equivalent volumes of sterile water as controls for 12 and 24 h. Growth was evaluated based on absorbance at 660 nm. Portable gas chromatography was used to measure VSC concentrations. Kruskal-Wallis and the Dunn post-hoc test were used to compare the groups. For Fn, ADR, NA and CORT significantly reduced bacterial growth after 12 h and 24 h (p 0.05). In the Pi cultures, ADR, NA and CORT increased H2S (p

Caroline Morini, Calil; Gisele Mattos, Oliveira; Karina, Cogo; Antonio Carlos, Pereira; Fernanda Klein, Marcondes; Francisco Carlos, Groppo.

2014-06-11

80

Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification  

Energy Technology Data Exchange (ETDEWEB)

In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual COD{sub organic} and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH{sub 4} (80-90 vol.%), CO{sub 2} (10-20 vol.%) and H{sub 2}S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H{sub 2}S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.

Janssen, Albert J.H. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Shell Global Solutions Int. B.V., Amsterdam (Netherlands)], E-mail: albert.janssen@wur.nl; Lens, Piet N.L. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands); Stams, Alfons J.M.; Plugge, Caroline M. [Laboratory of Microbiology, Wageningen University, Wageningen (Netherlands); Sorokin, Dimitri Y. [Department of Biotechnology, Delft (Netherlands); Institute of Microbiology, Russian Academy of Science, Moscow (Russian Federation); Muyzer, Gerard [Department of Biotechnology, Delft (Netherlands); Dijkman, Henk; Van Zessen, Erik [Paques B.V., Balk (Netherlands); Luimes, Peter [Industriewater Eerbeek B.V. Eerbeek (Netherlands); Buisman, Cees J.N. [Sub-department of Environmental Technology, Wageningen University, Wageningen (Netherlands)

2009-02-01

 
 
 
 
81

Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification  

International Nuclear Information System (INIS)

In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual CODorganic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH4 (80-90 vol.%), CO2 (10-20 vol.%) and H2S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H2S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass

82

Isolation of lactic acid bacteria for its possible use in the fermentation of green algerian olives  

Directory of Open Access Journals (Sweden)

Full Text Available This study was undertaken with the aim of obtaining lactic acid bacteria with the ability to ferment olives for possible use as starter cultures. For this reason, 32 isolates of lactic acid bacteria isolated from the spontaneous fermentation of green olives were characterized and identified on the basis of morphological and biochemical criteria. 14 of them were identified as Lactococcus lactis, 11 isolates as Lactobacillus plantarum and 7 isolates as Enterococcus sp. Of the 18 isolates examined for antagonistic activity, 3 isolates of Lactobacillus plantarum and one isolate of Enterococcus sp. were able to give distinct zones of inhibition against 5 indicator strains of lactic acid bacteria isolated in this study. Cell free supernatant of Lactobacillus plantarum OL9 was active against Gram-positive bacteria (Lactobacillus, Enterococcus and Propionibacterium and also against one Gram-negative bacteria strain of spoilage significance (Erwinia.Este estudio se emprendió con el objetivo de obtener bacterias del ácido láctico con capacidad para utilizarse como cultivo iniciador en la fermentación de aceitunas. Por esta razón, 32 cepas de bacterias del ácido láctico procedentes de fermentaciones espontáneas de aceitunas verdes se caracterizaron e identificaron en función de criterios morfológicos y bioquímicos. Catorce cepas se identificaron como Lactococcus lactis, 11 cepas como Lactobacillus plantarum y 7 cepas como Enterococcus sp. De las 18 cepas que se examinaron para detectar actividades antagónicas, se encontró que 3 cepas de Lactobacillus plantarum y una de Enterococcus sp. mostraban zonas de inhibición contra 5 cepas indicadoras de bacterias del ácido láctico aisladas en este estudio. El sobrenadante libre de células Lactobacillus plantarum OL9 fue activo contra diversas bacterias Gram-positivas (Lactobacillus, Enterococcus y Propionibacterium y contra una cepa de bacteria Gram-negativa relacionada con alteraciones (Erwinia.

Nour-Eddine, Karam

2004-12-01

83

Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria? †  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enric...

Park, Byoung-joon; Park, Soo-je; Yoon, Dae-no; Schouten, Stefan; Sinninghe Damste?, Jaap S.; Rhee, Sung-keun

2010-01-01

84

Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes.  

Science.gov (United States)

Roseobacter clade bacteria (RCB) are abundant in marine bacterioplankton worldwide and central to pelagic sulfur cycling. Very little is known about their abundance and function in marine sediments. We investigated the abundance, diversity and sulfur oxidation potential of RCB in surface sediments of two tidal flats. Here, RCB accounted for up to 9.6% of all cells and exceeded abundances commonly known for pelagic RCB by 1000-fold as revealed by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA and sulfate thiohydrolase (SoxB) genes indicated diverse, possibly sulfur-oxidizing RCB related to sequences known from bacterioplankton and marine biofilms. To investigate the sulfur oxidation potential of RCB in sediments in more detail, we analyzed a metagenomic fragment from a RCB. This fragment encoded the reverse dissimilatory sulfite reductase (rDSR) pathway, which was not yet found in RCB, a novel type of sulfite dehydrogenase (SoeABC) and the Sox multi-enzyme complex including the SoxCD subunits. This was unexpected as soxCD and dsr genes were presumed to be mutually exclusive in sulfur-oxidizing prokaryotes. This unique gene arrangement would allow a metabolic flexibility beyond known sulfur-oxidizing pathways. We confirmed the presence of dsrA by geneFISH in closely related RCB from an enrichment culture. Our results show that RCB are an integral part of the microbial community in marine sediments, where they possibly oxidize inorganic and organic sulfur compounds in oxic and suboxic sediment layers. PMID:22739490

Lenk, Sabine; Moraru, Cristina; Hahnke, Sarah; Arnds, Julia; Richter, Michael; Kube, Michael; Reinhardt, Richard; Brinkhoff, Thorsten; Harder, Jens; Amann, Rudolf; Mußmann, Marc

2012-12-01

85

Vertical Migration in the Sediment-Dwelling Sulfur Bacteria Thioploca spp. in Overcoming Diffusion Limitations.  

Science.gov (United States)

In order to investigate the environmental requirements of the filamentous sulfur bacteria Thioploca spp., we tested the chemotactic responses of these sedimentary microorganisms to changes in oxygen, nitrate, and sulfide concentrations. A sediment core with a Thioploca mat, retrieved from the oxygen-minimum zone on the Chilean shelf, was incubated in a recirculating flume. The addition of 25 (mu)mol of nitrate per liter to the seawater flow induced the ascent of the Thioploca trichomes (length, up to 70 mm) in their mostly vertically oriented gelatinous sheaths. The upper ends of the filaments penetrated the sediment surface and protruded 1 to 3 mm into the flowing water before they bent downstream. By penetrating the diffusive boundary layer, Thioploca spp. facilitate efficient nitrate uptake in exposed trichome sections that are up to 30 mm long. The cumulative length of exposed filaments per square centimeter of sediment surface was up to 92 cm, with a total exposed trichome surface area of 1 cm(sup2). The positive reaction to nitrate overruled a negative response to oxygen, indicating that nitrate is the principal electron acceptor used by Thioploca spp. in the anoxic environment; 10-fold increases in nitrate fluxes after massive emergence of filaments strengthened this hypothesis. A positive chemotactic response to sulfide concentrations of less than 100 (mu)mol liter(sup-1) counteracted the attraction to nitrate and, along with phobic reactions to oxygen and higher sulfide concentrations, controlled the vertical movement of the trichomes. We suggest that the success of Thioploca spp. on the Chilean shelf is based on the ability of these organisms to shuttle between the nitrate-rich boundary layer and the sulfidic sediment strata. PMID:16535328

Huettel, M; Forster, S; Kloser, S; Fossing, H

1996-06-01

86

Ecologically and Geologically Relevant Isotope Signatures of C, N, and S in Okenone Producing Purple Sulfur Bacteria  

Science.gov (United States)

The carbon (C), nitrogen (N), and sulfur (S) cycles are linked in euxinic environments by purple sulfur bacteria (PSB). PSB could be responsible for the isotopic enrichments that have been observed in both fresh and marine anoxic basins. Okenane, the only recognized molecular fossil unique to PSB, is derived from okenone, a carotenoid pigment unique to Chromatiaceae. Since PSB have this exclusive molecular fossil and are fundamental components in the overall ecology of euxinic environments, a comprehensive study was undertaken to assess the C, N, and S metabolisms PSB carryout under precise laboratory conditions. The consequential isotopic fractionations that may be documented in modern environments and geologic record were examined. Autotrophic cultures of Marichromatium purpuratum DSMZ 1591 (Mpurp1591) were observed to have a fractionation between CO2 and biomass (?13Cbiomass - CO2), ranging from -16.1 to -37.6‰, dependent on growth stage. This rather large range of CO2 fractionation expands previously reported values for RuBisCO in PSB. Ammonium assimilation, controlled by glutamate dehydrogenase, was shown to have a fractionation (?15Nbiomass - NH4) of -15‰ in autotrophic cultures of Mpurp1591 and Thiocapsa marina 5653, documented for the first time in PSB. While it has been previously shown that phototrophic sulfur oxidizing bacteria connect sulfur and carbon cycling in euxinic ecosystems, the percentage of elemental sulfur and bulk biomass ?34S values of Mpurp1591 cells were contingent upon their carbon metabolisms. Here we show that the isotopic enrichments of S and N observed in freshwater and marine anoxic basins could be explained by the prevalence of PSB.

Smith, D.; Steele, A.; Bowden, R.; Fogel, M. L.

2013-12-01

87

Co-Existence and niche differentiation of sulfur oxidizing bacteria in marine environments  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Reduced sulfur compounds and sulfur-oxidizing prokaryotes (SOP) are widely distributed in the marine environment. Diverse microbial lineages thrive on the oxidation of reduced sulfur. They co-exist successfully by the adaptive radiation into different physiological and ecological niches. However, the factors determining this differentiation and SOP distribution are largely unknown. Environmental factors, like pH, temperature and salinity, as well as the physiological capabilities of different...

Pjevac, Petra

2014-01-01

88

Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).  

Science.gov (United States)

Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process. PMID:11925039

Zhang, Liping; Happe, Thomas; Melis, Anastasios

2002-02-01

89

Methods for removing malodorous sulfur compounds from pulp mill flue gases and the like by using green liquor  

Energy Technology Data Exchange (ETDEWEB)

This is an improved method for removing malodorous sulfur compounds from flue gases generated in kraft or sodium sulfite pulping operations and the like by the absorption process using green liquor, an aqueous solution containing sodium sulfide and sodium carbonate. The malodorous gas compounds, including hydrogen sulfide, methyl mercaptan, and dimethyl sulfide are preferentially absorbed by the sodium sulfide forming sodium hydrosulfide and methanol. Any sulfur dioxide in the gas is absorbed and neutralized by sodium carbonate. In this method carbon dioxide absorption is minimized and the formation of sodium bicarbonate is limited. Sodium bicarbonate formation is minimized in order to avoid its reaction with sodium hydrosulfide which would then release undesirable hydrogen sulfide during absorption, as well as to forestall the need to increase chemical and lime kiln capacity requirements when the green liquor returned to the kraft recovery process contains excess amounts of sodium bicarbonate.

Farin, W.G.

1984-02-14

90

Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum.  

Science.gov (United States)

Many green algae cannot develop normally when they are grown under axenic conditions. Monostroma oxyspermum, for example, proliferates unicellularly in an aseptic culture, but develops into a normal foliaceous gametophyte in the presence of some marine bacteria. More than 1000 bacterial strains were isolated from marine algae and sponges and assayed for their ability to induce the morphogenesis of unicellular M. oxyspermum. Fifty bacterial strains exhibiting morphogenesis-inducing activity against unicellular M. oxyspermum were isolated. The partial gyrB (approximately 1.2 kbp) and 16S rDNA (approximately 1.4 kbp) sequences of about 40 active strains were determined, and their phylogenetic relationships were analysed. All these strains were located within the Cytophaga-Flavobacterium-Bacteroides (CFB) complex, and most of these strains were clustered in a clade comprising Zobellia uliginosa. On the other hand, these bacteria also exhibited morphogenetic activity against germ-free spores of Ulva pertusa, Ulva conglobata and Enteromorpha intestinalis. Moreover, these bacteria induced the release of spores from the leafy young gametophyte of M. oxyspermum. These results indicate that strains belonging to several groups in the CFB complex play an important role in the normal development of green algae in the marine coastal environment. PMID:12542710

Matsuo, Yoshihide; Suzuki, Makoto; Kasai, Hiroaki; Shizuri, Yoshikazu; Harayama, Shigeaki

2003-01-01

91

Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria.  

Science.gov (United States)

Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP) via competing pathways releasing either methanethiol (MeSH) or dimethyl sulfide (DMS). Deuterium-labeled [(2)H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP) were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC-MS. Feeding experiments with [(2)H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [(2)H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [(2)H3]methionine and (34)SO4 (2-), synthesized from elemental (34)S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction. PMID:23766810

Brock, Nelson L; Citron, Christian A; Zell, Claudia; Berger, Martine; Wagner-Döbler, Irene; Petersen, Jörn; Brinkhoff, Thorsten; Simon, Meinhard; Dickschat, Jeroen S

2013-01-01

92

Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A green phototrophic bacterium was enriched with ferrous iron as sole electron donor and was isolated in defined coculture with a spirilloid chemoheterotrophic bacterium. The coculture oxidized ferrous iron to ferric iron with stoichiometric formation of cell mass from carbon dioxide. Sulfide, thiosulfate, or elemental sulfur was not used as electron donor in the light. Hydrogen or acetate in the presence of ferrous iron increased the cell yield of the phototrophic partner, and hydrogen could...

Heising, Silke; Richter, Lothar; Ludwig, Wolfgang; Schink, Bernhard

1999-01-01

93

Metabolic adaptation and trophic strategies of soil bacteria - C1- metabolism and sulfur chemolithotrophy in Starkeya novella  

Directory of Open Access Journals (Sweden)

Full Text Available The highly diverse and metabolically versatile microbial communities found in soil environments are major contributors to the global carbon, nitrogen and sulfur cycles. We have used a combination of genome –based pathway analysis with proteomics and gene expression studies to investigate metabolic adaptation in a representative of these bacteria, Starkeya novella, which was originally isolated from agricultural soil. This bacterium was the first facultative sulfur chemolithoautotroph that was isolated and it is also able to grow with methanol and on over 39 substrates as a heterotroph. However, using glucose, fructose, methanol, thiosulfate as well as combinations of the carbon compounds with thiosulfate as growth substrates we have demonstrated here that contrary to the previous classification, S. novella is not a facultative sulfur chemolitho- and methylotroph, as the enzyme systems required for these two growth modes as always expressed at high levels. This is typical for key metabolic pathways. In addition enzymes for various pathways of carbon dioxide fixation were always expressed at high levels, even during heterotrophic growth on glucose or fructose, which suggests a role for these pathways beyond the generation of reduced carbon units for cell growth, possibly in redox balancing of metabolism. Our results then indicate that S. novella, a representative of the Xanthobacteraceae family of methylotrophic soil and freshwater dwelling bacteria, employs a mixotrophic growth strategy under all conditions tested here. As a result the contribution of this bacterium to either carbon sequestration or the release of climate active substances could vary very quickly, which has direct implications for the modelling of such processes if mixotrophy proves to be the main growth strategy for large populations of soil bacteria.

UlrikeKappler

2013-10-01

94

Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii.  

Science.gov (United States)

The excited states of bacteriochlorophyll (BChl) a were studied by pump-probe transient absorption spectroscopy in reaction center core (RCC), Fenna-Matthews-Olson (FMO) and FMO-RCC complexes of the green sulfur bacterium Prosthecochloris aestuarii. Excitation at 790 or 835 nm resulted in rapid equilibration of the energy between the BChl a molecules of the RCC complex: within 1 ps, most of the excitations had relaxed to the lowest energy level (835 nm), as a result of strong interactions between the BChls. Excitation of chlorophyll a 670 resulted in energy transfer to BChl a with a time constant of 1.2 ps, followed by thermal equilibration. Independent of the wavelength of excitation, the decay at 835 nm could be fitted with a time constant of about 25 ps, comparable to the 30 ps measured earlier with membrane fragments, which is ascribed to trapping in the reaction centers. Similar results were obtained with the FMO-RCC complex upon excitation at 835 or 670 nm, but the results upon 790 nm excitation were quite different. Again an equilibrium was rapidly reached, but now most of the excitations remained within the FMO complex, with a maximum bleaching at 813 nm, the same as observed in the isolated FMO. Even after 100 ps there was no bleaching at 835 nm and no evidence for charge separation. We conclude that there is no equilibration of the energy between the FMO and the RCC complex and that the efficiency of energy transfer from FMO to the reaction center core is low. PMID:9692969

Neerken, S; Permentier, H P; Francke, C; Aartsma, T J; Amesz, J

1998-07-28

95

Isolation and properties of photochemically active reaction center complexes from the green sulfur bacterium Prosthecochloris aestuarii.  

Science.gov (United States)

A new and rapid procedure was developed for the isolation of the reaction center core (RCC)-complex from the green sulfur bacterium Prosthecochloris aestuarii. Reaction center preparations containing the Fenna Matthews Olson (FMO) protein were also obtained. The procedure involved incubation of broken cells with the detergents Triton X-100 and SB12, sucrose gradient centrifugation and hydroxyapatite chromatography. Three different pigment protein complexes were obtained: one containing (about) three FMO trimers per RCC, one with one FMO per RCC and one consisting of RCC only. The last one contained polypeptides with apparent molecular masses of 64 kDa (pscA) and 35 kDa (pscB, the FA/FB, FeS subunit), but no cytochrome. Bacteriochlorophyll a and the chlorophyll a isomer functioning as primary electron acceptor were present at a ratio of 4.8:1. The complexes were also characterized spectroscopically and in terms of photochemical activity, at room temperature as well as at cryogenic temperatures. Illumination caused oxidation of the primary donor P840, with the highest activity in the RCC complex (DeltaA840/A810 = 0.06). At room temperature in the RCC complex essentially all of the P840+ produced in a flash was re-reduced slowly in the dark (several seconds). At low temperatures (150-10 K) a triplet was formed in a fraction of the reaction centers, presumably by a reversal of the charge separation, whereas in others P840+ formed in the light was re-reduced in 40-50 ms. PMID:9369489

Francke, C; Permentier, H P; Franken, E M; Neerken, S; Amesz, J

1997-11-18

96

Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum.  

Science.gov (United States)

The reaction center (RC) complex of the green sulfur bacterium Chlorobaculum tepidum is composed of the Fenna-Matthews-Olson antenna protein (FMO) and the reaction center core (RCC) complex. The RCC complex has four subunits: PscA, PscB, PscC, and PscD. We studied the FMO/RCC complex by chemically cross-linking the purified sample followed by biochemical and spectroscopic analysis. Blue-native gels showed that there were two types of FMO/RCC complexes, which are consistent with complexes with one copy of FMO per RCC and two copies of FMO per RCC. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the samples after cross-linking showed that all five subunits of the RC can be linked by three different cross-linkers: bissulfosuccinimidyl suberate, disuccinimidyl suberate, and 3,3-dithiobis-sulfosuccinimidyl propionate. The interaction sites of the cross-linked complex were also studied using liquid chromatography coupled to tandem mass spectrometry. The results indicated that FMO, PscB, PscD, and part of PscA are exposed on the cytoplasmic side of the membrane. PscD helps stabilize FMO to the reaction center and may facilitate transfer of the electron from the RC to ferredoxin. The soluble domain of the heme-containing cytochrome subunit PscC and part of the core subunit PscA are located on the periplasmic side of the membrane. There is a close relationship between the periplasmic portions of PscA and PscC, which is needed for the efficient transfer of the electron between PscC and P840. PMID:25014729

He, Guannan; Zhang, Hao; King, Jeremy D; Blankenship, Robert E

2014-08-01

97

INFLUENCE OF ELEMENTAL SULFUR AND/OR INOCULATION WITH SULFUR OXIDIZING BACTERIA ON GROWTH, AND NUTRIENT CONTENT OF SORGHUM PLANTS GROWN ON DIFFERENT SOILS  

Directory of Open Access Journals (Sweden)

Full Text Available A pot experiment was conducted to study the effect of elemental sulfur(E.S rates (300 and 600 ppm and/or sulfur oxidizing bacteria (S.O.B. ATCC 8158 on growth and nutrients content of sorghum plants grown on different soils (sandy soils(I & II and clay loam soil.The obtained results could be summarized in the followings:Sorghum plants:Significant increases over the control were observed in fresh and dry weights of sorghum plant as well as its content of SO4=, N, P, K, Fe, Mn, Zn and Cu by using all the sulfur and/or the oxidizing bacteria treatments. Addition of E.S (300 & 600 ppm in combination with S.O.B. ATCC 8158 significantly increased both fresh and dry weights as well as SO4=, N, P, K, Fe, Mn, Zn and Cu contents of sorghum plants grown on the used soils as compared with either of them alone.E.S rates (300 & 600 ppm significantly increased the fresh and dry weights as well as all the studied nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the different soils as compared with S.O.B. ATCC 8158 treatment alone. The highest rate of E.S (600 ppm significantly increased all the previous parameters under study as compared with the lower rate (300 ppm. The highest values of fresh and dry weights as well as nutrients content (SO4=, N, P, K, Fe, Mn, Zn and Cu of sorghum plants grown on the used soils were obtained by 600 ppm E.S + S.O.B. ATCC 8158 treatment followed by 600 ppm E.S; 300 ppm E.S + S.O.B. ATCC 8158; 300 ppm E.S; S.O.B. ATCC 8158 and control treatments in decreasing order.The used soils:E.S rates (300 & 600 ppm and/or S.O.B. ATCC 8158 decreased pH values of the used soils after 3, 6 and 9 weeks from sowing as compared with their corresponding control treatments. The values of pH of sand soil (I and clay loam soil slightly decreased by time i.e they decreased from 3 weeks to 9 weeks from plantation. E.S rates (300 & 600 ppm with or without inoculation the used soils with S.O.B. ATCC 8158 significantly increased SO4=, N, P, K, Fe, Mn, Zn and Cu content of all the used soils as compared with the control and sole S.O.B. ATCC 8158 treatments each alone. The highest values of SO4=, N, P, K, Fe, Mn, Zn and Cu contents of sandy soils (I & II and clay loam soil took the same trend of these nutrient in sorghum plants. The highest rate of E.S (600 ppm significantly increased SO4=, N, P, K, Fe, Mn, Zn and Cu contents in all the used soils as compared with the lower rates (300 ppm. All the values of fresh and dry weights as well as all the determined elements in sorghum plants and the used soils were higher when the clay loam soil was used than when the other two sandy soils (I & II were used. This may be due to the fertility levels of these soils.

Hala Kandil

2011-12-01

98

Mats of Giant Sulfur Bacteria on Deep-Sea Sediments due to Fluctuating Hydrothermal Flow  

DEFF Research Database (Denmark)

FILAMENTOUS sulphide-oxidizing bacteria, Beggiatoa spp., commonly grow as submillimetre-thin white films on anoxic marine sediments. Unusually thick mats (> 1 cm) of giant Beggiatoa filaments, 41-120 mum wide and 2-10 mm long, were observed at 2,000 m water depth in the hydrothermal vent fields of Guaymas Basin, Gulf of California1-4. We investigated how such dense communities of the largest known bacteria overcome severe diffusion limitation of their substrate supply, and what advantage they may have by developing such large cell sizes. Oxygen, sulphide, pH and temperature were therefore measured in Beggiatoa mats directly on the sea floor. We report here the discovery of small-scale hydrothermal fluid circulations around patches of the bacteria, causing a pulsatory seawater flow into the mats and thereby enhancing the supply of oxygen and sulphide to the bacteria.

GUNDERSEN, JK; JØRGENSEN, BB

1992-01-01

99

Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry.  

Science.gov (United States)

The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state. PMID:25233081

Eder, Stephan H K; Gigler, Alexander M; Hanzlik, Marianne; Winklhofer, Michael

2014-01-01

100

Retreived bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea  

Science.gov (United States)

In recent years, seasonal blooms of the dinoflagellate Noctiluca miliaris have appeared in the open-waters of the northern Arabian Sea (NAS). This study provides the first characterization of bacteria from a seasonal bloom of green Noctiluca of NAS (20°N-17°N and 64°E-70°E), during the spring-inter-monsoon cruise of Sagar Sampada 253, in March 2007. Bacterial growth as assessed by most-probable number (MPN) and plate counts, revealed `variable-physiotypes' over a wide range of salinities (0%-25% w/v NaCl), pH levels (5-8.5), and organic nutrient strengths, in comparison to non-bloom waters. MPN indices of bacteria in surface waters of bloom stations *DWK and *PRB, corresponded to (3.08-4.41)×103 cells/mL at 3.5% NaCl (w/v), and (2.82-9.49)×102 cells/mL at 25% (w/v) NaCl in tryptone-yeast extract broth (TYE). Plate counts were (1.12-4)×106 CFU/mL at 0% (w/v) NaCl, (1.28-3.9)×106 CFU/mL at 3.5% (w/v) NaCl, and (0.4-7)×104 CFU/mL at 25% NaCl (w/v) on TYE. One-tenth-strength Zobell's gave (0.6-3.74)×105 CFU/mL at pH 5 to (3.58-7.5)×105 CFU/mL at pH 8.5. These bacteria were identified to the genera Bacillus, Cellulomonas, Staphylococcus, Planococcus, Dietzia, Virgibacillus, Micrococcus, Sporosarcinae, Leucobacter, and Halomonas. The identity of three strains (GUFBSS253N2, GUFBSS253N30, and GUFBSS253N84) was confirmed through 16S rDNA sequence homology as Bacillus cohnii, Bacillus flexus, and Bacillus cereus. The ˜2-3-fold higher plate counts of culturable bacteria from the open-waters of the NAS indicate that these bacteria could critically determine the biogeochemical dynamics of the bloom and its milieu. The role of these bacteria in sustaining/terminating the bloom is under evaluation.

Basu, Subhajit; Matondkar, S. G. Prabhu; Furtado, Irene

2013-01-01

 
 
 
 
101

Isolation of sulfur reducing and oxidizing bacteria found in contaminated drywall.  

Science.gov (United States)

Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans). One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection. PMID:20386658

Hooper, Dennis G; Shane, John; Straus, David C; Kilburn, Kaye H; Bolton, Vincent; Sutton, John S; Guilford, Frederick T

2010-01-01

102

Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall  

Directory of Open Access Journals (Sweden)

Full Text Available Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans. One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

Frederick T. Guilford

2010-02-01

103

Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard...

Guilford, Frederick T.; Sutton, John S.; Kilburn, Kaye H.; Vincent Bolton; John Shane; Straus, David C.; Hooper, Dennis G.

2010-01-01

104

Green Synthesis and Characterization of Silver Nanoparticles for Antimicrobial Activity Against Burn Wounds Contaminating Bacteria  

Science.gov (United States)

Silver nanoparticles (AgNPs) were prepared from the plant extract of N. arbor-tristis under atmospheric conditions through green synthesis and characterized by various physicochemical techniques like UV-Visible spectroscopy, IR Spectra, energy dispersive X-ray spectrometry (EDS), X-ray diffraction and transmission electron microscopy (TEM) and the results confirmed the synthesis of homogeneous and stable AgNPs by the plant extracts. The antimicrobial activity of AgNPs was investigated against most common bacteria found in burn wound Staphylococcus epidermidis and Pseudomonas aeruginosa. In these tests, Mueller Hinton agar plates were used with AgNPs of various concentrations, supplemented in liquid systems. P. aeruginosa was inhibited at the low concentration of AgNPs, whereas the growth-inhibitory effect on S. epidermidis was mild. These results suggest that AgNPs can be used as effective growth inhibitors of various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

Rout, Anandini; Jena, Padan K.; Sahoo, Debasish; Parida, Umesh K.; Bindhani, Birendra K.

2014-04-01

105

How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria.  

