WorldWideScience

Sample records for geologic structural analysis

  1. Process for structural geologic analysis of topography and point data

    Science.gov (United States)

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  2. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  3. Analysis of effects of geological structures in rock driving by TBM

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2006-12-01

    Full Text Available Although mechanical properties belongs to important parameter for the excavation modelling, effect of geological structures on the rock massive fragmentation is often much higher than varying rock properties. This paper deals with the analysis of geological structures. It is focused on the schistosity orientation towards the tunnel azimuth. The aim is to define of schistosity effect on the penetration rate. It is a basis creating of fuzzy rules for the performance model full-profile tunnel boring machine

  4. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    Science.gov (United States)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics

  5. Three-dimensional Geological and Geo-mechanical Modelling of Repositories for Nuclear Waste Disposal in Deep Geological Structures

    International Nuclear Information System (INIS)

    Fahland, Sandra; Hofmann, Michael; Bornemann, Otto; Heusermann, Stefan

    2008-01-01

    To prove the suitability and safety of underground structures for the disposal of radioactive waste extensive geo-scientific research and development has been carried out by BGR over the last decades. Basic steps of the safety analysis are the geological modelling of the entire structure including the host rock, the overburden and the repository geometry as well as the geo-mechanical modelling taking into account the 3-D modelling of the underground structure. The geological models are generated using the special-construction openGEO TM code to improve the visualisation an d interpretation of the geological data basis, e.g. borehole, mine, and geophysical data. For the geo-mechanical analysis the new JIFE finite-element code has been used to consider large 3-D structures with complex inelastic material behaviour. To establish the finite-element models needed for stability and integrity calculations, the geological models are simplified with respect to homogenous rock layers with uniform material behaviour. The modelling results are basic values for the evaluation of the stability of the repository mine and the long-term integrity of the geological barrier. As an example of application, the results of geological and geo-mechanical investigations of the Morsleben repository based on 3-D modelling are presented. (authors)

  6. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  7. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  8. Geological-structural models used in SR 97. Uncertainty analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P.; Nummela, J. [FINTACT Oy (Finland)

    1998-10-01

    The uncertainty of geological-structural models was studied for the three sites in SR 97, called Aberg, Beberg and Ceberg. The evaluation covered both regional and site scale models, the emphasis being placed on fracture zones in the site scale. Uncertainty is a natural feature of all geoscientific investigations. It originates from measurements (errors in data, sampling limitations, scale variation) and conceptualisation (structural geometries and properties, ambiguous geometric or parametric solutions) to name the major ones. The structures of A-, B- and Ceberg are fracture zones of varying types. No major differences in the conceptualisation between the sites were noted. One source of uncertainty in the site models is the non-existence of fracture and zone information in the scale from 10 to 300 - 1000 m. At Aberg the development of the regional model has been performed very thoroughly. At the site scale one major source of uncertainty is that a clear definition of the target area is missing. Structures encountered in the boreholes are well explained and an interdisciplinary approach in interpretation have taken place. Beberg and Ceberg regional models contain relatively large uncertainties due to the investigation methodology and experience available at that time. In site scale six additional structures were proposed both to Beberg and Ceberg to variant analysis of these sites. Both sites include uncertainty in the form of many non-interpreted fractured sections along the boreholes. Statistical analysis gives high occurrences of structures for all three sites: typically 20 - 30 structures/km{sup 3}. Aberg has highest structural frequency, Beberg comes next and Ceberg has the lowest. The borehole configuration, orientations and surveying goals were inspected to find whether preferences or factors causing bias were present. Data from Aberg supports the conclusion that Aespoe sub volume would be an anomalously fractured, tectonised unit of its own. This means that

  9. Geological-structural models used in SR 97. Uncertainty analysis

    International Nuclear Information System (INIS)

    Saksa, P.; Nummela, J.

    1998-10-01

    The uncertainty of geological-structural models was studied for the three sites in SR 97, called Aberg, Beberg and Ceberg. The evaluation covered both regional and site scale models, the emphasis being placed on fracture zones in the site scale. Uncertainty is a natural feature of all geoscientific investigations. It originates from measurements (errors in data, sampling limitations, scale variation) and conceptualisation (structural geometries and properties, ambiguous geometric or parametric solutions) to name the major ones. The structures of A-, B- and Ceberg are fracture zones of varying types. No major differences in the conceptualisation between the sites were noted. One source of uncertainty in the site models is the non-existence of fracture and zone information in the scale from 10 to 300 - 1000 m. At Aberg the development of the regional model has been performed very thoroughly. At the site scale one major source of uncertainty is that a clear definition of the target area is missing. Structures encountered in the boreholes are well explained and an interdisciplinary approach in interpretation have taken place. Beberg and Ceberg regional models contain relatively large uncertainties due to the investigation methodology and experience available at that time. In site scale six additional structures were proposed both to Beberg and Ceberg to variant analysis of these sites. Both sites include uncertainty in the form of many non-interpreted fractured sections along the boreholes. Statistical analysis gives high occurrences of structures for all three sites: typically 20 - 30 structures/km 3 . Aberg has highest structural frequency, Beberg comes next and Ceberg has the lowest. The borehole configuration, orientations and surveying goals were inspected to find whether preferences or factors causing bias were present. Data from Aberg supports the conclusion that Aespoe sub volume would be an anomalously fractured, tectonised unit of its own. This means that the

  10. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    Science.gov (United States)

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  11. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  12. Recent activity of the regional geologic structures in western Slovenia

    Directory of Open Access Journals (Sweden)

    Miloš Bavec

    2007-06-01

    Full Text Available Several important geological structures in the western Slovenia were identifiedas active and their activity was quantified. Geologic interpretation is based on the analysis of repeated leveling line campaigns data along the Sečovlje–Bled polygon. Taking intoaccount the limitations of the method – only the vertical component of displacement is measured – the following structures were identified as active:a juvenile syncline between Strunjan and Koper, the Kras Imbricate Structure, the Diva~a fault, the Ra{a fault, the Southalpine Front and the Julian Alps thrust. Vertical movement rate is relative, calculated with respect to the benchmark in Sečovlje. The largest uplift rate difference between Sečovlje and Bled is 7 mm/a.Vertical Geodynamic Activity (VGA is introduced as a link between geologic interpretation of geodetic measurements on one side and possible applications on the other as well as a mean of comparison between tectonically active regions.

  13. Structural geologic study of southeastern Missouri

    International Nuclear Information System (INIS)

    Satterfield, I.R.; Ward, R.A.

    1978-01-01

    A geologic map at 1:62,500 scale was prepared of the Cretaceous (Mesozoic) and Tertiary (cenozoic) sediments and seven major units were recognized with emphasis on faulting. Faulted sediments of Pliocene age (possibly Pleistocene) were observed and younger units are suspected to be involved. Data from hand-augered holes plus water well data were logged and plotted. The feasibility of using physical data (size analysis and pH) as a correlation tool for determining structural disturbance in loess deposits was established

  14. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala)

    International Nuclear Information System (INIS)

    Perez-Estaun, A.; Carbonell, R.; Marti, D.; Flecha, I.; Escuder Viruete, J.

    2002-01-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  15. Potential collapse due to geological structures influence in Seropan Cave, Gunung Kidul, Yogyakarta, Indonesia

    Science.gov (United States)

    Nugroho, B.; Pranantya, P. A.; Witjahjati, R.; Rofinus

    2018-01-01

    This study aims to estimate the potential collapse in the Seropan cave, based on the existing geological structure conditions in the cave. This is very necessary because in the Seropan cave will be built Microhydro installation for power plants. The electricity will be used to raise the underground river water in the cave to a barren soil surface, which can be used for surface irrigation. The method used is analysis the quality of rock mass along the cave. Analysis of rock mass quality using Geomechanical Classification or Rock Mass Rating (RMR), to determine the magnitude of the effect of geological structure on rock mass stability. The research path is divided into several sections and quality analysis is performed on each section. The results show that the influence of geological structure is very large and along the cave where the research there are several places that have the potential to collapse, so need to get serious attention in handling it. Nevertheless, the construction of this Microhydro installation can still be carried out by making a reinforcement on potentially collapsing parts

  16. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  17. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions

    Directory of Open Access Journals (Sweden)

    HE Handong

    2017-08-01

    Full Text Available Using GIS, data models of geology via geometric descriptions and expressions are being developed. However, the role played by these data models in terms of the description and expression of geological structure phenomenon is limited. To improve the semantic information in geological GIS data models, this study adopts an object-oriented method that describes and expresses the geometric and semantic features of the geological structure phenomenon using geological objects and designs a data model of regional geological structures by integrating geometry and semantics. Moreover, the study designs a semantic "vocabulary-explanation-graph" method for describing the geological phenomenon of structures. Based on the semantic features of regional geological structures and a linear classification method, it divides the regional geological structure phenomenon into 3 divisions, 10 groups, 33 classes and defines the element set and element class. Moreover, it builds the basic geometric network for geological elements based on the geometric and semantic relations among geological objects. Using the ArcGIS Diagrammer Geodatabase, it considers the regional geological structure of the Ning-Zhen Mountains to verify the data model, and the results indicate a high practicability.

  18. Geological analysis of parts of the southern Arabian Shield based on Landsat imagery

    Science.gov (United States)

    Qari, Mohammed Yousef Hedaytullah T.

    This thesis examines the capability and applicability of Landsat multispectral remote sensing data for geological analysis in the arid southern Arabian Shield, which is the eastern segment of the Nubian-Arabian Shield surrounding the Red Sea. The major lithologies in the study area are Proterozoic metavolcanics, metasediments, gneisses and granites. Three test-sites within the study area, located within two tectonic assemblages, the Asir Terrane and the Nabitah Mobile Belt, were selected for detailed comparison of remote sensing methods and ground geological studies. Selected digital image processing techniques were applied to full-resolution Landsat TM imagery and the results are interpreted and discussed. Methods included: image contrast improvement, edge enhancement for detecting lineaments and spectral enhancement for geological mapping. The last method was based on two principles, statistical analysis of the data and the use of arithmetical operators. New and detailed lithological and structural maps were constructed and compared with previous maps of these sites. Examples of geological relations identified using TM imagery include: recognition and mapping of migmatites for the first time in the Arabian Shield; location of the contact between the Asir Terrane and the Nabitah Mobile Belt; and mapping of lithologies, some of which were not identified on previous geological maps. These and other geological features were confirmed by field checking. Methods of lineament enhancement implemented in this study revealed structural lineaments, mostly mapped for the first time, which can be related to regional tectonics. Structural analysis showed that the southern Arabian Shield has been affected by at least three successive phases of deformation. The third phase is the most dominant and widespread. A crustal evolutionary model in the vicinity of the study area is presented showing four stages, these are: arc stage, accretion stage, collision stage and post

  19. A reappraaisal of the geology, geochemistry, structures and ...

    African Journals Online (AJOL)

    The largest segment of the Neoproterozoic Mozambique belt in Kenya occurs east of the north-south oriented Rift system. Geological works carried out in the country during the last few decades have progressively revealed the complexity of the geology, structures and tectonics of the Mozambique belt in the region.

  20. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    Science.gov (United States)

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  1. Combined NLCG/SBI magnetotelluric data inversion for recognition of complex geological structures

    International Nuclear Information System (INIS)

    Michal Stefaniuk

    2009-01-01

    Complete text of publication follows. Geological interpretation of magnetotelluric data is a subject of some misunderstandings. Simplified geometrically and well contrasted in resistivity models do not response for real geological environment. The aim of outstripping magnetotelluric works widely made in Polish Outer Carpathians, is general structural and lithological recognising of geological environment and distinguishing of areas where oil prospection will be projected. The geological medium is formed by sedimentary formations, strongly deformed and containing relatively thin layers with essentially differentiated parameters, overlying rather flat, high resistivity basement. Application of simplified strongly contrasted interpretation model with fluently changing parameters gives frequently results not corresponding with geological reality. Presented analysis is based on surveys located in marginal zone of Carpathianst in the area relatively well recognised, where interpreted structural and lithologic model rather well reflects real geological medium. Then, it was used as reference model for obtained results of MT data inversion. Magnetotelluric continuous profiling located along reflection seismic profile, between two deep boreholes was made. Set of results of computations allows to evaluate of effectiveness of used procedures and suggest optimum way of dealing. First stage of data interpretation was based on 1D and EMAP inversion. The section was then applied as starting model for 2D NLCG inversion. Results of this method give rather generalized resistivity distribution well reflecting structure of flysch cover but not adequate for the basement. This models was applied as starting models for SBI inversion constrained by borehole data. Results of SBI procedure well reflects relatively flat complexes of the basement, but are rather unrealistic for folded flysch cover. The another NLCG inversion was computed with stabilised model of basement obtained from SBI

  2. Structure analysis - chiromancy of the rock

    International Nuclear Information System (INIS)

    Huber, A.; Huber, M.

    1989-01-01

    The reader may initially be surprised by a comparison between structure analysis and palmistry which is, in effect, a comparison between a scientific research method on the one hand and art which is equated with magical powers on the other. In the figurative sense, however, these two fields have some points in common which should help us to obtain a first impression of the nature of geological structure analysis. Chiromancy uses the lines and the form of the hand to predict the character and the future of the person in question. In the same way, geologists use rocks and rock forms to obtain information on structure and behaviour of different formations. Structure analysis is a specialised field of geological investigation in which traces of deformation are interpreted as expressions of rockforming forces. This article discusses how and why the character of a rock formation as well as its past, present and even future behaviour can be determined using structure analysis. (author) 11 figs

  3. Reconnaissance Geology and Structure of the Coso Range, California.

    Science.gov (United States)

    1982-05-01

    annual rainfall is slightly more than 2 inches in the valleys and 5 to 6 inches in the uplands; precipitation falls mostly from October through March...and Western Nevada. 1970. P. 42. (U.S. Geological Survey Professional Paper 623, UNCLASSIFIED.) 6 H. E. von Heiene. "Structural Geology and Gravimetry

  4. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  5. Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method

    Science.gov (United States)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.

    2018-04-01

    The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.

  6. The application of structure from motion (SfM) to identify the geological structure and outcrop studies

    Science.gov (United States)

    Saputra, Aditya; Rahardianto, Trias; Gomez, Christopher

    2017-07-01

    Adequate knowledge of geological structure is an essential for most studies in geoscience, mineral exploration, geo-hazard and disaster management. The geological map is still one the datasets the most commonly used to obtain information about the geological structure such as fault, joint, fold, and unconformities, however in rural areas such as Central Java data is still sparse. Recent progress in data acquisition technologies and computing have increased the interest in how to capture the high-resolution geological data effectively and for a relatively low cost. Some methods such as Airborne Laser Scanning (ALS), Terrestrial Laser Scanning (TLS), and Unmanned Aerial Vehicles (UAVs) have been widely used to obtain this information, however, these methods need a significant investment in hardware, software, and time. Resolving some of those issues, the photogrammetric method structure from motion (SfM) is an image-based method, which can provide solutions equivalent to laser technologies for a relatively low-cost with minimal time, specialization and financial investment. Using SfM photogrammetry, it is possible to generate high resolution 3D images rock surfaces and outcrops, in order to improve the geological understanding of Indonesia. In the present contribution, it is shown that the information about fault and joint can be obtained at high-resolution and in a shorter time than with the conventional grid mapping and remotely sensed topographic surveying. The SfM method produces a point-cloud through image matching and computing. This task can be run with open- source or commercial image processing and 3D reconstruction software. As the point cloud has 3D information as well as RGB values, it allows for further analysis such as DEM extraction and image orthorectification processes. The present paper describes some examples of SfM to identify the fault in the outcrops and also highlight the future possibilities in terms of earthquake hazard assessment, based on

  7. The need for the geologic hazard analysis

    International Nuclear Information System (INIS)

    Mingarro, E.

    1984-01-01

    The parameters which are considered in the hazard analysis associated with the movements of the Earth Crust are considered. These movements are classified as: fast movements or seismic movements, which are produced in a certain geologic moment at a speed measured in cm/sg, and slow movements or secular movements, which take place within a long span of time at a speed measured by cm/year. The relations space/time are established after Poisson and Gumbel's probabilistic models. Their application is analyzed according to the structural gradient fields, which fall within Matteron's geostatistics studies. These statistic criteria should be analyzed or checked up in each geo-tectonic environment. This allows the definition of neotectonic and seismogenetic zones, because it is only in these zones where the probabilistic or deterministic criteria can be applied to evaluate the hazard and vulnerability, that is, to know the geologic hazard of every ''Uniform'' piece of the Earth Crust. (author)

  8. ON DISCRETE STRUCTURE OF GEOLOGIC MEDIUM AND CONTINUAL APPROACH TO MODELING ITS MOVEMENTS

    OpenAIRE

    Sh. A. Mukhamediev

    2016-01-01

    This paper discusses the structure of a geologic medium represented by accessible lithified rocks and provides an overview of methods used to describe its movements. Two basic opinions are considered in the framework of the discussion: (1) an initially homogeneous and continuous geologic medium acquires the structure composed of blocks in the process of the geologic medium’s deformation/destruction/degradation, and (2) a geologic medium is composed of blocks (and often has hierarchic, active,...

  9. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  10. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  11. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  12. Use of space imagery for studying geologic structure of the North-Ustyurtskaya oil and gas-bearing region

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Yu A; Solovyova, L I

    1981-01-01

    Overview of issues concerning landscape and geomorphologic analysis of space imagery and the subsequent interpretation of structural and geologic values with use of geophysical data. Examples of clues of different value structural elements on images of differing generalization levels. Potential for studying overall patterns for local structures on the basis of structural and geomorphologic zonation is discussed.

  13. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  14. ON DISCRETE STRUCTURE OF GEOLOGIC MEDIUM AND CONTINUAL APPROACH TO MODELING ITS MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Sh. A. Mukhamediev

    2016-01-01

    Full Text Available This paper discusses the structure of a geologic medium represented by accessible lithified rocks and provides an overview of methods used to describe its movements. Two basic opinions are considered in the framework of the discussion: (1 an initially homogeneous and continuous geologic medium acquires the structure composed of blocks in the process of the geologic medium’s deformation/destruction/degradation, and (2 a geologic medium is composed of blocks (and often has hierarchic, active, energy-saturated features, and the continuity model is thus not valid for describing the geologic medium’s deformation. Proponents of the first point of view actively apply the standard or modified continuum model of a solid deformed body (SDB in estimations of the stress-strain state, but the input parameters of this model do not contain any information on discreteness in principle. Authors who support the second opinion, either explicitly or implicitly assume that the block structure of the geologic medium, which is detectable by geological methods, makes a direct and unambiguous impact on all other mechanical properties of the geologic medium and, above all, on the nature of its movements.Based on results obtained by interpreting the data collected in our long-term field studies of rock fracturing, mathematical processing of GPS-measurements, and theoretical models, we agree with the concept of the geologic medium’s block structure, but argue that the geologic block-structure property is not acquired but congenital. Regarding sedimentary rocks, it means that the discrete structure has been already embodied in the rock before sediment lithification, regardless of the intensity of macroscopic deformations. A discrete structure is the form of the geologic medium existence and a cause of the congenital anisotropy of the geologic medium’s strength characteristics. Due to subsequent deformation of the geologic medium, some elements of the structure can

  15. Location of geologic structures from interpretation of ERTS-1 imagery, Carbon County, Wyoming

    Science.gov (United States)

    Marrs, R. W.; Barton, R.

    1974-01-01

    The author has identified the following significant results. Possible geologic structures in the basin sediments of Carbon County and vicinity were located by interpretation of ERTS-1 imagery. These same structures are not evident on existing conventional geologic maps of the area. Subsequent field checks confirmed much of the geologic interpretation, but revealed that two apparent closed structures identified on the ERTS-1 imagery were actually topographic pseudostructures in flat or homoclinal sediments. Stereoscopic coverage (where available) allows the interpreter to avoid such misinterpretations.

  16. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  17. Determination of subsurface geological structure with borehole gravimetry

    International Nuclear Information System (INIS)

    Clark, S.R.; Hearst, J.R.

    1983-07-01

    Conventional gamma-gamma and gravimetric density measurements are routinely gathered for most holes used for underground nuclear tests. The logs serve to determine the subsurface structural geology near the borehole. The gamma-gamma density log measures density of the rock within about 15 cm of the borehole wall. The difference in gravity measured at two depths in a borehole can be interpreted in terms of the density of an infinite, homogeneous, horizontal bed between those depths. When the gravimetric density matches the gamma-gamma density over a given interval it is assumed that the bed actualy exists, and that rocks far from the hole must be the same as those encountered adjacent to the borehole. Conversely, when the gravimetric density differs from the gamma-gamma density it is apparent that the gravimeter is being influenced by a rock mass of different density than that at the hole wall. This mismatch can be a powerful tool to deduce the local structural geology. The geology deduced from gravity mesurements in emplacement hole, U4al, and the associated exploratory hole, UE4al, is an excellent example of the power of the method

  18. Geological-structural interpretation using products of remote sensing in the region of Carrancas, Minas Gerais, Brazil

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The efficiency of some criteria developed for the utilization of small scale and low resolution remote sensing products to map geological and structural features was demonstrated. Those criteria were adapted from the Logical Method of Photointerpretation which consists of textural qualitative analysis of landforms and drainage net patterns. LANDSAT images of channel 5 and 7, 4 LANDSAT-RBV scenes, and 1 radar mosiac were utilized. The region of study is characterized by supracrustal metassediments (quartzites and micaschist) folded according to a "zig-zag" pattern and gnaissic basement. Lithological-structural definition was considered outstanding when compared to data acquired during field work, bibliographic data and geologic maps acquired in larger scales.

  19. Reflection of block neotectonics in geological structure of paleogene strata of Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Skvortsov, V.V.; Oleksandrova, N.V.; Khodorovs'kij, A.Ya.

    2014-01-01

    Neotectonic block differentiation of Chernobyl Exclusion zone area was fixed by the results of the geological and structure analysis of paleogene strata in complex with the space survey data interpretation. Structural plan of the latest tectonic movements had a block character; it was shown by the fracture systems, which represent the components of known regional tectonic zones of various trends and are found in the features of phanerozoic rock mass structure. The territory under study is divided into two parts - the northern one, where in the neotectonic movements are generally more intensive with manifestation practically all over the fracture zones, and the southern part, where in the newest breaks belong mainly to submeridional also to south-western regional fracture zones. The southern part of the Exclusion zone, as a whole, holds the greatest promise by comparison with the northern one in the view of neotectonic criteria regarding the geological repository siting for radioactive waste disposal

  20. SITE-94. Development of a geological and a structural model of Aespoe, southeastern Sweden

    International Nuclear Information System (INIS)

    Tiren, S.A.; Beckholmen, M.; Askling, P.; Voss, C.

    1996-12-01

    The objective of the present study is to construct three-dimensional geological and structural models to be used within the SKI SITE-94 project as a base for modelling hydrogeological, hydrochemical, and rock mechanical bedrock conditions, mass transport and layout of a hypothetical repository. The basic input data in the SITE-94 geological and structural models are restricted to geological and structural readings and geophysical measurements made prior to building the Hard Rock Laboratory. 114 refs, 82 figs, 28 tabs

  1. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  2. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  3. Structural geology practice and learning, from the perspective of cognitive science

    Science.gov (United States)

    Shipley, Thomas F.; Tikoff, Basil; Ormand, Carol; Manduca, Cathy

    2013-09-01

    Spatial ability is required by practitioners and students of structural geology and so, considering spatial skills in the context of cognitive science has the potential to improve structural geology teaching and practice. Spatial thinking skills may be organized using three dichotomies, which can be linked to structural geology practice. First, a distinction is made between separating (attending to part of a whole) and combining (linking together aspects of the whole). While everyone has a basic ability to separate and combine, experts attend to differences guided by experiences of rock properties in context. Second, a distinction is made between seeing the relations among multiple objects as separate items or the relations within a single object with multiple parts. Experts can flexibly consider relations among or between objects to optimally reason about different types of spatial problems. Third, a distinction is made between reasoning about stationary and moving objects. Experts recognize static configurations that encode a movement history, and create mental models of the processes that led to the static state. The observations and inferences made by a geologist leading a field trip are compared with the corresponding observations and inferences made by a cognitive psychologist interested in spatial learning. The presented framework provides a vocabulary for discussing spatial skills both within and between the fields of structural geology and cognitive psychology.

  4. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  5. Geological Structure and Radon Hazards in Lublin Region

    Directory of Open Access Journals (Sweden)

    Lucjan Gazda

    2018-03-01

    Full Text Available The purpose of the study was to show the relationship between the geological structure of the Lublin region (eastern Poland and radon concentrations in the ground air, and therefore, in the indoor environment of buildings located in that area. The study was based on the information pertaining to the geological structure of Lublin region available in the literature. The radon concentrations in buildings, caves, wells, as well as coal, phosphate and chalk mines were measured with both passive and active methods. Elemental analyses and uranium and lead isotope analyses of ground rocks were also performed. The conducted studies indicated that the sources of radon in Lublin region constitute Paleogene and Mesozoic sedimentary rocks rich in radionuclides. Application of radon remediation methods is recommended in the existing buildings located in the vicinity of these rocks, which are characterized by relatively high radon exhalations. On the other hand, the designed buildings should employ the measures protecting against harmful effects of radon presence.

  6. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  7. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  8. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  9. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  10. Improvement of geological subsurface structure models for Kanto area, Japan, based on records of microtremor array and earthquake observations

    Science.gov (United States)

    Wakai, A.; Senna, S.; Jin, K.; Cho, I.; Matsuyama, H.; Fujiwara, H.

    2017-12-01

    To estimate damage caused by strong ground motions from a large earthquake, it is important to accurately evaluate broadband ground-motion characteristics in wide area. For realizing that, it is one of the important issues to model detailed subsurface structure from top surface of seismic bedrock to ground surface.Here, we focus on Kanto area, including Tokyo, where there are thicker sedimentary layers. We, first, have ever collected deep bore-hole data, soil physical properties obtained by some geophysical explorations, geological information and existing models for deep ground from top surface of seismic bedrock to that of engineering bedrock, and have collected a great number of bore-hole data and surficial geological ones for shallow ground from top surface of engineering bedrock to ground surface. Using them, we modeled initial geological subsurface structure for each of deep ground and shallow one. By connecting them appropriately, we constructed initial geological subsurface structure models from top surface of seismic bedrock to ground surface.In this study, we first collected a lot of records obtained by dense microtremor observations and earthquake ones in the whole Kanto area. About microtremor observations, we conducted measurements from large array with the size of hundreds of meters to miniature array with the size of 60 centimeters to cover both of deep ground and shallow one. And then, using ground motion characteristics such as disperse curves and H/V(R/V) spectral ratios obtained from these records, the initial geological subsurface structure models were improved in terms of velocity structure from top surface of seismic bedrock to ground surface in the area.We will report outlines on microtremor array observations, analysis methods and improved subsurface structure models.

  11. The results of borehole acoustic imaging from a granite in the Jihlava District, Czech Republic: implications for structural geological research

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie; Novák, P.; Brož, Milan; Sosna, K.; Pitrák, K.; Kasíková, J.; Rukavičková, L.; Maňák, L.

    2012-01-01

    Roč. 4, č. 4 (2012), s. 92-101 ISSN 1916-9779 R&D Projects: GA MPO(CZ) FR-TI1/367 Institutional research plan: CEZ:AV0Z30460519 Keywords : acoustic borehole imaging * structural geology * paleostress analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  12. Study of geologic-structural situation around Semipalatinsk test site test - holes using space images automated decoding method

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.; Ivanchenko, G.N.

    2004-01-01

    Performance of underground nuclear explosions (UNE) leads to irreversible changes in geological environment around the boreholes. In natural environment it was detected inhomogeneity of rock massif condition changes, which depended on characteristics of the underground nuclear explosion, anisotropy of medium and presence of faulting. Application of automated selection and statistic analysis of unstretched lineaments in high resolution space images using special software pack LESSA allows specifying the geologic-structural features of Semipalatinsk Test Site (STS), ranging selected fracture zones, outlining and analyzing post-explosion zone surface deformations. (author)

  13. Use of high-resolution satellite images for detection of geological structures related to Central Andes geothermal field, Chile.

    Science.gov (United States)

    Benavides-Rivas, C. L.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2014-12-01

    Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT 8 satellite have been used to delineate the geological structures related to the potential geothermal reservoirs located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique, using the ADALGEO software, developed by [Soto et al., 2013]. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields. A lineament is generally defined as a straight or slightly curved feature in the landscape visible satellite image as an aligned sequence of pixel intensity contrast compared to the background. The system features extracted from satellite images is not identical to the geological lineaments that are generally determined by ground surveys, however, generally reflects the structure of faults and fractures in the crust. A temporal sequence of eight Landsat multispectral images of Central Andes geothermal field, located in VI region de Chile, was used to study changes in the configuration of the lineaments during 2011. The presence of minerals with silicification, epidotization, and albitization, which are typical for geothrmal reservoirs, was also identified, using their spectral characteristics, and subsequently corroborated in the field. Both lineament analysis and spectral analysis gave similar location of the reservoir, which increases reliability of the results.

  14. Multivariate Analysis Of Ground Water Characteristics Of Geological Formations Of Enugu State Of Nigeria

    Directory of Open Access Journals (Sweden)

    Orakwe

    2015-08-01

    Full Text Available Abstract The chemometric data mining techniques using principal factor analysis PFA and hierarchical cluster analysis CA was employed to evaluate and to examine the borehole characteristics of geological formations of Enugu State of Nigeria to determine the latent structure of the borehole characteristics and to classify 9 borehole parameters from 49 locations into borehole groups of similar characteristics. PFA extracted three factors which accounted for a large proportion of the variation in the data 77.305 of the variance. Out of nine parameters examined the first PFA had the highest number of variables loading on a single factor where four borehole parameters borehole depth borehole casing static water level and dynamic water level loaded on it with positive coefficient as the most significant parameters responsible for variation in borehole characteristics in the study. The CA employed in this study to identified three clusters. The first cluster delineated stations that characterise Awgu sandstone geological formation while the second cluster delineated Agbani sandstone geological formation. The third cluster delineated Ajali sandstone formation. The CA grouping of the borehole parameters showed similar trend with PFA hence validating the efficiency of chemometric data mining techniques in grouping of variations in the borehole characteristics in the geological zone of the study area.

  15. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  16. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    Science.gov (United States)

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  17. Use of high-resolution satellite images for detection of geological structures related to Calerias geothermal field, Chile

    Science.gov (United States)

    Arellano-Baeza, A. A.; Urzua, L.

    2011-12-01

    Chile has enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile. It was done by applying the lineament extraction technique developed by authors. These structures have been compared with the distribution of main geological structures obtained in the field. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  18. Geological Interpretation of the Structure and Stratigraphy of the A/M Area, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Aadland, R.K.; Cumbest, R.J.; Stephenson, D.E.; Syms, F.H.

    1997-12-01

    The geological interpretation of the structure and stratigraphy of the A/M Area was undertaken in order to evaluate the effects of deeper Cretaceous aged geological strata and structure on shallower Tertiary horizons.