Science.gov (United States)

A simple electrostatic method for the calculation of optical transition energies of pigments in protein environments is presented and applied to the Fenna-Matthews-Olson (FMO) complex of Prosthecochloris aestuarii and Chlorobium tepidum. The method, for the first time, allows us to reach agreement between experimental optical spectra and calculations based on transition energies of pigments that are calculated in large part independently, rather than fitted to the spectra. In this way it becomes possible to understand the molecular mechanism allowing the protein to trigger excitation energy transfer reactions. The relative shift in excitation energies of the seven bacteriochlorophyll-a pigments of the FMO complex of P. aestuarii and C. tepidum are obtained from calculations of electrochromic shifts due to charged amino acids, assuming a standard protonation pattern of the protein, and by taking into account the three different ligand types of the pigments. The calculations provide an explanation of some of the earlier results for the transition energies obtained from fits of optical spectra. In addition, those earlier fits are verified here by using a more advanced theory of optical spectra, a genetic algorithm, and excitonic couplings obtained from electrostatic calculations that take into account the influence of the dielectric protein environment. The two independent calculations of site energies strongly favor one of the two possible orientations of the FMO trimer relative to the photosynthetic membrane, which were identified by electron microscopic studies and linear dichroism experiments. Efficient transfer of excitation energy to the reaction center requires bacteriochlorophylls 3 and 4 to be the linker pigments. The temporal and spatial transfer of excitation energy through the FMO complex is calculated to proceed along two branches, with transfer times that differ by an order of magnitude. PMID:16861264

Adolphs, Julia; Renger, Thomas

2006-10-15

106

Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria  

CERN Document Server

Chlorosomes are the largest and most efficient natural light-harvesting antenna systems. They contain thousands of pigment molecules - bacteriochlorophylls (BChls)- that are organized into supramolecular aggregates and form a very efficient network for excitonic energy migration. Here, we present a theoretical study of excitation energy transfer (EET) in the chlorosome based on experimental evidence of the molecular assembly. Our model for the exciton dynamics throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of supramolecular structure, and electronic structure calculations of the excited states. The simulation results reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to se...

Fujita, Takatoshi; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alan

2013-01-01

107

A diverse assemblage of indole-3-acetic acid producing bacteria associate with unicellular green algae.  

Science.gov (United States)

Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal-bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels. PMID:24879600

Bagwell, Christopher E; Piskorska, Magdalena; Soule, Tanya; Petelos, Angela; Yeager, Chris M

2014-08-01

108

Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria  

International Nuclear Information System (INIS)

The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2(SO4-2) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2(SO4-2) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2(SO4-2) and this mineral serve as an electron acceptor for SRB. GR2(SO4-2) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Moessbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

109

Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives  

Directory of Open Access Journals (Sweden)

Full Text Available A total of 177 strains of lactic acid bacteria (LAB were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%, Lactobacillus pentosus (25.99%, Lactobacillus brevis (9.61% and Pediococcus pentosaceus (19.77%. All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3% were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo- 4-chloro-3-indolyl ?-D-glucuronide (X-Gluc as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis.

Un total de 177 cepas de bacterias ácido lácticas (LAB fueron aisladas en las primeras etapas de la fermentación de aceitunas verdes marroquíes Picholine, incluyendo Lactobacillus plantarum (44.63%, Lactobacillus pentosus (25.99%, Lactobacillus brevis (9.61% y Pediococcus pentosaceus (19.77%. Todos los aislados fueron evaluados mediante su tolerancia a extractos de hojas de olivo y oleuropeína. La mayoría de los aislados (85,3% degradaron oleuropeína, cuando fueron evaluados usando oleuropeína o 5-Bromo-4-cloro- 3-indolil ?-D-glucuronido (X-Gluc como sustrato. La capacidad de biodegradación de las cepas seleccionadas para cada especie fue confirmada mediante análisis por HPLC.

Ghabbour, N.

2011-03-01

110

Biologically produced sulfur  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabilized against aggregation by electrostatic repulsion or steric stabilization. The formed elemental sulfur has some distinctly different properties as compared to normal inorganic sulfur. The density...

Kleinjan, W. E.; Keizer, A.; Janssen, A. J. H.

2003-01-01

111

Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria.  

Science.gov (United States)

Hydrothermal vents are a well-known source of energy that powers chemosynthesis in the deep sea. Recent work suggests that microbial chemosynthesis is also surprisingly pervasive throughout the dark oceans, serving as a significant CO(2) sink even at sites far removed from vents. Ammonia and sulfur have been identified as potential electron donors for this chemosynthesis, but they do not fully account for measured rates of dark primary production in the pelagic water column. Here we use metagenomic and metatranscriptomic analyses to show that deep-sea populations of the SUP05 group of uncultured sulfur-oxidizing Gammaproteobacteria, which are abundant in widespread and diverse marine environments, contain and highly express genes encoding group 1 Ni, Fe hydrogenase enzymes for H(2) oxidation. Reconstruction of near-complete genomes of two cooccurring SUP05 populations in hydrothermal plumes and deep waters of the Gulf of California enabled detailed population-specific metatranscriptomic analyses, revealing dynamic patterns of gene content and transcript abundance. SUP05 transcripts for genes involved in H(2) and sulfur oxidation are most abundant in hydrothermal plumes where these electron donors are enriched. In contrast, a second hydrogenase has more abundant transcripts in background deep-sea samples. Coupled with results from a bioenergetic model that suggest that H(2) oxidation can contribute significantly to the SUP05 energy budget, these findings reveal the potential importance of H(2) as a key energy source in the deep ocean. This study also highlights the genomic plasticity of SUP05, which enables this widely distributed group to optimize its energy metabolism (electron donor and acceptor) to local geochemical conditions. PMID:23263870

Anantharaman, Karthik; Breier, John A; Sheik, Cody S; Dick, Gregory J

2013-01-01

112

Close interspecies interactions between prokaryotes from sulfureous environments  

Directory of Open Access Journals (Sweden)

Full Text Available Green sulfur bacteria are obligate photolithoautotrophs that require highly reducing conditions for growth and can utilize only a very limited number of carbon substrates. These bacteria thus inhabit a very narrow ecologic niche. However, several green sulfur bacteria have overcome the limits of immobility by entering into a symbiosis with motile Betaproteobacteria in a type of multicelllular association termed phototrophic consortia. One of these consortia, “Chlorochromatium aggregatum”, has recently been established as the first culturable model system to elucidate the molecular basis of this symbiotic interaction. It consists of 12-20 green sulfur bacteria epibionts surrounding a central, chemoheterotrophic betaproteobacterium in a highly ordered fashion. Recent genomic, transcriptomic, and proteomic studies of "C. aggregatum" and its epibiont provide insights into the molecular basis and the origin of the stable association between the two very distantly related bacteria. While numerous genes of central metabolic pathways are upregulated during and hence involved in the specific symbiosis, only a limited number of unique putative symbiosis genes have been detected in the epibiont. Green sulfur bacteria therefore are preadapted to a symbiotic lifestyle. The metabolic coupling between the bacterial partners appears to involve amino acids and highly specific ultrastructures at the contact sites between the cells. Similarly, the interaction in the equally well studied archaeal consortia consisting of Nanoarchaeum equitans and its host Ignicoccus hospitalis is based on the transfer of amino acids while lacking the highly specialized contact sites observed in phototrophic consortia.

JörgOvermann

2011-07-01

113

The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne.  

Science.gov (United States)

Plants rely on microorganisms to mobilize organically and inorganically bound sulfur (S) and phosphorus (P) in which the plant can then readily utilize. The aim of this study was to investigate the role of S- and P-mobilizing bacteria in plant growth promotion in biochar-amended soil, which has been rarely investigated so far. Pot experiments of Lolium perenne were established on S and P limited soil with 1% or 2% biochar (Miscanthus × giganteus) or without biochar (control) for a period of 126 days. Both biochar amendments resulted in significant plant growth promotion. Rhizobacteria capable of growing with (1) S from aromatic sulfonates, (2) P from phosphate esters, (3) P from phosphonates, and (4) P from tri-calcium phosphates as sole source of S or P, respectively, were significantly more abundant in the biochar treatments. 16S rRNA gene-based rhizobacteria community analysis revealed a significant biochar treatment effect. Abundance of nematodes feeding on bacteria was also significantly increased in the biochar treatments. Diversity analysis of rhizospheric asfA and phnJ genes revealed broad sequence diversities in bacterial sulfonate and phosphonate-mineralizing capabilities. These findings suggest that biochar amendment enhances microbially mediated nutrient mobilization of S and P resulting in improved plant growth. PMID:24965962

Fox, Aaron; Kwapinski, Witold; Griffiths, Bryan S; Schmalenberger, Achim

2014-10-01

114

Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes.  

Science.gov (United States)

The phylogenetic relationship of purple sulfur bacteria (PSB), of the order Chromatiales (class Gammaproteobacteria), was analyzed based on photosynthetic gene sequences of the pufL and pufM genes, and the results compared to phylogenetic trees and groupings of the 16S rRNA gene. Primers for pufL and pufM genes were constructed and successfully used to amplify the pufLM genes of members of 16 genera of Chromatiales. In total, pufLM and 16S rRNA gene sequences of 66 PSB strains were analyzed, including 29 type strains and 28 new isolates. The inferred phylogenetic trees of the pufLM and 16S rRNA genes reflected a largely similar phylogenetic development suggesting coevolution of these essential genes within the PSB. It is concluded that horizontal gene transfer of pufLM genes within the PSB is highly unlikely, in contrast to the situation in other groups of anoxygenic phototrophic bacteria belonging to Alpha- and Betaproteobacteria. The phylogeny of pufLM is therefore in good agreement with the current taxonomic classification of PSB. A phylogenetic classification of PSB to the genus level is possible based on their pufL or pufM sequences, and in many cases even to the species level. In addition, our data support a correlation between Puf protein structure and the type of internal photosynthetic membranes (vesicular, lamellar, or tubular). PMID:19784924

Tank, Marcus; Thiel, Vera; Imhoff, Johannes F

2009-09-01

115

Existing and emerging technologies that exploit sulfur cycling bacteria in subsurface petroleum reservoir microbial communities (Invited)  

Science.gov (United States)

Fossil fuels remain by far our most important energy resources, providing around 90% of global primary energy supply. In the coming decadal transition between petroleum reliance and a more sustainable energy future we must increasingly view our vital petroleum reserves as microbial ecosystems that can be engineered to responsibly and creatively meet the energy needs of societies worldwide. In this way, the bioenergy agenda must interface with the traditional geoenergy industry and the challenges it faces. Bioengineering and deep biosphere geomicrobiology focus on the ecophysiology and biogeography of microorganisms in subsurface habitats including marine sediments and petroleum reservoirs. Understanding microbial communities in fossil fuel deposits will allow their distribution and catalytic potential to be exploited as geobiotechnologies that target known problem areas including sulfur cycle management related to biodesulfurization of heavy oils and reservoir souring control via nitrate injection, as well as promising emerging directions such as understanding subsurface geofluid dispersal vectors that could enable microbes to be used as bio-indicators in offshore oil and gas exploration. Results related to different research themes within contemporary petroleum geomicrobiology and bioengineering at Newcastle University will be presented with a focus on microorganisms involved in sulfur cycling that are commonly detected in different oil field microbial communities including mesophilic sulfide-oxidizing Epsilonproteobacteria and thermophilic sulfate-reducers belonging to the genus Desulfotomaculum.

Hubert, C. R.

2013-12-01

116

New communities of large filamentous sulfur bacteria in the eastern South Pacific.  

Science.gov (United States)

New complex communities of morphologically diverse and sometimes abundant large, multicellular, filamentous bacteria were discovered in the oxygen-deficient, organically laden, shelf sediments under the oxygen minimum zone off the coast of the eastern Pacific, i.e., off the coasts of central and northern Chile; central and northern Perú; Roca Redonda, Galápagos Archipielago, Ecuador; and off the Pacific coasts of Panamá and Costa Rica. Similar microbial communities were also observed in the reduced layer of a muddy-sand beach adjacent to a mangrove swamp on Coiba Island, Pacific Panamá, and in the organically laden bottom underneath a salmon culture pen in southern Chile (region X). Of varying morphology, the diameters of the bacteria range from 1 to 10 mum, and their lengths from around 10 mum to usually several hundreds but at times several thousands of micrometers. The new filamentous bacterial component is at least one order of magnitude smaller than the also multicellular "megabacteria" Thioploca spp. and Beggiatoa spp., and is collectively referred to as "macrobacteria". A recent review only mentioned a few of these free-living filamentous bacteria, remarking on their scarcity despite the obvious advantages of a large size. This prokaryote size-window has been rarely investigated optically by researchers; thus, assemblages that appear to have had world-wide distribution probably since pre-Cambrian times have been overlooked. PMID:17661287

Gallardo, Víctor A; Espinoza, Carola

2007-06-01

117

Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.  

Science.gov (United States)

The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and "Candidatus Nitrosopumilus maritimus" (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [(13)C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments. PMID:20870784

Park, Byoung-Joon; Park, Soo-Je; Yoon, Dae-No; Schouten, Stefan; Sinninghe Damsté, Jaap S; Rhee, Sung-Keun

2010-11-01

118

Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments  

Directory of Open Access Journals (Sweden)

Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

FrançoisThomas

2014-06-01

119

Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils  

Science.gov (United States)

This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

2013-11-01

120

Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy)  

Energy Technology Data Exchange (ETDEWEB)

Seventeen purple non-sulfur bacterial strains, isolated from the trophic lake Averno, Naples, Italy, were phylogenetically classified and their H{sub 2}-producing performances were tested utilizing various synthetic substrates and the fermentation broth derived from the spontaneous fermentation of vegetable residues. All the strains showed the capability to produce hydrogen on at least one of the four carbon substrates tested (malic, lactic, acetic and succinic acid). On lactate, Rhodopseudomonas palustris strain AV33 showed the best maximum production rate (50.7 {+-} 2.6 mL (H{sub 2}) L{sup -1} h{sup -1}), with a mean rate, calculated on the whole period of production, of 17.9 mL {+-} 0.7 (H{sub 2}) L{sup -1} h{sup -1}. In the presence of acetate, AV33 produced only few mL of H{sub 2}, but intracellularly accumulated poly-{beta}-hydroxybutyrate up to a concentration of 21.4 {+-} 3.4% (w/w) of cell dry weight. Rp. palustris AV33 also produced H{sub 2} on the fermentation broth supplemented with Fe, with a maximum production rate of 16.4 {+-} 2.3 mL (H{sub 2}) L{sup -1} h{sup -1} and a conversion yield of 44.2%. (author)

Bianchi, Lucia; Mannelli, Francesca; Viti, Carlo; Adessi, Alessandra; De Philippis, Roberto [Department of Agricultural Biotechnology, University of Florence, Piazzale delle Cascine 24, I 50144 Florence (Italy)

2010-11-15

 
 
 
 
121

Middle-thermophilic sulfur-oxidizing bacteria Thiomonas sp. RAN5 strain for hydrogen sulfide removal.  

Science.gov (United States)

Hydrogen sulfide (H2S) is one of the most toxic and offensively odorous gases and is generated in anaerobic bioreactors. A middle-thermophilic sulfur-oxidizing bacterium (SOB), Thiomonas sp. strain RAN5, was isolated and applied for H2S removal from both artificial and anaerobically digested gas. When a bioreactor containing medium inoculated with RAN5 was aerated continuously with artificial gas (containing 100 ppm H2S) at 45 degrees C for 156 hr, the H2S concentration in the vented gas was reduced by 99%. This was not affected by the presence of other microbes in the bioreactor The H2S removal efficiency of the RAN5 bioreactor for anaerobically digested gas was greater than 99% at influent H2S concentrations ranging from 2 to 1800 ppm; the efficiency decreased to 90% at influent H2S concentrations greater than 2000 ppm. Thiomonas sp. strain RAN5 cannot survive at room temperature, and thus its leakage from a wastewater treatment plant would not damage sewage systems. These data suggest that Thiomonas sp. strain RAN5 may be a useful microorganism for H2S removal. PMID:22393808

Asano, Ryoki; Hirooka, Kayako; Nakai, Yutaka

2012-01-01

122

Structure, Function and Reconstitution of Antenna Complexes from Green Photosynthetic Bacteria  

Energy Technology Data Exchange (ETDEWEB)

This project is concerned with the structure and function of the chlorosome antennas found in green photosynthetic bacteria. Chlorosomes are ellipsoidal structures attached to the cytoplasmic side of the inner cell membrane. These antenna complexes provide a very large absorption cross section for light capture. Evidence is overwhelming that the chlorosome represents a very different type of antenna from that found in any other photosynthetic system yet studied. It is now clear that chlorosomes do not contain traditional pigment-proteins, in which the pigments bind to specific sites on proteins. Instead, the chlorosome pigments are organized in vivo into pigment oligomers in which direct pigment-pigment interactions are of dominant importance. Our group has used a multidisciplinary approach to investigate this unique system, as well as the complexes that they directly interact with. Our work has included using model systems, numerous types of both steady-state and ultrafast spectroscopy, molecular biology, protein chemistry and X-ray crystallography. Details of our recent results using these approaches are given below and in the references. Numbers cited in the sections refer to DOE-sponsored publications that are listed below. Only publications dated 2001-2004 or later are included in this report. In addition to the primary literature reports, a comprehensive review of this area of research has been written as well as a commentary.

Robert E. Blankenship

2005-08-10

123

The triplet state of the FMO complex of the green sulfur bacterium Prosthecochloris aestuarii studied with single-crystal EPR.  

Science.gov (United States)

Triplet-electron paramagnetic resonance (EPR) spectra were obtained of single crystals of the FMO complex of the green sulfur bacterium Prostecochloris aestuarii. The experiments support the results presented in a previous paper (Louwe et al., J. Phys. Chem. 101 (1997) 11280), which showed that the experimental optical spectra of this pigment-protein complex are best reproduced by assuming that one bacteriochlorophyll (BChl 3) is energetically isolated and that this BChl is the triplet-carrying BChl of the FMO complex at cryogenic temperatures for low excitation density. When comparing the experimental and simulated data sets of the triplet-EPR spectra in single crystals, the best fit is obtained for two triplet states, one localized at BChl 3 and the other at BChl 1. The existence of two different triplet states is traced to the relatively high excitation power necessary to observe the small triplet-EPR signal of the FMO single crystals. PMID:9757080

Louwe; Aartsma; Gast; Hulsebosch; Nan; Vrieze; Hoff

1998-07-20

124

A permanent hole burning study of the FMO antenna complex of the green sulfur bacterium Prosthecochloris aestuarii.  

Science.gov (United States)

A permanent hole burning study on the Fenna-Matthews-Olson, or FMO, antenna complex of the green sulfur bacterium Prosthecochloris aestuarii was carried out at 6 K. Excitation resulted not only in relatively sharp features resonant with the burn wavelength but also in broad absorbance changes in the wavelength region of 800-820 nm. The shape of the latter changes was almost independent of the wavelength of excitation. Evidence is given that they are induced by a different mechanism than that which causes the resonant holes and that they may be due to a conformational change of the protein. The original spectrum was restored upon warming to 60 K. The effective dephasing times T2, as obtained from the homogeneous line widths, increased from about 0.5 ps at 803 nm to >/=20 ps at 830 nm and are in good agreement with recent measurements of accumulated photon-echo and time-resolved absorbance changes. PMID:9548735

Franken, E M; Neerken, S; Louwe, R J; Amesz, J; Aartsma, T J

1998-04-14

125

Screening of antagonistic bacteria against the green mold disease (Trichoderma harzianum Rifai of Grey Oyster Mushroom (Pleurotus pulmonarius (Fr. Quel.  

Directory of Open Access Journals (Sweden)

Full Text Available A total of 174 strains of bacteria antagonistic against the green mold (Trichoderma harzianum, isolated from cultivating bags and fruiting bodies of the mushrooms, were screened for effects on mushroom mycelia and ability to control the green mold disease. Twenty-eight of them promoted the primodia formation of the Pleurotus pulmonarius mycelia on agar plates. Twenty-two isolates were selected and further tested in a mushroom house. Cell suspension of each isolate was prepared and sprayed onto the spawn surface of P. pulmonarius. Fifteen isolates shortened the times required from watering to 2nd and 3rd flushing and increased yield of the basidiocarps by 1.1-34.3% over 30 days. Six isolates of bacteria which showed an inhibitory effect against T. harzianum, enhanced primordia formation and increased yield of P. pulmonarius were selected and used for control testing in a cultivation house. The suspension of each isolate was sprayed onto the spawn surface immediately after exposure to the air in the mushroom house, followed by spore suspension of T. harzianum two days later. The number of infected bags was counted at 30 days after inoculation and the cumulative yield was compared after 60 days. The results showed that bacteria isolate B012-022 was highly effective in suppressing the green mold disease.Only 6.7% of the cultivating bags were found to be infected by T. harzianum when bacteria isolate B012-022 was applied. Cumulative yield obtained from 900 g of 94% sawdust + 5% rice bran + 1% Ca(OH2 was 300.0 g/bag after 60 days, 71.1% higher than the bags infected by the green mold and without bacterial spraying. Identification of the six bacterial isolates showed all to be Bacillus spp.

Nualsri, C.

2005-01-01

126

A preliminary study on sulfate reduction bacteria behaviors in groundwater by sulfur and carbon isotopes: a case study in Jiaozuo City, China.  

Science.gov (United States)

Inorganic pollutants in groundwater, such as sulfate and nitrate, have been a serious problem in China for decades. These pollutants are difficult to be removed because of their high solubility and ease of transport in subsurface environment. It had been found that microorganism could be one of the most feasible methods for inorganic pollutant elimination. During the process of degradation, some microorganisms can utilize sulfur and nitrogen in sulfate and nitrate forms, respectively, as energy sources. Meanwhile, significant variations of sulfur stable isotope ratios happened. Therefore sulfur isotope can be used as a good indicator for pollutant degradation and microbial activities. Shallow groundwater (SGW), deep groundwater (DGW), and surface water (SFW) were investigated in alluvial plain in Jiaozuo City, China. The results of hydrochemical analysis indicated that K(+), Na(+), and HCO3 (-) were dominant ions in DGW, Mg(2+) and HCO3 (-) were dominant ions in SGW, and Ca(2+) and HCO3 (-) were dominant in SFW except for LR sample. A wide variation of ? (34)SSO4 values ranging from + 7.3 to +23.6 ‰ had been observed for all water samples, with a mean value of +20.7, +12.6 and +10.0 ‰ for DGW, SGW, and SFW respectively. At the same time, ? (13)C values of dissolved inorganic carbon (DIC) ranged from -12.4 to -5.7 ‰, with a mean value of -7.5, -9.0, and -9.6 ‰ for DGW, SGW, and SFW, respectively. The microbial degradation processes resulted in significant sulfur isotope fractionations in DGW. Organic carbon was utilized by bacteria and transferred into inorganic carbon, leading to negative fractionation of carbon isotopes. Thus the variations in stable isotope ratios of sulfur and carbon in groundwater can be used as good indicators for understanding of the relationship between bacteria behaviors and sulfate degradation. PMID:25150982

Zhang, Dong; Liu, Congqiang

2014-12-01

127

Preliminary investigations of hydrogen peroxide treatment of selected ornamental fishes and efficacy against external bacteria and parasites in green swordtails.  

Science.gov (United States)

The objectives of these preliminary studies were to evaluate the use of hydrogen peroxide (H2O2) for the treatment of selected species of ornamental fishes and its efficacy in treating external bacteria and parasites. In the first part of the study, fish of five species (serpae tetra Hyphessobrycon eques (also known as Serpa tetra H. serpae), tiger barb Puntius tetrazona, blue gourami Trichogaster trichopterus, suckermouth catfish Hypostomus plecostomus, and green swordtail Xiphophorus hellerii) were exposed to H2O2 for 1 h at concentrations between 6 and 34 mg/L or for 24 h at concentrations between 1 and 6 mg/L. The results were species specific: green swordtails tolerated all of the treatments, serpae tetras and tiger barbs were sensitive only to the highest concentration, and mortalities of suckermouth catfish and blue gourami were recorded in every treatment. In the second part of the study, clinically healthy green swordtails and fish infested with external motile rod-shaped bacteria (i.e., Ichthyobodo spp., Trichodina spp., and Gyrodactylus spp.) were treated with several concentrations of H2O2. A single H2O2 treatment of 3.1 mg/L or more for 1 h effectively eliminated external bacteria, concentrations of 6.5 mg/L or more appeared to effectively kill Ichthyobodo spp., and none of the treatments tested was effective against Trichodina spp. or Gyrodactylus spp. These preliminary findings suggest that H2O2 is effective for treating certain external bacterial infections and flagellate infestations in some species of ornamental fish at the dosages tested. Other treatment regimens may need to be tested for effectiveness against Trichodina spp. and Dactylogyrus spp. PMID:18201053

Russo, Riccardo; Curtis, Eric W; Yanong, Roy P E

2007-06-01

128

Dynamics of energy conversion in reaction center core complexes of the green sulfur bacterium Prosthecochloris aestuarii at low temperature.  

Science.gov (United States)

Excited-state and electron-transfer dynamics at cryogenic temperature in reaction center core (RCC) complexes of the photosynthetic green sulfur bacterium Prosthecochloris aestuarii were studied by means of time-resolved absorption spectroscopy, using selective excitaton of bacteriochlorophyll (BChl) a and of chlorophyll (Chl) a 670. The results indicate that the BChls a of the RCC complex form an excitonically coupled system. Relaxation of the excitation energy within the ensemble of BChl a molecules occurred within 2 ps. A time constant of about 25 ps was ascribed to charge separation. Absorption changes in the 670 nm region, where Chl a 670 absorbs, were fairly complicated. They showed various time constants and were dependent on the wavelength of excitation and they did not lead to a simple picture of the electron acceptor reaction. Energy transfer from Chl a 670 to BChl a occurred with a time constant of 1.5 ps. However, upon excitation of Chl a 670 the amount of oxidized primary electron donor, P840(+), formed relative to that of excited BChl a was considerably larger than upon direct excitation of BChl a. This indicates the existence of an alternative pathway for charge separation which does not involve excited BChl a. PMID:10529194

Neerken, S; Schmidt, K A; Aartsma, T J; Amesz, J

1999-10-01

129

Kinetics of absorbance and anisotropy upon excited state relaxation in the reaction center core complex of a green sulfur bacterium.  

Science.gov (United States)

Properties of the excited states in reaction center core (RCC) complexes of the green sulfur bacterium Prosthecochloris aestuarii were studied by means of femtosecond time-resolved isotropic and anisotropic absorption difference spectroscopy at 275 K. Selective excitation of the different transitions of the complex resulted in the rapid establishment of a thermal equilibrium. At about 1 ps after excitation, the energy was located at the lowest energy transition, BChl a 835. Time constants varying between 0.26 and 0.46 ps were observed for the energy transfer steps leading to this equilibrium. These transfer steps were also reflected in changes in polarization. Our measurements indicate that downhill energy transfer towards excited BChl a 835 occurs via the energetically higher spectral forms BChl a 809 and BChl a 820. Low values of the anisotropy of about 0.07 were found in the 'two-color' measurements at 820 and 835 nm upon excitation at 800 nm, whereas the 'one-color' kinetics showed much higher anisotropies. Charge separation occurred with a time constant varying between 20 and 30 ps. PMID:16228492

Neerken, S; Ma, Y Z; Aschenbrücker, J; Schmidt, K A; Nowak, F R; Permentier, H P; Aartsma, T J; Gillbro, T; Amesz, J

2000-01-01

130

Light responses in the green sulfur bacterium Prosthecochloris aestuarii: changes in prosthecae length, ultrastructure, and antenna pigment composition.  

Science.gov (United States)

The morphology (mainly prosthecae length), ultrastructure, and antenna pigment composition of the green sulfur bacterium Prosthecochloris aestuarii changed when grown under different light intensities. At light intensities of 0.5 and 5 micromol quanta m(-2) s(-1), the cells had a star-like morphology. Prosthecae, the characteristic appendages of the genus Prosthecochloris, were 232 nm and 194 nm long, respectively. In contrast, when grown at 100 micromol quanta m(-2) s(-1), these appendages were shorter (98 nm) and the cells appeared more rod-shaped. Transmission electron microscopy revealed a significant decrease in the cell perimeter to area ratio and in the number of chlorosomes per linear microm of membrane as light intensity increased. In addition to these morphological and ultrastructural responses, Prosthecochloris aestuarii exhibited changes in its pigment composition as a function of light regime. Lower specific pigment content and synthesis rates were found in cultures grown at light intensities above 5 micromol quanta m(-2) s(-1). A blue shift in the bacteriochlorophyll (BChl) c Q(y) absorption maximum of up to 17.5 nm was observed under saturating light conditions (100 micromol quanta m(-2) s(-1)). This displacement was accompanied by changes in the composition of BChl c homologs and by a very low carotenoid content. The morphological, ultrastructural and functional changes exhibited by Prosthecochloris aestuarii revealed the strong light-response capacity of this bacterium to both high and low photon-flux densities. PMID:11685372

Guyoneaud, R; Borrego, C M; Martínez-Planells, A; Buitenhuis, E T; Garcia-Gil, L J

2001-10-01

131

Augmentation of potential phosphate solubilizing bacteria (PSB stimulate growth of green mustard (Brasica caventis Oed. in marginal soil  

Directory of Open Access Journals (Sweden)

Full Text Available The potential of phosphate solubilizing bacteria/PSB (Bacillus megaterium, B. pantothenticus, Chromobacterium lividum and Klebsiella aerogenes were used as biofertilizer to increase the fresh leaf production of green mustard (Brasica caventis Oed.. An experiment was conducted at green house condition. The experiment were used 18 treatments such as single isolate of potential PSB (A,B,C,D, inoculants contain two isolates of potential PSB (E,F,G,H,I,J, inoculants contain three isolates of potential PSB (K, L, M, N, inoculants contain four isolate of potential PSB (O, chemistry fertilizer (P = control 1, organic fertilizer (Q = control 2, and without fertilizer (R = control 3. The treatments were arranged in Completely Randomized Design (CRD with 5 replications. The result showed that the inoculants of potential PSB increased the fresh plant production of green mustard. The mix of four isolates of potential PSB (inoculants O was the best to increase the fresh plant production of green mustard until 32.87% than other PSB inoculants, 207.84% than control 1,217.23% than control 2, and 930.60% than control 3.