  19. Geological Interpretation of the Structure and Stratigraphy of the A/M Area, Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Wyatt, D.; Aadland, R.K.; Cumbest, R.J.; Stephenson, D.E.; Syms, F.H.

    1997-12-01

    The geological interpretation of the structure and stratigraphy of the A/M Area was undertaken in order to evaluate the effects of deeper Cretaceous aged geological strata and structure on shallower Tertiary horizons

  20. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh

    2015-07-26

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  1. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2015-01-01

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  2. Geological techniques used in the siting of South Africa's nuclear facilities

    International Nuclear Information System (INIS)

    Andersen, N.J.B.

    1990-01-01

    Nuclear site selection studies begin with an initial screening phase in order to pick regions which could be potentially suitable. When assessing a potential nuclear site from a structural geological point of view, the most important factors are the presence of 'capable faults', the seismicity of the area, and the existence of good foundation rock. A geological evaluation of a potential site involves a literature survey for all existing geological data on the site, geophysical investigations, structural domain analysis and geological mapping

  3. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  4. The Strabo digital data system for Structural Geology and Tectonics

    Science.gov (United States)

    Tikoff, Basil; Newman, Julie; Walker, J. Doug; Williams, Randy; Michels, Zach; Andrews, Joseph; Bunse, Emily; Ash, Jason; Good, Jessica

    2017-04-01

    We are developing the Strabo data system for the structural geology and tectonics community. The data system will allow researchers to share primary data, apply new types of analytical procedures (e.g., statistical analysis), facilitate interaction with other geology communities, and allow new types of science to be done. The data system is based on a graph database, rather than relational database approach, to increase flexibility and allow geologically realistic relationships between observations and measurements. Development is occurring on: 1) A field-based application that runs on iOS and Android mobile devices and can function in either internet connected or disconnected environments; and 2) A desktop system that runs only in connected settings and directly addresses the back-end database. The field application also makes extensive use of images, such as photos or sketches, which can be hierarchically arranged with encapsulated field measurements/observations across all scales. The system also accepts Shapefile, GEOJSON, KML formats made in ArcGIS and QGIS, and will allow export to these formats as well. Strabo uses two main concepts to organize the data: Spots and Tags. A Spot is any observation that characterizes a specific area. Below GPS resolution, a Spot can be tied to an image (outcrop photo, thin section, etc.). Spots are related in a purely spatial manner (one spot encloses anther spot, which encloses another, etc.). Tags provide a linkage between conceptually related spots. Together, this organization works seamlessly with the workflow of most geologists. We are expanding this effort to include microstructural data, as well as to the disciplines of sedimentology and petrology.

  5. Neutron activation analysis in geological samples containing rare earths, uranium and thorium

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Figueiredo, A.M.G.; Berretta, J.R.; Soares, J.C.A.C.R.; Fratin, L.; Goncales, O.L.; Botelho, S.

    1990-01-01

    The neutron activation analysis method was used for determination of rare earths, uranium, thorium and other tracks in geological samples, under the geological standard JB-1 (Geological Survey of Japan) and S-8 and S-13 (IAEA). (L.C.J.A.)

  6. Geological heterogeneity: Goal-oriented simplification of structure and characterization needs

    Science.gov (United States)

    Savoy, Heather; Kalbacher, Thomas; Dietrich, Peter; Rubin, Yoram

    2017-11-01

    Geological heterogeneity, i.e. the spatial variability of discrete hydrogeological units, is investigated in an aquifer analog of glacio-fluvial sediments to determine how such a geological structure can be simplified for characterization needs. The aquifer analog consists of ten hydrofacies whereas the scarcity of measurements in typical field studies precludes such detailed spatial models of hydraulic properties. Of particular interest is the role of connectivity of the hydrofacies structure, along with its effect on the connectivity of mass transport, in site characterization for predicting early arrival times. Transport through three realizations of the aquifer analog is modeled with numerical particle tracking to ascertain the fast flow channel through which early arriving particles travel. Three simplification schemes of two-facies models are considered to represent the aquifer analogs, and the velocity within the fast flow channel is used to estimate the apparent hydraulic conductivity of the new facies. The facies models in which the discontinuous patches of high hydraulic conductivity are separated from the rest of the domain yield the closest match in early arrival times compared to the aquifer analog, but assuming a continuous high hydraulic conductivity channel connecting these patches yields underestimated early arrivals times within the range of variability between the realizations, which implies that the three simplification schemes could be advised but pose different implications for field measurement campaigns. Overall, the results suggest that the result of transport connectivity, i.e. early arrival times, within realistic geological heterogeneity can be conserved even when the underlying structural connectivity is modified.

  7. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala); Estudios geologico-estructurales y geofisicos en Mina Ratones (Pluton de Albala)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Estaun, A; Carbonell, R; Marti, D; Flecha, I [Instituto de Ciencias de la Tierra Jaume Almera. Barcelona (Spain); Escuder Viruete, J [Universidad complutense de Madrid. Madrid (Spain)

    2002-07-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  8. Risk analysis of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Girardi, F.; de Marsily, G.; Weber, J.

    1980-01-01

    The problems of risk analysis of geological disposal of radioactive waste are briefly summarized. Several characteristics, such as the very long time span considered, make it rather unique among the problems of modern society. The safety of nuclear waste disposal in geological formations is based on several barriers, natural and man-made, which prevent disposed radionuclides from reaching the biosphere. They include a) the physico-chemical form of conditioned waste, b) the waste container, c) the geological isolation, d) buffering and backfilling materials, radionuclide retention in the geosphere and e) environmental dilution and isolation processes. The knowledge available on each barrier and its modelling is reviewed. Specific disposal strategies in clay, granite and salt formations are considered, outlining the performance of the barriers in each particular strategy, and results obtained in preliminary evaluations

  9. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  10. Structural mapping from MSS-LANDSAT imagery: A proposed methodology for international geological correlation studies

    Science.gov (United States)

    Dejesusparada, N. (Principal Investigator); Crepani, E.; Martini, P. R.

    1980-01-01

    A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and in relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Linemanet in Cameroon. Ongoing research to complete the methodological stages includes the mapping of the West African structural framework, reconstruction of the pre-drift puzzle, and an analysis of the counterpart correlations.

  11. Santos Basin Geological Structures Mapped by Cross-gradient Method

    Science.gov (United States)

    Jilinski, P.; Fontes, S. L.

    2011-12-01

    Introduction We mapped regional-scale geological structures localized in offshore zone Santos Basin, South-East Brazilian Coast. The region is dominated by transition zone from oceanic to continental crust. Our objective was to determine the imprint of deeper crustal structures from correlation between bathymetric, gravity and magnetic anomaly maps. The region is extensively studied for oil and gas deposits including large tectonic sub-salt traps. Our method is based on gradient directions and their magnitudes product. We calculate angular differences and cross-product and access correlation between properties and map structures. Theory and Method We used angular differences and cross-product to determine correlated region between bathymetric, free-air gravity and magnetic anomaly maps. This gradient based method focuses on borders of anomalies and uses its morphological properties to access correlation between their sources. We generated maps of angles and cross-product distribution to locate correlated regions. Regional scale potential fields maps of FA and MA are a reflection of the overlaying and overlapping effects of the adjacent structures. Our interest was in quantifying and characterizing the relation between shapes of magnetic anomalies and gravity anomalies. Results Resulting maps show strong correlation between bathymetry and gravity anomaly and bathymetry and magnetic anomaly for large strictures including Serra do Mar, shelf, continental slope and rise. All maps display the regional dominance of NE-SW geological structures alignment parallel to the shore. Special interest is presented by structures transgressing this tendency. Magnetic, gravity anomaly and bathymetry angles map show large correlated region over the shelf zone and smaller scale NE-SW banded structures over abyssal plane. From our interpretation the large band of inverse correlation adjacent to the shore is generated by the gravity effect of Serra do Mar. Disrupting structures including

  12. Macro- and micro- geodynamic of Terebliya-Riksk geodetic man-caused polygon of Ukrainian Carpathians influenced by specificities of structure-geological and hydro-geological conditions

    Science.gov (United States)

    Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.

    2009-04-01

    Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.

  13. Neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Greef, G.J.

    1977-05-01

    In neutron activation analysis the precision and accuracy of results are often misleading, since only the statistical errors which accompany the measuring of radioactivity are taken into consideration. Several other factors can, however, also influence precision and accuracy. It was found that a geological sample was contaminated with the construction material of the mill in which it had been pulverised. Several geometrical differences which could possibly play a role were also investigated. Impurities in the irradiation containers affect the determination of some elements in the samples; the contamination materials in quarts irradiation tubes were determined. The flux gradients which may effect the relative activities of the samples and standards were measured. Suitable standards are necessary to ensure accurate analyses of geological material. Available natural standards were critically evaluated and several methods were investigated by which synthetic standards may be prepared. In order to accurately determine gallium, lanthanum and samarium by means of neutron activation analysis, sodium first had to be removed. After irradiation the sample was dissolved in a mixture of acids and the soidium absorbed from the solution on a hydrated antimony pentoxide column. Gallium, lanthanum and samarium activities were measured by means of precision gamma-spectrometry

  14. Improving the effectiveness of geological prospecting with neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1984-01-01

    Two examples of the use of neutron activation analysis to improve the effectiveness of geological prospecting are examined. The first is application to the direct hydrogeochemical prospecting for gold in surface waters. The second shows how multielement data banks produced by NAA for a geological formation provide a powerful method for the classification of ore bodies and sedimentary materials

  15. A quantitative geologic study of heterogeneity

    International Nuclear Information System (INIS)

    Davis, J.M.; Phillips, F.M.

    1990-01-01

    Spatial variation of hydraulic conductivity has been generally recognized as the dominant medium-dependent control on the transport and dispersion of contaminants in ground water. An empirical study focusing on the relationship between patters of sedimentology and patterns of permeability is being conducted at an outcrop of the Pliocene/Pleistocene Sierra Ladrones formation, central New Mexico. Methods of geostatistics and sedimentary basin analysis are employed to study the problem of aquifer heterogeneity. An air permeameter provides a means of obtaining extensive field measurements of air-flow rates through the sediments. These flow rates are subsequently used to characterize the permeability distribution of the outcrop. Both the geologic information and the air-flow rate data provide the basis for analysis of aquifer heterogeneity. Preliminary geologic mapping indicates that the sediments in the study area are the products of an arid fluvial/interfluvial depositional environment. Probability distribution analysis of the air-flow rate data suggests that the permeability of these sediments is log-normally distributed. The air permeability data are used to estimate variograms and correlation lengths in both the horizontal and vertical directions. At the scale of 10's of centimeters, the horizontal variograms exhibit exponential variogram behaviour . When two distinct lithologies are present, the correlation structure appears to be a nested exponential. Variogram analysis of estimated mean permeability at the scale of meters also shows evidence of a nested correlation structure in the horizontal direction and a periodic correlation structure in the vertical direction. Results of this study suggest that there is a direct connection between observable geologic structure and permeability statistics. (Author) (35 refs., 10 figs., 5 tabs.)

  16. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    Science.gov (United States)

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  17. Prediction of long-term crustal movement for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Tabei, Kazuto; Koide, Hitoshi; Tashiro, Toshiharu

    2000-01-01

    Long-term stability of the geological environment is essential for the safe geological disposal of radioactive waste, for which it is necessary to predict the crustal movement during an assessment period. As a case study, a numerical analysis method for the prediction of crustal movement in Japan is proposed. A three-dimensional elastic analysis by FEM for the geological block structure of the Kinki region and the Awaji-Rokko area is presented. Stability analysis for a disposal cavern is also investigated. (author)

  18. Geologic structure mapping database Spent Fuel Test - Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1984-01-01

    Information on over 2500 discontinuities mapped at the SFT-C is contained in the geologic structure mapping database. Over 1800 of these features include complete descriptions of their orientations. This database is now available for use by other researchers. 6 references, 3 figures, 2 tables

  19. Mapping Geological Structures In Wadi Ghoweibaarea, Northwest Gulf Of Suez, Egypt, Using Aster-Spot Data Fusion And Aster DEM

    International Nuclear Information System (INIS)

    Abdeen, M.M.; Hassan, S.M.; EL-Kazzaz, Y.A.H.A.; Attia, G.M.; Yehia, M.A.

    2009-01-01

    Practical and economical constraints prompt the need of obtaining lithological and structural information for development of desert areas with reduced field effort. The fusion of multi-sensor satellite data is an effective mean of exploiting the complimentary nature of different data types. This technique allows fusion of spectral-spectral information of multi-source data with high accuracy. In the present study, fusion of SPOT and ASTER data was applied to test the potentiality of this technique in mapping geological formations and structural lineaments in Wadi Ghoweiba area, to the west of the northwestern tip of the Gulf of Suez, Egypt. ASTER data is characterized by a wide range of spectral bands (14 bands), while SPOT panchromatic data is characterized by high (10 meters) spatial resolution. Based on spectral characteristic analysis (SCA) of the 3 VNIR and the 6 SWIR bands of ASTER data, two false-color band-ratio images (1/3, 2/5, and 4/ 9) and (1/5, 8/9, and 4/6) in R, G, B were produced for better lithological discrimination. SPOT panchromatic image data was fused with ASTER band ratio images data using principal component (PC) and color normalization or Brovey transformation techniques. The fused images proved to be excellent for lithological discrimination. ASTER data includes bands 3N (Nadir) and 3B (Backward) that are acquired in the spectral range of near infrared region (from 0.78 to 0.86 microns) allowing extraction of digital elevation model (DEM). Three-dimensional perspective views were generated by draping SPOT-ASTER ratio fused images over ASTER DEM. This technique was used to enhance morphologically-defined structures. The fused images and the 3D perspective views were interpreted to produce a photo geological-structural map that was verified using the available geological maps and subsequent field check. The produced photo geological map indicates that fusion of SPOT and ASTER ratio image's data is a reliable technique for geological mapping

  20. Geological survey by high resolution electrical survey on granite areas

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihiro; Yamada, Naoyuki

    2002-03-01

    As an Integral part of the geological survey in 'The study of the regions ground water flow system' that we are carrying out with Tono Geoscience Center, we proved the relation between the uncontinuation structure such as lineament in the base rock and resistivity structure (resistivity distribution), for the purpose of that confirms the efficacy of the high resolution electrical survey as geological survey, we carried out high resolution electrical survey on granite area. We obtained the following result, by the comparison of resistivity distribution with established geological survey, lineament analysis and investigative drilling. 1. The resistivity structure of this survey area is almost able to classify it into the following four range. 1) the low resistivity range of 50-800 Ωm, 2) The resistivity range like the middle of 200-2000 Ωm, 3) The high resistivity range of 2000 Ωm over, 4) The low resistivity range of depth of the survey line 400-550 section. 2. The low resistivity range of 4) that correspond with the established geological data is not admitted. 3. It was confirmed that resistivity structure almost correspond to geological structure by the comparison with the established data. 4. The small-scale low resistivity area is admitted in the point equivalent to the lineament position of established. 5. We carried out it with the simulation method about the low resistivity range of 4). As a result, it understood that it has the possibility that the narrow ratio low resistivity area is shown as the wide ratio resistivity range in the analysis section. In the survey in this time, it is conceivable that the resistivity distribution with the possibility of the unhomogeneous and uncontinuation structure of the base rock is being shown conspicuously, the efficacy of the high resolution resistivity survey as geological survey on granite was shown. (author)

  1. CONTRIBUTION OF SATELLITE ALTIMETRY DATA IN GEOLOGICAL STRUCTURE RESEARCH IN THE SOUTH CHINA SEA

    Directory of Open Access Journals (Sweden)

    T. D. Tran

    2016-06-01

    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  2. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  3. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    Science.gov (United States)

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.

    2008-12-01

    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  4. The growth of geological structures by repeated earthquakes, 1, conceptual framework

    Science.gov (United States)

    King, G.C.P.; Stein, R.S.; Rundle, J.B.

    1988-01-01

    In many places, earthquakes with similar characteristics have been shown to recur. If this is common, then relatively small deformations associated with individual earthquake cycles should accumulate over time to create geological structures. It is shown that existing models developed to describe leveling line changes associated with the seismic cycle can be adapted to explain geological features associated with a fault. In these models an elastic layer containing the fault overlies a viscous half-space with a different density. Fault motion associated with an earthquake results in immediate deformation followed by a long period of readjustment as stresses relax in the viscous layer and isostatic equilibrium is restored. The flexural rigidity of the crust (or the apparent elastic thickness) provides the main control of the width of a structure. The loading due to erosion and deposition of sediment determines the ratio of uplift to subsidence between the two sides of the fault. -Authors

  5. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  6. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  7. Development of multiple source data processing for structural analysis at a regional scale. [digital remote sensing in geology

    Science.gov (United States)

    Carrere, Veronique

    1990-01-01

    Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.

  8. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    Science.gov (United States)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  9. Aesthetics-based classification of geological structures in outcrops for geotourism purposes: a tentative proposal

    Science.gov (United States)

    Mikhailenko, Anna V.; Nazarenko, Olesya V.; Ruban, Dmitry A.; Zayats, Pavel P.

    2017-03-01

    The current growth in geotourism requires an urgent development of classifications of geological features on the basis of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e., non-geological) classifications are necessary to take into account visions and attitudes of visitors.

  10. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Science.gov (United States)

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  11. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Directory of Open Access Journals (Sweden)

    Thomas H A Haverkamp

    Full Text Available Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm sediment communities are affected by local conditions within the sediment.

  12. Problems of solidificated radioactive wastes burial into deep geological structures

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Leonov, E.A.; Romadin, N.M.; Shishcits, I.Yu.

    1981-01-01

    Perspectives are noted of the radioactive wastes burial into deep geopogical structures. For these purposes it has been proposed to investigate severap types of rocks, which do not have intensive gas-generation when beeng heated; salt deposits and clays. Basing on the results of calculations it has been shown that the dimentions of zones of substantial deformations in the case of the high-level radioactive wastes burial to not exceed several hundreds of meters. Conclusion is made that in the case of choosing the proper geotogicat structure for burial and ir the case of inclusion in the structure of the burial site a zone of sanitary alienation, it is possible to isolate wastes safely for all the period of preservation. Preliminary demands have been formulated to geological structures and underground burial sites. As main tasks for optimizatiop of burial sited are considered: determination of necessary types, number and reliability of barriers which ensure isolation of wastes; to make prognoses of the stressed and deformed state of a geological massif on the influence of thermal field; investigation in changes of chemical and physical properties of rocks under heat, radiative and chemical influence; estimation of possible diffusion of radioactivity in a mountin massif; development of a rational mining-thechnological schemes of the burual of wastes of different types. A row of tasks in the farmeworks of this probtem are sotved successfutty. Some resutts are given of the theoretical investigations in determination of zones of distructions of rocks because of heat-load [ru

  13. Geological Hazards analysis in Urban Tunneling by EPB Machine (Case study: Tehran subway line 7 tunnel

    Directory of Open Access Journals (Sweden)

    Hassan Bakhshandeh Amnieh

    2016-06-01

    Full Text Available Technological progress in tunneling has led to modern and efficient tunneling methods in vast underground spaces even under inappropriate geological conditions. Identification and access to appropriate and sufficient geological hazard data are key elements to successful construction of underground structures. Choice of the method, excavation machine, and prediction of suitable solutions to overcome undesirable conditions depend on geological studies and hazard analysis. Identifying and investigating the ground hazards in excavating urban tunnels by an EPB machine could augment the strategy for improving soil conditions during excavation operations. In this paper, challenges such as geological hazards, abrasion of the machine cutting tools, clogging around these tools and inside the chamber, diverse work front, severe water level fluctuations, existence of water, and fine-grained particles in the route were recognized in a study of Tehran subway line 7, for which solutions such as low speed boring, regular cutter head checks, application of soil improving agents, and appropriate grouting were presented and discussed. Due to the presence of fine particles in the route, foam employment was suggested as the optimum strategy where no filler is needed.

  14. The EVEREST project: sensitivity analysis of geological disposal systems

    International Nuclear Information System (INIS)

    Marivoet, Jan; Wemaere, Isabelle; Escalier des Orres, Pierre; Baudoin, Patrick; Certes, Catherine; Levassor, Andre; Prij, Jan; Martens, Karl-Heinz; Roehlig, Klaus

    1997-01-01

    The main objective of the EVEREST project is the evaluation of the sensitivity of the radiological consequences associated with the geological disposal of radioactive waste to the different elements in the performance assessment. Three types of geological host formations are considered: clay, granite and salt. The sensitivity studies that have been carried out can be partitioned into three categories according to the type of uncertainty taken into account: uncertainty in the model parameters, uncertainty in the conceptual models and uncertainty in the considered scenarios. Deterministic as well as stochastic calculational approaches have been applied for the sensitivity analyses. For the analysis of the sensitivity to parameter values, the reference technique, which has been applied in many evaluations, is stochastic and consists of a Monte Carlo simulation followed by a linear regression. For the analysis of conceptual model uncertainty, deterministic and stochastic approaches have been used. For the analysis of uncertainty in the considered scenarios, mainly deterministic approaches have been applied

  15. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  16. An engineering geological appraisal of the Chamshir dam foundation using DMR classification and kinematic analysis, southwest of Iran

    Directory of Open Access Journals (Sweden)

    Torabi Kaveh Mehdi

    2011-12-01

    Full Text Available This paper describes the results of engineering geological  investigations and rock mechanics studies carried out at the proposed Chamshir dam site. It is proposed that a 155 m high solid concrete gravity-arc dam be built across the Zuhreh River to the southeast of the city of Gachsaran in south-western Iran. The dam and its associated structures are mainly located on the Mishan formation. Analysis consisted of rock mass classification and a kinematic
    analysis of the dam foundation's rock masses. The studies were carried out in the field and the laboratory. The field studies included geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. Rock mass classifications were made in line with RMR and DMR classification for the dam foundation. Dam foundation analysis regarding stability using DMR classification and kinematic analysis indicated that the left abutment's rock foundation (area 2 was unstable for planar, wedge and toppling failure modes.

  17. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  18. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia

    Science.gov (United States)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2014-08-01

    The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1-D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.

  19. Applicability of neutron activation analysis to geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Ebihara, Mitsuru [Tokyo Metropolitan Univ., Graduate School of Science, Tokyo (Japan)

    2003-03-01

    The applicability of neutron activation analysis (NAA) to geological samples in space is discussed by referring to future space mission programs, by which the extraterrestrial samples are to be delivered to the earth for scientific inspections. It is concluded that both destructive and non-destructive NAA are highly effective in analyzing these samples. (author)

  20. Applicability of neutron activation analysis to geological samples

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2003-01-01

    The applicability of neutron activation analysis (NAA) to geological samples in space is discussed by referring to future space mission programs, by which the extraterrestrial samples are to be delivered to the earth for scientific inspections. It is concluded that both destructive and non-destructive NAA are highly effective in analyzing these samples. (author)

  1. SEDIMENT ANALYSIS NETWORK FOR DECISION SUPPORT (SANDS) LANDSAT GEOLOGICAL SURVEY OF AL (GSA) ANALYSIS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sediment Analysis Network for Decision Support (SANDS) Landsat Geological Survey of AL (GSA) Analysis dataset analyzed changes in the coastal shoreline and...

  2. Diversion path analysis for the Swedish geological repository

    International Nuclear Information System (INIS)

    Fritzell, Anni; Meer, Klaas Van Der

    2008-02-01

    The Swedish strategy to handle the spent fuel from the nuclear power plants is direct disposal in a geological repository. The safeguards regime covering all nuclear material in the state will be expanded to cover the new repository, which will require a novel safeguards approach due mainly to the inaccessibility of the fuel after disposal. The safeguards approach must be able to provide a high level of assurance that the fuel in the repository not diverted, but must also be resource efficient. An attractive approach with regards to use of resources is to monitor only the access points to the repository, i.e. the openings. The implementation of such an approach can only be allowed if it is shown to be sufficiently secure. With the purpose of determining the applicability of this 'black box' approach, a diversion path analysis for the Swedish geological repository has been carried out. The result from the analysis shows that all credible diversion paths could be covered by the black-box safeguards approach provided that the identified boundary conditions can be met

  3. Diversion path analysis for the Swedish geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden)); Meer, Klaas Van Der (Belgian Nuclear Research Center SCK.CEN (BG))

    2008-02-15

    The Swedish strategy to handle the spent fuel from the nuclear power plants is direct disposal in a geological repository. The safeguards regime covering all nuclear material in the state will be expanded to cover the new repository, which will require a novel safeguards approach due mainly to the inaccessibility of the fuel after disposal. The safeguards approach must be able to provide a high level of assurance that the fuel in the repository not diverted, but must also be resource efficient. An attractive approach with regards to use of resources is to monitor only the access points to the repository, i.e. the openings. The implementation of such an approach can only be allowed if it is shown to be sufficiently secure. With the purpose of determining the applicability of this 'black box' approach, a diversion path analysis for the Swedish geological repository has been carried out. The result from the analysis shows that all credible diversion paths could be covered by the black-box safeguards approach provided that the identified boundary conditions can be met

  4. TWO EXAMPLES FOR IMAGING BURIED GEOLOGICAL BOUNDARIES: SINKHOLE STRUCTURE AND SEYİT HACI FAULT, KARAPINAR, KONYA

    Directory of Open Access Journals (Sweden)

    Ertan TOKER

    2014-12-01

    Full Text Available Once anomalies with positive and negative circular closures are assessed together inpotential field maps, the ones which have meaningful geometric structure appear as moredistinguishable. When the edge detection is applied, the preliminary geological modelabout the geological structure may or may not be verified. When it is not verified then it isunderstood that the predicted geological model should be reconsidered and discussedagain. In this study, the edge detection was introduced and the success of the method wastested in an artificial data. Following that, its effect on sinkholes was studied applying themethod on detailed gravity data collected in Karapınar (Konya region. At the same time,this method was applied on data related to active Seyit Hacı Fault zone. It was detectedthat the fault had shown continuity towards SW and these evidences were discussed

  5. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  6. The use of technology of separating horizontal wells into sections by packers in conjunction with a new geological structure concept of deposits 302-302 of the Romashkino Field

    Directory of Open Access Journals (Sweden)

    Z.A. Loscheva

    2018-03-01

    Full Text Available The work considers deposits 302-303 of the Bashkirian and Serpukhovian stages. The Kuakbashsky deposits 302-303 are confined to the carbonate layer of the Bashkirian and Serpukhovian sediments of the Middle and Lower Carboniferous, with various types of voids: intergranular, fractured and cavernous. Based on the analysis of seismic data, aerospace and geophysical data, a new model of the geological structure of deposits 302-303 was created, taking into account faults and lineaments. An analysis was made of the dynamics of horizontal wells operation, depending on the location of decompression zones, which confirmed the geological model of the deposit structure proposed by the authors. Based on the geological structure, solutions are proposed for optimization of deposits development: - During the establishment and operation of wells, it is necessary to take into account the faults location, their type, strike, predicted locations of high fracturing and cavitation zones to improve well performance; - The production mode should be developed with the obligatory observance of a balance between the filtration rate of oil from caverns into cracks and the flow of liquid from the production well. - The conducted analysis shows the complete absence of dependence of the development efficiency on the implementation of various technological measures. A comprehensive approach to the deposit blocks (limited by tectonic faults is required, starting with the selection of the block (the direct drilling site, ending with the selection modes, sequence, type and complex of geological and technical measures, individually for each well of the block.

  7. Structural effects of C60+ bombardment on various natural mineral samples-Application to analysis of organic phases in geological samples

    International Nuclear Information System (INIS)

    Siljestroem, S.; Lausmaa, J.; Hode, T.; Sundin, M.; Sjoevall, P.

    2011-01-01

    Organic phases trapped inside natural mineral samples are of considerable interest in astrobiology, geochemistry and geobiology. Examples of such organic phases are microfossils, kerogen and oil. Information about these phases is usually retrieved through bulk crushing of the rock which means both a risk of contamination and that the composition and spatial distribution of the organics to its host mineral is lost. An attractive of way to retrieve information about the organics in the rock is depth profiling using a focused ion beam. Recently, it was shown that it is possible to obtain detailed mass spectrometric information from oil-bearing fluid inclusions, i.e. small amounts of oil trapped inside a mineral matrix, using ToF-SIMS. Using a 10 keV C 60 + sputter beam and a 25 keV Bi 3 + analysis beam, oil-bearing inclusions in different minerals were opened and analysed individually. However, sputtering with a C 60 + beam also induced other changes to the mineral surface, such as formation of topographic features and carbon deposition. In this paper, the cause of these changes is explored and the consequences of the sputter-induced features on the analysis of organic phases in natural mineral samples (quartz, calcite and fluorite) in general and fluid inclusions in particular are discussed. The dominating topographical features that were observed when a several micrometers deep crater is sputtered with 10 keV C 60 + ions on a natural mineral surface are conical-shaped and ridge-like structures that may rise several micrometers, pointing in the direction of the incident C 60 + ion beam, on an otherwise flat crater bottom. The sputter-induced structures were found to appear at places with different chemistry than the host mineral, including other minerals phases and fluid inclusions, while structural defects in the host material, such as polishing marks or scratches, did not necessarily result in sputter-induced structures. The ridge-like structures were often covered

  8. Analysis of geological condition of uranium mineralization in the Xiangshan northern uranium orefield in central region of Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Yulong; Liu Yunlang; Gao Yan

    2013-01-01

    According to the basic conditions of 'source, guide, transportation, storage' for uranium mineralization in strata and different types of geological structure, departure from the condition, the coupling effect of stratigraphy, lithology and structure are studied in the process of uranium mineralization in northern Xiangshan volcanic basin. Studies show that the northern ore field are of good metallogenic geological conditions and the uranium rich ancient land mass and uranium rich magma generated by the melting of deep metamorphic rocks. The main geologic events are volcanic eruptions, accompanied by repeated subvolcanic magma intrusion and strong faults and nappe tectonics which result in volcanic collapse and volcanic ring structures. These ore-forming geological condition control the structural frame for the formation of main uranium deposit type-subvolcanic rocks in northern Xiangshan ore field. (authors)

  9. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  10. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  11. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  12. Geological and structural interpretation of Peninsular Malaysia by marine and aeromagnetic data: Some preliminary results

    Science.gov (United States)

    Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar

    2016-11-01

    Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.

  13. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  14. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  15. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil

    Directory of Open Access Journals (Sweden)

    RODRIGO I. CERRI

    2017-08-01

    Full Text Available ABSTRACT This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  16. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil.

    Science.gov (United States)

    Cerri, Rodrigo I; Reis, Fábio A G V; Gramani, Marcelo F; Giordano, Lucilia C; Zaine, José Eduardo

    2017-01-01

    This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes) and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  17. [Recent advances in analysis of petroleum geological samples by comprehensive two-dimensional gas chromatography].