SULIASIH

2006-01-01

132

Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov.  

Science.gov (United States)

The relationship of mixotrophic and autotrophic Thiothrix species to morphologically similar chemoorganotrophic bacteria (e.g. Leucothrix species, Eikelboom type 021N bacteria) has been a matter of debate for some years. These bacteria have alternatively been grouped together on the basis of shared morphological features or separated on the basis of their nutrition. Many of these bacteria are difficult to maintain in axenic culture and, until recently, few isolates were available to allow comprehensive phenotypic and genotypic characterization. Several isolates of Thiothrix spp. and Eikelboom type 021N strains were characterized by comparative 16S rRNA sequence analysis. This revealed that the Thiothrix spp. and Eikelboom type 021N isolates formed a monophyletic group. Furthermore, isolates of Eikelboom type 021N bacteria isolated independently from different continents were phylogenetically closely related. The 16S rRNA sequence-based phylogeny was congruent with the morphological similarities between Thiothrix and Eikelboom type 021N. However, one isolate examined in this study (Ben47) shared many morphological features with the Thiothrix spp. and Eikelboom type 021N isolates, but was not closely related to them phylogenetically. Consequently, morphology alone cannot be used to assign bacteria to the Thiothrix/type 021N group. Comparative 16S rRNA sequence analysis supports monophyly of the Thiothrix/type 021N group, and phenotypic differences between the Thiothrix spp. and Eikelboom type 021N bacteria are currently poorly defined. For example, both groups include heterotrophic organisms that deposit intracellular elemental sulfur. It is therefore proposed that the Eikelboom type 021N bacteria should be accommodated within the genus Thiothrix as a new species, Thiothrix eikelboomii sp. nov., and three further new Thiothrix species are described: Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. PMID:10555365

Howarth, R; Unz, R F; Seviour, E M; Seviour, R J; Blackall, L L; Pickup, R W; Jones, J G; Yaguchi, J; Head, I M

1999-10-01

133

Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu along the southeast coast of India.  

Science.gov (United States)

Beggiatoa species are filamentous sulfide-oxidizing bacteria belonging to the family Beggiatoaceae that contains several largest bacteria known today. These large sulfur bacteria occur in diverse ecosystems and play an important role in the global sulfur, nitrogen and phosphorus cycle. In this study, sediment samples from brackishwater shrimp culture ponds and other brackishwater ecosystems from Tamil Nadu, southeast coast of India, were enriched for Beggiatoa species. Extracted hay medium supplemented with catalase was used and were incubated for two weeks at 28°C. Out of seven set-ups, four yielded positive growth of filamentous sulfide-oxidizing bacteria. The filaments were several millimeters long, ranged in width between 2 and 15 ?m and exhibited typical gliding motility. The 16S rRNA gene of four single filaments representing the four positive enrichments was subjected to PCR-DGGE followed by sequencing. All four filaments were affiliated to the Beggiatoaceae, but showed less than 89% identity with the Beggiatoa type strain Beggiatoa alba and less than 93% identity with any other sequence of the family. One of the four filaments revealed a nearly full-length 16S rDNA sequence (1411bp) and it formed a monophyletic cluster with two of the partial DGGE-16S rRNA gene sequences (99-100% identity) within the Beggiatoa species cluster. These organisms could possibly represent a novel genus within the family Beggiatoaceae. The fourth partial sequence affiliated with less than 93% sequence identity to the genera Parabeggiatoa, Thioploca and Thiopilula, and was likewise strongly delineated from any sequence published in the family. PMID:22841519

Saravanakumar, C; Dineshkumar, N; Alavandi, S V; Salman, V; Poornima, M; Kalaimani, N

2012-09-01

134

Antibacterial activity of Green Seaweed Caulerpa racemosa from Takalar Waters against pathogenic bacteria promoting ice-ice diseases in the agar-producing red algae Gracilaria verrucosa.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Ice-ice disease caused by bacterial pathogens which attack the algae tissue resulted white and brittle of seaweed thallus on red seaweed Gracilaria verrucosa farming. Study of antibacterial activity of green seaweed Caulerpa racemosa against the pathogens has been done using method include isolation of bacteria, pathogenicity test with Koch's postulates method, characterization of ice-ice bacteria, extraction of Caulerpa racemosa, and antibacterial test by agar diffusion method. The res...

Zainuddin, Elmi Nurhaidah; Anshary, Hilal; Huyyirnah1); Hiola, Ridha

2012-01-01

135

green  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alex...

Elena Grigoryeva

2011-01-01

136

In Situ Analysis of Sulfur Species in Sulfur Globules Produced from Thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes? †  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.

Lee, Yong-jin; Prange, Alexander; Lichtenberg, Henning; Rohde, Manfred; Dashti, Mona; Wiegel, Juergen

2007-01-01

137

New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria  

DEFF Research Database (Denmark)

Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli and Pseudomonas putida. The new Gfp variants should be useful for in situ studies of temporal gene expression.

Andersen, Jens Bo; Sternberg, Claus

1998-01-01

138

Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria  

International Nuclear Information System (INIS)

The interactions between Fe(II-III) hydroxysulphate GR(SO42-) and sulphate reducing bacteria (SRB) were studied. The considered SRB, Desulfovibrio desulfuricans subsp. aestuarii ATCC 29578, were added with GR(SO42-) to culture media. Different conditions were envisioned, corresponding to various concentrations of bacteria, various sources of sulphate (dissolved SO42- + GR(SO42-) or GR(SO42-) alone) and various atmospheres (N2:H2 or N2:CO2:H2). In the first part of the study, CO2 was deliberately omitted so as to avoid the formation of carbonated compounds, and GR(SO42-) was the only source of sulphate. Cell concentration increases from ?4 x 107 to ?7 x 108 cells/mL in 2 weeks. The evolution with time of the iron compounds, monitored by Raman spectroscopy and X-ray diffraction, showed the progressive formation of a FeS compound, the Fe(III)-containing mackinawite. This result is consistent with the association GR(SO42-)/SRB/FeS observed in rust layers formed on steel in seawater. In the presence of CO2 and additional dissolved sulphate species, a rapid growth of the bacteria could be observed, leading to the total transformation of GR(SO42-) into mackinawite, found in three physico-chemical stat, found in three physico-chemical states (nanocrystalline, crystalline stoichiometric FeS and Fe(III)-containing), and siderite FeCO3.

139

green  

Directory of Open Access Journals (Sweden)

Full Text Available The “green” topic follows the “youngsters”, which is quite natural for the Russian language.Traditionally these words put together sound slightly derogatory. However, “green” also means fresh, new and healthy.For Russia, and for Siberia in particular, “green” architecture does sound new and fresh. Forced by the anxious reality, we are addressing this topic intentionally. The ecological crisis, growing energy prices, water, air and food deficits… Alexander Rappaport, our regular author, writes: “ It has been tolerable until a certain time, but under transition to the global civilization, as the nature is destroyed, and swellings of megapolises expand incredibly fast, the size and the significance of all these problems may grow a hundredfold”.However, for this very severe Siberian reality the newness of “green” architecture may turn out to be well-forgotten old. A traditional Siberian house used to be built on principles of saving and environmental friendliness– one could not survive in Siberia otherwise.Probably, in our turbulent times, it is high time to fasten “green belts”. But we should keep from enthusiastic sticking of popular green labels or repainting of signboards into green color. We should avoid being drowned in paper formalities under “green” slogans. And we should prevent the Earth from turning into the planet “Kin-dza-dza”.

Elena Grigoryeva

2011-02-01

140

Light-induced oxidation-reduction reactions of cytochromes in the green sulfur photosynthetic bacterium Prosthecochloris aesturarii.  

Science.gov (United States)

The light-induced oxidation-reduction reactions of cytochromes in intact cells, starved cells, and chlorobium vesicle fractions of the green sulfur photosynthetic bacterium Prosthecochloris aesturarii were studied under anaerobic conditions. On the basis of both kinetic and spectral properties, at least three cytochrome species were found to be involved in the light-induced oxidation-reduction reactions of intact cells. These cytochromes were designated according to the positions of alpha-band maxima as C555 (rapid and slow components) and C552 (intermediate). By comparing the light-minus-dark difference spectra with the reduced-minus-oxidized difference spectra of purified cytochromes of this organism, rapid component C555 and intermediate component C552 are suggested to correspond to the purified cytochromes c-555(550) and c-551.5, respectively. Although the identity of the slow-phase component is uncertain, one possibility is that the slow phase is due to the bound form of c-555(550). In substrate-depleted (starved) cells, only one cytochrome species, C555 remained in the reduced state in the dark and oxidized upon actinic illumination. This corresponds to the rapid C555 component in intact cells. In the case of chlorobium vesicle fractions, one cytochrome species having an alpha-band maximum at 554 nm was oxidized by actinic light. The effects of several inhibitors on the absorbance changes of intact cells were studied. Antimycin A decreased the rate of the dark reduction of rapid C555 component. The complex effects of CCCP (carbonyl cyanide m-chlorophenylhydrazone) on the oxidation-reduction reactions of cytochromes were interpreted as the results of inhibition of the electron donation to oxidized C552 and C555 (slow), and a shift of the dark steady-state redox levels of cytochromes. Based on these findings, it is suggested that the rapid C555 component is located in a cyclic electron transfer pathway. The other two cytochromes, C552 and C555 (slow), may be located in non-cyclic electron transfer pathways and receive electrons from exogenous substrates such as sodium sulfide. A tentative scheme for the electron transfer system in Prosthecochloris aestuarii is presented and its nature is discussed. PMID:1010847

Shioi, Y; Takamiya, K; Nishimura, M

1976-10-01

 
 
 
 
141

Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste.  

Science.gov (United States)

Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca(2+) and Si(2+), the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr(2+) and Cs(+), which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

2004-10-01

142

CO2 assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria  

DEFF Research Database (Denmark)

Lake Cadagno is characterized by a compact chemocline that harbors high concentrations of various phototrophic sulfur bacteria. Four strains representing the numerically most abundant populations in the chemocline were tested in dialysis bags in situ for their ability to fix CO?. The purple sulfur bacterium Candidatus 'Thiodictyon syntrophicum' strain Cad16(T) had the highest CO? assimilation rate in the light of the four strains tested and had a high CO? assimilation rate even in the dark. The CO? assimilation of the population represented by strain Cad16(T) was estimated to be up to 25% of the total primary production in the chemocline. Pure cultures of strain Cad16(T) exposed to cycles of 12 h of light and 12 h of darkness exhibited the highest CO? assimilation during the first 4 h of light. The draft genome sequence of Cad16(T) showed the presence of cbbL and cbbM genes, which encode form I and form II of RuBisCO, respectively. Transcription analyses confirmed that, whereas cbbM remained poorly expressed throughout light and dark exposure, cbbL expression varied during the light-dark cycle and was affected by the available carbon sources. Interestingly, the peaks in cbbL expression did not correlate with the peaks in CO? assimilation.

Storelli, Nicola; Peduzzi, Sandro

2013-01-01

143

Sulfur and phosphorus distribution between liquid iron and magnesia-saturated slag in molecular hydrogen/water atmosphere relevant to a novel green ironmaking technology  

Science.gov (United States)

As an integral part of a research project which aimed to develop a novel green ironmaking process, an experimental determination of the sulfur and phosphorus distribution ratios, LS and LP, respectively, between molten iron and CaO-MgO(Saturated)-SiO2-Al 3O3-FeO slag was determined in the temperature range 1550-1650°C. Oxygen partial pressure was controlled by H2/H2O equilibrium in the range of 10-10-10-8 atm. For sulfur distribution, it was found that the trend of the distribution is the same as the previous work done under CO/CO2 atmosphere but LS in this case is 38-44 times less under similar oxygen partial pressure. This might be attributed to the impact of H2 on the distribution. Considering the fact that the input sulfur in the proposed process is approximately 34 times less than the blast furnace process, the proposed process would produce hot metal with approximately the same sulfur content to the hot metal produced by the blast furnace. For phosphorus distribution, LP was 450-1050 times that of the blast furnace. Also considering the amount of phosphorus input in the two processes, it was found that the expected P content in iron in the new process would be approximately three times less than in the blast furnace hot metal. This means that the proposed process will produce hot metal with much lower phosphorus which will minimize the need for dephosphorization in the steelmaking stage.

Mohassab Ahmed, Mohassab Yousef

144

Antioxidant efficacy of crude methanol extract of ashitaba green tea against radiation induced oxidative stress in E.coli K12 bacteria  

International Nuclear Information System (INIS)

This study was undertaken to evaluate the antioxidant activity of methanol crude extract of ashitaba green tea (G). The DPPH scavenging assay was evaluated for green tea extract to determine its radical scavenging capacity. The bacteria was pretreated with ashitaba green tea extract, quercetin (Q) and (-) epigallocatechin -3-gallate (E) at below MIC level. Oxidative stress was induced at 0.4 Gy using gamma radiation. The antioxidant efficacy of ashitaba green tea was evaluated through enzyme antioxidant studies like SOD (Superoxidedismutase) and CAT (Catalase). The oxidative stress marker Thiobarbituric acid-reactive substance (TBARS) was also evaluated. Further the protective efficacy of the(G) was confirmed by colony forming units (CFU) study. Among the tested compounds the crude extract of ashitaba (G) exhibited excellent antioxidant activity in comparison with quercetin and (-) epigallocatechin -3-gallate. (abstract)

145

Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997  

Energy Technology Data Exchange (ETDEWEB)

Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

Kelly, R.M.; Han, C.J.

1997-12-31

146

Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm.  

Science.gov (United States)

The dynamics of sulphide oxidation in an experimental biofilm of the green sulphur bacterium, Prosthecochloris aestuarii, were studied using a newly developed light-dark cycling procedure. The biofilm was grown for 6 weeks in a benthic gradient chamber, in which gradients of light, sulphide and oxygen were imposed experimentally. The H2S concentrations and pH were measured with microsensors as a function of depth in the biofilm and of time after a change in illumination status. The sulphide oxidation rates were calculated as a function of time and depth in the biofilm using a numerical procedure to solve the non-stationary general diffusion equation. A close agreement was found between the areal rates of anoxygenic photosynthesis during the cycling procedure and the steady state before the cycling experiment. For the different layers of the biofilm, the maximum activity was observed after 10-12min of light exposure. After this maximum, sulphide oxidation decreased concomitantly with sulphide concentration, indicating sulphide limitation of anoxygenic photosynthesis. This lag time limits the application of the standard dark-light shift method with a brief light exposure of a few seconds and, therefore, the numerical procedure described in this study enables the depth distribution of anoxygenic photosynthesis rates in microbial mats to be determined more accurately. PMID:11207748

Pringault, O; Epping, E; Guyoneaud, R; Khalili, A; Kühl, M

1999-08-01

147

A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea  

Directory of Open Access Journals (Sweden)

Full Text Available Abstract Background The transition metal molybdenum is essential for life. Escherichia coli imports this metal into the cell in the form of molybdate ions, which are taken up via an ABC transport system. In E. coli and other Proteobacteria molybdenum metabolism and homeostasis are regulated by the molybdate-responsive transcription factor ModE. Results Orthologues of ModE are widespread amongst diverse prokaryotes, but not ubiquitous. We identified probable ModE-binding sites upstream of genes implicated in molybdenum metabolism in green sulphur bacteria and methanogenic Archaea as well as in Proteobacteria. We also present evidence of horizontal transfer of nitrogen fixation genes between green sulphur bacteria and methanogenic Archaea. Conclusions Whereas most of the archaeal helix-turn-helix-containing transcription factors belong to families that are Archaea-specific, ModE is unusual in that it is found in both Archaea and Bacteria. Moreover, its cognate upstream DNA recognition sequence is also conserved between Archaea and Bacteria, despite the fundamental differences in their core transcription machinery. ModE is the third example of a transcriptional regulator with a binding signal that is conserved in Bacteria and Archaea.

Pau Richard N

2003-12-01

148

Development of a gas diffusion multicommuted flow injection system for the determination of sulfur dioxide in wines, comparing malachite green and pararosaniline chemistries.  

Science.gov (United States)

A flow system based on the multicommutation concept was developed for the determination of free and total sulfur dioxide in table wines, exploiting gas diffusion separation and spectrophotometric detection. The system allowed the comparison of malachite green and pararosaniline chemistries, using the same manifold configuration. Free and total SO(2) were determined within the ranges 1.00-40.0 and 25.0-250 mg L(-1), at determination throughputs of 25 and 23 h(-1), respectively. Employing the malachite green reaction, detection limits of 0.3 and 0.8 mg L(-1) were attained for free and total SO(2), respectively. Pararosaniline chemistry provided detection limits of 0.6 mg L(-1) for free SO(2) and 0.8 mg L(-1) for total SO(2). Relative standard deviations better than 1.8 and 1.4% were obtained by the malachite green and pararosaniline reactions, respectively. With regard to the two tested chemistries, 18 wines were analyzed and the results achieved by the pararosaniline reaction compared better with those furnished by the recommended procedure. PMID:19309149

Oliveira, Sara M; Lopes, Teresa I M S; Tóth, Ildikó V; Rangel, António O S S

2009-05-13

149

AKTIVITAS ANTIBAKTERI FRAKSI-FRAKSI EKSTRAK SIRIH HIJAU (Piper betle Linn TERHADAP PATOGEN PANGAN [Antibacterial Activity of Fractionated Green Sirih (Piper betle Linn Extract Against Food Pathogenic Bacteria  

Directory of Open Access Journals (Sweden)

Full Text Available Fractionation of green sirih (Piper betle Linn extract by chromatography colom using the mixture of several solvents i.e. chloroform, ethanol and acetic acid (4:1:1 resulted in 17 fractions. All fractions showed antibacterial activities but only 2 fractions (fraction 3 and fraction 4 showed the highest inhibition towards the six tested bacteria Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes. Among the tested bacteria, all fractions of green sirih extracts showed the most effective inhibition against, Salmonella Typhimurium with inhibition zone diameters ranging from 10 mm to 26 mm. Identification using GC-MS found that fraction 3 and fraction 4 contained chavicol; dodecanoic acid, myristic, palmitic and oleic acid.

Maggy T. Suhartono

2012-12-01

150

Synthesis of self-aggregative zinc chlorophylls possessing polymerizable esters as a atable model compound for main light-harvesting antennas of green photosynthetic bacteria  

Directory of Open Access Journals (Sweden)

Full Text Available Zinc bacteriochlorophyll-d derivatives possessing a polymerizable moiety at the 17-propionate were prepared as model compounds of natural occurring chlorophylls in the main peripheral antennas of green photosynthetic bacteria (chlorosomes. The synthetic compounds self-aggregated in nonpolar organic solvents as well as in the solid state to give large oligomers similar to chlorosomal J-aggregates. Such introduction of the polymerizable groups in the ester did not suppress the ability of self-aggregation.

Reiko Shibata

2006-11-01

151

A Green and Highly Efficient Solvent-free Synthesis of Novel Calicx[4]resorcinarene Derivatives Using Tungstate Sulfuric Acid  

International Nuclear Information System (INIS)

A facile and simple procedure for the synthesis of novel and known calix[4]resorcinarene derivatives were developed via a reaction of arylaldehydes with resorcinol in the presence of catalytic amounts of tungstate sulfuric acid (TSA) under solvent-free conditions. This eco-friendly method has many appealing attributes, such as excellent yields, short reactions times, use of safe and recoverable catalyst, and simple work-up procedures. TSA was characterized by powdered X-ray diffraction (XRD), X-ray fluorescence (XRF) and FTIR spectroscopy

152

Developing a Biofilm of Sulfur Oxidizing Bacteria, Starting-up and Operating a Bioscrubber Treating H2S  

Directory of Open Access Journals (Sweden)

Full Text Available Development of an acclimatized SOB biofilm, startup and performance of a fixed bed bioscrubber packed with corrugated tube parts as a media having high specific surface area was investigated. Bioscrubber was a cylindrical Plexiglas air-and water-tight column with 10 L in working bed volume. Sludge from a tannery wastewater treatment plant was used as a seed for SOB separation, acclimation and enrichment. Enriched acclimatized SOB were applied as inoculum for biofilm development, which was carried out by recirculating the prepared microbial suspension through the bed. Thickness of the developed biofilm was 56 ?m in which active acidophilic autotrophic H2S oxidizing bacteria were completely predominated. Activity measurements showed highest biodegradation rate of biofilm at liquid pH around 3. Due to employing an efficient specialized biofilm, startup period of the reactor was quite short and H2S removal efficiency just 12 h after starting up reached above of 92% and increased to 96% at day 3 of starting up while inlet H2S concentration gradually was increased to around 30 ppm. At the end of start up pH of the recycle liquid was modified to the optimal value of 3±0.5 in which biofilm demonstrated the highest activity in terms of OUR after which removal efficiency increased around 3% while other operating conditions were consistent. Furthermore, performance of the bioscrubber was evaluated at various inlet H2S concentrations ranging from 30 to 150 ppmv. It was indicated that the inlet H2S concentrations in studied range did not affect the performance of the bioscrubber so that the removal efficiency of H2S was greater than 99.4% at all concentrations. These observations suggested that the development of an efficient specialized SOB biofilm on a media with high specific surface area will decrease the startup course and achieve high removal efficiency in the bioscrubber treating H2S. In addition, operation in acidic recycle liquid will overcome use of alkaline to adjust the pH, which reduce the operation cost of the control system.

Gholamreza Moussavi

2007-01-01

153

Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study  

Energy Technology Data Exchange (ETDEWEB)

For meeting the increasing demand of energy, biohydrogen production is to be considered in higher yield. Biohydrogen can be produced both by dark and photofermentative process. In this study, the photofermentative pathway is followed by using DL malic acid (IUPAC name: 2-hydroxybutanedioic acid, molecular weight: 134.08744 g mol{sup -1}, molecular formula: C{sub 4}H{sub 6}O{sub 5}) as carbon source. Pure strain of purple non-sulfur (PNS) bacteria: Rhodobacter sphaeroides strain O.U.001 was studied to produce biohydrogen using the photobioreactor. The photobioreactor was constructed aiming the uniform light distribution. The objective of this study was to investigate the performance of 1 L annular photobioreactor operating in indoor conditions. The highest rate of hydrogen production was obtained at 92 h. In the designed photobioreactor, using Rhodobacter sphaeroides strain O.U.001 (initial DL malic acid concentration of 2.01 g L{sup -1}) at an initial pH of 6.8 {+-} 0.2, temperature 32 {+-} 2 C, inoculum volume 10% (v/v), inoculum age of 48 h, 250 rpm (rotation per minute) stirring and light intensity of 15 {+-} 1.1 W m{sup -2}, the average H{sub 2} production rate was about 6.5 {+-} 0.1 mL H{sub 2} h{sup -1} L{sup -1} media and yield 4.5 {+-} 0.05 mol of H{sub 2} mol{sup -1} of DL malic acid. Luedeking-Piret model was applied for the data fitting to determine the relationship between the cell growth and photofermentative hydrogen production. The photofermentative hydrogen production by this PNS bacterium was found to be microbial mixed growth associated function. (author)

Basak, Nitai [Department of Biotechnology, Dr.B.R.Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Fermentation Technology Laboratory, Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Das, Debabrata [Fermentation Technology Laboratory, Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal (India)

2009-06-15

154

Green Algae  

Science.gov (United States)

Color photomicrographs of several species of green algae with brief descriptions of their chief characteristics and habitat. Scroll to the bottom of the page to links to bacteria, and more protists including diatoms, desmids and rotifers.

Van Egmond, Wim

2010-01-01

155

Sulfur Mustard  

Science.gov (United States)

... Matters What's New A - Z Index Facts About Sulfur Mustard What sulfur mustard is Sulfur mustard is a type of ... it is in liquid or solid form. Where sulfur mustard is found and how it is used ...

156

Macro-benefits from boron, zinc and sulfur application in Indian SAT a step for grey to green revolution in agriculture  

Directory of Open Access Journals (Sweden)

Full Text Available The semi-arid tropics (SAT, spread over 11.6 million KM square worldwide, is home to millions of poor people. The soils are low in fertility and degraded to varying extent. The climate is characterized by undependable rainfall, high average temperature and water stress situations for crop growth. The SAT is densely populated and a large number of poor in this region depend on agriculture. The green revolution in Asia bypassed the large tracts of rainfed systems. ICRISAT is committed to improve livelihoods of millions of poor living in the SAT by undertaking agricultural research for impact in a partnership mode. The new watershed model emphasize the management of water as an entry point for improving livelihoods through convergence of natural resource-based activities. ICRISAT's on-farm community watershed research in Asia revealed that the SAT's subsistence agricultural systems have soils depleted not only in macronutrients but also in micronutrients such as zinc and boron, and secondary nutrients like sulfur beyond the critical limits. Widespread (80-100% deficiencies of micro and secondary nutrients were observed in farmers' field in Andhra Pradesh, India. Substantial increase in yields by 20 to 80% due to micronutrient amendments, and a further increase by 70 to 120% due to micronutrients and adequate nitrogen (N and phosphorus (P amendments in a number of crops (maize, sorghum, mung bean, pigeonpea, castor, chickpea in farmers' fields were observed. Besides minimizing land degradation, increased use efficiency of the inputs such as N and P fertilizers, as well as rainwater, resulted in increased profits and increased productivity. These natural resource management (NRM interventions are integrated with improved genotypes to harness the full benefits in the watershed. The integrated genetic and natural resource management (IGNRM approach adopted in watersheds will thus make the grey to green revolution a reality.

TJ Rego

2006-08-01

157

Biosynthesis of bacteriochlorophyll c derivatives possessing chlorine and bromine atoms at the terminus of esterifying chains in the green sulfur bacterium Chlorobaculum tepidum.  

Science.gov (United States)

The green sulfur photosynthetic bacterium Chlorobaculum tepidum newly produced BChl c derivatives possessing a chlorine or bromine atom at the terminus of the esterifying chain in the 17-propionate residue by cultivation with exogenous ?-halo-1-alkanols. The relative ratios of BChl c derivatives esterified with 8-chloro-1-octanol and 10-chloro-1-decanol were estimated to be 26.5% and 33.3% by cultivation with these ?-chloro-1-alkanols at the final concentrations of 300 and 150 ?M, respectively. In contrast, smaller amounts of unnatural BChls c esterified with ?-bromo-1-alkanols were biosynthesized than those esterified with ?-chloro-1-alkanols: the ratios of BChl c derivatives esterified with 8-bromo-1-octanol and 10-bromo-1-decanol were 11.3% and 12.2% at the concentrations of 300 and 150 ?M, respectively. These indicate that ?-chloro-1-alkanols can be incorporated into bacteriochlorophyllide c more than ?-bromo-1-alkanols in the BChl c biosynthetic pathway. The homolog compositions of the novel BChl c derivatives possessing a halogen atom were analogous to those of coexisting natural BChl c esterified with farnesol. These results demonstrate unique properties of BChl c synthase, BchK, which can utilize unnatural substrates containing halogen in the BChl c biosynthesis of Cba. tepidum. PMID:24495924

Saga, Yoshitaka; Hayashi, Keisuke; Mizoguchi, Tadashi; Tamiaki, Hitoshi

2014-07-01

158

Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria  

Science.gov (United States)

In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 ? values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

2014-07-01

159

Effect of light quality on sulfide photo-oxidation and growth in an artificial biofilm of the green sulfur bacterium Prosthecochloris aestuarii.  

Science.gov (United States)

We have succeeded in culturing an axenic biofilm of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404 in an artificial sandy sediment under visible light (400-700 nm). This simulates the conditions of deep submerged sediments. A five-week incubation period, using a 16-hour light / 8-hour dark regime, was applied in the benthic gradient chamber (BGC). The biofilm was located below the oxygen penetration depth of 1.2 mm, namely between 1.5 and 2.5 mm and the biomass peak was at 2.1 mm depth. This is much shallower compared to previously described artificial mats of P. aestuarii, which were grown in the BGC under near infrared (NIR)-rich light. High resolution time courses of photosynthesis were measured as sulfide photo-oxidation rates and studied under visible light and visible light amended with NIR to assess the effect of light quality. Sulfide photo-oxidation rates were rather low under visible light and strongly stimulated at most depths under full light conditions. However, under the latter conditions the rates decelerated after a maximum rate was reached at 8-10 min, apparently due to diffusional limitation of sulfide supply. It was concluded that the top of the mat was not limited by the photon flux density, while the biomass peak and the bottom of the biofilm were severely light limited under the culture conditions. These results support the hypothesis that a biofilm of P. aestuarii can develop in deep submerged sediments, when the oxygen penetration depth is very shallow. Nevertheless, the addition of NIR light strongly enhances the potential of P. aestuarii to grow deeper in the sediment. PMID:16228511

Massé, Astrid; Pringault, Olivier; de Wit, Rutger

2002-01-01

160

Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene.  