    Science.gov (United States)

    Gao, Xuanbo; Chang, Zhenyang; Dai, Wei; Tong, Ting; Zhang, Wanfeng; He, Sheng; Zhu, Shukui

    2014-10-01

    Abundant geochemical information can be acquired by analyzing the chemical compositions of petroleum geological samples. The information obtained from the analysis provides scientifical evidences for petroleum exploration. However, these samples are complicated and can be easily influenced by physical (e. g. evaporation, emulsification, natural dispersion, dissolution and sorption), chemical (photodegradation) and biological (mainly microbial degradation) weathering processes. Therefore, it is very difficult to analyze the petroleum geological samples and they cannot be effectively separated by traditional gas chromatography/mass spectrometry. A newly developed separation technique, comprehensive two-dimensional gas chromatography (GC x GC), has unique advantages in complex sample analysis, and recently it has been applied to petroleum geological samples. This article mainly reviews the research progres- ses in the last five years, the main problems and the future research about GC x GC applied in the area of petroleum geology.

  18. Hypogeal geological survey in the "Grotta del Re Tiberio" natural cave (Apennines, Italy): a valid tool for reconstructing the structural setting

    Science.gov (United States)

    Ghiselli, Alice; Merazzi, Marzio; Strini, Andrea; Margutti, Roberto; Mercuriali, Michele

    2011-06-01

    As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the "Grotta del Re Tiberio" cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors' surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area ( e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures ( e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping

  19. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  20. Determination of noble metals in geological materials by radiochemical neutron-activation analysis

    International Nuclear Information System (INIS)

    Ahmad, I.; Ahmad, S.; Morris, D.F.C.

    1977-01-01

    A method for the determination of platinum, palladium, gold and iridium in geological materials following activation with thermal neutrons is described. Radionuclides formed from the elements are separated by a scheme based largely on liquid-liquid extractions. The procedure has been applied to the analysis of US Geological Survey standard rocks and to studies of the distribution of the noble metals in lateritic nickel ores. (author)

  1. The influence of geological loading on the structural integrity of an underground nuclear waste repository

    International Nuclear Information System (INIS)

    Jakeman, N.

    1985-08-01

    Stresses are developed in underground nuclear waste repositories as a result of applied loads from geological movements caused by the encroachment of ice sheets or seismic activity for example. These stresses may induce fracturing of the waste matrix, repository vault and nearfield host geology. This fracturing will enhance the advective flow and allow more-rapid transfer of radionuclides from their encapsulation through the repository barriers and nearfield host rock. Geological loads may be applied either gradually as in crustal folding or encroachment of ice sheets, or rapidly as in the case of seismic movements. The analysis outlined in this report is conducted with a view to including the effects of geological loading in a probabilistic repository site assessment computer code such as SYVAC. (author)

  2. Site selection and design basis of the National Disposal Facility for LILW. Geological and engineering barriers

    International Nuclear Information System (INIS)

    Boyanov, S.

    2010-01-01

    Content of the presentation: Site selection; Characteristics of the “Radiana” site (location, geological structure, physical and mechanical properties, hydro-geological conditions); Design basis of the Disposal Facility; Migration analysis; Safety assessment approach

  3. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  4. ICP-MS applications for the analysis of geological materials and environmental samples

    International Nuclear Information System (INIS)

    Bendl, J.

    1997-01-01

    This work deals with applications of inductively coupled plasma - mass spectrometry applications for the analysis of geological materials and environmental samples. There are instrumentation, calibration, alternatives of sample introduction, interferences, trace elements analysis, rare earth elements and uranium and thorium, precious metals, isotopic analysis and environmental analysis discussed

  5. Range of engineering-geological properties for some carbonate rock complexes for Balkan peninsula

    International Nuclear Information System (INIS)

    Jovanovski, Milorad; Shpago, Azra; Peshevski, Igor

    2010-01-01

    The Carbonate Rock masses are a geological media with extremely complex states and properties, which has a certain influences on the mechanical and hydraulic behavior during construction and exploitation of engineering structures. Practical aspects of the problem analysis arise from the fact that the areas of Bosnia and Herzegovina, Macedonia and the entire Balkans is characterized by presence of wide areas covered with carbonate complexes, where large number of complex engineering structures have been, or shall be constructed in the future. In this context, their engineering-geological modeling is still a practical and scientific challenge. The analysis of engineering- geological properties is one of the main steps in forming of analytical and geotechnical models for complex rock structures. This article gives a data about the range for these properties, according to the results from an extensive investigation program. Some original correlations and testing results are given and they are compared with some published relations from the world. (Author)

  6. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  7. Structural geology of the North and Middle Caspian sea on the new geophysical data interpretation

    International Nuclear Information System (INIS)

    Boris, V.S; Rais, V.Sh; Victor, L.U

    2002-01-01

    Full text:A structural and tectonic map of the North and Middle Caspian Sea is made on the basis of seismic and other geological and geophysical data analysis. According to the plotting results the total amplitude range of the heterogeneous basement depths are in the North Caspian Sea (Ukatnensky depression-over 12 km and Prorva depression-over 16 km). In the middle Caspian Sea the deppest basement point is supposed in Sulak basin (over 12 km). The least basement depths are marked in Karpinsky ridge,Buzachinky and Karabogazsky arches (1-3 km). On the whole the morphology and structure of the basement confirms the conclusion previously made by many researches that the Caspian Sea is a heterogeneous depression superimposed on the junction of regional tectonic elements of various ages.The ancient East-European platform represented by Pricaspiisky depression (Donetsko-Astrakhanskaya fault system limits the latter in the south) is situated on the North. The middle Caspian Sea is occupied with the offshore continuation of Terek-Caspian foredeep is represented by Sulak basin clearly limited in the south by a system of upthrusts and thrusts falling under North Caucasus foreland.Geological interpretation of the Yuzhmorgeologiya Center new geophysical data allows making an assumption about the biohermexistence within TriassicSea sediments on Kuma-Manychsky depression offshore continuation. Seismic exploration works show strike-slip faults and thrust structure development within the sedimentary cover on the offshore continuation of Karpinsky ridge.Some strike-slipped blocks are separated by left-side shifts of the northeast stretch.The pool location at the left-side (east) blocks of the shift areas is marked.

  8. Regional evolution of geological structure in south China and U mineralization

    International Nuclear Information System (INIS)

    Chen Guoda; Kang Zili; Shen Jinrui; Jin Yushu

    1992-01-01

    This paper states the development laws of regional geological structure of South China and its controlling effect on uranium deposit evolution, and the characteristics of rich uranium formation in different periods of geo-history are analysed. It also discusses the relationship between the distribution of time and space and tectonic structure and environmental vicissitudes. The rock-magma activities-the strong formation of the Diwa Era is of great significance to the formation of uranium deposits within the region, especially to the formation of a series of multi-genesis polygene uranium deposits which are a potential direction in which to look for minerals within the region

  9. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  10. Discussion on the 3D visualizing of 1:200 000 geological map

    Science.gov (United States)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  11. Study on the remote sensing geological information of uranium mineralization in Western Liaoning and Northern Hebei

    International Nuclear Information System (INIS)

    Yu Baoshan; Wang Dianbai; Jin Shihua; Qiao Rui

    1996-01-01

    Based on the whole areal geological map joint application rd exploitation, composite forming map, generalization analysis and field examination in detail of key region that mainly depend on remote sensing information and generalize the data of geology, geophysical and geochemical prospecting, and geohydrology, this paper reveals the structure framework, regional geological background, uranium metallogenic condition and space time distribution rule of orustal evolution and its result, and set up the interpretation marks of arc-shaped structure in different of rock area and discusses its geological genesis. The author also interprets volcanic apparatus, small type closed sedimentary basin, magmatic rock body which relate closely to uranium deposit, ore control structure and occurrence and type of mineralization alteration envelope. The thermal halo point of satellite image is emphatically interpreted and its geological meaning and its relation to uranium deposit is discussed. Remote sensing geological prospecting ore model and synthetic provision model is determined lastly

  12. Solar illumination geometry and its influence on the observance of geological structures in orbital imagery

    Science.gov (United States)

    Rodrigues, Jose Eduardo; Liu, Chan Chiang

    1991-04-01

    The geology of the westernmost part of Rio de Janeiro State (Brazil) is characterized by the conspicuous presence of the Alem Paraiba lineament, a large shear zone extending more than 200 km in N50-60E direction. Parts of Paraiba do Sul river and of the regional topography are strongly related to this geologic feature. Several other lineament directions complete the structural framework that can be seen on remote sensing products. According to well accepted theories of photointerpretation, LANDSAT images with low sun elevation angles should more clearly show those lineaments, because the shadow enhancement of the relief is greatest. Also, considering the high grade of relief conditionment by the Alem Paraiba lineament, it is expected that this structure could be clearly observed on LANDSAT images of all seasons. However, these hypotheses are not confirmed. The images with low sun elevation angles belong to the epoch (winter) in which the solar azimuths are nearly parallel to the regional structure, making its identification difficult. In summer, the images have high sun elevation angles but their solar azimuths, oblique to the regional structures, allow an adequate identification of the main structural trend.

  13. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  14. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  15. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    Science.gov (United States)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  16. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  17. Granites petrology, structure, geological setting, and metallogeny

    CERN Document Server

    Nédélec, Anne; Bowden, Peter

    2015-01-01

    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  18. Uncertainty analysis for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Helton, J.C.

    1981-01-01

    The incorporation and representation of uncertainty in the analysis of the consequences and risks associated with the geologic disposal of high-level radioactive waste are discussed. Such uncertainty has three primary components: process modeling uncertainty, model input data uncertainty, and scenario uncertainty. The following topics are considered in connection with the preceding components: propagation of uncertainty in the modeling of a disposal site, sampling of input data for models, and uncertainty associated with model output

  19. The geological and structural characterization of the Olkiluoto site in a critical perspective

    International Nuclear Information System (INIS)

    Cosgrove, J.; Jokinen, J.; Siivola, J.; Tiren, S.

    2003-05-01

    This report comments on aspects of Posiva's work relating to the interests of the IMGS (Investigations and Modelling of Geological Structures) Group who is concerned with the potential impact of the tectonic and geological setting of the Olkiluoto site, on the construction a deep repository for spent nuclear fuel. Since the Group's last report (IMGS 2002) a variety of relevant publications have been produced by Posiva. A number of issues have been identified in these documents relating to the procedure for updating the Bedrock model, factors influencing the location and layout of ONKALO, the mapping procedure planned for the access tunnel, the problem of oversimplification and uncertainties and the proposed extension of the repository. These are discussed in the present report. (orig.)

  20. Report on geologic remote sensing of the Columbia Plateau

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.; Schmierer, K.E.; Lindberg, J.W.

    1982-05-01

    The purpose of this remote sensing study is to identify faults or other geologic features which may have a significant bearing on the structural and tectonic character of the Hanford Site and the surrounding region. Landsat imagery, Skylab photographs, and U-2 photographs were analyzed to identify and map geologic photolineaments in the Columbia Plateau. The Landsat and Skylab imagery provided a regional perspective and allowed the identification of large-scale linear features. The U-2 photography provided much greater spatial resolution as well as a stereoscopic viewing capability. This allowed identification of smaller structural or geologic features and the identification of many cultural and nongeologic lineaments detected in the Landsat and Skylab imagery. The area studied totals, approximately 85,000 square miles, and encompasses virtually all exposures of Columbia River Basalt in the states of Washington, Oregon, and Idaho. It also includes an area bordering the Columbia River Basalt outcrop. This border area was studied in order to identify significant structures that may extend into the plateau. Included are a description of the procedures used for image analysis, 20 lineament maps at a scale of 1:250,000, geological summaries for the areas covered by the lineament maps, and discussions of many of the lineaments shown on the maps. Comparisons of the lineament maps with available geologic maps showed that the number of detected lineaments was much greater than the number of known faults and other linear features. Approximately 70% of the faults shown on the geologic maps were detected and are characterized as lineaments. Lineament trends in the northwest-southeast and northeast-southwest directions were found to predominate throughout the study area

  1. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  2. Neutron activation analysis of geological samples for gold and accessory elements power reactor

    International Nuclear Information System (INIS)

    Burmistrenko, Yu.N.; Medvedev, A.A.; Kovalenko, V.V.; Markov, A.V.

    1986-01-01

    Possibility of using a power reactor for neutron activation analysis to detect gold and accompanying elements in geological samples of a region was investigated. Specimens (gold-containing samples and standards) were irradiated in a spare channel for ionization chambers located outside the core in graphite reflector. Spectrometry was conducted with the help of a semiconducting detector with LP 4900 multichannel analizer. Sensitivity threshold for gold was (1-3)10 -6 % - (1-2)10 -5 %. It is shown that this method can be used not only for gold detection but for high-sensitive multielement analysis of geological samples

  3. FY 1992 report on the survey of geothermal development promotion. Geological structure (geology/alteration zone) survey (No. A-1 - Haneyama area); 1992 nendo chinetsu kaihatsu sokushin chosa chijo chosa hokokusho futai shiryo. Chishitsu kozo (chishitsu henshitsutai) chosa hokokusho (No. A-1 Haneyama chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    For the purpose of elucidating a possibility of existence of geothermal reservoirs in the Haneyama area, Oita Prefecture, survey of the geological structure (geology/alteration zone) was conducted. The survey was made for the area of 280km{sup 2} lying from Kusu Town to Kokonoe Town, Oita Prefecture in terms of the route survey of 174km, fabrication/judgement of 52 rock slices, whole rock chemical analysis of 21 rocks, age determination, analysis of rock mineral, X-ray diffraction, literature collection, etc. As a result of the survey, the following conclusion was obtained. When considering a possibility of existence of heat source near this area, the area near the present volcanic front was regarded as promising. The fracture structure in the depths seen in the gravity structure (part of sharp dip of gravity) is more closely related to activity of geothermal water than the active structure of E-W system near the earth surface newly formed and is important when considering the existence of geothermal resource. The periphery of the Shishimuta sedimentation zone where Takigami, Oodake, Hacchobaru and Oguni are located was especially regarded as an area propmising of geothermal energy. In the survey area, the geothermal potential was the highest near Noya - Mizuwake Pass. (NEDO)

  4. Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore

    International Nuclear Information System (INIS)

    Ramli, A.T.; Hussein, A.W.M.A.; Lee, M.H.

    2001-01-01

    Measurements of environmental terrestrial gamma radiation dose-rate (TGRD) have been made in Johore, Malaysia. The focus is on determining a relationship between geological type and TGRD levels. Data were compared using the one way analysis of variance (ANOVA), in some instances revealing significant differences between TGRD measurements and the underlying geological structure

  5. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  6. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2016-01-01

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  7. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    KAUST Repository

    Sana, Furrukh

    2016-02-23

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  8. Study on remote sensing geologic information of uranium metallogeny in western Liaoning-northern Hebei region

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    Based on the study on geologic metallogenic environment, temporal and spatial distribution and deposit features of uranium deposits in western Liaoning-northern Hebei region, summarizing mainly remote sensing information and synthesizing geologic, geophysical and geochemical as well as hydrological data, the author has implemented all-region joint-quadrangle analysis, composite mapping and applications, set up interpretation criteria for circular and arcuate structures of different lithological areas, and then expounded their geologic meaning. Volcanic apparatuses, small close sedimentary basins and magmatic rockbodies closely associated with uranium mineralizations, especially the altitude and types of ore-controlling structures and mineralized alteration zones have been interpreted. 'Heat halo spot' has also been interpreted on the satellite image and its geologic meaning and relation to uranium metallization have been discussed. Finally, remote sensing geologic prospecting model and comprehensive prediction model have been established

  9. Extracting topographic structure from digital elevation data for geographic information-system analysis

    Science.gov (United States)

    Jenson, Susan K.; Domingue, Julia O.

    1988-01-01

    Software tools have been developed at the U.S. Geological Survey's EROS Data Center to extract topographic structure and to delineate watersheds and overland flow paths from digital elevation models. The tools are specialpurpose FORTRAN programs interfaced with general-purpose raster and vector spatial analysis and relational data base management packages.

  10. Determination of neodymium and gadolinium in geologic samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Souza, M.A. de; Marques, L.S.

    1982-07-01

    The determination of Nd and Gd present in rocks by neutron activation analysis is aimed at. A separation procedure for the rare earth group of elements is presented. The method is based on the retention of 233 Pa, 182 Ta and 46 Sc by hydrated antimony pentoxide (HAP) in a 6M HClO 4 medium. Those radioisotopes are interferences in the gamma-ray spectrum of 153 Gd and 147 Nd. The reliability of the method was tested by means of the geological standards BCR-1 and G-2 from the U.S. Geological Survey. The limitations of the instrumental neutron activation analysis and the advantages of the chemical separation are discussed for the special case of the Nd and Gd determinations. (Author) [pt

  11. Evaluation of structural behavior, geological and hydrogeological characteristics

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kim, Sun Hoon; Kim, Dae Hong; Choi, Kyu Sup

    1992-02-01

    In order to understand the behavior of an underground structure properly, this report includes the study on the structural behavior of rock masses surrounding underground openings considering the effect of excavation. Before analyzing the underground structure, the followings are studied: initial stress distribution before excavation, stress release and redistribution due to the sequential excavation, comparison of analysis methods, discussions on numerical simulation techniques for the sequential excavation and an numerical analysis modeling. The underground structure in then analyzed using the finite element and distinct element methods of analysis considering the effect of sequential excavation, Based on the results of the analysis, the followings are discussed: shape of the opening, distance between openings, method and sequence of excavation, and structural reinforcement. (Author)

  12. THE TECTONICS STRESS AND STRAIN FIELD MODELING ADJUSTED FOR EVOLUTION OF GEOLOGICAL STRUCTURES (SAILAG INTRUSION, EASTERN SAYAN

    Directory of Open Access Journals (Sweden)

    V. N. Voytenko

    2013-01-01

    Full Text Available The article describes a tectonophysical model showing evolution of structures in the Sailag granodiorite massif in relation to its gold-bearing capacity. The model takes into account the load patterns according to geological data, accumulated deformation, and gravity stresses. This model provides for updating the structural-geological model showing development of the intrusion body and the ore field. Forecasted are destruction patterns in the apical and above-dome parts of the massif  in the intrusion and contraction phase, formation of the long-term shear zone at the steeply dipping slope of the intrusion body, and subvertical fractures associated with the long-term shear zone and vertical mechanical ‘layering’ of the intrusive body.  

  13. Evaluation of geological structure and uranium mineralization model in West Lemajung Sector, Kalan Basin, West Kalimantan

    International Nuclear Information System (INIS)

    Ngadenin; Sularto, P.

    2000-01-01

    The fieldwork is based on the data of strike (S0) and schistosity (S1) of cores that could not penetrate the geological structure model and result of observation on some cores has shown that U mineralization veins are not always parallel to S1. The problems were encountered in core drill data to improve the estimation of U resources from indication category to measured category. The purpose of the evaluation is to establish the advisability of geological structure model and U mineralization model which was applied by this time. The research used remapping of geological structure with surface method in the scale of 1:1000. The result of remapping shows the difference of the dipping between new geological structure model and the old model. The dipping of the new model is to South East until vertical and the old model is to North West until vertical and to South East until vertical. Despite the difference between both of them, the substantive of folding system is identical so that the new and old models can be applied in drilling in West Lemajung sector. U mineralization model of remapping result consists of 3 types : type 1 U mineralization lens form with West-East direction and vertical dipping which is associated with tourmaline, type 2 U mineralization filling in the open fractures with West-East direction and 70 o to North dipping and parallel with S1, and type 3 U mineralization fill in opening fractures with N 110 o - 130 o E the direction and 60 o to North East until subvertical dipping while the old model is only one type. It is U mineralization filling in the open fractures with West-East the direction and 70 o to North the dipping and parallel with S1. Because of this significant difference, data collection of drill core must follow the new mineralization model. (author)

  14. Teaching and Learning Structural Geology Using SketchUp

    Science.gov (United States)

    Rey, Patrice

    2017-04-01

    The books and maps we read, the posters we pin on our walls, the TV sets and computer monitors we spend hours watching, the white (or black) boards we use to teach, all reduce our world into planar images. As a result, and through years of oblivious practice, our brain is conditioned to understand the world in two dimensions (2D) only. As structural geologists, we know that the most challenging aspect of teaching and learning structural geology is that we need to be able to mentally manipulate 2D and three-dimensional (3D) objects. Although anyone can learn through practice the art of spatial visualisation, the fact remains that the initial stages of learning structural geology are for many students very challenging, as we naively use 2D images to teach 3D concepts. While interactive 3D holography is not far away, some inexpensive tools already exist allowing us to generate interactive computer images, the free rotation, scaling and manipulation of which can help students to quickly grasp the geometry and internal architecture of 3D objects. Recently, I have experimented with SketchUp (works on Mac and Windows). SketchUp was initially released in 2000 by @Last Software, as a 3D modelling tool for architects, designers and filmmakers. It was acquired by Google in 2006 to further the development of GoogleEarth. Google released SketchUp for free, and provided a portal named 3D Warehouse for users to share their models. Google sold SketchUp to Trimble Navigation in 2012, which added Extension Warehouse for users to distribute add-ons. SketchUp models can be exported in a number of formats including .dae (digital asset exchange) useful to embed interactive 3D models into iBooks and html5 documents, and .kmz (keyhole markup language zipped) to embed interactive 3D models and cross-sections into GoogleEarth. SketchUp models can be exported into 3D pdf through the add-on SimLab, and .stl for 3D printing through the add-on SketchUp STL. A free licence is available for

  15. Geologic mapping around Mahoma mining. San Jose mining company

    International Nuclear Information System (INIS)

    Techera, J.; Arrighetii, R.

    1993-01-01

    This study has as main objective carry out a geological mapping as well as the structural analysis , in 1.5.000 scale in the zone where the gold benefit plant of San Jose mining company is settled (Mahoma Mining). From this study has been marked many drillings.

  16. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination

    International Nuclear Information System (INIS)

    Delrive, C.

    1993-01-01

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10 -5 SI units and can generate magnetic susceptibility maps with 4 x 4 mm 2 pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends

  17. Mine layout, geological features and seismic hazard.

    CSIR Research Space (South Africa)

    Van Aswegen, G

    1993-01-01

    Full Text Available – Applied Structure Stability Analysis .................................................27 4.2. Modelled System Stiffness ...........................................................................................28 4.2.1. Instability and System Stiffness... with the potential for large(r) dynamic rockmass instability in response to deep level mining, e.g.: • tectonic stresses, depth, mechanical strength of intact rock, • the existence and the frequency of intermediate and larger geological features, specifically...

  18. Experiences in the ICP-MS analysis of geological and environmental samples

    International Nuclear Information System (INIS)

    Kallio, E.

    1994-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) has been used at the Geological Survey of Finland since 1991. Applied to determination of trace and ultra trace elements in water, sediments, biological samples and rocks. The strength of the technique lies in the ability to determine isotope ratios, and elements that are difficult or expensive to determine by other techniques, e.g. platinum group elements (PGEs), rare earths elements (REEs) and toxic metals (As, Be, Cd, Hg, Pb, Tl, U). An important part of the analysis is the pretreatment of the samples before the measurement. This paper gives an overview of the methods used at the Geological Survey. (orig.). (5 refs.)

  19. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  20. Magnetic mapping for structural geology and geothermal exploration in Guadeloupe, Lesser Antilles

    Science.gov (United States)

    Mercier de Lépinay, jeanne; munschy, marc; geraud, yves; diraison, marc; navelot, vivien; verati, christelle; corsini, michel; lardeaux, jean marc; favier, alexiane

    2017-04-01

    This work is implemented through the GEOTREF program which benefits from the support of both the ADEME and the French public funds "Investments for the future". The program focuses on the exploration for geothermal resources in Guadeloupe, Lesser Antilles, where a geothermal power plant is in production since 1986 (Bouillante, Basse Terre). In Les Saintes archipelago, in the south of Guadeloupe, the outcrop analysis of Terre-de-Haut Island allows to point out an exhumed geothermal paleo-system that is thought to be an analogue of the Bouillante active geothermal system. We show that a detailed marine magnetic survey with a quantitative interpretation can bring information about the offshore structures around Les Saintes archipelago in order to extend the geological limits and structural elements. A similar survey and workflow is also conducted offshore Basse-Terre where more geophysical data is already available. In order to correctly link the offshore and onshore structures, the magnetic survey must be close enough to the shoreline and sufficiently detailed to correctly outline the tectonic structures. An appropriate solution for such a survey is to use a three component magnetometer aboard a speedboat. Such a boat allows more navigation flexibility than a classic oceanic vessel towing a magnetometer; it can sail at higher speed on calm seas and closer to the shoreline. This kind of magnetic acquisition is only viable because the magnetic effect of the ship can be compensated using the same algorithms than those used for airborne magnetometry. The use of potential field transforms allows a large variety of structures to be highlighted, providing insights to build a general understanding of the nature and distribution of the magnetic sources. In particular, we use the tilt angle operator to better identify the magnetic lineaments offshore in order to compare them to the faults identified onshore during the outcrop analysis. All the major faults and fractures

  1. Integrated geophysical and geological modelling: insights in the 3D structure and kinematics of the Hercynian Suture Zone in the Champtoceaux area (Brittany, France)

    Science.gov (United States)

    Martelet, G.; Calcagno, Ph.; Gumiaux, C.; Truffert, C.; Bitri, A.; Gapais, D.; Brun, J. P.

    2003-04-01

    Using the Editeur Géologique, a software specifically developed for the purpose of 3D geological modelling by the French Geological Survey (BRGM), we model a segment of the Hercynian suture zone of western Europe, in Champtoceaux area (Brittany, western France). The area shows exposures of strongly deformed eclogite-bearing gneisses and micaschists. These units were stacked during collision and exhumed during late Devonian to early Carboniferous times. Regional-scale dextral simple shear accompanied strike-slip movements along the SASZ (South Armorican Shear Zone). It produced a km-scale antiformal structure in the Champtoceaux metamorphic units with a steeply-dipping axial plane and a steeply eastward-plunging axis. Interpretation of the recent Armor2 seismic profile shows that the well-recognized north-dipping early lithological structuration is cross-cut by Carboniferous south-dipping inverse tectonics of crustal extension. In order to precise and extend in 3D the structures interpreted in the seismic profile, we model seven radial gravity profiles throughout Champtoceaux periclinal termination, based on data from the French gravity database. Direct 2D modelling is performed at a crustal scale, based on seismic constraints and geological field observations, as well as density measurements on samples or in drill holes. Input in the Editeur Géologique, the consistency of cross-sections, digitized geological map and structural information (foliation dips) is first checked. From the surface to the Moho, available spatialised 2D information is then interpolated in the whole 3D space using adapted geostatistical analysis. Finally, taking into account densities associated to each modelled geological body, the computation of the 3D gravity effect of the model is compared to the measured Bouguer anomaly, which insures that all complex 3D gravity effects are well taken into account. Results emphasise the usefulness of integrated geological and geophysical 3D modelling

  2. Study on radon geological potential of Beijing city

    International Nuclear Information System (INIS)

    Liu Qingcheng; Wu Xinmin; Liu Yujuan; Yang Yaxin; Zhang Ye

    2009-01-01

    According to elemental geochemistry in Beijing, the uranium content in the area was measured, and distribution of radon concentration was predicted. Based on the uranium-radium equilibrium coefficient, porosity and diffusion coefficient, which were either measured or calculated, the radon geological potential of Beijing city was studied using γ-ray spectroscopy or mass spectroscopy and certain models were used to calculate the relation between radon geological potential and lithology and geological structure. The results showed that radon geological potential of Beijing city could be divided into four zones, tend of every zone coincides with the main structure, and the potential values nearly relate with geological factors. (authors)

  3. Soil Structure Evaluation Across Geologic Transition Zones Using 2D Electrical Resistivity Imaging Technique

    Directory of Open Access Journals (Sweden)

    Geraldine C Anukwu

    2017-06-01

    Full Text Available This study utilizes the electrical resistivity values obtained using 2-D Electrical resistivity imaging (ERI technique to evaluate the subsurface lithology across different geological units. The primary objective was to determine the effect of subsurface lithology on the integrity of a road pavement, which had developed cracks and potholes at various locations. The dipole-dipole configuration was utilized and a total of nine traverses were established in the study area, whose geology cuts across both the basement and sedimentary complexes. The inverted resistivity section obtained showed significant variation in resistivity along established traverses and also across the different rock units, with the resistivity value ranging from about 4 ohm-m to greater than 7000 ohm- m. The lithology as interpreted from the resistivity section revealed the presence topsoil, clay, sandy clay, sand, sand stones/basement rocks, with varying vertical and horizontal arrangements to a depth of 40m. Results suggest that the geologic sequence and structure might have contributed to the observed pavement failure. The capability of the 2D ERI as an imaging tool is observed, especially across the transition zones as depicted in this study. The study further stressed the ability of this technique if properly designed and implemented, to be capable of providing a wealth of information that could complement other traditional geotechnical and geologic techniques.

  4. The application of geological computer modelling systems to the characterisation and assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    White, M.J.; Del Olmo, C.

    1996-01-01

    The deep disposal of radioactive waste requires the collection and analysis of large amounts of geological data. These data give information on the geological and hydrogeological setting of repositories and research sites, including the geological structure and the nature of the groundwater. The collection of these data is required in order to develop an understanding of the geology and the geological evolution of sites and to provide quantitative information for performance assessments. An integrated approach to the interpretation and provision of these data is proposed in this paper, via the use of computer systems, here termed geological modelling systems. Geological modelling systems are families of software programmes which allow the incorporation of site investigation data into integrated 3D models of sub-surface geology

  5. Radioactive and geological analysis of airborne gamma spectrometric data for locating favorable traps for uranium prospecting in the Syrian desert (Area-1), Syria

    International Nuclear Information System (INIS)

    Asfahani, J.; Al-Hent, R.; Aissa, M.

    2012-01-01

    Statistical analysis has been applied to the airborne spectrometric data for the Syrian desert (Area-1), Syria in order to characterize and isolate the anomalous uranium radioactive zones. Equivalent uranium eU values vary between a minimum of 0.01 and a maximum of 32.74 ppm. Uranium prospecting methodology recently proposed is successfully applied in order to explain the origin of the radioactive anomalies related to Area-1. The dominant geological conditions effectively contributing to the uranium radioactive anomalies in the study area have been determined through the analysis of five radioactive-geological profiles. Different favorable traps have been identified and localized for uranium prospecting. Those uranium traps merit further detailed exploration for determining their uranium potential with depth. - Highlights: ► Determine the radioactive characteristics of Area-1. ► Apply a uranium prospecting methodology for guiding uranium exploration activities in Area-1. ► Explain the origin of the radioactive anomalies in Area-1. ► Relate the structural and geological conditions with the anomalous radioactive occurrences.

  6. Development of the rational scheme of geological exploration process, its analysis and significance for prospecting and exploration of hydrocarbons at the russian sector of the Caspian sea

    Directory of Open Access Journals (Sweden)

    I. V. Bystrova

    2017-12-01

    Full Text Available To conduct a justified assessment of the perspective resources of the Caspian Sea and adjacent territories, the authors develop a rational scheme of the geological exploration process with its analysis and identification of significance for hydrocarbon exploration in the northern part of the Caspian Sea. The paper outlines the methodological approaches and concepts of introducing this scheme in search for oil and gas. This allows us to justify and select the optimal set of research methods at various stages of oil and gas production. The system of structure and principles of organization scheme of the geological prospecting process allow to identify the optimal complexes of methods of geological-geophysical and other studies for these stages. The article provides information confirming the necessity of developing and implementing this scheme in the geological exploration process of the studied territory. The necessary development of opportunities in carrying out this work fundamentally changes the qualitative aspect of the geological exploration process. The facts presented in the article allow to study in detail the structures of the shelf zone, the thicknesses and composition of productive subsalt deposits, and to trace their interrelation with continental structural elements. The paper shows the importance of providing, at different levels, a rationale and choice of an optimal set of research methods at different stages of oil and gas prospecting during the development of a rational geological exploration scheme for hydrocarbons in water areas. This paper presents a proposed block diagram of a marine geological prospecting process for hydrocarbons. It describes the sequence of performing the types of work at the regional, exploratory and exploration stages. For each stage of the study, the authors set the tasks, determine the objects of research, methods of geological and geophysical research and their results, and determine methods for

  7. Structural and geological analysis of the northern Pescadero basin: preliminary results based on the analysis of 2D multichannel seismic reflection profiles

    Science.gov (United States)

    Spelz, R. M.; Ramirez-Zerpa, N. A.; Gonzalez-Fernandez, A.; Yarbuh, I.; Contreras, J.

    2017-12-01

    The Pacific-North America plate boundary along the Gulf of California is characterized by an array of right-stepping, right-lateral, transform faults connecting a series of pull-apart basins distributed along the gulf axis. Altogether, these structures accommodate an oblique-divergent component of deformation characterizing the modern tectonic regime along the gulf. The northern Pescadero complex, in the southern Gulf of California, is one of the deepest and probably least studied transtensional fault-termination basins in the gulf. The complex is bounded to the north and south by Atl and Farallon transform faults, respectively, and consists of two asymmetric, rhomboidal-shaped, basins with a series of intrabasinal high-angle normal faults and ramps connecting their depocenters. In this study we present preliminary results derived from the processing and analysis of 400 km of seismic reflection profiles, collected in 2006 onboard the R/V Francisco de Ulloa in northern Pescadero, providing new insights into the geology and internal structure of the basin. Northern Pescadero is a deep and narrow basin characterized by a maximum sedimentary infill of 1 km, and depths to the basin floor exceeding 3500 m. Deformation is chiefly accommodated by an array of self-parallel half-graben structures that appear to grow towards the northern flank of the basin. Faults-scarps located farther from the deformation axis appear to be more degraded, suggesting a progressively younger age of the half-grabens near the basin's depocenter. Another important feature revealed in the seismic images is the lack of sediments on top of the crystalline basement that floors the narrow central portion of the basin. In this area the reflectors at the basin's floor show a pronounced increase in amplitude and coherence, indicating the emplacement of magmatic extrusions. Likewise, in those areas with the greater sediment infill, the occurrence of high-amplitude reflectors, located 150 m below the

  8. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  9. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  10. Analysis on metallogenetic geological and physicochemical conditions in uranium deposit No.138

    International Nuclear Information System (INIS)

    Tang Qitao

    1996-01-01

    The uranium deposit No.138 is of Mesozoic volcano-sedimentary transformation type. This paper discusses such geological conditions as source of uranium, stratigraphy and lithology, lithofacies and paleogeography, paleoclimate, structure and reworking-regeneration, and such physicochemical conditions as uranium adsorbent and reductant, effective porosity, chemical compositions, pH and Eh of rocks in the deposit

  11. FY 2000 report on the survey of the overseas geological structure. Japan-China joint coal exploration - Yu Xian project; 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The geological survey was carried out which is needed for coal mine design in the Yu Xian coal mine area, Yu Xian coal field, Hebei province, China. The term of survey was 5 years from 1996 to 2000. Activities are mainly for seismic survey and boring survey. Japan was in charge of the seismic survey, and China in charge of the boring survey. Both attained the goal. The results of the activities were summed up in the following 7 items: 1) outline of the survey; 2) general investigation; 3) state of the exploration related materials/machinery; 4) field survey; 5) items of survey; 6) results of the survey; 7) conclusion. In 6), the geological analysis, coal quality survey and coal amount survey were conducted. In the geological analysis, analyzed were the succession of strata, geological structure, and the situation of existence of coal seams. In 7), the following were made clear: geological structure of the survey area, coal seam, coal quality, hydrological geology, other conditions of drilling technology, and coal amount. The coal amount was 328.34 million tons in a total of A/B/C class coals. The total coal amount of Nos. 1 and 5 coal seams was 259.79 million tons, which was 79.1% of the total coal amount in all area. The average thickness of Nos. 1 and 5 coal seams, which are the main minable coal seams, was 3.10m and 2.66m, respectively. (NEDO)

  12. Influence of different geological structures on stress–strain state of hard rock mass

    Science.gov (United States)

    Kuznetzov, NN; Fedotova, YuV

    2018-03-01

    The results of numerical simulation of stress–strain state in a hard rock mass area with the complex geological structures are presented. The variants of the stress value change are considered depending on the boundary conditions and physical properties of the model blocks. Furthermore, the possibility of in-situ stress formation under the influence of energy coming from the deeper Earth’s layers is demonstrated in terms of the Khibiny Massif.

  13. Geological, geophysical investigations and seismotectonic analysis with reference to selection of site for nuclear power plants: a review

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2014-01-01

    Geological, geophysical investigations and seismotectonic analysis play a major role in qualifying a proposed site for establishment of nuclear power plants. In an area, it is important to understand the aspects such as regional and local geology, geomorphology, tectonic settings, presence of active faults/capable faults, earthquake history and earthquake proneness, neotectonic activity, slope instability, subsidence, liquefaction, seismically induced flooding, tsunami and geohydrological conditions. Geological investigations comprise use of remote sensing and ground validation followed by geological mapping, identification of faults, near surface geological studies for foundation conditions, stratigraphic drilling, palaeoseismology, studies on engineering properties of rock and soil. Geophysical investigations provide insight into subsurface geology including concealed faults, elastic constants and hydrological conditions. Radon emanometry is a valuable tool in the initial stage to decipher subsurface active weak zones/fault lines. Seismotectonic analysis identifies the provinces of tectonic significance and their earthquake potential, thereby designating lineaments of consequence leading to their evaluation. This, in turn, determines the design basis earthquake parameter for the estimation of vibratory ground motion. This article provides certain measures to evaluate the suitability of the sites for the establishment of nuclear power plants in terms of geological, geophysical investigations and seismotectonic status. Atomic Minerals Directorate for Exploration and Research (AMD) had carried out seismotectonic analysis of the area around Kaiga, Narora, Kalpakkam, Kakrapar, Tarapur, Kudankulam and Rawatbhata Nuclear Power Projects, which were either in operation or under expansion and construction. Such analysis was extended to a number of proposed sites for establishing nuclear power plants in West Bengal, Bihar, Orissa, Andhra Pradesh, Gujrat, Madhya Pradesh

  14. Separation of interfering elements in the neutron activation analysis of lanthanides in geological materials

    International Nuclear Information System (INIS)

    Saiki, M.

    1988-01-01

    A chemical procedure has been developed for the separation of U, Th, Fe, Sc, Na,Ta, and Mo which interfere in the neutron activation analysis of the lanthanide elements in geological materials. This procedure is based on the solvent extraction of interferents using a solution of tetracycline in benzyl alcohol. The lanthanide elements remaining in the aqueous phase are coprecipitated on calcium oxalate or ferric hydroxide for irradiation and subsequent determination by gamma ray spectrometry. The chemical separation procedure was applied in the analysis of lanthanides in two international geological reference materials GSP-1 (USGS), GS-N (CRPG) and in the analysis of a volcanic rock from Pocos de Caldas, MG, Brazil. The sensitivities for all the lanthanides were determined. (author) [pt

  15. Integrated geophysical survey for the geological structural and hydrogeothermal study of the North-western Gargano promontory (Southern Italy

    Directory of Open Access Journals (Sweden)

    D. Schiavone

    1996-06-01

    Full Text Available A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.

  16. Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

    Science.gov (United States)

    Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark

    2018-04-01

    Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector

  17. Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

    Directory of Open Access Journals (Sweden)

    E. Pakyuz-Charrier

    2018-04-01

    Full Text Available Three-dimensional (3-D geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors. Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE, a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than

  18. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  19. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  20. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  1. Changing concepts of geologic structure and the problem of siting nuclear reactors: examples from Washington State

    International Nuclear Information System (INIS)

    Tabor, R.W.

    1986-01-01

    The conflict between regulation and healthy evolution of geological science has contributed to the difficulties of siting nuclear reactors. On the Columbia Plateau in Washington, but for conservative design of the Hanford reactor facility, the recognition of the little-understood Olympic-Wallowa lineament as a major, possibly still active structural alignment might have jeopardized the acceptability of the site for nuclear reactors. On the Olympic Peninsula, evolving concepts of compressive structures and their possible recent activity and the current recognition of a subducting Juan de Fuca plate and its potential for generating great earthquakes - both concepts little-considered during initial site selection - may delay final acceptance of the Satsop site. Conflicts of this sort are inevitable but can be accommodated if they are anticipated in the reactor-licensing process. More important, society should be increasing its store of geologic knowledge now, during the current recess in nuclear reactor siting

  2. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  3. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  4. HCMM: Soil moisture in relation to geologic structure and lithology, northern California

    Science.gov (United States)

    Rich, E. I. (Principal Investigator)

    1981-01-01

    Some HCMM images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depends chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semi-arid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images were limited value, except in semi-arid regions.

  5. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    Science.gov (United States)

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  6. Fracture analysis for engineering geological utilization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H I; Choi, P Y; Hong, S H; Chi, K H; Kim, J Y; Lee, S R; Lee, S G; Park, D W; Han, J G [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The problem of geological hazards (earthquakes) and water or thermal resources urges us to understand the regional tectonic setting or recent tectonics. The Uisong Subbasin is located in one of the seismicity zones in Korea. Because the reactivity of the Gaeum Fault System is an important problem focussing on these faults, we studied their whole extension and timing of faulting in terms of tectonics. Fault tectonic analysis is so effective as to easily reconstruct the tectonic sequence and each stress state at each site, eventually in a region. One can get insights for faulting timing in terms of the restored tectonic sequence, and discriminating the active faults or the faults active in the last (present) tectonics. Examining the filling materials in tension gashes, one can get raw knowledge regarding the thermal states at each site. For this study, we first analyzed the topographic textures (lineament, drainage and circular structures) on the relief map produced based on the topographic maps of 1:100,000 scale. Through investigations of susceptible area along the faults, their existence and movement modes were studied, and we can get information about movement history and whole extension of the faults belonging to the WNW-ESE trending Gaeum Fault System. In order to reconstruct the tectonic sequence, we measured fault slip data, tension gashes and dikes, from which fault populations were classified and stress (and thermal) states were determined. Seven compressional tectonic events and six extensional events were reconstructed. Because coaxial events partially coexisted, we bundled these events in one, finally we get seven tectonic events. Determining the types of minerals filling the tension gashes, we suggested the possibility of investigation of geothermal resources with less efforts. (author). 162 refs., 14 tabs., 51 figs.

  7. Environmental non-government organizations' perceptions of geologic sequestration

    International Nuclear Information System (INIS)

    Wong-Parodi, Gabrielle; Ray, Isha; Farrell, Alexander E

    2008-01-01

    Environmental non-governmental organizations (NGOs) have been influential in shaping public perceptions of environmental problems, their causes and potential solutions. Over the last decade, carbon capture and storage (CCS) has emerged as a potentially important technological response to climate change. In this paper we investigate how leading US NGOs perceive geologic sequestration, a potentially controversial part of CCS. We examine how and why their perceptions and strategies might differ, and if and how they plan to shape public perceptions of geologic sequestration. We approach these questions through semi-structured interviews with representatives from a range of NGOs, supplemented by content analysis of their documents. We find that while all the NGOs are committed to combating climate change, their views on CCS as a mitigation strategy vary considerably. We find that these views are correlated with NGOs' histories of activism and advocacy, as well as with their sources of funding. Overall, most of these NGOs accept the necessity of geologic sequestration, while only a small fraction do not

  8. Spatial Analysis of Linear Structures in the Exploration of Groundwater

    Directory of Open Access Journals (Sweden)

    Abdramane Dembele

    2017-11-01

    Full Text Available The analysis of linear structures on major geological formations plays a crucial role in resource exploration in the Inner Niger Delta. Highlighting and mapping of the large lithological units were carried out using image fusion, spectral bands (RGB coding, Principal Component Analysis (PCA, and band ratio methods. The automatic extraction method of linear structures has permitted the obtaining of a structural map with 82,659 linear structures, distributed on different stratigraphic stages. The intensity study shows an accentuation in density over 12.52% of the total area, containing 22.02% of the linear structures. The density and nodes (intersections of fractures formed by the linear structures on the different lithologies allowed to observe the behavior of the region’s aquifers in the exploration of subsoil resources. The central density, in relation to the hydrographic network of the lowlands, shows the conditioning of the flow and retention of groundwater in the region, and in-depth fluids. The node areas and high-density linear structures, have shown an ability to have rejections in deep (pores that favor the formation of structural traps for oil resources.

  9. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  10. 2D resistivity survey in complex geological structure area. Application to the volcanic area; Fukuzatsuna chishitsu kozo chiiki ni okeru hiteiko nijigen tansa. Kazangan chiiki deno tekiorei

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, S; Ikuma, T; Tanifuji, R [DIA Consultants Co. Ltd., Tokyo (Japan)

    1996-05-01

    Introduced herein is an application of 2D resistivity survey to a volcanic rock area where the survey result is difficult to interpret because of its complex geological structure. In a dam site survey, main problems involve the permeability of water through faults and weathered, altered zones. At this site, a 2D resistivity survey was conducted, a 2D geological structure was deduced from the resistivity section, and the result was examined. It was found that resistivity distribution was closely related to hydrographic factors, but no obvious correlation was detected between rock classes and R, Q, and D. In conducting investigations into a section planned for a highway tunnel, it was learned that the problem was a volcanic ash layer to collapse instantly upon absorbing water, and the distribution of the ash layer, not to be disclosed by boring, was subjected to a 2D resistivity survey. The survey was conducted into the structure above where the tunnel would run, and further into the face, and studies were made about what layer was reflected by the resistivity distribution obtained by analysis. The result of the analysis agreed with the details of the layer that was disclosed afterward. 4 figs., 1 tab.

  11. Geology of Cardiff and Faraday Townships

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, D F

    1960-12-31

    The area described in this report lies at the centre of the Haliburton-Bancroft uranium district in Ontario, where prospecting and mining have been carried out for over 50 years. The report describes the area`s physiography, natural resources, general geology (Precambrian metasedimentary, plutonic, and granitic and syenitic rocks), structural geology, and economic geology. The latter section includes descriptions of occurrences, claims, mines, and mineral properties, including the principal uranium properties in the area.

  12. Geological Consideration for the Site Selection of Radioactive Waste at the PPTN Serpong Area

    International Nuclear Information System (INIS)

    Sucipta

    2002-01-01

    Geological consideration is a main aspect in the exploration or selection of site for radioactive waste repository, because, really that repository site must be surrounded by geological system (geosphere). The objective of the site selection is to obtain a site which geologically capable to prevent the escape of waste pollution from repository to biosphere. Beside that the site must be free from geological processes which harmfull to longterm stability of the site. Descriptive analysis method was applied in this research and combined with evaluation by scoring methods. From the analysis result could be identified that PPTN Serpong morphologically consist of undulatory plains (elevation 80-100 m above msl), the lithology are alluvial deposits. Quarternary tuffs, pumiceous tuffs, clayey tuffs. sandy tuffs and limestone. The geological structure was supposed a horst and graben which buried more than 15 m since Pleistocene. Hydrological condition are moderately run-off, and the distance to the river is about 160 m. The depth of groundwater is 8.3 m, with parallel drainage system. Geological resources found in the site are land and groundwater. The most potential of geological hazard is supposed a rock mass movement. By the land evaluation could be concluded that PPTN Serpong area have moderate suitability for NSD site. (author)

  13. The Beaverhead impact structure, SW Montana and Idaho: Implications for the regional geology of the western U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Fiske, P.S.; Hargaves, R.B.

    1994-03-17

    The Beaverhead impact structure in SW Montana and Idaho is an allochthonous fragment of a large impact structure ({approximately} 100 km diameter) that was transported some distance eastward during the Cretaceous Sevier orogeny. It is the first tectonic fragment of a large impact structure identified in the geologic record. The present evidence for impact consists of shatter cones, pseudotachylites, and planar deformation features in quartz. The age of the impact is not well constrained but is estimated to be Neoproterozoic to Cambrian (1000-500 Ma). The Beaverhead impact event must have created other features that may be preserved, elsewhere in western Montana and Idaho. These include proximal and distal ejecta (which may be misinterpreted as diamictites and/or tuff horizons) and other fragments of the crater floor containing shatter cones and pseudotachylite. A large circular gravity, magnetic and topographic anomaly, which could be the root of the impact structure, has been identified near Challis, Idaho. An enigmatic lithic tuff, identified in drill cores from the Challis area and an intraformational quartzite breccia in the Leaton Gulch area may be impact-related deposits, but no definitive evidence of shock metamorphism has been observed in these materials. The discovery of more pieces of the Beaverhead puzzle, as well as the recognition of other large impacts in the geologic record, are likely once the regional geologic community grows to accept the incidence of such events and becomes more familiar with the features of shock metamorphism in the field. To that end, the community of geologists in this area should integrate the Beaverhead structure into their research and teaching curriculum.

  14. Structural analysis of the central Columbia Plateau utilizing radar, digital topography, and magnetic data bases

    International Nuclear Information System (INIS)

    Thiessen, R.L.; Eliason, J.R.; Johnson, L.K.; Brougher, C.W.

    1991-08-01

    Interest in the Hanford site (Washington) as a nuclear production, power, and waste disposal site has led to generation of a vast quantity of geophysical and remote sensing data sets of the central Columbia Plateau. To data, these various studies, including at least 13 independent magnetic linear and image lineament studies, have not been adequately correlated. Therefore, these studies provide a unique opportunity to compare and contrast the viability of the different geophysical and remote sensing techniques. The geology of the central Columbia Plateau is characterized by subdued topography and limited outcrop, with most of the exposure concentrated in localized folded/faulted mountains (the Yakima folds) and along river canyons. In order to efficiently compare lineament data bases, we have written an automated computer routine that correlated lineaments that are within a user specified distance of each other. The angle between their trends has to be less than an input maximum separation angle. If more than two lineament maps exist for the area, the analyst may also specify the minimum number of times each structure must be seen. The lineament correlation routine was applied to data bases of all aeromagnetic linears as well as lineaments seen on radar and a digital elevation model DEM image. Geologic structures align with a set of three-dimensional planar structures identified with our Geologic Spatial Analysis (GSA) system. The GSA analysis is based upon computer automated detection of valley bottoms as defined by a DEM

  15. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  16. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  17. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  18. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  19. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  20. Unraveling African plate structure from elevation, geoid and geology data

    Science.gov (United States)

    Chardon, Dominique; Bajolet, Flora; Robert, Alexandra; Rouby, Delphine

    2014-05-01

    The aim of our project is to simulate the long-wavelength, flexural isostatic response of the African plate to sediment transfers due to Meso-Cenozoic erosion - deposition processes in order to extract the residual topography driven by mantle dynamics. Our work will be based on the reconstruction and subtraction of two continental-scale erosional-depositional surfaces of Eocene and Late Cretaceous ages and their offshore extensions. The first step of our project consists in computing crustal and lithospheric maps of the African plate considering its various crustal geological components (cratons, mobile belts, basins, rifts and passive margins of various ages and strengths). In order to consider these heterogeneities, we compute a 2D distribution of crustal densities and thermal parameters from geological data and use it as an input of our modeling. We combine elevation and geoid anomaly data using a thermal analysis, following the method of Fullea et al. (2007) in order to map crustal and lithospheric thicknesses. In this approach, we assume local isostasy and consider a four-layer model made of crust and lithospheric mantle plus seawater and asthenosphere. In addition, we compare our results with crustal thickness datasets compiled from bibliography, existing global models such as CRUST 1.0, and tomographic lithospheric models. The obtained crustal thicknesses range from 30 to 45km, with the thickest crust confined to the northern part of the West African Craton, the Kaapvaal craton, and the Congo cuvette. The crust in the East African Rift appears unrealistically thick (40-45 km) as it is not isotatically compensated, highlighting the dynamic effect of the African superswell. The thinnest crust (30-35km) follows a central East-West trend coinciding with Cretaceous rifts and the Cameroon volcanic line. Pan-African mobile belts yield intermediate values of ca. 35-40 km. The lithosphere reaches 250 km beneath cratons, but remains globally thin (ca. 150-180 km

  1. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  2. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    Science.gov (United States)

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  3. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    to the Canary Islands and Japan. The Great Britain Sasakawa Foundation, provided additional funding to support the recent visit to Japan, which enabled visits to Mount Fuji as well as investigating structural geology in Kobe and Tokyo. "The opportunity to visit Japan really broadened my understanding of geology and sharing that experience with fellow students helped me to reinforce my knowledge of the subject." Jack, geology student, Age 18.

  4. Activation analysis of gold in geological samples (Paper No. RA-24)

    International Nuclear Information System (INIS)

    Das, N.R.; Bhattacharyya, S.N.

    1990-02-01

    The technique of neutron activation analysis (NAA) has been applied to study the distribution of gold in some geological samples. Traces of gold in the samples were preconcentrated in a solid matrix through a chemical procedure involving solvent extraction using MIBK and coprecipitation with PbS. Gold contents in the samples as determined by NAA vary from ppb to ppm levels. (author)

  5. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  6. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  7. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino

  8. Some new understanding on the characteristics of geological structure and uranium metallogenetic prospect on both sides of the Shandianhe down-faulted zone

    International Nuclear Information System (INIS)

    Zhang Xuequan

    1992-01-01

    On the basis of the systematic work in the field and at the laboratory, the metallogenetic prognosis map (1:100000) of geological structures and uranium metallogenetic prospect on both sides of the Shandianhe down-faulted zone is compiled. According to this, the regional setting of metallogenesis is emphatically expounded and some new understanding is presented. After the detailed study on the characteristics of geological structures on both sides of the Shangdianhe down-faulted zone, the metallogenetic prospective area are selected and the further prospecting targets in the area are suggested

  9. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    Science.gov (United States)

    Giorgis, Scott

    2015-01-01

    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…

  10. Geological Structures Appearances and Its Relation to Mechanism of Arc-Continent Collision Northen Alor-Wetar Islands

    Directory of Open Access Journals (Sweden)

    Subarsyah Subarsyah

    2017-02-01

    Full Text Available Study area is located in South Banda Basin near the triple junction between Eurasian, Pacific and Indo-Australian Plates. This area is part of back-arc thrusting zone that evolved to compensate convergence between Australia Continent and Banda Arc. Based on seismic section in this area, geological structure analysis is characterized into three distinctive zones. There are Thrust Zone (TZ, Proto Thrust Zone (PTZ and Normal Fault Zone (NFZ. TZ is defined by distribution of numerous of thrust fault, PTZ contains a blind zone or folds instead of thrust fault, and NFZ defined by distribution of numerous normal fault in the upper portion of seismic section. PTZ identified at several seismic section along the bending zone of oceanic crust. The appearances of bending zone will be easily understood by comprehend the driving mechanism of Australia Continent to the Northeast. The bending zone also related to geometry and tectonic stress of collision. Based on this mechanism it was clearly understood why the western end of study area was not identified the bending zone but it probably the initial process of bending. Contradictive to the western end, the eastern part was clearly shown the bending zone that assumed to have the biggest tectonic stress at this moment. Map of structural analysis also explain that PTZ getting narrow towards the west as the indicator of less of tectonic stress.

  11. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  12. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  13. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  14. Modelling of radionuclide transport along the underground access structures of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [SAM Switzerland GmbH, Zuerich (Switzerland); Mayer, G.; Hayek, M. [AF-Consult Switzerland AG, Baden (Switzerland)

    2014-08-15

    The arrangement and sealing of the access routes to a deep geological repository for radioactive waste should ensure that any radionuclide release from the emplacement rooms during the post closure phase does not by-pass the geological barriers of the repository system to a significant extent. The base case of the present study, where realistic values for the hydraulic properties of the seals and the associated excavation damage zones were assumed, assesses to what extent this is actually the case for different layout variants (ramp and shaft access and shaft access only). Furthermore, as a test of robustness of system performance against uncertainties related to such seals and the associated excavation damage zones, the present study also considers a broad spectrum of calculation cases including the hypothetical possibility that the seals perform much more poorly than expected and to check whether, consequently, the repository tunnel system and the access structures may provide significant release pathways. The study considers a generic repository system for high-level waste (HLW repository) and for low- and intermediate-level waste (L/ILW repository), both with Opalinus Clay as the host rock. It also considers the alternative possibilities of a ramp or a shaft as the access route for material transport (waste packages, etc.) to the underground facilities. Additional shafts, e.g. for the transport of persons and for ventilation, are included in both cases. The overall modelling approach consists of three broad steps: (a) the network of tunnels and access structures is implemented in a flow model, which serves to calculate water flow rates along the tunnels and through the host rock; (b) all relevant transport paths are implemented in a radionuclide release and transport model, the water flow rates being obtained from the preceding flow model calculations; (c) individual effective dose rates arising from the radionuclides released from the considered repository

  15. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    International Nuclear Information System (INIS)

    Tiren, S.A.

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB's application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth

  16. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, S.A. [Geosigma AB, Uppsala (Sweden)

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB`s application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth. 46 refs, 30 figs, 18 tabs.

  17. Study on systematic integration technology of design and safety assessment for HLW geological disposal. 2. Research document

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito, Takaya; Kohanawa, Osamu; Kuwayama, Yuki

    2003-02-01

    The present study was carried out relating to basic design of the Geological Disposal Technology Integration System' that will be systematized as knowledge base for design analysis and safety assessment of HLW geological disposal system by integrating organically and hierarchically various technical information in three study field. The key conclusions are summarized as follows: (1) As referring to the current performance assessment report, the technical information for R and D program of HLW geological disposal system was systematized hierarchically based on summarized information in a suitable form between the work flow (work item) and processes/characteristic flow (process item). (2) As the result of the systematized technical information, database structure and system functions necessary for development and construction to the computer system were clarified in order to secure the relation between technical information and data set for assessment of HLW geological disposal system. (3) The control procedure for execution of various analysis code used by design and safety assessment in HLW geological disposal study was arranged possibility in construction of 'Geological Disposal Technology Integration System' after investigating the distributed computing technology. (author)

  18. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  19. Geological Study and Regional Development of Mamberamo Raya Disctrict of Papua Province, Indonesia

    Science.gov (United States)

    Tonggiroh, Adi; Asri Jaya, HS; Ria Irfan, Ulva

    2018-02-01

    The goverment of Mamberamo Raya district was established through Act No. 19 of 2007 dated 15 March 2007 as part of the administrative area of Papua Province. The administrative age of this district is relatively young requires hard work of all components in facing development challenges so that necessary strategic steps of vision and mission of regional development to achieve ideal conditions of spatial which as direction of the desired embodiment in the future. Regional development covers all technical aspects including the geological aspect that the area is located on the morphology of the mountains and Mamberamo watershed. Strategic steps require policy as an action to achieve the goal with the elaboration of operational steps to realize the welfare of peoples equally and sustainably according to the potential physiogeography of Mamberamo watershed. The geological aspect as the consideration of technical that this region belongs to the regional tectonic which is divided into the difference of fault in the north there is Yapen fault and in the south is Mamberamo-Gauttier Fault and also a consideration on the stratigraphic structure of various rock types including the dominance of sedimentary rocks. This study examines geological aspects as an element of earth science in spatial planning in Mamberamo district, especially Kasonaweja and Burmeso. The analysis is presented based on field data, in the form of geographical map data of geological structure, geological map, and earthquake data described by cluster pattern indicating regional motion relationship and rock characteristics that make up Mamberamo watershed. It finds land characteristics controlled by geological structures, rock arrangements and landforms in response to landslide, flood and seismic changes.

  20. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  1. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  2. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals)

    OpenAIRE

    A. V. Snachev; E. P. Shchulkin

    2018-01-01

    This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5...

  3. Study of gamma ray analysis software's. Application to activation analysis of geological samples

    International Nuclear Information System (INIS)

    Silva, Luiz Roberto Nogueira da

    1998-01-01

    A comparative evaluation of the gamma-ray analysis software VISPECT, in relation to two commercial gamma-ray analysis software packages, OMNIGAM (EG and G Ortec) and SAMPO 90 (Canberra) was performed. For this evaluation, artificial gamma ray spectra were created, presenting peaks of different intensities and located at four different regions of the spectrum. Multiplet peaks with equal and different intensities, but with different channel separations, were also created. The results obtained showed a good performance of VISPECT in detecting and analysing single and multiplet peaks of different intensities in the gamma-ray spectrum. Neutron activation analysis of the geological reference material GS-N (IWG-GIT) and of the granite G-94, used in a Proficiency Testing Trial of Analytical Geochemistry Laboratories, was also performed , in order to evaluate the VISEPCT software in the analysis of real samples. The results obtained by using VISPECT were as good or better than the ones obtained using the other programs. (author)

  4. Inelastic analysis of solids and structures

    CERN Document Server

    Kojic, M; Bathe, K J; Koji?, Milo

    2005-01-01

    Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions.It is based on experimental observations and principles of mechanics, thus describing computational algorithms for stress calculation and presenting solved examples.The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials.The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations.The solved examples are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.

  5. Geology and structure of the Malpaso caldera and El Ocote ignimbrite, Aguascalientes, Mexico

    International Nuclear Information System (INIS)

    Nieto-Obregon, Jorge; Aguirre-DIaz, Gerardo

    2008-01-01

    A new caldera, named Malpaso, is reported west of the city of Aguascalientes, Mexico. The Malpaso caldera is a volcano-tectonic depression, highly fractured and faulted, and was filled by voluminous pyroclastic products related to the caldera collapse. Due to these characteristics it as a graben caldera. It is truncated by younger normal faults of the Calvillo and Aguascalientes grabens. In this work we present a summary of the geologic and structural observations on this caldera, as well as a description of the main caldera product, the high-grade El Ocote ignimbrite.

  6. Geology and structure of the Malpaso caldera and El Ocote ignimbrite, Aguascalientes, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nieto-Obregon, Jorge [Facultad de IngenierIa, UNAM, Coyoacan, 04510, Mexico D.F. (Mexico); Aguirre-DIaz, Gerardo [Centro de Geociencias, UNAM, Campus Juriquilla, 76220, Queretaro, Qro. (Mexico)], E-mail: nieto@servidor.unam.mx, E-mail: ger@geociencias.unam.mx

    2008-10-01

    A new caldera, named Malpaso, is reported west of the city of Aguascalientes, Mexico. The Malpaso caldera is a volcano-tectonic depression, highly fractured and faulted, and was filled by voluminous pyroclastic products related to the caldera collapse. Due to these characteristics it as a graben caldera. It is truncated by younger normal faults of the Calvillo and Aguascalientes grabens. In this work we present a summary of the geologic and structural observations on this caldera, as well as a description of the main caldera product, the high-grade El Ocote ignimbrite.