Science.gov (United States)

Iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage (ARD) from a pyrite mine in Yanahara, Okayama prefecture, Japan, were analyzed using the gene (cbbL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO). Analyses of partial sequences of cbbL genes from Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus strains revealed the diversity in their cbbL gene sequences. In contrast to the presence of two copies of form I cbbL genes (cbbL1 and cbbL2) in A. ferrooxidans genome, A. thiooxidans and A. caldus had a single copy of form I cbbL gene in their genomes. A phylogenetic analysis based on deduced amino acid sequences from cbbL genes detected in the ARD treatment plant and their close relatives revealed that 89% of the total clones were affiliated with A. ferrooxidans. Clones loosely affiliated with the cbbL from A. thiooxidans NB1-3 or Thiobacillus denitrificans was also detected in the treatment plant. cbbL gene sequences of iron- or sulfur-oxidizing bacteria isolated from the ARD and the ARD treatment plant were not detected in the cbbL libraries from the treatment plant, suggesting the low frequencies of isolates in the samples. PMID:20159572

Kamimura, Kazuo; Okabayashi, Ai; Kikumoto, Mei; Manchur, Mohammed Abul; Wakai, Satoshi; Kanao, Tadayoshi

2010-03-01

 
 
 
 
161

The effect of Pediococcus acidilactici bacteria used as probiotic supplement on the growth and non-specific immune responses of green terror, Aequidens rivulatus.  

Science.gov (United States)

A 56-day feeding trial was conducted on a species of ornamental fish called green terror (Aequidens rivulatus) (0.388 ± 0.0021 g) to assess the effect of probiotic bacteria, Pediococcus acidilactici on the growth indices and innate immune response. The fish were randomly allocated into 9 oval tanks (120 l) at a density of 60 fish per tank. The experimental diets were comprised of the control (C), C complemented with fish oil (O) and the probiotic and fish oil (PA) and fed ad lib twice a day. The growth indices (specific growth rate (SGR), feed conversion ratio (FCR) and immunological indices of fish fed the diets including lysozyme activity, total immunoglobulin and alternative complement activity were measured. The Fish fed with the diet containing P. acidilactici (PA) displayed significantly (P < 0.05) higher final weight (3.25 ± 0.065 g), weight gain (830.94 ± 9.46%), SGR (3.53 ± 0.02%/day) and lower FCR (1.45 ± 0.011) compared to those of other experimental diets. Total immunoglobulin (10.05 ± 0.12 ?g/ml), lysozyme activity (4.08 ± 0.85 ?g/ml) and alternative complement activity (2.65 ± 0.12 U/ml) in the serum of PA fed fish showed significant compared to other treatments (P < 0.05). The results showed positive effects of P. acidilactici as a potent probiotic on growth indices and non-specific immune system of green terror. PMID:24161762

Neissi, Alireza; Rafiee, Gholamreza; Nematollahi, Mohammadali; Safari, Omid

2013-12-01

162

A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile sulfate-reducing bacteria.  

Science.gov (United States)

Sulfate-reducing bacteria (SRB) cause souring and their biofilms are often the culprit in Microbiologically Influenced Corrosion (MIC). The two most common green biocides for SRB treatment are tetrakis-hydroxymethylphosphonium sulfate (THPS) and glutaraldehyde. It is unlikely that there will be another equally effective green biocide in the market any time soon. This means more effective biocide treatment probably will rely on biocide cocktails. In this work a triple biocide cocktail consisting of glutaraldehyde or THPS, ethylenediaminedisuccinate (EDDS) and methanol was used to treat planktonic SRB and to remove established SRB biofilms. Desulfovibrio vulgaris (ATCC 7757), a corrosive SRB was used as an example in the tests. Laboratory results indicated that with the addition of 10-15% (v/v) methanol to the glutaraldehyde and EDDS double combination, mitigation of planktonic SRB growth in ATCC 1249 medium and a diluted medium turned from inhibition to a kill effect while the chelator dosage was cut from 2,000 to 1,000 ppm. Biofilm removal was achieved when 50 ppm glutaraldehyde combined with 15% methanol and 1,000 ppm EDDS was used. THPS showed similar effects when it was used to replace glutaraldehyde in the triple biocide cocktail to treat planktonic SRB. PMID:22806837

Wen, J; Xu, D; Gu, T; Raad, I

2012-02-01

163

Safe use of genetically modified lactic acid bacteria in food: Bridging the gap between consumers, green groups, and industry  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: English Abstract in english Within the European Union (EU), the use of genetically modified organisms (GMOs) in food production is not widely applied and accepted. In contrast to the United States of America, the current EU legislation limits the introduction of functional foods derived from GMOs that may bring a clear benefit [...] to the consumer. Genetically modified lactic acid bacteria (GM-LAB) can be considered as a different class of GMOs, and the European Union is preparing regulations for the risk assessment of genetically modified microorganisms. Since these procedures are not yet implemented, the current risk assessment procedure is shared for GMOs derived from micro organisms, plants, or animals. At present, the use of organisms in food production that have uncontrolled genetic alterations made through random mutagenesis, is permitted, while similar applications with organisms that have controlled genetic alterations are not allowed. The current paper reviews the opportunities that genetically modified lactic acid bacteria may offer the food industry and the consumer. An objective risk profile is described for the use of GM-LAB in food production. To enhance the introduction of functional foods with proven health claims it is proposed to adapt the current safety assessment procedures for (GM)-LAB and suggestions are made for the related cost accountability. A qualified presumption of safety as proposed by SANCO (EU SANCO 2003), based on taxonomy and on the history of safe use of LAB applied in food, could in the near future be applied to any kind of LAB or GM-LAB provided that a series of modern profiling methods are used to verify the absence of unintended effects of altered LAB that may cause harm to the health of the consumer.

Wilbert, Sybesma; Jeroen, Hugenholtz; Willem M., de Vos; Eddy J., Smid.

2006-07-15

164

Characterization of Sulfur Compounds in Coffee Beans by Sulfur K-XANES Spectroscopy  

International Nuclear Information System (INIS)

In this 'feasibility study' the influence of roasting on the sulfur speciation in Mexican coffee beans was investigated by sulfur K-XANES Spectroscopy. Spectra of green and slightly roasted beans could be fitted to a linear combination of 'standard' reference spectra for biological samples, whereas longer roasting obviously involves formation of additional sulfur compounds in considerable amounts

165

Sulfur Dioxide  

Science.gov (United States)

... here: EPA Home Air & Radiation Six Common Pollutants Sulfur Dioxide Announcements April 17, 2014 - EPA proposes options ... Modeling Technical Assistance Documents for Implementing the 2010 Sulfur Dioxide Standard - Learn more March 20, 2012 - EPA ...

166

Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex "Sox"-studied by B3LYP-PCM and G3X(MP2) calculations.  

Science.gov (United States)

Certain sulfur bacteria oxidize thiosulfate enzymatically to sulfate, and derivatives of the amino acid cysteine play an important role as intermediates in this process. Since some of the proposed intermediates have so far been of hypothetical nature, we have investigated the structures and thermodynamic properties of more than 60 related derivatives of cysteine (CysH) by high-level quantum chemical calculations both in the gas phase and in a polarizable continuum using the PCM method to simulate an aqueous solution. Most of these molecules and anions were studied for the first time. Especially for the smaller species several conformational isomers of similar energy were identified; their relative stabilities are mainly determined by intramolecular hydrogen bonds. In contrast to the thiolate ion [Cys](-), the gaseous anions [CysS](-), [CysSO(2)](-), [CysSO(3)](-) and [CysSSO(3)](-) are most stable as zwitterions containing an NH(3) rather than an NH(2) group. This result also holds for the polarizable continuum. On the other hand, the related neutral molecules CysH, CysSH and CysSO(2)H are predicted to exist as NH(2) derivatives rather than zwitterions in the gas phase and this connectivity is predicted for CysH and CysSH also in the polarizable continuum. A model molecule of composition C(4)H(7)N(2)O(2)SH (abbreviated as RSH) simulating the structural environment of a cysteine residue within the peptide chain near the corresponding reaction center of the thiosulfate oxidizing enzyme complex "Sox" was used to elucidate the geometry of the proposed reaction intermediates as well as their thermodynamic properties. In the polarizable phase, the S-sulfonate ions [CysSO(3)](-) and [RSSO(3)](-) are predicted to react exothermically with water to the corresponding thiol and hydrogensulfate ions. These results support the proposed mechanism for enzymatic thiosulfate metabolism. Sulfur dioxide and hydrogensulfite anions are predicted to react exothermically and exergonically with thiolate and persulfide anions to give the corresponding S-sulfinate species [RSSO(2)](-) and [RSSSO(2)](-), respectively. The latter ions help to explain the inhibition of certain thiolate based enzymes by aqueous sulfite, disulfite and dithionite anions in sulfur oxidizing microorganisms. PMID:20066349

Steudel, Ralf; Steudel, Yana

2010-01-21

167

Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses.  

Science.gov (United States)

Phototrophic bacteria are important primary producers of salt lakes in the Salar de Atacama and at times form visible mass developments within and on top of the lake sediments. The communities of phototrophic bacteria from two of these lakes were characterized by molecular genetic approaches using key genes for the biosynthesis of the photosynthetic apparatus in phototrophic purple bacteria (pufLM) and in green sulfur bacteria (fmoA). Terminal restriction fragment length polymorphism of the pufLM genes indicated high variability of the community composition between the two lakes and subsamples thereof. The communities were characterized by the dominance of a novel, so far undescribed lineage of pufLM containing bacteria and the presence of representatives related to known halophilic Chromatiaceae and Ectothiorhodospiraceae. In addition, the presence of BChl b-containing anoxygenic phototrophic bacteria and of aerobic anoxygenic bacteria was indicated. Green sulfur bacteria were not detected in the environmental samples, although a bacterium related to Prosthecochloris indicum was identified in an enrichment culture. This is the first comprehensive description of phototrophic bacterial communities in a salt lake of South America made possible only due to the application of the functional pufLM genes. PMID:20868378

Thiel, Vera; Tank, Marcus; Neulinger, Sven C; Gehrmann, Linda; Dorador, Cristina; Imhoff, Johannes F

2010-12-01

168

Macro-benefits from boron, zinc and sulfur application in Indian SAT a step for grey to green revolution in agriculture  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The semi-arid tropics (SAT), spread over 11.6 million KM square worldwide, is home to millions of poor people. The soils are low in fertility and degraded to varying extent. The climate is characterized by undependable rainfall, high average temperature and water stress situations for crop growth. The SAT is densely populated and a large number of poor in this region depend on agriculture. The green revolution in Asia bypassed the large tracts of rainfed systems. ICRISAT is committed to impro...

Tj, Rego; Sp, Wani; Kl, Sahrawat; Pardhasaradhi, G.

2006-01-01

169

Bacteria: Fossil Record  

Science.gov (United States)

This description of the fossil record of bacteria focuses on one particular group of bacteria, the cyanobacteria or blue-green algae, which have left a fossil record that extends far back into the Precambrian. The oldest cyanobacteria-like fossils known are nearly 3.5 billion years old and are among the oldest fossils currently known. Cyanobacteria are larger than most bacteria and may secrete a thick cell wall. More importantly, cyanobacteria may form large layered structures, called stromatolites (if more or less dome-shaped) or oncolites (if round). The site also refers to pseudomorphs of pyrite and siderite, and a group of bacteria known as endolithic. Two links are available for more information. One provides information on the discovery of possible remains of bacteria-like organisms on a meteorite from Mars and the other has a research report on fossilized filamentous bacteria and other microbes, found in Cretaceous amber.

170

Biological and Abiological Sulfur Reduction at High Temperatures †  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Reduction of elemental sulfur was studied in the presence and absencè of thermophilic sulfur-reducing bacteria, at temperatures ranging from 65 to 110°C, in anoxic artificial seawater media. Above 80°C, significant amounts of sulfide were produced abiologically at linear rates, presumably by the disproportionation of sulfur. These rates increased with increasing temperature and pH and were enhanced by yeast extract. In the same medium, the sulfur respiration of two recent thermophilic isol...

Belkin, Shimshon; Wirsen, Carl O.; Jannasch, Holger W.

1985-01-01

171

Elemental sulfur in Eddy County, New Mexico  

Science.gov (United States)

Sulfur has been reported in Eddy County, N. Mex., in rocks ranging from Silurian to Holocene in age at depths of 0-15,020 feet. Targets of present exploration are Permian formations in the Delaware Basin and northwest shelf areas at depths of less than 4,000 feet. Most of the reported sulfur occurrences in the shelf area are in the 'Abo' (as used by some subsurface geologists), Yeso, and San Andres Formations and the Artesia Group. Sulfur deposition in the dense dolomites of the 'Abo,' Yeso, and San Andres Formations is attributed to the reduction of ionic sulfate by hydrogen sulfide in formation waters in zones of preexisting porosity and permeability. A similar origin accounts for most of the sulfur deposits in the formations of the Artesia Group, but some of the sulfur in these formations may have originated in place through the alteration of anhydrite to carbonate and sulfur by the metabolic processes of bacteria in the presence of hydrocarbons. Exploration in the Delaware Basin area is directed primarily toward the Castile Formation. Sulfur deposits in the Castile Formation are found in irregular masses of cavernous brecciated secondary carbonate rock enveloped by impermeable anhydrite. The carbonate masses, or 'castiles,' probably originated as collapse features resulting from subsurface solution and upward stopping. Formation of carbonate rock and sulfur in the castiles is attributed to the reduction of brecciated anhydrite by bacteria and hydrocarbons in the same process ascribed to the formation of carbonate and sulfur in the caprocks of salt domes.

Hinds, Jim S.; Cunningham, Richard R.

1970-01-01

172

Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity  

DEFF Research Database (Denmark)

The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so other compounds/mechanisms must be present in theother Pseudoalteromonas strains with antifouling activity.

Bernbom, Nete; Gram, Lone

2011-01-01

173

Identification, cDNA sequence and deduced amino acid sequence of the mitochondrial Rieske iron-sulfur protein from the green alga Chlamydomonas reinhardtii. Implications for protein targeting and subunit interaction.  

Science.gov (United States)

Specific oligonucleotide probes were used to isolate a cDNA clone for the mitochondrial Rieske iron-sulfur protein of the green alga Chlamydomonas reinhardtii. The protein is synthesized as a longer precursor with a cleavable N-terminal presequence of 54 amino acids but without a C-terminal extension. Comparison of the predicted secondary structure of this N-terminal sequence with that of the targeting signal of the chloroplast Rieske protein from C. reinhardtii [de Vitry (1994) J. Biol. Chem. 269, 7603-7609] indicates that, although they both have the potential to form amphiphilic alpha helices, the mito-chondrial presequence may form a more hydrophobic helix that could penetrate deeper into the membrane. The N-terminal part of the mature mitochondrial Rieske protein is characterized by a long, strongly hydrophilic N-terminal domain and by a positive charge in the middle of the hydrophobic stretch that is presumed to interact with the bc1 complex. Thus, the protein from C. reinhardtii differs from the Rieske proteins from mammals or fungi. PMID:8647127

Atteia, A; Franzén, L G

1996-05-01

174

BOGUS BACTERIA...  

Science.gov (United States)

Here are some websites to get you started... Just click on the links and start searching! microbe world- bacteria Bacteria Rule Quiz! Bacteria.... Harmful Bacteria Bacteria Museum Bacteria! Microbes- all sorts of info... When you are finished looking at the sites or when you have enough information concerning bacteria, ask Mrs. Deaton for some books that can give you even more DETAIL!!! *Don\\'t forget to keep track of your information on your I-CHARTS... ...

Deaton, Mrs.

2007-01-24

175

Growth of Thiobacillus ferrooxidans on elemental sulfur  

International Nuclear Information System (INIS)

Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-live of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day-1, both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources

176

Drug Targets in Mycobacterial Sulfur Metabolism  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the en...

Bhave, Devayani P.; Muse, Wilson B.; Carroll, Kate S.

2007-01-01

177

Isolation and characterization of a new bacteriochlorophyll-c bearing a neopentyl substituent at the 8-position from the bciD-deletion mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum.  

Science.gov (United States)

We recently constructed the mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum lacking BciD which was responsible for formation of a formyl group at the 7-position in bacteriochlorophyll(BChl)-e biosynthesis. This mutant exclusively gave BChl-c, but not BChl-e, as the chlorosome pigments (Harada et al. in PLoS One 8(4):e60026, 2013). By the mutation, the homolog and epimer composition of the pigment was drastically altered. The methylation at the 8(2)-position in the mutant cells proceeded to create BChl-c carrying large alkyl substituents at this position. Correspondingly, the content of BChls-c having the (S)-configuration at the chiral 3(1)-position remarkably increased and accounted for 80.6 % of the total BChl-c. Based on the alteration of the pigment composition in the mutant cells, a new BChl-c bearing the bulkiest, triple 8(2)-methylated neopentyl substituent at the 8-position ([N,E]BChl-c) was identified. The molecular structure of [N,E]BChl-c was fully determined by its NMR, mass, and circular dichroism spectra. The newly identified [N,E]BChl-c was epimerically pure at the chiral 3(1)-position and its stereochemistry was determined to be an (S)-configuration by modified Mosher's method. Further, the effects of the C8(2)-methylation on the optical absorption properties of monomeric BChls-c were investigated. The Soret but not Qy absorption bands shifted to longer wavelengths by the extra methylation (at most 1.4 nm). The C8(2)-methylation induced a slight but apparent effect on absorption properties of BChls-c in their monomeric states. PMID:24496988

Mizoguchi, Tadashi; Harada, Jiro; Tsukatani, Yusuke; Tamiaki, Hitoshi

2014-07-01

178

Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur.  

Science.gov (United States)

The role of sulfur on the availability of Cu and the bacterial community in rice rhizospheres was investigated by pot experiments. With sulfur addition, pH in rhizosphere soil decreased and Mg(NO?)? extractable Cu increased significantly. The bacterial community composition also changed with sulfur addition. Some specific clones having high similarity to Thiobacillus, which indicated that sulfur oxidation in the rice rhizosphere could increase the availability of Cu. These results suggested that sulfur source which could provide substrate to sulfur oxidizing bacteria and enhance the availability of Cu was not a suitable sulfur fertilizer for Cu polluted soil. PMID:21350394

Shi, Ji-Yan; Lin, Hui-Rong; Yuan, Xiao-Feng; Chen, Xin-Cai; Shen, Chao-Feng; Chen, Ying-Xu

2011-01-01

179

Enhancement of Copper Availability and Microbial Community Changes in Rice Rhizospheres Affected by Sulfur  

Directory of Open Access Journals (Sweden)

Full Text Available The role of sulfur on the availability of Cu and the bacterial community in rice rhizospheres was investigated by pot experiments. With sulfur addition, pH in rhizosphere soil decreased and Mg(NO32 extractable Cu increased significantly. The bacterial community composition also changed with sulfur addition. Some specific clones having high similarity to Thiobacillus, which indicated that sulfur oxidation in the rice rhizosphere could increase the availability of Cu. These results suggested that sulfur source which could provide substrate to sulfur oxidizing bacteria and enhance the availability of Cu was not a suitable sulfur fertilizer for Cu polluted soil.

Xiao-Feng Yuan

2011-02-01

180

An isotopic biogeochemical study of the Green River oil shale  

Science.gov (United States)

Thirty-five different samples from three different sulfur cycles were examined in this stratigraphically oriented study of the Shell 22x-l well (U.S.G.S. C177 core) in the Piceance Basin, Colorado. Carbon isotopic compositions of constituents of Green River bitumens indicate mixing of three main components: products of primary photoautotrophs and their immediate consumers (delta approximately -30% vs PDB), products of methanotrophic bacteria (delta approximately -85%), and products of unknown bacteria (delta approximately -40%). For individual compounds synthesized by primary producers, delta-values ranged from -28 to -32%. 13C contents of individual primary products (beta-carotane, steranes, acyclic isoprenoids, tricyclic triterpenoids) were not closely correlated, suggesting diverse origins for these materials. 13C contents of numerous hopanoids were inversely related to sulfur abundance, indicating that they derived both from methanotrophs and from other bacteria, with abundances of methanotrophs depressed when sulfur was plentiful in the paleoenvironment. gamma-Cerane coeluted with 3 beta(CH3),17 alpha(H),21 beta(H)-hopane, but delta-values could be determined after deconvolution. gamma-Cerane (delta approximately -25%) probably derives from a eukaryotic heterotroph grazing on primary materials, the latter compound (delta approximately -90%) must derive from methanotrophic organisms. 13C contents of n-alkanes in bitumen differed markedly from those of paraffins generated pyrolytically. Isotopic and quantitative relationships suggest that alkanes released by pyrolysis derived from a resistant biopolymer of eukaryotic origin and that this was a dominant constituent of total organic carbon.

Collister, J. W.; Summons, R. E.; Lichtfouse, E.; Hayes, J. M.

1992-01-01

 
 
 
 
181

Uses of lunar sulfur  

Energy Technology Data Exchange (ETDEWEB)

Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

Vaniman, D.T.; Pettit, D.R.; Heiken, G.

1988-01-01

182

Heterogeneous photocatalytic reactions of sulfur aromatic compounds.  

Science.gov (United States)

Sulfur aromatic compounds, such as mono-, di-, tri-, and tetraalkyl-substituted thiophene, benzothiophenes, dibenzothiophenes, are the molecular components of many fossils (petroleum, oil shale, tar sands, bitumen). Structural units of natural, cross-linked heteroaromatic polymers present in brown coals, turf, and soil are similar to those of sulfur aromatic compounds. Many sulfur aromatic compounds are found in the streams of petroleum refining and upgrading (naphthas, gas oils) and in the consumer products (gasoline, diesel, jet fuels, heating fuels). Besides fossils, the structural fragments of sulfur aromatic compounds are present in molecules of certain organic semiconductors, pesticides, small molecule drugs, and in certain biomolecules present in human body (pheomelanin pigments). Photocatalysis is the frontier area of physical chemistry that studies chemical reactions initiated by absorption of photons by photocatalysts, that is, upon electronic rather than thermal activation, under "green" ambient conditions. This review provides systematization and critical review of the fundamental chemical and physicochemical information on heterogeneous photocatalysis of sulfur aromatic compounds accumulated in the last 20-30 years. Specifically, the following topics are covered: physicochemical properties of sulfur aromatic compounds, major classes of heterogeneous photocatalysts, mechanisms and reactive intermediates of photocatalytic reactions of sulfur aromatic compounds, and the selectivity of these reactions. Quantum chemical calculations of properties and structures of sulfur aromatic compounds, their reactive intermediates, and the structure of adsorption complexes formed on the surface of the photocatalysts are also discussed. PMID:21809426

Samokhvalov, Alexander

2011-11-18

183

Bacteria Museum  

Science.gov (United States)

Who knew that bacteria had their own virtual museum? Here, visitors will "learn that not all bacteria are harmful, how they are used in industry, that they belong to the oldest living creatures on Earth", and many more interesting facts to discover about the diverse world of bacteria. The "Bacterial Species Files" tab at the top of the page, allows visitors to look up information on 40 different specific bacteria, from Anthrax to Yersinia enterocolitica. The information provided for each bacterium includes photographs, consumer guides, fact sheets, and scientific links. Visitors will find that the "Main Exhibits" tab addresses the basics about bacteria, as well as "Pathogenic Bacteria", "Evolution", "How We Fight Bacteria", and "Food and Water Safety". Visitors will surely enjoy the "Good Bacteria in Food" link found in the Food and Water Safety section, as it explains how some foods benefit from good bacteria, such as Swiss cheese, sausage, sauerkraut, chocolate, and coffee.

184

Microbiological disproportionation of inorganic sulfur compounds  

DEFF Research Database (Denmark)

The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and sulfate. Thus the overall process is comparable to the fermentation of organic compounds such as glucose and is consequently often described as 'inorganic fermentation'. The process is primarily carried out by microorganisms with phylogenetic affiliation to the so called sulfate-reducing bacteria within the delta subclass of Proteobacteria. The organisms grow with sulfate as their external electron acceptor and low-molecular weight organic compounds or hydrogen as energy sources. Studies of the biochemistry of a few isolates indicate that the disproportionating microbes reverse the sulfate reduction pathway during disproportionation. However, investigations with elemental sulfur disproportionating bacteria present evidence for an alternative pathway involving the enzyme sulfite-oxidoreductase, an enzyme that has hitherto only been reported participating in the oxidation of sulfite in aerobic or phototrophic sulfide oxidizers. Investigations bridging geology and microbiology have found strong evidence for disproportionating bacteria participating in and enhancing the rate at which pyrite forms and being partly responsible for the isotopic signatures of sulfidic minerals in recent and old sediments. New results indicate that elemental sulfur disproportionating microbes can be traced back in time as long as 3.5 billion years and elemental sulfur disproportionation would thus be one the oldest biological processes on Earth.

Finster, Kai

2008-01-01

185

Sulfur Upwelling off the African Coast  

Science.gov (United States)

Though these aquamarine clouds in the waters off the coast of northern Namibia may look like algae blooms, they are in fact clouds of sulfur produced by anaerobic bacteria on the ocean's floor. This image of the sulfur-filled water was taken on April 24, 2002, by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite. The anaerobic bacteria (bacteria that can live without oxygen) feed upon algae carcasses that exist in abundance on the ocean's floor off of Namibia. As the bacteria ingest the algae husks, they produce hydrogen sulfide, which slowly builds up in the sea-floor sediments. Eventually, the hydrogen sulfide reaches the point where the sediment can no longer contain it, and it bubbles forth. When this poisonous chemical reaches the surface, it combines with the oxygen in the upper layers of the ocean to create clouds of pure sulfur. The sulfur causes the Namibian coast to smell like rotten eggs, and the hydrogen sulfide will often kill fish and drive lobsters away. For more information, read: A Bloom By Any Other Name A high-resolution (250 meters per pixel) image earlier on the 24th taken from the Moderate-Resolution Imaging Spectroradiometer (MODIS) shows additional detail in the plumes. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE. MODIS image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

2002-01-01

186

Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret.  

Science.gov (United States)

Between May and December, the annual stratification period in Lake Kinneret, sulfide is formed and accumulates in the hypolimnion. In July-August a large population (up to 10(6) cells/mL) of green, photosynthetic, sulfur bacteria develops at the boundary of the oxidative and reductive zones of the water column lasting for 3--8 weeks. These bacteria were isolated from the lake and identified as Chlorobium phaeobacteroides. Optimal growth conditions included 160 mg S=L-1 and light intensities of 5--30 micron Einstein (micron E) m-2s-1. Glucose and acetate augmented growth when added to the mineral medium. The lowest light intensity which still supported growth was 0.3 micron E m-2s-1 when acetate was present and 1.0 micron E m-2s-1 when no organic substrate was present. Under complete darkness, either with or without organic substrate, the bacteria die. Photosynthetic activity was higher when no organic compound was added to the medium. Uptake of acetate was light-dependent. In the lake the photosynthetic activity of the bacteria is low because of the limited light intensity (0.3 micron E m-2s-1) at the bloom layer. It is suggested that the appearance and the disappearance of the bloom are caused by the influence of the daily internal seiche. PMID:540269

Bergstein, T; Henis, Y; Cavari, B Z

1979-09-01

187

Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record  

Science.gov (United States)

Inferences about the evidence of life recorded in organic compounds within the Earth's ancient rocks have depended on 13C contents low enough to be characteristic of biological debris produced by the well-known CO2 fixation pathway, the Calvin cycle. 'Atypically' high values have been attributed to isotopic alteration of sedimentary organic carbon by thermal metamorphism. We examined the possibility that organic carbon characterized by a relatively high 13C content could have arisen biologically from recently discovered autotrophic pathways. We focused on the green non-sulphur bacterium Chloroflexus aurantiacus that uses the 3-hydroxypropionate pathway for inorganic carbon fixation and is geologically significant as it forms modern mat communities analogous to stromatolites. Organic matter in mats constructed by Chloroflexus spp. alone had relatively high 13C contents (-14.9%) and lipids diagnostic of Chloroflexus that were also isotopically heavy (-8.9% to -18.5%). Organic matter in mats constructed by Chloroflexus in conjunction with cyanobacteria had a more typical Calvin cycle signature (-23.5%). However, lipids diagnostic of Chloroflexus were isotopically enriched (-15.1% to -24.1%) relative to lipids typical of cyanobacteria (-33.9% to -36.3%). This suggests that, in mats formed by both cyanobacteria and Chloroflexus, autotrophy must have a greater effect on Chloroflexus carbon metabolism than the photoheterotrophic consumption of cyanobacterial photosynthate. Chloroflexus cell components were also selectively preserved. Hence, Chloroflexus autotrophy and selective preservation of its products constitute one purely biological mechanism by which isotopically heavy organic carbon could have been introduced into important Precambrian geological features.

van der Meer, M. T.; Schouten, S.; de Leeuw, J. W.; Ward, D. M.

2000-01-01

188

Sulfur dioxide in geothermal waters and gases  

Energy Technology Data Exchange (ETDEWEB)

Methods were developed for stabilizing SO/sub 2/ in water and gas samples. The pararosaniline colorimetric method, and a gas chromatographic method using a flame photometric detector specific for sulfur gases were used to assay SO/sub 2/. Assays were also performed for sulfide, elemental sulfur and sulfate. A large number of acidic, neutral, and alkaline springs in Yellowstone National Park were sampled: SO/sub 2/ was found in small amounts in most of them. The highest concentration detected in water was 0.5-0.6 ..mu..g/ml (expressed as sulfur). Sulfur dioxide was never detected in gases emanating from hot springs, or in fumaroles, although H/sub 2/S was readily detected. Because of the high solubility of SO/sub 2/ in water, and its low pK, it is unlikely that environmentally significant quantities are volatilized from geothermal systems of the low-temperature type characteristic of Yellowstone Park. Laboratory studies suggest that in acid waters, ferric iron is the primary oxidant, as H/sub 2/S is not oxidized by O/sub 2/ at low pH. At neutral or alkaline pH, O/sub 2/ is the likely oxidant, because sulfide is oxidized by O/sub 2/ at these pH values, and neutral and alkali hot springs are always low in iron. Although bacteria capable of oxidizing sulfide and elemental sulfur are present in most of the springs sampled, it is concluded that the oxidation of reduced sulfur compounds to sulfur dioxide is primarily a chemical process, because of the rapidity with which it occurs and the lack of any evidence that bacteria produce sulfur dioxide.

Zinder, S.; Brock, T.D.

1977-01-01

189

Organic Sulfur Gas Production in Sulfidic Caves  

Science.gov (United States)

Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic groundwater, this environment may prove to be important to the global sulfur cycle and its influence of the global radiation budget.

Stern, L. A.; Engel, A. S.; Bennett, P. C.

2001-12-01

190

Ferrihydrite-Dependent Growth of Sulfurospirillum deleyianum through Electron Transfer via Sulfur Cycling  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed,...

2004-01-01

191

Green Homes  

Science.gov (United States)

... are here: EPA Home Green Building Green Homes Green Homes Click on a room of the house to link to information on greening that room. ... Room & Basement Garage Attic & Roof Outdoor Area Whole House Tools Top Green Home Terms Renters Checklist Water Use Checklist

192

Reflectance Spectra of Impure Sulfur: Io and New Lab Results  

Science.gov (United States)

Galileo has produced abundant new data pertaining to the causes of Io's multicolored surface. Composition-- including minor impurities in elemental sulfur-- appears to be one of the important mechanisms responsible for color variations. Operating on the basis of insights from the reflectance spectra and composition of natural volcanogenic sulfur on Earth, we developed a lab project to investigate the effects on the color and spectral reflectance of sulfur caused by minor impurities. Initial results show that iron (as fine-grained inclusions of pyrite) produces green sulfur similar to that found naturally in some terrestrial volcanic crater lakes and somewhat similar also to Io's so-called "golf courses." Selenium and especially tellurium (chemically bonded or interacting with sulfur) produces markedly reddish or orange sulfur. Results of lab studies showing these effects will be presented. (See also abstract by Kargel et al., this volume.)

MacIntyre, T.; Kargel, J. S.; Dalton, B.; Clark, R.

2000-10-01

193

Bacteria Transformation  

Science.gov (United States)

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,

194

Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan.  

Science.gov (United States)

At the Nakabusa hot spring, Japan, dense olive-green microbial mats develop in regions where the slightly alkaline, sulfidic effluent has cooled to 65°C. The microbial community of such mats was analyzed by focusing on the diversity, as well as the in situ distribution and function of bacteria involved in sulfur cycling. Analyses of 16S rRNA and functional genes (aprA, pufM) suggested the importance of three thermophilic bacterial groups: aerobic chemolithotrophic sulfide-oxidizing species of the genus Sulfurihydrogenibium (Aquificae), anaerobic sulfate-reducing species of the genera Thermodesulfobacterium/Thermodesulfatator, and filamentous anoxygenic photosynthetic species of the genus Chloroflexus. A new oligonucleotide probe specific for Sulfurihydrogenibium was designed and optimized for catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). In situ hybridizations of thin mat sections showed a heterogeneous vertical distribution of Sulfurihydrogenibium and Chloroflexus. Sulfurihydrogenibium dominated near the mat surface (50% of the total mat biovolume), while Chloroflexus dominated in deeper layers (up to 64% of the total mat biovolume). Physiological experiments monitoring in vitro changes of sulfide concentration indicated slight sulfide production by sulfate-reducing bacteria under anoxic-dark conditions, sulfide consumption by photosynthetic bacteria under anoxic-light conditions and strong sulfide oxidation by chemolithotrophic members of Aquificae under oxic-dark condition. We therefore propose that Sulfurihydrogenibium spp. act as highly efficient scavengers of oxygen from the spring water, thus creating a favorable, anoxic environment for Chloroflexus and Thermodesulfobacterium/Thermodesulfatator in deeper layers. PMID:21353426

Kubo, Kyoko; Knittel, Katrin; Amann, Rudolf; Fukui, Manabu; Matsuura, Katsumi

2011-06-01

195

Reduced sulfur in euxinic sediments of the Cariaco Basin : Sulfur isotope contraints on organic sulfur formation  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Reduced sulfur accumulation in Holocene and latest Pleistocene euxinic marine sediments from the Cariaco Basin, Venezuela, was investigated to constrain the timing and possible pathways of organic matter (OM) sulfurization. Data were collected for a diverse suite of sulfur species, including concentrations and sulfur isotope compositions of pore-water sulfide, pore-water sulfate, pyrite sulfur, total organic sulfur (TOS), kerogen sulfur (KS), and polar bitumen sulfur (PBS). Results suggest th...

Sinninghe Damste?, J. S.; Werne, J.; Lyons, T. W.; Hollander, D. J.; Formolo, M.

2003-01-01

196

Sulfur tolerant anode materials  

Energy Technology Data Exchange (ETDEWEB)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

1987-02-01

197

Chlorosomes: antenna organelles in photosynthetic green bacteria  

DEFF Research Database (Denmark)

The new series "Microbiology Monographs" begins with two volumes on intracellular components in prokaryotes. In this second volume, "Complex Intracellular Structures in Prokaryotes", the components, labelled complex intracellular structures, encompass a multitude of important cellular functions. Continuing and newly initiated research will provide a clearer understanding of the complex intracellular structures known at present and will bring to light surprising new ones as well. "Complex Intracellular Structures in Prokaryotes" provides historical background and comprehensive reviews of ten topics that cover the spectrum of the complex intracellular structures of prokaryotes: proteasomes, phycobilisomes, chlorosomes, gas vesicles, carboxysomes, magnetosomes, intracytoplasmic membranes, membrane-bound nucleoids, anammoxosomes, and cytoarchitecture of Epulopiscium spp. Cameos of selected additional structures are presented to broaden the scope of the volume and to generate increased interest in these structures.

Frigaard, N.-U.; Bryant, D. A.

2006-01-01

198

Interactions between phototrophic bacteria in marine sediments  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Phototrophic bacteria are the most consicious organisms occuring in laminated microbial sediment ecosystems (microbial mats). In the Waddensea area ecosystems consisting of a toplayer of the cyanobacterium Microleus chthonoplastes overlying a red layer of the purple sulfur bacterium Thiocapsa roseopersicina, commonly occur on sandy sediments which are located above mean high water leven (MHW). ... Zie: Summary

Wit, Rutger

1989-01-01

199

Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity?†  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrio...

Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

2011-01-01

200

Metaphysical green  

DEFF Research Database (Denmark)

“Sensation of Green is about the mental process like touching, seeing, hearing, or smelling, resulting from the immediate stimulation of landscape forms, plants, trees, wind and water. Sensation of Green triggers a feeling of scale, cheerfulness, calmness and peace. The spatial performance of Sensation of Green is created by a physical interaction between the language of space and the language of nature” The notion of Sensation of Green was developed through a previous study ‘Learning from the Summer House’ investigating the unique architectural characteristics of the Danish summer houses. The idea of the concept is a mutual participation of nature in architecture meaning that landscape features become tools to design a built space. The paper develops the concept further focusing on the scale of a single residential unit. The paper argues that the concept of Sensation of Green is flexible to adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only the Sensation of Green? Three existing examples are agents to this discussion. The first example is a Danish summer house. The other two are international urban examples. While the summer house articulates the original meaning of Sensation of Green, the urban examples illustrate its urban context. The first example is a tiny Danish summer house from 1918 . The second example is ‘House before House’ , in Tokyo. The third example is a prefabricated house ‘CHU’ . The analysis evaluates the characteristics of diverse tones of green – from green image to green sensation. The analysis is based on the original definition of the concept defined during the summer house study. Learning from these single residential units, the paper ends by questioning the potential of the concept of Sensation of Green concerning a larger urban typology.

Earon, Ofri

 
 
 
 
201

Sulfur polymer cement concrete  

International Nuclear Information System (INIS)

Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

202

GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS  

Science.gov (United States)

Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...

203

Green Chemistry  

Science.gov (United States)

This special feature page from the American Chemical Society (ACS) showcases the up-and-coming field of "green chemistry," that is, the development of chemical products and processes that eliminate or reduce the use and generation of hazardous substances. A list of principles behind green chemistry, a searchable bibliography of green chemistry references, green chemistry links (including conferences), and an online preview of the ACS-published book Real-World Cases in Green Chemistry are all found at the site. Five video clips on green chemistry from the standpoint of academia, industry, and small business are also featured (Windows Media Player). This page comes from ACS's Green Chemistry Project, a three-year educational project to develop and disseminate green chemistry educational materials for graduate and undergraduate chemistry students. Check back often for updates.

2002-01-01

204

Green growth  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Green growth is now a central theme of the international climate change negotiations. The Rio+20 Conference in June will concentrate on green growth as one of its main priorities. The Europe 2020 strategy has identified green growth as a fundamental pillar of EU economic policy. This Forum takes stock of the academic discussion and examines the theoretical and empirical underpinning of the concepts of green growth and employment through environmental policy.

Zysman, John; Huberty, Mark; Behrens, Arno; Colijn, Bert; Tol, Richard S. J.; Nu?n?ez Ferrer, Jorge; Aglietta, Michel; Hourcade, Jean-charles

2012-01-01

205

Green Alliance  

..., LGC (subscription needed), 20 October 2011 Give councils no opt-out on climate policies, says Green Alliance, Business Green, 20 October 2011 Power in partnership, Inside Track 29, Green Alliance, 2011 Real power to tackle climate change, Local Government Chronicle, 17 March 2011 Beyond the energy box, accelerating action through new partnership, Energy Action (p20), NEA, 2011 Making the connection, Inside Track 26, Green Alliance, 1 October 2010 Publications Smarter communications: strenghtening consumer engagement on smarter meters,...

206

Green Tea  

Science.gov (United States)

... links Read our disclaimer about external links Menu Green Tea Common Names: green tea, Chinese tea, Japanese tea Latin Name: Camellia sinensis ... Introduction This fact sheet provides basic information about green tea—common names, what the science says, potential side ...

207

Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity  

Science.gov (United States)

Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

2007-11-01

208

Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The growth of bacteria by dissimilatory elemental sulfur reduction is generally associated with obligate anaerobes and thermophiles in particular. Here we describe the sulfur-dependent growth of the facultatively anaerobic mesophile Shewanella putrefaciens. Six of nine representative S. putrefaciens isolates from a variety of environments proved able to grow by sulfur reduction, and strain MR-1 was chosen for further study. Growth was monitored in a minimal medium (usually with 0.05% Casamino...

Moser, D. P.; Nealson, K. H.

1996-01-01

209

ADVANCED SULFUR CONTROL CONCEPTS  

Energy Technology Data Exchange (ETDEWEB)

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01

210

Green, green, green...; Gruen, gruen, gruen...  

Energy Technology Data Exchange (ETDEWEB)

Green are the dreams of the photovoltaics industry. The new concept of Triple Green involves three aspects: clean power generation, recycling of modules, and environment-friendly manufacturing of modules. This is still a vision for the future as eco-factories will require high investments to start with. (orig.)

Rentzing, Sascha; Heup, Juergen

2010-03-15

211

Advanced sulfur control concepts  

Energy Technology Data Exchange (ETDEWEB)

Regenerable metal oxide sorbents, such as zinc titanate, are being developed to efficiently remove hydrogen sulfide (H{sub 2}S) from coal gas in advanced power systems. Dilute air regeneration of the sorbents produces a tailgas containing a few percent sulfur dioxide (SO{sub 2}). Catalytic reduction of the SO{sub 2} to elemental sulfur with a coal gas slipstream using the Direct Sulfur Recovery Process (DSRP) is a leading first-generation technology. Currently the DSRP is undergoing field testing at gasifier sites. The objective of this study is to develop second-generation processes that produce elemental sulfur without coal gas or with limited use. Novel approaches that were evaluated to produce elemental sulfur from sulfided sorbents include (1) sulfur dioxide (SO{sub 2}) regeneration, (2) substoichiometric (partial) oxidation, (3) steam regeneration followed by H{sub 2}S oxidation, and (4) steam-air regeneration. Preliminary assessment of these approaches indicated that developing SO{sub 2} regeneration faced the fewest technical and economic problems among the four process options. Elemental sulfur is the only likely product of SO{sub 2} regeneration and the SO{sub 2} required for the regeneration can be obtained by burning a portion of the sulfur produced. Experimental efforts have thus been concentrated on SO{sub 2}-based regeneration processes. Results from laboratory investigations are presented and discussed.

Gangwal, S.K.; Turk, B.S.; Gupta, R.P.

1995-11-01

212

Green Alliance  

... Caroline Jackson, former MEPDimitri Zenghelis, senior research fellow at the Grantham Research Institute and advisor to Cisco chaired by: Tamsin Cooper, deputy director of Green Alliance. Kindly supported by  The Panel    Dr Caroline Jackson, former MEP Dr Caroline Jackson is an expert and ...   (chair) Tamsin Cooper, deputy director, Green Alliance Tamsin heads up the policy team at Green Alliance, she has a particular interest in building Green Alliance’s capability and activities in Europe and around the green economy. Prior to joining Green Alliance in 2010, ...crusade against a new renewable energy target by Matthew Spencer 2 January 2014 Let’s follow Germany with a renewable gas strategy instead of fracking by Dr Bruce Tofield News 13 February 2014 Sky News: Live tv discussion on climate change with Alastair Harper 5 February 2014 Business Green: ...

213

Microbial treatment of sulfur-contaminated industrial wastes.  

Science.gov (United States)

The present study evaluated the microbial removal of sulfur from a solid industrial waste in liquid culture under laboratory conditions. The study involved the use of two bacteria Acidithiobacillus ferrooxidans ATCC 53987 and Acidithiobacillus thiooxidans AZCT-M125-5 isolated from a Mexican soil. Experimentation for industrial waste biotreatment was done in liquid culture using 125-mL Erlenmeyer flasks containing 30 mL Starkey modified culture medium and incubated at 30°C during 7 days. The industrial waste was added at different pulp densities (8.25-100% w/v) corresponding to different sulfur contents from 0.7 to 8.63% (w/w). Sulfur-oxidizing activity of the strain AZCT-M125-5 produced 281 and 262 mg/g of sulfate and a sulfur removal of 60% and 45.7% when the pulp density was set at 8.25 and 16.5% (w/v), respectively. In comparison, the strain A. ferrooxidans ATCC 53987 showed a lower sulfur-oxidizing activity with a sulfate production of 25.6 and 12.7 mg/g and a sulfur removal of 6% and 2.5% at the same pulp densities, respectively. Microbial growth was limited by pulp densities higher than 25% (w/v) of industrial waste with minimal sulfur-oxidizing activity and sulfur removal. The rate of sulfur removal for Acidithiobacillus thioxidans AZCT-M125-5 and Acidithiobacillus ferrooxidans ATCC 53987 was 0.185 and 0.0159 mg S g(-1) h(-1) with a pulp density of 16.5% (w/v), respectively. This study demonstrated that Acidithiobacillus thiooxidans AZCT-M125-5 possesses a high sulfur-oxidizing activity, even at high sulfur concentration, which allows the treatment of hazardous materials. PMID:24171423

Gómez-Ramírez, Marlenne; Zarco-Tovar, Karina; Aburto, Jorge; de León, Roberto García; Rojas-Avelizapa, Norma G

2014-01-01

214

Exploring the Sulfur Nutrient Cycle Using the Winogradsky Column  

Science.gov (United States)

The Winogradsky column demonstrates how the metabolic diversity of prokaryotes transforms sulfur to different forms with varying redox states and hence, supplies nutrients and/or energy to the organism. The Winogardsky column is an excellent way to show that not all bacteria are pathogens and they have an important role in the geochemical cycling…

Rogan, Brian; Lemke, Michael; Levandowsky, Michael; Gorrell, Thomas

2005-01-01

215

Sulfur volcanoes on Io?  

Science.gov (United States)

The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.

Greeley, R.; Fink, J. H.

1984-01-01

216

Building Green  

Science.gov (United States)

There's a great deal of talk about "building green" in the architecture and design world, but to many, this phrase may not mean a great deal. This website, created by the Building Green company, can help the uninitiated learn more about this subject. First-time visitors should click on the "Green Building Information" area. Here they can get answers to such question as "What is green?" and also learn more about green design strategies and the LEED rating system. Right next to this section is the "Case Studies" area, which features green building projects like elementary schools, commercial facilities, and university buildings. The site is rounded out by a "News" area and a detailed bibliography of websites, print resources, and so on.

217

Green Chemistry  

Energy Technology Data Exchange (ETDEWEB)

Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

Collison, Melanie

2011-05-15

218

Green Jobs  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In recent years the prospect of 'green jobs' or 'green growth' policies have become increasingly prominent, proposed to solve both the environmental challenges associated with global climate change and the persistent unemployment problems observed in many industrialized countries. This short article begins by describing the conceptual, definitional, and measurement issues related to green jobs. I then review the existing evidence from the primarily simulation-based studies that attempt to ass...

Deschenes, Olivier

2013-01-01

219

Green facades:  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Knowledge of living organisms applied in buildings can prevent crucial designer mistakes. Therefore this manual provides information on vegetated facades. Green facade, vertical green, green wall, vertical gardens, vegetation walls and living walls; these are all different terms used to describe a vegetated facade. To make things clear about the terminology, three main groups of vegetated facades a...

Winden, J.; Smits, E.

2014-01-01

220

Characterization of Sulfate Transport in Chlamydomonas reinhardtii during Sulfur-Limited and Sulfur-Sufficient Growth.  

Science.gov (United States)

We have characterized sulfate transport in the unicellular green alga Chlamydomonas reinhardtii during growth under sulfur-sufficient and sulfur-deficient conditions. Both the Vmax and the substrate concentration at which sulfate transport is half of the maximum velocity of the sulfate transport (K1/2) for uptake were altered in starved cells: the Vmax increased approximately 10-fold, and the K1/2 decreased approximately 7-fold. This suggests that sulfur-deprived C. reinhardtii cells synthesize a new, high-affinity sulfate transport system. This system accumulated rapidly; it was detected in cells within 1 h of sulfur deprivation and reached a maximum by 6 h. A second response to sulfur-limited growth, the production of arylsulfatase, was apparent only after 3 h of growth in sulfur-free medium. The enhancement of sulfate transport upon sulfur starvation was prevented by cycloheximide, but not by chloramphenicol, demonstrating that protein synthesis on 80S ribosomes was required for the development of the new, high-affinity system. The transport of sulfate into the cells occurred in both the light and the dark. Inhibition of ATP formation by the antibiotics carbonylcyanide m-chlorophenylhydrazone and gramicidin-S and inhibition of either F- or P-type ATPases by N,N-dicyclohexylcarbodiimide and vanadate completely abolished sulfate uptake. Furthermore, nigericin, a carboxylate ionophore that exchanges H+ for K+, inhibited transport in both the light and the dark. Finally, uptake in the dark was strongly inhibited by valinomycin. These results suggest that sulfate transport in C. reinhardtii is an energy-dependent process and that it may be driven by a proton gradient generated by a plasma membrane ATPase. PMID:12232142

Yildiz, F. H.; Davies, J. P.; Grossman, A. R.

1994-03-01

 
 
 
 
221

Molybdenum-sulfur system  

International Nuclear Information System (INIS)

T-X and P-T projections of the molybdenum sulfur system are plotted with respect to metastable phases on the basis of literary and experimental data. The following phases : MoS3, Mo2S5, MoS2; Mo2S3, Mo3S4 are described in the molybdenum-sulfur system. It is shown that literary data on phase equilibria on molybdenum-sulfur system published before 1985 are contradictory. The main disadvantage of the data is the violation of the thermodynamic equilibrium principle. When comparing the P-T and T-X phase diagram projections of the molybdenum-sulfur system the papers are preferred which note equilibrium partial pressures of components along with the temperatures of phase transformations

222

Technetium-sulfur colloid  

International Nuclear Information System (INIS)

The chemistry of the technetium-sulfur colloid produced by the reaction of sodium thiosulfate with acid was investigated. A commercial kit was duplicated, and analyses of elemental sulfur, bisulfite and residual thiosulfate were carried out. The colloidal dispersions were filtered through Nuclepore graded membranes, and the percentages of sulfur and of sup(99m)Tc in the various filtrates were determined. In all cases - with varying acid, thiosulfate and time of incubation - there was a rough agreement between the two percentages for particles 0.4?m in diameter or more. However, for small particles (1S3O6, used in place of sodium thiosulfate, produced small Tc-S colloid particles with less sulfur than the conventional thiosulfate-acid system. (author)or)

223

Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla  

Energy Technology Data Exchange (ETDEWEB)

BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like type II and III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO2 fixation, a pathway previously not described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.

Wrighton, Kelly C.; Thomas, Brian C.; Sharon, I.; Miller, Christopher S.; Castelle, Cindy; VerBerkmoes, Nathan C.; Wilkins, Michael J.; Hettich, Robert L.; Lipton, Mary S.; Williams, Kenneth H.; Long, Philip E.; Banfield, Jillian F.

2012-09-27

224

Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla  

Energy Technology Data Exchange (ETDEWEB)

BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type II/III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO2 fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.

Wrighton, Kelly C. [University of California, Berkeley; Thomas, BC [University of California, Berkeley; Sharon, I [University of California, Berkeley; Miller, CS [University of California, Berkeley; Castelle, Cindy J [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Wilkins, Michael J. [Pacific Northwest National Laboratory (PNNL); Hettich, Robert {Bob} L [ORNL; Lipton, Mary S [Pacific Northwest National Laboratory (PNNL); Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Long, Philip E [Lawrence Berkeley National Laboratory (LBNL); Banfield, Jillian F. [University of California, Berkeley

2012-01-01

225

Sulfur removal from gases and sulfur recovery  

Energy Technology Data Exchange (ETDEWEB)

LINDE offers methods and technical know-how over the complete range of gas desulfurization and sulfur recovery, with some of the methods available being based on conventional techniques, and others on completely novel developments. The latter include processes allowing removal of sulfur contents from some ppm in the feed gas up to practically 90 p.c. of H2S. Two processes are to be pointed out, namely the SULFOLIN process and the SOLINOX process. Some other processes of importance have been developed for purification of Claus off-gas. Latest developments have led to a quasi isothermal Claus process offering improvements over the conventional methods in terms of simplicity and efficiency.

Heisel, M.; Linde, G.; Marold, F.; Weber, G.

1984-12-01

226

Sulfur and climate changes  

International Nuclear Information System (INIS)

The sulfur released by some industries and by the phytoplankton acts on the environment: it cools the earth while forming tiny particles which spread the solar light and send it back towards space. The resulting cooling compensates partly the global warming due to greenhouse effect. The sulfur compounds are also liable for the acid rains, the mist formation and the rarefaction of atmospheric ozone. 3 refs., 4 figs

227

Green Glossary  

Science.gov (United States)

This seven page document provides a glossary of "green" terms that would be useful in any courses which cover sustainability topics. Terms touch on renewable energy, current issues relating to sustainability and environmentalism and a number of green technologies. This document may be downloaded in Microsoft Word Doc file format.

Wolf, Arlynne

2012-03-23

228

Rumen bacteria  

International Nuclear Information System (INIS)

The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

229

Dense populations of a giant sulfur bacterium in Namibian shelf sediments  

DEFF Research Database (Denmark)

A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA sequence data, these bacteria are closely related to the marine filamentous sulfur bacteria Thioploca, abundant in the upwelling area off Chile and Peru. Similar to Thioploca, the giant bacteria oxidize sulfide with nitrate that is accumulated to less than or equal to 800 millimolar in a central vacuole.

Schulz, HN; Brinkhoff, T.

1999-01-01

230

Dense populations of a giant sulfur bacterium in Namibian shelf sediments.  

Science.gov (United States)

A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA sequence data, these bacteria are closely related to the marine filamentous sulfur bacteria Thioploca, abundant in the upwelling area off Chile and Peru. Similar to Thioploca, the giant bacteria oxidize sulfide with nitrate that is accumulated to

Schulz, H N; Brinkhoff, T; Ferdelman, T G; Mariné, M H; Teske, A; Jorgensen, B B

1999-04-16

231

Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola.  

Science.gov (United States)

Chlorobium is an autotrophic, green phototrophic bacterium which uses reduced sulfur compounds to fix carbon dioxide in the light. The pathways for the oxidation of sulfide, sulfur, and thiosulfate have not been characterized with certainty for any species of bacteria. However, soluble cytochrome c-551 and flavocytochrome c (FCSD) have previously been implicated in the oxidation of thiosulfate and sulfide on the basis of enzyme assays in Chlorobium. We have now made a number of observations relating to the oxidation of reduced sulfur compounds. (1) Western analysis shows that soluble cytochrome c-551 in Chlorobium limicola is regulated by thiosulfate, consistent with a role in the utilization of thiosulfate. (2) A membrane-bound flavocytochrome c-sulfide dehydrogenase (which is normally a soluble protein in other species) is constitutive and not regulated by sulfide as expected for an obligately autotrophic species dependent upon sulfide. (3) We have cloned the cytochrome c-551 gene from C. limicola and have found seven other genes, which are also presumably involved in sulfur metabolism and located near that for cytochrome c-551 (SoxA). These include genes for a flavocytochrome c flavoprotein homologue (SoxF2), a nucleotidase homologue (SoxB), four small proteins (including SoxX, SoxY, and SoxZ), and a thiol-disulfide interchange protein homologue (SoxW). (4) We have established that the constitutively expressed FCSD genes (soxEF1) are located elsewhere in the genome. (5) Through a database search, we have found that the eight thiosulfate utilization genes are clustered in the same order in the Chlorobium tepidum genome (www.tigr.org). Similar thiosulfate utilization gene clusters occur in at least six other bacterial species but may additionally include genes for rhodanese and sulfite dehydrogenase. PMID:11863431

Verté, F; Kostanjevecki, V; De Smet, L; Meyer, T E; Cusanovich, M A; Van Beeumen, J J

2002-03-01

232

Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology  

Science.gov (United States)

Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

2014-06-01

233

Production of sulfuric acid and installation therefor  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In the production of sulfuric acid by (a) oxidizing a sulfurous material with an oxidant to obtain sulfur dioxide, (b) catalytically oxidizing this with oxygen to obtain sulfur trioxide and (c) producing sulfuric acid and a waste gas, at least part of the waste gas is recycled to the first step. The fabrication of sulfuric acid consists of: (a) producing sulfur dioxide from a sulfur based material and an oxidant; (b) converting catalytically the sulfur dioxide into trioxide in a catalytic con...

Arpentinier, Philippe; Dumont, Marie-noe?lle; Kalitventzeff, Boris

1998-01-01

234

Green Alliance  

...and ensures the statutory compliance of Green Alliance as a company and charity. Louise joined Green Alliance in 2005 having worked freelance in ...the charity sector on organisational and financial matters. Prior to that she spent six years in Brussels mainly working in the European Parliament ... Louise holds a PgCert ICSA in Charity Management, an MA in European Integration from Bradford University and a BA in modern European ...The Green Alliance Trust, 36 Buckingham Palace Road, London SW1W 0RE t: 020 7233 7433 Registered charity number 1045395 and company limited by guarantee (England & ...

235

Aircraft exhaust sulfur emissions  

Energy Technology Data Exchange (ETDEWEB)

The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

1997-12-31

236

Green Alliance  

...   enews is published by Green Alliance, 36 Buckingham Palace Road, London, SW1W 0RE 020 7233 7433. Green Alliance is an influential, independent organisation working to bring environmental priorities into the political mainstream. We work collaboratively with the three main parties, government, the third sector, business and others to ensure that political leaders deliver ambitious solutions to global environmental issues. The Green Alliance Trust ...support Business circle Individual membership Contact us Sign up to enews Read our blog Privacy and cookies | Terms and conditions Website development by NVisage Share Sign up to enews Print Page RSS The Green Alliance Trust, 36 Buckingham Palace Road, London SW1W 0RE t: 020 7233 7433 Registered charity number 1045395 and company limited by guarantee (England & Wales) number 3037633 ...