  7. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  8. Geologic and petrophysic analysis of a travertine block as hydrocarbon reservoir analogue

    International Nuclear Information System (INIS)

    Basso, Mateus; Kuroda, Michelle Chaves; Vidal, Alexandre Campane

    2017-01-01

    Microbialitic limestones are gaining space in petroleum geology due to the existence of many reservoirs composed of these lithologies in the pre-salt producing fields. Travertine, calcareous tufa and stromatolites figure among the rocks proposed as analogous for the microbialitic rocks. This work conduces the study of geological, petrophysical and geophysical parameters of a travertine block measuring 1,60 x 1,60 x 2,70 m, weighing 21,2 tons and available in the Centro de Estudo do Petroleo (CEPETRO) at the Universidade Estadual de Campinas. The Italian block, named T-block, corresponds to the representative elementary volume of its original formation and allows the study in an intermediate scale between the hand sample and the outcrop scale. Permeability tests and gamma ray spectrometry measurements were conducted and the porosity was calculated by image analysis. Models were generated from the obtained data and then associated with descriptive geology of the block. A reduction in permeability, porosity and concentration of elements potassium (K), uranium (U) and thorium (Th) was recorded, following a gradient towards the top of the T-block accompanying the reduction in the degree of development of the rock fabric. (author)

  9. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    International Nuclear Information System (INIS)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J.; Dziadowicz, M.; Kopeć, E.; Majewska, U.; Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I.; Wudarczyk-Moćko, J.; Góźdź, S.

    2015-01-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  10. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Dziadowicz, M.; Kopeć, E. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Majewska, U. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Wudarczyk-Moćko, J. [Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Góźdź, S. [Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Institute of Public Health, Jan Kochanowski University, IX Wieków Kielc 19, 25-317 Kielce (Poland)

    2015-12-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  11. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data

    Science.gov (United States)

    Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.

    2017-07-01

    The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.

  12. Combined constraints on the structure and physical properties of the East Antarctic lithosphere from geology and geophysics.

    Science.gov (United States)

    Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.

    2017-12-01

    The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.

  13. Proceedings of the 14. Symposium on Geology from Northeast

    International Nuclear Information System (INIS)

    1991-01-01

    Works on geology, including topics about sedimentology, stratigraphy, paleontology, geomorphology, environmental, hydrogeology, petrology, geochemistry, geochronology, geophysics, geotectonics and structural geology are described in this symposium. (C.G.C.)

  14. An application of the geophysical methods and ALS DTM for the identification of the geological structure in the Kraśnik region - Lublin Upland, Poland

    Science.gov (United States)

    Kamiński, Mirosław

    2017-11-01

    The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.

  15. Geostatistical simulation of geological architecture and uncertainty propagation in groundwater modeling

    DEFF Research Database (Denmark)

    He, Xiulan

    parameters and model structures, which are the primary focuses of this PhD research. Parameter uncertainty was analyzed using an optimization tool (PEST: Parameter ESTimation) in combination with a random sampling method (LHS: Latin Hypercube Sampling). Model structure, namely geological architecture...... be compensated by model parameters, e.g. when hydraulic heads are considered. However, geological structure is the primary source of uncertainty with respect to simulations of groundwater age and capture zone. Operational MPS based software has been on stage for just around ten years; yet, issues regarding...... geological structures of these three sites provided appropriate conditions for testing the methods. Our study documented that MPS is an efficient approach for simulating geological heterogeneity, especially for non-stationary system. The high resolution of geophysical data such as SkyTEM is valuable both...

  16. CHARACTERIZATION OF GEOLOGICAL MATERIALS USING ION AND PHOTON BEAMS

    International Nuclear Information System (INIS)

    TOROK, SZ.B.; JONES, K.W.; TUNIZ, C.

    1998-01-01

    Geological specimens are often complex materials that require different analytical methods for their characterization. The parameters of interest may include the chemical composition of major, minor and trace elements. The chemical compounds incorporated in the minerals, the crystal structure and isotopic composition need to be considered. Specimens may be highly heterogeneous thus necessitating analytical methods capable of measurements on small sample volumes with high spatial resolution and sensitivity. Much essential information on geological materials can be obtained by using ion or photon beams. In this chapter we describe the principal analytical techniques based on particle accelerators, showing some applications that are hardly possible with conventional methods. In particular, the following techniques will be discussed: (1) Synchrotron radiation (SR) induced X-ray emission (SRIXE) and particle-induced X-ray emission (PEE) and other ion beam techniques for trace element analysis. (2) Accelerator mass spectrometry (AMS) for ultra sensitive analysis of stable nuclides and long-lived radionuclides. In most of the cases also the possibilities of elemental and isotopic analysis with high resolution will be discussed

  17. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  18. Fast and objective detection and analysis of structures in downhole images

    Science.gov (United States)

    Wedge, Daniel; Holden, Eun-Jung; Dentith, Mike; Spadaccini, Nick

    2017-09-01

    Downhole acoustic and optical televiewer images, and formation microimager (FMI) logs are important datasets for structural and geotechnical analyses for the mineral and petroleum industries. Within these data, dipping planar structures appear as sinusoids, often in incomplete form and in abundance. Their detection is a labour intensive and hence expensive task and as such is a significant bottleneck in data processing as companies may have hundreds of kilometres of logs to process each year. We present an image analysis system that harnesses the power of automated image analysis and provides an interactive user interface to support the analysis of televiewer images by users with different objectives. Our algorithm rapidly produces repeatable, objective results. We have embedded it in an interactive workflow to complement geologists' intuition and experience in interpreting data to improve efficiency and assist, rather than replace the geologist. The main contributions include a new image quality assessment technique for highlighting image areas most suited to automated structure detection and for detecting boundaries of geological zones, and a novel sinusoid detection algorithm for detecting and selecting sinusoids with given confidence levels. Further tools are provided to perform rapid analysis of and further detection of structures e.g. as limited to specific orientations.

  19. Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia

    Science.gov (United States)

    Pour, A. B.; Hashim, M.

    2016-09-01

    In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated

  20. GEOLOGICAL FEATURES MAPPING USING PALSAR-2 DATA IN KELANTAN RIVER BASIN, PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. B. Pour

    2016-09-01

    Full Text Available In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2 onboard the Advanced Land Observing Satellite-2 (ALOS-2, remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system

  1. Determination of gold and silver in geological standard samples MGI by instrument neutron activation analysis

    International Nuclear Information System (INIS)

    Lu Huijiuan; Zhou; Yunlu

    1987-01-01

    Gold and silver in geological standard samples MGI were determined by instrument neutron activation analysis. The various interferences of nuclides were considered. Corrected factors of the geometry in different positions have been determined. Using the geological standard sample MGM and radiochemical separation neutron activation method as reference, the reliability of this method is proved. Gold content in samples is 0.4-0.009 g/t, silver content is 9-0.3 g/t. Standard deviation is less than 3.5%, the precision of the measurement is 4.8-11.6%

  2. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  3. Geologic structure in California: Three studies with ERTS-1 imagery

    Science.gov (United States)

    Lowman, P. D., Jr.

    1974-01-01

    Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.

  4. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  5. Strabo: An App and Database for Structural Geology and Tectonics Data

    Science.gov (United States)

    Newman, J.; Williams, R. T.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.

    2016-12-01

    Strabo is a data system designed to facilitate digital storage and sharing of structural geology and tectonics data. The data system allows researchers to store and share field and laboratory data as well as construct new multi-disciplinary data sets. Strabo is built on graph database technology, as opposed to a relational database, which provides the flexibility to define relationships between objects of any type. This framework allows observations to be linked in a complex and hierarchical manner that is not possible in traditional database topologies. Thus, the advantage of the Strabo data structure is the ability of graph databases to link objects in both numerous and complex ways, in a manner that more accurately reflects the realities of the collecting and organizing of geological data sets. The data system is accessible via a mobile interface (iOS and Android devices) that allows these data to be stored, visualized, and shared during primary collection in the field or the laboratory. The Strabo Data System is underlain by the concept of a "Spot," which we define as any observation that characterizes a specific area. This can be anything from a strike and dip measurement of bedding to cross-cutting relationships between faults in complex dissected terrains. Each of these spots can then contain other Spots and/or measurements (e.g., lithology, slickenlines, displacement magnitude.) Hence, the Spot concept is applicable to all relationships and observation sets. Strabo is therefore capable of quantifying and digitally storing large spatial variations and complex geometries of naturally deformed rocks within hierarchically related maps and images. These approaches provide an observational fidelity comparable to a traditional field book, but with the added benefits of digital data storage, processing, and ease of sharing. This approach allows Strabo to integrate seamlessly into the workflow of most geologists. Future efforts will focus on extending Strabo to

  6. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    Directory of Open Access Journals (Sweden)

    Chunyu Ding

    2017-01-01

    Full Text Available In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain. When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.

  7. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    Science.gov (United States)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  8. Analysis by neutronic activation of samples of a geologic formation of Cuba

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Pena Fortes, B.; Padilla Alvarez, R.; Llanes Castro, A.I.; Perez Zayas, G.; Hernandez Rivero, A.T.; Lopez Reyes, M. C.; Ribeiro Guevara, S.; Molina Insfran, J.

    1997-01-01

    The analysis by neutronic activation (AAN) is an analytical non destructive technique of high accuracy and sensibility. These advantages are very utilized in the determination of geological multielemental samples. In the job 22 elements are determined in 9 geological samples pertaining to the complex of dams of acid composition that includes the graphitic micaceous schist and the quartzites of the Canada Formation, developed fundamentally in the fasteners of the anticlinal Victoria (Yac. of Wolframio Lela, Island of the Youth, Cuba) The results obtained are of great importance for the evaluation of the potentiality of these rocks as fountains or of uranium adjusting and for the geologic prognostic of the region in study. The irradiation of the samples was carried out during three campaigns, in two occasions (October 1992 and November 1994) in the reactor of investigations of the ININ of Mexico, with a flow of thermic neutrons of 10a the 13 n.s -1 cm -2 and in an occasion in the nuclear reactor of the CAB (september 1994), with a flow of thermic neutrons of 6x 10 to the 12 n.s-1. The results were processed with the program ACTAM in the CEADEN. (S. Grainger) [es

  9. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  10. Software development for geologic information management system on open-pit production

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Tian, A.; Ren, Z.; Pang, Y. [China University of Mining and Technomogy, Xuzhou (China). College of Mineral and Energy Resources

    2001-09-01

    A software, including geological data gathering and processing, deposit modelling, reserves calculating and mine map plotting, for geologic information management of open-pit production was developed. Based on the interactive technique, CAD, the object-oriented simulation, and the characteristics of geologic structures, all the geologic information databases and geologic mapping sub-systems have been established for open-pit production, planning and management. 6 refs., 1 fig.

  11. A method of identifying social structures in siting regions for deep geological repositories in Switzerland

    International Nuclear Information System (INIS)

    Brander, Simone

    2010-09-01

    Acceptance is a key element in the site selection process for deep geological repositories for high-level and low and intermediate-level radioactive waste in Switzerland. Participation requirements such as comprehensive negotiation issues and adequate resources have thus been defined by the Swiss Federal Office of Energy (SFOE). In 2008, on the basis of technical criteria Nagra (National Cooperative for the Disposal of Radioactive Waste) proposed several potential areas for deep geological repositories. The number of potential areas will be narrowed down within the next few years. All municipalities within the planning perimeter (the area in which surface facilities can be realised) are affected and form the siting region. In order to ensure that the local population have their say in the forthcoming discussions, regional participation bodies including all municipalities within a siting region are being set up by the SFOE. Regional participation ensures that local interests, needs and values are taken into account in the site selection process. Assembling the regional participation bodies is therefore of great importance. Before such bodies can be formed, however, the various interests, needs and values have to be identified, and special attention has to be paid to long-term interests of future generations, as well as to non-organised and under-represented interests. According to the concept of proportional representation, the interests, needs and values that are identified and weighted by the local population are to be represented in the regional participation procedure. The aim of this study is to share a method of mapping existing social structures in a defined geographical area. This involves a combination of an analysis of socio-economic statistical data and qualitative and quantitative social research methods

  12. Mimas: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  13. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  14. The Suitable Geological Formations for Spent Fuel Disposal in Romania

    International Nuclear Information System (INIS)

    Marunteanu, C.; Ionita, G.; Durdun, I.

    2007-01-01

    Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodor - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)

  15. Structural geology of the Columbia Plateau and environs as related to the waste isolation safety assessment program

    International Nuclear Information System (INIS)

    Coombs, H.A.

    1979-01-01

    This report provides information on the structural geology of the Columbia Plateau in regard to selecting a site for radioactive waste disposal. This report describes the folding and faulting that has taken place during the past several million years, thus providing background for the general stress conditions of the area and giving clues to the mechanism of deformation

  16. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  17. An application of the geophysical methods and ALS DTM for the identification of the geological structure in the Kraśnik region – Lublin Upland, Poland

    Directory of Open Access Journals (Sweden)

    Kamiński Mirosław

    2017-01-01

    Full Text Available The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES, and Electrical Resistivity Tomography (ERT. The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.

  18. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  19. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  20. PROJECT MANAGEMENT FOR THE STATE-GOVERNED GEOLOGICAL EXPLORATION OF MINERAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. M. Lygin

    2018-03-01

    Full Text Available The relevance of the research. Creating high-efficient and innovation-oriented system of studying the subsoil and the mineral resource base is one of the priority areas of developing the geological sphere. The purpose of the present study is to substantiate the rationale for the adoption of the project management methods for the exploration work. Research methods: method of system analysis, method of comparison and analogies, and method of scientific generalization. The results and their application. This article deals with the content of the main standard legislative documents which determine the strategy and lines of the country’s geological sector development in the nearest future. The article discloses the purposes and their strategic objectives and the content of the state program of the Russian Federation called “Reproduction and use of natural resources”. The resource support of the program and its subroutines is also revealed. The structure of geological industry management in modern conditions is presented. The main activities for restructuring of the geological industry are set out. They include the following points. The transformation of the Federal state unitary enterprises of information and expert profile, the advancement of scientific organizations engaged in scientific and analytical support of performed public functions. These functions are concerned with the geological study of subsoil and reproduction of the mineral resource base, as well as improving its management. The consolidation of specialized geological organizations on the types of exploration and mining, and also the main results of reorganization of the enterprises is taken into account. All of the aforementioned is subordinated to and is conducted by the Federal Agency for subsoil management. The shortcomings of the current system of management of works on the state geological study of the subsoil were revealed at the expense of the Federal budget. The

  1. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  2. Crustal structural survey for the state of Minas Gerais, Brazil, utilizing geophysical and geological information

    International Nuclear Information System (INIS)

    Haralyi, N.L.E.; Hasui, Y.; Mioto, J.A.; Hamza, V.M.

    1985-01-01

    Gravity, Magnetic (airborne, Magnet and Magsat), heat flow and seismicity available data for the state of Minas Gerais and adjacent regions is here analyzed, discussed and integrated with geologic information. The Late Archean crustal structure is defined as blocks of granite-greenstone separated by belts of high-grade terrains. The belts in eastern and southern Minas Gerais represent the lower parts of the Vitoria, Sao Paulo and Parana Blocks, which were up thrusted over the Brasilia Block through low-angle ductile simple shear Zones. That regional structure is cut and somewhat displaced by NW, ENE, NE and Ns fault sets. These faults are mostly related to the Transamazonian Event, and their geological expression appears to be as high-angle ductile simple shear zones. The development of the Middle/upper proterozoic folded sequences, the incidence of the Brasiliano/Uruacuano thermo tectonic events and the geometry of the Sao Francisco Craton were highly influenced by the preexistent weakness zones. The high-grade terrains, the borders of the Brasilia Block and the Transamazonian lineaments have been preferentially affected. The tectono-magmatic manifestations of the Wealdenian Reactivation, related to the opening of the Atlantic Ocean, occurred mostly among the uplifted zones (Alto Paranaiba Uplift) that developed partially until the rift stage (Mantiqueira Uplift). These processes clearly reveal the influence of the old structures of the state of Minas Gerais. The Mantiqueira Uplift presents a more accentuated seismic activity and thermal flow regime than the neighboring regions, so corresponding to the present less stable area of Minas Gerais. (DJM) [pt

  3. Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository

    International Nuclear Information System (INIS)

    Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

    1980-12-01

    A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated

  4. Sensitivity analysis and uncertainties simulation of the migration of radionuclide in the system of geological disposal-CRP-GEORC model

    International Nuclear Information System (INIS)

    Su Rui; Wang Ju; Chen Weiming; Zong Zihua; Zhao Honggang

    2008-01-01

    CRP-GEORC concept model is an artificial system of geological disposal for High-Level radioactive waste. Sensitivity analysis and uncertainties simulation of the migration of radionuclide Se-79 and I-129 in the far field of this system by using GoldSim Code have been conducted. It can be seen from the simulation results that variables used to describe the geological features and characterization of groundwater flow are sensitive variables of whole geological disposal system. The uncertainties of parameters have remarkable influence on the simulation results. (authors)

  5. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals

    Directory of Open Access Journals (Sweden)

    A. V. Snachev

    2018-03-01

    Full Text Available This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5 g/t that allows suggesting the setting up of new gold deposit.

  6. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    OpenAIRE

    Liang Wu; Lei Xue; Chaoling Li; Xia Lv; Zhanlong Chen; Baode Jiang; Mingqiang Guo; Zhong Xie

    2017-01-01

    Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP) and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional f...

  7. A mathematical formulation for large strain analysis of geologic continua

    International Nuclear Information System (INIS)

    Chaudhary, A.B.; Vakili, J.E.; Hume, H.R.

    1987-12-01

    A solution method is presented for finite-deformation analysis of geologic materials. The principle of virtual work is used to state the equations of equilibrium in a weak form. These equations are linearized about the last-established equilibrium configuration. A material constitutive relationship between the Green-Naghdi stress rate and the rate-of-deformation tensor is used to obtain the current stresses. The finite-element governing equations are expressed in a form suitable for an iterative solution strategy. The obtained gradient matrix contains the effects of both material and geometric nonlinearities. The primary application area of this formulation is the analysis of long-term deformation response of the region adjoining the mining shafts and the waste emplacement rooms within a nuclear waste repository. In this region, the strains are expected to be large, and the infinitesimal strain analysis would introduce inaccuracies in the solution. 19 refs., 6 figs

  8. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  9. Major episodes of geologic change - Correlations, time structure and possible causes

    Science.gov (United States)

    Rampino, Michael R.; Caldeira, Ken

    1993-01-01

    Published data sets of major geologic events of the past about 250 Myr (extinction events, sea-level lows, continental flood-basalt eruptions, mountain-building events, abrupt changes in sea-floor spreading, ocean-anoxic and blackshale events and the largest evaporite deposits) have been synthesized (with estimated errors). These events show evidence for a statistically significant periodic component with an underlying periodicity, formally equal to 26.6 Myr, and a recent maximum, close to the present time. The cycle may not be strictly periodic, but a periodicity of about 30 Myr is robust to probable errors in dating of the geologic events. The intervals of geologic change seem to involve jumps in sea-floor spreading associated with episodic continental rifting, volcanism, enhanced orogeny, global sea-level changes and fluctuations in climate. The period may represent a purely internal earth-pulsation, but evidence of planetesimal impacts at several extinction boundaries, and a possible underlying cycle of 28-36 Myr in crater ages, suggests that highly energetic impacts may be affecting global tectonics. A cyclic increase in the flux of planetesimals might result from the passage of the Solar System through the central plane of the Milky Way Galaxy - an event with a periodicity and mean phasing similar to that detected in the geologic changes.

  10. Localization of Geological Inhomogeneities on the Arctic Shelf by Analysis of the Seismoacoustic Wave Field Mode Structure

    Science.gov (United States)

    Sobisevich, A. L.; Presnov, D. A.; Sobisevich, L. E.; Shurup, A. S.

    2018-03-01

    The results of analysis of wave modes in the ambient noise induced in the layered structure "lithosphere-hydrosphere-ice sheet" are presented. It is shown that instrumental monitoring over background noises in an ice-covered shallow sea allows us to apply methods of seismic tomography in order to determine the structural parameters of a layered geophysical media.

  11. Multielemental analysis of geological materials using EDXRF

    International Nuclear Information System (INIS)

    Fernández, Zahily Herrero; Santos Júnior, José A. dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Rojas, Lino A. Valcárcel; França, Elvis Joacir de

    2017-01-01

    In northeastern Brazil, there are few studies about the metal pollution of surface soils and for the first time it will be studied heavy metals contamination in soils with different cover land. The State of Pernambuco is representative of the Brazilian Northeast region in relation to the variability of climatic conditions, soil types, cover and land use. Based on this, this paper provides information on the determination of metals in soil samples collected in Pernambuco, Brazil. The analysis of Al, Ca, Fe, K, Mg, Mn, Ni, Pb, Si, Sr, Ti and Zn were performed using Energy Dispersive X Ray Fluorescence (EDXRF). The 316 locations studied were specifically selected taking into account the different land use of soil. Analytical curves were obtained by means of the analysis of certified reference materials, for quantify the metals. The regression coefficients of the analytical curves were higher than 0.99. The quality of the analytical procedure was demonstrated at a 95% confidence level. The analysis of diverse geological samples from Pernambuco indicated higher concentrations of Ni and Zn in sugarcane, with maximum values of 41 mg kg -1 and 118 mg kg -1 , respectively and agricultural areas (41 mg kg -1 and 127 mg kg -1 , respectively). The trace element Sr was mainly enriched in urban soils with values of 400 mg kg -1 . According to the results, the EDXRF method was successfully implemented, providing some chemical tracers for the quality assessment of tropical soils and sediments. (author)

  12. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  13. The geologic character of nappe structure and its relation to uranium mineralization of Xiangshan ore-field in the middle of Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Yulong; Yang Song

    2012-01-01

    Started with the spatial distribution of nappe structure, the geologic features are discussed and its effect on uranium mineralization in systematically summarized for Xiangshan ore-field in the middle of Jiangxi Province. The nappe structure not only formed a 'cross-over' lithologic combination which creates a network system which can connect, transport, migrate the mineralized matter, but also formed some close or semi-close geologic setting beneath the nappe which can act as the store ore shield space for the mineralized liquid to form uranium deposit. The mineralization is concentrated at the varied place of occurrences or shape of sub-volcanic rocks and the intersection of concealed overthrust and NE strike basic fractures. (authors)

  14. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  15. Venus: Preliminary geologic mapping of northern Atla Regio

    Science.gov (United States)

    Nikishin, A. M.; Burba, G. A.

    1992-01-01

    A preliminary geologic map of C1 sheet 15N197 was compiled according to Magellan data. Northern Atla Regio is dominantly a volcanic plain with numerous volcanic features: radar-bright and -dark flows and spots, shield volcanos, volcanic domes and hills with varied morphology, and coronalike constructions. Tesserae are the oldest terrains semiflooded by plain materials. There are many lineated terrains on this territory. They are interpreted as old, partly buried ridge belts. Lineated terrains have intermediate age between young plains and old tesserae. Ozza Mons and Sapas Mons are the high shield volcanos. The prominent structure of northern Atla Regio is Ganis Chasma rift. The rift dissected the volcanic plain and evolved nearly contemporaneously with Ozza Mons shield volcano. Ganis Chasma rift valley is highly fractured and bounded by fault scarps. There are a few relatively young volcanic features in the rift valley. The rift originated due to 5-10 percent crustal extension and crustal subsidence according to analysis of fracturing and rift valley geometry. Ganis Chasma is characterized by rift shoulder uplifts. Geological structures of Alta Regio and Beta Regio are very similar as assumed earlier.

  16. Geological storage of CO2: risks analysis, monitoring and measures. Final report

    International Nuclear Information System (INIS)

    Abou Akar, A.; Audibert, N.; Audigane, P.; Baranger, P.; Bonijoly, D.; Carnec, C.; Czernichowski, I.; Debeglia, N.; Fabriol, H.; Foerster, E.; Gaus, I.; Le Nindre, Y.; Michel, K.; Morin, D.; Roy, S.; Sanjuan, B.; Sayedi, D.

    2005-01-01

    To use the CO 2 geological storage as a coherent solution in the greenhouse gases reduction it needs to answer to safety and monitoring conditions. In this framework the BRGM presents this study in six chapters: risks analysis, the monitoring methods (geochemistry, geophysics, aerial monitoring, biochemistry, hydrogeology), the metrology, the corrosion problems, the thermal, hydrodynamical, geochemical and mechanical simulation and the today and future regulations. (A.L.B.)

  17. Evaluation model of commercial geological exploration and mining development project and analysis of some technical problems in commercial negotiation

    International Nuclear Information System (INIS)

    Yao Zhenkai

    2012-01-01

    A composite evaluation model of commercial geological exploration and mining development project was discussed, this new model consists of polity-economy-technique (PET) synthetic evaluation sub-model and geology-mining-metallurgy (GMM) technique evaluation sub-model. Besides, some key technical problems in commercial negotiation, such as information screening, quoted price and analysis of deadline, were briefly analyzed. (author)

  18. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  19. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  20. Geological and Structural Inferences from Satellite Images in Parts of Deccan basalt covered regions of Central India

    Science.gov (United States)

    Harinarayana, Tirumalachetty; Borra, Veeraiah; Basava, Sharana; Suryabali, Singh

    In search of new areas for hydrocarbon exploration, integrated ground geophysical studies have been taken up in Central India with seismic, magnetotellurics, deep resistivity and gravity surveys. Since the region is covered with basalt and well known for its intensive tectonic activity, remote sensing method seems to have value addition to the subsurface information derived from geophysical, geological and tectonic studies. The Narmada and Tapti rift zone and Deccan basalt covered regions of Central India, stems from its complexity. A Resourcesat-1 (IRS- P6) LISS-III satellite images covering an area of approximately 250,000 sq. km corresponding to the region in and around Baroda(Vadodara), Indore, Nandurbar, Khandwa, Akot, Nasik, Aurangabad, Pune and Latur in Central India was digitally processed and interpreted to present a schematic map of the geology and elucidate the structural fabric of the region. From our study, the disposition of the intensive dyke system, various faults and other lineaments in the region are delineated. Ground truth studies have shown good correlation with lineaments/dykes indicated in remote sensing studies and have revealed distinct ENE-WSW trending lineaments, dykes which are more prominent near the Narmada and Tapti river course. Evolution of these features with Deccan volcanism is discussed with available geochronological data set. These findings are significant in relation to structural data and form a part of the geo-structural database for ground surveys.

  1. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  2. Scientific Journals as Fossil Traces of Sweeping Change in the Structure and Practice of Modern Geology

    Directory of Open Access Journals (Sweden)

    H. L. Vacher

    2008-01-01

    Full Text Available In our attempts to track changes in geological practice over time and to isolate the source of these changes, we have found that they are largely connected with the germination of new geologic subdisciplines. We use keyword and title data from articles in 68 geology journals to track the changes in influence of each subdiscipline on geology over all. Geological research has shifted emphasis over the study period, moving away from economic geology and petroleum geology, towards physics- and chemistry-based topics. The Apollo lunar landings had as much influence on the topics and practice of geological research as the much-cited plate-tectonics revolution. These results reflect the barely-tangible effects of the changes in vocabulary and habit of thought that have pervaded the substance of geology. Geological literature has increased in volume and specialization, resulting in a highly fragmentary literature. However, we infer that "big science," characterized by large amounts of funding, collaboration, and large logistical investments, makes use of this specialization and turns "twigging" into a phenomenon that enhances, rather than inhibits, the enterprise of research.

  3. Digital Geologic Map of New Mexico - Formations

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  4. Evaluation and analysis of geological condition of in-situ fragmentation leaching uranium

    International Nuclear Information System (INIS)

    Yang Jianming; Tan Kaixuan; Huang Xiaonai

    2003-01-01

    The ore geological condition, hydrogeological condition, engineering geological condition and technological mineralogical character of in-situ fragmentation leaching uranium are analyzed, and it is considered that the implementation of in-situ fragmentation leaching uranium technology is decided by different geological factor. Previously prospecting and geological condition evaluation of uranium ore is based on traditional mining method. If in-situ fragmentation leaching uranium method is adopted, one must re-evaluate previously prospected deposits before they are mined, or one must evaluate new prospecting deposits according to geological conditions of in-situ fragmentation leaching uranium method. The feasibility evaluation method of uranium deposit by in-situ fragmentation leaching uranium put forward by B. N. Mociniets is introducd, and it is considered that B. N. Mociniets method has guidable significance for geological condition evaluation before uranium deposits are mined. A feasibility study is done by applying B. N. Mociniets method to a uranium deposit. (authors)

  5. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    International Nuclear Information System (INIS)

    Prothro, L.B.; Townsend, M.J.; Drellack, S.L. Jr

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1

  6. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr. [and others

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  7. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  8. Exploring the assessment of geological observation with design research

    Science.gov (United States)

    Baek, John Y.

    The purpose of this study was to investigate the assessment of geological observation through the development and field testing of performance tasks. The study addressed a central challenge in geoscience education: for students to observe the world around them and make real-world connections. Yet, there existed no cohesive research approach for the study of observation in geoscience education. The research goal was to understand the assessment of geological observation. The design research of geological observation encountered the situation where few performance assessments existed and few domain-specific learning theories were available. Design research is suited to inquiries in which a domain of learning is unexplored and the phenomena needs to be supported in the classroom in order to study it. This dissertation addressed one general research question and four subquestions: (RQ) How should geological observation be assessed? (S1) What role did perception play in assessing students' geological observations? (S2) What role did explanation play in assessing students' geological observations? (S3) What role did gestures play in assessing students' geological observations? (S4) Were there performance differences between the first and second trial of the GO Inquire prototype with fourth graders? Students were supported in making geological observations with three performance tasks: GO Inquire stamp task, Cutting task, and Fieldguide task. The data set for this study consisted of student response data, videorecordings, and participant observations from seven field tests across one fourth and one fifth grade class. Three data-analytic methods, qualitative coding, item-difficulty analysis, and non-parametric comparisons, were utilized based on four mixed-method data analysis strategies: typology development, data transformation, extreme case analysis, and data consolidation. Analysis revealed that assessment should take into account the separation of visual from verbal

  9. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  10. Elements of the geological structure of the Western Siberian platform determined from a review of fine-scale satellite photographs in oil and gas prospecting research

    Energy Technology Data Exchange (ETDEWEB)

    Borovskii, V V; Klopov, A L; Peskovskii, I D; Podsosova, L L

    1980-01-01

    Dislocations with breaks in continuity and annular objects are identified on fine-scale satellite photographs within the region of the Western Siberian platform. Based on an integrated interpretation of the geological and geophysical data, it is predicted that there exists a relation between the annular objects and the geological structure of deep portions of the earth's crust, the pre-Jurassic basement, and certain levels of the platform mantle. Procedural techniques for the use of magnetic and gravitional data for the purpose of obtaining information about the geological nature of the identified objects are considered.