237

GM GREEN  

Science.gov (United States)

GM GREEN, from Earth Force Incorporated and General Motors, provides middle and high school-aged youth with educational opportunities to understand, improve and sustain the water resources in their communities.

2008-02-26

238

40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4...standards for sulfur oxides (sulfur dioxide). Link to an amendment published...measured in the ambient air as sulfur dioxide by the reference method...

2010-07-01

239

40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...quality standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5...quality standard for sulfur oxides (sulfur dioxide). (a) The level of...measured in the ambient air as sulfur dioxide by the reference method...

2010-07-01

240

40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...Control strategy: Sulfur oxides (sulfur dioxide). 52.1881 Section 52...Control strategy: Sulfur oxides (sulfur dioxide). (a) USEPA is approving...on various portions of the Ohio sulfur dioxide control plan as noticed...

2010-07-01

 
 
 
 
241

40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17...standards for sulfur oxides (sulfur dioxide). (a) The level of the...measured in the ambient air as sulfur dioxide (SO2 ). (b) The...

2010-07-01

242

Sulfur activation in Hiroshima  

International Nuclear Information System (INIS)

In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

243

Green Alliance  

...Green Alliance You are here: People Associates Rebecca Willis associates Rebecca Willis associate Rebecca Willis is an independent researcher. Her work focuses on ... Before joining Green Alliance in 1998, Rebecca spent two years as a policy adviser at the European Parliament in Brussels, specialising in international ...civil society by Alastair Harper 27 January 2014 Community energy comes of age by Rebecca Willis 21 January 2014 The UK’s curious crusade against a new ...

244

Predatory prokaryotes: Predation and primary consumption evolved in bacteria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 ?m wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for ...

Guerrero, Ricardo; Pedro?s-alio?, Carlos; Esteve, Isabel; Mas, Jordi; Chase, David; Margulis, Lynn

1986-01-01

245

Catalyst for the reduction of sulfur dioxide to elemental sulfur  

Science.gov (United States)

The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

Jin, Yun (Peking, CN); Yu, Qiquan (Peking, CN); Chang, Shih-Ger (El Cerrito, CA)

1996-01-01

246

Monitoring of bacteria in acid mine environments by reverse genome probing  

Energy Technology Data Exchange (ETDEWEB)

Traditionally, the study of microbial biodiversity in acid mine drainage (AMD) environments focused on species belonging to the genus Thiobacillus, but various other bacteria such as Leptospirillum ferroxidans, as well as certain fungi, flagellates, green algae, and yeasts have also been observed as minor constituents of microbiota in AMD. The purpose of this investigation was to apply reverse sample genome probing (RSGP) to the detection of acidophilic bacteria commonly recovered from AMD sites, and to describe the community of such environments. Analysis of enriched environmental samples by RSGP indicated that T. ferroxidans was enriched by a ferrous sulfate medium; although all thiobacilli grew in sulfur medium, T. thioxidans strains were the most prominent. Enrichment in glucose medium resulted in the selection of T. acidophilus strains. Analysis of DNA extracted without enrichment, from cells recovered from AMD water or sediment, showed that the major community components were homologous with T. ferroxidans and with T. acidophilus. A minority of community components showed similarity to T. thioxidans; none exhibited homology with L. ferroxidans. These results indicate that RSGP is a useful tool for monitoring microorganisms in AMD environments. There is also reason to believe that a better understanding of the effectiveness of different treatments of AMD could be obtained by using RSGP analysis to compare samples from treated and untreated acid mine effluents. 39 refs., 2 tabs., 5 figs.

Leveille, S. A.; Leduc, L. G.; Ferroni, G. D. [Laurentian Univ., Dept. of Biology, Sudbury, ON (Canada); Telang, A. J.; Voordouw, G. [Calgary Univ., Dept. of Biological Sciences, AB (Canada)

2001-05-01

247

Biotic and abiotic carbon to sulfur bond cleavage. Final report  

Energy Technology Data Exchange (ETDEWEB)

The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

Frost, J.W.

1994-05-01

248

Sulfur Dioxide Pollution Monitor.  

Science.gov (United States)

The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

National Bureau of Standards (DOC), Washington, DC.

249

Nucleation of sulfur hexafluoride  

Science.gov (United States)

We measured the homogeneous nucleation of sulfur hexafluoride using a diffusion cloud chamber under conditions that avoid the possibility of non-diffusive modes of transport within the cloud chamber thus ensuring reliable data from our measurements. We extended the critical supersaturation measurements into the critical region for SF6 using helium as background gas.

Ye, Peng; Bertelsmann, Anne; Heist, Richard H.

2000-08-01

250

Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems.  

Science.gov (United States)

Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations. PMID:21244620

Bühring, S I; Sievert, S M; Jonkers, H M; Ertefai, T; Elshahed, M S; Krumholz, L R; Hinrichs, K-U

2011-03-01

251

Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect  

Energy Technology Data Exchange (ETDEWEB)

Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

2008-04-15

252

Green networking  

CERN Document Server

This book focuses on green networking, which is an important topic for the scientific community composed of engineers, academics, researchers and industrialists working in the networking field. Reducing the environmental impact of the communications infrastructure has become essential with the ever increasing cost of energy and the need for reducing global CO2 emissions to protect our environment.Recent advances and future directions in green networking are presented in this book, including energy efficient networks (wired networks, wireless networks, mobile networks), adaptive networ

Krief, Francine

2012-01-01

253

Green times  

International Nuclear Information System (INIS)

The authors, founding members of the ''Green Party'' have in mind to make a very personal contribution to a better understanding of the present political situation which, although it seems to have reached a deadlock, still offers positive chances and prospects. New approaches in policy are mentioned which may help to overcome the present state of resignation of many adolescents and adults. Among other things, they describe themselves setting out for new pathways, the ''Greens'' in Parliament, prospect for the future, opportunities of the ecologically oriented economic policy. Finally, they call upon the reader to think and develop further under the motto ''What we all can do''. (HSCH)

254

Green Alliance  

...Green Alliance You are here: Events Summer Reception 2011 Green Alliance summer reception   in association with The Opera Group and the Royal Opera ...from the arts and environment sectors, we held a debate for our 2011 summer reception on the role of the arts in tackling environmental issues in ...  The reception was opened by The Opera Group with the performance of an extract from their new opera Seven Angels, composed by Luke Bedford,...one of the most exciting young talents in British music. The libretto, by poet Glyn Maxwell, interprets the themes of John ...

255

Sulfur oxidation genes in diverse deep-sea viruses.  

Science.gov (United States)

Viruses are the most abundant biological entities in the oceans and a pervasive cause of mortality of microorganisms that drive biogeochemical cycles. Although the ecological and evolutionary effects of viruses on marine phototrophs are well recognized, little is known about their impact on ubiquitous marine lithotrophs. Here, we report 18 genome sequences of double-stranded DNA viruses that putatively infect widespread sulfur-oxidizing bacteria. Fifteen of these viral genomes contain auxiliary metabolic genes for the ? and ? subunits of reverse dissimilatory sulfite reductase (rdsr). This enzyme oxidizes elemental sulfur, which is abundant in the hydrothermal plumes studied here. Our findings implicate viruses as a key agent in the sulfur cycle and as a reservoir of genetic diversity for bacterial enzymes that underpin chemosynthesis in the deep oceans. PMID:24789974

Anantharaman, Karthik; Duhaime, Melissa B; Breier, John A; Wendt, Kathleen A; Toner, Brandy M; Dick, Gregory J

2014-05-16

256

New insights into metabolic properties of marine bacteria encoding proteorhodopsins.  

Science.gov (United States)

Proteorhodopsin phototrophy was recently discovered in oceanic surface waters. In an effort to characterize uncultured proteorhodopsin-exploiting bacteria, large-insert bacterial artificial chromosome (BAC) libraries from the Mediterranean Sea and Red Sea were analyzed. Fifty-five BACs carried diverse proteorhodopsin genes, and we confirmed the function of five. We calculate that proteorhodopsin-exploiting bacteria account for 13% of microorganisms in the photic zone. We further show that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds. Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water. PMID:16008504

Sabehi, Gazalah; Loy, Alexander; Jung, Kwang-Hwan; Partha, Ranga; Spudich, John L; Isaacson, Tal; Hirschberg, Joseph; Wagner, Michael; Béjà, Oded

2005-08-01

257

Homoatomic paramagnetic sulfur radical anions as colored species in ultramarines  

International Nuclear Information System (INIS)

EPR investigation shows that in ultramarine green, ultramarine blue, ultramarine violet and ultramarine red, paramagnetic polysulfide (-1) radical anions exist such as are also found in solutions of polysulfides in electron pair donor (EPD) solvents. In ultramarines, the following sulfur radical anions are observed: sup(.)S-, sup(.)S2- (yellow), sup(.)S3- (blue) and sup(.)S4- (red). They are also the colored species in the above ultramarines. (author)

258

Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production  

Energy Technology Data Exchange (ETDEWEB)

The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

2010-05-01

259

Combined removal of sulfur compounds and nitrate by autotrophic denitrication in bioaugmented activated sludge system  

Digital Repository Infrastructure Vision for European Research (DRIVER)

An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters and for simultaneous removal of sulfide or thiosulfate and nitrate. A suspended culture of sulfur-utilizing denitrifying bacteria was fast and efficiently established by bio-augmentation of activate...

Manconi, I.; Carucci, A.; Lens, P. N. L.

2007-01-01

260

The Museum of Bacteria  

Science.gov (United States)

The Museum of Bacteria serves as a clearinghouse of Web links on bacteria and bacteriology and also provides "crystal-clear information about many aspects of bacteria." The Museum of Bacteria is provided by the Foundation of Bacteria, a non-profit organization dedicated to promoting the field of bacteriology. Links are selected for a general audience, although one section is geared toward professionals in the field. Some of the latest features of the Museum are an "exhibit" on the good bacteria found in food and a Student Hall where students can present their own bacteria-related projects.

 
 
 
 
261

Green pioneers.  

Science.gov (United States)

The government has set tough targets for the NHS in England to reduce its carbon footprint. In this article, nurses and managers at Nottinghamshire Healthcare NHS Trust explain how a programme of 'greening' initiatives - including a trial of electric cars for community staff - have slashed the trust's CO2 output. PMID:23763098

Trueland, Jennifer

262

Green Alliance  

...Green Alliance You are here: Staff Tamsin Cooper staff Tamsin Cooper deputy director (development) direct dial: 020 7630 4521 email: ...follow Germany with a renewable gas strategy instead of fracking by Dr Bruce Tofield News 13 February 2014 Sky News: Live tv discussion ...

263

Green Schools.  

Science.gov (United States)

Discusses "going green" concept in school-building design, its cost-savings benefits through more efficient energy use, and its use by the State University of New York at Buffalo as solution to an energy retrofit program. Examples are provided of how this concept can be used, even for small colleges without large capital budgets, and how it can…

Kozlowski, David, Ed.

1998-01-01

264

Green Computing  

Directory of Open Access Journals (Sweden)

Full Text Available Green computing refers to the practice and procedures of using computing resources in an environment friendly way while maintaining overall computing performance. Global warming is the continuing rise in the average temperature of the Earth’s climate system due to a range of factors. Scientific understanding of the various causes of global warming has been increasing since the last decade. Climate change and associated impacts vary from region to region across the globe. Nowadays, weather behaviour is becoming extremely unpredictable throughout the globe. United Nations Framework Convention on Climate Change (UNFCCC is working relentlessly to achieve its objective of preventing dangerous anthropogenic (human-induced climate change. Owing to global warming, various regulations and laws related to environmental norms forces manufacturers of I.T equipments to meet various energy requirements. Green computing is a well balanced and sustainable approach towards the achievement of a greener, healthier and safer environment without compromising technological needs of the current and future generations. This paper is a survey of several important literature related to the field of green computing that emphasises the importance of green computing for sustainable development.

Biswajit Saha

2014-08-01

265

Green Computing  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many pe...

Shalini, K.; Naga Prasanthi, K.

2013-01-01

266

Going Green  

Centers for Disease Control (CDC) Podcasts

This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of â??Going Green" on the environment, health, and social interaction.  Created: 4/18/2008 by National Center for Environmental Health (NCEH), ATSDR.   Date Released: 5/8/2008.

2008-04-18

267

Plant peaks sulfur recovery  

Energy Technology Data Exchange (ETDEWEB)

Recoveries of 96% have been made in 2-stage Claus units designed to produce 1,000 ltpd of sulfur. Overall recovery at the Ram River plant of Aquitaine Co. Canada, Ltd., is more than 98% after Sulfreen treatment of the Claus tail gas. These results and other development work make it appear that 98% recovery in 4-stage Clause units is within reach. However, where a minimum 98% recovery must be guaranteed, a 2-stage Claus followed by a tail gas unit provides the most positive solution. The Ram River sulfur plant consists of four 1,000-ltpd Claus units, each including a reaction furnace and waste heat boiler, 2 catalytic converters and 3 condensers with integral coalescers. Converter reheat is obtained by automated inline burners. The design features, operating features, and the gas plant are described in detail. (10 refs.)

Martin, J.E.

1973-04-01

268

Sulfur activation at Hiroshima  

International Nuclear Information System (INIS)

After the atomic bomb explosion in Hiroshima, Yamasaki and Sugimoto were able to measure the fast neutron activation of sulfur in the mastic holding insulators on electric poles (Appendix 5-2). Details of the sample collection and measurement procedure have been described by Hamada. The activation reaction 32S(n,p) 32P has a neutron energy threshold of about 2.5 MeV. The 32P decays by beta-particle emission with a half-life of 14.2 days. In 1958, Yamasaki revised his original data by correcting for self-absorption in the samples and by using new half-life data. The revised sulfur activation data were first compared by Kerr to calculated sulfur activation versus ground range using the one-dimensional, isotropic source output provided for Hiroshima by Preeg. A comparison similar to Kerr's of the measured activation data with calculations is shown. The results were discouraging. The transport calculation using the Preeg source is higher than the measured data by over a factor of two close to the hypocenter. Another discouraging aspect is the scatter in the measured sulfur data points. For example, there are points at larger ground ranges that have higher activities than smaller ground ranges. One normally expects the variation to be a rather smooth, nearly exponential decrease with distance. Because the sulfur activation is by high-energy neutrons and because the geometry of the insulators on the electric poles is simple enough to permit accurate calculations, good agreement between calculation and measurement would lend credence to the procedures being used to reassess the doses to the survivors. Fortunately, a number of developments led to better agreement. The Preeg source was an early, one-dimensional model of the Hiroshima bomb. Whalen and his colleagues at LANL made two-dimensional, coupled radiation and hydrodynamic calculations for the Hiroshima bomb that were better suited to its cylindrical symmetry. They provided an energy- and angle-dependent output of neutrons and gamma rays from the Hiroshima weapon that is used as the source term for the calculation of the free-field, air-over-ground, neutron, prompt gamma ray, and secondary radiation fields in the new dosimetry system (chapter 2,3 and 9). Furthermore, since the comparison in 1981, Hamada made additional corrections to the sulfur activation data. These corrections include a more complete analysis of the self-absorption of the samples, an analysis of their purity, revised locations, and an estimate of the uncertainty in the reported activities. The work reported here uses the two-dimensional output calculation of the Hiroshima explosion to calculate the sulfur activation and compares the results with Hamada's revision of the measurements. Because the axis of the bomb was not vertical when it exploded, the sulfur activation is not simply a function of ground range; it is a function of both the range and the azimuthal location of the insulator with respect to the bomb trajectory

269

Sulfur dichloride, SCl2  

Science.gov (United States)

This month's molecule is sulfur dichloride, SCl2. This and other small inorganic molecules are discussed in the article by Matta and Gillespie. They describe electron density in molecules and how to analyze it to obtain information about molecular bonding and structure. Different depictions of electron density in SCl2 and other small molecules emphasize different aspects of their electron density and of the structures of the molecules.

270

Efeito de extratos de própolis verde sobre bactérias patogênicas isoladas do leite de vacas com mastite / Effect of green propolis extracts on patogenic bacteria isolated from milk of cows with mastitis  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: Portuguese Abstract in portuguese A sensibilidade, in vitro, de amostras de Staphylococcus aureus, Staphylococcus sp. coagulase negativos, Streptococcus agalactiae e bactérias do grupo dos coliformes, isoladas do leite de vacas com mastite, a diferentes extratos de própolis, na concentração de 100 mg/ml, foi avaliada pela técnica do [...] antibiograma em discos de papel de filtro com sobrecamada de meio de cultura. Os resultados mostraram que o extrato etanólico de própolis comercial, os extratos etanólico e, em menor proporção, o metanólico inibiram o crescimento das amostras de bactérias Gram-positivas, Staphylococcus aureus, Staphylococcus sp. coagulase negativos e Streptococcus agalactiae. Os extratos obtidos através da água, do acetato de etila e do clorofórmio não inibiram nenhuma amostra bacteriana, assim como os veículos etanol e metanol puros utilizados como controle. A bactéria Gram-negativa testada, do tipo coliforme, não apresentou sensibilidade a nenhum dos extratos. Verificaram-se diferenças significativas (p Abstract in english In vitro, the sensitivity to different propolis extracts, at a concentration of 100 mg/ml, of Staphylococcus aureus, Staphylococcus sp. coagulase negative, Streptococcus agalactiae and bacteria of the coliform group, isolated from the milk of cows with mastitis, was evaluated using the technique of [...] an agar disk diffusion with a medium doublelayer. The results showed that the commercial propolis, the ethanolic extract, and, in a minor proportion, the methanolic extract inhibited the growth of the Gram positive bacteria, Staphylococcus aureus, Staphylococcus sp. coagulase negative and Streptococcus agalactiae. The extracts obtained through water, etila acetate and chloroform did not inhibit any bacterial strains, nor did the pure ethanol and methanol vehicles that were utilized as controls. The Gram negative bacterium tested, from the coliform group, did not show sensitivity to any extract. Bacterial strains of the same species collected from different sources presented significant differences in sensitivity to the extracts (p

Marcelo Souza, PINTO; José Eurico de, FARIA; Dejair, MESSAGE; Sérvio Túlio Alves, CASSINI; Carmen Silva, PEREIRA; Marilú Martins, GIOSO.

271

Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite; Aislamiento y caracterizacion de bacterias en aguas de la mina de ratones y su comportamiento con pirita  

Energy Technology Data Exchange (ETDEWEB)

This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs.

Merino, J. L.; Saez, R. M.

1974-07-01

272

Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade.  

Science.gov (United States)

Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200?m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle. PMID:22875135

Marshall, Katharine T; Morris, Robert M

2013-02-01

273

Lunar Sulfur Capture System  

Science.gov (United States)

The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor downstream of an in-ISRU process such as hydrogen reduction. The lunar-soil-sorbent trap is held at a temperature significantly lower than the operating temperature of the hydrogen reduction or other ISRU process in order to maximize capture of contaminants, but is held at a high enough temperature to allow moisture to pass through without condensing. The lunar soil benefits from physical beneficiation to remove ultrafine particles (to reduce pressure drop through a fixed bed reactor) and to upgrade concentrations of iron and/or calcium compounds (to improve reactivity with gaseous contaminants).

Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

2013-01-01

274

Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite  

International Nuclear Information System (INIS)

This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs

275

Green Computing  

Directory of Open Access Journals (Sweden)

Full Text Available Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer and its parts have been espousing the green cause to help protect environment from computers and electronic waste in any way.Research continues into key areas such as making the use of computers as energy-efficient as Possible, and designing algorithms and systems for efficiency-related computer technologies.

K. Shalini

2013-01-01

276

Green toxicology.  

Science.gov (United States)

Historically, early identification and characterization of adverse effects of industrial chemicals was difficult because conventional toxicological test methods did not meet R&D needs for rapid, relatively inexpensive methods amenable to small amounts of test material. The pharmaceutical industry now front-loads toxicity testing, using in silico, in vitro, and less demanding animal tests at earlier stages of product development to identify and anticipate undesirable toxicological effects and optimize product development. The Green Chemistry movement embraces similar ideas for development of less toxic products, safer processes, and less waste and exposure. Further, the concept of benign design suggests ways to consider possible toxicities before the actual synthesis and to apply some structure/activity rules (SAR) and in silico methods. This requires not only scientific development but also a change in corporate culture in which synthetic chemists work with toxicologists. An emerging discipline called Green Toxicology (Anastas, 2012) provides a framework for integrating the principles of toxicology into the enterprise of designing safer chemicals, thereby minimizing potential toxicity as early in production as possible. Green Toxicology`s novel utility lies in driving innovation by moving safety considerations to the earliest stage in a chemical`s lifecycle, i.e., to molecular design. In principle, this field is no different than other subdisciplines of toxicology that endeavor to focus on a specific area - for example, clinical, environmental or forensic toxicology. We use the same principles and tools to evaluate an existing substance or to design a new one. The unique emphasis is in using 21st century toxicology tools as a preventative strategy to "design out" undesired human health and environmental effects, thereby increasing the likelihood of launching a successful, sustainable product. Starting with the formation of a steering group and a series of workshops, the Green Toxicology concept is currently spreading internationally and is being refined via an iterative process. PMID:25061898

Maertens, Alexandra; Anastas, Nicholas; Spencer, Pamela J; Stephens, Martin; Goldberg, Alan; Hartung, Thomas

2014-01-01

277

Thinking Green!  

Science.gov (United States)

Students show their creativity and think like engineers as they design products or services that can be used to improve environmental problems in the community. While being aware of the steps of the engineering design process, students are challenged to consider all aspects of their products/services, including their costs, and impacts on the environment and people in their communities. They present their "green" solutions, in the form of advertisements, to the class for critical review of their feasibility.

GK-12 Program,

278

Green WSUS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The new era of information and communication technology (ICT) calls for a greater understanding of the environmental impacts of recent technology. With increasing energy cost and growing environmental concerns, green IT is receiving more and more attention. Network and system design play a crucial role in both computing and telecommunication systems. Significant part of this energy cost goes to system update by downloading regularly patches and bug fixes to solve security pr...

Kadry, Seifedine; Joumaa, Chibli

2012-01-01

279

Green IS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this chapter, the authors investigate the role of ICT in dealing with environmental challenges facing contemporary industrial organizations. Green IS research can essentially be divided into two groups, focusing on technology per se or on providing tools that decreases environmental impact. Building on a planned research project the authors propose innovation of ICT-based services, and especially collaborative services, as useful strategies for providing firms with sense and respond capabi...

Holmstro?m, Jonny; Mathiassen, Lars; Sandberg, Johan; Wimelius, Henrik

2010-01-01

280

Green citizenship  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper firstly describes the influence that environmentalism and ecologism have had upon thinking about citizenship before secondly, moving on to discuss conventional models of citizenship and potential models of Green citizenship. The discussion focuses on the competing moral discourses that inform our understanding of citizenship and concludes by arguing in favour of an eco-socialist citizenship model that would embrace, on the one hand, an ethic of co-responsibility by which collective...

Dean, Hartley

2001-01-01

 
 
 
 
281

Green Brands »  

... Marken, die in einem dreistufigen Verfahren (Marktforschung / Online-Befragung / NGO-Vorschlag) nominiert werden, müssen erst einen umfangreichen Validierungsprozess bestehen, der das Level auf dem „Green Brands-Index“ dokumentiert. Eine hochrangige Jury hat das abschließende Entscheidungsrecht, ob eine Marke zur GREEN BRAND ausgezeichnet wird und das Gütesiegel verwenden darf. SERI hat für Green Brands folgende Arbeitspakete durchgeführt: Beratung zur Erstellung der Kriterienkataloge für  ökologisch nachhaltige ...followup comments via e-mail Lebensqualität Integrierte Strategien Energie und Klima Ressourcennutzung Wirtschaft Globale Verantwortung Konsum und Produktion Kommunikation Deutsch English Highlight SERI Infomail | Archive * required field Email Address * First Name * Last Name * Email Format HTML Text Mobile Close Search In Category(s):ALLAllgemeinesBackground PapersBlogBooks and book chaptersBriefing SheetsCommunicationConference contributionsKonsum und ProduktionEconomyEnergie und KlimaEventsGlobal ResponsibilityGrey literatureHighlightsIntegrated StrategiesJournal articlesMedia contributionsNewsOnline PublicationsOther Working PapersPresentationsProject reportsPublicationsLebensqualitätResource UseSERI Annual ReportsSERI recommendsSERI StudiesSERI warnsThesisUnpublished WorkWorking PapersSearch In ...

282

Green Gold  

International Nuclear Information System (INIS)

The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical characte support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

283

Green Alliance  

... Send a cheque to: Green Alliance, 36 Buckingham Palace Road, London, SW1W 0RE. And gift aid is a great way to give us more... for nothing If you pay tax in the UK, gift aid is a really easy way to increase the value of your support at ...   For further information please contact: Louise Humphrey, head of resourcesGreen Alliance36 Buckingham Palace RoadLondon SW1W 0RE Blog 14 February 2014 Borrowing is the best way to pay for flood protection by Julian Morgan 12 February 2014 Who’ll want to be the next leader of the Environment Agency?...our blog Privacy and cookies | Terms and conditions Website development by NVisage Share Sign up to enews Print Page RSS The Green Alliance Trust, 36 Buckingham Palace Road, London SW1W 0RE t: 020 7233 7433 Registered charity number 1045395 and company limited by guarantee (England &...

284

40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection...National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The...

2010-07-01

285

40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...National primary ambient air quality standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection...National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an...

2010-07-01

286

40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...2010-07-01 2010-07-01 false Control strategy: Sulfur oxides (sulfur dioxide). 52.1881 Section 52.1881 Protection...CONTINUED) Ohio § 52.1881 Control strategy: Sulfur oxides (sulfur dioxide). (a) USEPA is...

2010-07-01

287

40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).  

Science.gov (United States)

...National primary ambient air quality standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection...National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...

2010-07-01

288

Lactic Acid Bacteria  

Science.gov (United States)

This on-line exercise is focused on lactic acid bacteria, a group of related bacteria that produce lactic acid as a result of carbohydrate fermentation. It includes a protocol for the enrichment of lactic acid bacteria from enriched samples (like yogurt, sauerkraut, decaying plant matter, and tooth plaque). Three parameters are measured: growth, culture diversity, and pH. The exercise also includes instructions for the isolation of some of these bacteria by using the streak-plate method.

2010-03-01

289

Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy  

Science.gov (United States)

The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS 2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ?m that gradually diminishes out to 1.6 ?m—similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO 2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ?m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found any natural sulfur containing significant Na beyond that attributable to silicate inclusions. In sum, the unique physical-chemical properties of S-rich systems and the strong affinity of certain elements for S may have broad implications for the appearance, spectroscopic interpretation, and geologic processes of Io. Identification of impurities in sulfur may be helpful in tracing the geochemical evolution of surface deposits on Io. Perhaps foretelling of new areas of investigation, Cl has recently been reported in the Io torus (M. Kueppers and N. M. Schneider 1999, Eos Trans.80, 5207), suggesting the presence on Io of either salts, such as halite, or sulfur chlorides. Further evidence of minor iogenic impurities should be sought in Io's neutral cloud and plasma torus as well as in further scrutiny of Io's reflectance spectra.

Kargel, Jeffrey S.; Delmelle, Pierre; Nash, Douglas B.

1999-11-01

290

Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy  

Science.gov (United States)

The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found any natural sulfur containing significant Na beyond that attributable to silicate inclusions. In sum, the unique physical-chemical properties of S-rich systems and the strong affinity of certain elements for S may have broad implications for the appearance, spectroscopic interpretation, and geologic processes of Io. Identification of impurities in sulfur may be helpful in tracing the geochemical evolution of surface deposits on Io. Perhaps foretelling of new areas of investigation, Cl has recently been reported in the Io torus (M. Kueppers and N. M. Schneider 1999, Eos Trans.80, 5207), suggesting the presence on Io of either salts, such as halite, or sulfur chlorides. Further evidence of minor iogenic impurities should be sought in Io's neutral cloud and plasma torus as well as in further scrutiny of Io's reflectance spectra. ?? 1999 Academic Press.

Kargel, J. S.; Delmelle, P.; Nash, D. B.

1999-01-01

291

Bacteria: Friend or Foe?  

Science.gov (United States)

This lesson explores "good" and "bad" bacteria. Students can draw "Wanted!" bacteria mug shots, create composting trials and designs, produce a skit involving a boastful virus and bacterium, experiment with soil and ordinary objects in the lab, write a news story about an outbreak, complete a multiple-choice bacteria quiz and more!

David Brock (Roland Park Public School;)

2003-01-10

292

Green Buildings  

Science.gov (United States)

From the Department of Energy's Center of Excellence for Sustainable Development, this Green Buildings site serves as a detailed metapage for environmentally conscious architects, engineers, and builders. As the introduction to the site points out, "The design, construction, and maintenance of buildings has a tremendous impact on our environment and our natural resources." The site offers carefully summarized links to relevant Websites and publications on topics such as building principles, building programs, rating systems, affordable housing, codes/ordinances, educational materials, and more. This site may be of interest to those who want practical applications for protecting the environment.

2000-01-01

293

Green photonics  

International Nuclear Information System (INIS)

Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas. (review article)

294

Gas processing handbook: sulfur recovery  

Energy Technology Data Exchange (ETDEWEB)

This compilation presents the most significant of current processes for sulfur recovery, and reflects the most recent data available from the licensor to define and explain the process function and design. The processes described include (1) Amoco sulfur recovery, (2) Giammarco Vetrocoke, (3) Stretford, (4) Takahax, and (5) Sulfox. A flow chart, feed streams accepted, description, operating conditions, and commercial installations are described.

1975-04-01

295

Green urbanity  

Directory of Open Access Journals (Sweden)

Full Text Available Tourism and other culture-based types of small business, which are the leitmotif in the planning of the Europark Ruardi, are becoming the guiding motif in the spatial development of urban centres that are influenced by dynamic transformation processes. The system should build upon the exploitation of both local and regional environmental features. This would encourage the quest for special environmental features, with an emphasis on their conservation, i.e. sustainable development, and connections in a wider context.The Europark is seen as a new strategic point of the Zasavje Region (the region of the central Sava Valley, which is linked to other important points in a region relevant for tourism. Due to the "smallness" of the region and/or the proximity of such points, development can be fast and effective. The interaction of different activities in space yields endless opportunities for users, who choose their own goals and priorities in the use of space. Four theme areas of the Europark area planning are envisaged. The organisation of activities is based on the composition of the mosaic field patterns, where green fields intertwine with areas of different, existing and new, urban functions. The fields of urban and recreation programmes are connected with a network of green areas and walking trails, along which theme park settings are arranged.

Alenka Fikfak

2012-01-01

296

Green Manufacturing  

Energy Technology Data Exchange (ETDEWEB)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31

297

Green chemistry  

International Nuclear Information System (INIS)

A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

298

Green chemistry  

International Nuclear Information System (INIS)

The depletion of world fossil fuel reserves and the involvement of greenhouse gases in the global warming has led to change the industrial and energy policies of most developed countries. The goal is now to reserve petroleum to the uses where it cannot be substituted, to implement renewable raw materials obtained from plants cultivation, and to consider the biodegradability of molecules and of manufactured objects by integrating the lifetime concept in their expected cycle of use. The green chemistry includes the design, development and elaboration of chemical products and processes with the aim of reducing or eliminating the use and generation of harmful compounds for the health and the environment, by adapting the present day operation modes of the chemical industry to the larger framework of the sustainable development. In addition to biofuels, this book reviews the applications of green chemistry in the different industrial processes in concern. Part 1 presents the diversity of the molecules coming from renewable carbon, in particular lignocellulose and the biotechnological processes. Part 2 is devoted to materials and treats of the overall available technological solutions. Part 3 focusses on functional molecules and chemical intermediates, in particular in sugar- and fats-chemistry. Part 4 treats of biofuels under the aspects of their production and use in today's technologies. The last part deals with the global approaches at the environmental and agricultural hes at the environmental and agricultural levels. (J.S.)

299

Bacteria Are Everywhere!  

Science.gov (United States)

Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.

AMPS GK-12 Program,

300

An integrated sulfur isotope model for Namibian shelf sediments  

Science.gov (United States)

In this study the sulfur cycle in the organic-rich mud belt underlying the highly productive upwelling waters of the Namibian shelf is quantified using a 1D reaction-transport model. The model calculates vertical concentration and reaction rate profiles in the top 500 cm of sediment which are compared to a comprehensive dataset which includes carbon, sulfur, nitrogen and iron compounds as well as sulfate reduction (SR) rates and stable sulfur isotopes ( 32S, 34S). The sulfur dynamics in the well-mixed surface sediments are strongly influenced by the activity of the large sulfur bacteria Thiomargaritanamibiensis which oxidize sulfide (H 2S) to sulfate ( SO42-) using sea water nitrate ( NO3-) as the terminal electron acceptor. Microbial sulfide oxidation (SOx) is highly efficient, and the model predicts intense cycling between SO42- and H 2S driven by coupled SR and SOx at rates exceeding 6.0 mol S m -2 y -1. More than 96% of the SR is supported by SOx, and only 2-3% of the SO42- pool diffuses directly into the sediment from the sea water. A fraction of the SO42- produced by Thiomargarita is drawn down deeper into the sediment where it is used to oxidize methane anaerobically, thus preventing high methane concentrations close to the sediment surface. Only a small fraction of total H 2S production is trapped as sedimentary sulfide, mainly pyrite (FeS 2) and organic sulfur (S org) (˜0.3 wt.%), with a sulfur burial efficiency which is amongst the lowest values reported for marine sediments (solid phase sulfur exchanges isotopes with the dissolved sulfide pool. An enrichment in H 2S of 34S towards the sediment-water interface suggests that Thiomargarita preferentially remove H 232S from the pore water. A fractionation of 20-30‰ was estimated for SOx (? SOx) with the model, along with a maximum fractionation for SR (? SR-max) of 100‰. These values are far higher than previous laboratory-based estimates for these processes. Mass balance calculations indicate negligible disproportionation of autochthonous elemental sulfur; an explanation routinely cited in the literature to account for the large fractionations in SR. Instead, the model indicates that repeated multi-stepped sulfide oxidation and intracellular disproportionation by Thiomargarita could, in principle, allow the measured isotope data to be simulated using much lower fractionations for ? SOx (5‰) and ? SR (78‰).

Dale, Andrew W.; Brüchert, Volker; Alperin, Marc; Regnier, Pierre

2009-04-01

 
 
 
 
301

SULFUR POLYMER ENCAPSULATION  

International Nuclear Information System (INIS)

opean Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris

302

Whole-genome shotgun sequence of the sulfur-oxidizing chemoautotroph Pseudaminobacter salicylatoxidans KCT001.  

Science.gov (United States)

The facultatively sulfur-oxidizing chemolithoautotrophic alphaproteobacterium Pseudaminobacter salicylatoxidans KCT001 (MTCC 7265) belongs to the family Phyllobacteriaceae of the order Rhizobiales. Analysis of its genome offers valuable insight into the adaptive specializations and evolution of free-living soil bacteria that are phylogenetically closely related to symbiotic and invasive rhizobacteria. PMID:22887656

Alam, Masrure; Roy, Chayan; Pyne, Prosenjit; Agarwal, Atima; George, Ashish; Ghosh, Wriddhiman

2012-09-01

303

Green Revolution  

Science.gov (United States)

Coming up with better ways to get where we need to go and power the lives we live requires development of new technologies, along with research to help us minimize the impact of these technologies on our environment. The overall goal of this series is to encourage people to ask questions and look beyond fossil fuels for innovative solutions to our ever-growing energy needs. Interest in science and technology provides the necessary foundation for our future in a world powered by clean energy. The series also provides insight into what careers in science, engineering and other topics related to clean energy technologies are really like. There are videos about wind, solar, green roofs, smart grid, biomass, microbes and city cars.

304

Green Phosphors  

Science.gov (United States)

Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ? 1.973. The number of spins participating in resonance ( N) and the paramagnetic susceptibility ( ?) for the resonance signal at g ? 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 ? 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

2014-11-01

305

Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy  

Directory of Open Access Journals (Sweden)

Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

Yu-Shan Chen

2014-09-01

306

French Guiana Fluidized Muds: Predominant Sulfur Transformation Pathways and Prokaryotic Players in a Coupled System of Carbon-Sulfur-Metal Biogeochemical Cycling.  

Science.gov (United States)

The fluidized mud ecosystem off French Guiana coast is a unique and globally important sedimentary environment characterized by intense physical reworking and rapid turnover of major biogeochemical elements. Here we assess the major pathways of carbon cycling focusing on the transformation of sulfur species and major prokaryotic participants. The depth distribution of organic carbon oxidation rates was determined for ~100 cm long cores collected off the French Guiana coast. Total organic carbon oxidation rates inferred from accumulation of inorganic carbon during a 3-6 month incubation series were elevated at the surface and decreased with depth. A similar incubation approach was applied for estimation of ferric reduction|oxidation rates. Short- chain fatty acid degradation rates and dark carbon dioxide rates were determined with 14C radiolabeled acetate and carbon dioxide, respectively, which both decreased with depth. The rates for sulfate and elemental sulfur transformation pathways were determined using 35S radiolabeled sulfur species with and without the presence of molybdate. Proposed microbially-mediated biogeochemical pathways were confirmed by MPN measurements of sulfate-, sulfur- and iron-reducing heterotrophic bacteria. Autotrophic bacteria were less numerous and their numbers did not directly correlate with rates of specific biogeochemical pathways. With most carbon oxidation accounted for by sulfur species - and ferric iron respiration, corresponding microbial groups may play a significant role in regulation of the net balance of organic carbon mineralization. Experimental results imply that auto- and heterotrophy likely coexist simultaneously and, thus participate in the internal carbon cycling in this environment.

Luzan, T.; Chistoserdov, A. Y.; Aller, J. Y.; Aller, R. C.

2008-12-01

307

Effect of operating parameters on sulfide biotransformation to sulfur.  

Science.gov (United States)

A laboratory-scale bioreactor with polyethylene semi-soft packing was constructed and utilized to determine the efficiency of sulfide biotransformation to sulfur under various operating parameters. Sodium sulfide dissolved in tap water was pumped into the bioreactor as sulfide for biological desulfurization. The sulfide, sulfur and sulfate-S in the effluent and the sulfide purged as gas-phase H2S were determined to investigate the effects of operating parameters, such as pH, DO, hydraulic retention time (HRT), temperature and salinity, on the sulfide oxidation products. The activity of bacteria was highest at pH 7.8-8.2. The maximal sulfide removal load was 7.25 kg/(m3 x day), with a 322.07 mg/L influent sulfide concentration and 4.80 mg/L DO. The increase of DO value corresponds to a decrease in the sulfur yield. The reactor had the highest sulfide removal load and sulfur yield at 2.55 mg/L DO. HRT had little effect on desulfurization efficiency when the sulfide removal load was kept constant. The most effective desulfurization temperature was 33 degrees C. The sulfide removal load decreased from 2.85 to 0.51 kg/(m3 x day) with increasing salinity from 0.5% to 2.5% (m/m). PMID:24649672

Liu, Weiguo; Liang, Cunzhen; Chen, Jiaqing; Zhu, Ling

2013-12-01

308

Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels  

Directory of Open Access Journals (Sweden)

Full Text Available An innovative and low-cost method is proposed for the detection and discrimination of indole-positive pathogen bacteria. The method allows the non-invasive detection of gaseous indole, released by bacteria, with nanoporous colorimetric sensors. The innovation comes from the use of nanoporous matrices doped with 4-(dimethylamino-cinnamaldehyde, which act as sponges to trap and concentrate the targeted analyte and turn from transparent to dark green, long before the colonies get visible with naked eyes. With such sensors, it was possible to discriminate E. coli from H. alvei, two indole-positive and negative bacteria after seven hours of incubation.

Sabine Crunaire

2014-06-01

309

An ancient divergence among the bacteria. [methanogenic phylogeny  

Science.gov (United States)

The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

1977-01-01

310

Darwin y las bacterias / Darwin and bacteria  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: Spanish Abstract in spanish Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en [...] el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva. Abstract in english As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never t [...] ook knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

Walter, Ledermann D.

311

Darwin y las bacterias Darwin and bacteria  

Directory of Open Access Journals (Sweden)

Full Text Available Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva.As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

Walter Ledermann D

2009-02-01

312

Darwin y las bacterias / Darwin and bacteria  

Scientific Electronic Library Online (English)

Full Text Available SciELO Chile | Language: Spanish Abstract in spanish Con motivo de cumplirse 200 años del natalicio de Darwin y 150 desde la publicación de El Origen de las Especies, se revisa su obra buscando alguna mención de las bacterias, a las cuales el gran naturalista parece, o bien no haber conocido, algo muy difícil en un momento en que causaban sensación en [...] el mundo científico, o bien haber ignorado deliberadamente, porque no encontraba para ellas lugar en su teoría de la evolución. Las bacterias, por su parte, afectaron malamente su vida familiar, falleciendo uno de sus hijos de escarlatina y su hija favorita, Arme, de una tuberculosis agravada por el mismo mal que mató a su hermano. El propio Darwin, desde el regreso del Beagle afectado por una enfermedad crónica hasta ahora no dilucidada, podría haber sufrido de la enfermedad de Chagas, cuyo agente etiológico, si bien no es una bacteria, tiene un similar nivel en la escala evolutiva. Abstract in english As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never t [...] ook knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

Walter, Ledermann D.

2009-02-01

313

The green building envelope: vertical greening:  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve the environment in urban areas and is becoming a key design consideration in modern building developments. Vertical greening of structures offers large surfaces with vegetation and at the same tim...

Ottele?, M.

2011-01-01

314

Microbial pathways in colonic sulfur metabolism and links with health and disease  

Directory of Open Access Journals (Sweden)

Full Text Available Sulfur is both crucial to life and a potential threat to health. While colonic sulfur metabolism mediated by eukaryotic cells is relatively well studied, much less is known about sulfur metabolism within gastrointestinal microbes. Sulfated compounds in the colon are either of inorganic (e.g., sulfates, sulfites or organic (e.g., dietary amino acids and host mucins origin. The most extensively studied of the microbes involved in colonic sulfur metabolism are the sulfate-reducing bacteria, which are common colonic inhabitants. Many other microbial pathways are likely to shape colonic sulfur metabolism as well as the composition and availability of sulfated compounds, and these interactions need to be examined in more detail. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in the context of colonic health, and the extent to which it is detrimental or beneficial remains in debate. Several lines of evidence point to sulfate-reducing bacteria or exogenous hydrogen sulfide as potential players in the etiology of intestinal disorders, inflammatory bowel diseases and colorectal cancer in particular. Generation of hydrogen sulfide via pathways other than dissimilatory sulfate reduction may be as, or more, important than those involving the sulfate-reducing bacteria. We suggest here that a novel axis of research is to assess the effects of hydrogen sulfide in shaping colonic microbiome structure. Clearly, in-depth characterization of the microbial pathways involved in colonic sulfur metabolism is necessary for a better understanding of its contribution to colonic disorders and development of therapeutic strategies.

AnnC.Benefiel

2012-11-01

315

Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum  

Directory of Open Access Journals (Sweden)

Full Text Available Thioautotrophic endosymbionts in the Domain Bacteria mediate key sulfur transformations in marine reducing environments. However, the molecular pathways underlying symbiont metabolism and the extent to which these pathways are expressed in situ are poorly characterized for almost all symbioses. This is largely due to the difficulty of culturing symbionts apart from their hosts. Here, we use pyrosequencing of community RNA transcripts (i.e., the metatranscriptome to characterize enzymes of dissimilatory sulfur metabolism in the model symbiosis between the coastal bivalve Solemya velum and its intracellular thioautotrophic symbionts. High-throughput sequencing of total RNA from the symbiont-containing gill of a single host individual generated 1.6 million sequence reads (500 Mbp. Of these, 43,735 matched Bacteria protein-coding genes in BLASTX searches of the NCBI database. The taxonomic identities of the matched genes indicated relatedness to diverse species of sulfur-oxidizing Gammaproteobacteria, including other thioautotrophic symbionts and the purple sulfur bacterium Allochromatium vinosum. Manual querying of these data identified 28 genes from diverse pathways of sulfur energy metabolism, including the dissimilatory sulfite reductase (Dsr pathway for sulfide oxidation to sulfite, the APS pathway for sulfite oxidation, and the Sox pathway for thiosulfate oxidation. In total, reads matching sulfur energy metabolism genes represented 7% of the Bacteria mRNA pool. Together, these data highlight the dominance of thioautotrophy in the context of symbiont community metabolism, identify the likely pathways mediating sulfur oxidation, and illustrate the utility of metatranscriptome sequencing for characterizing community gene transcription of uncultured symbionts.

FrankStewart

2011-06-01

316

Green’s Symmetries in Finite Digraphs  

Directory of Open Access Journals (Sweden)

Full Text Available The semigroup DV of digraphs on a set V of n labeled vertices is defined. It is shown that DV is faithfully represented by the semigroup Bn of n ´ n Boolean matrices and that the Green’s L, R, H, and D equivalence classifications of digraphs in DV follow directly from the Green’s classifications already established for Bn. The new results found from this are: (i L, R, and H equivalent digraphs contain sets of vertices with identical neighborhoods which remain invariant under certain one-sided semigroup multiplications that transform one digraph into another within the same equivalence class, i.e., these digraphs exhibit Green’s isoneighborhood symmetries; and (ii D equivalent digraphs are characterized by isomorphic inclusion lattices that are generated by their out-neighborhoods and which are preserved under certain two-sided semigroup multiplications that transform digraphs within the same D equivalence class, i.e., these digraphs are characterized by Green’s isolattice symmetries. As a simple illustrative example, the Green’s classification of all digraphs on two vertices is presented and the associated Green’s symmetries are identified.

Allen D. Parks

2011-08-01

317

The Determinants of Green Radical and Incremental Innovation Performance: Green Shared Vision, Green Absorptive Capacity, and Green Organizational Ambidexterity  

Directory of Open Access Journals (Sweden)

Full Text Available This study proposes a new concept, green organisational ambidexterity, that integrates green exploration learning and green exploitation learning simultaneously. Besides, this study argues that the antecedents of green organisational ambidexterity are green shared vision and green absorptive capacity and its consequents are green radical innovation performance and green incremental innovation performance. The results demonstrate that green exploration learning partially mediates the positive relationships between green radical innovation performance and its two antecedents—green shared vision and green absorptive capacity. In addition, this study indicates that green exploitation learning partially mediates the positive relationships between green incremental innovation performance and its two antecedents—green shared vision and green absorptive capacity. Hence, firms have to increase their green shared vision, green absorptive capacity, and green organisational ambidexterity to raise their green radical innovation performance and green incremental innovation performance.

Yu-Shan Chen

2014-11-01

318

DEGRADATION KINETICS OF MONOSACCHARIDES IN HYDROCHLORIC, SULFURIC, AND SULFUROUS ACID  

Directory of Open Access Journals (Sweden)

Full Text Available The degradation kinetics of monosaccharides during sulfurous acid treatment was compared to hydrochloric acid and to sulfuric acid treatments. Reaction conditions corresponded to the range found in previous research to allow for the production of hemicelluloses-derived monosaccharides through hydrolysis of wood. Degradation behavior of monosaccharides during treatment with each acid was expressed by a second-order reaction rate constant with respect to substrate and acid concentrations, and the activation energy and frequency factor were calculated using the Arrhenius equation. Results demonstrated that the second-order reaction rate of a monosaccharide was dependent on the type of acid, indicating that monosaccharides degrade at different rates under different acids, even when the molar concentration of the acid is the same. The degradation of monosaccharides in sulfurous acid was much slower than that in hydrochloric acid and in sulfuric acid. A comparison of two sequential treatments with sulfuric acid, with and without the bisulfite ion, showed that sulfurous acid has a protective effect on the degradation of monosaccharides.

Yan Shi,

2012-07-01

319

Green business will remain green  

International Nuclear Information System (INIS)

It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged comons are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

320

Sulfur dioxide oxidation catalyst and process  

International Nuclear Information System (INIS)

A catalytic process for the oxidation of sulfur-containing gases , E.G., sulfur dioxide and simultaneous production of sulfuric acid wherein a sulfur-containing gas is reacted with an oxygencontaining gas in the presence of a catalyst comprising an iron group metal on a solid support comprising a zeolite in a silicaalumina matrix

 
 
 
 
321

A study on the selection of indigenous leaching-bacteria for effective bioleaching  

Science.gov (United States)

Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

2012-04-01

322

Viability of bacteria in dental calculus - A microbiological study  

Directory of Open Access Journals (Sweden)

Full Text Available Aim: The aim of this study was (1 To investigate the viability of bacteria within supragingival and subgingival calculus, (2 To examine motility of bacteria, and (3 To identify bacterial morphotypes in calculus. Materials and Methods: Supra and subgingival calculus were harvested from 30 subjects having clinical evidence of chronic inflammatory periodontal disease and were divided into two groups . Samples from both groups were immediately transported to the Department of Microbiology for gram staining, acridine orange staining, bacterial culture and to the Department of Oral Pathology for dark field microscopy. Results: Gram staining revealed presence of bacteria within the samples. Dark field microscopic examination revealed presence of filamentous organisms, spirochetes, and motile short bacilli. Acridine orange fluorescent stain showed that the viable bacteria appeared apple green. Bacterial culture revealed presence of a variety of aerobic organisms. Conclusion: From the results, it appeared that viable bacteria were present within calculus especially within internal channels and lacunae.

Moolya Nikesh

2010-01-01

323

Introduction to Bacteria  

Science.gov (United States)

This science site has students research how bacteria move, where they live, and how they reproduce; learn how bacteria can be helpful or harmful; and create a design illustrating what they have learned about bacteria. Included in the lesson plan are the objectives, needed materials and Web sites, procedures, discussion questions, evaluation, extensions, suggested reading, and vocabulary. Teachers can link to Teaching Tools to create custom worksheets, puzzles, and quizzes. A printable version of the lesson plan can be downloaded. The video Bacteria, Viruses and Allergies can be purchased and comprehension questions and answers can be downloaded.

Discoveryschool.com; Fenichel, Marilyn

2007-12-12

324

Bacteria-Antagonists  

International Science & Technology Center (ISTC)

Development of Biological Control Agents Through Use of Recombinant Antagonistic Bacteria Possessing Variable Mechanisms of Antagonisms, High Colonizing Capacity and Marker Traits for their Monitoring in Nature

325

Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes  

Energy Technology Data Exchange (ETDEWEB)

Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

2014-06-17

326

Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp.  

Science.gov (United States)

Sulfur isotope effects produced by microbial dissimilatory sulfate reduction are used to reconstruct the coupled cycling of carbon and sulfur through geologic time, to constrain the evolution of sulfur-based metabolisms, and to track the oxygenation of Earth's surface. In this study, we investigate how the coupling of carbon and sulfur metabolisms in batch and continuous cultures of a recently isolated marine sulfate reducing bacterium DMSS-1, a Desulfovibrio sp ., influences the fractionation of sulfur isotopes. DMSS-1 grown in batch culture on seven different electron donors (ethanol, glycerol, fructose, glucose, lactate, malate and pyruvate) fractionates 34S/ 32S ratio from 6‰ to 44‰, demonstrating that the fractionations by an actively growing culture of a single incomplete oxidizing sulfate reducing microbe can span almost the entire range of previously reported values in defined cultures. The magnitude of isotope effect correlates well with cell specific sulfate reduction rates (from 0.7 to 26.1 fmol/cell/day). DMSS-1 grown on lactate in continuous culture produces a larger isotope effect (21-37‰) than the lactate-grown batch culture (6‰), indicating that the isotope effect also depends on the supply rate of the electron donor and microbial growth rate. The largest isotope effect in continuous culture is accompanied by measurable changes in cell length and cellular yield that suggest starvation. The use of multiple sulfur isotopes in the model of metabolic fluxes of sulfur shows that the loss of sulfate from the cell and the intracellular reoxidation of reduced sulfur species contribute to the increase in isotope effects in a correlated manner. Isotope fractionations produced during sulfate reduction in the pure culture of DMSS-1 expand the previously reported range of triple sulfur isotope effects ( 32S, 33S, and 34S) by marine sulfate reducing bacteria, implying that microbial sulfur disproportionation may have a smaller 33S isotopic fingerprint than previously thought.

Sim, Min Sub; Ono, Shuhei; Donovan, Katie; Templer, Stefanie P.; Bosak, Tanja

2011-08-01

327

Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.  

Science.gov (United States)

This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

Fowler, T A; Crundwell, F K

1999-12-01

328

Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions  

Energy Technology Data Exchange (ETDEWEB)

This paper reports the results of leaching experiments conducted with and without Thiobacillus ferroxidans at the same conditions in solution. The extent of leaching of ZnS with Bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, which no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T.ferroxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions.

Fowler, T.A.; Crundwell, F.K.

1999-12-01

329

Fe-S Cluster Assembly Pathways in Bacteria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Summary: Iron-sulfur (Fe-S) clusters are required for critical biochemical pathways, including respiration, photosynthesis, and nitrogen fixation. Assembly of these iron cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. Multiple Fe-S cluster assembly pathways are present in bacteria to carry out basal cluster assembly, stress-responsive cluster assembly, and enzyme-specific cluster assembly. Although biochemical and genetic characterization is ...

Ayala-castro, Carla; Saini, Avneesh; Outten, F. Wayne

2008-01-01

330

Ultrastructure of Thiothrix spp. and “Type 021N” Bacteria  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated “type 021N,” were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and “type 021N” strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stain...

Williams, Terry M.; Unz, Richard F.; Doman, J. Thomas

1987-01-01

331

Green nanotechnology  

Science.gov (United States)

Nanotechnology, in particular nanophotonics, is proving essential to achieving green outcomes of sustainability and renewable energy at the scales needed. Coatings, composites and polymeric structures used in windows, roof and wall coatings, energy storage, insulation and other components in energy efficient buildings will increasingly involve nanostructure, as will solar cells. Nanostructures have the potential to revolutionize thermoelectric power and may one day provide efficient refrigerant free cooling. Nanomaterials enable optimization of optical, opto-electrical and thermal responses to this urgent task. Optical harmonization of material responses to environmental energy flows involves (i) large changes in spectral response over limited wavelength bands (ii) tailoring to environmental dynamics. The latter includes engineering angle of incidence dependencies and switchable (or chromogenic) responses. Nanomaterials can be made at sufficient scale and low enough cost to be both economic and to have a high impact on a short time scale. Issues to be addressed include human safety and property changes induced during manufacture, handling and outdoor use. Unexpected bonuses have arisen in this work, for example the savings and environmental benefits of cool roofs extend beyond the more obvious benefit of reduced heat flows from the roof into the building.

Smith, Geoff B.

2011-10-01

332

The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium.  

Science.gov (United States)

Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators. PMID:24847070

Santos, Joana A; Alonso-García, Noelia; Macedo-Ribeiro, Sandra; Pereira, Pedro José Barbosa

2014-06-01

333

Sulfur metabolism in Beggiatoa alba.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The metabolism of sulfide, sulfur, and acetate by Beggiatoa alba was investigated under oxic and anoxic conditions. B. alba oxidized acetate to carbon dioxide with the stoichiometric reduction of oxygen to water. In vivo acetate oxidation was suppressed by sulfide and by several classic respiratory inhibitors, including dibromothymoquinone, an inhibitor specific for ubiquinones. B. alba also carried out an oxygen-dependent conversion of sulfide to sulfur, a reaction that was inhibited by seve...

Schmidt, T. M.; Arieli, B.; Cohen, Y.; Padan, E.; Strohl, W. R.

1987-01-01

334

Culturable airborne bacteria in outdoor poultry-slaughtering facility.  

Science.gov (United States)

Airborne bacteria are important biological components of the aerosols and have a close relationship with human health as they can have adverse effects through infection and toxicity; higher concentrations can result in various microbial diseases. Moreover, they have a great influence on air quality in Beijing. In this study, a systematic survey on culturable airborne bacteria was carried out for 1 year at a slaughtering plant in Beijing. Bacterial samples were collected with FA-1 sampler for 3 min, three times each day, for three consecutive days of each month from three sampling sites using BIOLOG identification technology. Results showed that Gram-positive bacteria contributed 80%-85% and were much more prevalent than Gram-negative bacteria. Amongst 47 genera of bacteria, including 31 Gram-positive bacteria and 16 Gram-negative bacteria, Micrococcus, Staphylococcus, Bacillus, Corynebacterium, and Pseudomonas were dominant, and Micrococcus, which contributed 20%-30%, was the most dominant genus. The concentration of airborne bacteria was significantly higher in shed used to stay chicken waiting for slaughtering (SSC) and entrances to personnel and transport vehicles with products (EPV) than in green belt (GB). During the year, bacterial concentrations in summer and autumn were much higher than in winter and spring in SSC and EPV, and there were no significant variations in bacterial concentrations in GB. In different periods, a lower concentration of airborne bacteria was found at 13:00. PMID:23474646

Liang, Ruiping; Xiao, Peng; She, Ruiping; Han, Shiguo; Chang, Lingling; Zheng, Lingxiao

2013-01-01

335

For sale: Sulfur emissions  

International Nuclear Information System (INIS)

The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO2) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

336

Evaluation of the Effect of Green Tea Extract on Mouth Bacterial Activity in the Presence of Propylene Glycol  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Background: Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections..Objectives: To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load..Materials and Methods: Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also...