  11. Chemical and Hydro-Geologic Analysis of Ikogosi Warm Spring Water in Nigeria

    OpenAIRE

    Akinola Ikudayisi; Folasade Adeyemo; Josiah Adeyemo

    2015-01-01

    This study focuses on the hydro-geology and chemical constituents analysis of Ikogosi Warm Spring waters in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total di...

  12. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    . Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.

  13. Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns

    International Nuclear Information System (INIS)

    Grambow, Bernd; Bretesché, Sophie

    2014-01-01

    Highlights: • Models for repository safety can only partly be validated. • Long term risks need to be translated in the context of societal temporalities. • Social sciences need to be more strongly involved into safety assessment. - Abstract: After more than 30 years of international research and development, there is a broad technical consensus that geologic disposal of highly-radioactive waste will provide for the safety of humankind and the environment, now, and far into the future. Safety analyses have demonstrated that the risk, as measured by exposure to radiation, will be of little consequence. Still, there is not yet an operating geologic repository for highly-radioactive waste, and there remains substantial public concern about the long-term safety of geologic disposal. In these two linked papers, we argue for a stronger connection between the scientific data (paper I, Grambow et al., 2014) and the safety analysis, particularly in the context of societal expectations (paper II). In this paper (II), we assess the meaning of the technical results and derived models (paper I) for the determination of the long-term safety of a repository. We consider issues of model validity and their credibility in the context of a much broader historical, epistemological and societal context. Safety analysis is treated in its social and temporal dimensions. This perspective provides new insights into the societal dimension of scenarios and risk analysis. Surprisingly, there is certainly no direct link between increased scientific understanding and a public position for or against different strategies of nuclear waste disposal. This is not due to the public being poorly informed, but rather due to cultural cognition of expertise and historical and cultural perception of hazards to regions selected to host a geologic repository. The societal and cultural dimension does not diminish the role of science, as scientific results become even more important in distinguishing

  14. Three-dimensional Subsurface Geological Modeling of the Western Osaka Plane based on Borehole Data

    Science.gov (United States)

    Nonogaki, S.; Masumoto, S.; Nemoto, T.

    2012-12-01

    Three-dimensional (3D) geological model of subsurface structure plays an important role in developing infrastructures. In particular, the 3D geological model in urban area is quite helpful to solve social problems such as underground utilization, environmental preservation, and disaster assessment. Over the past few years, many studies have been made on algorithms for 3D geological modeling. However, most of them have given little attention to objectivity of the model and traceability of modeling procedures. The purpose of this study is to develop an algorithm for constructing a 3D geological model objectively and for maintaining high-traceability of modeling procedures. For the purpose of our work, we proposed a new algorithm for 3D geological modeling using gridded geological boundary surfaces and the "logical model of geologic structure". The geological boundary surface is given by a form of Digital Elevation Model (DEM). The DEM is generated based on geological information such as elevation, strike and dip by using a unique spline-fitting method. The logical model of geological structure is a mathematical model that defines a positional relation between geological boundary surfaces and geological units. The model is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. We applied the proposed algorithm into constructing a 3D subsurface geological model of the western Osaka Plane, southwest Japan. The data used for 3D geological modeling is a set of borehole data provided by Osaka City and Kansai Geoinformatics Agency. As a result, we constructed a 3D model consistent with the subjective model reported in other studies. In addition, all information necessary for modeling, such as the used geological information, the parameters of surface fitting, and the logical model, was stored in text files. In conclusion, we can not only construct 3D geological model objectively but also maintain high

  15. Neural network analysis for geological interpretation of tomographic images beneath the Japan Islands

    Science.gov (United States)

    Kuwatani, T.; Toriumi, M.

    2009-12-01

    Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise

  16. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  17. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  18. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  19. Multielemental analysis of geological materials using EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Zahily Herrero; Santos Júnior, José A. dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Rojas, Lino A. Valcárcel, E-mail: zahily1985@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: linomarvic@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife (Brazil). Departamento de Energia Nuclear; Alvarez, Juan R. Estevez, E-mail: jestevez@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Havana (Cuba); França, Elvis Joacir de, E-mail: ejfranca@gmail.com [Centro Regional de Ciências Nucleares do Nordeste (CRCN-EN/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    In northeastern Brazil, there are few studies about the metal pollution of surface soils and for the first time it will be studied heavy metals contamination in soils with different cover land. The State of Pernambuco is representative of the Brazilian Northeast region in relation to the variability of climatic conditions, soil types, cover and land use. Based on this, this paper provides information on the determination of metals in soil samples collected in Pernambuco, Brazil. The analysis of Al, Ca, Fe, K, Mg, Mn, Ni, Pb, Si, Sr, Ti and Zn were performed using Energy Dispersive X Ray Fluorescence (EDXRF). The 316 locations studied were specifically selected taking into account the different land use of soil. Analytical curves were obtained by means of the analysis of certified reference materials, for quantify the metals. The regression coefficients of the analytical curves were higher than 0.99. The quality of the analytical procedure was demonstrated at a 95% confidence level. The analysis of diverse geological samples from Pernambuco indicated higher concentrations of Ni and Zn in sugarcane, with maximum values of 41 mg kg{sup -1} and 118 mg kg{sup -1}, respectively and agricultural areas (41 mg kg{sup -1} and 127 mg kg{sup -1}, respectively). The trace element Sr was mainly enriched in urban soils with values of 400 mg kg{sup -1}. According to the results, the EDXRF method was successfully implemented, providing some chemical tracers for the quality assessment of tropical soils and sediments. (author)

  20. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  1. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  2. A 3D visualization of spatial relationship between geological structure and groundwater chemical profile around Iwate volcano, Japan: based on the ARCGIS 3D Analyst

    Science.gov (United States)

    Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.

    2009-12-01

    We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.

  3. ROCK-CAD - computer aided geological modelling system

    International Nuclear Information System (INIS)

    Saksa, P.

    1995-12-01

    The study discusses surface and solid modelling methods, their use and interfacing with geodata. Application software named ROCK-CAD suitable for geological bedrock modelling has been developed with support from Teollisuuden Voima Oy (TVO). It has been utilized in the Finnish site characterization programme for spent nuclear fuel waste disposal during the 1980s and 1990s. The system is based on the solid modelling technique. It comprises also rich functionality for the particular geological modelling scheme. The ROCK-CAD system provides, among other things, varying graphical vertical and horizontal intersections and perspective illustrations. The specially developed features are the application of the boundary representation modelling method, parametric object generation language and the discipline approach. The ROCK-CAD system has been utilized in modelling spatial distribution of rock types and fracturing structures in TVO's site characterization. The Olkiluoto site at Eurajoki serves as an example case. The study comprises the description of the modelling process, models and illustration examples. The utilization of bedrock models in site characterization, in tentative repository siting as well as in groundwater flow simulation is depicted. The application software has improved the assessment of the sites studied, given a new basis for the documentation of interpretation and modelling work, substituted hand-drawing and enabled digital transfer to numerical analysis. Finally, aspects of presentation graphics in geological modelling are considered. (84 refs., 30 figs., 11 tabs.)

  4. Geology and geophysics of the Vila Nova Greenstone Belt, northeastern portion of the Amazonian Craton, Amapa, Brazil; Geologia e geofisica do greenstone belt Vila Nova, porcao NE do Craton Amazonico, Amapa, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Borghetti, Cristiano; Philipp, Ruy Paulo, E-mail: cborghetti@terra.com.br, E-mail: ruy.philipp@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2017-01-15

    A few outcrops and strong weathering conditions prevail in the region of the Vila Nova Greenstone Belt in the southeastern Amapa (Brazil). This paper describes the use of airborne geophysical data for geological and structural analysis during geological mapping. This integration aims to improve the geological and tectonic understanding of this portion of the Amazonian Craton. The magnetometric and gamma-spectrometric qualitative interpretation of the images took place in a Geographic Information System (GIS) environment. Recognition of magnetometric and gamma-ray spectrometric units present in the study area was based on the hierarchical classification of polygons outlined by visual interpretation. The major geological domains and the structural patterns were defined by integration of geophysical data, geological mapping and petrographic analysis. The results allowed the recognition of Archean basement rocks composed of orthogneisses and granitoids of the Tumucumaque Complex, the metavolcano-sedimentary rocks of the Vila Nova Complex and Paleoproterozoic granite massifs. The integration of geophysical and field data resulted in the increase of the geological mapping definition, highlighting the importance of this methodology for recognition of complex structural and lithological fabrics in areas of difficult access and scarce fresh rock outcrops. (author)

  5. Okinawa, Japan: Geologic Battleground

    Science.gov (United States)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  6. Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California

    Science.gov (United States)

    Kendrick, K. J.; Matti, J. C.

    2017-12-01

    The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms

  7. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    Science.gov (United States)

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best…

  8. Digital processing of orbital radar data to enhance geologic structure - Examples from the Canadian Shield

    Science.gov (United States)

    Masuoka, Penny M.; Harris, Jeff; Lowman, Paul D., Jr.; Blodget, Herbert W.

    1988-01-01

    Various digital enhancement techniques for SAR are compared using SIR-B and Seasat images of the Canadian Shield. The three best methods for enhancing geological structure were found to be: (1) a simple linear contrast stretch; (2) a mean or median low-pass filter to reduce speckle prior to edge enhancement or a K nearest-neighbor average to cosmetically reduce speckle; and (3) a modification of the Moore-Waltz (1983) technique. Three look directions were coregistered and several means of data display were investigated as means of compensating for radar azimuth biasing.

  9. Semantic Web-based digital, field and virtual geological

    Science.gov (United States)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  10. Release consequence analysis for a hypothetical geologic radioactive waste repository in salt

    International Nuclear Information System (INIS)

    1979-08-01

    One subtask conducted under the INFCE program is to evaluate and compare the health and safety impacts of different fuel cycles in which all radioactive wastes (except those from mining and milling) are placed in a geologic repository in salt. To achieve this objective, INFCE Working Group 7 examined the radiologic dose to humans from geologic repositories containing waste arisings as defined for seven reference fuel cycles. This report examines the release consequences for a generic waste repository in bedded salt. The top of the salt formation and the top of the repository are assumed to be 250 and 600 m, respectively, below the surface. The hydrogeologic structure above the salt consists of two aquifers and two aquitards. The aquifers connect to a river 6.2 km from the repository. The regional gradient to the river is 1 m/km in all aquifers. Hydrologic, transport, and dose models were used to model two release scenarios for each fuel cycle, one without a major disturbance and one in which a major geologic perturbation breached the repository immediately after it was sealed. The purpose of the modeling was to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere, and to determine the potential dose to humans. Of the many radionuclides in the waste, only 129 I and 226 Ra arrived at the river in sufficient concentrations for a measurable dose calculation. Radionuclide concentrations in the ground water pose no threat to man because the ground water is a concentrated brine and it is diluted by a factor of 10 6 to 10 7 upon entering the river

  11. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    Science.gov (United States)

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    Most nuclear powerplants in the United States are near rivers, large lakes, or oceans. As evident from the Fukushima Daiichi, Japan, disaster of 2011, these water bodies pose inundation threats. Geologic records can extend knowledge of rare hazards from flooding, storm surges, and tsunamis. This knowledge can aid in assessing the safety of critical structures such as dams and energy plants, for which even remotely possible hazards are pertinent. Quantitative analysis of inundation from geologic records perhaps is most developed for and applied to riverine flood hazards, but because of recent natural disasters, geologic investigations also are now used widely for understanding tsunami hazards and coastal storm surges.

  12. Geological structure and mineral resources of Algeria

    Directory of Open Access Journals (Sweden)

    Eduard Dobra

    2007-12-01

    Full Text Available The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basins in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000 m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field produced from the Cambrian sands. The western part is limited by Hassi R`mel which is one of the biggest gas field in the world, it is produced from the triassic sands. The Mesozoic section lays on the lower Devonian and in the eastern part, on the Cambrian. The main source rock is Silurian shale with an average thickness of 50 m and a total organic matter of 6 % (14 % in some cases. Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposit with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column.This paper describe the main geological structure and mineral resources of Algeria.

  13. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  14. Application research on remote sensing geology of sandstone-type uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Wang Huaiwu

    2002-01-01

    Based on remote sensing images and practical materials, and new ideas of laying particular emphasis on the research of regional geologic structures, and large in-situ leachable sandstone-type uranium deposits, applying the theory of plate tectonics, the author makes a comprehensive analysis on the uranium metallogenic environments, characteristics of regional geologic structures, the ore-controlling mechanism and factors, and uranium metallogeny. Authors propose that large interlayer oxidation zone sandstone-type uranium deposits are controlled by the combination of the stable block in Meso-Cenozoic compressive-shearing faulted subsided basin on the Yili multiphase massif in Tianshan paleo-island arc system, and the specific paleo-geographic environments and its' structural terrace'. The origin of hydrogenic sandstone-type uranium deposits is summarized by the authors as the 'mixing and neutralization' genetic model, and the 'eight ore-controlling factors merge into an organic whole' prospecting model. The above mentioned provides clear prospecting direction and new ideas for the forecasting direction for prospecting large sandstone-type uranium deposits

  15. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  16. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  17. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    Science.gov (United States)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution

  18. Scientific Journals as Fossil Traces of Sweeping Change in the Structure and Practice of Modern Geology

    Science.gov (United States)

    Fratesi, Sarah E.; Vacher, H. L.

    2008-01-01

    In our attempts to track changes in geological practice over time and to isolate the source of these changes, we have found that they are largely connected with the germination of new geologic subdisciplines. We use keyword and title data from articles in 68 geology journals to track the changes in influence of each subdiscipline on geology over…

  19. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    Science.gov (United States)

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I

  20. First Paleomagnetic Map of the Easternmost Mediterranean Derived from Combined Geophysical-Geological Analysis

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2014-05-01

    he easternmost Mediterranean is a tectonically complex region evolving in the long term and located in the midst of the progressive Afro-Eurasian collision (e.g., Ben-Avraham, 1978; Khain, 1984). Both rift-oceanic systems and terrane belts are known to have been formed in this collision zone (Stampfli et al., 2013). Despite years of investigation, the geological-geophysical structure of the easternmost Mediterranean is not completely known. The formation of its modern complex structure is associated with the evolution of the Neotethys Ocean and its margins (e.g., Ben-Avraham and Ginzburg, 1990; Robertson et al., 1991; Ben-Avraham et al., 2002). The easternmost Mediterranean was formed during the initial phase of the Neotethys in the Early and Late Permian (Golonka and Ford, 2000; Stampfli et al., 2013). At present this block of the ocean crust situated in the northern part of the Sinai plate (Ben-Avraham, 1978; Eppelbaum et al., 2012, 2014) is object of our investigation. The easternmost Mediterranean region has attracted increasing attention in connection with the recent discoveries of significant hydrocarbon deposits in this region (e.g., Montadert et al., 2010; Schenk et al., 2010; Eppelbaum et al., 2012). For example, Schenk et al. (2010) consider that more than 4 trillion m3 of recoverable gas is available in the Levant Basin (which located in the central part of the easternmost Mediterranean). Currently seismic prospecting is the main tool used in hydrocarbon deposit discovery. However, even sophisticated seismic data analysis (e.g., Hall et al., 2005; Roberts and Peace, 2007; Gardosh et al., 2010; Marlow et al., 2011; Lazar et al., 2012), fails to identify the full complex structural-tectonic mosaic of this region, and more importantly, is unable to clarify its baffling complex tectonic evolution. This highlights the need for combined analysis of geophysical data associated with the paleomagnetic and paleobiogeographic conditions that can yield deep

  1. Multi- and hyperspectral geologic remote sensing: A review

    Science.gov (United States)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  2. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    Science.gov (United States)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  3. A geological reconnaissance study of the Lac du Bonnet batholith

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Kerford, P.S.; Requeima, J.C.; Temple, C.A.

    1980-02-01

    A geological reconnaissance survey was carried out of the Lac du Bonnet batholith, southeastern Manitoba, as part of the concept verification phase of the nuclear fuel waste disposal program for Canada. This report summarizes available geological information, presents the results of field mapping and discusses the geochemical analyses of rock samples. The geological and structural aspects of the batholith are described as well as its regional setting and possible genesis. (auth)

  4. A New Look at Geological Structure of Pashian Horizon (D3ps of Aznakaevskaya Area, Romashkinskoye Oil Field

    Directory of Open Access Journals (Sweden)

    Z.A. Loshheva

    2017-03-01

    Full Text Available This paper considers construction of a geological model for the Pashian Horizon (D3ps of Aznakaevskaya Area, Romashkinskoye Oil Field. Facies analysis is proposed for determination of spatial arrangement of the facies that contain reservoir beds. Development strategy designed and implemented based on the existing geological model does not ensure desired economic and production performance. The new model designed using facies analysis and up-to-date IT tools (IrapRMS ROXAR software package with account of tectonic factor enables changing the philosophy and the approach to searching for remaining reserves in poorly swept or by-passed zones. During the Pashian, coastal-marine and offshore facies accumulated within the field: wave-cut zone – basal layer; lagoon zone – lagoon clays; intertidal zone – bar layer and tidal channel (replaces bar sediments; behind-bank zone – behind-bank clays, and alluvial fan facies that overly the behind-bank clays. Fluvial palaeovalleys were also present and contained compound fluvial channel and wave-cut facies. Throughout the geological history, multiple tectonic movements occurred and influenced the architecture of the deposited facies. At the first stage, well logging data were used to analyze each well and describe the standard cross section with the following facies from bottom to top: basal layer, lagoon clays, bar layer, behind-bank clays. Four cross section types were singled out taking into account secondary facies with regular-sporadic development. In the course of the research, core data on reservoir quality were analyzed to confirm separation into compound and intertidal facies. Porosity distribution histograms were also generated based on well logging findings. The authors of this work believe that the new geological model and the subsequent reservoir simulation model will allow to work out a successful production enhancement strategy to recover the remaining oil reserves localized in poorly

  5. Digital Geologic Map of New Mexico - Volcanic Vents

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  6. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  7. First Indications of Intraplate Deformations in Central Germany from Reprocessed GNSS Time Series and Geological Data

    Science.gov (United States)

    Becker, Matthias; Leinen, Stefan; Läufer, Gwendolyn; Lehné, Rouwen

    2013-04-01

    Six years of GPS data have been reprocessed in ITRF2008 for a regional SAPOS CORS network in the federal state of Hesse with 25 stations and some anchor sites of IGS and EPN to derive accurate and consistent coordinate time series. Based on daily network solutions coordinate time series parameters like velocities, offsets in case of antenna changes and annual periodic variation have been estimated. The estimation process includes the fitting of a sophisticated stochastic model for the time series which accounts for inherent time correlation. The results are blended with geological data to verify information from geology on potential recent deformations by the geodetic analyses. Besides of some information on the reprocessing of the GNSS the results the stochastics of the derived velocity field will be discussed in detail. Special emphasis will be on the intra-plate deformation: for the horizontal component the residual velocity field after removal of a plate rotation model is presented, while for the vertical velocities the datum-induced systematic effect is removed in order to analyze the remaining vertical motion. The residual velocity field is then matched with the geology for Hesse. Correlation of both vertical and horizontal movements with major geological structures reveals good accordance. SAPOS stations with documented significant subsidence are mainly located in tertiary Graben structures such as the Lower Hessian Basin (station Kassel), the Wetterau (station Kloppenheim) or the Upper Rhine Graben (Station Darmstadt). From the geological point of view these structures are supposed to be subsiding ones. Other major geological features, i.e. the Rhenish Shield as well as the East Hessian Bunter massif are supposed to be affected by recent uplift. SAPOS stations located in these regions match the assumed movement (e.g. Weilburg, Wiesbaden, Bingen, Fulda). Furthermore SAPOS-derived horizontal movements seem to trace tectonic movements in the region, i

  8. An evaluation of the suitability of ERTS data for the purposes of petroleum exploration. [lithology and geological structure of Anadarko Basin of Oklahoma and Texas

    Science.gov (United States)

    Collins, R. J. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G. J.; Everett, J. R.

    1974-01-01

    The author has identified the following significant results. ERTS-1 data give exploration geologists a new perspective for looking at the earth. The data are excellent for interpreting regional lithologic and structural relationships and quickly directing attention to areas of greatest exploration interest. Information derived from ERTS data useful for petroleum exploration include: linear features, general lithologic distribution, identification of various anomalous features, some details of structures controlling hydrocarbon accumulation, overall structural relationships, and the regional context of the exploration province. Many anomalies (particularly geomorphic anomalies) correlate with known features of petroleum exploration interest. Linears interpreted from the imagery that were checked in the field correlate with fractures. Bands 5 and 7 and color composite imagery acquired during the periods of maximum and minimum vegetation vigor are best for geologic interpretation. Preliminary analysis indicates that use of ERTS imagery can substantially reduce the cost of petroleum exploration in relatively unexplored areas.

  9. Geological-economic analysis on the exploration of backup resources for depleted mines in Lujing uranium ore-field, central-southern China

    International Nuclear Information System (INIS)

    Li Deping; Wang Zhicheng; Fan Shaoyun

    2006-01-01

    With the geological-economic evaluation program for pithead heap-leaching mining uranium deposits developed by the authors and the data of column-leaching tests and the geological reserve, the geological-economic evaluation is made to the residual geological reserves of both Lujing and Huangfengling deposit, and the geological reserves of Yangjiaonao deposit of the depleted mines in Lujing uranium ore-field, central-southern China. The results of static analysis on these reserves show that the residual geological reserves of both Lujing and Huangfengling deposit belong to sub-profitable type, but the ones of Yangjiaonao deposit is profitable with 26.56% tax-before profit. 1 tU profitable type of ore from Yangjiaonao deposit can use 2.40-3.79 tU subprofitable type of ores from Lujing and Huangfengling deposit. In order to solving the problem on scarcity of backup resources of the depleted mines in Lujing uranium ore-field and using the existing sub-profitable type of geological reserves, it is suggested that the high grade of profitable type of deposits should be explored around the exhausting mines so that the production of the mines could be profitable by the pithead heap-leaching mining method with arrangement groups of both sub-profitable and profitable type of ores. (authors)

  10. Relating Gestures and Speech: An analysis of students' conceptions about geological sedimentary processes

    Science.gov (United States)

    Herrera, Juan Sebastian; Riggs, Eric M.

    2013-08-01

    Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture (e.g. giving directions, or describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image schemas as a source of concept representations for students' learning of sedimentary processes. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures about four core geological ideas that involve sea-level change and sediment deposition. The study included 25 students from three US universities. Participants were enrolled in upper-level undergraduate courses on sedimentology and stratigraphy. We used semi-structured interviews for data collection. Our gesture coding focused on three types of gestures: deictic, iconic, and metaphoric. From analysis of video recorded interviews, we interpreted image schemas in gestures and verbal reports. Results suggested that students attempted to make more iconic and metaphoric gestures when dealing with abstract concepts, such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns including time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary systems. Our research also supports the hypothesis that gestures provide an independent and non-linguistic indicator of image schemas that shape conceptual development, and also play a role in the construction and communication of complex spatial and temporal concepts in the geosciences.

  11. Near-dome geologic findings - Richton Dome, Mississippi: annual status report for FY 83

    International Nuclear Information System (INIS)

    1984-10-01

    Basin Analysis is a study of the regional and local stratigraphic, tectonic, and salt-tectonic conditions that influenced the development of the Mississippi Salt Basin and Richton Dome, an element within that basin. During FY 83, work was concentrated on the local area surrounding Richton Dome and included the writing of the Midyear FY 83 Richton Dome Screening and Suitability Review, input to the Site Characterization Plan that is being prepared by the Southern Region Geologic Project Manager, and initial development of a near-dome geologic model. The geologic model was compiled using information from approximately 300 oil and gas well geophysical logs and 128 line km (80 line mi) of seismic-reflection profiles. In addition to analysis and interpretation of the logs and profiles, stratigraphic data from each were assembled in a computer-based file and were used to produce computer-generated structural contour maps. Major findings from the analyses include a new configuration for the northern end of Richton Dome and improved definitions of near-dome faults and the rim syncline on the northern and eastern flanks of Richton Dome. 4 references, 6 figures

  12. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  13. The geology of the southeastern Baltic Sea: a review

    Science.gov (United States)

    Ūsaitytė, Daiva

    2000-06-01

    The Baltic Sea, particularly its southeastern part, is discussed in the paper. Investigations of regional character as well as specialized studies in the area are reviewed. General historical works are mentioned briefly. Previous surveys since the 1950s are presented by the subject studied. The compilation of geological structure of the SE Baltic Sea bottom and adjacent land of Balticum (Baltic States: Estonia, Latvia, Lithuania) is based on considerable amounts of summarized materials. The crystalline basement, sedimentary cover and Quaternary deposits are characterized in the comprehensive survey of geological structure. From a stratigraphical point of view, geological sequence of the platformal cover is comparatively complete: deposits of all geological systems (from the Archean to Cenozoic) are present in the Baltic Syneclise. Considering geotectonical cycles, the sedimentary cover of the syneclise is subdivided into four structural complexes. The thickness and distribution of Quaternary deposits are closely related to the recent bottom relief of the Baltic Sea that in turn is inherited from the Pre-Quaternary surface. Buried palaeo-valleys are characteristic of the Pre-Quaternary surface in the Baltic region and the Baltic Sea bottom. The Quaternary is characterized by layers of various geneses and by sharp changes of their thicknesses.

  14. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  15. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  16. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  17. Application of Remote Sensing in Geological Mapping, Case Study al Maghrabah Area - Hajjah Region, Yemen

    Science.gov (United States)

    Al-Nahmi, F.; Saddiqi, O.; Hilali, A.; Rhinane, H.; Baidder, L.; El arabi, H.; Khanbari, K.

    2017-11-01

    Remote sensing technology plays an important role today in the geological survey, mapping, analysis and interpretation, which provides a unique opportunity to investigate the geological characteristics of the remote areas of the earth's surface without the need to gain access to an area on the ground. The aim of this study is achievement a geological map of the study area. The data utilizes is Sentinel-2 imagery, the processes used in this study, the OIF Optimum Index Factor is a statistic value that can be used to select the optimum combination of three bands in a satellite image. It's based on the total variance within bands and correlation coefficient between bands, ICA Independent component analysis (3, 4, 6) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals, MNF Minimum Noise Fraction (1, 2, 3) is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing, Optimum Index Factor is a good method for choosing the best band for lithological mapping. ICA, MNF, also a practical way to extract the structural geology maps. The results in this paper indicate that, the studied area can be divided into four main geological units: Basement rocks (Meta volcanic, Meta sediments), Sedimentary rocks, Intrusive rocks, volcanic rocks. The method used in this study offers great potential for lithological mapping, by using Sentinel-2 imagery, the results were compared with existing geologic maps and were superior and could be used to update the existing maps.

  18. A WebGIS-Based Information System for Monitoring and Warning of Geological Disasters for Lanzhou City, China

    Directory of Open Access Journals (Sweden)

    Fang Miao

    2013-01-01

    Full Text Available Monitoring and warning of geological disasters accurately and in a timely fashion would dramatically mitigate casualties and economic losses. This paper takes Lanzhou city as an example and designs a Web-based system, namely the information system for geological disaster monitoring and warning (ISGDMW. Presented are its framework, key developing technologies, database, and working flow. The information system adopts a Browser/Server (B/S structure and has three-tier architecture, combining in-situ monitoring instruments, the wireless sensor network, WebGIS techniques and the grey system theory. The framework of the ISGDMW can be divided into three categories: (1 in-situ monitoring system, it aims to monitor geological disaster sites and get state information of geological disaster sites; (2 database, manage in-situ monitoring data, antecedent field investigating data and basic data; (3 analyzing and warning system, analyze in-situ monitoring data, understand the deformation trend of the potential geological disaster, and release disaster warning information to the public. The ISGDMW allow the processes of geological disaster monitoring, in-situ monitoring data analysis, geological disaster warning to be implemented in an efficient and quick way, and can provide scientific suggestions to commanders for quick response to the possibility of geological disaster.

  19. Fluid Flow through Porous Sandstone with Overprinting and Intersecting Geological Structures of Various Types

    Science.gov (United States)

    Zhou, X.; Karimi-Fard, M.; Durlofsky, L.; Aydin, A.

    2010-12-01

    Impact of a wide variety of structural heterogeneities on fluid flow in an aeolian sandstone in the Valley of Fire State Park (NV), such as (1) dilatant fractures (joints), (2) shear fractures (faults), and (3) contraction/compaction structures (compaction bands), are considered. Each type of these structures has its own geometry, spacing, distribution, connectivity, and hydraulic properties, which either enhance or impede subsurface fluid flow. Permeability of these structures may, on average, be a few orders of magnitude higher or lower than those of the corresponding matrix rocks. In recent years, the influence of a single type of these heterogeneities on fluid flow has been studied individually, such as joints, compaction bands or faults. However, as different types of geological structures are commonly present together in the same rock volume, their combined effect requires a more detailed assessment. In this study, fluid flow simulations are performed using a special finite-volume discretization technique that was developed by Karimi-Fard et al. (2004; 2006). Using this approach, thin features such as fractures and compaction bands are represented as linear elements in unstructured 2D models and as planar elements in 3D models, which significantly reduces the total number of cells and simplifies grid generation. The cell geometric information and the cell-to-cell transmissibility obtained from this discretization technique are input to Stanford’s General Purpose Research Simulator (GPRS) for fluid flow simulation. To account for the effects of the various geological structures on subsurface flow, we perform permeability upscaling over regions corresponding to large-scale simulation grid blocks in order to obtain equivalent permeability components in two principal directions. We will focus on the following problems: (1) compaction bands of multisets; (2) compartmentalization of compaction bands of high-angle, low-angle and horizontal; (3) joints overprinting

  20. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  1. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  2. Uranium prospecting and geological favour ability in Uruguay

    International Nuclear Information System (INIS)

    Goso, H.

    1981-01-01

    Uranium prospecting carried out in Uruguay since 1976 is described. On the basis of literature available and of an analysis of the large structural units pertinent to Uruguay's geology, the prospecting performed in general in the northeast of the country, and in particular in the districts of Cerro Largo and Las Canas, is described. Some information is presented on uranium favour ability in Uruguay related to sedimentary formations: Devonian (Cerrezuelo Formation) and Gondwana (San Gregorio and Tres Islas Formations), and to the Crystalline formations of the centre and Southwest (1700-2000 m.y.) and of the east and southeast (500-700 m.y.)