Abdolhossein Moghbel; Ahmad Farjzadeh; Nasrin Aghel; Homaun Agheli; Nafiseh Raisi

2012-01-01

337

Influence of heterogeneous sulfur atoms on the negative differential resistance effect in polythiophene  

Science.gov (United States)

In this work, we have carried out theoretical investigations aiming to clarify the effects of sulfur heteroatoms on the transport characteristics in polythiophene. Sulfur atoms in polythiophene are demonstrated to influence the structure and transport process by two aspects: the electron hopping between carbon atoms on both sides of the sulfur atom as well as the effective confinement of ? electrons from the sulfur atom. Based on the static Su-Schrieffer-Heeger model and the nonequilibrium Green's function formalism, we simulate the electron transportation in a metal/polythiophene/metal structure. The simulation results show that the electron hopping via sulfur atoms is responsible for the observed negative differential resistance (NDR) behavior in the I-V curves. The NDR disappears if the electron transport channels from carbon to carbon via sulfur atoms are forbidden. The weaker the effective confinement of ? electrons and the electron hopping between carbon atoms on both sides of the sulfur atom are, the higher is the peak-to-valley ratio of the NDR and the wider the voltage range where the current remains at low levels. These results can help in understanding the NDR effect in polythiophene.

Liu, Xiao Jing; Dong, Kang Liang; An, Zhong

2014-09-01

338

Production of Sulfur Nanocrystal Through Dilution Crystallization  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Selecting process conditions for the dilution crystallization of sulfur in ethanol +toluene mixture for production of sulfur Nanocrystals is studied in the present work. The crystallization process is carried out using the anti-solvent technique to obtain sulfur precipitations in solution. Using this process, the sulfur solubility is decreased in toluene as co-solvent. Although the co-solvent and anti-solvent are miserable in any proportion. The solubility curve of sulfur has been measured in...

Mehrdad Manteghian; Elahe Hojaj

2009-01-01

339

ALGAE-BACTERIA INTERACTION IN A LIGHT-DARK CYCLE (JOURNAL VERSION)  

Science.gov (United States)

Nutrient and population dynamics accompanying algae-bacteria interaction were observed in unialgal, 18-liter batch cultures during a light-dark cycle. The green alga Chlorella vulgaris, and the nitrogen fixing blue-green Anabaena flos-aquae were inoculated with an aquatic communi...

340

Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples  

DEFF Research Database (Denmark)

Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths,vith trichomes in combination with (15)N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min(-1) mg of protein(-1). Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min(-1) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min(-1) mg of protein(-1) and could be increased to 10.7 nmol min(-1) mg of protein(-1) after the trichomes were starved for 45 h. Incorporation of (14)CO(2) was at a rate of 0.4 to 0.8 nmol min(-1) mg of protein(-1), which is half the rate calculated from sulfide oxidation. [2-(14)C]acetate incorporation was 0.4 nmol min(-1) mg of protein(-1), which is equal to the CO(2) fixation rate, and no (14)CO(2) production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-(14)C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.

Otte, S.; Kuenen, JG

1999-01-01

 
 
 
 
341

Nitrogen, carbon, and sulfur metabolism in natural thioploca samples  

Science.gov (United States)

Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min-1 mg of protein-1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min-1 mg of protein-1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min-1 mg of protein-1 and could be increased to 10.7 nmol min-1 mg of protein-1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min-1 mg of protein-1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min-1 mg of protein-1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples. PMID:10388716

Otte; Kuenen; Nielsen; Paerl; Zopfi; Schulz; Teske; Strotmann; Gallardo; Jorgensen

1999-07-01

342

Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge  

Science.gov (United States)

Elemental sulfur is an important intermediate of sulfide oxidation and may be produced via abiotic and biotic pathways. In this study the concentration and size fractionation of elemental sulfur were measured in two different sulfidic marine environments: the Chesapeake Bay and buoyant hydrothermal vent plumes along the Mid-Atlantic Ridge. Nanoparticulate sulfur (total elemental sulfur in anoxic deep waters of the Chesapeake Bay. These data were compared with previous studies of elemental sulfur, and represent one of the few reports of nanoparticulate elemental sulfur in the environment. Additionally, a strain of phototrophic sulfide oxidizing bacteria isolated from the Chesapeake Bay was shown to produce elemental sulfur as a product of sulfide oxidation. Elemental sulfur concentrations are also presented from buoyant hydrothermal vent plumes located along the Mid-Atlantic Ridge. In the Mid-Atlantic Ridge plume, S0 concentrations up to 33 ?M were measured in the first meter of rising plumes at three different vent sites, and nanoparticulate S0 was up to 44% of total elemental sulfur present.

Findlay, Alyssa J.; Gartman, Amy; MacDonald, Daniel J.; Hanson, Thomas E.; Shaw, Timothy J.; Luther, George W.

2014-10-01

343

EPA Green Buildings  

Science.gov (United States)

The Environmental Protection Agency's site contains a wealth of information on green guilding: green-built schools, residences, and office buildings. This site also describes what EPA is doing to green its own buildings. Topics such as energy efficiency, indoor environment, and sustainable development are covered on the Green Buildings website.

2008-09-12

344

Supraglacial sulfur springs and associated biological activity in the Canadian high arctic - signs of life beneath the ice  

Science.gov (United States)

Unique springs, discharging from the surface of an arctic glacier, release H2S and deposit native sulfur, gypsum, and calcite. The presence of sulfur in three oxidation states indicates a complex series of redox reactions. Physical and chemical conditions of the spring water and surrounding environment, as well as mineralogical and isotopic signatures, suggest biologically mediated reactions. Cell counts and DNA analyses confirm bacteria are present in the spring system, and a limited number of sequenced isolates suggests that complex communities of bacteria live within the glacial system.

Grasby, Stephen E.; Allen, Carlton C.; Longazo, Teresa G.; Lisle, John T.; Griffin, Dale W.; Beauchamp, Benoit

2003-01-01

345

Sulfur in agriculture / Enxofre na agricultura  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese A deficiência de enxofre (S) nos solos vem se tornando cada vez mais comum em várias áreas do mundo em razão de práticas agronômicas, alta exportação de biomassa e redução das emissões atmosféricas. Nesta revisão são abordados a incidência, a exploração comercial e estoques de S na natureza, a impor [...] tância do S para as plantas, as formas orgânicas e inorgânicas no solo e suas transformações, assim como, principalmente, o processo de oxidação microbiológica do enxofre elementar (S0) como alternativa para a reposição dos níveis de S do solo. Também é abordada a diversidade de microrganismos oxidantes de S0 nos solos, com destaque para o gênero Thiobacillus, bem como os mecanismos bioquímicos de oxidação do S0 em bactérias. Por fim, foram revisados os principais métodos para determinação da taxa de oxidação do S0 nos solos e as variáveis que influenciam esse processo. Abstract in english Sulfur (S) deficiency in soils is becoming increasingly common in many areas of the world as a result of agronomic practices, high biomass exportation and reduced S emissions to the atmosphere. In this review, the incidence and commercial exploitation of S pools in nature are discussed, as well as t [...] he importance of S for plants and the organic and inorganic S forms in soil and their transformations, especially the process of microbiological oxidation of elemental sulfur (S0) as an alternative to the replenishment of S levels in the soil. The diversity of S0-oxidizing microorganisms in soils, in particular the genus Thiobacillus, and the biochemical mechanisms of S0 oxidation in bacteria were also addressed. Finally, the main methods to measure the S0 oxidation rate in soils and the variables that influence this process were revised.

Adriano Reis, Lucheta; Marcio Rodrigues, Lambais.

346

Sulfur in agriculture Enxofre na agricultura  

Directory of Open Access Journals (Sweden)

Full Text Available Sulfur (S deficiency in soils is becoming increasingly common in many areas of the world as a result of agronomic practices, high biomass exportation and reduced S emissions to the atmosphere. In this review, the incidence and commercial exploitation of S pools in nature are discussed, as well as the importance of S for plants and the organic and inorganic S forms in soil and their transformations, especially the process of microbiological oxidation of elemental sulfur (S0 as an alternative to the replenishment of S levels in the soil. The diversity of S0-oxidizing microorganisms in soils, in particular the genus Thiobacillus, and the biochemical mechanisms of S0 oxidation in bacteria were also addressed. Finally, the main methods to measure the S0 oxidation rate in soils and the variables that influence this process were revised.A deficiência de enxofre (S nos solos vem se tornando cada vez mais comum em várias áreas do mundo em razão de práticas agronômicas, alta exportação de biomassa e redução das emissões atmosféricas. Nesta revisão são abordados a incidência, a exploração comercial e estoques de S na natureza, a importância do S para as plantas, as formas orgânicas e inorgânicas no solo e suas transformações, assim como, principalmente, o processo de oxidação microbiológica do enxofre elementar (S0 como alternativa para a reposição dos níveis de S do solo. Também é abordada a diversidade de microrganismos oxidantes de S0 nos solos, com destaque para o gênero Thiobacillus, bem como os mecanismos bioquímicos de oxidação do S0 em bactérias. Por fim, foram revisados os principais métodos para determinação da taxa de oxidação do S0 nos solos e as variáveis que influenciam esse processo.

Adriano Reis Lucheta

2012-11-01

347

Green ocean machine  

Science.gov (United States)

The plants in the window, the trees outside and the broccoli in the refrigerator all have ancient ancestors that didn't used to be green. They only "got green" when they captured smaller green creatures that turn sunlight into food. These small green creatures eventually became the green "chloroplasts" that the plants use to capture energy from the sun through the process of photosynthesis. Studies from scientist in Japan have found a creature that may be making this transition.

American Association for the Advancement of Science (AAAS;)

2005-10-13

348

Toxicodynamics of sulfur mustard.  

Science.gov (United States)

Mustards have become an important topic of global discussion in recent years. The latest extensive reports and conference of 145 nations in Paris (January 13, 1989) reveal that several countries have stockpiled large quantities of mustard gas. This situation creates an imminent danger to accidental or intentional exposure of this gas to civil populations throughout the world. In view of the sparse literature on the toxic nature of mustard gas, we have tried to present an integrated panorama of this compound and its derivatives. In this article, efforts were made to review mustard gas--its chemical nature, mode of action, methods available for its analysis in biological fluids and target organs, absorption, distribution, metabolism and excretion and its toxicity to various organs. The effects of mustard poisoning may be local, systemic, or both, depending on environmental conditions, exposed organs, and the extent and duration of exposure. The toxic effects of mustard include inhibition of mitosis, NAD depletion, decreased tissue respiration and finally cell death. Most of the toxic effects are related to alkylation of DNA. Mustards are also selective in their accumulation in fat tissue. The immediate organs affected after mustard exposure are skin, eyes, and lungs. Sulfur mustard has also been reported to be a potent carcinogen. Burns caused by mustard are severe and require long healing periods. Depending on the type and time of exposure, mustard renders persons disabled temporarily or permanently. Various antidotes such as sodium thiosulfate, dexamethasone, promethazine, heparin, vitamin E and atropine have been recommended for combating mustard poisoning. Protective clothing can substantially reduce the toxic effects of mustard exposure. The best possible way of eliminating mustard hazard is to ban its use completely. PMID:2681003

Somani, S M; Babu, S R

1989-09-01

349

Formation of elemental sulfur upon radiolysis of aqueous sulfure dioxide solutions  

International Nuclear Information System (INIS)

During radiation-chemical decomposition of sulfur dioxide in aqueous solutions the yield of elementary sulfur, depending on sulfur dioxide concentration, pH and introduced addition of sulfuric acid, was measured. The curve of sulfur accumulation features the presence of an induction period and a distinctly pronounced maximum. It has been shown experimentally that in the course of sulfur dioxide radiolysis the reactions of reducing particles and products of SO2 reduction play an essential role

350

Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.  

Science.gov (United States)

Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. PMID:25088944

Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

2014-11-01

351

The sulfurized InP surface  

International Nuclear Information System (INIS)

Sulfur treatments have previously been shown to improve the electrical characteristics of InP and GaAs devices. This paper reports the results of an Auger/x-ray photoelectron spectroscopy investigation of the InP surface after sulfur treatment. It is shown that the sulfur remains on the surface bonded to indium. There is no indication of elemental sulfur or sulfur bonded to phosphorus. This suggests that the sulfur has replaced phosphorus on the surface and has filled the phosphorus vacancies

352

Bacteria-virus coevolution.  

Science.gov (United States)

Phages, viruses of bacteria, are ubiquitous. Many phages require host cell death to successfully complete their life cycle, resulting in reciprocal evolution of bacterial resistance and phage infectivity (antagonistic coevolution). Such coevolution can have profound consequences at all levels of biological organisation. Here, we review genetic and ecological factors that contribute to determining coevolutionary dynamics between bacteria and phages. We also consider some of the consequences of bacteria-phage coevolution, such as determining rates of molecular evolution and structuring communities, and how these in turn feedback into driving coevolutionary dynamics. PMID:22821466

Buckling, Angus; Brockhurst, Michael

2012-01-01

353

Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution  

Science.gov (United States)

Normal sulfur isotope effects averaging epsilon = -5.2 +/- 1.4% (s.d.) were consistently observed for the oxidation of sulfide in aqueous solution. Reaction products were sulfate, thiosulfate and sulfite at pH 10.8-11 in distilled water; S0 was formed in two experiments with synthetic seawater at pH 8-9.5. Because the -5.2% normal isotope effect differs significantly from the previously measured +2% inverse effect associated with anaerobic oxidation of sulfide by photosynthetic bacteria, stable sulfur isotopic measurements are potentially useful for distinguishing aerobic vs. anaerobic sulfide oxidation in marine and freshwater sulfureta.

Fry, B.; Ruf, W.; Gest, H.; Hayes, J. M.

1988-01-01

354

A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries  

International Nuclear Information System (INIS)

cycling is reflected in low impedance values observed after cycling. This facile in situ sulfur deposition route represents a low-cost approach to obtain high-performance sulfur–carbon composite cathodes for rechargeable Li–S batteries.

355

GREEN MARKETING - AN OVERVIEW  

Directory of Open Access Journals (Sweden)

Full Text Available In today's business world environmental issues plays an important role in marketing. All most all the governments around the world have concerned about green marketing activities that they have attempted to regulate them. There has been little attempt to academically examine environmental or green marketing. It introduces the terms and concepts of green marketing, briefly discuss why going green is important and also examine some of the reason that organizations are adopting a green marketing philosophy. It also focuses some of the problems with green marketing

Arthi

2014-03-01

356

ACS Green Chemistry Institute  

Science.gov (United States)

This special feature page from the American Chemical Society (ACS) showcases the up-and-coming field of "green chemistry," that is, the development of chemical products and processes that eliminate or reduce the use and generation of hazardous substances. A list of principles behind green chemistry, a searchable bibliography of green chemistry references, and green chemistry links (including conferences). This page comes from ACS's Green Chemistry Project, a three-year educational project to develop and disseminate green chemistry educational materials for graduate and undergraduate chemistry students.

2005-12-13

357

New insights into metabolic properties of marine bacteria encoding proteorhodopsins.  

Directory of Open Access Journals (Sweden)

Full Text Available Proteorhodopsin phototrophy was recently discovered in oceanic surface waters. In an effort to characterize uncultured proteorhodopsin-exploiting bacteria, large-insert bacterial artificial chromosome (BAC libraries from the Mediterranean Sea and Red Sea were analyzed. Fifty-five BACs carried diverse proteorhodopsin genes, and we confirmed the function of five. We calculate that proteorhodopsin-exploiting bacteria account for 13% of microorganisms in the photic zone. We further show that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds. Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water.

2005-08-01

358

Cultivation Media for Bacteria  

Science.gov (United States)

Common bacteriological culture media (tryptic soy agar, chocolate agar, Thayer-Martin agar, MacConkey agar, eosin-methylene blue agar, hektoen agar, mannitol salt agar, and sheep blood agar) are shown uninoculated and inoculated with bacteria.

American Society For Microbiology;

2009-12-08

359

Bacteria subsisting on antibiotics.  

DEFF Research Database (Denmark)

Antibiotics are a crucial line of defense against bacterial infections. Nevertheless, several antibiotics are natural products of microorganisms that have as yet poorly appreciated ecological roles in the wider environment. We isolated hundreds of soil bacteria with the capacity to grow on antibiotics as a sole carbon source. Of 18 antibiotics tested, representing eight major classes of natural and synthetic origin, 13 to 17 supported the growth of clonal bacteria from each of 11 diverse soils. Bacteria subsisting on antibiotics are surprisingly phylogenetically diverse, and many are closely related to human pathogens. Furthermore, each antibiotic-consuming isolate was resistant to multiple antibiotics at clinically relevant concentrations. This phenomenon suggests that this unappreciated reservoir of antibiotic-resistance determinants can contribute to the increasing levels of multiple antibiotic resistance in pathogenic bacteria.

Dantas, Gautam; Sommer, Morten O A

2008-01-01

360

The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park.  

Science.gov (United States)

In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS(-), S(2-)) of over 1-2 mg/liter (30-60?M) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50‡C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45‡C and at approximately 300 to 700?Ein/m(2)/sec of "visible" radiation. Sulfide (0.6-1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30?M tolerated at least 1 mM without inhibition. A normal(14)C-HCO3 photoincorporation rate was sustained with 0.6-1 mM sulfide in the presence of DCMU (7?M) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O3 (2-) SO3 (2-), S2O4 (2-) thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant. PMID:24233463

Castenholz, R W

1977-06-01

 
 
 
 
361

40 CFR 60.104 - Standards for sulfur oxides.  

Science.gov (United States)

... Standards for sulfur oxides. 60.104 Section... Standards for sulfur oxides. Each owner...achieving the maximum production rate at which the affected...Claus sulfur recovery plant containing in excess...emission, maintain sulfur oxides emissions...

2010-07-01

362

GHP, a new c-type green heme protein from Halochromatium salexigens and other proteobacteria.  

Science.gov (United States)

We have isolated a minor soluble green-colored heme protein (GHP) from the purple sulfur bacterium, Halochromatium salexigens, which contains a c-type heme. A similar protein has also been observed in the purple bacteria Allochromatium vinosum and Rhodopseudomonas cryptolactis. This protein has wavelength maxima at 355, 420, and 540 nm and remains unchanged upon addition of sodium dithionite or potassium ferricyanide, indicating either an unusually low or high redox potential, respectively. The amino-acid sequence indicates one heme per peptide chain of 72 residues and reveals weak similarity to the class I cytochromes. The usual sixth heme ligand methionine in these proteins appears to be replaced by a cysteine in GHP. Only one known cytochrome has a cysteine sixth ligand, SoxA (cytochrome c-551) from thiosulfate-oxidizing bacteria, which is low-spin and has a high redox potential because of an un-ionized ligand. The native size of GHP is 34 kDa, its subunit size is 11 kDa, and the net charge is -12, accounting for its very acidic nature. A database search of complete genome sequences reveals six homologs, all hypothetical proteins, from Oceanospirillum sp., Magnetococcus sp., Thiobacillus denitrificans, Dechloromonas aromatica, Thiomicrospira crunogena and Methylobium petroleophilum, with sequence identities of 35-64%. The genetic context is different for each species, although the gene for GHP is transcriptionally linked to several other genes in three out of the six species. These genes, coding for an RNAse, a protease/chaperone, a GTPase, and pterin-4a-carbinolamine dehydratase, appear to be functionally related to stress response and are linked in at least 10 species. PMID:16817906

Van Driessche, Gonzalez; Devreese, Bart; Fitch, John C; Meyer, Terrance E; Cusanovich, Michael A; Van Beeumen, Jozef J

2006-06-01

363

Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans.  

Science.gov (United States)

The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications. PMID:23436458

Bobadilla Fazzini, Roberto A; Cortés, Maria Paz; Padilla, Leandro; Maturana, Daniel; Budinich, Marko; Maass, Alejandro; Parada, Pilar

2013-08-01

364

Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central chile  

Science.gov (United States)

The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S 0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H 2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S 0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The ? 34S-values of pyrite down to -38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.

Zopfi, Jakob; Böttcher, Michael E.; Jørgensen, Bo Barker

2008-02-01

365

Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile  

DEFF Research Database (Denmark)

The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The ?34S-values of pyrite down to -38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.

Zopfi, Jakob; JØrgensen, Bo Barker

2007-01-01

366

Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile.  

DEFF Research Database (Denmark)

The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The ?34S-values of pyrite down to -38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.

Zopfi, Jakob; Michael E., Böttcher

2008-01-01

367

Sulfur Chemistry in Bacterial Leaching of Pyrite  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amounts of elemental sulfur were detectable because of the organism's capacity to oxidize sulfur compou...

Jozsa, P.; Sand, W.

1996-01-01

368

Antibotulinal efficacy of sulfur dioxide in meat.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulf...

Tompkin, R. B.; Christiansen, L. N.; Shaparis, A. B.

1980-01-01

369

The Green Guide  

Science.gov (United States)

Going "green" can be a challenge but it doesn't have to be. National Geographic created this site to provide the public with information about various green-friendly products, services, and so on. Visitors can learn more about green living at home, the world's resources, energy issues and more. The site also includes links to a clutch of weblogs, including "Home Green Home" and "The Ecopolitan".

370

GREEN MARKETING - AN OVERVIEW  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In today's business world environmental issues plays an important role in marketing. All most all the governments around the world have concerned about green marketing activities that they have attempted to regulate them. There has been little attempt to academically examine environmental or green marketing. It introduces the terms and concepts of green marketing, briefly discuss why going green is important and also examine some of the reason that organizations are adopting a...

Arthi; Bulomine Reg, S.; Anthony Rahul Golden. S

2014-01-01

371

Genetic engineering of sulfur-degrading Sulfolobus  

Energy Technology Data Exchange (ETDEWEB)

The objectives of the proposed research is to first establish a plasmid-mediated genetic transformation system for the sulfur degrading Sulfolobus, and then to clone and overexpress the genes encoding the organic-sulfur-degrading enzymes from Sulfolobus- as well as from other microorganisms, to develop a Sulfolobus-based microbial process for the removal of both organic and inorganic sulfur from coal.

Ho, N.W.Y.

1991-01-01

372

46 CFR 148.04-20 - Sulfur.  

Science.gov (United States)

...Shipping 5 2010-10-01 2010-10-01 false Sulfur. 148.04-20 Section 148.04-20 Shipping...Requirements for Certain Material § 148.04-20 Sulfur. (a) When sulfur is loaded in a deep hold with general cargo in the...

2010-10-01

373

Biochemistry of dissimilatory sulfur oxidation  

Energy Technology Data Exchange (ETDEWEB)

Our goals of this research are to define the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during the dissimilatory oxidation of sulfur by thiobacilli. We have purified APS reductase to electrophoratic homogeneity from cell-free extracts of Thiobacillus denitrificans. Sufficient protein is available to initiate the production of polyclonal antibodies and to perform the kinetic experiments.

Blake, R. II.

1992-01-01

374

Sulfur Dioxide and Material Damage  

Science.gov (United States)

This study relates sulfur dioxide levels with material damage in heavily populated or polluted areas. Estimates of loss were determined from increased maintenance and replacement costs. The data indicate a decrease in losses during the past five years probably due to decline in pollution levels established by air quality standards. (MR)

Gillette, Donald G.

1975-01-01

375

SULFUR DIOXIDE SOURCES IN AK  

Science.gov (United States)

This map shows industrial plants which emit 100 tons/year or more of sulfur dioxide (SO2) in Alaska. The SO2 sources are plotted on a background map of cities and county boundaries. Data Sources: SO2 Sites: U.S. EPA AIRS System, County Outlines: 1990 Census Tiger Line Files 1:1...

376

The Green Man  

Science.gov (United States)

The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

Watson-Newlin, Karen

2010-01-01

377

Public Libraries Going Green  

Science.gov (United States)

Going green is now a national issue, and patrons expect their library to respond in the same way many corporations have. Libraries are going green with logos on their Web sites, programs for the public, and a host of other initiatives. This is the first book to focus strictly on the library's role in going green, helping you with: (1) Collection…

Miller, Kathryn

2010-01-01

378

The green agenda  

CERN Document Server

This business guide to Green IT was written to introduce, to a business audience, the opposing groups and the key climate change concepts, to provide an overview of a Green IT strategy and to set out a straightforward, bottom line-orientated Green IT action plan.

Calder, Alan

2009-01-01

379

What Is Green?  

Science.gov (United States)

Green is a question with varying answers and sometimes no answer at all. It is a question of location, resources, people, environment, and money. As green really has no end point, a teacher's goal should be to teach students to question and consider green. In this article, the author provides several useful metrics to help technology teachers…

Pokrandt, Rachel

2010-01-01

380

In the Green  

Science.gov (United States)

Education officials used to debate whether they could afford to pursue green design and construction. Now the green movement has gained a foothold not just in education, but in society at large, and the prevailing attitude seems to have shifted. Can schools afford "not" to go green? As budgets are slashed repeatedly, education administrators must…

Kennedy, Mike

2011-01-01

 
 
 
 
381

Show Me the Green  

Science.gov (United States)

Gone are the days when green campus initiatives were a balm to the soul and a drain on the wallet. Today's environmental initiatives are all about saving lots of green--in every sense of the word. The environmental benefits of green campus projects--whether wind turbines or better insulation--are pretty clear. Unfortunately, in today's…

Norbury, Keith

2013-01-01

382

Silica Sulfuric Acid Promotes Aza-Michael Addition Reactions under Solvent-Free Condition as a Heterogeneous and Reusable Catalyst  

Directory of Open Access Journals (Sweden)

Full Text Available A highly efficient, inexpensive, recyclable, convenient, and green protocol for chemoselective aza-Michael addition reactions of amines/thiols to ?,?-unsaturated compounds using silica sulfuric acid (SSA or SiO2-SO3H was developed. This method is simple, convenient and the title compounds are produced in good to excellent yields.

Sheng-Rong Guo

2009-11-01

383

Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism  

Science.gov (United States)

How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

Aussignargues, Clement; Giuliani, Marie-Cecile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Therese; Ilbert, Marianne

2012-01-01

384

GREEN MARKETING : GREEN ENVIRONMENT - STRATEGIES AND CHALLENGES  

Directory of Open Access Journals (Sweden)

Full Text Available -Green marketing is a phenomenon which has developed particular import in the modern market. This concept has enabled for the re-marketing and packing of existing products which already adhere to such guidelines. Additionally, the development of green marketing has opened the door of opportunity for companies to co-brand their products into separate line, lauding the green-friendliness of some while ignoring that of others. Such marketing techniques as will be explained are as a direct result of movement in the minds of the consumer market

Bhurelal Patidar

2014-05-01

385

Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.  

Science.gov (United States)

The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir. PMID:503456

Schidlowski, M

1979-09-01

386

Isotopic Approaches to Allying Productivity and Sulfur Metabolism in Three Symbiotic Hydrothermal Vent Molluscs  

Science.gov (United States)

Symbioses between animals and chemosynthetic bacteria predominate at hydrothermal vents. In these associations, the endosymbiotic bacteria utilize chemical reductants for the energy to support autotrophy, providing primary nutrition for the host. Despite their ubiquity at vents worldwide, little is known about the rates of productivity of these symbioses under different physico-chemical regimes or how their metabolism effects the local geochemical environment. To address this matter, we used high-pressure flow through incubations and stable isotopic tracers to maintain three genera of symbiotic mollusc - the gastropods Alviniconcha and Ifremeria, and the mussel Bathymodiolus - at vent-like conditions. Via the incorporation of isotopically labeled compounds, we assessed their productivity when using different reduced sulfur species as reductants. Using cyclic voltammetry, mass spectrometry and discrete geochemical analyses, we concurrently measured their effect on sulfur flux from the vessels. We found that the symbionts of all three genera can support autotrophy with hydrogen sulfide and thiosulfate, though at different rates. Additionally, by examining the rate of isotopic incorporation into biomass, we revealed intra-generic variability in productivity among the individuals in our experimental assemblages that are likely related to differences in the geochemical regime along the length of reactor. These geochemical gradients are due to the activity of other individuals within the vessel, since those organisms closest to the influent of the vent-like water had the highest measured carbon incorporation. Finally, we measured the uptake and excretion of sulfur species, which illustrate the degree to which these symbioses might impact local sulfur chemistry in situ. These experiments show that A) access to particular sulfur species differentially affects the productivity of vent symbioses, suggesting that competition for these substrates, both within and between host genera, could play a role in the structure of these communities, and B) that these symbioses could play a role in altering the local geochemical regime, influencing the activity and distribution of other associated microorganisms including free-living bacteria.

Beinart, R.; Gartman, A.; Sanders, J. G.; Luther, G. W.; Girguis, P. R.

2012-12-01

387

Bistability in bacteria.  

Science.gov (United States)

Gene expression in bacteria is traditionally studied from the average behaviour of cells in a population, which has led to the assumption that under a particular set of conditions all cells express genes in an approximately uniform manner. The advent of methods for visualizing gene expression in individual cells reveals, however, that populations of genetically identical bacteria are sometimes heterogeneous, with certain genes being expressed in a non-uniform manner across the population. In some cases, heterogeneity is manifested by the bifurcation into distinct subpopulations, and we adopt the common usage, referring to this phenomenon as bistability. Here we consider four cases of bistability, three from Bacillus subtilis and one from Escherichia coli, with an emphasis on random switching mechanisms that generate alternative cell states and the biological significance of phenotypic heterogeneity. A review describing additional examples of bistability in bacteria has been published recently. PMID:16879639

Dubnau, David; Losick, Richard

2006-08-01