  3. 2D Modelling of the Gorkha earthquake through the joint exploitation of Sentinel 1-A DInSAR measurements and geological, structural and seismological information

    Science.gov (United States)

    De Novellis, Vincenzo; Castaldo, Raffaele; Solaro, Giuseppe; De Luca, Claudio; Pepe, Susi; Bonano, Manuela; Casu, Francesco; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Tizzani, Pietro

    2016-04-01

    A Mw 7.8 earthquake struck Nepal on 25 April 2015 at 06:11:26 UTC, killing more than 9,000 people, injuring more than 23,000 and producing extensive damages. The main seismic event, known as the Gorkha earthquake, had its epicenter localized at ~82 km NW of the Kathmandu city and the hypocenter at a depth of approximately 15 km. After the main shock event, about 100 aftershocks occurred during the following months, propagating toward the south-east direction; in particular, the most energetic shocks were the Mw 6.7 and Mw 7.3 occurred on 26 April and 12 May, respectively. In this study, we model the causative fault of the earthquake by jointly exploiting surface deformation retrieved by the DInSAR measurements collected through the Sentinel 1-A (S1A) space-borne sensor and the available geological, structural and seismological information. We first exploit the analytical solution performing a back-analysis of the ground deformation detected by the first co-seismic S1A interferogram, computed by exploiting the 17/04/2015 and 29/04/2015 SAR acquisitions and encompassing the main earthquake and some aftershocks, to search for the location and geometry of the fault plane. Starting from these findings and by benefiting from the available geological, structural and seismological data, we carry out a Finite Element (FE)-based 2D modelling of the causative fault, in order to evaluate the impact of the geological structures activated during the seismic event on the distribution of the ground deformation field. The obtained results show that the causative fault has a rather complex compressive structure, dipping northward, formed by segments with different dip angles: 6° the deep segment and 60° the shallower one. Therefore, although the hypocenters of the main shock and most of the more energetic aftershocks are located along the deeper plane, corresponding to a segment of the Main Himalayan Thrust (MHT), the FE solution also indicates the contribution of the shallower

  4. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    Science.gov (United States)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  5. TYPICAL APPLICATIONS OF AIRBORNE LIDAR TECHNOLAGY IN GEOLOGICAL INVESTIGATION

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2018-05-01

    Full Text Available The technology of airborne light detection and ranging (LiDAR, also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  6. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  7. Design concept of a knowledge management system of geological disposal technology

    International Nuclear Information System (INIS)

    Osawa, Hideaki; Umeki, Hiroyuki; Makino, Hitoshi; Takase, H.; Mckinley, I.G.; Okubo, H.

    2008-01-01

    JAEA is developing a 'Knowledge Management System' for vast quantities of data or information arising from various sources relevant to the geological disposal programs in Japan. The geological disposal project is taking a stepwise approach to selecting a disposal site and, to the approval and licensing, construction, operation and closure of a repository. It is a long-term project required approximately 100 years. In this paper, in order to structuralize, as knowledge, the results of R and D on geological disposal technologies of high-level radioactive wastes, the knowledge management approach was first reviewed. The paper is followed by descriptions of the technical characteristics, procedure to carry out a plan, and education of geological disposal technologies such as knowledge management etc. The structuring of the knowledge base and the knowledge management system including the construction of safety case were described. (S. Ohno)

  8. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    Science.gov (United States)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform

  9. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  10. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  11. Developing, deploying and reflecting on a web-based geologic simulation tool

    Science.gov (United States)

    Cockett, R.

    2015-12-01

    Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.

  12. Uruguayan geological Congress II meeting about environmental geology and territorial ordinance

    International Nuclear Information System (INIS)

    Oleaga, A.; Corbo, F.; Larenze, G.; Arzate, J.

    2004-01-01

    The use of the SAG in Argentina and Uruguay is centered in two big areas: the northeast of Uruguay (and south of Brazil), and the near one to the Uruguay River. In this it finishes, Area in which the present project is developed, an important thermal tourist cord exists in the one which with ten perforations they are extracted 25.000 m3/dia approximately. In both countries the lack of knowledge is remarkable, since they exist less than two dozens of deep perforations (of 1000 at 2200m), aspect very preocupante to carry out a plan of administration of the aquifer, since for it is indispensable to know the geologic structure that houses him. The present project intends to develop an exact model of the geologic structure of an area of 10,000Km2 centered in the thermal tourist cord. This it was based on 25 polls magnetoteluricos that will be supplemented with the information of the existent perforations and the one contributed by Oleaga, A. (2002) for the area in Uruguay. This will allow to evaluate the transborder continuity and the displacement of the main flaws in the study area, aspects of supreme importance for the knowledge of the system of existent flow [es

  13. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park; Modelo geologico 3D de la estructura en sinforme de Monfrague: un valor anadido al patrimonio geologico del Parque Nacional

    Energy Technology Data Exchange (ETDEWEB)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-07-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  14. Internet-based information system of digital geological data providing

    Science.gov (United States)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  15. Remote sensing as a preliminary analysis for the detection of active tectonic structures: an application to the Albanian orogenic system

    Directory of Open Access Journals (Sweden)

    Andrea Favretto

    2013-12-01

    Full Text Available As is well known, both the traditional direct geological and geophysical survey methods used to identify geologic features are very expensive and time-consuming procedures. In this regard, remote sensing methods applied to multispectral and medium spatial resolution satellite images allow a more focused approach with respect to the more specific geologic methods. This is achieved by a preliminary land inspection carried out by the semi-automated analysis of satellite imagery. This avoids wasting resources as the geological/geophysical survey methods can be later applied only to those zones suspected of having certain tectonic activity (derived by the remotely sensed imagery. This paper will evaluate an ASTER sensor satellite image (and its derived Digital Elevation Model or DEM, in order to point out the suspected presence of active geologic structures (faults. The area in question is west – central Albania. The results of the remote sensing procedures are later compared with the established data for the same area taken by satellite images, in order to verify the reliability of the adopted method. The source of the established data has been from the bibliography.

  16. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  17. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  18. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  19. Neutron activation analysis of minerals from Cuddapah basin geological formations

    International Nuclear Information System (INIS)

    Nagendra Kumar, P.V.; Suresh Kumar, N.; Acharya, R.; Reddy, A.V.R.; Krishna Reddy, L.

    2014-01-01

    Green and yellow serpentines along with two associated minerals namely dolomite and intrusive rock dolerite obtained from the asbestos mines of Cuddapah basin, Andhra Pradesh, India were analyzed by k 0 -based neutron activation analysis (k 0 -NAA) method. Gold ( 197 Au) was used as the single comparator. Two reference materials namely USGS W-1 (geological) and IAEA Soil-7 (environmental) were analyzed as control samples to evaluate the accuracy of the method. A total of 21 elements present at major, minor and trace concentrations were determined in serpentines as well as associated minerals. The elemental concentrations were used for distinguishing and characterizing these minerals, and also to understand the extent of segregation of elements from the associated or host mineral rocks to serpentines. (author)

  20. Statistical analysis of determining the filtration heterogeneity of foundation rock mass of hydraulic structures on the example of the boguchanskaya hpp

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2016-01-01

    Full Text Available In the article the authors carried out a statistical analysis of mass determination of the filtration coefficient, which allows us to construct the most accurate calculation model of seepage field of inhomogeneous bedrock foundation of the dam needed for seepage calculations and to predict seepage regime of hydraulic structures and their grounds. The algorithm can be applied to analyze heterogeneity based on the large set of definitions of the properties of soil, subject to the condition that within the engineering geological element of random fluctuations of the index properties or some of its functions, e.g., logarithm of index properties, obey normal distribution law. In the latter case, all digital values of the index should be recalculated and presented in the form, in which they submit to the law of normal distribution. The authors received effective evaluation of the filtration coefficient on the basis of the law of statistical distribution. Correspondence of each component to a particular genetic element of the array is derived from the premise, adopted prior to the mathematical analysis: we divided the total distribution into separate normal distributions, and normal distribution is only true for a genetically separate engineering-geological element. After finding boundary values of the distributions it is required to determine the cut regions, in which relevant engineering-geological elements are localized, with the help of specially designed algorithm. In order to clarify geological distinction between the various lithological zones, zones of weathered and fractured zones, we use numerical data of filtration sampling. Then we put the numerical values of the index properties of lgq on which segmentation of the array occurs, on a geological cross section, respectively, for each well. After assigning numerical codes to the individual values of the indicator properties you can begin to image the geological section, where we combine the

  1. Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): its description, crystal structure refinement and solid solution with PbGeS3

    DEFF Research Database (Denmark)

    Sejkora, Jiri; Berlepsch, Peter; Makovicky, Emil

    2001-01-01

    geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure......geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure...

  2. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    Science.gov (United States)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    . Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.

  3. The Tiehchanshan structure of NW Taiwan: A potential geological reservoir for CO2 sequestration

    Directory of Open Access Journals (Sweden)

    Kenn-Ming Yang

    2017-01-01

    Full Text Available The Tiehchanshan structure is the largest gas-field in the outer foothills of northwestern Taiwan and has been regarded as the best site for CO2 sequestration. This study used a grid of seismic sections and wellbore data to establish a new 3-D geometry of subsurface structure, which was combined with lithofacies characters of the target reservoir rock, the Yutengping Sandstone, to build a geological model for CO2 sequestration. On the surface, the Tiehchanshan structure is characterized by two segmented anticlines offset by a tear fault. The subsurface geometry of the Tiehchanshan structure is, however, composed of two thrust-related anticlines with opposite vergence and laterally increasing fold symmetry toward each other. The folds are softly linked via the transfer zone in the subsurface, implying that the suspected tear fault in the surface transfer zone may not exist in the subsurface. The Yutengping Sandstone is composed of several sandstone units characterized by coarsening-upward cycles. The sandstone member can be further divided into four well-defined sandstone layers, separated by laterally continuous shale layers. In view of the structural and stratigraphic characteristics, the optimum area for CO2 injection and storage is in the structurally high in the northern part of the Tiehchanshan structure. The integrity of the closure and the overlying seal are not disrupted by the pre-orogenic high-angle faults. On the other hand, a thick continuous shale layer within the Yutengping Sandstone isolates the topmost sandy layer from the underlying ones and gives another important factor to the CO2 injection simulation.

  4. Characteristics of Chongan ring structure and its controlling role on uranium mineralization

    International Nuclear Information System (INIS)

    Liu Linqing

    2001-01-01

    A large ring structure has been discovered in Chong'an region on the basis of geological interpretation of remote sensing images. The data acquired from analysis of regional geology and in-situ investigation indicate that the ring structure is initiated during caledonian and activated for several times afterwards; It displays the highest activity during Yanshanian. Under the effect of this structure, Gulou-Masha lenticular geological body was firmed, controlling the regional distribution of uranium mineralization and anomalies occur in forms of central and bilateral symmetry. The data indicate that it is prospective to prospect uranium deposit in this region; therefore, more work should be placed on the deep levels

  5. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  6. One consideration about rational design of the multi tunnels in geological disposal facility

    International Nuclear Information System (INIS)

    Mizutani, Kazuhiko; Hiramoto, Masayuki; Morita, Atsushi

    2008-01-01

    In the geological disposal facility of the high-level radioactive waste, a group of galleries is designed in parallel at the depth of more than 300 m below surface. This is an unprecedented structure in the field of conventional engineering, and it is necessary to take this characteristic into consideration in the design of the galleries. In the geological disposal facility, as well as ensuring the dynamic stability of the gallery during construction and operational periods, it is necessary to dynamic characteristic of rock mass for long-term stability after the closure. In this study, analysis of the 'multi tunnels model' which represents the whole gallery group was performed and the results about load to act on a pillar. (author)

  7. The Study of Geological Structures in Suli and Tulehu Geothermal Regions (Ambon, Indonesia Based on Gravity Gradient Tensor Data Simulation and Analytic Signal

    Directory of Open Access Journals (Sweden)

    Richard Lewerissa

    2017-12-01

    Full Text Available In early 2017, the geothermal system in the Suli and Tulehu areas of Ambon (Indonesia was investigated using a gravity gradient tensor and analytic signal. The gravity gradient tensor and analytic signal were obtained through forward modeling based on a rectangular prism. It was applied to complete Bouguer anomaly data over the study area by using Fast Fourier Transform (FFT. The analysis was conducted to enhance the geological structure like faults as a pathway of geothermal fluid circulation that is not visible on the surface because it is covered by sediment. The complete Bouguer anomaly ranges of 93 mGal up to 105 mGal decrease from the southwest in Suli to the northeast in Tulehu. A high gravity anomaly indicates a strong magmatic intrusion below the Suli region. The gravity anomalies decrease occurs in the Eriwakang mountain and most of Tulehu, and it is associated with a coral limestone. The lower gravity anomalies are located in the north to the northeast part of Tulehu are associated with alluvium. The residual anomaly shows that the drill well TLU-01 and geothermal manifestations along with the Banda, and Banda-Hatuasa faults are associated with lowest gravity anomaly (negative zone. The gravity gradient tensor simulation and an analytic signal of Suli and Tulehu give more detailed information about the geological features. The gzz component allows accurate description of the shape structures, especially the Banda fault associated with a zero value. This result will be useful as a geophysical constraint to subsurface modeling according to gravity gradient inversion over the area.

  8. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  9. Geo structural chart of Uruguay. Scale 1/2.000.000

    International Nuclear Information System (INIS)

    Preciozzi, F.; Spoturno, F.; Heinzen, W.

    1979-01-01

    This work is about the Geo-Structural Chart of Uruguay , Esca le 1 / 2,000,000. The geological information synthesis in the country, obtained from: published geological work or whose information is registered by laboratory work and geophysical surveys. This Chart will allow an overview of the degree of geological knowledge of Uruguay, restricted to the limits imposed by the scale of this work. The realization of this Chart included a thorough and careful compilation, critical analysis, standardization and interpretation of all geological and geophysical maps available in the country

  10. Realization of Earthquake Vulnerability Analysis in Structure Scale with Fuzzy Logic Method in GIS: Kadikoy, Maltepe and Prince Islands Sample

    Directory of Open Access Journals (Sweden)

    Alper Şen

    2016-12-01

    Full Text Available The inadequate evaluation of geologic factors and unqualified and unplanned structuring play effective role in giant damage and loss of lives created by the earthquakes and faulty areas choice and structure construction cause building damages during the earthquake, thus it also causes giant loss of lives. Istanbul province and its immediate environment are located in north of North Anatolian Fault Zone having 1500 km length. Hence, it causes that the settlement’s Sea of Marmara coastal region is located in 1st seismic belt. The earthquake risk in Istanbul and related risk factors should be determined besides vulnerability and earthquake risk. A mathematical model has been created in geographic information systems for Kadıkoy, Maltepe and Prince Islands sub-provinces by using Fuzzy Logic method which is one of the artificial intelligence methods by considering 4 vulnerability parameters and earthquake vulnerability analysis have been made in this study. The used parameters are the location by fault line, geologic structure, building structure and the number of floors. The vulnerability grades emerged as a result of analysis have been studied and the distribution of buildings according to those levels have been presented via a thematic map. The pre-earthquake precautions should be determined for the study field by considering the vulnerability grades in case of any earthquake and the loss of life and property should be minimized.

  11. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  12. Analysis on digital management of uranium geological archives and its second exploitation and utilization

    International Nuclear Information System (INIS)

    Kong Hui

    2009-01-01

    The enormous data and examples show that the second exploitation and utilization of geological archives information are important and necessary for geological prospecting. The author deeply studies and analyzes the information service system for uranium geology, it is believed that the traditional management mode of geological archives must be transformed into modernized service mode. The way of how to expand, apply and improve the 'management and analytical system for uranium resources information' is discussed for implementing geo-informational construction. (authors)

  13. Investigating lithological and geophysical relationships with applications to geological uncertainty analysis using Multiple-Point Statistical methods

    DEFF Research Database (Denmark)

    Barfod, Adrian

    The PhD thesis presents a new method for analyzing the relationship between resistivity and lithology, as well as a method for quantifying the hydrostratigraphic modeling uncertainty related to Multiple-Point Statistical (MPS) methods. Three-dimensional (3D) geological models are im...... is to improve analysis and research of the resistivity-lithology relationship and ensemble geological/hydrostratigraphic modeling. The groundwater mapping campaign in Denmark, beginning in the 1990’s, has resulted in the collection of large amounts of borehole and geophysical data. The data has been compiled...... in two publicly available databases, the JUPITER and GERDA databases, which contain borehole and geophysical data, respectively. The large amounts of available data provided a unique opportunity for studying the resistivity-lithology relationship. The method for analyzing the resistivity...

  14. Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico

    Science.gov (United States)

    Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.

    2011-01-01

    This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.

  15. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    Science.gov (United States)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-08-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.

  16. Preliminary analysis on the disposal of high-level radioactive wastes in geological formations of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Mattos, Luis Antonio Terribile de

    1981-01-01

    Several studies show that deep geological formations are the most promising solution - technical and economical - for the safe disposal of the high-level radioactive wastes produced by the nuclear industry. In order to obtain the necessary information to assess on the use of geological sites in Brazil - for the disposal of high-level radioactive waste generated by the brazilian nuclear industry - a careful survey on the basalt and granite rocks of Sao Paulo State was made. The data obtained were evaluated according to guidelines established by the International Atomic Energy Agency. The favourable and unfavourable characteristics of the basalts, granites and their respective occurrence areas in the Sao Paulo state territory - as potential waste disposal sites - were analysed. This preliminary and regional characterization is not a conclusive study whether these two rocks types are definitively the most suitable geological formations for use as nuclear waste repository or not. It is the subsidy for a more detailed analysis. Other factors such as social, political and economical aspects, ecological effects, engineering geology, heat generation rate of the waste, type of radiation emitted and corrosive nature of the waste must also be taken into account. (author)

  17. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    Science.gov (United States)

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  18. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Bromenshenk, Jerry [Montana State Univ., Bozeman, MT (United States)

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO2 into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO2-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO2 leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  19. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  20. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  1. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  2. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2017-06-01

    Full Text Available Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional features via geological domain ontology. These fragments are reorganized into a NoSQL (Not Only SQL database, and then associations between the fragments are added. A specific class of geological questions was analyzed and transformed into workflow tasks according to the predefined rules and associations between fragments to identify spatial information and unstructured content. We establish a knowledge-driven geologic survey information smart-service platform (GSISSP based on previous work, and we detail a study case for our research. The study case shows that all the content that has known relationships or semantic associations can be mined with the assistance of multiple ontologies, thereby improving the accuracy and comprehensiveness of geological information discovery.

  3. Geologic Structures in Crater Walls on Vesta

    Science.gov (United States)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In

  4. Object-Oriented Programming When Developing Software in Geology and Geophysics

    Science.gov (United States)

    Ahmadulin, R. K.; Bakanovskaya, L. N.

    2017-01-01

    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.

  5. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    extremely useful accompaniment to compilation of field mapping efforts. It can also complement published geologic maps by vastly improving their comprehensibility when field photos, and specific notes can be viewed interactively with them. Other useful applications include GPS tracking/documentation of field traverses; invoking multiple geologic layers; 3-D visualizations of terrain and structure; and online collaboration with colleagues via blogs or wikis. Additional steps towards collaborative geologic mapping on the web may also enhance efficient and open sharing of data and ideas. Geologists are well aware that paper geologic maps can convey tremendous amounts of information. Digital geologic maps linked via a virtual globe with field data, diverse imagery, historical photographs, explanatory diagrams, and 3-D models convey a much greater amount of information and can provide a much richer context for comprehension and interpretation. They can also serve as an efficient, entertaining, and potentially compelling mechanism for fostering inspiration in the minds of budding (and aging) geologists.

  6. Application of benchtop micro-XRF to geological materials

    DEFF Research Database (Denmark)

    Flude, Stephanie; Haschke, Michael; Storey, Michael

    2017-01-01

    Recent developments in X-ray optics have allowed the development of a range of commercially available benchtop micro-XRF (μ-XRF) instruments that can produce X-ray spot sizes of 20–30 μm on the sample, allowing major- and trace-element analysis on a range of sample types and sizes with minimal......, by using a simple type-calibration against a reference material of similar matrix and composition. Qualitative analysis with micro-XRF can simplify and streamline sample characterization and processing for subsequent geochemical and isotopic analysis....... sample preparation. Such instruments offer quantitative analysis using fundamental parameter based 'standardless' quantification algorithms. The accuracy and precision of this quantitative analysis on geological materials, and application of micro-XRF to wider geological problems is assessed using...

  7. Geological conditions for lateral sealing of active faults and relevant research methods

    Directory of Open Access Journals (Sweden)

    Guang Fu

    2017-01-01

    Full Text Available Many researchers worked a lot on geologic conditions for lateral sealing of faults, but none of their studies took the effect of internal structures of fault zones on the lateral sealing capacity of faults. Therefore, the lateral sealing of active faults has rarely been discussed. In this paper, based on the analysis of the composition and structure characteristics of fault fillings, the geological conditions for lateral sealing of active faults and relevant research method were discussed in reference to the lateral sealing mechanisms of inactive fault rocks. It is shown that, in order to satisfy geologically the lateral sealing of active faults, the faults should be antithetic and the faulted strata should be mainly composed of mudstone, so that the displacement pressure of fault fillings is higher than or equal to that of reservoir rocks in oil and gas migration block. Then, a research method for the lateral sealing of active faults was established by comparing the displacement pressure of fillings in the fault with that of reservoir rocks in oil and gas migration block. This method was applied to three antithetic faults (F1, F2 and F3 in No. 1 structure of the Nanpu Sag, Bohai Bay Basin. As revealed, the fillings of these three active faults were mostly argillaceous at the stage of natural gas accumulation (the late stage of Neogene Minghuazhen Fm sedimentation, and their displacement pressures were higher than that of reservoir rocks in the first member of Paleogene Dongying Fm (F1 and F3 and the Neogene Guantao Fm (F2. Accordingly, they are laterally sealed for natural gas, which is conducive to the accumulation and preservation of natural gas. Industrial gas flow has been produced from the first member of Paleogene Dongying Fm in Well Np101, the Guantao Fm in Well Np1-2 and the first member of Paleogene Dongying Fm in Well Np1, which is in agreement with the analysis result. It is verified that this method is feasible for investigating the

  8. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  9. Effects of topographic position and geology on shaking damage to residential wood-framed structures during the 2003 San Simeon earthquake, western San Luis obispo county, California

    Science.gov (United States)

    McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.

    2010-01-01

    A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.

  10. Use of the ion microprobe in geological dating

    International Nuclear Information System (INIS)

    Compston, W.; Williams, I.S.; Black, L.P.

    1983-01-01

    SHRIMP, the Sensitive High Resolution Ion Microprobe with computerised control and data acquisition system, has recently been commissioned. It is used within the Research School of Earth Sciences, Australian National University, for the isotopic analysis of geological samples. Principles of operation and geological applications are outlined. One example described is the application to Pb-U dating of zircon

  11. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  12. New Age of 3D Geological Modelling or Complexity is not an Issue Anymore

    Science.gov (United States)

    Mitrofanov, Aleksandr

    2017-04-01

    Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit

  13. Proceedings of the 39. Brazilian congress on geology. v. 1

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subjects debates that involves the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to to show the geosciences role to the social welfare. The works were presented the following symposiums: the social value of the environment study; urban geology and geology risks; degraded areas recovery; coastal erosion; global paleoregisters; and carstic terranes geology

  14. High-heat geodynamic setting during the Palaeozoic evolution of the Mount Painter Province, SA, Australia: evidence from combined field structural geology and potential-field inversions

    Science.gov (United States)

    Armit, R. J.; Ailleres, L.; Betts, P. G.; Schaefer, B. F.; Blaikie, T. N.

    2014-10-01

    A method for subsurface recognition of blind geological bodies is presented using combined surface constraints and 3-D structural modelling that incorporates constraints from detailed mapping, and potential-field inversion modelling. This method is applied to the Mount Painter Province and demonstrates that addition of low density material is required to reconcile the gravity signature of the region. This method may be an effective way to construct 3-D models in regions of excellent structural control, and can be used to assess the validity of surface structures with 3-D architecture. Combined geological and potential-field constrained inversion modelling of the Mount Painter Province was conducted to assess the validity of the geological models of the region. Magnetic susceptibility constrained stochastic property inversions indicates that the northeast to southwest structural trend of the relatively magnetic meta-sedimentary rocks of the Radium Creek Group in the Mount Painter Inlier is reconcilable with the similar, northeast to southwest trending positive magnetic anomalies in the region. Radium Creek Group packages are the major contributor of the total magnetic response of the region. However field mapping and the results of initial density constrained stochastic property inversion modelling do not correlate with a large residual negative gravity anomaly central to the region. Further density constrained inversion modelling indicates that an additional large body of relatively low density material is needed within the model space to account for this negative density anomaly. Through sensitivity analysis of multiple geometrical and varied potential-field property inversions, the best-fitting model records a reduction in gravity rms misfit from 21.9 to 1.69 mGal, representing a reduction from 56 to 4.5 per cent in respect to the total dynamic range of 37.5 mGal of the residual anomaly. This best-fitting model incorporates a volumetrically significant source

  15. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  16. Geologic Map of the Hellas Region of Mars

    Science.gov (United States)

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    and mapped (table 1). The new classification scheme includes broad, geographically related categories and local, geologically and geomorphically related subgroups. Because of our mapping at larger scale, many of our map units were incorporated within larger units of the global-scale mapping (see table 1). Available Viking images of the Hellas region vary greatly in several aspects, which has complicated the task of producing a consistent photogeologic map. Best available image resolution ranges from about 30 to 300 m/pixel from place to place. Many images contain haze caused by dust clouds, and contrast and shading vary among images because of dramatic seasonal changes in surface albedo, opposing sun azimuths, and solar inclination. Enhancement of selected images on a computer-display system has greatly improved our ability to observe key geologic relations in several areas. Determination of the geologic history of the region includes reconstruction of the origin and sequence of formation, deformation, and modification of geologic units constituting (1) the impact-basin rim and surrounding highlands, (2) volcanic and channel assemblages on the northeast and south sides of the basin, (3) interior basin deposits, and (4) slope and surficial materials throughout the map area. Various surface modifications are attributed to volcanic, fluvial, eolian, mass-wasting, and possibly glacial and periglacial processes. Structures include basin faults (mostly inferred), wrinkle ridges occurring mainly in volcanic terrains and interior plains, volcanic collapse craters, and impact craters. Our interpretations in some cases rely on previous work, but in many significant cases we have offered new interpretations that we believe are more consistent with the observations documented by our mapping. Our primary intent for this mapping has been to elucidate the history of emplacement and modification of Hellas Planitia materials, which form the basis for analysis of their r

  17. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    International Nuclear Information System (INIS)

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  18. A bibliography of planetary geology principal investigators and their associates, 1981 - 1982

    Science.gov (United States)

    Plescia, J. B. (Compiler)

    1982-01-01

    Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.

  19. Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves.

    Science.gov (United States)

    Ammari, Faten; Bassel, Léna; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno

    2016-10-01

    In this study, multi-block analysis was applied for the first time to LIBS spectra provided by a portable LIBS system (IVEA Solution, France) equipped with three compact Czerny-Turner spectrometers covering the spectral ranges 200-397nm, 398-571nm and 572-1000nm. 41 geological samples taken from a laboratory-cave situated in the "Vézère valley", an area rich with prehistoric sites and decorated caves listed as a UNESCO world heritage in the south west of France, were analyzed. They were composed of limestone and clay considered as underlying supports and of two types of alterations referred as moonmilk and coralloid. Common Components and Specific Weights Analysis (CCSWA) allowed sorting moonmilk and coralloid samples. The loadings revealed higher amounts of magnesium, silicon, aluminum and strontium in coralloids and the saliences emphasized that among the three spectrometers installed in the LIBS instrument used in this work; that covering the range 572-1000nm was less contributive. This new approach for processing LIBS data not only provides good results for sorting geological materials but also clearly reveals which spectral range contains most of the information. This specific advantage of multi-block analysis could lead for some applications to simplify the design and to reduce the size of LIBS instruments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  1. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  2. Heterogeneous 40Ar/39Ar laser probe apparent ages in low-grade mylonitic rocks: Constraining a meaningful geological age

    International Nuclear Information System (INIS)

    Arancibia, G

    2001-01-01

    Obtaining meaningful geological ages from mylonitic rocks has been a major problem for structural geologist, because apparent ages have usually no geologic significance. Over the last years, in situ high spatial resolutions 40 Ar/ 39 Ar studies (e.g. Ruffet et al., 1991; Reddy et al., 1996; Pickles et al., 1997), permit obtain apparent ages of mineral and link them directly with textural, microstructural and chemical patterns that can previously be obtained by optical and scanning electron (SEM) microscopes and electron microprobe. In this work, heterogeneous 40 Ar/ 39 Ar laser probe ages from low-grade volcanic mylonites show complex argon distributions patterns. Inverse isochron analysis suggests that most obtained apparent ages contain argon excess and only younger ages have a meaningful geologically interpretation (au)

  3. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  4. Potential of semiautomated, synoptic geologic studies for characterization of hazardous waste sites

    International Nuclear Information System (INIS)

    Foley, M.G.; Beaver, D.E.; Glennon, M.A.; Eliason, J.R.

    1988-01-01

    Siting studies for licensing hazardous facilities require three-dimensional characterization of site geology including lithology, structure, and tectonics. The scope of these studies depends on the type of hazardous facility and its associated regulations. This scope can vary from a pro forma literature review to an extensive, multiyear research effort. Further, the regulatory environment often requires that the credibility of such studies be established in administrative and litigative proceedings, rather than solely by technical peer review. Pacific Northwest Laboratory (PNL) has developed a technology called remote geologic analysis (RGA). This technology provides reproducible photogeologic maps, determinations of three- dimensional faults and fracture sets expressed as erosional lineaments or planar topographic features, planar feature identification in seismic hypocenter data, and crustal- stress/tectonic analyses. Results from the RGA establish a foundation for interpretations that are defensible in licensing proceedings

  5. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  6. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  7. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  8. Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Flechsig, C.; Heinicke, J.; Mrlina, Jan; Kämpf, H.; Nickschick, T.; Schmidt, A.; Bayer, Tomáš; Günther, T.; Rücker, C.; Seidel, E.; Seidl, Michal

    2015-01-01

    Roč. 104, č. 8 (2015), s. 2087-2105 ISSN 1437-3254 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : Eger Rift * Quaternary maar volcanism * Mýtina maar * geophysical and geological survey Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  9. Mapping and analysis of geological fractures extracted by remote sensing on Landsat TM images, example of the Imilchil-Tounfite area (Central High Atlas, Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Alaoui, H. El; Moujahid, El; Ibouh, H.; Bachnou, A.; Babram, M. Ait; Harti, A. EI

    2016-07-01

    The use of remote sensing, in this research, can be summarized in mapping and statistical studies of lineaments on the satellites images of the Jurassic outcrops in the Imilchil-Tounfite area, Central High Atlas of Morocco. This is to apply various manual techniques for extracting lineaments from Landsat TM image. Analytical techniques used in this work are: the principal component analysis (PCA) applied to selective bands of the visible and infrared, which allows creating new images with better visual interpretation. Directional filters N0°, N45°, N90°, and N135° with a 5×5 matrix were used to enhance lineaments in the corresponding perpendicular directions, and therefore to obtain a good discrimination of those structures. Preliminary results highlight a dominant geological fracturing trending ENE/WSW with 52% of the total lineaments, a second fracture trending is WNW/ESE at 23%, a third fracture series trending NE/SW with 20% and finally, a minor series of fractures trending NW/SE with 5% of the total lineaments. Distribution and statistical relationship, between fractures and the affected surface on the one hand and the fracture length on the other hand, shows a network of well-structured fractures. The final lineament map constitutes a contribution to complete the geology and assisting the mining and hydrogeological prospection, in the Imilchil-Tounfite area. (Author)

  10. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    OpenAIRE

    Sumintadireja, Prihadi; Saepuloh, Asep; Irawan, Dasapta E.; Irawan, Diky; Fadillah, Ahmad

    2014-01-01

    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at p...

  11. Research on structure-alteration zone related to uranium mineralization and its exploration significance

    International Nuclear Information System (INIS)

    Huang Xianfang; Liu Dechang; Ye Fawang; Dong Xiuzhen; Yang Xu Zhang Hongguang

    2008-01-01

    The paper is focused on recommending geological characteristics of structure-alteration zone which is found from image interpretation in Bashibulake District, north of Tarim Basin, expounding remote sensing information enhancement and extraction technique, analyzing image feature, genetic mechanism and discussing the relationship between uranium mineralization and structure-alteration zone. A new discovery is raised through applying remote sensing information analysis and geologic analysis, that is, the uranium deposits in Bashibulake District are controlled by structure-alteration zone. The new understanding provides a new view point for reconsidering main controlling factors and uranium mineralization distribution in the area. It is helpful for further reconnaissance and exploration in the area. (authors)

  12. Geological slow evolution scenari, applied on clay site of Mol (Belgium)

    International Nuclear Information System (INIS)

    Vandenberghe, Noel

    1981-01-01

    In the frame of safety assessment studies concerning radioactive waste disposal in a clay layer, the analysis of tertiary and quaternary geological history of the area involved at Mol, Belgium, showed that amongst slow natural phenomena, major climatic changes (e.g. glaciations) and epeirogenetic movements are the most important. These two phenomena result in glacio-eustatic movements, fluviatile, marine and glacial erosion etc. On the basis of their intensities and frequencies, observed in the past, several possible scenarios of future geological evolution have been considered for the coming 200.000 years. This approach contributed to evaluate the failure possibilities of the geological barrier, due to the direct action of these processes. It also demonstrates the geological frame to be taken into account in a consequence analysis

  13. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    OpenAIRE

    Ding, Chunyu; Su, Yan; Xing, Shuguo; Dai, Shun; Xiao, Yuan; Feng, Jianqing; Liu, Danqing; Li, Chunlai

    2017-01-01

    In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to co...

  14. Seismic response of the geologic structure underlying the Roman Colosseum and a 2-D resonance of a sediment valley

    OpenAIRE

    Mozco, P.; Rovelli, A.; Labak, P.; Malagnini, L.

    1995-01-01

    The seismic response of the geologic structure beneath the Colosseum is investigated using a two-dimensional modeling for a vertically incident plane SH wave. Computations indicate that the southern part of the Colosseum may be exposed to a seismic ground motion with significantly larger amplitudes, differential motion and longer duration than the northern part. because the southern part of the Colosseum is underlain by a sedimentfilled valley created by sedimentary filling of the former trib...

  15. Geodiversity: Exploration of 3D geological model space

    Science.gov (United States)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  16. Proceedings of the 39. Brazilian congress on geology. v. 6

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subject debates that involve the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to show the geosciences role to the social welfare. This volume focuses papers about geology and metallogenesis from high degree metamorphic terrain and isotope applications in geology

  17. Main features of the geological structure of upper-Frasnian barrier reefs in relation to their petroleum content

    Energy Technology Data Exchange (ETDEWEB)

    Nikonov, N.I.

    1981-01-01

    Analysis of new geological geophysical and industrial materials has made it possible to distinguish in the boundary part of the late Devonician shoal carbonate shelf barrier reefs of various ages. In confines of individual distinguished reefs there have been established deposits of oil (Western Tebuksk, Pashsor and Khar'yatinsk). There are given prospecting features of classification of buried reefs and prognoses for the finding possible oil deposits in them (Beyaksk, Sandiveis reefs).

  18. Preliminary Geological Survey on the Proposed Sites for the New Research Reactor

    International Nuclear Information System (INIS)

    Lim, In Cheol; Ha, J. J.; Oh, K. B.

    2010-12-01

    · Performing the preliminary geological survey on the proposed sites for the new research reactor through the technical service · Ordering a technical service from The Geological Society of Korea · Contents of the geological survey - Confirmation of active fault - Confirmation of a large-scale fracture zone or weak zone - Confirmation of inappropriate items related to the underground water - Confirmation of historical seismicity and instrumental earthquakes data · Synthesized analysis and holding a report meeting · Results of the geological survey - Confirmation of the geological characteristics of the sites and drawing the requirements for the precise geological survey in the future

  19. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  20. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    Science.gov (United States)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to

  1. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  2. Geological entropy and solute transport in heterogeneous porous media

    Science.gov (United States)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  3. Application of AMT in detecting deep geological structures in Lejia district of Xiangshan uranium ore field

    International Nuclear Information System (INIS)

    Duan Shuxin; Liu Hu

    2014-01-01

    In recent years, exploration in Xiangshan uranium ore field shows that the intersection of faults and the interface of different rock formation and the basement is an important sign of deep ore- prospecting. In order to evaluate deep uranium resource in Lejia district, audio magnetotelluric method (AMT) was undertaken to carry out profile investigation. With that method, we discerned the interface of different rock formation and the basement successfully, and faults in the deep, which provides a good basis for the prediction of deep uranium resource. Drilling results show that AMT method has an obvious advantage in detecting deep geological structures in Xiangshan. (authors)

  4. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  5. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  6. The part played by applied geology in nuclear power plant site studies

    International Nuclear Information System (INIS)

    Giafferi, J.L.

    1994-01-01

    Site-related geological problems are one of the constraints affecting the environment of nuclear power plants. The natural features (soil and subsoil) at the nuclear power plant site affect numerous factors in the design, construction and operation of the civil engineering structures. The site geological criteria are not solely restricted to the soil as a static support for the structures. Earth tremors in France are of moderate intensity but the likelihood of their occurrence must nevertheless be taken into account for each site. Studies must concern the geological and seismic features of the region as well as the soil and subsoil configurations and composition in the immediate vicinity of the site in order to determine the physical characteristics of the earthquakes so that the safety of the plant can be guaranteed; in many cases, water tables have also to be taken into consideration. Geologic survey techniques are discussed. 13 figs., 7 refs

  7. Relations between Vegetation and Geologic Framework in Barrier Island

    Science.gov (United States)

    Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.

    2017-12-01

    Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better

  8. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    Science.gov (United States)

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and

  9. Seismic-sequence stratigraphy and geologic structure of the Floridan aquifer system near "Boulder Zone" deep wells in Miami-Dade County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, acquired, processed, and interpreted seismic-reflection data near the North and South District “Boulder Zone” Well Fields to determine if geologic factors may contribute to the upward migration of injected effluent into that upper part of the Floridan aquifer system designated by the U.S. Environmental Protection Agency as an underground source of drinking water. The depth of the Boulder Zone at the North and South District “Boulder Zone” Well Fields ranges from about 2,750 to 3,300 feet below land surface (ft bls), whereas overlying permeable zones used as alternative drinking water supply range in depth from about 825 to 1,580 ft bls at the North and South District “Boulder Zone” Well Fields. Seismic-sequence stratigraphy and geologic structures imaged on seismic-reflection profiles created for the study describe the part of the Floridan aquifer system overlying and within the Boulder Zone. Features of the Floridan aquifer system underlying the Boulder Zone were not studied because seismic-reflection profiles acquired near the North and South District “Boulder Zone” Well Fields lacked adequate resolution at such depths.

  10. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  11. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    Science.gov (United States)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  12. 3D geological and hydrogeological modeling as design tools for the Conawapa generating station

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.; Sharif, S.; Smith, B. [KGS Group, Winnipeg, MB (Canada); Cook, G.N.; Osiowy, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2008-07-01

    Following the project's suspension in the early 1990s, part of Manitoba Hydro's recommitment study involved digital modeling of geological and hydrogeological data for the foundation design and analysis of the proposed Conawapa generating station in northern Manitoba. Three-dimensional geological and hydrogeological models have been developed to consolidate and improve the designer's ability to understand all of the information, and to assist in developing engineering alternatives which will improve the overall confidence of the design. The tools are also being leveraged for use in environmental studies. This paper provided an overview of the Conawapa site and 3-dimensional modeling goals. It described the geology and hydrogeology of the Conawapa site as well as the bedrock structure and Karst development. The paper also presented the central concepts of 3-dimensional modeling studies, including the flow of information from database to modeling software platforms. The construction of the Conawapa geological model was also presented, with particular reference to an overview of the MVS software; mesh design; and model buildup logic. The construction of the Conawapa hydrogeological model was discussed in terms of the finite element code FEFLOW software; conceptual model design; and initial observations of Conawapa groundwater flow modeling. It was concluded that recent advancement and application of 3-dimensional geological visualization software to engineering and environmental projects, including at the future Conawapa site using MVS and FEFLOW, have shown that complicated geological data can be organized, displayed, and analysed in a systematic way, to improve site visualization, understanding, and data relationships. 19 refs., 9 figs.

  13. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    Science.gov (United States)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  14. Integration of Remote Sensing and Geophysical Applications for Delineation of Geological Structures: Implication for Water Resources in Egypt

    Science.gov (United States)

    Mohamed, L.; Farag, A. Z. A.

    2017-12-01

    North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2

  15. Determination of Iron and Nickel in Geological Samples by Activation Analysis with Reactor Fast Neutrons

    International Nuclear Information System (INIS)

    El Abd, A.

    2009-01-01

    Threshold reactions induced by reactor fast neutrons are well recognized. The concentration of Fe and Ni were determined in nine geological samples by activation analysis with reactor fast neutrons using the threshold reactions 5 4F e( n,p) 54 Mn and 58 Ni ( n, p )'5 8 Co respectively. The fast neutron flux was determined using the reactions 92 Mo(n, 2n) 92 mNb and 95 Mo(n,p) 95 Nb. The determined concentration of Fe and Ni in the samples were checked by determining them in the GSJ JB-1 reference material using the same , ( p, n) reactions. There are a good agreement between the measured and recommended values. The concentrations of Fe were also determined by the ) , ( n, γ) capture reactions in the geological samples and the JB-1 reference material using the K θ - NAA method. There are good agreements between the determined concentrations from the ) , ( p, n) and the ( γ, n) reactions.

  16. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  17. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  18. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    Science.gov (United States)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  19. Geosciences research: development of techniques and instruments for investigation geological environments

    International Nuclear Information System (INIS)

    1993-01-01

    In order to understand the geological environment in Japan, new investigation techniques have been developed. These include: 1) Geological techniques for fracture characterization, 2) Nondestructive investigation techniques for detailed geological structure, 3) Instruments for hydraulic characterization, 4) Instruments for hydrochemical characterization. Results so far obtained are: 1) Fractures can be classified by their patterns, 2) The applicability and limitations of conventional geophysical methods were defined, 3) Instruments for measuring very low permeability were successfully developed, 4) Instruments for sampling formation water without changing in-situ conditions were developed. (author)

  20. Safety aspects of geological studies around nuclear installations sites

    International Nuclear Information System (INIS)

    Faure, J.

    1988-01-01

    The experience of geological studies of about forty french nuclear sites allows to set out the objectives, the phases and the geographic extensions of workings to be realized for confirming a site. The data to be collected for the safety analysis are specified; they concern the local and regional geology, the geotechnical characteristics and the essential elements for evaluating the hazards related to the soil liquefaction, the surface fracturing and in some cases the volcanic risks. It is necessary to follow up the geology during the installation construction and life. 8 refs. (F.M.)

  1. Geology Structure Identification Using Pre-Stack Depth Migration (PSDM Method of Tomography Result in North West Java Basin

    Directory of Open Access Journals (Sweden)

    Sudra Irawan

    2017-06-01

    Full Text Available North West Java Basin is a tertiary sedimentary basin which is located in the right of the western part of the Java island. North West Java Basin is geodynamic where currently located at the rear position of the path of the volcanic arc of Java that is the result of the India-Australia plate subduction to the south towards the Eurasian plate (Explanation of Sunda in the north. Geology structure observation is difficult to be conducted at Quaternary volcanicfield due to the classical problem at tropical region. In the study interpretation of fault structures can be done on a cross-section of Pre-Stack Depth Migration (PSDM used prayer namely Hardware Key Device, ie Central Processing Unit: RedHat Enterprise Linux AS 5.0, prayer Monitor 24-inch pieces, Server: SGI altix 450/SuSe Linux Enterprise Server 9.0, 32 GB, 32 X 2,6 GHz Procesor, network: Gigabyte 1 Gb/s, and the software used is paradigm, product: Seismic Processing and Imaging. The third fault obtained in this study in accordance with the geological information derived from previous research conducted by geologists. The second general direction is northwest-southeast direction represented by Baribis fault, fault-fault in the Valley Cimandiri and Gunung Walat. This direction is often known as the directions Meratus (Meratus Trend. Meratus directions interpreted as directions that follow the pattern of continuous arc Cretaceous age to Meratus in Kalimantan.

  2. Evaluation of reactor induced (n,p) reactions for activation analysis of titanium in geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa Garcia, R; Cohen, I M [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1984-05-01

    The possibilities of reactor induced (n,p) reactions as a tool for neutron activation analysis of titanium in geological samples are discussed. The interference of calcium and scandium is experimentally evaluated. Results for Ti, Ca and Sc in GSP-1 and PCC-1 standard rocks are presented. Based on the experimental values, it is concluded that the /sup 47/Ti(n,p)/sup 47/Sc reaction is the most favourable for titanium determination. 11 refs.

  3. Correction for interelement effect in X-Ray fluorescence analysis of trace elements in geological materials

    International Nuclear Information System (INIS)

    El-Behay, A.Z.; Attawiya, M.Y.; Khattab, F.M.

    1984-01-01

    In a trial to obtain accurate results from X-ray fluorescence technique for the analysis of trace elements in geological materials, two corrections were used for the obtained data, namely, correction for the observed x-ray intensities for absorption and/or enhancement effects due to the presence of other elements in the system and correction for spectral deconvolution to account for the overlapping lines. Significant improvement in the precision and accuracy was obtained and evaluated

  4. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  5. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  6. A 3D geological and geomechanical model of the 1963 Vajont landslide

    Science.gov (United States)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2014-05-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin

  7. Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials

    International Nuclear Information System (INIS)

    Landsberger, S.; Kapsimalis, R.

    2013-01-01

    We have described the determination of uranium in environmental, geological, and agricultural specimens by three different non-destructive nuclear methods. The effectiveness, as defined as the lower limits of detection in this work, of quantifying trace levels of bulk uranium in geological samples was evaluated for several common NAA techniques. These techniques include short-lived and medium-lived neutron activation analysis using thermal and epithermal neutrons; these results were compared with an assessment of Compton suppressed gamma-ray counting. A careful evaluation of three major (n,γ) reactions with chlorine, manganese and sodium that could impede determining low levels of uranium due to high Compton continuums was done. The evaluation of Compton suppressed passive gamma counting revealed that uranium concentrations below 50 mg kg −1 were not adequate to achieve good counting statistics using the 234m Pa the second daughter product of 238 U. -- Highlights: ► Determination of uranium concentrations in geological, environmental, and agricultural specimens. ► Use of several NAA and passive counting methods. ► Identified several key interferences. ► Use of Compton suppression to minimize effects of interferences

  8. Stress field modelling from digital geological map data

    Science.gov (United States)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  9. Structural geology and geophysics as a support to build a hydrogeologic model of granite rock

    Science.gov (United States)

    Martinez-Landa, Lurdes; Carrera, Jesús; Pérez-Estaún, Andrés; Gómez, Paloma; Bajos, Carmen

    2016-06-01

    A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

  10. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    Science.gov (United States)

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  11. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  12. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  13. Seismic hazards: New trends in analysis using geologic data

    International Nuclear Information System (INIS)

    Schwartz, D.P.; Coppersmith, K.J.

    1986-01-01

    In the late 1960s and early 1970s, largely in response to expansion of nuclear power plant siting and issuance of a code of federal regullations by the Nuclear Regulatory Commission referred to as Appendix A-10CFR100, the need to characterize the earthquake potential of individual faults for seismic design took on greater importance. Appendix A established deterministic procedures for assessing the seismic hazard at nuclear power plant sites. Bonilla and Buchanan, using data from historical suface-faulting earthquakes, developed a set of statistical correlations relating earthquake magnitude to surface rupture length and to surface displacement. These relationships have been refined and updated along with the relationship between fault area and magnitude and seismic moment and moment magnitude have served as the basis for selecting maximum earthquakes in a wide variety of design situations. In the paper presented, the authors discuss new trends in seismic hazard analysis using geologic data, with special emphasis on fault-zone segmentation and recurrence models and the way in which they provide a basis for evaluating long-term earthquake potential

  14. The 16th International Geological Congress, Washington, 1933

    Science.gov (United States)

    Nelson, C.M.

    2009-01-01

    In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).

  15. A Test of the Circumvention-of-Limits Hypothesis in Scientific Problem Solving: The Case of Geological Bedrock Mapping

    Science.gov (United States)

    Hambrick, David Z.; Libarkin, Julie C.; Petcovic, Heather L.; Baker, Kathleen M.; Elkins, Joe; Callahan, Caitlin N.; Turner, Sheldon P.; Rench, Tara A.; LaDue, Nicole D.

    2012-01-01

    Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco…

  16. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  17. Geologic mapping around Mahoma mining. San Jose mining company;Carta geologica de los alrededores de Mina Mahoma, Compania Minera San Jose

    Energy Technology Data Exchange (ETDEWEB)

    Techera, J; Arrighetii, R

    1993-07-01

    This study has as main objective carry out a geological mapping as well as the structural analysis , in 1.5.000 scale in the zone where the gold benefit plant of San Jose mining company is settled (Mahoma Mining). From this study has been marked many drillings.

  18. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination; Methode de cartographie de susceptibilite magnetique sur carottes de forage. Mesures experimentales pour la determination de structures geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Delrive, C

    1993-11-08

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10{sup -5} SI units and can generate magnetic susceptibility maps with 4 x 4 mm{sup 2} pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends.

  19. New uses of shadow enhancement. [interpretation of geologic structures from photographic or scanner imagery of Colorado

    Science.gov (United States)

    Lee, K. (Principal Investigator); Sawatzky, D. L.

    1974-01-01

    The author has identified the following significant results. Shadow enhancement of topographic linears in photographic or scanner images is a valuable tool for interpretation of geologic structures. Whether linears will be enhanced or subdued depends on sun angle and azimuth. The relationship of the sun's attitude to topographic slopes determines which trends are available for interpretation in existing imagery, and it can be used to select the time of day, surface properties, and film and filter characteristics in planning aircraft flights or satellite orbital passes. The technique of selective shadow enhancement can be applied to all photographic or imaging experiments, but its best for snow-covered scenes, side-looking radar images, and painted relief models.

  20. The tunnel project. Drill hole logging and structural geologic studies in the Grualia, the Lunner county

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Braathen, Alvar; Roenning, Jan S.; Nordgulen, Oeystein

    2001-01-01

    confirmed and characterised. The testing of the geophysical techniques has so far shown promising results. The 2D resistivity measurements on the ground with subsequent drilling, drill hole logging, pumping and flow measurements would give a good characterisation of the ground where the rock construction is planned. With a good geological foundation (structural mapping) the above techniques would contribute with valuable information concerning what may be expected in front of the hand specimen in tunnel work

  1. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    International Nuclear Information System (INIS)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties

  2. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.

    1989-01-01

    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  3. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    Science.gov (United States)

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  4. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    Science.gov (United States)

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  5. k0-NAA implementation and application at IPEN neutron activation laboratory by using the k0-IAEA software: application to geological sample analysis

    International Nuclear Information System (INIS)

    Mariano, Davi Brigatto

    2011-01-01

    The Neutron Activation Analysis Laboratory (LAN-IPEN) has been analysing geological samples such as rocks, soils and sediments, for many years with the INAA comparative method, for geochemical and environmental research. This study presents the results obtained in the implementation of the k 0 -standardization method at LAN - IPEN, for geological sample analysis, by using the program k 0 - IAEA, provided by the International Atomic Energy Agency (IAEA). The thermal to epithermal flux ratio f and the shape factor α of the epithermal flux distribution of the IPEN IEA-R1 nuclear reactor were determined for the pneumatic irradiation facility and one selected irradiation position, for short and long irradiations, respectively. To obtain these factors, the 'are triple-monitor' method with 197 Au- 96 Zr- 94 Zr was used. In order to validate the methodology, the geological reference materials basalts JB-1 (GSJ) and BE-N (IWG-GIT), andesite AGV-1 (USGS), granite GS-N (ANRT), SOIL-7 (IAEA) and sediment Buffalo River Sediment (NIST - BRS-8704), which represent different geological matrices, were analysed. The concentration results obtained agreed with assigned values, with bias less than 10% except for Zn in AGV-1 (11.4%) and Mg in GS-N (13.4%). Three different scores were used to evaluate the results: z-score, zeta-score and Uscore. The z-score showed that the results can be considered satisfactory (z 3) for Mn in BE-N, Mg, Ce and La in GS-N, Mg in JB-1, and Th and Eu in Buffalo River Sediment. The U-score test showed that all results, except Mg in JB-1, were within 95% confidence interval. These results indicate excellent possibilities of using this parametric method at the LAN-IPEN for geological samples analysis in geochemical and environmental studies. (author)

  6. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  7. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  8. Development of the complex of nuclear-physical methods of analysis for geology and technology tasks in Kazakhstan

    International Nuclear Information System (INIS)

    Solodukhin, V.; Silachyov, I.; Poznyak, V.; Gorlachev, I.

    2016-01-01

    The paper describes the development of nuclear-physical methods of analysis and their applications in Kazakhstan for geological tasks and technology. The basic methods of this complex include instrumental neutron-activation analysis, x-ray fluorescent analysis and instrumental γ-spectrometry. The following aspects are discussed: applications of developed and adopted analytical techniques for assessment and calculations of rare-earth metal reserves at various deposits in Kazakhstan, for technology development of mining and extraction from uranium-phosphorous ore and wastes, for radioactive coal gasification technology, for studies of rare metal contents in chromite, bauxites, black shales and their processing products. (author)

  9. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P J; Robinson, P [Tasmania Univ., Sandy Bay, TAS (Australia)

    1994-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  10. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P.J.; Robinson, P. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  11. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  12. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  13. Commentary of Uruguay geological structure - Present status of its mining activity; Comentarios sobre conformacion geologica del Uruguay - Estado actual de su actividad minera

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    This work is about the geological structure of Uruguay and its mining activity. The Rio de la Plata socket basin and the Rivera crystalline island are the oldest geochronological structures in Uruguay. This unit represents the 60% of the crystalline field and belongs to the Uruguay orogenetic Precambrian cycle. In the north there are sedimentary rocks and granites of the Upper Precambrian period.The mining and processing of marble, granite, agate, amethyst and metallic minerals are declared of national interest.

  14. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  15. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    Science.gov (United States)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  16. An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods

    Directory of Open Access Journals (Sweden)

    J.S Ojo

    2011-06-01

    Full Text Available An integrated surface geophysical investigation involving resistivity and magnetic methods was carried out in the immediate vicinity of the Ikogosi warm spring situated in south-western Nigeria with a view to delineating its subsurface geological sequence and evaluating the structural setting beneath the warmspring. Total field magnetic measurements and vertical electrical sounding (VES data were acquired along five N-S traverses. Magnetic and VES data interpretation
    involved inverse modelling. The inverse magnetic models delineated fractured quartzite/faulted areas within fresh massive quartzite at varying depths and beneath all traverses. The geoelectrical sections developed from VESinterpretation results also delineated a subsurface sequence consisting of a topsoil/weathered layer, fresh quartzite, fractured/faulted quartzite and fresh quartzite bedrock. It was deduced that the fractured/faulted quartzite may have acted as conduit for the
    movement of warm groundwater from profound depths to the surface while the spring outlet was located on a geological interface  (lineament.

  17. Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China

    Directory of Open Access Journals (Sweden)

    Xinyan Li

    2018-03-01

    Full Text Available Knowledge of hydrochemical processes in groundwater helps to identify the relationship between geochemical processes and groundwater quality as well as to understand the hydrochemical evaluation of groundwater, which is important for the sustainable management of groundwater resources. This study aims to identify the chemical characteristics of groundwater in the area of Tongchuan City, China. A total of 58 groundwater samples were collected. A hierarchical cluster analysis divided samples into three clusters and six sub-clusters (cluster 1a, 1b, 2a, 2b, 3a, 3b according to hydrochemical facies. Graphical plots of multiple ionic ratios, saturation indices, and ion exchange indices were employed to examine hydrochemical processes that result in different hydrochemical facies of each cluster. Results show the predominance of carbonate and silicate weathering in cluster 1, silicate weathering in cluster 2, and carbonate weathering in cluster 3. Ionic exchange is a ubiquitous process among all clusters. The distribution of clusters is related to the regional geology, which may result in different hydrochemical processes. Two stratigraphic sections identify the differences in hydrochemical processes resulting from complex stratum structures and varied aquifer media. Cluster 2a shows an interesting difference in water chemistry along the groundwater flow path. Further study by oxygen and hydrogen isotope indicated that mixing between Quaternary and the Permian aquifers resulting from faulting is the main reason for the distinctive characteristic of cluster 2a.

  18. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  19. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  20. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co; Sierra, O., E-mail: osierra@sgc.gov.co; Porras, A.; Alonso, D.; Herrera, D. C., E-mail: dherrera@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  1. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria

    Science.gov (United States)

    Sikakwe, Gregory Udie

    2018-06-01

    This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81-31.16 m2/day/m), transmissivity (0.0033-12 m2/day), storativity (9.4 × 10-3-2.3), drawdown (2.2-17.65 m), pumping rate (0.75-3.57 l/s), static water level (0-20.5 m), and total depth (3.3-61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as

  2. Heat transfer analysis of the geologic disposal of spent fuel and high-level waste storage canisters

    International Nuclear Information System (INIS)

    Allen, G.K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the Crank-Nicolson finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two- and three-dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media for spent fuel canisters. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters. Results of the studies on spent fuel assembly canisters showed that the canisters could be stored in salt formations with a maximum heat loading of 134 kw/acre without exceeding the temperature limits set for salt stability. The use of an overpack had little effect on the peak canister temperatures. When the total heat load per acre decreased, the peak temperatures reached in the geologic formations decreased; however, the time to reach the peak temperatures increased. Results of the studies on high-level waste canisters showed that an increased canister diameter will increase the canister interior temperatures considerably; at a constant areal heat loading, a 381 mm diameter canister reached almost a 50 0 C higher temperature than a 305 mm diameter canister. An overpacked canister caused almost a 30 0 C temperature rise in either case

  3. Apatite fission track analysis: geological thermal history analysis based on a three-dimensional random process of linear radiation damage

    International Nuclear Information System (INIS)

    Galbraith, R.F.; Laslett, G.M.; Green, P.F.; Duddy, I.R.

    1990-01-01

    Spontaneous fission of uranium atoms over geological time creates a random process of linearly shaped features (fission tracks) inside an apatite crystal. The theoretical distributions associated with this process are governed by the elapsed time and temperature history, but other factors are also reflected in empirical measurements as consequences of sampling by plane section and chemical etching. These include geometrical biases leading to over-representation of long tracks, the shape and orientation of host features when sampling totally confined tracks, and 'gaps' in heavily annealed tracks. We study the estimation of geological parameters in the presence of these factors using measurements on both confined tracks and projected semi-tracks. Of particular interest is a history of sedimentation, uplift and erosion giving rise to a two-component mixture of tracks in which the parameters reflect the current temperature, the maximum temperature and the timing of uplift. A full likelihood analysis based on all measured densities, lengths and orientations is feasible, but because some geometrical biases and measurement limitations are only partly understood it seems preferable to use conditional likelihoods given numbers and orientations of confined tracks. (author)

  4. Geology of Northwestern Switzerland - with special emphasis on Opalinus Clay

    International Nuclear Information System (INIS)

    Burkhard, M.

    2007-01-01

    This report describes the variations of the geological structures of Northwestern Switzerland during about the last 200 million years. This gives an explanation for the present partition of the different rock layers in the studied domain. The geology of Switzerland is dominated by the formation of the Alps. The Mont Terri geology is best explained within the framework of the tectonic Wilson cycle: assembly of Pangea in Late Paleozoic times culminating in the Variscan orogeny, collapse and decay of this earlier mountain chain, peneplanation and new rifting leading to the opening of the alpine Tethys Ocean during the Mesozoic, followed by plate convergence, subduction, collision and new mountain-building in the Neogene. The Mont Terri geology bears witness to the same suite of events as the Alps; tectonically speaking, Mont Terri is part of the Alps. Africa continues to push Apulia against the larger European plate and the question arises as to what the geological future has in store for our hills and mountains. Recent GPS (Global Positioning System) data Iead to believe that it will be just erosion and decay

  5. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  6. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    Science.gov (United States)

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  7. Assessment of natural radioactivity levels in rocks and their relationships with the geological structure of Johor state, Malaysia.

    Science.gov (United States)

    Alnour, I A; Wagiran, H; Ibrahim, N; Hamzah, S; Elias, M S; Laili, Z; Omar, M

    2014-01-01

    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.

  8. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  9. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  10. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  11. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the

  12. Quality-Assurance Plan for the Analysis of Fluvial Sediment by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    National Research Council Canada - National Science Library

    Shreve, Elizabeth A; Downs, Aimee C

    2005-01-01

    This report describes laboratory procedures used by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial sediment samples for concentration of sand and finer material...

  13. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    Science.gov (United States)

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.

    2016-09-30

    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface

  14. Geologic setting and geochemistry of thermal water and geothermal assessment, Trans-Pecos Texas. Final report, June 1, 1976-May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.D.

    1977-01-01

    Hot springs and wells in West Texas and adjacent Mexico are manifestations of active convective geothermal systems, concentrated in a zone along the Rio Grande between the Quitman Mountains and Big Bend National Park. Maximum temperatures are 47/sup 0/ and 72/sup 0/C for hot springs and wells in Texas and 90/sup 0/C for hot springs in Mexico within 5 km of the border. Existing information is summarized and the results of a 1-year intensive study of the area are presented. The study includes several overlapping phases: (1) compilation of existing geologic information, both regional studies of geology, structure and geophysics, and more detailed local studies of individual hot spring areas; (2) detailed geologic mapping of hot spring areas to understand the origin and geologic controls of hot springs; (3) field measurement and sampling of hot spring or well waters for geochemical analysis; and (4) synthesis and interpretation of the data.

  15. Development of In situ Geological Investigation and Test Equipment in KURT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kweon; Kim, Kyung Su; Park, Kyung Woo; Koh, Yong Kweon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    For establishment of the advanced infrastructures of KURT, geological investigation and in situ test equipment were installed. The optical sensor technique could be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc. The micro-seismic monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an underground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures. The straddle packer system for hydro-testing in a deep borehole will lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project

  16. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  17. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Simeonov, Assen; Isaksson, Hans

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  18. Exploring the "what if?" in geology through a RESTful open-source framework for cloud-based simulation and analysis

    Science.gov (United States)

    Klump, Jens; Robertson, Jess

    2016-04-01

    combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions. Faults happen in real world networks. Future work will investigate the effect of failure on dynamic sensor networks and the impact on the predictive capability of machine learning algorithms.

  19. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  20. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr